
337

©Copyright 1996 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) theJournal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other infor-
mation-service systems. Permission torepublish any other portion
of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 35, NOS 3&4, 1996 0018-8670/96/$5.00  1996 IBM BOVE

In this paper I describe some of the design issues
and research questions associated with object-
based video coding algorithms, as well as the
new applications made possible. I propose a
hardware and software strategy to cope with the
computational demands (stream-based computing
combined with automatic resource management)
and also briefly introduce object-based audio
representations that are linked to the video
representations.

hile the computational requirements for the
current round of multimedia standards and

applications are proving manageable, several trends
can be identified that will dramatically increase the
processing demands. One of these will be a shift to an
object-based representation, in which video of real
scenes is described not as sequences of frames but
rather as collections of modeled objects that are
encoded by machine-vision algorithms and decoded
according to scripting information. Although the shift
from images to models has to date largely taken place
among researchers seeking significantly more com-
pression than is available from standard coders, the
most significant impact may be the new forms of
interactivity and personalization these representations
enable.

Future multimedia

It is understandable how one might conclude—seeing
the array of products dedicated to computer-moder-
ated authoring and playback of digital audio and
video—that nearly all the algorithmic and infrastruc-
ture problems of multimedia are either solved or
nearly solved.

But the transform-based, or software-optimized algo-
rithms on which these systems and applications are
based are just the first round in a move toward poten-
tially much more useful, efficient, and computation-
ally demanding forms of communication.

Much of current multimedia is essentially a more effi-
cient extrapolation of past analog video and audio
applications. Users of multimedia systems certainly
desire compression efficiency (or equivalently, more
quality at a given bit rate), but taking useful advantage
of the computational abilities of multimedia systems
in more than a signal-processing sense will require
more semantics. A representation that segments infor-
mation in a manner that is content-driven rather than
arbitrary (e.g., localized, modeled sound sources and
acoustical environments rather than speaker channels;
coherent objects rather than blocks of pixels) might
not only achieve more compression,1 but could also
make relevant features apparent in the compressed bit
stream. Potential benefits include:

¸• New production and post-production methods
¸• Intelligent database search
¸• Easier authoring of interactive or personalized con-

tent
¸• Better support for distributed storage
¸• Assembly of content “on-the-fly” from disparate

elements

W

Multimedia based on
object models: Some
whys and hows

by V. M. Bove, Jr.

BOVE IBM SYSTEMS JOURNAL, VOL 35, NOS 3&4, 1996338

Object-based video

Let us consider in some detail the case of video com-
pression. Most current algorithms are based on
frames, groups of frames, and regular subsections of
frames. Compression inefficiency is traded for com-
putational efficiency and regularity, by not taking into
account the actual structure of the scene represented
by the video frames. Because objects in the world do
not correspond to regular subarrays of pixels, and
becausex-y translation does not correspond very well
to an image-plane projection of their motion in three-
dimensional space, there is a fundamental model mis-
match between the world and the video data.
Although some clever research has been done on
interpretingMPEG (Moving Pictures Experts Group)
formatted bit streams to find scene changes and object
or camera motions,2 or performing simple modifica-
tions to the video data without fully decoding the bit
stream,3 ultimately semantics and flexibility should be
designed-in features of a video representation and not
serendipitous afterthoughts.

While most researchers in the field are searching for
more efficient compression, these other consider-
ations are also driving the recent interest in model-
based or analysis-synthesis video representations, in
which moving scenes are represented as component
objects that are reassembled according to scripting
information to produce images for viewing. A number
of methods are currently under investigation, includ-
ing segmented coders that identify coherent two-
dimensional regions or layers by examining motion4,5

(or equivalently, color or texture6), and the fitting of
three-dimensional object models to image sequences.7

The added compression efficiency of structured video
generally comes about because the more accurate
transmitted model and the greater computational abil-
ity of the receiver permit better prediction. In layered
or region-segmented two-dimensional (2D) coders, for
example, the transmitted motion parameters are
intended to be a more correct approximation for the
image-plane projections of objects moving in space
than would result from (x,y) vectors computed on an
arbitrary square grid. Added memory in the decoder

Figure 1 An object-based video encoding process

constituent object and script data:

object attributetiuent object and script data:
object attributetiuent objectd script data:

obje

ct attributetiuent object and script data:

object attributetiuent object and script data:

object attriuent object and script data::

object attributetiuent object and script da:

object attributetiuent object and script data:

object attributetiuent object and scpt data:

object atttibutiuent object

 attributetiuent ob ject and dat attributed
VIEWS OF SCENE FROM
DIFFERING SPATIOTEMPORAL
VIEWPOINTS

INTEGRATED MODEL OF
SCENE AND MOTIONS

CONSTITUENT OBJECTS
AND SCRIPT DATA

INTEGRATION OF
OBSERVATIONS

SEGMENTATION
INTO OBJECTS

IBM SYSTEMS JOURNAL, VOL 35, NOS 3&4, 1996 BOVE 339

also eliminates the need to retransmit information
about occluded and revealed regions.8 Yet more com-
putationally intensive algorithms can under certain
circumstances estimate camera or object motion in
space.9 Much more research remains to be done in the
machine-vision-style scene analysis methods for these
higher-level coders, as well as appropriate statistical
coders for the resulting objects.

Analysis

There are two fundamental—and perhaps at first
glance contradictory—analysis operations needed in
an object-based video encoding process: observation
integration and information segmentation (see Figure
1). In Figure 1, the encoding process for object-based
video can be seen as integration of information from
frames taken at differing times and viewpoints into a
scene model, which then can be segmented into
objects and scripting data. Editing or post-production
operations are performed on the output of this pro-
cess. These operations are best considered not as
totally independent steps, but rather as cooperating
with each other, possibly inseparably as in some itera-
tive algorithms. Theobservation integration operation
involves the finding of correspondences among obser-
vations of a moving scene, whether from one camera
at different times, spatially separated simultaneous
cameras, or current observations anda priori knowl-
edge. Many machine-vision techniques (e.g., struc-
ture-from-motion, stereopsis, depth-from-focus, mo-
tion modeling) can be seen as examples of this con-
cept. This integration process does not have to operate
only on the input video frames, but might be aided by
other cues such as instrumented cameras that can
sense position or acceleration.10 The information seg-
mentation operation seeks also to find correspon-
dences, but among sections of the integrated
information that seem to belong to coherent objects in
space. For instance, in a2D layered video coding algo-
rithm like that of Adelson and Wang4 the finding of
optical flow fields mapping one frame into the next
might be seen as the integration stage, while applying
a higher level motion model and grouping together
pixels that share common parameters therein is the
segmentation stage.

Two projects from the Television of Tomorrow con-
sortium’s recent research further illustrate the seg-
mentation and integration aspects of object-based
video, and also provide good examples of what we are
calling human-supervised scene analysis. In this anal-
ysis we avoid having to solve the entire “vision prob-

lem” by asking a user to supply a small amount of
starting information and perhaps a continuing reason-
ableness check while the encoding system runs. Such
methods, of course, are more appropriate for media
that undergo a post-production stage than for live
video. An integration example is that of interpreting a
group of uncalibrated2D images of a static architec-
tural scene (perhaps a movie set) as a single merged
3D model by using perspective effects to infer vanish-
ing points, focal length, and camera orientation (Fig-
ure 2). Here a human can indicate in a rough sense the
relative orientations of the2D views one to another,
greatly simplifying the algorithm’s search space for
feature correspondences.11 In Figure 2, perspective is
used to interpret uncalibrated2D images as3D. Figure
2A shows one view of a room with extracted edges
overlaid. All similarly colored lines have been inter-
preted as parallel in a three-dimensional space. Figure
2B shows a wire-frame version of a model produced
by merging information from five photographs. Figure
2C is a rendering of a synthetic viewpoint from the
merged model.

Another case in which minimal human interaction
helps greatly is making a video coder based on object
segmentation. The question to be addressed is what is
an object: a foreground, a person in the foreground,
the person’s shirt? Depending on the application, the
answers are different (e.g., in authoring an interactive
clothing catalog, “the person’s shirt” might be desir-
able). Researchers have used motion or texture to seg-
ment video for added compression, but if the seg-
mentation is contextually determined, and is to be
used for something like “hot buttons,” searchable
databases, or on-the-fly assembly of content, then the
segmentation may be a multidimensional function of
parameters such as color, texture, motion, spatial
coherence, and other factors. We have developed a
software package that permits a content creator
implicitly to indicate the segmentation for a video
sequence by quickly dragging the cursor across repre-
sentative points for each desired object for only one
video frame (see Figure 3).12 The system then finds
regions throughout the video sequence that have cor-
responding color, texture, and motion. The underlying
statistical model is capable of identifying regions even
if they have multimodal distributions in one or more
of these parameters (i.e., the system can correctly
imply that a desired region is either red or yellow but
not orange). In Figure 3, the top portion shows a
frame of a video sequence with user-indicated points
overlaid. The bottom portion of the figure shows the
final result: a segmentation of the entire video

BOVE IBM SYSTEMS JOURNAL, VOL 35, NOS 3&4, 1996340

sequence based on motion, color, texture, and spatial
coherence.

Synthesis

We do not anticipate that existing algorithms will dis-
appear when newer ones are developed, nor do we
suggest that there is a single best description for all
applications or content. Thus we need something
more flexible than a dedicated hardware solution, pro-
viding real-time computer graphics rendering and
compositing capability as well as the digital signal
processing required for undoing transforms and
entropy coders, and handling error signals. Given a
sufficiently powerful and flexible decoder, the way in
which a scene is described and the forms of the con-
stituent objects represent an originator-specified
trade-off: increased encoding complexity, pipeline
delay, and risk (some scenes simply may not lend
themselves to high-level descriptions given current
analysis algorithms), versus increased flexibility,
semantics, compression, and quality. In order to drive
our scene-analysis work in directions that are a good
match to advanced multimedia applications, and to
enable the prototyping of such applications and the
tools for authoring them, we have for several years
been examining frameworks for object-based video
decoders.13 A portion of this work has involved trying
to identify a core set of information “objects” that
might make up the compressed bit streams for a vari-
ety of encoding methods, as well as the operations
that must be performed by the decoder. For the algo-
rithms with which we have significant experience, we
identify the following object types:

• 2D objects: These are arrays of pixels, possibly
transparent in places to support layering.

• 2 1/2-D objects: These are2D objects, with the addi-
tion of z-buffers, which provide a distance value for
each pixel to be used in compositing. Effectively, a
3D object becomes a 2 1/2-D object after rendering.

• 3D objects: These are standard computer-graphics
objects, which require rendering before viewing.

• Explicit transformations: These specify spatial
remapping to be applied to objects. They may take
forms such as a dense optical flow field, a sparse set
of motion vectors, or a parametric warp.

• Error signals: This is an array of values that might
be added to a rendered or transformed object, or to
the entire composited image, as in a predictive
coder. When a precomputed model is used to repre-
sent a scene with changing, directional lighting or

Figure 2 Information integration example where
perspective is used to interpret uncalibrated
2D images as 3D, and to merge multiple views
into a single 3D scene model

(A)

(B)

(C)

IBM SYSTEMS JOURNAL, VOL 35, NOS 3&4, 1996 BOVE 341

moving shadows, it may be more efficient to repre-
sent the error as partly multiplicative and partly
additive; this is still an open area for research.

We have been considering a number of different
decoder architectures, ranging from a “kit of parts”
that could be connected in various ways, to a flexible
pipeline, as illustrated in Figure 4. In every case the
first step performed upon each set of data is decom-
pression, which reverses transform or other (e.g.,
wavelet, fractal) coding, quantization, run-length cod-
ing, and variable-length coding as appropriate. The
last step before display is a z-buffer compositing oper-
ation, which allows layering of multiple2D objects or
hidden-surface removal for3D objects. Assembling
the objects into a final image requires that they be
accompanied by scripting information. In the case of
the pipeline mentioned above, the script controls the
operation of the functional blocks, the flow of data
through them, and the configuration of the flexible
data paths. This scripting language might be as simple
as a bit field in a data packet header, or as complex as
a programming language. Our current language,ISIS,
is Scheme-like, but based on arrays rather than lists to
simplify memory management, and with a number of
special constructs such as a data type called a “time-
line” that can have numeric values inserted at arbi-
trary real-numbered locations but can then be
evaluated at any other real-number index by interpola-
tion.14 In any event, like PostScript**, the language
will rarely be edited directly, being rather the result of
a scene analysis algorithm or a content authoring tool.
In interactive or personalized applications, the script
control flow and operational parameters for functional
blocks might depend on user actions or state variables
(such as user identity, history, or display circum-
stances). The illustrated processing model should not
be taken as a literal hardware architecture. We have
implemented it as an application program on the
Cheops system (described next) but other implemen-
tations such as specialized hardware, parallel proces-
sors, or software-only on general-purpose processors
are equally possible.

As of this writing, several standardization efforts are
moving in directions that address some of the issues I
have outlined above. AlthoughMPEG-4 is more con-
cerned with working on very low bandwidth channels
than with image quality or data flexibility, proposals
have included support for object segmentation and
multiple representation types. Virtual Reality Model-
ing Language (VRML) is first and foremost a language
for describing virtual environments rather than effi-

ciently coding real ones, but some of the proposed
extensions echo related concerns.

Computational strategies

As might be imagined, such a scenario for video
requires powerful and reconfigurable computing, but
in a compact, inexpensive, and ideally easily pro-
grammable form. Examination of the characteristics
of the data and the algorithms has led my research
group to the use of the concept ofstreams in multime-
dia processing. The stream mechanism is a mapping
of a multidimensional data array into an ordered one-
dimensional sequence of data by means of an access
pattern. In a stream-based system, one does not think
of a processing element reading or writing memory.
Instead, an access pattern turns a source array into a
one-dimensional sequence that flows through a pro-
cessing element and then (through an access pattern
again) into a stored (or played, or displayed) destina-

Figure 3 Information segmentation example where
user-supplied data for one frame result in a
segmentation of an entire video sequence

BOVE IBM SYSTEMS JOURNAL, VOL 35, NOS 3&4, 1996342

Figure 4 Model for a receiver capable of decoding compressed object-based video (from Reference 13). This diagram
represents the image data-flow portion of the processing pipeline; script data, perhaps in conjunction with
user interactions, control the operation of each stage. This process can decode a variety of coding methods
from an ordinary hybrid predictive coder to high-level computer graphics descriptions of scenes. Purple data
paths are inactive, while black data paths are active. Dashed data paths interconnect in an algorithm-
dependent manner.

+

+DECOMPRESS +

+

+

DISPLAYCOMPOSITE

RENDER

APPLY
TRANSFOR-

ERROR

EXPLICIT
TRANSFORMATIONS

COMPRESSED
DATA STREAM

2D, 2 1/2-D
OBJECTS

3D
OBJECTS

DECOMPRESS +

+

+

DISPLAYCOMPOSITE

RENDER

APPLY
TRANSFOR-

ERROR

MOTION
VECTORS

COMPRESSED
DATA STREAM

2D, 2 1/2-D
OBJECTS

3D
OBJECTS

DECOMPRESS +

+

+

DISPLAYCOMPOSITE

RENDER

APPLY
TRANSFOR-

ERROR

EXPLICIT
TRANSFORMATIONS

COMPRESSED
DATA STREAM

2D
OBJECTS

3D
OBJECTS

PROCESSING PIPELINE
PREDICTIONS FOR LATER FRAMES

HYBRID PREDICTIVE DECODER
PREDICTION FOR NEXT FRAME

INTRACODED
FRAMES

LAYERED 2D PREDICTIVE DECODER

MATIONS

MATIONS

PREDICTIONS FOR LATER FRAMES

MATIONS

IBM SYSTEMS JOURNAL, VOL 35, NOS 3&4, 1996 BOVE 343

tion array. The algorithm can therefore easily be
described in terms of a graph structure connecting
storage buffers with computational elements—thus
process parallelism is expressed explicitly, and execu-
tion can be parallelized at run time, supporting multi-
tasking and hardware scalability. In Reference 15, we
explain how a suitable description of the dimensional
mapping can also describe data parallelism by making
explicit the subsections of larger arrays that can be
processed independently if multiple suitable process-
ing elements are available. Another advantage of such
a representation is that graphical programming meth-
ods can be applied relatively easily. Additional effi-
ciency is obtained by avoiding address calculation in
the processing elements, which in many cases can
pose a significant computational load. The stream
mechanism is particularly well suited to algorithms

where the same operations are applied to a large
amount of data, such as those used in audio and video
processing.

In implementation, a stream system may consist of
specialized processors using hardware to implement
the stream communications, or general-purpose pro-
cessors in a shared-memory configuration using mem-
ory buffers to perform all communications. Or,
ideally, it may combine general-purpose and special-
ized processors into a heterogeneous system using
both stream implementations. Even machines with a
single general-purpose processor may utilize the
stream mechanism to their advantage. While such a
machine is incapable of exploiting either control or
data parallelism of the granularity provided by
streams, performance improvements may still be

Figure 4 (continued)

+

DECOMPRESS +

+

+

DISPLAYCOMPOSITE

RENDER

APPLY
TRANSFOR-

ERROR

EXPLICIT
TRANSFORMATIONS

COMPRESSED
DATA STREAM

2D, 2 1/2-D
OBJECTS

3D
OBJECTS

DECOMPRESS +

+

+

DISPLAYCOMPOSITE

RENDER

APPLY
TRANSFOR-

ERROR

COMPRESSED
DATA STREAM

2D, 2 1/2-D
OBJECTS

3D
OBJECTS

FULLY 3D DECODER WITH ERROR SIGNAL
PREDICTIONS FOR LATER FRAMES

COMBINED 2D, 2 1/2-D, 3D DECODER
PREDICTIONS FOR LATER FRAMES

EXPLICIT
TRANSFORMATIONS

MATIONS

MATIONS

BOVE IBM SYSTEMS JOURNAL, VOL 35, NOS 3&4, 1996344

obtained as a result of the clearer definition of the data
access patterns. The goals of a stream mechanism
within the Von Neumann machine model are similar
to those of compiler vectorization techniques. While
unable to exploit the additional data parallelism pro-
vided by partitioning a stream, a single processor
machine may nonetheless benefit from partitioning of
large data sets such as images. An overview and bibli-
ography on the topic of streams may be found in Ref-
erence 15.

Our first implementation of a stream-based system for
video processing was Cheops,16 which attempts to
combine the efficiency of specialized hardware with
the programmability of general-purpose processors.
The Cheops processor module (Figure 5) is a board-
level system containing up to eight heterogeneous
specialized processing units (stream processors) con-

nected through a full crosspoint switch to a set of
eight memory units. Each memory unit is indepen-
dently capable of sourcing or storing one stream,
through the use of an integral multidimensional direct
memory access (DMA) controller. A general-purpose
processor (an Intel 80960CF) is used to execute both
the resource manager and algorithm segments that do
not map well onto the specialized stream processors
provided. The crosspoint switch is semi-statically
switched by the resource manager to configure a pro-
cessing pipeline for a particular stream segment,
while a separate hardware handshake mechanism is
used to synchronize the actual stream flow.

The stream processors are optimized for performing a
set of common operations from multidimensional dig-
ital signal processing (DSP) and computer graphics.
One processor, for example, consists of eight 16-bit

Figure 5 The Cheops processor connects specialized processors to DMA-equipped banks of memory through a
crosspoint switch. Resource allocation and user interaction are handled by an Intel 80960CF processor. The
Nile Buses are high-speed DMA channels used for transferring data from module to module.

VRAMVRAM VRAMVRAM VRAMVRAM

SP SPSP SP

SP SP

SP

SP

SP

COLOR SPACE CONVERTER

CROSSPOINT
SWITCH

VRAMVRAM VRAMVRAM VRAM

VRAMVRAM

VRAM

NILE BUSES (HIGH-SPEED DMA)

ROMSRAM80960

GLOBAL BUS (GENERAL PURPOSE)

HOST CONNECT
(SCSI/RS232)

IBM SYSTEMS JOURNAL, VOL 35, NOS 3&4, 1996 BOVE 345

multiply-accumulate units, a tree of adders for com-
bining the results, 64 words of local storage, and a
programmable operation sequencer. It is used for con-
volution, matrix and vector multiplication, and sim-
pler stream functions using multiplication or addition
(such as scaling and mixing). Other processors are
specialized for motion estimation, data controlled
memory reading and writing (for motion compensa-
tion, image warping, or hidden surface removal),
block transform coding, and basis vector superposi-
tion.

If only one thread needs to be executed at a time, and
if enough computational elements are available that
none needs to be reused in the execution path, it is
possible to set up a system like Cheops as a fully
static pipeline: one set of crosspoint connections is
made for the entire thread. More typically, though, we
must reuse the elements (for example, in a predictive
transform encoder, the discrete cosine transform
[DCT] processor that codes the error signal might also
need to do the inverse discrete cosine transform
[IDCT] in the prediction loop), and the real-time pro-
gramming needed for circuit-switching and process-
ing element reconfiguration becomes unwieldy. The
situation is yet worse if we hope to share resources
among multiple execution threads. These consider-
ations led us to consider automated resource manage-
ment, which also nearly handles the problem that in
Cheops the specialized processors are on removable
submodules, such that the hardware configuration
may change from time to time or from machine to
machine. In order to allow a software application to
execute on differently configured Cheops systems, at
least a simple resource-management process was
needed. The logical follow-on was to automatically
parallelize the execution as much as permitted by the
hardware configuration. This transparent, run-time
parallelization can equivalently be viewed in terms of
hardware scalability. The management strategies we
considered were

• Static: Processing tasks are assigned to processing
devices at compile time. This method involves no
run-time overhead, and does not support multitask-
ing or hardware scalability.

• Run time: A management process assigns devices
for the entire processing pipeline just before the
program is run. This involves minimal run-time
overhead, and does support hardware scalability,
but not multitasking.

• On-the-fly:Each stage in the process is assigned to
a device as the prerequisite data and devices

become available. This is the method used in
Cheops. In exchange for the flexibility, the over-
head costs are significant.

A user program for Cheops—a process that handles
file I/O, interaction, and so forth—contacts the
resource manager by making a function call whose
argument is a pointer to a linked-list data structure
describing the data-flow portion of the algorithm. An
individual stream transfer making up a subpart of the
data-flow graph then occurs when all prerequisite
data, an appropriate stream processor, and a destina-
tion are available. Transfers may optionally also be
made dependent upon a real-time clock to permit pro-
cess synchronization with video sources or displays.
The programmer may associate a callback routine
with any individual transfer, to inform the invoking
process of the status of the data-flow processing. As
noted above, there is a computational cost associated
with on-the-fly resource management. Even when the
manager was made as lightweight as possible (in
which case it could not be very clever) we have found
that it consumes the majority of the general-purpose
cycles of theCPU. In future designs we intend to use a
dedicated resource-managementCPU, so that other
demanding computations cannot affect scheduling
performance.

Another interesting approach to provide the efficiency
of specialized hardware while supporting flexible
computing (which might or might not be combined
with the stream-based computing discussed above) is
suggested by the recent availability of dense logic
arrays that can be reprogrammed quickly while in cir-
cuit. As there is a certain processor overhead associ-
ated with reconfiguration of such devices, efficient
resource management will require additional intelli-
gence. In a processing system developed by our
group, the logic devices were accompanied by local
memory for caching several configurations, reducing
the load on the resource-managingCPU.17 A stream
processor consisting of a programmable logic array, a
general-purpose microprocessor, and static random
access memory (SRAM) has proven able to emulate (at
equal or better speed, and in the same board space)
several of Cheops’s stream processors, with the
exception of those capable of high-speed parallel mul-
tiplication; a more appropriate architecture would
provide hardwired multiply-accumulate (or general
arithmetic logic) units connected to the routing logic.

As of this writing, the use ofSRAM-based electrically
programmable logic devices (EPLDs) in multimedia

BOVE IBM SYSTEMS JOURNAL, VOL 35, NOS 3&4, 1996346

applications is certainly not a cost-effective technique.
Should process improvements and manufacturing
economies of scale make it so, several questions will
remain to be addressed:

• Can functional descriptions of needed tasks be rep-
resented in a form that is not tied to the architecture
of a specific device, but can easily be interpreted at
run time? Besides supporting hardware scalability,
such representations will enable “hardware on
demand,” in which content providers can download
specific computational architectures for particular
applications.

• Is it possible to automatically and efficiently seg-
ment algorithms into portions for which the pro-
grammable logic device is more appropriate and
portions that are more suited for execution on asso-
ciated general-purpose processors?

• Can the devices be reconfigured dynamically,
effectively paging in hardware functions as parts of
a larger algorithm? The answer to this question
seems to be yes, based on results reported by other
researchers.18

Prototype program material

To understand some of the issues involved in object-
based-video production, post-production, and interac-
tive or personalized display, we have made several
short multimedia productions. We computed three-
dimensional models of the unoccupied sets, enabling
resynthesis of arbitrary points of view (see Figure 6),
and finding the three-dimensional locations of actors
moving about in the sets. As we do not yet have meth-
ods for producing good3D models for people, the
actors are represented as two-dimensional objects
with multiple viewpoints provided by multiple cam-
eras. We have used these productions to explore the
idea of “intelligent interoperability,” in which either
an author or an automatic process can cause the video
to display differently (presumably a more optimal dis-
play) on different sizes and aspect ratios of displays.
The first form of intelligent interoperability we
explored was recropping the frame for various sizes
and shapes of screens. Thus on a small screen the
video might contain more cuts and close-ups than on a
large, wide screen.13 A more advanced behavior that

Figure 6 Stills from the video “Wallpaper,” in which we used machine-vision methods to build a three-dimensional
model of the set. Combined with multiple calibrated camera views of the actors, this modeling permits
synthesizing arbitrary views of the scene either in post-production or for interactive display.

IBM SYSTEMS JOURNAL, VOL 35, NOS 3&4, 1996 BOVE 347

seems to offer great potential is changing the effective
focal length of a simulated lens (see Figure 7), thus
allowing the entire background to be visible in a small
window while not unduly reducing the size of fore-
ground elements. Doing the latter while maintaining
good scene composition may also entail a shift in
camera position, as shown in the figure.

We have also handled audio in an object-based fash-
ion: rather than channels corresponding to speakers,
sound was represented as a set of localized sources
and an acoustical environment in which they are
placed. These sound sources were then linked to the
visual objects with which they are associated. As
directed by the script, perhaps in conjunction with
user interaction, the audio is “rendered” for the speak-
ers associated with the video display. Thus, the
“soundscape” changes as the visual viewpoint is var-
ied. The auditory synthesis methods are much better
understood this time than are the analysis methods.
Synthesis involves simulation of the early reverbera-
tion process—for each speaker, a separate finite-
impulse-response filter is calculated and applied to
each sound source to give the effect of the reflections
from walls—then a nondirectional diffuse reverbera-
tion signal is calculated and added representing
steady-state room noise for all the sources and their
echoes.19 Reference 20 discusses an implementation

in software on a midrange workstation, which proved
able to generate sound for two speakers while running
UNIX** and several other tasks. Until the analysis is
better developed, changes in production methods and
linkage with the video analysis can assist the process.
In our production experiments each actor has carried a
separate wireless microphone, and the video analysis
methods provided the locations from which their
voices emanated. We are now looking into using fixed
microphone arrays combined with information-maxi-
mization methods21 for unmixing and deconvolution
as part of the capture process.

Conclusions

In order for digital video and audio to be more than
just a bandwidth-efficient version of their analog pre-
decessors, the digital representation must permit the
processing devices that are a part of multimedia sys-
tems to perform usefulcontent-basedoperations upon
the data. An object-based description as outlined pre-
viously offers this possibility, and permits evolution to
more efficient and flexible content representations as
improved methods develop.

The reader will perhaps note that I have spent much
more time on the display than on the camera. This
emphasis is intentional; as the synthesis side is better

Figure 7 In this example from the video “The Museum,” the focal length of a simulated lens changes when the video is
viewed on a smaller screen; thus, the actors in the foreground remain recognizably large while much of the
background stays visible.

BOVE IBM SYSTEMS JOURNAL, VOL 35, NOS 3&4, 1996348

understood than the analysis side (particularly with
respect to real-time processing), we have used our
prototype displays to demonstrate the advantages of
object-based video and audio representations. Having
done so, we may now increase our attention on the
capture of appropriate scene information to drive the
creative and communicative applications we have
enabled.

Acknowledgments

The author wishes to thank numerous students and
coworkers who have contributed to the research
described in this paper, in particular Stefan Agamano-
lis, Shawn Becker, Edmond Chalom, and John
Watlington. This project has been sponsored by the
Television of Tomorrow consortium at theMIT Media
Laboratory.

**Trademark or registered trademark of Adobe Systems, Inc. or X/
Open Co. Ltd.

Cited references

1. M. J. Biggar, O. J. Morris, and A. G. Constantinides, “Seg-
mented-Image Coding: Performance Comparison with the Dis-
crete Cosine Transform,”Proceedings of IEE Part F135, No. 2
(April 1988), pp. 121–132.

2. A. Akutsu et al., “Video Indexing Using Motion Vectors,” Pro-
ceedings of SPIE Visual Communications and Image Process-
ing, Vol. 1818 (1992), pp. 1522–1530.

3. S.-F. Chang and D. G. Messerschmitt, “A New Approach to
Decoding and Compositing Motion-Compensated DCT-Based
Images,” Proceedings of IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP-93) (1993),
pp. V421–V424.

4. E. A. Adelson and J. Y. A. Wang, “Representing Moving
Images with Layers,”IEEE Transactions on Image Processing
3, No. 5, 625–638 (Sept. 1994).

5. M. Irani, S. Hsu, and P. Anandan, “Mosaic-Based Video Com-
pression,” Proceedings of SPIE Digital Video Compression:
Algorithms and Technologies, Vol. 2419 (1995), pp. 242–253.

6. M. Kunt, A. Ikonomopoulos, and M. Kocher, “Second-Genera-
tion Image-Coding Techniques,”Proceedings of IEEE73, No. 4
(1985), pp. 549–574.

7. H. G. Musmann et al., “Object-Oriented Analysis-Synthesis
Coding of Moving Objects,”Signal Processing: Image Commu-
nication1, 117–138 (1989).

8. R. G. Kermode, “Coding for Content: Enhanced Resolution
from Coding,”Proceedings of IEEE International Conference
on Image Processing(ICIP ’95) (1995), pp. 460–463.

9. J. K. Aggarwal and N. Nandhakumar, “On the Computation of
Motion from Sequences of Images—A Review,”Proceedings
of IEEE76, No. 8 (August 1988), pp. 917–935.

10. C. Verplaetse, “Inertial Motion Estimating Camera,” S.M. the-
sis, MIT, Cambridge, MA (1996).

11. S. Becker and V. M. Bove, Jr., “Semiautomatic 3-D Model
Extraction from Uncalibrated 2-D Camera Views,”Proceedings
of SPIE Image Synthesis, Vol. 2410 (1995), pp. 447–461.

12. E. Chalom and V. M. Bove, Jr., “Segmentation of Frames in a
Video Sequence Using Motion and Other Attributes,”Proceed-
ings of SPIE Digital Video Compression: Algorithms and Tech-
nologies, Vol. 2419 (1995), pp. 230–241.

13. V. M. Bove, Jr., “Object-Oriented Television,”Society of
Motion Picture and Television Engineers (SMPTE) Journal
104, 803–807 (December 1995).

14. S. Agamanolis, “High-Level Scripting Environments for Inter-
active Multimedia Systems,” S.M. thesis, MIT, Cambridge, MA
(1996).

15. J. A. Watlington and V. M. Bove, Jr., “Stream-Based Comput-
ing and Future Television,”Proceedings of 137th Society of
Motion Picture and Television Engineers (SMPTE) Technical
Conference (1995), pp. 69–79.

16. V. M. Bove, Jr. and J. A. Watlington, “Cheops: A Reconfig-
urable Data-Flow System for Video Processing,”IEEE Trans-
actions on Circuits and Systems for Video Processing5, 140–
149 (April 1995).

17. E. K. Acosta, V. M. Bove, Jr., J. A. Watlington, and R. A. Yu,
“Reconfigurable Processor for a Data-Flow Video Processing
System,” Proceedings of SPIE FPGAs for Fast Board Develop-
ment and Reconfigurable Computing, Vol. 2607 (1995), pp 83–
91.

18. J. Villasenor, C. Jones, and B. Schoner, “Video Communica-
tions Using Rapidly Reconfigurable Hardware,”IEEE Transac-
tions on Circuits and Systems for Video Processing5, 565–567
(December 1995).

19. W. G. Gardner, “The Virtual Acoustic Room,” S.M. thesis,
MIT, Cambridge, MA (1992).

20. A. V. Inguilizian, “Building a Better ‘Picture’: Synchronized
Structured Sound,” S.M. thesis, MIT, Cambridge, MA (1995).

21. A. J. Bell and T. J. Sejnowski, “An Information-Maximisation
Approach to Blind Separation and Blind Deconvolution,”Neu-
ral Computation7, No. 6, 1004–1034 (1995).

Accepted for publication March 19, 1996.

V. Michael Bove, Jr. MIT Media Laboratory, 20 Ames Street,
Cambridge, Massachusetts 02139-4307 (electronic mail: vmb@
media.mit.edu). Dr. Bove holds an S.B.E.E., an S.M. in visual stud-
ies, and a Ph.D. in media technology, all from the Massachusetts
Institute of Technology. In 1989 he was appointed to the faculty of
MIT, where he is currently associate professor of media technology,
working in the MIT Media Laboratory. He is current holder of the
Alex W. Dreyfoos, Jr. Career Development Professorship. He is the
author or coauthor of over 30 journal or conference papers on digi-
tal television systems, video processing hardware/software design,
scene modeling, and optics. He holds patents on inventions relating
to video recording and hard copy, and has been a member of several
professional and government committees. In December 1995,Bos-
ton Magazine named him one of the “People Shaping Boston’s
High-Tech Future.” He is serving as general chair of the 1996 ACM
multimedia conference. More detail on his research, and download-
able documents, can be found at http://vmb.www. media.mit.edu/
people/vmb/.

Reprint Order No. G321-5609.

