
Preface
"~

Objects, object-oriented techniques, and object tech-
nology have altered the software development land-
scape for software professionals and, more slowly,
altered the cost, quality, and timeliness of modified
and new systems for users and customers. Objects
are the latest and most effective means so far for cre-
ating software that is easy to develop, relatively error-
free, portable, reusable, and serves as a continually
evolving platform for yet more advanced software
capabilities.

This issue contains an introductory essay on the evo-
lution of object technology, six papers on various fac-
ets of object technology and its use, and a technical
note on supertypes and subjects. We are indebted
to J. R. Babb of the IBM Software Solutions Divi-
sion in Somers, New York, for his contributions to
the early planning and coordination of this issue and
to G. Radin of the IBM Research Division in York-
town Heights, New York, for his noteworthy efforts
in coordinating and developing this issue.

The existence of object technology owes much to a
long line of preceding technologies that evolved into
what we see and use today. Object technology rep-
resents the latest and best approach to achieving soft-
ware productivity, quality, maintainability, reuse, and
effective development. Radin, in an introductory es-
say, describes aspects of object technology that dem-
onstrate its power for software development and de-
velopers, while reflecting on the historical precedents
and evolutionary trail.

The ability to create information systems that serve
enterprises depends on both an inside view of those
systems, such as is supplied by architecture and en-
gineering, and an outside or user view. As McDavid
shows in his paper, this outside view is fundamen-
tally dependent on an understanding of the enter-
prise as an information system, communicating
through domain-specific languages. The result is bus-
iness language analysis. The effect is improvement

122 PREFACE

in the link between the application domain (the en-
terprise) and domain-sensitive object technologies.

Budinsky et al. provide the architecture for and a
description of a software tool for automatic trans-
lation of object-oriented design patterns into code,
based on design patterns taken from the current lit-
erature on the subject. The architecture emphasizes
speed of tool development and enhancement, flex-
ibility in adding and changing functions, ease of spec-
ification of the design-to-code translations, and ease
of use of the tool and its results, among other goals.
The tool is new and much remains to be learned from
users and incorporated from the ever-expanding
breadth and depth of design patterns.

The storage of application data in one or more of
the many database management systems has become
problematic for the application programmer and is
the subject of a paper by Reinwald et al. The au-
thors present a shared memory-resident cache as an
extension to IBM's DB2* Common Server for AIX* that
provides a means for storing objects within a rela-
tional database management system. While a num-
ber of types of data are discussed, the paper uses
C + + objects as an example of how common data
storage can be achieved without affecting the under-
lying objects.

Benantar, Blakley, and Nadalin explore the require-
ments for and architecture of the run-time Object
Security Service (OSS), a part of IBM'S Distributed
SOM (System Object Model) environment. OSS han-
dles authentication, authorization, clientherver as-
sociation, and other security functions, while taking
advantage of existing security mechanisms. OSS pro-
vides these services to end users and application de-
velopers transparently, seamlessly, and indepen-
dently of other underlying and coexisting services.

One difficulty in achieving high-quality software is
the lack of software metrics that can be viewed in

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996

real time, as the software is being developed. Bur-
beck approaches this problem in the broad context
of general real-time metrics and then in the specific
context of complexity metrics for object-oriented
software development in Smalltalk. The author
searches out metrics that can be readily determined
from code and are measurable in real time, result-
ing in seven complexity metrics. Advice is given re-
garding the value and use of these metrics in prac-
tice.

Davis, Grimes, and h o l e s address the technolog-
ical response to the need for international use of text
in global applications that have only one physical,
binary form. They further consider the localization
aspects (language, time, date formats, etc.) that must
be adequately handled by these global applications.
Their context for discussion is the globalization fea-
tures of Taligent’s CommonPoint* * application sys-
tem for development of documents and object-ori-
ented applications, and the Unicode* * international
character encoding standard.

In a technical note, Harrison et al. describe their re-
cent work on combining the capabilities of dynamic
supertypes and subjects (from subject-oriented pro-
gramming) that they have separately developed. This
first look at the combination shows how specifica-
tion and development of object-oriented software
would be enhanced, especially for large, complex sys-
tems. The combined approach is intended to pro-
vide a natural way to encompass the entire software
development life cycle.

The next issue of the Journal will be a special double
issue (Volume 35, Numbers 3 and 4 as one issue) on
the current projects of the Massachusetts Institute
of Technology (MIT) Media Lab, famous for its work
on multimedia and now exploring many new fields
of future-oriented computerization.

Gene F. Hoffnagle
Editor

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Taligent, Inc. or Uni-
code. Inc.

IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996 PREFACE 123

