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Technical note

From dynamic supertypes
to subjects: A natural way
to specify and develop systems

When we understand, specify, and develop
systems, we use certain concepts and constructs
to deal with complexity. Object-oriented (OO)
approaches provide good ways for doing so.
However, many existing OO approaches (perhaps
based on object models used in existing 00
languages) cannot solve important problems
encountered in large and complex systems. For
example, we often have to deal with properties
of “things” that cannot be represented in a

neat hierarchy. Some of these properties may
significantly change with time. Moreover, many
of these properties refer to collections of objects
without identifying a single object as “owner” of
each properly. The authors of this technical note
have separately proposed approaches for solving
these problems, but at very different stages

of the development life cycle. However, the
underlying concepts of these approaches are so
close that they can be successfully combined to
provide a common solution that encompasses all
stages of the life cycle.

Large systems are too complex to understand as
a whole. Therefore, to understand a system we
need to identify distinct concerns that we can address
separately. The idea of “separation of concerns” in
traditional programming has been known since the
1960s, thanks to E. W. Dijkstra.!

Separation of concerns can be applied more widely
than in just programming—such as for the under-
standing of businesses and specification of large sys-
tems—to address only those concerns that are of in-
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terest, ignoring others that are unrelated. To be of
any real value, specifications should be precise and
understandable by both software developers and bus-
iness users. But businesses separate concerns along
business, rather than technical, lines. It is natural,
therefore, to systematically understand, specify, and
implement systems from a set of business, implemen-
tation-independent, viewpoints.

The software infrastructure of an organization is typ-
ically developed incrementally. Businesses also
evolve, and reconfigure themselves, incrementally.
In either case, these increments are often best un-
derstood and handled as “viewpoints,” and thinking
in terms of viewpoints removes artificial ordering
constraints associated with thinking in terms of in-
crements. Each of these viewpoints describes prop-
erties of some relationships in the application do-
main and may be considered in isolation from other
viewpoints (compare Zave and Jackson?®). In other
words, a business viewpoint is a partial specification,
used by persons to understand a complicated system
“in terms of a few ideas at a time.”* However, until
recently it has been extremely difficult, and prohib-
itively expensive, to seamlessly add viewpoints. As
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a result, the software infrastructure of most orga-
nizations consists of fragmented sets of applications
with frequent duplication of functionality, data,
... (everything!), and general loss of integrity.

The authors have separately developed approaches
to dealing with these problems, but at different stages
of the development life cycle. “Dynamic supertyp-
ing”® and, more generally, multiple and dynamic typ-
ing, is a specification approach used during analysis.
It allows types to be attached to or detached from
specific objects dynamically, thereby modeling the
manner in which they change their properties, both
structural and behavioral, over time. Many have con-
tended that this powerful specification approach is
limited in its utility because of implementation dif-
ficulties (and, indeed, it is not supported by tradi-
tional object-oriented languages).

“Subject-oriented programming”®’ is a program

composition technology that allows an object-ori-
ented program to be written as separate modules,
called “subjects,” that are then composed. Each sub-
ject defines its own subjective view of the classes it
provides and uses. These views are reconciled and
combined during composition, as directed by a “com-
position expression.”

On closer inspection, these approaches are highly
compatible. This technical note discusses the synthe-
sis of dynamic supertyping and subject-oriented pro-
gramming to provide uniform support for separa-
tion of concerns and graceful evolution across the
entire life cycle.®

The format of the technical note is as follows. The
next section discusses the problem in more detail,
motivating the kind of support that is needed to ac-
complish separation of concerns and graceful evo-
lution in large systems. Next comes a brief discus-
sion of the traditional approaches to the problem
and why they are inadequate. The final section de-
scribes multiple and dynamic typing and subject-ori-
ented programming in more detail, and shows how
subject composition can be used as an implemen-
tation vehicle for multiple and dynamic typing.

Important contributions in the fields of object-ori-
ented information modeling®™"? and subjectivity in
object-oriented systems''* have been presented at
OOPSLA (Object-Oriented Programming Systems,
Languages, and Applications) conferences.
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Motivation

Let us start by taking a closer and more precise look
at these problems. First, we should explicitly recog-
nize that we are treading in two territories: the ter-
ritory of precisely formulating a business problem
for potential and partial automation (also known as
“business specification” or “analysis”), and the ter-
ritory of providing a system solution that automates
the desired part of the business problem (also known
as “design” and “implementation”).

Many existing approaches to analysis have been sub-
stantially derived from, and consequently restricted
to, preexisting system implementation constructs.
This restriction is unwarranted, and has all too fre-
quently led to unnatural, incomplete, and cumber-
some business specifications. This need not be the
case: a business specification should be built upon
concepts and constructs appropriate for capturing
the business semantics in the most natural, yet pre-
cise and explicit, way. It is then the task of the de-
signer to make any necessary trade-offs to provide
asystem that meets these business needs in a selected
technical environment. The challenge for the de-
signer of technical infrastructural components (such
as databases, programming languages, etc.) is to ease
this process, and allow systems to be built in which
the business specification is not only demonstrably
satisfied but remains clearly visible.

In many cases, and especially for addressing the bus-
iness problems that are used as examples in this pa-
per, concepts used for specification and implemen-
tation are substantially the same. We will introduce
them at the more abstract, specification level.

Types. Any one thing differs from any other thing.
Even identical twins have different properties
(names). However, it would be quite difficult to un-
derstand things and their relationships if each time
we spoke of a thing we had to mention all of its rel-
evant properties. Abstraction helps us with this
task—fortunately, some things have common prop-
erties that can be studied independently of the in-
dividuality of each thing. We say that things with
common properties belong to the same type, defined
by a predicate that describes the properties held in
common. *?

In a sufficiently complicated system, we may be in-
terested in subtypes (and supertypes)—in other
words, in conjuncts of the predicates that define
types. A new conjunct has to define interesting sub-
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Figure 1 A simple example of multiple subtyping hierarchies
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The graphical representation used here is described more
fully by Kilov and Ross® and is also rather close to that of
Wieringa et al”’ (The terminology used in these publica-
tions is different; for example, role classes in Wieringa et
al. seem to correspond to overlapping subtypes in Kilov
and Ross.) Observe that the representation shows both the
generic relationship name (e.g., SE for Subtyping Exhaus-

the application-specific relationship name (e.g., Gender).

tive or SE+ for Subtyping Exhaustive and Overlapping) and

Job Classification

Managerial

Subtyping Exhaustive means that any instance of the
supertype is an instance of exactly one subtype in this
subtyping hierarchy. Subtyping Exhaustive and Over-
lapping means that any instance of the supertype is an
instance of at least one subtype in this subtyping
hierarchy. Obviously, a linear representation of these
relationships (e.g., in the language Z) will also include
both the generic and application-specific relationship
names.

sets of things (belonging to a subclass, or—equiv-
alently—satistying a subtype). A thing “is of” a sub-
type (or belongs to a subclass) if it has all the common
properties of its supertype (i.e., all the properties
used to define the supertype, or, in other words, if
it satisfies the predicate of the supertype), and some
additional, subtype-specific, properties. This is the
invariant of the subtyping relationship” that has to
be satisfied all the time, as is usual for an invariant.

So far so good, and we leave aside important issues
of property overriding, etc. However, the world is
more complicated.

Viewpoints. The first complication is that a thing may
satisfy several predicates, that is, have several (col-
lections of) properties of interest. Each of these pred-
icates may be considered as a partial specification
of the thing. A person may have properties related
to being a teacher, a student, a homeowner, a Repub-
lican, a taxpayer, a party in an insurance agreement,
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a sole proprietor, a book author, etc. In other words,
a thing may have several types.!>* One of the types
of a thing is the “most complete”—you can create
instances using this type information. This may be
considered as a complete specification of the thing.
This type is called"® a “template type.” Note that not
all of the thing’s types are of interest in a particular
context; in an insurance environment only a (small)
subset of these types is of interest, for example.

To separate different concerns of the enterprise, we
usually collect semantically related types together.
Some of these types may have a common supertype.
Several mutually orthogonal collections (multiple
subtyping hierarchies) may exist for a given super-
type. As a simple example, Figure 1 represents the
supertype Employee subtyped into a gender subtyp-
ing hierarchy (consisting of two mutually exclusive
types) and a job classification subtyping hierarchy
(consisting of several, not necessarily mutually ex-
clusive, types).
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Figure 2 A real-life examp\e of multiple subtyping hierarchies
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Moreover, we may require that an object that is an
instance of the supertype is also an instance of a leaf
subtype within each of these collections. In other
words, the invariant of mutually orthogonal exhaus-
tive subtyping relationships for the same supertype
states that the existence of a supertype instance im-
plies that it will have properties of one of the sub-
types in each of its subtyping hierarchies; the prop-
erties of an instance have to satisfy the conjunction
of the predicates for each of these subtypes!® (again
compare Zave and Jackson?). The subtypes need not
be static, as we will see later. This invariant defines
the behavior in which the instance may participate.
To quote the Reference Model for Open Distrib-
uted Processing, " Clause 13.2.3: “an object may be
in a number of contractual contexts simultaneously;
the behavior is constrained to the intersection of the
behaviors prescribed by each contractual context.”

These considerations apply to any relationships in
which a thing participates, not just to subtyping. A
thing usually participates in several mutually orthog-
onal elementary relationships of difterent kinds (e.g.,
subtyping, composition, dependency, and so on>'"),
and the thing’s invariant (complete specification) is
a conjunction of all the “primitive” invariants (par-
tial specifications) defined by the thing’s participa-
tion in each of these elementary relationships. All
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of the invariants have to be completely and explic-
itly specified; implicit assumptions (“unwritten
rules”) lead to very serious problems in conjoining
the invariants which, for technological componen-
try, were termed “architectural mismatches” by Gar-
lan, et al.®®

Consider another, more interesting, example. After
an application for an insurance policy is accepted by
the insurance company (this is done by an under-
writer of such a company), and before an insurance
contract is issued, some prerequisites are to be sat-
isfied. Certain of these prerequisites may be spec-
ified by an insurance system (i.e., they are either
required by regulations or otherwise commonly
known), whereas certain other prerequisites may be
identified only by the underwriter, based on the un-
derwriter’s experience. Furthermore, certain prereq-
uisites are, and certain are not, related to underwrit-
ing (e.g., the latter may refer to premium payment
issues). And finally, an insurance application may in-
clude several insured, and therefore certain prereq-
uisites refer to one insured (e.g., beneficiary amend-
ment), whereas certain other ones refer to the
application as a whole. Thus, there exist three dif-
ferent subtyping hierarchies for these prerequisites,
as shown in Figure 2. (The specification represented

HARRISON ET AL.

247




Figure 3 An example of a dynamic subtype

Homeowner

Person Business

Note: Obviously, the actual specification is more complicated than the one shown in the representation; other
objects and relationships between them are not shown. Here SD stands for Subtyping Dynamic.

Government
Unit

Charity

here is a somewhat edited fragment of a “real-life”
insurance application.)

These examples show that in most interesting cases
we cannot represent the world as a set of noninter-
secting subtype hierarchies (as some OO language
authors may want us to do).

Changes. The second, and perhaps more important,
complication is that things change. They acquire
some properties, change the values of some other
properties, and lose some properties. Therefore the
type network (not a hierarchy, see Figure 2) is not
fixed. An instance may dynamically change its types
(in other words, start and stop satisfying appropri-
ate predicates that define these types'®). Rigorous
specifications of this kind of subtyping relationship
have been presented, e.g., in Kilov and Ross® and
Wieringa et al.”’ Implementation mechanisms for
dealing with such dynamic classification exist and
have been presented, e.g., in Chambers® where
predicates are used to define classes in essentially
the same manner as in the Reference Model for
Open Distributed Processing.

Viewpoints and changes. We can see the third com-
plication by means of an example. Consider the re-
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lationship between the types Person and Home-
owner. Neither of them is a subtype of the other: a
person need not be a homeowner, and a homeowner
need not be a person (e.g., it may be a business or
charity). However, in a reasonable system we will
want to state that a person may acquire all the prop-
erties? of a homeowner, thus Person becomes a sub-
type of Homeowner. This supertyping relationship
is not static; it does not satisfy the invariant for sub-
typing all the time (otherwise all people would be
homeowners). In addition, not only persons may be
homeowners; for example, businesses, charities, and
government units also may be, and the types Person,
Business, Charity, and Government Unit need not
have a common (static) supertype. Figure 3 illustrates
this relationship.

The identity of an instance does not change when
a new supertype is attached or detached; a person
can become a homeowner and therefore acquire
properties of a homeowner, but the identity of this
person will remain the same.

We have seen that, on the one hand, types that a
particular instance satisfies may be dynamically at-
tached or detached; and on the other hand, we may
wish to describe (not necessarily changing) proper-
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Figure 4 Modeling dynamic supertyping using static subtypes
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ties of the different types of the same instance sep-
arately (separation of concerns). The same type may
be attached to instances belonging to different, of-
ten quite unrelated, types. (Consider attaching the
type Inventory Item to different kinds of inventory
items, such as computers, books, phones, desks, cars,
etc.).

Possible approaches

We need to deal with these issues in a precise and
explicit manner, for both analysis (i.c., business spec-
ification) and design, and in a mutually consistent
and natural way. Therefore, we need both a way to
specify the situations described in the previous sec-
tion, and a way to develop systems that, based on
these specifications, will be able to handle these sit-
uations. Obviously it is very desirable for our solu-
tions to be simple and elegant. We want to use es-
sentially the same approaches for specification and
implementation.

Most traditional approaches are derived from the
constructs of legacy object-oriented languages. These
languages usually merge the notions of class and type.
A strong compiler constraint for a single class hier-
archy and static instance properties leads to the im-
position of a single, static subtyping hierarchy, which
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excludes an explicit notion of viewpoint. As a result,
most traditional object-oriented approaches force
developers to make early, and often artificial and
contrived, choices for even simple problems, and thus
many issues of large-scale systems, listed earlier, can-
not even partially be resolved.

Traditional approaches often force business analysts
to use programming constructs (e.g., messages) that
are not easily understood by business users. This hap-
pens because there is a reluctance to write business
specifications using constructs that are not immedi-
ately available in a popular programming language.
As aresult, simple concepts (e.g., that an object may
have several types simultancously) are not always
easily and concisely expressed, leading to substan-
tially larger and more complicated and confusing
specifications. These considerations lead to skepti-
cism, often expressed in the 00O community with re-
spect to important international standards.'>"

Traditional solutions to the problems of viewpoints
and changes. During analysis, we may define, for ex-
ample, a Homeowner static subtype for each of Per-
son, Business, Charity, and Government Unit. We
can do that, but this repetition of exactly the same
static subtyping for several different types is not ad-
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visable (at least, due to abstraction and therefore re-
use considerations), as shown in Figure 4.

Static multiple inheritance (e.g., “mixins”) seems to
provide a reasonable solution for implementation.
However, it does not solve the problem of property
changes. In addition, most multiple inheritance en-
vironments specify semantics in quite a loose man-
net, often based on the intuition of a developer, and
using a language-specific object model. Moreover,
traditional implementations of multiple inheritance
in programming languages do not support dynamic
changes to the hierarchy. We can do better than that.

Design patterns. Design patterns? are a significant
contribution toward providing a rigorous approach
for incorporating flexibility into a system. Systems
designed with judicious use of these patterns can be
extended or changed in a variety of ways by replace-
ment of parts with defined interfaces (that include
signature and semantics). Most of these patterns al-
low substitution of alternative implementations (e.g.,
“abstract factory” or “strategy”), or dynamic selec-
tion of an appropriate implementation (e.g., “state”).
The “wrapper” (or “decorator”) pattern allows ex-
tension of interface, in a sense—each wrapper ob-
ject can provide some additional behavior, which can
be invoked by users who are aware of the wrapper.
An important property of design patterns is that they
do not require special language-level support, but
this also leads to limitations.

The primary limitation of design patterns is that they
do not support unanticipated kinds of extension or
change. The designer must decide up-front which im-
plementations are to be changeable, extensible, or
reconfigurable. This is a valuable exercise, and mak-
ing anticipated flexibility especially easy to exercise
is clearly a hallmark of good design. However, it is
impossible to anticipate all needed forms of flexi-
bility, such as the need to add a new viewpoint at the
specification level. When one encounters a need for
unsupported flexibility, one must modify the orig-
inal program, ideally introducing a design pattern
that provides the new form of flexibility.

The primary goals of our approach are to encour-
age viewpoint-oriented modularity and ease the ex-
tension of systems. Viewpoint-oriented modularity
is not addressed in Gamma et al.,? and the most
closely related pattern for achieving interface exten-
sion is “decorator” (also called “wrapper”). This pat-
tern is, rightly, primarily recommended as a solution
for extending the interface of objects that are nodes
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within a hierarchy (a tree of objects in which “com-
ponents” are almost exclusively accessed by invok-
ing operations that perform a top-down traversal of
the tree), since this avoids many limitations inher-
ent in an extension mechanism without language-
level support. Wrappers work properly only if all “rel-
evant” calls to the wrapped object go through the
wrapper, which requires that callers know of the ex-
istence and identity of the wrapper; the extended ob-
ject has a truly “split identity” that must be carefully
handled. Which calls must be passed through the
wrapper depends on the nature of the wrapper. In
general, it is difficult to ensure that this occurs; the
“wrapping of nodes in a hierarchy” applicability of
the decorator pattern limits the scope of relevant calls
sufficiently to provide a solution for a limited, but
important, category of interface extensions.

The relationship between design patterns and our
approach will be revisited in more detail after we
have presented our approach.

Other approaches. There exist quite a few good ideas
for solving these problems (see, for example, the
many references in Wieringa et al. ). However, they
usually are presented as separate analysis-specific ap-
proaches®* or, much more often, as implementation-
specific approaches.” These approaches are often
buried within prototype languages and systems or
otherwise theoretically interesting treatises that do
not immediately or directly address large-scale in-
dustrial applications.

Our approaches

We now show how to successfully combine existing—
and highly compatible—analysis and implementation
approaches earlier presented by the authors else-
where. In addition, these approaches have a very im-
portant property leading to better understanding and
therefore to industrial acceptance: they are simple.

Dynamic and multiple typing. In information mod-
eling, the traditional supertyping relationship re-
quires that all properties of a supertype are a subset
of the properties of its subtype. We call such a re-
lationship a “static supertyping.” Almost invariably,
traditional types were specialized using a single sub-
typing hierarchy.

However, as we have already seen, not all typing re-
lationships are that simple. More often than not, sev-
eral mutually orthogonal viewpoints exist and each
of these viewpoints introduces its own subtyping hi-
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erarchy for the same type. This is called “multiple
subtyping.” Each of these subtyping hierarchies has
its invariant, and the conjunction of all these invari-
ants must be satisfiable for the specification to make
sense. These internal consistency considerations have
to be valid because the invariants of these subtyping
hierarchies “are all assertions over the same set of
phenomena.”?

We also need to define and work with those super-
typing relationships for which the supertyping invari-
ant is only satisfied some of the time. We call such
a relationship a “dynamic supertyping.” Its invari-
ant is satisfied (for a particular instance) only after
this instance acquires the properties of the super-
type, but before this instance loses these properties.
In other words, the complete supertyping invariant
states that if an instance of a subtype belongs to its
supertype then all properties of the supertype are a sub-
set of the properties of its subtype.’

The properties of a subtype include the properties
of its static supertype. For those instances of a sub-
type that are also instances of a dynamic supertype,
the properties of a subtype also include the prop-
erties of this dynamic supertype. As mentioned
above, a type can simultaneously participate in sev-
eral different static or dynamic supertyping hierar-
chies.

Dynamic supertyping implies dynamic multiple in-
heritance. When an instance is created, it has (the
properties of) some static type (i.e., it satisfies the pred-
icate of this type). When another (super)type is at-
tached to this instance, the existing predicate is con-
joined with the new one, that is, with the predicate that
defines the dynamically attached (super)type. As in
static multiple inheritance, the conjunction of these
predicates should not be false.

In addition to the invariants that define (dynamic)
supertypes (and also exhaustive and overlapping sub-
types), we can provide precise declarative specifica-
tions of generic operations applied to their ele-
ments.’ These invariants imply, in particular, that
we can attach a subtype to, or detach a subtype from,
an instance of a supertype if and only if the subtypes
are overlapping or nonexhaustive. These invariants
also imply that we can change the subtype of a thing.
We can attach a supertype to, or detach a supertype
from, an instance of a subtype if and only if the su-
pertyping is dynamic. Consider, for example, the
specification of an operation “attach a supertype to
a given instance.” It consists of:
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* The signature—the type and identity of the exist-
ing subtype instance and the supertype to be at-
tached
¢ The semantics described by
— The precondition—the subtyping hierarchy is
dynamic; the subtype instance exists; the con-
junction of the predicate for the new supertype
and the predicate that the existing (subtype) in-
stance satisfies is not false

— The postcondition—the subtype instance ac-
quires the properties of the new supertype

Observe that the semantics of dynamic supertyping
constructs have been defined in a very explicit and
precise manner. These definitions are declarative and
do not prescribe any particular implementation
mechanisms (sometimes leading to developer skep-
ticism). Fortunately such mechanisms do exist.

Subject orientation. The subject-oriented program-
ming paradigm®’ supports packaging of object-ori-
ented systems into “subjects.” Each subject is a (pos-
sibly incomplete) object-oriented program that views
and represents its domain in its own, subjective way.
This subjective model is defined by the collection of
classes in the subject. Each class definition contains
just those details implemented or used by the sub-
ject.

A composition designer can compose subjects to pro-
duce a larger subject by writing a “composition
expression” made up of “composition rules” that
specify how to reconcile the different points of view
and how to combine the details from the various con-
stituent subjects appropriately.®

A subject is written in an object-oriented source lan-
guage, and compiled using a “subject compiler” for
that language. Compiled subjects are composed by
alanguage-independent “compositor,” without mod-
ification, recompilation, or even examination of
source code. Our current prototype compositor per-
forms composition at link time, but there are no con-
ceptual barriers to performing it dynamically at run
time.

It is important to note that a subject does not, usu-
ally, define just a single class. It usually defines a
whole collection of related classes from a single point
of view. For example, a subject might correspond to
a requirement or feature, containing those aspects
of a number of different classes required for support
of that feature. Composition then automatically
introduces the entire feature, performing all the
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needed class compositions as a unit. Different sub-
jects might contain different levels of detail or be at
different levels of abstraction. For example, one sub-
ject’s view of a class might be as a black box, whereas
another’s view might include a whole hierarchy of
objects that are instances of various other classes also
defined in the subject.®

One difference between the specification level and
the implementation level is that implementation
must be concerned with “class” as well as “type.” Type
specifies what is expected of its instances: what in-
terface they satisfy and what externally meaningful
invariants they maintain. On the other hand, in sub-
ject orientation, class specifies the structure and code
needed to support the type. Thus, when a type is en-
hanced, such as by dynamic supertyping, the class
needs to be enhanced in order to provide the state
and code needed to satisfy the enhanced type.

When subjects are composed, the individual classes
defined within them are composed according to the
specified composition expression. The composed
class will satisty a new type, which depends on the
details of the composition. For example, the “merge”
composition rule®* is intended to combine classes
in such a way that the composed class satisfies the
conjunction of the original class’s types. Other com-
position rules such as “override” are also possible.
Formal specification of the semantics of subjects and
subject composition are topics for future research.

Dynamic composition allows changes to classes dur-
ing execution. If just a single instance is to acquire
new properties, as in dynamic supertyping above, a
two-step process is involved:

 The original class is dynamically composed with
the class defining the new properties, if it has not
already been done. This results in a new, dynam-
ically created class.

 The instance is migrated from its original class to
this new class. This migration will involve initial-
ization of any new state, and is supported by sub-
ject-oriented run-time support.

This process is performed by the run-time support,
and need not show through in this form to the pro-
grammer. Details of dynamic composition, especially
its application to specific instances, remains a topic
for future research.

The combined approach—an illustration. Since we
are at the early stages of combining our approaches,
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we have chosen a simple, yet real, example. Consider
the person and homeowner scenario, for which a bus-
iness specification fragment was provided earlier.
Subject-oriented development suggests specification
and implementation of two subjects: person and
homeowner.

The person subject deals with “intrinsic” details of
people, such as name and gender. This subject con-
tains no additional information about people, such
as their addresses, family composition, employment,
credit cards, or insurance policies. Any such addi-
tional information needed by applications would be
defined in separate subjects (viewpoints). This fine-
grained separation of concerns might seem exces-
sive, leading to highly fragmented systems. It greatly
facilitates maintenance and reuse, however, because
each fragment deals with one, isolated issue, allow-
ing multiple fragments to be composed in whatever
combination is needed in a specific application. Also,
the fragmentation can be encapsulated: a subject
composed from many fragments, such as a more
complete view of people including many common
properties, can be used as a unit without regard for
its substructure.

The homeowner subject deals with the issue of home
ownership. It includes at least two types and asso-
ciated classes: Homeowner and Home. The Home-
owner class is not specific in any way to people; it
defines just the state and contains just the code
needed to represent home ownership and the var-
ious operations associated with it, such as paying
property taxes and selling the home. The relation-
ship to the actual home owned is an important prop-
erty of a homeowner, so this subject must also model
homes. Once again, however, it only includes basic
details of homes needed in this context, such as lo-
cation, appraised value, and purchase price. Other
views of homes, defined in other subjects, might con-
tain architectural plans and other details, history of
ownership, and related ghost stories. (This last is in-
cluded to make a point that is a primary motivation
behind subject-oriented programming: it is never
possible to predict all future extensions that some-
one will want to make to a system. Thus, a designer
who builds a comprehensive model of a home, in-
tended for use by all applications that have to do with
homes, is bound to find that someone, some day, will
need state or functions associated with homes that
she or he never imagined. Subject-oriented program-
ming allows these to be defined in separate subjects
by the developer who needs them, and composed
with the original definition. Obviously, dynamic mul-
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tiple subtyping hierarchies described earlier solve this
problem at the specification level.)

An application in which all people are homeowners
and all homeowners are people would use a com-
position of the person and homeowner subjects with
a composition expression stating that classes person

Dynamic composition is
analogous to schema evolution
in object-oriented databases.

and homeowner correspond. This would have the
effect that whenever code in the person subject
created a person, or code in the homeowner subject
created a homeowner, the object actually created
by the run-time system would be a synthesis of the
two. This correspondence would automatically be in-
herited by all appropriate subclasses as well. Thus,
for example, if Doctor is a subclass of Person, any
doctor object created would also have homeowner
functionality.

In the more realistic application mentioned earlier,
specific people and other objects can become and
cease to be homeowners. In this case a person object
is, on creation, just a person object as described in
the person subject. When that person becomes a
homeowner, the person object must become an in-
stance of a new class defining the synthesis of Per-
son and Homeowner. That class might have been de-
fined statically during the composition that gave rise
to the application, or might be produced on demand
by dynamic composition. It is interesting to note that
dynamic composition is analogous to schema evo-
lution in object-oriented databases: both involve type
enhancement in the presence of existing instances,
and thus have many of the same conceptual and im-
plementation issues.

Another way of looking at specific instances acquir-
ing new behavior dynamically is as per-instance sub-
ject “activation.” Asin the simplified case mentioned
first, the application’s composition expression spec-
ifies composition of the person and homeowner sub-
jects, with correspondence between the Person and
Homeowner classes. However, it also indicates that
the homeowner subject is not automatically activated
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for person objects. When a person object is created,
therefore, it is just as described in the person sub-
ject, but it has the potential to become a homeowner.
This potential is realized by explicitly activating the
homeowner subject for a particular person object, and
perhaps deactivating it later.

Design patterns and subjects. Many design patterns
are concerned with issues other than flexibility, such
as “singleton,” “fly-weight,” and “interpreter.” These
have no direct relationship to dynamic supertypes
or subjects. Those that deal with flexibility of imple-
mentation are essentially complementary to our ap-
proach, and can be used to advantage in conjunc-
tion with it. However, in many cases similar flexibility
can be accomplished directly with subject compo-
sition. For example, the “strategy” pattern encap-
sulates an algorithm applying to a “context” object
within a separate strategy object that is attached to
the context object. A subject-oriented approach
might be to encapsulate it within a separate subject
that adds the needed methods and state to the con-
text object itself. Just as strategy objects can be
switched dynamically, subjects can be recomposed
dynamically. The primary difference between these
approaches is that the subject approach allows the
interface that the context object presents to the strat-
egy object to be different from the interface it pre-
sents to its clients.

Subject-oriented programming supports unantici-
pated extension, with composition allowing classes
to be extended without modification or recompila-
tion of the original program. The composition tech-
nology essentially makes every object creation and
every operation call a potential open point. Subjects
also support interface extension by composition,
without requiring callers to deal with unknown col-
lections of wrapper objects, and without split-iden-
tity problems.

Flexibility of implementation toward future system
extensions is naturally handled using subjects because
they offer implementation support for viewpoints.
Not only is it natural to address, for example, the
billing algorithms for life insurance and automobile
insurance from different viewpoints, these other
viewpoints can also contain nonbilling aspects of life
and automobile insurance. In this way analysis-level
conceptual modularity is preserved and visible in sys-
tem design and implementation.

In summary, many of the design patterns presented
in Gamma, et al.” are complementary to subjects,
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Table 1 Summary

Areas Compared Muiltiple Inheritance Dynamic Supertyping Subjects
Life-cycle phase Late Early Currently late
Complexity of use Complex Simple Simple
Defined semantics Loose Yes Can be done/in progress
Consistency throughout life cycle Not applicable YES

as is the general idea of design patterns. However,
many patterns attempt to provide important kinds
of flexibility under the stringent constraint that no
special language-level support can be added; as a re-
sult, they are limited in their success. Subjects do re-
quire significant language-level support, allowing
them to support these kinds of flexibility, and espe-
cially unanticipated flexibility, more effectively and
directly. It is a research issue to reformulate design
patterns in subject terms.

Of equal importance, however, subjects allow and
encourage a natural system modularity along the
lines of business viewpoints, which is not achievable
without language-level support.

Research issues

The existence of rigorous and complete business
specifications, built upon analysis constructs such as
ours, remains of sufficient novelty in its own right
that general strategies for exploiting them as part of
a rigorous transition to design are a subject for re-
search (sce Redberg® for an early example, and
Hoare? for an excellent framework). It is natural,
therefore, to build a detailed understanding of the
roles of constructs and technologies such as, respec-
tively, dynamic supertyping and subject composition,
as part of this broader effort. At the time of writing,
we are actively engaged in exploring these broader
issues in consulting engagements with customers.

At the time of writing, support for subject-orienta-
tion in C+ + is being built, with an expectation that
it will be available for use in real software develop-
ment within a matter of months. Prototype-level sup-
port for subjects in Smalltalk is also being developed.
Nonetheless, many interesting issues in providing
complete, high-quality support remain as research
issues. Most notable among these is the implemen-
tation of dynamic composition.

Dynamic and multiple types, on the one hand, and
subjects, on the other, appear to provide a suitable
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structure, allowing different views or features to be
described separately at every level of information
management. This two-dimensional structure can be
viewed horizontally (all descriptions at a particular
level) or vertically (all descriptions of the same fea-
ture, from highest-level specification to code) with
equal convenience. Details of the contents of “spec-
ification subjects,” of their composition semantics,
and of the relationship between composition of spec-
ification subjects and composition of corresponding
implementation subjects, are interesting and chal-
lenging areas for future research.

Formal, or at least rigorous, specifications of the se-
mantics of viewpoint composition (including over-
riding and feature interaction) would be of consid-
crable value. This includes a proper vocabulary and
structuring techniques for amalgamation of these
partial, viewpoint specifications. *'®

Design patterns that exploit language-level support
offered by subjects is another area for research. Here
we foresee an immediate simplification in many ex-
isting patterns. A search for patterns in the defini-
tion of subject interfaces, for placement of interfaces
and implementations in separate subjects, and the
definition of generic, reusable subjects in general
should also be of considerable value.

A natural, yet precise, way to define and
develop systems

We have proposed a combination of dynamic super-
types at the specification level and subjects at the
implementation level. Both address the problems of
viewpoints and dynamic type changes, and they cor-
respond very well to each other. Subjects provide a
natural means of implementing multiple and dy-
namic typing—specification constructs that some
contended could not be implemented by most im-
plementation mechanisms. These approaches thus
provide a natural way of understanding, specifying,
and developing important fragments of systems.
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Other researchers have also examined formalization

of dynamic typing,

221 and we can benefit from their

work as we refine ours. We are not aware, however,
of other work that deals with multiple and dynamic
typing in the context of the full life cycle with any
degree of formality. We also plan to explore the use
of subjects directly for specification as well as im-
plementation. Table 1 is our summary.
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