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When we understand, specify, and  develop 
systems, we use certain concepts and constructs 
to deal with complexity. Object-oriented (00) 
approaches provide good ways for doing so. 
However,  many existing 00 approaches  (perhaps 
based  on object models  used in existing 00 
languages) cannot solve important problems 
encountered in large and  complex  systems.  For 
example, we often have to deal with properties 
of “things” that cannot be represented in a 
neat hierarchy.  Some  of these properties may 
significantly change with time.  Moreover, many 
of these properties refer to collections of objects 
without identifying a single object as “owner” of 
each property. The authors of this technical note 
have  separately  proposed  approaches for solving 
these problems, but  at very different stages 
of the development life cycle.  However, the 
underlying concepts of these approaches  are so 
close that they can  be successfully combined to 
provide a common solution that encompasses all 
stages of the  life cycle. 

L arge systems are  too complex to understand as 
a whole. Therefore,  to understand a system  we 

need to identify  distinct  concerns that we can address 
separately. The idea of “separation of concerns” in 
traditional programming has been known  since the 
1960s, thanks to  E. W. Dijkstra.’ 

Separation of concerns can  be applied more widely 
than in just programming-such  as for the under- 
standing of businesses and specification of large sys- 
tems-to address only those concerns that  are of in- 

terest, ignoring others  that  are unrelated.’ To be of 
any real value, specifications should be precise and 
understandable by both software  developers  and  bus- 
iness users. But businesses separate concerns along 
business, rather than technical, lines. It is natural, 
therefore, to systematically understand, specify,  and 
implement  systems  from a set of business, implemen- 
tation-independent, viewpoints. 

The software infrastructure of an organization is  typ- 
ically developed incrementally. Businesses  also 
evolve, and reconfigure themselves, incrementally. 
In either case, these increments are often best un- 
derstood and handled as “viewpoints,” and thinking 
in terms of viewpoints  removes  artificial ordering 
constraints associated with thinking in terms of in- 
crements. Each of these viewpoints describes prop- 
erties of some relationships in the application do- 
main and may be considered in isolation from other 
viewpoints (compare Zave and Jackson3). In other 
words, a business  viewpoint  is a partial specification, 
used by persons to understand a complicated system 
“in terms of a few ideas at  a time.”4 However, until 
recently it has been extremely  difficult, and prohib- 
itively  expensive, to seamlessly add viewpoints. As 
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a result, the software infrastructure of most orga- 
nizations consists of fragmented sets of applications 
with frequent duplication of functionality, data, 
. . . (everything!), and general loss of integrity. 

The  authors have separately developed approaches 
to dealing  with these problems,  but at different  stages 
of the development life  cycle. “Dynamic supertyp- 
i r ~ g ” ~  and, more generally,  multiple  and  dynamic  typ- 
ing, is a specification approach used during analysis. 
It allows  types to be attached to or detached from 
specific objects dynamically, thereby modeling the 
manner in  which  they change their properties, both 
structural and behavioral,  over time. Many  have  con- 
tended  that this powerful  specification approach is 
limited in  its  utility because of implementation dif- 
ficulties (and, indeed, it  is not supported by tradi- 
tional object-oriented languages). 

“Subject-oriented pr~gramrning”~,~ is a program 
composition technology that allows an object-ori- 
ented program to be written as separate modules, 
called “subjects,” that are then composed. Each sub- 
ject defines its own subjective view  of the classes  it 
provides and uses. These views are reconciled and 
combined  during  composition,  as directed by a “com- 
position expression.” 

On closer inspection, these approaches are highly 
compatible. This technical note discusses the synthe- 
sis of dynamic supertyping and subject-oriented pro- 
gramming to provide uniform support for separa- 
tion of concerns and graceful evolution across the 
entire life  cycle.8 

The format of the technical note is  as  follows. The 
next section discusses the problem in more detail, 
motivating the kind of support that is needed to ac- 
complish separation of concerns and graceful  evo- 
lution in large systems.  Next comes a brief  discus- 
sion of the traditional approaches to the problem 
and why they are inadequate. The final section de- 
scribes multiple and  dynamic  typing and subject-ori- 
ented programming in more detail, and shows  how 
subject composition can be used as an implemen- 
tation vehicle for multiple and dynamic  typing. 

Important contributions in the fields of object-ori- 
ented information and subjectivity  in 
object-oriented  system^'^,^^ have been presented at 
OOPSLA (Object-Oriented Programming Systems, 
Languages, and Applications) conferences. 
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Motivation 

Let us start by taking a closer and more precise look 
at these problems. First, we should explicitly  recog- 
nize that we are treading in  two territories: the  ter- 
ritory of precisely formulating a business problem 
for potential and partial automation (also known as 
“business specification” or “analysis”), and the  ter- 
ritory of providing a system solution that automates 
the desired part of the business problem (also  known 
as “design” and “implementation”). 

Many  existing approaches to analysis  have been sub- 
stantially derived from, and consequently restricted 
to, preexisting system implementation constructs. 
This restriction is unwarranted, and has all too fre- 
quently led to unnatural, incomplete, and cumber- 
some business  specifications. This need not be the 
case: a business  specification should be built upon 
concepts and constructs appropriate for capturing 
the business semantics in the most natural, yet pre- 
cise and explicit, way. It is then  the task of the  de- 
signer to make any  necessary trade-offs to provide 
a system that meets these business needs in a selected 
technical environment. The challenge for the  de- 
signer of technical infrastructural components (such 
as databases, programming  languages, etc.) is to ease 
this process, and  allow  systems to be built in  which 
the business  specification is not only demonstrably 
satisfied but remains clearly  visible. 

In many  cases, and especially for addressing the bus- 
iness problems that  are used  as  examples in this pa- 
per, concepts used for specification and implemen- 
tation are substantially the same. We  will introduce 
them at the more abstract, specification  level. 

Types. Any one thing differs from any other thing. 
Even identical twins  have different properties 
(names). However, it  would  be quite difficult to un- 
derstand things  and their relationships if each time 
we spoke of a thing we had to mention all of its rel- 
evant properties. Abstraction helps us with this 
task-fortunately, some things  have common prop- 
erties that can be studied independently of the in- 
dividuality of each thing. We  say that things  with 
common properties belong to the same type, defined 
by a predicate that describes the properties held in 
common. 15,5 

In a sufficiently complicated system, we  may be in- 
terested in subtypes (and supertypes)-in other 
words,  in conjuncts of the predicates that define 
types. A new conjunct has to define interesting sub- 
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Figure 1 A simple example of multiple subtyping hierarchies 

Job Classification 

. . . ..,.. _,.. 

The graphical representation used  here is described more Subtyping  Exhaustive means that any instance of the 
fully by Kilov and Ross’ and is also rather close to that of supertype is an instance of exactly one subtype in this 
Wieringa et  al? (The terminology used  in these publica- subtyping hierarchy. Subtyping  Exhaustive  and Over- 
tions is different; for example, role classes in Wieringa et lapping means that any instance of the supertype is an 
al. seem to correspond to overlapping subtypes in Kilov instance of at least one subtype in this subtyping 
and Ross.) Observe that the representation shows both the hierarchy. Obviously, a linear representation of these 
generic relationship name (e.g., SE for Subtyping  Exhaus- relationships (e.g.,  in the language Z) will also include 
tive or SE+ for Subtyping  Exhaustive  and  Overlapping) and both the generic and application-specific relationship 
the application-specific relationship name (e.g., Gender). names. 

sets of things (belonging to a subclass,  or-equiv- 
alently-satisfying a subtype). A thing “is of” a sub- 
type (or belongs to a subclass) if it  has  all the common 
properties of its supertype (i.e., all the properties 
used to define the supertype, or, in other words, if 
it  satisfies the predicate of the supertype), and some 
additional, subtype-specific, properties. This is the 
invariant of the subtyping relationship5 that has to 
be satisfied  all the time, as  is  usual for an invariant. 

So far so good, and we leave aside important issues 
of property overriding, etc. However, the world  is 
more complicated. 

Viewpoints. The first  complication is that a thing may 
satisfy several predicates, that is,  have several (col- 
lections of) properties of interest. Each of these pred- 
icates may be considered as a partial specification 
of the thing. Aperson may  have properties related 
to being a teacher, a student, a homeowner, a Repub- 
lican, a taxpayer, aparty in an insurance agreement, 

a sole proprietor, a book author, etc. In other words, 
a thing may have several types. 1 5 s 5  One of the types 
of a thing is the “most complete”-you can create 
instances using  this  type information. This may be 
considered as a complete specification of the thing. 
This type  is  called15 a  “template type.” Note that not 
all of the thing’s  types are of interest in a particular 
context; in an insurance environment only a (small) 
subset of these types  is of interest, for example. 

To separate different concerns of the enterprise, we 
usually  collect semantically  related types together. 
Some of these types  may  have a common supertype. 
Several  mutually orthogonal collections (multiple 
subtyping hierarchies) may  exist for a given super- 
type. As a simple example, Figure 1 represents the 
supertype Employee subtyped into  a gender subtyp- 
ing hierarchy (consisting of two mutually  exclusive 
types) and a  job classification  subtyping hierarchy 
(consisting of several, not necessarily  mutually  ex- 
clusive, types). 

246 HARRISON ET AL IBM SYSTEMS JOURNAL, VOL 35, NO 2, 1996 



~~~ ~ ~ 

Figure 2 A real-life examp\e of multiple  subtyping  hierarchies 
~~ ~~~ 
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Moreover, we  may require that an object that is an 
instance of the supertype is  also an instance of a leaf 
subtype within each of these collections. In other 
words, the invariant of mutually orthogonal exhaus- 
tive  subtyping relationships for the same supertype 
states  that  the existence of a supertype instance im- 
plies that it will  have properties of one of the sub- 
types  in each of its subtyping hierarchies; the prop- 
erties of an instance have to satisfy the conjunction 
of the predicates for each of these subtypesI6 (again 
compare Zave and Jackson3). The subtypes need not 
be static, as  we  will see later. This invariant defines 
the behavior in  which the instance may participate. 
To quote the Reference Model for Open Distrib- 
uted Processing, l5 Clause 13.2.3: “an object may be 
in a number of contractual contexts simultaneously; 
the behavior is constrained to  the intersection of the 
behaviors prescribed by each contractual context.” 

These considerations apply to any relationships in 
which a thing participates, not just to subtyping. A 
thing  usually participates in  several  mutually orthog- 
onal elementary relationships of different  kinds  (e.g., 
subtyping, composition, dependency, and so on5,l7), 
and the thing’s invariant (complete specification) is 
a conjunction of all the “primitive” invariants (par- 
tial specifications) defined by the thing’s participa- 
tion in each of these elementary relationships. All 
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of the invariants have to be completely and explic- 
itly  specified;  implicit assumptions (“unwritten 
rules”) lead to very serious problems in  conjoining 
the invariants which, for technological componen- 
try, were termed “architectural mismatches” by Gar- 
lan, et al.18 

Consider another, more interesting, example. After 
an application for an insurance policy  is accepted by 
the insurance company (this is done by an under- 
writer of such a company), and before an insurance 
contract is issued, some prerequisites are to be sat- 
isfied. Certain of these prerequisites may be spec- 
ified by an insurance system (i.e., they are  either 
required by regulations or otherwise commonly 
known), whereas certain other prerequisites may be 
identified only by the underwriter, based on the un- 
derwriter’s  experience. Furthermore, certain prereq- 
uisites are, and certain are not, related to underwrit- 
ing  (e.g., the  latter may refer to premium payment 
issues). And finally, an insurance application may in- 
clude several insured, and therefore certain prereq- 
uisites refer to  one insured (e.g.,  beneficiary amend- 
ment), whereas certain other ones refer to  the 
application as a whole. Thus, there exist three dif- 
ferent subtyping hierarchies for these prerequisites, 
as shown  in Figure 2.  (The specification represented 

HARRISON ET AL. 247 



Figure 3 An example of a  dynamic  subtype 

Note: Obviously, the actual specification is more complicated than the one shown in the representation; other 
objects and relationships between them are not shown. Here SD stands for Subtyping Dynamic. 

here is a somewhat edited fragment of a “real-life” 
insurance application.) 

These examples  show that in  most interesting cases 
we cannot represent the world  as a set of noninter- 
secting subtype hierarchies (as some 00 language 
authors may want us to do). 

Changes. The second, and perhaps more important, 
complication is that things change. They acquire 
some properties, change the values of some other 
properties, and lose some properties. Therefore  the 
type network (not a hierarchy, see Figure 2) is not 
fixed. An instance may  dynamically change its  types 
(in other words, start and stop satisfying appropri- 
ate predicates that define these types”). Rigorous 
specifications of this  kind of subtyping relationship 
have been presented, e.g.,  in  Kilov and Ross5 and 
Wieringa et al. 2o Implementation mechanisms for 
dealing with  such  dynamic  classification  exist and 
have been presented, e.g.,  in  Chambers21 where 
predicates are used to define classes in essentially 
the same manner as  in the Reference Model for 
Open Distributed Processing. 

Viewpoints and changes. We can see the third com- 
plication by means of an example. Consider the  re- 

lationship between the types Person and Home- 
owner. Neither of them is a subtype of the  other:  a 
person need not be a homeowner, and a homeowner 
need not be aperson (e.g.,  it may be a business or 
charity). However, in a reasonable system  we  will 
want to  state  that aperson may acquire all the prop- 
ertiesZ2 of a homeowner, thus Person becomes a sub- 
type of Homeowner. This supertyping relationship 
is not static; it does not satisfy the invariant for sub- 
typing  all the time (otherwise all people would  be 
homeowners). In addition, not onlypersons may be 
homeowners; for example, businesses, chanties, and 
government  units  also  may be, and the types Person, 
Business, Charity, and Government Unit need not 
have a common  (static) supertype. Figure 3 illustrates 
this relationship. 

The identity of an instance does not change when 
a new supertype is attached or  detached;  aperson 
can become a homeowner and therefore acquire 
properties of a homeowner, but the identity of this 
person will remain the same. 

We  have seen that, on the  one hand, types that  a 
particular instance satisfies may be dynamically at- 
tached or detached; and on the  other hand, we  may 
wish to describe (not necessarily  changing) proper- 
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Figure 4 Modeling  dynamic  supertyping  using  static  subtypes 
~~~ . ~~ 

i 
Unit 

ties of the different types of the  same instance  sep- 
arately  (separation of concerns). The  same type may 
be  attached  to instances  belonging to different, of- 
ten  quite  unrelated, types. (Consider  attaching the 
type  Inventory  Item to different kinds of inventory 
items, such  as computers, books,phones, desks, cars, 
etc.). 

Possible approaches 

We  need  to  deal with these issues in a  precise  and 
explicit manner,  for  both analysis (i.e., business spec- 
ification) and design, and in a mutually consistent 
and  natural way. Therefore, we need  both  a way to 
specify the situations  described in the previous sec- 
tion,  and  a way to develop systems that, based on 
these specifications, will be  able  to  handle  these sit- 
uations. Obviously it is very desirable  for our solu- 
tions to  be simple  and  elegant. We want to use es- 
sentially the  same  approaches  for specification and 
implementation. 

Most  traditional  approaches  are  derived  from  the 
constructs of legacy object-oriented languages. These 
languages usually merge the notions of class and type. 
A strong  compiler  constraint  for  a single class hier- 
archy and  static  instance  properties  leads to the im- 
position of a single, static subtyping hierarchy, which 

excludes an explicit notion of viewpoint. As a  result, 
most  traditional  object-oriented  approaches  force 
developers to  make early, and  often artificial and 
contrived, choices for even simple problems, and  thus 
many issues of large-scale systems, listed earlier, can- 
not  even  partially  be  resolved. 

Traditional  approaches  often  force business analysts 
to use programming  constructs (e.g., messages) that 
are  not easily understood by business users. This hap- 
pens  because there is a  reluctance to write business 
specifications using constructs that  are  not immedi- 
ately available in a  popular  programming  language. 
As a  result,  simple  concepts (e.g., that  an object may 
have several types simultaneously) are not always 
easily and concisely expressed,  leading to substan- 
tially larger  and more complicated  and confusing 
specifications. These considerations  lead to skepti- 
cism, often  expressed in the 00 community with re- 
spect to  important  international  standards. l 5 , I 7  

Traditional solutions to the problems of viewpoints 
and changes. During analysis, we may define,  for ex- 
ample,  a  Homeowner  static  subtype  for  each of Per- 
son, Business, Charity,  and  Government  Unit. We 
can do  that,  but this  repetition of exactly the same 
static subtyping for  several different types is not  ad- 
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visable (at least, due to abstraction and therefore re- 
use considerations), as shown  in Figure 4. 

Static multiple inheritance (e.g., “mixins”) seems to 
provide a reasonable solution for implementation. 
However,  it does not solve the problem of property 
changes. In addition, most multiple inheritance en- 
vironments specify semantics in quite a loose man- 
ner, often based on  the intuition of a developer, and 
using a language-specific object model. Moreover, 
traditional implementations of multiple inheritance 
in programming languages do not support dynamic 
changes to the hierarchy.  We  can do better than that. 

Design patterns. Design patternsz3  are  a significant 
contribution toward providing a rigorous approach 
for incorporating flexibility into  a system.  Systems 
designed with judicious use of these patterns can be 
extended or changed in a variety of  ways  by replace- 
ment of parts with defined interfaces (that include 
signature and semantics). Most of these patterns al- 
low substitution of alternative implementations (e.g., 
“abstract factory” or “strategy”), or dynamic selec- 
tion of an appropriate implementation  (e.g., “state”). 
The “wrapper” (or  “decorator”)  pattern allows  ex- 
tension of interface, in a sense-each wrapper ob- 
ject can  provide  some additional behavior,  which  can 
be invoked by users who are aware of the wrapper. 
An important property of design patterns is that they 
do not require special language-level support,  but 
this  also leads to limitations. 

The primary limitation of design patterns is that they 
do not support unanticipated kinds of extension or 
change. The designer  must  decide up-front which  im- 
plementations are to be changeable, extensible, or 
reconfigurable. This is avaluable exercise, and mak- 
ing anticipated flexibility  especially  easy to exercise 
is clearly a hallmark of good  design. However, it  is 
impossible to anticipate all needed forms of flexi- 
bility,  such as the need to add a new viewpoint at the 
specification  level. When one encounters a need for 
unsupported flexibility, one must  modify the orig- 
inal program, ideally introducing a design pattern 
that provides the new form of flexibility. 

The primary  goals of our approach are  to encour- 
age viewpoint-oriented modularity and ease the ex- 
tension of systems. Viewpoint-oriented modularity 
is not addressed in Gamma et al.,23 and the most 
closely related pattern for achieving interface exten- 
sion is “decorator” (also  called “wrapper”). This pat- 
tern is,  rightly,  primarily recommended as a solution 
for extending the interface of objects that  are nodes 
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within a hierarchy (a  tree of objects in  which “com- 
ponents” are almost exclusively  accessed by invok- 
ing operations that perform a top-down traversal of 
the  tree), since  this  avoids  many limitations inher- 
ent in an extension mechanism without language- 
level support. Wrappers work  properly  only if all “rel- 
evant” calls to the wrapped object go through the 
wrapper, which requires that callers know of the ex- 
istence and identity of the wrapper; the extended ob- 
ject has a truly “split identity” that must be carefully 
handled. Which  calls  must be passed through the 
wrapper depends on the  nature of the wrapper. In 
general, it  is  difficult to ensure that this occurs; the 
“wrapping of nodes in a hierarchy” applicability of 
the decorator pattern limits the scope of relevant  calls 
sufficiently to provide a solution for a limited, but 
important, category of interface extensions. 

The relationship between design patterns and our 
approach will be revisited  in more detail after we 
have presented our approach. 

Other approaches. There exist quite a few  good ideas 
for solving these problems (see, for example, the 
many references in Wieringa et al.’”).  However,  they 
usually are presented as separate analysis-specific ap- 
pro ache^^,^ or, much more often, as implementation- 
specific approaches. *’ These approaches are often 
buried within prototype languages and systems or 
otherwise theoretically interesting treatises that  do 
not immediately or directly address large-scale in- 
dustrial applications. 

Our approaches 

We now  show  how to successfully  combine  existing- 
and  highly  compatible-analysis  and  implementation 
approaches earlier presented by the  authors else- 
where. In addition, these approaches have a very  im- 
portant property leading to better understanding and 
therefore  to industrial acceptance: they are simple. 

Dynamic and multiple typing. In information mod- 
eling, the traditional supertyping relationship re- 
quires that all properties of a supertype are  a subset 
of the properties of its  subtype. We call  such a  re- 
lationship a “static supertyping.” Almost invariably, 
traditional types were specialized  using a single sub- 
typing hierarchy. 

However,  as we  have already seen, not all  typing re- 
lationships are that simple. More often than not, sev- 
eral mutually orthogonal viewpoints  exist  and each 
of these viewpoints introduces its  own  subtyping  hi- 
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erarchy  for the  same type. This is called “multiple 
subtyping.” Each of these subtyping hierarchies  has 
its invariant,  and  the  conjunction of  all these invari- 
ants must be satisfiable for  the specification to  make 
sense. These  internal consistency considerations have 
to  be valid because the invariants of these subtyping 
hierarchies “are all assertions  over the  same set of 
phenomena.”3 

We also  need to define  and work with those  super- 
typing relationships  for which the supertyping invari- 
ant is only satisfied some of the time. We call such 
a  relationship  a  “dynamic  supertyping.”  Its invari- 
ant is satisfied (for  a  particular  instance) only after 
this  instance  acquires the  properties of the  super- 
type, but  before  this  instance loses these  properties. 
In  other words, the  complete supertyping  invariant 
states  that if an  instance of a subtype  belongs to its 
supertype then allproperties of the supertype are a sub- 
set of the properties of its subtype.s 

The  properties of a  subtype  include  the  properties 
of its static  supertype. For  those instances of a  sub- 
type that  are also  instances of a dynamic supertype, 
the  properties of a  subtype  also  include the  prop- 
erties of this dynamic supertype. As mentioned 
above,  a type can  simultaneously  participate in sev- 
eral different static or dynamic supertyping  hierar- 
chies. 

Dynamic supertyping implies dynamic multiple in- 
heritance.  When  an  instance is created, it has (the 
properties of) some static type (i.e., it satisfies the pred- 
icate of this type). When another (super)type is at- 
tached to this instance, the existing predicate is con- 
joined with the new one, that is,  with the predicate that 
defines the dynamically attached (super)type. As in 
static multiple inheritance, the conjunction of these 
predicates should not be false. 

In addition to  the invariants that define  (dynamic) 
supertypes (and also exhaustive and overlapping sub- 
types), we can provide precise  declarative specifica- 
tions of generic  operations  applied  to  their  ele- 
ments.’ These invariants imply, in particular,  that 
we can  attach  a  subtype  to, or detach  a  subtype  from, 
an instance of a  supertype if and only if the subtypes 
are overlapping or nonexhaustive.  These  invariants 
also imply that we can change the subtype of a  thing. 
We can  attach  a  supertype  to, or detach  a  supertype 
from,  an  instance of a  subtype if and only if the su- 
pertyping is dynamic. Consider,  for example, the 
specification of an  operation  “attach  a  supertype  to 
a given instance.”  It consists of 
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8 The signature-the type and  identity of the exist- 
ing subtype  instance  and  the  supertype to be  at- 
tached 

- The precondition-the subtyping hierarchy is 
dynamic; the subtype  instance exists; the con- 
junction of the  predicate for the new supertype 
and  the  predicate  that  the existing (subtype) in- 
stance satisfies is not false 

- The postcondition-the subtype  instance ac- 
quires  the  properties of the new supertype 

Observe that  the semantics of dynamic  supertyping 
constructs have been  defined in a very explicit and 
precise manner.  These definitions are declarative and 
do not  prescribe any particular  implementation 
mechanisms  (sometimes  leading to developer  skep- 
ticism). Fortunately  such  mechanisms do exist. 

Subject orientation. The subject-oriented  program- 
ming paradigm6x7 supports packaging of object-ori- 
ented systems into  “subjects.”  Each subject is a  (pos- 
sibly incomplete)  object-oriented  program  that views 
and  represents its domain in its own, subjective way. 
This subjective model is defined by the collection of 
classes in the subject.  Each class definition contains 
just  those  details  implemented or used by the sub- 
ject. 

A composition designer can compose subjects to pro- 
duce  a  larger subject by writing a  “composition 
expression”  made  up of “composition  rules” that 
specify how to reconcile  the different points of  view 
and how to combine the  details from the  various  con- 
stituent  subjects  appropriately. 24 

A subject is written in an object-oriented  source  lan- 
guage,  and  compiled using a  “subject  compiler”  for 
that  language.  Compiled  subjects are composed by 
a  language-independent  “compositor,” without mod- 
ification, recompilation, or even examination of 
source  code. Our current  prototype  compositor  per- 
forms  composition at link time, but  there  are  no con- 
ceptual  barriers  to  performing it dynamically at  run 
time. 

It is important  to  note  that a subject does  not, usu- 
ally, define  just  a single class. It usually defines  a 
whole collection of related classes from  a single point 
of view. For example,  a  subject might correspond  to 
a  requirement or feature,  containing  those  aspects 
of a  number of different classes required  for  support 
of that  feature. Composition  then  automatically 
introduces  the  entire  feature,  performing all the 

8 The semantics  described by 
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needed class compositions as a unit. Different sub- 
jects might contain different  levels of detail or be at 
different  levels of abstraction. For example, one sub- 
ject’s view of a class  might be as a black  box, whereas 
another’s view might include a whole hierarchy of 
objects that are instances of various other classes  also 
defined in the subject.25 

One difference between the specification  level and 
the implementation level is that implementation 
must  be  concerned  with  “class”  as well  as “type.” Type 
specifies  what  is expected of its instances: what in- 
terface they  satisfy and what  externally meaningful 
invariants they maintain. On  the  other hand, in sub- 
ject orientation, class  specifies the structure and  code 
needed to support the type. Thus, when a type is en- 
hanced, such  as by dynamic supertyping, the class 
needs to be enhanced in order to provide the  state 
and code needed to satisfy the enhanced type. 

When subjects are composed, the individual  classes 
defined within them are composed according to the 
specified composition expression. The composed 
class will satisfy a new type,  which depends on the 
details of the composition. For example, the “merge” 
composition r ~ l e ~ , * ~  is intended to combine classes 
in such a way that  the composed class  satisfies the 
conjunction of the original class’s  types. Other com- 
position rules such  as “override” are also  possible. 
Formal specification of the semantics of subjects and 
subject composition are topics for future research. 

Dynamic composition allows changes to classes dur- 
ing execution. If just a single instance is to acquire 
new properties, as in dynamic supertyping above, a 
two-step process  is  involved: 

The original class is dynamically composed with 
the class  defining the new properties, if it  has not 
already been done. This results in a new,  dynam- 
ically created class. 
The instance is migrated from its original class to 
this new  class. This migration will  involve initial- 
ization of  any  new state, and is supported by sub- 
ject-oriented run-time support. 

This process  is performed by the run-time support, 
and need not show through in  this form to  the  pro- 
grammer. Details of dynamic  composition,  especially 
its application to specific instances, remains a topic 
for future research. 

The combined approach-an illustration. Since we 
are at the early stages of combining our approaches, 
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we have  chosen a simple,  yet real, example. Consider 
the person  and  homeowner scenario, for which a bus- 
iness  specification fragment was provided earlier. 
Subject-oriented development  suggests  specification 
and implementation of  two subjects: person and 
homeowner. 

The person subject deals with “intrinsic” details of 
people, such as name and gender. This subject con- 
tains no additional information about people, such 
as their addresses, family composition, employment, 
credit cards, or insurance policies.  Any  such addi- 
tional information needed by applications would be 
defined in separate subjects (viewpoints). This fine- 
grained separation of concerns might seem exces- 
sive, leading to highly fragmented systems. It greatly 
facilitates maintenance and reuse, however,  because 
each fragment deals with one, isolated issue,  allow- 
ing multiple fragments to be composed in whatever 
combination  is needed in a specific  application.  Also, 
the fragmentation can  be encapsulated: a subject 
composed from many fragments, such  as a more 
complete view  of people including  many  common 
properties, can be  used  as a unit without regard for 
its substructure. 

The homeowner subject deals with the issue of home 
ownership. It includes at least two types and asso- 
ciated classes: Homeowner and Home. The  Home- 
owner  class  is not specific  in  any way to people; it 
defines just the  state and contains just the code 
needed to represent home ownership and the var- 
ious operations associated with it, such as  paying 
property taxes  and  selling the home. The relation- 
ship to  the actual home owned  is an important prop- 
erty of a homeowner, so this  subject  must  also model 
homes. Once again, however,  it  only includes basic 
details of homes needed in  this context, such  as lo- 
cation, appraised value, and purchase price. Other 
views of homes, defined in other subjects,  might  con- 
tain architectural plans and other details, history of 
ownership, and related ghost stories. (This last  is in- 
cluded to make a point that is a primary motivation 
behind subject-oriented programming: it is never 
possible to predict all future extensions that some- 
one will want to make to  a system. Thus, a designer 
who  builds a comprehensive model of a home, in- 
tended for use by all  applications that have to do with 
homes,  is bound to find that someone, some day, will 
need state  or functions associated with homes that 
she or he  never  imagined. Subject-oriented program- 
ming  allows these to be defined in separate subjects 
by the developer who needs them, and composed 
with the original  definition.  Obviously,  dynamic  mul- 
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tiple subtyping hierarchies described earlier solve this 
problem at  the specification level.) 

An application in which all people  are homeowners 
and all homeowners are  people would use a  com- 
position of theperson  and homeowner subjects with 
a  composition  expression  stating that classesperson 

Dynamic  composition  is 
analogous to schema  evolution 
in  object-oriented  databases. 

and homeowner correspond.  This would have the 
effect that whenever  code in the person subject 
created  a  person,  or  code in the homeowner subject 
created  a  homeowner, the object actually created 
by the  run-time system would be  a synthesis of the 
two. This correspondence would automatically be in- 
herited by all appropriate subclasses as well. Thus, 
for  example, if Doctor is a subclass of Person, any 
doctor  object  created would also have homeowner 
functionality. 

In  the  more realistic application  mentioned  earlier, 
specific people  and  other objects  can  become  and 
cease to  be homeowners. In this  case  aperson  object 
is, on creation,  just  aperson object as described in 
the person subject. When  that  person becomes  a 
homeowner, the person object  must  become an in- 
stance of a new class defining the synthesis of Per- 
son  and  Homeowner.  That class might have been  de- 
fined statically during the composition that gave rise 
to  the application, or might be  produced  on  demand 
by dynamic composition. It is interesting to  note  that 
dynamic composition is analogous to schema evo- 
lution in object-oriented  databases:  both involve type 
enhancement in the  presence of existing instances, 
and  thus have many of the  same  conceptual  and im- 
plementation issues. 

Another way of looking at specific instances  acquir- 
ing new behavior dynamically is as  per-instance  sub- 
ject “activation.” As in the simplified case  mentioned 
first, the application’s composition  expression  spec- 
ifies composition of theperson  and homeowner sub- 
jects, with correspondence  between  the  Person  and 
Homeowner classes. However,  it  also  indicates that 
the homeowner subject is not automatically activated 
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forperson  objects.  When  aperson  object is created, 
therefore,  it is just  as  described in the person sub- 
ject,  but it has  the  potential to become  a homeowner. 
This  potential is realized by explicitly activating the 
homeowner subject for  a particularperson object, and 
perhaps  deactivating  it  later. 

Design patterns and subjects. Many design patterns 
are  concerned with issues other  than flexibility, such 
as “singleton,” “fly-weight,” and  “interpreter.”  These 
have no direct  relationship  to  dynamic  supertypes 
or subjects.  Those that deal with flexibility of imple- 
mentation  are essentially complementary to  our  ap- 
proach,  and  can  be used to advantage in conjunc- 
tion with it. However, in many cases similar flexibility 
can be accomplished directly with subject  compo- 
sition. For example, the “strategy” pattern  encap- 
sulates an algorithm applying to a  “context”  object 
within a separate strategy  object that is attached to 
the context  object. A subject-oriented  approach 
might be  to  encapsulate it within a separate subject 
that  adds  the  needed  methods  and  state  to  the con- 
text object itself. Just  as strategy  objects  can  be 
switched dynamically, subjects  can  be  recomposed 
dynamically. The primary difference between  these 
approaches is that  the subject approach allows the 
interface that  the context object presents to  the strat- 
egy object to  be different from  the  interface  it  pre- 
sents  to its clients. 

Subject-oriented  programming  supports  unantici- 
pated  extension, with composition allowing classes 
to  be extended  without modification or recompila- 
tion of the original  program. The composition  tech- 
nology essentially makes every object  creation  and 
every operation call a  potential  open point.  Subjects 
also support  interface  extension by composition, 
without  requiring  callers to deal with unknown col- 
lections of wrapper  objects,  and  without  split-iden- 
tity problems. 

Flexibility of implementation  toward  future system 
extensions is naturally handled using subjects because 
they offer implementation  support  for viewpoints. 
Not only is it natural  to address,  for example, the 
billing algorithms  for life insurance  and  automobile 
insurance  from different viewpoints, these  other 
viewpoints can  also  contain nonbilling aspects of life 
and  automobile  insurance.  In  this way analysis-level 
conceptual modularity is preserved and visible in sys- 
tem design and  implementation. 

In summary, many of the design patterns  presented 
in Gamma, et a].*’ are complementary to subjects, 
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Table 1 Summary 

Areas  Compared  Multiple  Inheritance  Dynamic  Supertyping  Subjects 

Life-cycle  phase Late Early  Currently  late 
Complexity of use Complex Simple  Simple 
Defined semantics Loose Yes Can be donelin progress 
Consistency  throughout life cycle Not applicable YES 

as is the  general  idea of design patterns.  However, 
many patterns  attempt  to provide  important kinds 
of flexibility under  the stringent  constraint  that  no 
special language-level support  can  be  added; as  a  re- 
sult,  they are limited in their success. Subjects do  re- 
quire significant language-level support, allowing 
them  to  support  these kinds of flexibility, and  espe- 
cially unanticipated flexibility, more effectively and 
directly. It is a  research issue to reformulate design 
patterns in subject  terms. 

Of equal  importance, however, subjects allow and 
encourage  a  natural system modularity  along the 
lines of business viewpoints, which is not  achievable 
without language-level support. 

Research  issues 

The existence of rigorous  and  complete  business 
specifications, built  upon analysis constructs  such as 
ours,  remains of sufficient novelty in its own right 
that  general strategies  for exploiting them  as  part of 
a  rigorous  transition to design are a  subject  for  re- 
search  (see  Redberg2‘  for an early  example,  and 
H ~ a r e ~ ~  for  an excellent framework). It is natural, 
therefore,  to build a  detailed  understanding of the 
roles of constructs  and  technologies  such as, respec- 
tively, dynamic supertyping and subject composition, 
as  part of this  broader effort. At  the  time of writing, 
we are actively engaged in exploring these  broader 
issues in consulting  engagements with customers. 

At  the time of writing, support  for  subject-orienta- 
tion in C+ + is being  built, with an expectation that 
it will be available for  use in real  software  develop- 
ment within a  matter of months. Prototype-level sup- 
port  for subjects in Smalltalk is also being developed. 
Nonetheless, many interesting issues in providing 
complete, high-quality support  remain  as  research 
issues. Most notable  among  these is the implemen- 
tation of dynamic composition. 

Dynamic  and  multiple types, on  the  one  hand,  and 
subjects, on  the  other,  appear  to provide  a  suitable 
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structure, allowing different views or features to be 
described  separately at every level of information 
management.  This two-dimensional structure  can  be 
viewed horizontally (all descriptions at a  particular 
level) or vertically (all descriptions of the  same fea- 
ture,  from highest-level specification to code) with 
equal  convenience.  Details of the  contents of “spec- 
ification subjects,” of their  composition  semantics, 
and of the relationship between composition of spec- 
ification subjects  and  composition of corresponding 
implementation subjects, are interesting  and  chal- 
lenging areas  for  future research. 

Formal, or  at least  rigorous, specifications of the se- 
mantics of viewpoint composition (including over- 
riding and  feature  interaction) would be of consid- 
erable  value.  This  includes  a proper vocabulary and 
structuring  techniques  for  amalgamation of these 
partial, viewpoint specifications. 4,’8 

Design patterns  that exploit language-level support 
offered by subjects is another  area  for  research.  Here 
we foresee  an  immediate simplification in many ex- 
isting patterns.  A  search  for  patterns in the defini- 
tion of subject interfaces,  for  placement of interfaces 
and  implementations in separate subjects,  and the 
definition of generic,  reusable  subjects in general 
should  also be of considerable  value. 

A natural,  yet  precise,  way  to  define  and 
develop  systems 

We have proposed  a  combination of dynamic super- 
types at  the specification level and  subjects at  the 
implementation level. Both  address  the  problems of 
viewpoints and dynamic type changes,  and  they  cor- 
respond very well to  each  other. Subjects  provide  a 
natural  means of implementing  multiple  and dy- 
namic typing-specification constructs that  some 
contended  could  not  be  implemented by most im- 
plementation  mechanisms.  These  approaches  thus 
provide  a  natural way  of understanding, specifying, 
and  developing  important  fragments of systems. 
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Other researchers have  also  examined formalization 
of dynamic  typing, ’”,*’ and we can benefit from their 
work  as we refine ours. We are not aware, however, 
of other work that deals with multiple and dynamic 

degree of formality. We  also  plan to explore the use 
of subjects directly for specification  as  well  as  im- 
plementation. Table 1 is our summary. 

I typing  in the context of the full  life  cycle  with  any 
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