Books

Doing IT Right: Technology, Business, and Risk of
Computing, Harold Lorin, Manning Publications Co.,
Greenwich, CT, 1996. 402 pp. (ISBN 1-884777-09-0).

Doing IT Right is a timely book that takes a dead aim
at what Hal Lorin calls the “empty center between
management and technologists” in IT (information
technology) shops. This center is currently danger-
ously empty at a time when most organizations are
floundering in “architectural vacuums.” The com-
puter industry is in desperate need of IT practition-
ers with skills to effectively create, manage, and de-
ploy information systems that take advantage of the
new distributed technology. The development lab-
oratories need the IT catchers, and vice versa. So if
you’re an IT professional with some time on your
hands, this is one key book that you’ll want to read.

The book starts by describing the chaos most of us
face when we attempt to make distributed systems
work at the intergalactic level: How do we make the
disparate pieces work together? Where do we start?
Is there a reliable foundation we can build on? These
are some of the tough questions we constantly face
in our working lives. Of course, the answers only get
tougher with every new wave of technology that gets
thrown at us. Just when we think we know how to
build systems with clients and database servers, we
get hit with three-tiered architectures, TP (transac-
tion processing) monitors, the Internet, and now dis-
tributed objects. There seems to be no end in sight
for the weary IT professional.

If chaos gives you ulcers, then you’ll find Hal Lor-
in’s book to be a gentle antidote. It will guide you
through technology labyrinths and uncharted terrain.
From the very start, you’ll get the feeling that you’re
in the hands of a guide who is intimately familiar
with the terrain and has been there before. The book
even guides you through the Wittgensteinian prob-
lem of “knowing what you do not know.” It covers
a broad range of useful topics—including operating
system choices, communication protocols, client/
server computing, distributed system standards, proj-

IBM SYSTEMS JOURNAL, VOL. 35, NO 1, 1996

0018-8670/96/$5.00 © 1996 1BM

ect planning, tool selection, and how to calculate the
real costs of system ownership.

This book covers more ground than most, which
should not come as a surprise if you are familiar with
its author, Hal Lorin. Hal—for those of you who do
not know him—is one of the early distributed sys-
tems visionaries. In the early 1970s, Hal Lorin and
his colleague James Martin declared that they had
seen the future of computing, and it was fully dis-
tributed. At that time, they were both affiliated with
the Systems Research Institute (SRI)—an IBM think
tank—where they wrote, lectured, and experimented
with distributed computing.

In the very early 1980s, I had the good fortune to
attend a ten-week SRI seminar taught by Hal Lorin
and others. It was an intense and uplifting experi-
ence. It gave me a chance to reevaluate what I was
doing and where I was going. At the time, the vision
of a PC-centric client/server world was almost her-
esy—PCs were just toys, nobody would dream of us-
ing them to create mission-critical systems. I did, and
was instantly branded a heretic. During my heretic
years, Hal’s books, lecture notes, and occasional
Stanford classes became the beacons I used to nav-
igate the uncharted waters of developing client/server
systems. I survived and was able to coauthor a few
books of my own on the subject.

So what do SR1 and Hal’s course have to do with this
book? SRI is no longer in existence, and you prob-
ably don’t have ten weeks to spare. So the next best
thing to a live SRI course is to read Hal’s new book.
It gave me a jolt similar to the ones I got from the
SRI classes. Hal comes to life in his books, just as he
does in his lectures. You won’t get bored. The book
is filled with vintage Hal insights and jokes; it seems
Hal only gets better with time.

So the good news is that your guide to Doing IT Right
is one of the real bona fide visionaries of the dis-

©Copyright 1996 by International Business Machines Corpo-
ration.

BoOKs 113

tributed computing field. During these chaotic times
we need all the 20/20 vision we can get. Even ex-
heretics, like myself, are amazed at how fast
client/server technology grew. It has become the new
computing paradigm. In a few short years, we have
gone from being heretics to becoming mature mem-
bers of the computing establishment. Sadly, we will
repeat the mistakes of history if we don’t learn from
them. Again, this is an area where Hal’s new book
comes in handy. He does very well when it comes
to crossing the great generational divide. Hal under-
stands the old and the new paradigms of computing
and can skillfully translate between them.

So what’s missing from this book? Unfortunately, it
does not fully cover some important areas that could
benefit from Hal’s insights—including distributed ob-
jects, components, data warehousing, TP monitors,
groupware, and systems management. Perhaps Hal
left some of this material for Doing IT Right, Part 2.
You can vote for a sequel by buying this book.

This book lives up to its title. It teaches us some-
thing about doing IT right. The book contains 14
semi-autonomous chapters. Read the areas that in-
terest you first, then come back for more. It is best
to absorb Hal’s work in small increments, with time
between to ponder his insights.

Robert M. Orfali

Object Technology Support and
Consulting

IBM San Jose

California

The Essential Distributed Objects Survival Guide,
Robert Orfali, Dan Harkey, and Jeri Edwards, John
Wiley & Sons, Inc., New York, 1996. 604 pp. (ISBN
(0-471-12993-3).

There is nothing more pleasing than reading a book
by informed and engaged authors who have a point
of view, can distinguish between facts and their own
vision, and warn you when they have gotten on the
soap box.

This is a genial, intelligent, complete book with an
attitude. The successor to the Client/Server Survival
Guide by the same authors, this book establishes ob-
jects as a key tool for client/server technology and
discusses the emerging technologies and issues. It is
essentially an extraordinarily complete and inform-
ing survey of the world of object and component

114 BoOKs

models—SOM/DSOM vs COM, and OLE** vs CORBA™*
(or, System Object Model/Distributed SOM vs Com-
ponent Object Model**, and Object Linking and
Embedding vs Common Object Request Broker Ar-
chitecture). However, the authors do not fear ex-
pressing informed viewpoints to the extent that they
are helpful. There is a fast path through the mate-
rial for managers and other casual readers, but the
entire book is necessary for anyone who wishes to
be considered an intelligent professional in this time.

There is general consensus in the industry that the
next generation of systems will extend the client/
server architecture into three-tier client/server sys-
tems with increased server-to-server interaction and
interdependence. There is difference of opinion
about the role of each tier—the nature of the end
point appliance, whether the second tier is “shared
business objects” or “the data warehouse,” and if that
matters. There is also general consensus in the in-
dustry that distance will disappear as a differentiating
force in computer culture, that the Ethernet world and
the Internet world will merge into each other.

This book takes up these issues from a distributed
object point of view. It builds on the theme of “in-
tergalactic” client/server, but introduces a particu-
lar vision of the generation to come. It is an object
vision in which object-oriented (00) concepts exist
deeply in the structure of systems, and object-to-ob-
ject interaction is the basis of distributed comput-
ing. Computer models based on structured query lan-
guage are dismissed and the prediction is made that
TP monitors (transaction processing monitors) will
become Object Request Broker (ORB) -based. Cur-
rent groupware middleware, the authors claim, is too
proprietary and unscalable to survive the needs of
Internet intergalactic computing.

Part 1 of the book proposes and develops this view
that the underlying paradigm that will define client/
server in the future is the distributed object. Distrib-
uted objects offer plug and play components, inter-
operability, portability, coexistence with legacy
applications, and self-managing mobile entities. The
next (third) wave of computing, following client/
server systems based on database managers (second
wave), which followed those based on file systems
(first wave), will be based on distributed objects.

In support of this argument the authors offer an el-
egant tutorial on object concepts and how they ma-
ture into concepts of components and plug and play.
The need for components derives from the increas-

IBM SYSTEMS JOURNAL, VOL. 35, NO 1, 1996

ing complexity of software and the increasing costs
of moving programs from one version to another.
Components are defined as marketable entities that
can be used in unpredictable ways with other com-
ponents from different sources. They are extended
objects with the features of shrink-wrapped software.
The authors provide some attributes that compo-
nents must have to be usable and trustworthy. At the
end of the trail of development are “business objects”
that enable enterprises to model the behavior of their
processes with objects.

Part 2 of the book is a nearly 200-page discussion
of CORBA. CORBA is presented as the most impor-
tant and ambitious middleware project of the indus-
try. Its importance lies in the fact that it defines
middleware that offers both a unifying metaphor for
older applications and a foundation for future de-
velopment. It is, in effect, a sort of software bus that
allows components to discover each other and in-
teract.

The discussion of CORBA includes the Interface Def-
inition Language that defines a component’s inter-
faces with potential clients and permits objects of
various languages to interact with ORB. ORB Object
Services are described in the context of the Object
Management Group (OMG) architecture. The tech-
nical discussion flows freely and easily, and is as read-
able as anyone could want. It is amusingly iltustrated
throughout and the text is highlighted by discussions
that focus on any doubts you may have about what
the authors are saying. Difficulties, disappointments,
and delays (these authors are in the middle of the
game) are acknowledged, but the convincing argu-
ment for the paradigm is sustained. DCE**RPC (Dis-
tributed Computing Environment remote procedure
call) and CORBA 11 are faced head-on, and the con-
cerns about the role of DCE are discussed frankly.

The most amazing thing about this almost 200-page
treatment is that it “goes down like warm muffins.”
The narrative style is friendly, informative, and yet
complete. It handles necessary complexity as well as
any narrative can. At the end of it, the reader feels
a comfortable understanding of CORBA and a sense
that additional details will come easily into the ro-
bust framework the authors have built.

Part 3 brings us into the broad sunlit uplands of bus-
iness objects and components. The notion of frame-
works within collections of objects that interact and
cooperate is presented in appropriate detail. The
chapters introduce and comment on various de facto

IBM SYSTEMS JOURNAL, VOL. 35, NO 1, 1996

standards for business objects and frameworks:
OpenDoc**, OLE, Taligent, OpenStep, and Newi**.
Frameworks are compared to alternative concepts
of program construction-0O0 class libraries and pro-
cedural APIs and are found to be particularly useful,
because they provide the control flow of an appli-
cation, minimize how much code has to be written,
and reduce maintenance costs dramatically.

A chapter is given to an elegant definition and de-
scription of business objects. A splendid discussion
of the role of objects in systems management is pro-
vided with particular attention to the Tivoli Man-
agement Environment™* (TME). TME is the de facto
standard for CORBA ORBs. Another chapter discusses
the compound document concept, setting the stage
for a description of OpenDoc and other frameworks.
Microsoft’s OLE is described and its challenge to OMG
and CORBA is frankly assessed. Parts 4 and 5 discuss
OpenDoc and OLE in considerably greater detail and
continue to compare, contrast, and evaluate.

The book ends by returning to its promise that ob-
jects are the root technology of the future of client/
server. It discusses COM/OLE and CORBA/OpenDoc
interoperability; the nature of linking gateways; and
concludes with a discussion of the practicalities of
working with component suites.

These authors are clearly presenting a point of view
based on two premises—that objects will become the
underlying building block of software and that the
CORBA version of the object world will become the
dominant object culture. The first premise is likely
right. Despite the disappointments already experi-
enced and the unbearable hype already heard, it is
likely that objects represent a software organizing
principle that offers the encapsulation, predictabil-
ity, and modularity we have been aiming for since
the beginning of software. The second premise is less
sure in a world where Microsoft is Microsoft and
many competitors seem to lack the will to resist con-
forming to Microsoft standards.

Regardless of how the market works out, those who
want to be in it will profit enormously from this book.

Harold Lorin

The Manticore Consultancy and
Senior Adjunct Professor,
Hofstra University

New York

*Trademark or registered trademark of International Business
Machines Corporation.

Books 115

**Trademark or registered trademark of Microsoft Corp., Ob-
ject Management Group, Open Software Foundation, Inc., Ap-
ple Computer, Inc., Integrated Objects, or Tivoli Systems Inc.

Secrets of Software Quality: 40 Innovations from
IBM, Craig Kaplan, Ralph Clark, and Victor Tang,
McGraw-Hill, Inc., New York, 1995. 383 pp. (ISBN
0-07-911795-3).

Secrets of Software Quality describes 40 innovations
that helped one of 1BM’s software development lab-
oratories, IBM Santa Teresa, achieve unprecedented
improvement in the quality of its software products.
The innovations described were either invented at
IBM Santa Teresa (e.g., the excellence council, the
center for software excellence, the council system,
high-risk module analysis, online reviews and asso-
ciated support tools, computer-supported team work
spaces), or developed and pioneered by other IBM
divisions and subsequently adapted by IBM Santa
Teresa (e.g., the defect prevention process, clean-
room methodology, design review and code inspec-
tions), or were industry “best practices” (e.g., pro-
cess benchmarking, rapid prototyping, object-
oriented design and programming, statistical
approaches—use measurement and analysis to
guide improvement effort). According to the au-
thors, these improvement approaches were called
“innovations” because “they were new ideas to us
when we implemented them.”

Secrets of Software Quality is heavily oriented toward
the Malcolm Baldrige National Quality Award as-
sessment approach. The authors took a balanced ap-
proach that integrates leadership, process, and tech-
nology (the “iron triangle”) as key ingredients of
successful software quality management. Further-
more, based on ranges of Baldrige scores and the
experiences of the Santa Teresa lab, the authors de-
rived four stages of quality maturity in an organi-
zation: awareness, coping, management, and inte-
gration. A nice framework was then formed by
examining the activities and progress of the iron tri-
angle elements within each stage of quality matu-
rity. The 40 innovations and the book chapters are
organized in accordance with this framework. The
last chapter provides advice that organizations can
use to identify a set of activities for their quality im-
provement program. The appendix and the accom-
panying compact disk offer quick and easy ways to
perform a Baldrige-style assessment. Thus, this book

116 Books

will be very useful for companies that intend to pur-
sue the Baldrige award or to use the Baldrige assess-
ment approach for quality improvement.

The authors adopted a good format for describing
each innovation. The objective and the description
of the approach are first given, followed by a discus-
sion of costs, benefits, and risks; a section on imple-
mentation advice is also provided. Often, opinions
of pros and cons and implementation pitfalls are pre-
sented, allowing the reader to reach his or her own
judgment with regard to the effectiveness of the ap-
proach.

Of the three ingredients of the iron triangle, lead-
ership innovations come through as the strongest
items. Indeed the strong leadership, commitment,
perseverance, and persistence of the general man-
ager for quality improvement are mentioned numer-
ous times throughout the book. Many leadership in-
novations described in the book are those executed
by upper management. Among several remarkable
approaches is the establishment of the Center for
Software Excellence, an implementation of the con-
cept of a software “experience factory” by Victor
Basili.

The coverage and discussions on process and
technology/tools items are generally good. However,
after reading through the book, I did not get the im-
pression of a systematic treatment of the software
development process, especially from a software en-
gineering perspective. One of the reasons may be
the organizational approach of the book (innovation-
oriented, grouped by stage of quality maturity, and
rightly s0), as opposed to a systematic evaluation of
the software development process and its improve-
ment.

For example, how does object-oriented design and
programming differ from (or resemble) procedural
programming in terms of development process and
project management? Aren’t rigorous design re-
views, code inspections, and early test involvement
the basic elements of the waterfall development pro-
cess? Doesn’t M. E. Fagan’s five-step inspection
method—which has been around for two decades—
cover all stages from overview to follow-up? Aren’t
these activities actually “back to the basics” of pro-
fessional software development? And how about the
recent innovations on design reviews and code in-
spections that appeared in the software engineering
literature after Fagan’s masterpiece?

IBM SYSTEMS JOURNAL, VOL. 35, NO 1, 1996

Nonetheless, when I overcame the expectations as-
sociated with “innovation” with regard to the soft-
ware development process (apparently the authors
use the term loosely) and took the chapters as expe-
rience reports about the Santa Teresa team, I truly
appreciated the value of the information and discus-
sions.

Perhaps the weak link in the book is that the authors
did not quantify the effect of the innovations in con-
crete, measurable terms. Nor is much specific infor-
mation given on product or project outcomes (for
example, quality level, productivity, cycle time, ex-
tent of improvement, etc.) after implementing, for
example, such and such, of these innovations. The
Baldrige assessment focuses on approach, deploy-
ment, and results. The “results” are notably missing
in most, if not all of the innovations. In chapter one,
impressive results of the Santa Teresa lab in terms
of several quality, productivity, and customer satis-
faction indicators are presented. However, how and
to what extent these 40 innovations contribute to
these lab-wide results is a major missing link. Are
there other significant variables latent in the equa-
tion? Or perhaps, as the authors stated in the pref-
ace, “these 40 innovations represent a small fraction
of the Santa Teresa team’s effort.” But then can one
rely on these innovations and hope to achieve sig-
nificant quality improvement like that achieved by
Santa Teresa?

Overall, Secrets of Software Quality is a welcome ad-
dition to modern-day software quality management
literature. Its attempt to cover leadership, process,
and technology, and to bridge total quality manage-
ment (TQM) as a management philosophy and ac-
tual implementation experiences of the software de-
velopment process is to be commended. It provides
valuable advice for upper management and for com-
panies that intend to pursue quality improvement
based on the Baldrige approach. Its discussion of im-
plementation experiences of the software develop-
ment process also lends useful references and les-
sons to software development managers, project
leaders, and quality professionals.

Stephen H. Kan
Development Quality and

Process Technology
IBM Rochester
Minnesota

Note—The books reviewed are those the Editor thinks might be
of interest to our readers. The reviews express the opinions of
the reviewers.

IBM SYSTEMS JOURNAL, VOL. 35, NO 1, 1996

Books 117

