544 Books

Books

Design Patterns: Elements of Reusable Object-Ori-
ented Software, Erich Gamma, Richard Helm,
Ralph Johnson, and John Vlissides, Addison-Wes-
ley Publishing Co., Reading, MA, 1995. 395 pp.
(ISBN 0-201-63361-2).

Abest-seller about designing objects? You bet! It’s
not Judith Krantz, but this book is going like hot-
cakes. Should you get this book, too? Yes. If you
only read one programming book in the next five
years, this is the one. It will change the way you
program and the way you think about program-
ming.

What are patterns? Patterns depend on the obser-
vation that software engineers apply the same so-
lutions over and over. After a few years of pro-
fessional development, we all put together a bag
of tricks, which we apply to new situations. Far
from being narrow-minded, it turns out that we all
carry around some subset of the same bag. Each
pattern records one of these “tricks.”

The Design Patterns book (familiarly called the
GOF book, for “Gang of Four™) focuses on patterns
that help design objects at a sort of middle scale.
The decisions aided by these patterns will help you
decide how to divide responsibility between two
or three objects at a time.

Did I say “objects”? What if you don’t “do ob-
jects”? Does this book have anything to say to you?
You bet. The underlying assumption of patterns—
that as software engineers we rarely create wholly
new software structures, that focusing on the things
we do over and over will make us more produc-
tive—is just as true whether we express ourselves
with data flow diagrams, coBoL, C, C++, or
Smalltalk. You use patterns, whether you choose
to articulate them or not. The examples in this book
will help you express yourself, regardless of your
medium of expression.

0018-8670/95/$3.00 © 1985 1BM

Which plays into the real value behind patterns:
communication. Programming languages and en-
vironments have gotten good enough that commu-
nicating with the computer is no longer the bot-
tleneck in development. Communication between
developers, between developers and users, and be-
tween developers and managers has become the
new bottleneck.

Patterns assist communication by raising the level
of discussions. The names of the patterns become
part of the spoken vocabulary of developers. By
choosing to solve common problems the same way,
developers are able to help each other more eas-
ily—in design, implementation, review, or main-
tenance. Instead of having long arguments about
how to solve a problem, once a pattern has been
identified, the solution is straightforward.

Sowhat about the book? Design Patterns presents
23 patterns common to designers working with ob-
jects. One of the things I like best about the pat-
terns the authors chose is that each one had to be
observed in two independent pieces of software.
These are the tricks that everybody uses, or atleast
everybody should use.

Where could Design Patterns be improved?

Many of the patterns betray a bias toward C++.
I think this mostly reflects the authors” experience.
At the same time, some patterns would have been
clearer without it. For example, Composite (my
pick for number-one cool pattern) explains that
if an Account contains a collection of Trans-
actions, an Account should respond to the same
messages as its Transactions. The pattern is writ-
ten in terms of inheritance (Account and Transac-
tion have a common superclass), which is how you
implement itin C+ +. A language that doesn’t con-

©Copyright 1995 by International Business Machines Corpo-
ration.

IBM SYSTEMS JOURNAL, VOL 34, NO 3, 1995

fuse subclassing and subtyping does not need the
superclass.

The back inside cover has the most interesting bit
of information in the book. It shows how all the
patterns relate to each other. While fascinating in
the glimpse it gives into the authors as designers,
it was pretty clearly added late in the game. Pat-
terns should work together more closely to solve
big problems. Which of these patterns deserves
early consideration? Which are mutually exclusive,
or at least alternatives for solving a problem?
Which are more common? These are questions that
the reader is left to answer with experience.

Related to this is the problem of audience. I get
the feeling that the authors wrote this book to help
their own practice of design as much as to com-
municate with others. If you are a smart designer,
you will get a tremendous amount out of this book.
If you are a beginning designer, you will have to
work at it. Some patterns raise more issues than
they resolve. I like patterns that take a firmer stand,
giving more readers concrete guidance at the risk
of being less inclusive.

I’ve taught patterns to lots of folks, and here’s the
one absolute invariant: if you don’t know the prob-
lem, you can’t understand the solution. Each pat-
tern helps you solve some common, repeating
problem in software engineering. When I try to
teach students a pattern, if they are already solv-
ing the problem as the pattern suggests then learn-
ing comes easy. If they have experienced the prob-
lem the pattern is solving, learning is possible. If
they have never seen (or noticed) the problem, then
the pattern is useless, impossible to learn. So, the
only way to learn the patterns is to tie them back
to your experience.

If you work alone, I suggest that you skim this book
so you sort of know what all is there. Then read
one pattern in detail that seems particularly appli-
cable. Go back to your code and see where the pat-
tern exists, or where it should exist that it doesn’t.
Change your code so that it conforms to the letter
of the pattern (naming conventions, etc.). Keep this
up, one pattern every few days, until there aren’t
any more patterns that seem to apply to your work.
Six months later skim the book again and see if
your “design vocabulary” is ready to expand.

If you work in a group, do the same thing, but co-
ordinate with your colleagues. I’ve heard from lots

IBM SYSTEMS JOURNAL, VOL 34, NO 3, 1995

of organizations that have a Monday morning pat-
tern reading group. They all discuss how last
week’s pattern changed their programming, then
talk about the new pattern they’ve read in prep-
aration for this week.

Where should you start? Composite will be a real
eye-opener but it’s easy to misuse. I suggest State,
the pattern that transforms repetitive case logic into
a message to one of several kinds of objects. You
will most likely have had the problem (it’s the
“right way”” to code in C). The solution will make
your code much cleaner, easier to read, easier to
maintain, easier to reuse.

Patterns are a hot topic, especially in the object
world. Here are some places you can go if you want
to get more involved:

* Wolfgang Pree has published a book about meta-
patterns, which is more helpful to pattern writ-
ers than to pattern readers.

* The Pattern Languages of Programs (yes, PLoP)
conference is held annually. Send e-mail to
plop95@parcplace.com for more information.

¢ Check out the patterns World Wide Web home
page (edited by GOF#2 Richard Helm) at URL
http://st-www.cs.uiuc.edu/users/patterns/pat-
terns.html.

* There are several active mailing lists for patterns.
Check the home page for subscription informa-
tion.

Kent Beck

First Class Software, Inc.
Boulder Creek

California

The Mythical Man-Month—Essays on Software En-
gineering, 20th Anniversary Edition, Frederick P.
Brooks, Jr., Addison-Wesley Publishing Co.,
Reading, MA, 1995. 336 pp. (ISBN 0-201-83595-5).

Has it really been 20 years since The Mythical
Man-Month appeared? It seems unlikely. The
ground it covers—that managing a large software
project is fundamentally different in nature from
managing a small one, that producing a product is
a different enterprise from producing a program,
that people issues dominate technical issues in
large projects—holds problems that vex us still.

Books 545H

And yet, has it only been 20 years? That seems un-
likely as well. Familiar ideas from this book—the
“second-system effect’ that projects get to be a
year late one day at a time, the surgical team, add-
ing people to a late project makes it later—have
always been a part of software engineering lore.
Haven’t they?

It has been 20 years, after all, and Fred Brooks
(Professor of Computer Science at the University
of North Carolina at Chapel Hill) has taken the oc-
casion to look back and look around in software
engineering. The Mythical Man-Month (20th An-
niversary Edition) is a reprise of the original, plus
new material, and reading it is like revisiting an old
friend. Brooks fairly warns us that he’s been do-
ing other things than mainstream software engi-
neering research in the intervening years. No mat-
ter: Most of us would rather depend on his
conjectures than most other people’s facts.

First, the particulars: The new book has 19 chap-
ters, 4 of which are new for this edition. Chapters
1-15 repeat the 1975 edition of the book, untouched
except for trivial changes. Chapter 16 is a reprint
of Brooks’s article “No Silver Bullet: Essence
and Accidents of Software Engineering,” which
Brooks wrote in 1986 and which was picked up and
popularized (complete with pictures of werewolves
and distressed maidens) by IEEE Computer mag-
azine in 1987. The paper argues that taming the
complexity involved in building software is inher-
ently a difficult intellectual task, and most in-vogue
technological approaches only address the nones-
sential aspects of the problem. Chapter 17 contin-
ues the theme of “No Silver Bullet,” in which
Brooks recounts and responds to the significant
discussion that the paper generated in the software
engineering literature. (Bottom line: “NSB” pre-
dicted no order-of-magnitude improvement from
a single technological innovation in ten years, eight
of which have expired. The bet appears safe, al-
though there are promising approaches.) Chapter
18 summarizes and distills, in note form, the prop-
ositions of the original book in order to, as Brooks
writes, ““invite arguments and facts to prove, dis-
prove, update, or refine those propositions.”” Chap-
ter 19, the newest of the new material, is an essay
that revisits, extends, and updates the key theses
of the original work.

Brooks’s prose is disarming, like a stroll across the
Chapel Hill campus. His North-Carolina-meets-
Harvard writing style, reminiscent of his lectures,

546 BoOKs

is relaxed and congenial, but not unscholarly or
gimmicky. He very well understands—intuitively,
one suspects—the craft of gentle, persuasive dis-
course. As a teacher, Brooks has always known
how to convey information that matters, and The
Mpythical Man-Month matters, a lot: You pay at-
tention, because you're going to need to know this;
this is all about what you do for a living.

The fact that the original edition is still in print, is
still selling copies, and still arouses enough inter-
est for a 20th anniversary edition attests to the time-
lessness of its material. This is because, Brooks
notes, it is primarily about people and not about
computers.

How do the first (original) 15 essays hold up after
20 years? Fairly well; some better than others. The
gems about people and organizations endure: why
programming is fun, and why it’s hard; why large
projects are qualitatively different from small ones;
why adding people to a late project makes it later;
the overarching importance of conceptual integ-
rity to the project as a whole, to its subteams, and
to the user; using effective team organization and
management discipline to achieve conceptual in-
tegrity. Many of the chapters read as fresh today
as ever, except for illustrative references to now-
antiquated machines, or toissues that have become
moot under current technological paradigms. For
example:

The most serious objection [to self-document-
ing code] is the increased size of the source code
that must be stored. As the discipline moves
more and more toward on-line storage of source
code, this has become a growing consideration.
1find myself being briefer in comments to an APL
program, which will live on a disk, than on a PL/I
one that I will store as cards. (P. 175.)

But, borrowing the “No Silver Bullet” theme,
these are accidental blemishes of time, easily up-
dated or removed, if anyone cared to. We might
have wished for an updated Mythical Man-Month;
what we got instead was an appended one. The risk
is that a new reader may be disenchanted, and may
miss the book’s essential wisdom as a result.

The essentials of most of the essays are still quite
sound. “The Tar-Pit” (about why what we do is
fun and hard), ‘“The Mythical Man-Month,” “The
Surgical Team” (about team structures for large
projects), “Aristocracy, Democracy, and System

IBM SYSTEMS JOURNAL, VOL 34, NO 3, 1995

Design” (about maintaining conceptual integrity),
“The Second-System Effect” (about the dangers
of over-designing), “Ten Pounds in a Five-Pound
Sack” (about conserving memory), “Sharp Tools,”
and “Hatching a Catastrophe” (about project
scheduling) all continue to resonate strongly.

Somewhat less resonant are the essays about doc-
umentation, especially parts that prescribe content.
Unit/integration/system test documentation, design
rationale, maintenance scenarios, process models,
and network management and protocol specifica-
tions all have blossomed in the intervening years.
And do we really want every team member to be
able to access any project document, as Brooks
recommends today? Do we really want coders to
know in advance the test cases to which their pro-
grams will be subjected?

Brooks corrects a few essential errors of the 1975
essays himself, in the final chapter.

“It is a very humbling experience,” Brooks wrote
in 1975, “to make a multimillion-dollar mistake,
butit is also very memorable.” It is also very mem-
orable to read a candid and instructive account of
such an experience, and Brooks’s honesty about
his own excursion into the tar-pit was one of the
best gifts of the 1975 edition. (“’A ship on the beach
is a lighthouse to the sea,” he writes, quoting a
Dutch proverb.)

For the 1995 edition, he has given us another can-
did self-assessment. In Chapter 7 (““Why Did the
Tower of Babel Fail?”’, about communication in
large programming projects), Brooks aired the idea
(then advocated by Harlan Mills and others) that
total disclosure between teams would illuminate
errors and inconsistencies early. He compared that
to David Parnas’s “radical” idea that keeping im-
plementations private would prevent inadvertent,
harmful dependencies on changeable details. He
came down firmly in the Mills camp (“How, then,
should teams communicate with each other? In as
many ways as possible . . . While [using precisely
and completely defined interface specifications] is
definitely sound design, dependence upon its per-
fect accomplishment is a recipe for disaster.”).

Today, he writes simply and candidly, “Parnas
is right, and I was wrong about information-
hiding . . . I am now convinced that information-
hiding, nowadays often embodied in object-ori-

IBM SYSTEMS JOURNAL, VOL 34, NO 3, 1995

ented programming, is the only way of raising the
level of software design.”™

The other essential thesis that Brooks undoes is
the acceptance of the waterfall model of develop-
ment that was implicit, but widespread, in the 1975
edition. The retrospective chapter argues elo-
quently and persuasively that new models are ap-
propriate in the age of shrink-wrapped software
running on millions of computers for which time
to market is the dominating driver.

But the retrospective chapter does more than look
back; it also looks around. Besides summarizing
the effects of the micro-computer revolution on our
development paradigms, Brooks argues more
forcefully than ever that “conceptual integrity is
central to product quality,” and reasserts that
“people are everything.”” And he leaves us with a
new aphorism or two, including “it is far better to
be explicit and wrong than to be vague” in cap-
turing user attributes and needs.

And, we hope, he has seeded new debates. If teams
are given free rein to pick their own tools (as he
recommends), where is the conceptual integrity for
the maintenance organization that will inherit the
conglomeration? How can we make sure an incre-
mental development approach such as Microsoft’s
build-every-night discipline (which he touts) does
not simply reward components that arrive first, at
the expense of imposing vnilateral interaction re-
quirements on their more complex siblings that can
least afford them?

But The Mythical Mar-Month remains a founda-
tion piece. Besides being one of the founding fa-
thers of software engineering, Brooks is a gifted
essayist, and we hope that in the future he will turn
his lighthouse beacon on the field a little more of-
ten.

Paul C. Clements

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania

Note—The books reviewed are those the Editor thinks might
be of interest to our readers. The reviews express the opinions
of the reviewers.

BOoOkS 547

