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There are two emerging models for delivering
high-density, synchronized audiovisual
presentations: video-on-demand and the Internet.
The first is based on long-lived connections and
guaranteed timeliness; the second assumes short
spurts of low-bandwidth data on demand. We
present the design for a Media Bank that
intermediates between them. It provides on-
demand access to media elements that are
assembled on-the-fly by the recipient to reproduce
synchronized audiovisual presentations. The
Media Bank uses a fully distributed architecture
that assumes a community of viewers. Any
member citizen can request or deliver sound,
picture, descriptive annotations, or programs to
control assembly. Data are redundantly stored in
small segments and are cataloged by content and
format to facilitate personalized and interactive
retrieval.

he notion of a Media Bank first arose atMIT in
1991 during discussions about building a virtual

communications research program from diverse activ-
ities already in progress throughout the campus. An
under-researched area was a “bit-bucket”—a simple
repository for all sorts of data where large-scale, syn-
chronous content could be easily deposited and later
withdrawn. Video servers were not widely discussed
in 1991; however, constructing such a bank would
yield potentially valuable insights into new uses for
digital video and permit diverse groups across the
campus to cooperate.

It was a small step to distribute the functions through
a large set of machines and invert the notion of a con-
centrated video server from a single (or small) set of
large machines to a large set of very small ones. But
this small step has ramifications. Video is a “dino-

saur” of a data type. Not only is it big and unwieldy, it
is notoriously slow to evolve because of the engineer-
ing lag and a large installed base. Solutions for digital
video processing and storage require new technology
and new investment. Economies of scale and con-
struction have given it a history like that of broadcast-
ing, where a few sources synchronously drive a great
many, simplified receivers. The very success of the
medium for mass entertainment and entrenched com-
mercial interests impedes change and begs the ques-
tion of why one would care to fix something that is
demonstrably not broken.

However, in spite of fifty years of minimal engineer-
ing optimization, television is now becoming a digital
medium. The sheer increase in program capacity
afforded by compression motivates such a change, as
does the opportunity for new distribution channels
and quality options. Commercial ventures that are
more than technologically motivated are in place in
North America (DIRECTV** system) and emerging in
Europe (Astra digital video broadcasting). The Fed-
eral Communication Commission (a United States
government agency) inquiry into advanced television
services (ATV) is nearing completion and will guide
the transition of theUHF (ultra high frequency) broad-
cast band from sparsely populated analogue telecasts
to up to one gigabit per second digital radiation. (It
remains to be seen whether that bandwidth will be
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allocated solely to higher definition services or
whether it will be generalized and opened to any com-
mercial use.) International organizations such as the
Digital Audio Visual Council (DAVIC) are developing
open standards for networked access to television and
sound. As the last data type to fall, digital television
now flows through the same channels as the rest of the
media that we encounter in our daily communicative
lives.

At the same time, we are witnessing the meteoric rise
of the Internet as ade facto global infrastructure for
both personal and commercial information. This net-
work was originally envisioned as reliable support for
distributed computing (1969). By the mid-1970s, an
Advanced Research Projects Agency (ARPA) study
found that three-quarters of allARPANET (ARPA net-
work) traffic was electronic mail (e-mail), and in the
1980s the network became a locus of commercial and
personal interactions. By combining the network with
consumer use of the personal computer, the network
has now become an entity in itself (“the Internet”). In
addition to becoming a foundation for global informa-
tion infrastructures targeting commerce, research,
education, and medicine, the Internet has become a
democratized, participatory society. Its growth dem-
onstrates the power ofcommunityversusinteractivity;
participation eclipses transaction-based full-service
networks and asymmetric client-server designs.

In contrast to video service, the Internet is inherently
symmetric. Any computer connected to it has the
same potential access and abilities as any other—
there is no systematic bias or barrier built into it.
Many researchers attribute its popular growth to this
simple feature. Equality of access is the basis for
international communities, newsgroups (forums for
discussion and information postings), chat rooms, and
the plenitude of home pages (user-owned and -main-
tained nodes for public access of personal, commer-
cial, and reference data) on the World Wide Web (a
portion of the Internet where data exist in anad hoc
standard format). Whereas library retrieval and inter-
active information and transactional services have
been slow to diffuse through society, the community
aspects of the Internet and the reduced cost of entry
now accelerate its use.

This impels us to consider mechanisms for media dis-
tribution that do not emulate broadcast. In particular,
we address extending the ethos of the Internet and its
hyper-library nephew, the World Wide Web,1 to
accommodate high bandwidth, real-time, synchro-

nized data such as audio and video. In effect, we build
a bridge between the fully distributed nature of the
Internet and the requirements of audio and video
media (see Figure 1).

The primary design point is the need for synchronous
delivery. Commercial data can be lost in transit with
no ill effect—the datagram is simply retransmitted
milliseconds later. Accuracy is more important than
timeliness (at least at small-enough scale). Con-
versely, the denouement of a narrative cannot suffer
delay. It can be distorted or degraded by transmission
errors, but the definition of video is in its continuous
flow. Maintaining continuity from distributed
resources in the face of errors, sporadic system avail-
ability, and variable demand preoccupies designers of
video servers.

The second fundamental challenge is that the video of
today is inherently formatted information. Unlike
text, which can consist of individual characters whose
pagination, typeface, and layout are often packaged
separately from the message, a video sequence
embeds the data in a predefined raster size, frame rate,
aspect ratio, and color space. The demands of these
parameters ripple throughout the system, placing con-
straints on channels, storage media, processing hard-
ware, and display technology. This mitigates strongly
against content dispersion and reinforces a necessity
for concentration of information.

In 1996, these concerns can no longer be considered
in a vacuum. Video service of all sorts has broken the
surface in discussions of national and global infra-
structures and as a new consumer entertainment
opportunity.Video dialtone,the local telephone entry
into television distribution, is being tested in all
regions of the United States and many European
countries. There are at least 57 small- and medium-
scale advanced service tests throughout America, and
all seven regional operating companies have filed con-
struction permits with the Federal Communication
Commission to install broadband networks. Salem,
Massachusetts, site of Alexander Graham Bell’s first
long-distance telephone call (from the Lyceum audi-
torium to The Boston Globe newspaper office) is
poised to be an early test site for long-distance video
service. At least two digital direct broadcast satellite
systems are commercially deployed; both are showing
early signs of success.

Other researchers have embarked on similar paths. In
particular, Rowe et al.2–4 have built distributed video
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servers for on-demand access to large audiovisual
archives. Their goal is scalable storage of bulk audio-
visual data such as movies and classroom lectures.
Data in their system are represented in a variety of
formats with annotations and reference information
included in the design. A “Compound Media Object”
model allows flexible assembly of component infor-
mation into coherent presentations. Synchronization
is shared between the servers and the clients.

The design ethos used for building theMIT Media
Bank is similar. It is driven by four main ideas:

• Cross network operation
• Seamless distribution of services
• Stored descriptions
• Multiple format primitives

Entertainment program assembly illustrates many of
these principles. Elements of a movie consist of a sep-
arately stored series of images, sounds, and descrip-
tive data. These data may be contained in a single
storage system or be replicated on several. Also, the
data may exist in a diverse set of formats, for exam-

ple, JPEG (Joint Photographic Experts Group),5 MPEG
(Moving Pictures Experts Group),6,7 AC-3 (audio), and
other formats. A separately stored, list-based structure
contains the information needed to assemble the
diverse parts into a coherent presentation and main-
tains a directory that locates the original material.

For example, in the case of a movie, the editing
instructions to assemble diverse versions of the plot
(X-rated; PG, or parental guidance required; 30-
minute showing; etc.) may exist at one site but the
images may be stored separately from language-
dependent sound tracks. The instructions for billing
and authentication of the viewer may reside else-
where. The movie becomes a coherent event when it
is requested—its display draws upon resources as
needed. Just like the leaves on trees that “make no
sound” if they fall in an unoccupied forest, this movie
literally does not exist unless someone demands a
viewing.

Seamless distribution of services implies that any of
the processing functions described can occur in any of
the systems attached to the network of the Media

Figure 1 Comparison of differing network requirements
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Bank. Many may occur in a hypothetical digital tele-
vision receiver in the home itself, but they could as
well be done by authentication servers, editing sys-
tems, dubbing servers, storage servers, and the like.
Note that this model for scalable storage and distrib-
uted processing extends familiar computing notions to
entertainment—the World Wide Web does the same
thing for paginated text. We argue that we can provide
most services and functions by carefully crafting the
data formats and basic elements to suit existing stor-
age and processing models, rather than the other way
around. A unique storage architecture for time-sensi-
tive data may not be mandatory.

We adopt the style of many emerging national and
global information infrastructure (NII/GII ) efforts: a
multilayered network structure that simplifiesappli-
cations, by providing generic and specificservices
that are delivered through multiplebitways (see Fig-
ure 2). This model implies open interfaces between
the layers, and stresses the generic intermediate or
serviceslayer. For the special case of media service,
we expand that layer into three components, called
respectively, social services, format services, and con-
tent services. Each has different characteristics.

Social services include billing, authentication, and
any other information services (lexicographical, e-
mail, etc.) that are normally associated with net-
worked computing.

Format services are operations performed on the data
on behalf of any client—for example, translation from
MPEG to another encoded representation, stereo to
monaural conversion, or recording of any kind. These
are operations that occur on the interface to access the
data and facilitate use in a diverse environment.

Content services are distributed processing tasks that
relate to annotations and assembly rules.

There are only three elements needed to develop a
Media Bank:

• An indexing and storage scheme
• A suite of client programs to access data
• A delivery protocol

In essense, the indexing system is optimized for repre-
sentation of audiovisual elements stored in elemental
or byte-sized chunks. These are called the Media

Figure 2 The Media Bank multilayered network structure
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Bank protocols, and they are overlaid onto a suite of
access and delivery mechanisms that are themselves
optimized for networked delivery of randomly sized
and located elements. Scalable and layered video are
prime examples. Part of this component of the proto-
col provides for file access into variable sized arrays,
needed, for example, to access selected frames of a
coded video representation.

Access programs are the applications. These provide
means to peruse the information distributed through
the bank and to simulate television receivers. A grow-
ing repertoire of such programs is available to sum-
marize information, transform it between coded
formats, merge text and visual data, and incorporate
authentication and payment mechanisms.

The delivery protocol is divided into two domains:
networked distribution of synchronous information
and specific protocols for access tometa-data8 about
the data.

Indexing and data representation

Choosing an efficient, malleable, and intuitive way to
index and represent data is one of the most important
design tasks of the Media Bank. Without an appropri-
ate representation, indexing becomes slow, and deliv-
ering data from multiple isochronous sources to a
client becomes impossible.

The representation chosen separates media objects
into two parts. The first part consists of meta-data
about the object. For example, the meta-data for a
video clip object would describe the length of the clip,
its resolution, its compression format, and informa-
tion needed for indexing and retrieval. The meta-data
could also include a function that describes a browser
for viewing the video. The actual data for the video
clip are not stored with the meta-data. Instead, they
are stored in the second part, and referenced from the
meta-data part. Several key benefits are afforded by
segregating an object’s meta-data and data.

Figure 3 Personalized movie constructed from scenes of varying violent and sexual content
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The first benefit is that one need not retrieve the entire
object to learn its characteristics, one need only
retrieve the lightweight meta-data. Thus, one avoids
the overhead associated with retrieving the entire
object for the purposes of determining whether or not
it is what is wanted, only to discard it upon finding
that it is not. In other words, the overhead of filtering
on the basis of content is greatly reduced.

The second benefit arises out of the ability to derive
objects from other objects. Consider the end result in
the production of a movie or a television documen-
tary. Typically hundreds to thousands of feet of film
are logged and whittled down into a finely tuned,
highly crafted linear result. The content of the movie
becomes fixed and opaque. One cannot examine
scenes from a different camera angle, tone down vio-
lent content, or request the 16:9 aspect ratio formatted
version. Nor can one repurpose the material without
having access to the material itself. Having the ability
to derive objects from other objects removes all of
these restrictions. Now, instead of the movie being
viewed as a fixed single product, it may be assembled
at the time of viewing. The decision of which particu-
lar clip and which parts of the clips are used becomes
a function of the viewer’s own preferences (see Figure
3).

The third benefit is really a corollary of the second
taken from the content provider’s point of view
instead of that of the consumer.

Content providers have major concerns regarding
access to their products. Clearly, controlling access to
the bits of an object is important because it controls
consumption of the object and hence enables the con-
tent provider to charge for the privilege of access. On
the other hand the content provider also wants con-
sumers to consume and to reuse the bits as often as
possible, because greater use and reuse leads to
greater revenue. Unfortunately, these conflicting goals
are ill-served by the current broadcast model
employed by practically all content providers today.
As soon as a newspaper leaves the press or a televi-
sion show is aired, access to the original material and
editing decisions is lost and the material is rendered
opaque for repurposing.

In our model one need not have access to the original
footage in order to derive new content. Instead, all one
need do is to derive a new object by combining select
pieces of the proprietary one that remains secure on
the content provider’s own server. The end result is a

new object that is anedit decision list, an object that
can be exchanged privately without breaking copy-
right laws or losing functionality. Should a client wish
to use the new object, the client still has to access the
content provider’s secure servers for the object data,
and pay the appropriate royalty or access fee for the
privilege.

Media Bank objects are defined and distributed via a
layered set of protocols (see Figure 4). At the lowest
layer, delivery of meta-data is via Transmission Con-
trol Protocol (TCP). Above TCP is a protocol for the
distribution of objects where the object type is carried
along with the data, calledDsys.9 Dsys allows diverse
objects to be distributed, without advance knowledge
at the receiver about the specific storage formats or
requirements of each data element. Data for this pro-
tocol are a set of list-processing-like (LISP-like, actu-
ally Scheme10) vectors calledDtypes.11 Dtypes include
basic elements such as numbers and text arrays as
well as extensions to define special-purpose types
such as encoded bit streams.

Media Bank objects are accessed, located, and manip-
ulated by a set of Scheme functions interpreted both at
the point of origination (the server) and at the
receiver.9 This generalization allows all Media Bank
objects to be both data elements as well as programs,
and permits them to be interpreted and executed both
locally and by remote agents. In operation, this means
that a viewer for any object can be a program specific
to that object, with user controls carried along with
the data. Objects can therefore be assembled to pro-
vide a different television receiver or user interface for
each movie, or could be organized into networked

Figure 4 Layered transportation stack for Media Bank
object delivery
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games. Further, the execution of the code associated
with any object can be delegated, facilitating auto-
matic translation of data types, accounting, and secu-
rity.

An example of a set of three simple Media Bank
objects for the trailer to the movieBad Boys is shown
in Figure 5. Notice that the first two objects contain
the meta-data for video and the audio to the movie,
respectively, while the third object indicates that the
two are to play synchronously to form a single presen-
tation. It should be noted that these objects contain the

base minimum in terms of information for their
retrieval and playback. Extra name value pairs can be
added at will (with the exception of a few reserved
names), so that the description about the object is free
to grow over time.

It should be noted that fixing the location of the object
data in the data field of the meta-data for the object
does not result in the same problems of brittleness as
for the Internet World Wide Web Uniform Resource
Locators (URLs). The reasons for this will become
clear upon reading the section on directory servers.

Figure 5 Set of three objects for the trailer to the movie Bad Boys

#((uniqueid . “<badboys-video-mjpg>”)
 (name . “badboys-video”
 (type . (item image mjpg))
 (version . 8166411078)
 (owner . “Henry Holtzman”)
 (hardware-formats . #(mme))
 (data . “x-mbd://bad-taste.media.mit.edu:41503/raid4/mbdata/trailers/badboys/badboys.movie”)
 (frames . 3277)
 (width . 320)
 (height . 240)
 (fps . 24))

#((uniqueid . “<badboys-audio-raw>”)
 (name . “bad-boys-audio”)
 (type . (item audio raw))
 (version . 8166411078)
 (owner . “Henry Holtzman”)
 (data . “x-mbd://rocky-horror.media.mit.edu:41503/mbdata/trailers/badboys/badboys.audio.raw”)
 (duration . 24100476/176400))

#((uniqueid . “<badboys-movie>”)
 (name . “badboys-movie”)
 (type . (item application playlist))
 (version . 8166411078)
 (owner . “Henry Holtzman”)
 (script .
 #(

(play-multiple
 #(
 #(

 #(play #((object . “<badboys-video>”))))
 #(

 #(play #((object . “<badboys-audio>”)))))))))
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Data delivery protocols

Central to the design of the data delivery protocols12 is
the notion of pull-based delivery. Pull-based delivery
can be defined as “data delivery only in response to a
request.” While this delivery method is currently used
by the World Wide Web for text and still images, it
has only recently emerged as a contender for the
delivery of large data types such as audio and video.
Traditionally these data types have been delivered in
an asymmetric broadcast fashion from a central head
end that pushes data onto the network regardless of
whether a client can handle the data or not. By
employing the pull-based paradigm, one breaks nearly
all of the usual assumptions made regarding the deliv-
ery of digital video and audio. Instead of a distribution
mechanism that broadcasts from a centralized loca-
tion to low-capacity clients, uses bandwidth asymmet-
rically, and puts the synchronization control at the
server, the Media Bank uses an architecture in which

• The data are fully distributed across many servers in
different locations.

• Multiple instances of the same objects can be dupli-
cated at different servers.

• Bandwidth is considered to be used in a symmetric
fashion.

• The clients are endowed with a degree of intelli-
gence to perform a range of tasks that were previ-
ously the sole purvey of the server.

Two main types of servers in the Media Bank provide
the bulk of the functionality listed above. The first
kind of server is the directory server that provides a
directory service for finding out where an object is
located. The second kind is the object server on which
the actual data are stored. Between them the object
and directory servers provide access to objects stored
in the Media Bank in a seamless fashion that:

• Is fault tolerant
• Allows both object and directory servers to be

added and removed from the Media Bank at will
• Manages the load of both computation and network

usage across the servers of the Media Bank and the
network links that connect them

Directory servers

Directory servers provide the means for locating
objects stored in object servers in a manner akin to
that used by theUNIX** Domain Name Service for
resolving machine names to Internet Protocol (IP)

addresses. The idea of directory service is not new,13,14

and is the subject of ongoing research particular
amongst the Internet World Wide Web community.
This section describes our implementation of a direc-
tory service.

Objects in the Media Bank are identified by one of
two mechanisms: names or unique identifiers (UIDs).
The difference between the two is that there may be
multiple objects with the same name in the Media
Bank but only one object instance per unique identi-
fier. Object equivalence is assigned on the basis of
name. In addition, unique identifiers come in two fla-
vors: simple and network. A simple unique identifier
assumes that the host and port of the object server is
already known and that the unique identifier identifies
a single object stored on that particular object server.
A network unique identifier (NUID) differs from a
unique identifier (UID) in that it includes the host and
port number of the object server with the simpleUID
to form an identifier that is unique to the entire Inter-
net, not just a particular machine. An example of a
NUID for the object with the name “badboys-video” is
shown in Figure 6.

Apart from the abstraction of names and unique iden-
tifiers, Media Bank directory servers provide a num-
ber of additional services. Specifically, they provide:

• The ability to detect dead or unresponsive object
servers and remove references to them when
responding to requests to resolve object names

Figure 6 Example of a network unique identifier (NUID)

#((uniqueid . “badboys-video-mjpg”)
 (host . “rocky-horror.media.mit.edu”)
 (port . 41501))
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• The capability to store a subset of the meta-data
information about an object that may be used by the
client to prune unnecessary accesses to object serv-
ers for an object that does not fully meet the prefer-
ences specified by the client

• The facilities to manage the computational load
between servers capable of serving equivalent
objects

The inclusion of the these three additional services,
along with the naming abstraction scheme are key
features of the Media Bank as they solve the problem
of brittle URLs that is inherent with the current imple-
mentation of the World Wide Web. No longer will the
going down of one server automatically result in cata-
strophic blocking of a request for an object, since the
network unique identifier of another equivalent object
will be returned, should one be available.

The implementation of these services is reasonably
straightforward. Each directory server consists of five
main functional units, as shown in Figure 7.

At the core of the directory server is the Dtype
Scheme evaluator. Built upon the Dtype data manipu-

lation and Dsys networking libraries, the Scheme
evaluator executes Scheme code applets for the other
four functional blocks. It should be noted here that the
Dsys networking library (through which the remote
server interface and object meta-data interface con-
nect to the network) uses a connectionless protocol on
top of a modifiedTCP/IP stack in which connection
establishment timeouts have been shortened to frac-
tions of a second. While in generalTCP/IP may not
have the best performance in terms of latency, for
local networks its performance has been found to be
acceptable for real-time access. Work is currently in
progress to replace theTCP/IP portion of the Dsys
library with a real-time networking protocol that uses
multicasting, distributed caching, and Application
Level Framing (ALF).15 This new protocol may also
useRSVP16 and eventually be used in an IPv617 envi-
ronment.

Object servers communicate with the directory server
via the remote server interface. Through this interface
they inform the directory server of their presence,
their current state, and make requests for directory
service via regular remote procedure calls (RPCs).
Should the directory server accede to a request by an

Figure 7 Directory server functional block diagram
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object server, it will reply in the affirmative indicating
when the object server should next check in. In addi-
tion, the directory server may also schedule an update
event to synchronize its database with that of the
object server should the version number of the object
server included in the original request for directory
service not match the one inside the database of the
directory server for that object server. Should an
object server fail to re-request directory service by the
time indicated in the reply, then the directory server
will mark the object server’s objects as “temporarily
unavailable.”

When a directory server requests an update from an
object server, it stores the result in a meta-data data-
base and, at the very minimum, stores theNUID for
each object in a database keyed on the name of the
object. Thus resolving a name into a list of object
NUIDs becomes very simple indeed. In addition to the
NUID, additional meta-data may be stored with each
entry for the object. For example, the object type (e.g.,
image/mjpg, audio/raw, application/playlist) is cur-
rently appended to theNUID vector to speed up prun-
ing unsuitable objects on the basis of type without
having to contact the object server for the object.

Clients wishing to access the Media Bank initially do
so through the object meta-data interface module.
This module takes the client’s request in the form of
an RPC (remote procedure call) and then extracts and
queries the meta-data database on the client’s behalf.
Among other things, the interface removes theNUIDs
of objects on object servers that failed to check in
with the directory server. A typical exchange between
a client and the directory server is shown in Figure 8.

Notice that the directory server responds to the cli-
ent’s request for information regarding objects that
match the namet2-movie-browser with an object with
type set toitem multipart locator and the data set to a
vector of length two, where each entry corresponds to
an object stored on another server. The two entries in
the data vector are in no specific order and must be
further examined before the client can determine
which one is the more appropriate. The mechanisms
involved in this process will be discussed in the sec-
tion detailing the operation of Media Bank clients.

Object servers

Object servers do exactly what their name suggests,
deliver objects. However, in keeping with the design
philosophies of pull-based delivery and segregating

an object’s meta-data from its data, the fashion in
which they do so is a little different from normal. A
block diagram showing the internal pathways of a
Media Bank object server is shown in Figure 9.

Like the directory server, the object server’s core con-
sists of a Scheme evaluator built on top of the Dtype
and Dsys libraries. There is also an event scheduler
that is used to schedule requests for directory service
to the various directory servers that provide directory
service for the object server. The directory server
interface is somewhat different from the remote server
interface found in the directory server. For one, it ini-
tiates object server/directory server communications.
The directory server will not contact the object servers
unless the directory server initiates the first contact.
This is best shown by describing the communication
exchanges that result when a new object server is
brought on line.

Upon startup, the object server first attempts to find a
directory server from a local list of possible directory
servers. As soon as the object server locates a direc-
tory server that is active, it issues a joint request for its
objects to be served and also for the most recent list of
directory servers. Assuming that the response is in the
affirmative, the directory server returns the time for
the next subsequent check-in along with a list of other

Figure 8 Typical client/directory server interaction

Client to directory server
(item-fetch “t2-movie-browser”)

Directory server response
#((type item multipart locator)
 (data . #(

#((name . “t2-movie-browser”)
 (uniqueid . “<t2-movie-browser>”)
 (type item application sprog)
 (host . “alphaville”)
 (port . 41501)
 (load-average . 1.36155525677))
#((name . “t2-movie-browser”)
 (uniqueid . “<t2-movie-browser>”)
 (type item application sprog)
 (host . “bad-taste”)
 (port . 41501)
 (load-average . 3.26552888373)))))
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directory servers that this object server should con-
tact. At this stage the object server schedules the
check-in event and replaces the original list of direc-
tory servers with the new one. The object server then
repeats the process contacting each directory server in
the new list, this time requesting directory service
only.

When the directory server receives and subsequently
accedes to the request for directory service, it sched-
ules an update event to occur shortly after sending the
reply back to the object server. When the event sched-
uler determines that it is time for the update to occur,
the directory server contacts the object server and
requests an update based on the difference between
the version number of the update request and the cur-
rent version number of the object server. The response
of the object server is generated using the version
number difference and results in a list that selectively
adds and deletes objects from the meta-data database
of the directory server.

The meta-data interface of the object server is identi-
cal to that of the directory server, because the commu-

nications protocol for meta-data access is symmetric.
This is important as it means that any media bank
server or client can access any server and use the same
suite ofRPCs to extract meta-data information regard-
ing objects known to that server.

Perhaps the biggest difference between directory serv-
ers and object servers is the ability of the object server
to serve the actual object data via the object data inter-
face. Two different protocols are currently supported
at the object data interface. The first is the networked
file system (NFS), but the amount of control possible
over the latency and loading of the network is some-
what restricted. In fact the grade of service possible in
accessing the object data is inferred from the state of
the meta-data interface. The second protocol is a cus-
tom protocol developed at the Media Laboratory
called the Media Bank data protocol (MBDP). MBDP
transmits data from the object server by packetizing
within Dtype wrappers and transmitting them using a
slightly modifiedTCP/IP in which the timers are tuned
to expire considerably quicker than normal. This
design achieves two things, the first being a greater
control over the use of network bandwidth by clients,

Figure 9 Object server functional block diagram
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and second the ability for the Media Bank to provide
remote access beyond the Media Lab’s local network.
Ongoing work is being undertaken to create the next
revision ofMBDP that will shift fromTCP/IP to multi-
cast UDP (user datagram protocol) as the primary
means for delivering object data. This new version of
MDBP will be completely distributed and will blur the
distinction between clients and object servers by
allowing the clients to cache object data and subse-
quently apply the data to their peers as requested. This
merging of functionality should also enhance scalabil-
ity and performance, and may lead to a single unified
architecture that could be used to deliver both real-
time communications and prerecorded entertainment
on a global scale.

The directory and object servers for the Media Bank
may not find wide deployment around the Internet in
the near term; however, we believe that their architec-
ture is representative of what servers will look like
once gigabit per second networking, connectivity, and
capabilities become commonplace. In such an envi-
ronment, the need to store media on large centralized
servers directly connected to the primary Internet
backbone diminishes significantly. Objects will be

spread and duplicated over the entire net. Further-
more, the ability to publish multimedia and have it
seen will continue to diffuse further from publishing
houses and into the home. However, changes to serv-
ers are only half the story as the clients will change
dramatically as well.

Clients

One of the key differences between Media Bank cli-
ents and practically every other current Web client or
network video client is the endowment of sufficient
intelligence to performsynchronized assembly of mul-
tiple isochronous objects via pull-based delivery. The
decision to shift to pull-based delivery stems from the
realization that a client that buffers object data from
multiple servers is in a better position to manage its
buffers and synchronize playback from them than any
of the servers would be. An example of this kind of
presentation is combining several dependent video
and audio streams from different locations during a
sports broadcast. The ramifications of shifting these
responsibilities from the server to the client are far-
reaching. Basically, the client now becomes an
extremely powerful entity that can operate autono-

Figure 10 Media Bank client functional block diagram
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mously from the network. No longer is the client tied
to a single server, but the client is free to switch
between servers whenever desired. Server dropouts
and broken networks can both be detected and han-
dled by the client as appropriate. In addition, the abil-
ity to access and pull data from multiple servers gives
clients the ability to create a whole suite of heretofore
unforeseen presentations that exploit both the wealth
of information available on the network and the user’s
own preferences and tastes.

Accordingly, Media Bank clients are given the ability
to execute smart objects that define procedures and
applets in a similar fashion to those found in the Tcl/
Tk (tool command language/toolkit) clients of the
Berkeley VoD (video-on-demand) project2,3 and the
Java**-capable clients of Sun Microsystems and
Netscape Communications Corporation. The Media
Bank clients execute objects that are written in
Scheme, the same language used to represent the
object meta-data. Correspondingly, Media Bank cli-
ents tend to be very similar internally to the object and
directory servers they access. A diagram showing the
internal structure of a Media Bank client is shown in
Figure 10.

There are five main modules in the Media Bank client
library suite. As with the Media Bank servers the
Dtcore (Dtype and Dsys) libraries and Scheme evalu-
ator lie at the center. However, in addition to the
Dtcore libraries there are several other libraries that
augment the functionality of the Scheme evaluator.

The second module is the link manager, which man-
ages the client’s interactions with Media Bank serv-
ers. Like the object server, the link manager actively
seeks out a directory server that will provide access to
the Media Bank and cache the list containing any
alternate directory servers that may be present. In
addition, the link manager also keeps track of which
servers are not available and provides automatic error
recovery during server dropout.

The third module, the Media Bank libraries, consists
of a suite of dynamically loadable shared libraries that
extend the functionality of the Scheme evaluator by
providing procedures to manipulate Media Bank
objects. Negotiating access to objects and servers,
parsing playlists, object type checking, name resolu-
tion, sorting objects on preferences, and executing
smart objects are all handled by the Media Bank
libraries. Written as a mixture of Scheme-only func-
tions and Scheme hooks into optimized C++ code,

these libraries are dynamically loadable, and as such
can be replaced by more recent versions or upgrades
without having to recompile the client application.

The hardware libraries make up the fourth module.
Basically, these libraries provide access via Scheme
to any specialized hardware on the local machine.
Examples of hardware- and architecture-specific code
supported are access routines toMJPEG cards, access
routine to the native audio server, and X library sup-
port.

The fifth and final module is the time base generator.
Derived from the audio server clock, the time base
generator generates periodic events signals that are
then sent to any objects that have been instantiated
and are in use. For example, a movie player may be
fed 24 update events per second that cause frames to
be displayed and audio to be played in strict synchro-
nization.

The beauty of performing synchronization in this
manner is that implementation of fast forward, fast
reverse, and slow motion becomes trivial. All one
needs to do is to change the rate at which the update
events are generated. If one wants to play the movie at
twice the normal speed, then the time base generator
needs only to issue updates at 48 updates per second
or at 24 updates per second, with the difference in
time code between each update being doubled to one-
twelfth of a second. Likewise half-speed playback
will result if the time base generator issues only 12
updates per second. Because the client’s display is
completely decoupled from both the playback rate
and the recorded rate, this does not necessarily mean
that the required network bandwidth is tied to the
playback rate. If a client is only capable of decoding
and displaying 24 frames per second, then every sec-
ond update frame event will be skipped for the dou-
ble-speed playback at the 48 updates per second
example just mentioned. A more powerful client may
set an upper bound on the number of updates per sec-
ond that is willing to process in deference to other
users.

Sitting above all these modules is the client applica-
tion. Usually, the client application will be written in
one of two ways. The first is as a precompiled C++
program that uses Dtype hooks to execute the neces-
sary Scheme code to access the five modules just
described. The second option is to write the applica-
tion as a Scheme program that can then be suitably
wrapped up to become a Media Bank object. There
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are advantages and disadvantages to both of these
methods. The C++ option will result in faster code,
particularly for clients that perform any sort of mem-
ory or compute-intensive manipulation of video or
audio data, while the Scheme route offers the benefit
of portability and accessibility at the expense of
speed. However, there is a provision for a way around
this shortcoming; one can extract the compute-inten-
sive Scheme code, rewrite it in optimized C++, and
put it in a Scheme wrapper inside a dynamically load-
able library that can then be sent to the client as an
object as needed.

In order to best demonstrate the operation of Media
Bank clients, we have included the following four
examples that detail some typical client actions, and
we also show screen shots from several Media Bank
clients.

The first example shows the steps taken by a client
that wishes to access the movieTerminator 2 (see Fig-
ure 11).

First the application issues a request to the Media
Bank client libraries requesting the location of objects
with a name that matchesTerminator 2. Other infor-
mation may be present in the form of preferences that
will be used to rank any matching objects on the basis
of a series of tests between any of the fields contained
in the objects. Upon reception of the request, the
Media Bank client libraries will contact the first avail-
able directory server and request a list of objects that
match the nameTerminator 2. The directory server
will return a list of objects that match (Figure 11, top).

Upon receiving this list, the Media Bank client then
sorts the objects in the reply according to the users’
preferences and also a number of system preferences
(e.g., the preferred video format isMJPEG, or motion
JPEG, because the client has anMJPEG card). This pro-
cess is performed in four stages. In the first stage,pre-
filtering, any objects that mismatch on type are pruned
from the list of possible matches (e.g., all still images
will be discarded here). Assuming that there is still
more than one object in the list, it issorted on the
basis of the information currently known about each
object and the combined user and system preferences.
At this stage one object may satisfy the preferences
sufficiently well that no other object need be consid-
ered. In this case the meta-data for the object are
fetched from the appropriate object server and then
remaining objects are placed into a field tagged
“backup-info” that is then appended onto the meta-

data for the object. Should insufficient information be
available to make a decision, the Media Bank client
libraries will enter an iterative phase ofresolving
unresolved objects: fetching the meta-data about them
from the object server that serves them, re-evaluating
the preferences for the now resolved object, and
resorting by inserting that object into the list (Figure
11, middle).

Finally, having resolved the matching objects, fetch-
ing the meta-data about them, and sorting them
according to preferences, the Media Bank client
libraries pass the best object (with the others in the
backup-info field) to the client application (Figure 11,
bottom).

The second example shows how a Media Bank client
retrieves and synchronizes data from multiple iso-
chronous sources once the objects have been located
(see Figure 12). Perhaps the most trivial case that
illustrates this capability is the playback of a movie.
However, before delving into the exact mechanism for
playback within the client it is worthwhile to examine
the object format that makes synchronization possi-
ble.

Movies in the Media Bank are generally constructed
from a number of objects that correspond to sepa-
rately stored snippets of video and audio. Obviously
the act of de-interleaving the audio and video requires
that measures are taken to maintain the temporal
dependencies between corresponding audio and video
objects. Within the Media Bank this is achieved
through the inclusion of offset, duration, number of
samples or frames, and playback rate information in
every audio or video object. Because some of this
information is redundant, it is not required to include
a value for each of these parameters with each object,
as long as the missing parameters can be derived from
the ones that are included. In addition, the Media
Bank also allows the derivation of objects that are
subranges of other larger objects. This design is par-
ticularly useful for synchronizing audio and video that
have been digitized independently. An example of an
audio object that is subranged from a large one is
shown in Figure 13.

Having defined the storage format for individual
objects, one needs to define a mechanism for synchro-
nizing multiple streams. The Media Bank achieves the
goal through the use of playlist objects that define the
temporal relationships between multiple pieces of
data at the object level. Two examples of a playlist are
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given in Figures 14 and 15. Figure 14 shows how
three audio objects can be concatenated into a single
larger one by issuing consecutive play commands,
while Figure 15 shows how two separate temporal
objects can be played simultaneously through the use
of the play-multiple command.

As was briefly explained earlier in this section, the cli-
ent coordinates the simultaneous playback of multiple
objects via a local time base generator. The time base
generator exploits the fact that objects “know” about
their own temporal properties by sending updates that
specify an offset in terms of time to a handler that is

Figure 11 Negotiating access to the movie Terminator 2
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instanced for each object. The handler then performs
the necessary actions to display the portion of the
object at the specified time. Compound objects result
in a hierarchy of handlers where the top or parent han-
dler passes down the update event to the relevant chil-
dren. A new update event is not generated until a
handler has finished processing the previous update
event. In this way, each object is informed in unison
as to where it should be in the playback process.
Obviously, the more objects one has, the greater load
one places on the system, which can lead to the total
handling time for all the handlers exceeding the time
between update events. In these cases audio objects
are given preference over video objects for resources,
because the human ear is much more sensitive to tem-
poral discontinuities than the human eye.18

An interesting side effect that arises out of using this
particular mechanism for playback is the decoupling
of the playback rate from the recording rate. Consider
a video object recorded at 24 frames per second and
sent updates as though it was recorded at 30 frames
per second. In this case the handler would choose the
frame nearest in time to the desired sample for play-
back, thereby performing automatic (albeit less than
optimal) frame rate conversion.

The third example demonstrating the client’s capabili-
ties is the ability to performautonomous error recov-
ery (see Figure 16). This is an especially useful
feature, because it ensures that the quality of service
given to a client is not bound to a single central server,
as is the case with most solutions today. Thus the

Figure 14 Example of using the play command to
concatenate multiple objects

#((uniqueid . “<t2-audio>”)
 (name . “t2-audio”)
 (type . (item application playlist))
 (version . 0)
 (script .#(

 (play #((object . “t2-audio-ch1-ch28-
adjusted”)))

 (play #((object . “t2-audio-ch29-ch57-
adjusted”)))

 (play #((object . “t2-audio-ch58-ch78-
adjusted”))))))

Figure 15 Example of using the play-multiple command
to synchronize multiple objects

#((uniqueid . “<t2-movie>”)
 (name . “t2-movie”)
 (type . (item application playlist))
 (script .

#((play-multiple
 #(

 #((play #((object . “t2-video”))))
 #((play #((object . “t2-audio”))))) ))))

Figure 13 An object derived by subranging from a
larger one

#((uniqueid . “<t2-audio-ch1-ch28-adjusted>”)
 (name . “t2-audio-ch1-ch28-adjusted”)
 (type . (item application subrange))
 (object . “<t2-audio-ch1-ch28-raw>”)
 (offset . 60.8)
 (duration . 81038000/23987))

Figure 12 Fetching the meta-data about an object from
the directory server

Client request to directory server
(object-fetch “Terminator 2”)

Director server reply to client
#((type item multipart locator)
 (data .#(

#((name . “Terminator 2”)
 (uniqueid . “<t2-movie-browser>”)
 (type item application sprog)
 (host . “alphaville”)
 (port . 41501))
#((name . “Terminator 2”)
 (uniqueid . “<t2-movie-browser>”)
 (type item application sprog)
 (host . “bad-taste”)
 (port . 41501)))))
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Media Bank provides a much more robust means for
delivery whereby the quality of service is much more
closely tied to the client under the user’s control,
thereby minimizing the possibility of having a per-
fectly healthy client that is incapable of accessing data
due to the failure of a single node in the network.

Having followed the first example that showed how a
client negotiates access to the Media Bank, it should
be no surprise that the means for error recovery lies in
thebackup-info field of the returned object. This field
contains a list of alternate equivalent objects that may
be used in lieu of the parent object, should access to

Figure 16 Autonomous error recovery
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the parent fail for some reason. The second thing that
makes rapid error recovery possible is the pull-based
manner in which the client extracts object data from
the object servers. As the client never has a continu-
ous open stream to an object server, and pulls in only
relativity small pieces of an object for any given
request, detection of a defunct object server occurs
almost instantaneously. Therefore, should an object
server ever fail to respond to a request for data for an
object within a specified time, the client may safely
assume that object server is incapable of supplying
further data. Consequently, the client also makes all
future requests for data for that object to an alternate
object server defined in the backup-info for that
object. A diagram showing the normal operation (Fig-
ure 16, top), a dropped request due to a server crash

(Figure 16, middle), and the subsequent recovery
(Figure 16, bottom) for a client accessing data is
shown.

The fourth and final example highlights the ability of
the Media Bank to support a variety of clients with
varying capabilities.

One could be forgiven for thinking that the screen
shots shown in Figure 17 appear to be only standard
pages of an ordinary World Wide Web browser. In
reality, the browser shown on the left has been slightly
modified to support the Media Bank libraries. The fact
that the Mosaic browser was chosen for modification
is not important; the choice made reflected the fact
that it provided the most expedient means available

Figure 17 Screen shots of an object accessed via the Smart Client (left) and via Netscape/HTTP Gateway (right)
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for generating a window for the “widgets” used by the
Media Bank client libraries. The total modifications
made to the Mosaic browser source code total roughly
forty lines, but those forty lines provide a single point
of access into the Media Bank client libraries that any
smart object can use. The simplicity of this interface
gives it its power, as clients can be written solely in
Scheme and stored as objects that can be downloaded
as needed. In effect, the Mosaic browser has been
transformed from a simple display engine into a pow-
erful virtual machine upon which any Media Bank
object can be run.

Not all clients will be Media-Bank-capable, however
(efforts to create a Media Bank plug-in for the
Netscape browser client are ongoing at the time of
writing); therefore a mechanism is needed to afford
these clients access to the Media Bank. To that end a
gateway application has been written that performs all
of the negotiated accesses and object retrieval on the
behalf of standard Hypertext Markup Language
(HTML) clients. An example of the gateway operation
is shown in the righthand screen shot of Figure 17. In
this image, an ordinary browser is displaying the same
“page” as the Media Bank enhanced Mosaic browser
on the left. Unable to interpret the reference to the
embedded Media Bank object in the page, this
browser has been directed to anHTML gateway that
acts as a proxy Media Bank client for the standard
Netscape browser. The gateway itself is a client that
does its best to retrieve the best possible approxima-
tion to the object requested. For example, if the object
is a movie then the gateway will provide a key still
from the movie, or it may instead send a small audio
clip and a still. At present the backup data are sup-
plied by the author of the object but future versions
will be fully automatic and be sufficiently intelligent
to tailor the approximated response according to the
type of browser, and the bandwidth of the link.

Conclusions

In many respects, the Media Bank is a merger of
Internet distribution techniques with television. Our
goal is to find a common ground between the synchro-
nous broadcasting of full packaged information asso-
ciated with filmed entertainment and the demand-
based dynamic assembly associated with computer
networks. At the same time, we use the flexibility of
programmable clients and servers to embed new tech-
niques for indexing and assembling video as they
arise. New applications will emerge when large popu-
lations have access to sufficiently powerful tools and

databases. The Media Bank provides the foundation
upon which to build these tools and databases, as it is
optimized for programmability and user control.

As a vehicle for entertainment, the bank can be the
basis for a television receiver. In our demonstration
systems, synchronized video images appear simulta-
neously within a modified World Wide Web browser
window and full screen on an external television. The
browser can be the program guide, the device that
builds a unique program for each viewer, or simply a
controller for scanning through material. Future work
will enrich this interface.

For research, we are using the Media Bank to explore
ways to analyze, index, and deliver high-bandwidth
isochronous information such as sounds and pictures.
The Media Bank model of distributed storage and
pull-based delivery is a relatively new one, and as
such its capabilities have yet to be fully explored. At
its most basic level, multimedia is nothing more than
a unified delivery channel capable of containing
diverse data types. To date, by dint of its size, rigidity,
and complexity, video has been excluded from the
same digital pipe that has carried stills, sound, and
text. Our naming structure, storage method, and
access paradigm allows a diverse set of representa-
tions to be jointly cataloged, potentially simplifying
the problem.

We do not envision a system such as the Media Bank
replacing broadcast for entertainment in the near term.
Broadcasting is both bandwidth-efficient and reso-
nates with a great many commercial and social inter-
ests. Until our networks increase their capacity, we
cannot scale the Media Bank up to the level of the
audience reached by popular television shows. How-
ever, the existing model of broadcast television has
never been seriously challenged by any robust, com-
putational alternative. Further, the expanded reper-
toire of available programs made possible by digitally
compressed delivery and the implicit presence of
computing at the receiver beg the question of how the
two media can work together.

**Trademark or registered trademark of DIRECTV, Inc., a unit of
Hughes Electronics Corporation, X/Open Co. Ltd., or Sun Micro-
systems, Inc.

Cited references

1. T. J. Berners-Lee, R. Cailiau, and J. F. Groff, “The World Wide
Web,” Computer Networks and ISDN Systems25, 4–5, 454–



IBM SYSTEMS JOURNAL, VOL 35, NOS 3&4, 1996 LIPPMAN AND KERMODE 291

459 (November 1992).
2. L. A. Rowe et al., “A Distributed Hierarchical Video-on-

Demand System,”Proceedings of the 1995 International Con-
ference on Image Processing, Washington, DC (October 1995).

3. L. A. Rowe, D. A. Berger, and J. E. Baldeschwieler, “The Ber-
keley Video-on-Demand System,”Multimedia Computing—
Proceedings of the Sixth NEC Research Symposium, T. Ishig-
uro, Editor, SIAM (1996).

4. D. Berger,Video-on-Demand Metadata Query Interfaces, mas-
ter’s degree thesis, University of California Berkeley, Com-
puter Science Division (June 1995), ftp://roger-rabbit.cs.
berkeley.edu/pub/thesis/dvberger-masters.ps.

5. ISO/IEC DIS 10918-1, ITU-T Rec.T.81 (JPEG),Information
Technology—Digital Compression and Coding of Continuous-
Tone Still Images (1992).

6. ISO/IEC 11172,Information Technology—Coding of Moving
Picture and Associated Audio for Digital Storage Media as up
to about 1.5 Mbit/s (1993).

7. ISO/IEC CD 13818-2, Recommendation H.262,Generic Cod-
ing of Moving Pictures and Associated Audio, Committee
Draft, Seoul (November 1993).

8. R. Jain and A. Hampapur, “Metadata in Video Databases,” spe-
cial issue onMetadata for Digital Media, ACM SIGMOD
(1994).

9. K. Dienes,Information Architectures for Personalized Multi-
media, master’s degree thesis, MIT Media Laboratory, Cam-
bridge, MA (June 1995).

10. W. Clinger et al.,Revised Report on the Algorithmic Language
Scheme, MIT AI Lab Memo 848b, MIT, Cambridge, MA
(November 1992).

11. N. Abramson,Context-Sensitive Multimedia, master’s degree
thesis, MIT Media Laboratory, Cambridge, MA (June 1993).

12. A. B. Lippman, R. G. Kermode, H. N. Holtzman, and K.
Dienes, Media Bank—Communications Protocol Definition,
Internal Document, MIT Media Laboratory, Entertainment and
Information Systems Group, Cambridge, MA (October 1995).

13. K. Sollins,Plan for Internet Directory Services, rfc1107 (July
1, 1989).

14. T. Berners-Lee,Universal Resource Identifiers in WWW: A
Unifying Syntax for the Expression of Names and Addresses of
Objects on the Network as Used in the World-Wide Web,
rfc1630 (June 9, 1994).

15. D. Clark and D. Tennenhouse, “Architectual Considerations for
a New Generation of Protocols,”Proceedings of the ACM SIG-
COMM ’90 (September 1990), pp. 201–208.

16. L. Zhang, R. Braden, D. Estrin, S. Herzog, and S. Jamin,
Resource ReSerVation Protocol (RSVP)—Version 1 Functional
Specification, ftp://www.isi.edu/internet-drafts/draft-ietf-rsvp-
spec-08.txt.

17. S. Deering and R. Hinden,Internet Protocol, Version 6 (IPv6)
Specification, Internet Draft, ftp://ds.internic.net/internet-
drafts/draft-ietf-ipngwg-ipv6-spec-02.txt (June 1995).

18. W. R. Neuman, A. Crigler, S. M. Schneider, S. O’Donnell, and
M. Reynolds,The Television Sound Study, MIT Media Labora-
tory, Cambridge, MA (1987).

Accepted for publication April 4, 1996.

Andrew Lippman MIT Media Laboratory, 20 Ames Street, Cam-
bridge, Massachusetts 02139-4307 (electronic mail: lip@
media.mit.edu). Dr. Lippman received both his B.S. and M.S.
degrees in electrical engineering from the Massachusetts Institute
of Technology. In 1995 he completed his Ph.D. studies at the École
Polytechnique Fédérale de Lausanne, Switzerland. He is currently

associate director of the MIT Media Laboratory and a lecturer at
MIT. He holds seven patents in television and digital image pro-
cessing. His current research interests are in the design of flexible,
interactive digital television infrastructure.

Roger Kermode MIT Media Laboratory, 20 Ames Street, Cam-
bridge, Massachusetts 02139-4307 (electronic mail: woja@
media.mit.edu). Mr. Kermode is a doctoral student at the MIT
Media Lab where he earned a master of science degree in 1994. He
also holds undergraduate degrees in electrical engineering and com-
puter science from the University of Melbourne. After completing
his undergraduate studies in 1990 he worked at the Telstra (Austra-
lia) Research Laboratories as a research engineer investigating cell
loss recover techniques for packetized digital video. Since com-
mencing his studies in the United States he has interned at Silicon
Graphics Incorporated. He is a Fulbright Scholar and has received
fellowships from AT&T and Motorola, Inc. His research interests
include video coding, object-oriented representations for multime-
dia, computational media, and interactive network infrastructure.

Reprint Order No. G321-5606.


