CPI-C: An API for
distributed applications

Distributed applications have fostered the
standardization of application programming
interfaces for the underlying communication
services. Three popular communication models—
remote procedure calls, messaging and queuing,
and conversations—support distributed
applications across different networking
protocols and physical media. Access to the
conversational services of Advanced Program-
to-Program Communication and Open Systems
Interconnection-Distributed Transaction
Processing is provided by the Common
Programming Interface for Communications
(CPI-C), a standard, easy-to-use interface for
communication programming. This paper
introduces the basic concepts of CPI-C,
describes the conversation services available

to programs, and presents examples of CPI-C
programming.

educing the cost of application development
ad become a major industry focus by the
1980s. Application programmers were clamoring
for standard, easy-to-use application programming
interfaces (APIs) as a means of improving their pro-
ductivity and the portability of their programs. Sys-
tem providers, seeing the cost of application de-
velopment as an inhibitor to their own profitability
and growth, realized that standard APIs would be
key to inducing independent software vendors
to write applications for their systems. Industry
groups were promoting standardization of APIs in
various environments.

Nowhere was the development of standard APIs
more critical than for communication program-

IBM SYSTEMS JOURNAL, VOL 34, NO 3, 1995

0018-8670/95/$3.00 © 1995 IBM

W. S. Arnette

A. D. Kshemkalyani
W. B. Riley

J. P. Sanders

P. J. Schwaller
J. C. Terrien

J. Q. Walker

by

ming, which must deal with the complexities of net-
works and heterogeneous platforms and systems.
In some environments, a de facto standard was in
place. In Transmission Control Protocol/Internet
Protocol (TCP/IP) networks, for example, the sock-
ets interface was a standard API for developing
distributed applications. Inlocal area networks, the
NetBIOS API was gaining acceptance. Within
Systems Network Architecture (SNA) networks,
Advanced Program-to-Program Communication
(APPC), or LU (logical unit) 6.2, provided support
for communication programs, and was widely im-
plemented across both IBM and non-IBM systems.
APPC!™ defined a rich set of application services
for peer-to-peer communication and transaction
processing. But it did not define a cross-product
API syntax for these services, and a number of
product-specific APIs had been developed. The
Common Programming Interface for Communica-
tions (CPI-C) was designed to provide a standard,
easy-to-use API for APPC, and is the topic of this

paper.

We begin by briefly discussing the initial objectives
for CPI-C and the changing environment that has

©Copyright 1995 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is
done without alteration and (2) the Journal reference and IBM
copyright notice are included on the first page. The title and
abstract, but no other portions, of this paper may be copied or
distributed royalty free without further permission by computer-
based and other information-service systems. Permission to re-
publish any other portion of this paper must be obtained from
the Editor.

ARNETTE ET AL. 501



Figure1 CPI-C implementations

IBM CPI-C IMPLEMENTATIONS

AIX SNA Server/6000
APPC Networking Services for Windows

CICS/ESA"

1BM 4680 Store System
1BMDOS/VSE

IBM/ESA*

MVS/ESA"

Networking. Sérvices/DOS

082" Cormmunications Manager '
osM00r

VMESA™

VM PWSCS

NON-{BM CPI-C PROVIDERS ﬂ

Apertus Technologies, Inc.
' Apple Computer, Inc.
Attachmate Corp.
-/, Beixton Bystems Inc.
1+ Cleb. Cominunications
-1 " Compeoft Interational Ine.
++ Data Conngotioh Limitad
- Diata Genaral Corp.
V. Hetam@emus Systems Limutad
Hewlett:Packard Co.” . .
Insession tng.
Microsoft corp
NetSoft :
Novell Corp., Ihc,
Bunlonnact,
Tangram Enterprise. SOlUﬂOﬂS\ lnc
Unisys'Coip. .
- Wafl Data tne.

*Trademam or registered trademark’ of

lntav‘nh’mnal Busmess Machines Corporation..

shaped its development. We then introduce the ba-
sic concepts of CPI-C and describe the conversa-
tion services available to CPI-C programs. Finally
we illustrate the use of CPI-C for distributed appli-
cations with CPI-C programming examples using
portable C code.

CPI-C evolution

This section traces the evolution of CPI-C and com-
pares the CPI-C model to other communication
models.

Initial objectives. Two major requirements affected
the initial design of CPI-C.* Ease of use meant hid-
ing as much as possible of the complexity of com-
munication programming. Standard access to APPC
services shaped the fundamental communication
model and services CPI-C provides. The “standard”
aspect of CPI-C depended on the acceptance of CPI-C

502 ARNETTE ET AL

among system providers and vendors throughout
the industry.

CPI-C included ease-of-use features from its initial
definition. Application programmers can use the
familiar subroutine call model of programming
languages with consistently defined language bind-
ings. Programmers can use a local alias for the part-
ner program and are shielded from network-spe-
cific values. A starter set of calls is defined for
simple half-duplex communication, and program-
mers can ignore functions not required for basic
use.

Just as the “sockets” application programming in-
terface to TCP/IP reflects the underlying support of
the Internet protocols, so does CPI-C reflect the un-
derlying services and protocol support of APPC:
CPI-C supports connection-oriented, peer-to-peer
communication that is also well-suited to client/
server applications. It allows flexible data exchange
and provides a full range of application-level func-
tions, such as program synchronization and error
notification. Equally important is support not re-
flected in the AP1but provided by the network: flow
control, reliable delivery of data, and outage
notification.

CPI-C has been implemented in 1BM and non-IBM
systems. Figure 1 shows a list of most CPI-C im-
plementations or providers that existed at the time
this paper was written.

Changing environment. The subsequent develop-
ment of CPI-C was influenced by advances in tech-
nology and industry trends in distributed process-
ing. Application requirements for full-duplex
communication, the growing importance of client/
server processing, the deployment of distributed
network services, and the approval of the Open
Systems Interconnection-Distributed Transaction
Processing (0sI TP) standard led to CPI-C exten-
sions. The process by which extensions to CPI-C
are defined was influenced by the increasing de-
mand for standardization of ApPis within industry
consortia and formal standards bodies.

The emerging importance of client/server process-
ingled to early CPI-C extensions to address the spe-
cial requirements of servers. The X/Open** con-
sortium added server support in its 1990 version
of CPI-C,° with extensions for name registration,
for accepting multiple incoming conversations, and
for nonblocking calls. In 1992, 1BM defined exten-

IBM SYSTEMS JOURNAL, VOL 34, NO 3, 1995




sions to assist a server to manage the work done
on behalf of multiple clients. Additional nonblock-
ing support was added in 1994.

The scope of industry groups now includes the
specification of complete programming environ-
ments with integrated suites of related services.
For example, the Open Software Foundation’s Dis-
tributed Computing Environment (OSF DCE) in-
cludes integrated support for communication, di-
rectory, security, and other services. Similarly, as
distributed network services such as directory or
security pervaded networks, their integration with
the communication services provided by CPI-Cwas
required. Support for a distributed directory and
a distributed security service was added to CPI-C
in 1994.

The 0sI TP standard,® completed in 1992, defines
a set of conversational services similar to those of
APPC, but had no API. In its latest version, CPI-C
was extended to provide access to the OSI TP ser-
vices.

Protocol independence has become an important
aspect of network applications. Network owners
want to be able to choose applications indepen-
dently of the protocols used within the underlying
network. CPI-C can run on either APPC or OSI TP,
and programs can be written independently of
which of these protocols is being used. Multipro-
tocol Transport Networking’ support allows CPI-C
programs supported by APPC to use connections
provided by either SNA or TCP/IP protocols, trans-
parently to the applications.

Initially developed by IBM in 1988, CPI-C became
part of the X/Open Common Applications Envi-
ronment in 1992.% In the formal standards arena,
CPI-C was adopted by the 0SI Implementers’ Work-
shop as an API for access to OSI TP services. More
recently, IBM created the CPI-C Implementers’
Workshop (Ciw), an open forum of CPI-C imple-
menters and users. The goals for CIw are to ex-
tend the CPI-C architecture and to promote its im-
plementation and use. The Ciw defined the most
recent version, CPI-C 2.0,° in 1994, and work con-
tinues within the CIW on further extensions. The
CIW maintains a liaison with X/Open, which has
published CPI-C 2.0 as a preliminary specification. *°

Comparison to other communication models

Within the framework of IBM’s Open Blueprint*, !
three communication models—remote procedure

IBM SYSTEMS JOURNAL, VOL 34, NO 3, 1995

calls, messaging and queuing, and conversa-
tions—support distributed applications. The Open
Blueprint is a guide to distributed computing by
providing customers with a structure to organize
products and applications in an open distributed
environment. These models present a range of al-
ternatives for communication.

To an application program, a remote procedure call

(RPC)* is like a local subroutine call. The program
issues the call, and the called program, which typ-

CPI-C supports connection-
oriented, peer-to-peer
communication suited to
client/server applications.

ically executes somewhere else in the network, is
invoked. RPC software transfers the input and out-
put parameters of the call between systems. Data
exchange follows a simple request/response model.
The program is shielded from the complexities of
network programming and is not able to react to
network problems.

The messaging and queuing (MQ)*® model is asyn-
chronous. Programs put messages on queues and
take messages off queues; communication with an-
other program is indirect through the queues. Data
exchange is flexible; a program can enqueue mul-
tiple messages at a time, as appropriate to the ap-
plication, and must correlate responses with re-
quests. A store-and-forward capability allows a
message to be held until the program is available.
The program is not aware of network outages and
does not use network-specific values, such as ad-
dresses, which are handled for the program by the
underlying queue management software.

A program using CPI-C establishes a logical con-
nection, or conversation, to communicate with a
partner program. Data exchange can be a simple
one-way message, or multiple messages sent and
received by both partners. The program can trans-
fer data efficiently over long-lived connections,
synchronize processing with the partner program,

ARNETTE ET AL. 503




notify the partner of errors, and react to diagnos-
tic information in the event of failures.

Each of the three communications models has its
advocates, and each will continue to play an im-
portant role in application development. RPC, with
its simple interface, will serve basic request/
response processes, especially where a client re-
quester knows its server will return a fixed re-
sponse, and cares little about detecting and react-
ing to network problems. Messaging and queuing
will appeal to those interested primarily in asyn-
chronous, time-independent processing. The CPI-C
conversational model will best serve a wide range
of distributed computing needs, running the gamut
from synchronous, time-critical applications to so-
phisticated database applications.

In the following sections, we expand on the CPI-C
conversational model and demonstrate, through
examples, its ease of use.

Basic CPI-C concepts and conversation
services

This section introduces the basic concepts of CPI-C
and the conversation services it provides. For the
complete specification of CPI-C, see Reference 9.
We use simple examples to illustrate how to use
CPI-C. Appendix A contains complete source code
for the example programs in the C programming
language, which today is available on almost all
systems.

Call interface. CPI-C provides a subroutine call in-
terface and defines language bindings for a num-
ber of programming languages, including C, CO-
BOL, FORTRAN, REXX, PL/I, RPG, and CSP (Cross
System Product). Except for minor differences in
call syntax, CPI-C has the same appearance across
these languages.

Conversations and their characteristics. Since CPI-C
is a conversational interface, every CPI-C applica-
tion consists of at least two programs, one program
on each computer where part of the application is
torun. Programmers have to design, code, and test
the peer programs in tandem. Programs issue calls
to CPI-C to establish a conversation, to exchange
data and perform other processing on that conver-
sation, and to terminate the conversation when it
is no longer needed. A program may have multi-
ple conversations and partners simultaneously.

504 ARNETTE ET AL

At the time a conversation is established, each pro-
gram receives a local conversation identifier for the
conversation. Each program uses its conversation
identifier on all subsequent calls on that conver-
sation.

CPI-C maintains a set of conversation characteris-
tics at each end of a conversation. Some conver-
sation characteristics contain destination informa-
tion that is the addressing and security information
necessary to establish a conversation. Other char-
acteristics specify a function level for the conver-
sation. An example is the sync_level characteristic
that specifies the level of synchronization support
(e.g., for a distributed database application) that
the programs can use on the conversation. Default
values, assigned when the conversation is estab-
lished, allow for the creation of simpler program
logic. A program may view (using Extract calls) and
modify (using Set calls) the values of conversation
characteristics.

A system administrator can store destination in-
formation regarding the partner program in local
side information to simplify establishing a conver-
sation. The program initiating the conversation
identifies the appropriate side information entry for
its conversation by a symbolic destination name
on the Initialize_Conversation call. CPI-C uses the side
information entry to assign initial values of the cor-
responding conversation characteristics.

CPI-C conversations have states that constrain pro-
gram actions. As the program issues calls to CPI-C,
the conversation makes transitions from one state
to another. For example, on a half-duplex conver-
sation, when the program in a send state has fin-
ished sending data, it can change to a receive state
by sending a permission-to-send indicator to the
partner. The state of the conversation is local; that
is, the states of the conversation as seen by the two
program partners may be different at a particular
instant. A program may determine the state
at its end of the conversation by issuing the
Extract_Conversation_State call.

System services. System services such as program
startup and termination processing, context man-
agement, directory access services, and security
services interact with CPI-C to support programs
and conversations. In addition, a resource recov-
ery component provides its own programming in-
terface and cooperates with CPI-C to coordinate
changes to distributed resources, such as data and

IBM SYSTEMS JOURNAL, VOL 34, NO 3, 1995




Figure 2 Programs using CPI-C to converse through a network

PROGRAM A PROGRAM B
CONVERSATION CONVERSATION
WITH WITH
PROGRAM C PROGRAM D
CPI FOR

NETWORK COMMUNICATIONS
bt Bl O i | Bttt 1
| CRM X |
| |
| |
i i
! LOGICAL CONNECTION LOGICAL CONNECTION !
| !
| !
i |
| i
! LOGICAL CONNECTION !
! !
| |
| I
! CAM Y CRMZ :
| FQPSRPREY QRS Ny S S SO -H-——-14

CPIFOR PRODUCT-SPECIFIC

COMMUNICATIONS INTERFACE

CONVERSATION CONVERSATION

WITH WITH

PROGRAM A PROGRAM B

PROGRAM C PROGRAM D

CAM = COMMUNICATION RESOURCE MANAGER
CPI = COMMON PROGRAMMING INTERFACE

files. These services generally provide usability fea-
tures for the CPI-C programmer. They will be dis-
cussed further in the section on advanced concepts
and services.

The underlying protocol support for CPI-C is pro-
vided by communication resource managers
(CRMs). CRMs establish logical connections between
themselves to support conversations between pro-
grams. LU 6.2 CRMs support CPI-C in an SNA net-
work;? OSI TP CRMs support CPI-C in an OSI net-
work.S Figure 2 shows a sample network with
programs using CRMs to support conversations.
Notice that Program B can communicate with Pro-

IBM SYSTEMS JOURNAL, VOL 34, NO 3, 1995

gram D even though Program D is not written to
the CPI-C interface.

Conversation characteristics, side information, and
system services are mechanisms that CPI-C uses to
hide complexity from programs. The basic conver-
sation services are described next.

The starter set. CPI-C defines a starter set of calls
that provide the basic functions needed to write
distributed applications. Table 1 shows the starter
set calls. Initialize Conversation, Allocate, and
Accept_Conversation are used to start the conver-
sation; Send_Data and Receive are used for data

ARNETTE ET AL. 505




Figure 3 The Hello, World example

CLIENT PROGRAM SERVER PROGRAM

INITIALIZE_CONVERSATION( )
ALLOGATE()
SEND_DATA("HELLO, WORLD")
DEALLOCATE() mssonmesmmesedp ACCEPT_CONVERSATION( }
CM_OK RECEIVE(BUFFER_PTR)
PRINT

Table 1 The CPI-C starter set; these six calls provide
enough function for many programs.

Call Pseudonym Call
Name

Initialize_Conversation cminit
Allocate cmalle
Accept_Conversation cmaccp
Send_Data cmsend

Receive cmrev
Deallocate cmdeal

transfer; and Deallocate is used to end the conver-
sation.

Each call has two names. One name is the actual
name of the call, and the other is its pseudonym.
For usability, CPI-C defines readable pseudonyms
for the CPI-C calls, variables, characteristics,
and values. Each CPI-C implementation provides
pseudonym files that provide the standard set of
pseudonyms. In Cfor example, the pseudonym file
is named CPIC.H.

Establishing a conversation. To begin exchanging
data, a pair of CPI-C programs must have an active
conversation between them. The program initiat-
ing a conversation issues the Initialize_Conversation
call specifying the symbolic destination name for
the partner program. CPI-C allocates resources for
the conversation, uses the symbolic destination
name to retrieve destination information from side
information, initializes the conversation character-
istics, and returns a conversation identifier to the
program. If the program wishes to change the des-
tination information or the initial conversation

506 ARNETTE ET AL

characteristic values set by CPI-C, it may do so by
issuing the appropriate Set calls before issuing the
Allocate call. (We discuss use of a distributed di-
rectory for destination information in a later sec-
tion.)

When the program issues the Allocate call, the lo-
cal CRM sends a conversation startup request to
the remote CRM carrying the name of the program
partner, security tokens (if any), and the function
level for the conversation. The remote system val-
idates the security information, allocates resources
for the conversation, and starts the partner pro-
gram, if it is not already in execution.

The partner program accepts the conversation by
issuing the Accept_Conversation call. CPI-C initial-
izes the conversation characteristics for the end
of the conversation for that partner program and
returns a conversation identifier. The program may
examine the conversation characteristics by issu-
ing the appropriate Extract calls, and the programs
can begin to exchange data.

Transferring data. CPI-C conversations can range
from simple one-way messages to an extended ex-
change of multiple messages sent by both partners.
The Send_Data and Receive calls are used to trans-
fer data. By default, the local system accumulates
data to be sent until it has a sufficient amount for
transmission. The effect of this buffering technique
is excellent network performance. The following
example application demonstrates this feature.

A program issues the Send_Data call to send one
data record to the remote program. On a half-du-
plex conversation, one program at a time has send
control, which is the right to send data. Only that
program may issue the Send_Data call. On a full-
duplex conversation, both programs can send and
receive data concurrently.

A program issues the Receive call to get informa-
tion from its partner. The information received can
be data, control information, conversation status,
or other information. For example, a Receive call
could return both data and send control to the pro-
gram. The program can specify the amount of data
to be received and the variable in which to receive
it, and is notified of the actual length of data re-
ceived. Further information about the conversa-
tion can be obtained by ¢xamining the values of
the other parameters returned. See Table 2 for fur-
ther details.

IBM SYSTEMS JOURNAL, VOL 34, NO 3, 1995




Table 2 Some important parameters on CPI-C calis.

conversation_ID

calls related to that conversation.

control_information_received

data_received and status_received

data (a record) was received.

is to be deallocated.

return_code

Complex programs can have many concurrent conversations. When a program successfully issues an
Initialize_Conversation or Accept_Conversation call, CPI-C returns a unique identifier for the new conversation,
called a conversation_|D. The program then supplies that conversation_ID as an input parameter on all subsequent

The control_information_received parameter returns control information to the program. It can indicate that the
remote program wants send control (on a half-duplex conversation), that expedited data are available to be received, or
that the partner program has accepted or rejected a request for a conversation.

data_received and status_received are return parameters on the Receive call.
The data_received parameter indicates whether data were actually received, and if so, whether a complete chunk of

The status_received parameter helps guide the program regarding what to execute next. It may indicate that the

program now has send control, or that the partner has issued a synchronization request, and whether the conversation

For every CPI-C call, CPI-C replies with a return code that indicates what happened. The return code denoting
successful completion is CM_OK. Other return codes indicate specific errors.

Ending a conversation. Many housekeeping steps
are similar among communicating CPI-C programs.
One side issues Initialize_Conversation and Allocate
calls; the other side issues Accept_Conversation.
Similarly, some things are always done at the end
of a CPI-C program.

To end a conversation, a program uses the
Deallocate call. On a half-duplex conversation, the
Deallocate call operates quickly. CPI-Creturns to the
issuing program, without waiting for the partner
to acknowledge that it is ready to end the conver-
sation. Only one side needs to issue a Deallocate
call, which ends the conversation for both sides.
We resume discussion of deallocating conversa-
tions later, including its use with full-duplex con-
versations and program synchronization.

Figure 3 illustrates the sequence of calls discussed
previously. This example application has two pro-
grams: one to send the phrase “Hello, world,” and
one to receive the incoming phrase and display it.
The originator program (the client) sends the string
“Hello, world”; the target program (the server) re-
ceives and displays the string. The skeleton for
these two programs is shown. C code for the cli-
ent and server is shown in Appendix A. The ar-
row in Figure 3 represents that the message flows
from the client program to the server program af-
ter the Deallocate. In this example the underlying
flow of conversation data occurs after the last call

IBM SYSTEMS JOURNAL, VOL 34, NO 3, 1995

on the client side, but before the first call on the
server side. It is the Deallocate call by the client
that causes all buffered information to flow. This
illustrates how data transmission through a net-
work is optimized. The server uses just two CPI-C
calis: Accept_Conversation and Receive. When the
server executes the Receive call, it gets the arriv-
ing data, as well as the notification that the con-
versation has already been deallocated. At that
point, it simply prints what has arrived, and exits.

Advanced concepts and services

Beyond the starter set calls, CPI-C offers a diverse
range of facilities to the programmer. These allow
the programs to synchronize processing, notify the
partners of errors, and use distributed services.
Some of these features are outlined next.

Data transfer techniques. Four transfer techniques
are important to mention next. With immediate
transfer, the local system accumulates data to be
sent to the remote system in its send buffer until
it has a sufficient amount for transmission. A pro-
gram can use the Flush call to empty the system
send buffer and send the data to the partner im-
mediately. This allows the partner to begin pro-
cessing the data.

Programs using a half-duplex conversation must
transfer send control back and forth for a two-way

ARNETTE ET AL. 507




Figure 4 Hello, World with confirmation example

CLIENT PROGRAM SERVER PROGRAM

INITIALIZE_CONVERSATION( )
SET_SYNC_LEVEL(CM_CONFIRM)
ALLOCATE()
SEND_DATA("HELLO, WORLD")
DEALLOCATE() =emmsmmemaad  ACCEPT_CONVERSATION( }

: RECEIVE(BUFFER_PTR)
PRINT

-CM_OK G CONFIRMED )

data exchange. The receiving program can use the
Request_To_Send call to request send control. The
sending program issues the Prepare_To_Receive or
Receive call to transfer send control.

A program wanting full-duplex data transfer
sets the send_receive mode characteristic to
CM_FULL_DUPLEX prior to issuing the Allocate call. Pro-
grams that use a full-duplex conversation send and
receive data concurrently.

Using expedited data, a program can send ur-
gent data to its partner program using the
Send_Expedited_Data and Receive Expedited_Data
calls. Expedited data may be delivered ahead of
normal data sent earlier, and are guaranteed to be
delivered ahead of any normal data sent after them.
This function matches the “out-of-band” data func-
tion in TCP/IP.

Synchronization. The program that initializes a con-
versation can choose among four levels of synchro-
nization by setting the sync_level conversation char-
acteristic to CM_NONE, CM_CONFIRM, CM_SYNC POINT, OF
CM_SYNC_POINT_NO_GONFIRM. Each level corresponds
to a different degree of assurance about a partner’s
processing of a particular transaction.

The sync_level of cM_NONE allows the programs to
communicate without any synchronization support
from cPI_c. If the programs require any synchro-
nization, they have to perform it using program
logic.

Confirmation. The sync_levet of cM_CONFIRM allows
a program to request an acknowledgment from its
partner. This exchange of a request and its

B08 ARNETTE ET AL.

acknowledgment is termed a handshake. Programs
typically use the positive acknowledgment to
indicate that all data have been successfully
processed. This synchronization level is permit-
ted only on half-duplex conversations. The pro-
gram with send control issues the Confirm call
to initiate the handshake. The partner is notified
of the outstanding handshake by a value of
CM_CONFIRM_RECEIVED on the status_received param-
eter of a Receive call. The partner then issues the
Confirmed call for a positive acknowledgment, or
a Send_Error or Deallocate call for a negative ac-
knowledgment. The successful completion of the
Confirm call, detected by a cm_ok return code, in-
dicates that the partner responded with a positive
acknowledgment. See the “Hello, World with con-
firmation example” in Figure 4 for the use of the
confirmation level of synchronization.

In this example, confirmation logic is added to the
prior Hello, World example, and this logic uses the
sync_level of cm_confFIrM. C code for the client and
server programs is shown in Appendix A.

The client program issues the Set_Sync_Level call
to choose this level of synchronization. Instead of
issuing a separate Confirm, the program combines
the function of the Confirm call in the Deallocate call.
The Deallocate call uses the current value of
sync_level, which is cm_conFiRm, and does not
complete until an acknowledgment is received.
Note that the previous example used the default
sync_level of cM_NONE.

Resource recovery. The sync_level of CM_SYNC_POINT
Or CM_SYNC_POINT_NO_CONFIRM allows programs to
synchronize using two-phase commit protocols "7
accessible through a resource recovery interface.
Currently, CPI-C supports the CPI-RR?® and the
X/Open TX" resource recovery interfaces. Figure
5 shows the interaction between various local com-
ponents when this level of synchronization is used.
A program issues the Commit call to the resource
recovery interface to establish synchronization
points in its processing. The processing and
changes that occur to resources between two con-
secutive synchronization points are collectively re-
ferred to as a transaction (a logical unit of work
in APPC terminology). If the underlying two-phase
commit protocols, coordinated by the transaction
manager, can make permanent all the changes to
resources made by the program, then the Commit
call is successful; otherwise, the transaction is
rolled back to the latest successful synchroniza-

IBM SYSTEMS JOURNAL, VOL 34, NO 3, 1995




tion point. If the program detects a failure, it is-
sues a Backout call to explicitly roll back to the pre-
vious synchronization point.

CPI-C cooperates with the transaction manager by
passing synchronization information, which con-
sists of take-commit and take-backout notifica-
tions, to the programs. When a program issues a
Commit call, the partner program receives a take-
commit notification via the status_received param-
eter of the Receive call. The partner program can
now commit or backout. A take-backout notifica-
tion is indicated by any of several return codes,
such as CM_TAKE_BACKOUT OI CM_DEALLOCATE_ABEND_
BO, that indicate a Backout call issued by the part-
ner or a system failure. After receiving such a no-
tification, the program can issue a Backout call to
roll back to the previous synchronization point, or
deallocate all the conversations associated with the
ongoing transaction abnormally.

Error notification. CPI-C provides an easy way for
a program to notify its partner of an error. The er-
ror notification does not have to be sent as data
using normal data transfer, as is the case for sock-
ets programming. When a program issues the
Send_Error call, the remote program receives are-
turn code indicating that its partner has detected
an error. If Send_Error is issued when data are be-
ing received, arriving data may be purged; the data
sender is notified of the possible purging. When
this call completes successfully on a half-duplex
conversation, the local program has send control.

Concurrent operations and nonblocking support.
Much effort has been devoted to allowing programs
to continue productive work when a needed re-
source is temporarily not available. Operating sys-
tems have added support for multithreading and
event management. A number of APIs provide spe-
cific mechanisms that allow the program to avoid
being blocked waiting for a particular resource. For
example, the select function in sockets program-
ming allows a program to wait for activity across
a number of file descriptors. Communication pro-
grams have the same requirements. A program
serving multiple clients cannot afford to be blocked
waiting for data from one client. CPI-C provides sup-
port for concurrent operations and nonblocking
calls for such programs.

Concurrent operations. A program that executes

on a system with multithreading support can use
multiple threads for concurrent operations on one

IBM SYSTEMS JOURNAL, VOL 34, NO 3, 1995

Figure 5 Components involved in distributed
transaction processing

APPLICATION PROGRAM

—

RESOURCE RECOVERY
INTERFACE

CPI-C 4 r

RESOURCE RECOVERY
MANAGER

7| OR TRANSACTION
MANAGER (TM)

COMMUNICATION LOCAL
RESOURCE RESOURCE
MANAGER (CRM) MANAGER (LRM)

CPI-C = COMMON PROGRAMMING INTERFACE
FOR COMMUNICATIONS

or more conversations. For this, CPI-C groups calls
on a conversation into logical associations called
conversation queues. Calls associated with differ-
ent queues are processed independently, and con-
current calls may be in progress on multiple con-
versation queues. Only one call associated with a
given conversation queue is allowed to be in prog-
ress at a time.

What conversation queues are available on a con-
versation depends on whether the conversation is
half-duplex or full-duplex. A half-duplex conver-
sation has a send-receive queue for sending and
receiving normal data. A full-duplex conversation
has two queues for normal data: a send queue and
a receive queue. Send and receive operations can
be in progress simultaneously. Both types of con-
versation have an initialization queue (used only
during conversation establishment) and two expe-
dited data queues: the expedited-send and expe-
dited-receive queues.

Nonblocking calls. A program can specify whether
its calls should be processed in blocking or non-

ARNETTE €T AL 5090




blocking mode. When a call is processed in block-
ing mode, the program (or thread) is suspended un-
til the call operation completes. For example, a
Receive call processed in blocking mode does not
return control until data or other information are
available to be received. In nonblocking mode, if
the call operation cannot complete immediately,
the call gets the cM_OPERATION_INCOMPLETE return
code. The call operation remains in progress as an
outstanding operation. CPI-C provides two levels
of nonblocking support: conversation-level and
queue-level nonblocking.

When conversation-level nonblocking is used on
a conversation, the program sets the processing
mode for the conversation; the queues are ignored.
The program can have at most one outstanding op-
eration at a time on the conversation. The program
issues the Wait_For_Conversation call to wait for
completion of any outstanding operation across all
its conversations using conversation-level non-
blocking.

When queue-level nonblocking is used on a con-
versation, the program sets the processing mode
on a queue basis. It can have multiple outstanding
operations on the conversation, but only one
per queue. The program can issue the
Wait_For_Completion call to wait for completion of
outstanding operations, specifying a list of out-
standing operations. The call returns the list of
those operations that have completed. The pro-
gram may choose instead to specify a queue and
a callback function to be invoked when an out-
standing operation on that queue completes.

Support for servers and distributed services. Serv-
ers are increasingly important components within
a network of distributed systems. CPI-C allows
server programs to serve multiple clients effi-
ciently. CPI-C also supports distributed directory
and security services, which are becoming prev-
alent in networks.

Server support. A number of CPI-C functions are
designed for server programs. A server can reg-
ister multiple names with CPI-C to represent differ-
ent services it provides to clients. A server can ac-
cept multiple incoming conversations and perform
work for multiple clients simultaneously. The use
of concurrent operations and nonblocking calls al-
lows a server to support multiple clients efficiently.

510 ARNETTE ET AL.

Within the operating environment, a context man-
ager works with CPI-C to assist servers in manag-
ing the work done on behalf of multiple clients.
Consider, for example, a server program with sev-
eral clients. If the server initiates a conversation
with another server on behalf of a particular cli-
ent, the security tokens that accompany the con-
versation startup request should represent that cli-
ent. The program, CPI-C, and the context manager
work together to achieve this.

Each time a server accepts a new incoming con-
versation from a client, the context manager cre-
ates a new context, a collection of local attributes
associated with the work done on behalf of that
client. It contains attributes such as security in-
formation and an identifier for the transaction the
client is processing. The context manager also
maintains for the server a current context, the con-
text within which the server is currently working.
Attributes of the current context are used when
the program takes certain context-sensitive ac-
tions, such as starting a new conversation for a cli-
ent. A program may change the current context.
In particular, the server in the example above
should set its current context to that for the par-
ticular client prior to issuing the Allocate call.

Distributed directory. CPI-C initially provided two
ways for a program to identify the partner program:
side information and program-supplied informa-
tion. Both methods have drawbacks. Side infor-
mation supports only an eight-byte name space on
the local system and must be administered on each
system. Moving the partner program may result
in updates to side information on multiple systems.
Use of program-supplied information requires the
program to use network-specific values, and the
program may require recompilation if the address
of the partner program changes. Use of a distrib-
uted directory addresses these problems and sup-
ports additional flexibility in identifying the part-
ner program.

CPI-C programs can use information stored in an
0s1 X.500 directory,? an OSF DCE directory,? or
any other directory supported by the CPI-C imple-
mentation. CPI-C defines a program installation ob-
Ject, a directory object that represents a single in-
stallation of a program. The object is identified in
the directory by a distinguished name (DN). The
object contains a program binding and optionally
a program function identifier (PFID). A program
binding contains the addressing and security infor-

IBM SYSTEMS JOURNAL, VOL 34, NO 3, 1995




mation necessary for CPI-C to establish the conver-
sation. A PFID, a unique identifier for the service
available from the program, allows CPI-C to search
for an appropriate partner based on the required
service.

A program using destination information stored in
a distributed directory can use the Set_Partner_ID
call to supply a DN, a PFID, or a program binding
to CPI-C. If the program supplies the DN, CPI-Cuses
it to retrieve the program installation object and
extracts the program binding. If the program pro-
vides a PFID, CPI-C searches the directory to find
a program installation object containing that PFID
and extracts the program binding. (A system-spe-
cific default DN can limit the scope of the direc-
tory search.) If the program chooses to access the
directory directly, it extracts the program binding
from the directory object and passes it to CPI-C.
CPI-C uses the program binding to establish the con-
versation.

Though use of the distributed directory eliminates
the need for side information, administrative work
is still needed. The network administrator must
build a program installation object and add it to the
directory when installing a program. The admin-
istrator must assign network addresses and secur-
ity information, needed for the program binding,
and a DN for the object according to network pol-
icies and naming conventions. The DN or PFID must
be published or otherwise communicated to pro-
grams that want to initiate a conversation with the
installed program. The advantage is that only the
program binding must be updated if the program
is moved and reinstalled.

Distributed security. Early versions of CPI-C sup-
ported a security system design that required a user
to have a user identification (ID) and password on
each system having resources to which the user
wanted access. The user was required to manage
multiple user IDs and passwords. Besides being ad-
ministratively burdensome, the user ID and pass-
word flowed together and were subject to attack.

Now CPI1-C includes support for a distributed se-
curity service that reduces the earlier deficiencies.
In the new design, a user or system is defined once,
with a principal name and password, to the secur-
ity service. The user is authenticated once by a
trusted authentication service, rather than by each
system to which the user connects. The authen-
tication service itself can be centralized or distrib-

IBM SYSTEMS JOURNAL, VOL 34, NO 3, 1995

uted. When the user’s program initiates a conver-
sation, the local CRM (communication resource
manager) obtains encrypted authentication tokens
from the authentication service and sends them
with the conversation startup request. The remote
CRM uses its local security service interface to val-
idate the authentication tokens. Figure 6 shows a
distributed security service interacting with CRMs
to establish a conversation. The numbers 1-7 in-
dicate the flow sequence.

Two pieces of information required by the secur-
ity server are obtained from the distributed direc-
tory: the principal name of the remote system and
the required_user_name_type. The principal name
is used by the security service to encrypt the se-
curity tokens that are transmitted through the net-
work. The required_user_name is used by the local
CRM to determine what type of user name should
be sent with the conversation startup request.

Neither the user nor the user’s program need be
involved in security when a conversation is estab-
lished if the initiating program uses the default
value (cM_SECURITY_SAME) of the conversation_
security_type characteristic. In this case, the sys-
tem uses the security information from the pro-
gram’s current context to obtain the security to-
kens for the conversation startup request. A
program with special requirements may specify
that the remote system be authenticated before
data are transmitted.

OSI TP support. CPI-C was initially defined to pro-
vide access to the services of APPC. When 0SI TP
became a standard in 1992, with services closely
patterned on those of APPC, CPI-C was mapped to
the 0SI TP services and extended to provide addi-
tional OSI TP support. CPI-C supports those features
of OSI TP required to conform to all the OSI TP pro-
files defined by the standards body ISO/IEC (Inter-
national Organization for Standardization/Interna-
tional Electrotechnical Commission). We describe
next the features of CPI-C that are specific to sup-
porting OSI TP.

When a program using an LU 6.2 CRM for a con-
versation within the scope of a transaction (and so
using the resource recovery level of synchroniza-
tion) commits that transaction, any further work
done using that conversation is implicitly included
as a part of the next transaction. This mode of run-
ning transactions is the chained mode. Sometimes,
the user prefers the flexibility of using the same

ARNETTE ET AL. 511




Figure 6 CRM interaction with distributed security service

PROGRAM

o]

COMMUNICATION
RESQURCE

COMMUNICATION

MANAGER (CRM)

[2] (=]

SECURITY SERVICE
LOCAL INTERFACE

START-UP REQUEST
SECURITY INFORMATION

AND USER REGISTRY

v

AUTHENTICATION SERVER

"
'.
|
|
|
|
|
|
| L
|
I
I
|
!
|
I
I

DISTRIBUTED SECURITY SERVICE

| RESOURCE
MANAGER (CRM)

SECURITY SERVICE
LOCAL INTERFACE

conversation for some unprotected work after the
previous transaction commits but before a later
transaction is initiated. This mode of running trans-
_actions is the unchained mode. Use of unchained
transactions allows programs to exchange data and
control information outside the scope of a trans-
action without having to use a different conversa-
tion. The OSI TP CRM supports both the chained and
unchained modes, while the LU 6.2 CRM supports
only the chained mode. (For further details of how
a CRM reconciles these two modes, see Reference
22.) When a program is using unchained transac-
tions, it specifies when the next transaction begins
after the current transaction ends by issuing a
tx_begin call to the X/Open TX interface.' Simi-
larly, the program can use the Set_Transaction_
Control call to specify whether a conversation is au-
tomatically included in the scope of the next trans-
action when the current transaction ends.

A program can send data, set by the Set
Initialization_Data call before allocating the conversa-
tion, on the conversation startup request. The pro-
gram can also specify whether it wants an acknowl-

512 ARNETTE ET AL.

edgment indicating whether its request for a
conversation was accepted by the partner program.

Deallocating a conversation. A conversation is au-
tomatically deallocated when a program is notified
of a system error or network failure on a return
code; at other times, either partner program can
choose to deallocate the conversation. In the lat-
ter case, the program can set the deallocate_type
characteristic to indicate how the conversation is
tobe deallocated, before issuing the Deallocate call.

A program deallocates the conversation by issu-
ing the Deallocate call, and the partner is subse-
quently notified. Depending on the current values
of the dealiocate_type and sync_level characteristics,
the conversation may be deallocated after synchro-
nization with the partner has been performed.

If no synchronization with the partner is to be per-
formed, a half-duplex conversation is deallocated
when the Deallocate call completes. The Hello,
World example shows deallocation with no syn-
chronization. For a full-duplex conversation, the

IBM SYSTEMS JOURNAL, VOL 34, NO 3, 1995




Deallocate call applies to the outgoing direction of
data transfer only. When a program issues Deal-
locate, it can no longer send data, and the partner

Data mapping, improved
server support, and object-
oriented programming are
likely extensions to CPI-C.

program can no longer receive data. When both
programs have issued Deallocate, the conversation
is deallocated.

If either the confirmation or the resource recov-
ery level of synchronization with the partner is to
be performed, the conversation is deallocated only
after the appropriate synchronization call is issued
and completes successfully. If the synchronization
call does not complete successfully, the conver-
sation is not deallocated; it remains active for
further processing. The Hello, World with confir-
mation example shows deallocation with the con-
firmation level of synchronization.

The program may choose to deallocate the con-
versation abnormally when it detects an error con-
dition that prevents it from continuing normal pro-
cessing. This type of deallocation can be performed
at any time. Any data in transit to the program that
issues the call are purged. The partner program is
notified of the abnormal deallocation by a CPI-C call
return code such as CM_DEALLOCATE_ABEND.

Problem determination. Many CPI-C implementa-
tions provide extensive trace facilities for problem
determination during development and execution
of CPI-C programs, and CPI-C can supply second-
ary information about the condition that caused a
failure. Return codes indicate the outcome of a
CPI-C call and allow the program to determine what
action to take. They are not sufficient for problem
determination; in some cases, a number of error
conditions can yield the same return code. When
a call fails, the program may obtain secondary in-
formation for use in problem determination by is-
suing the Extract_Secondary_information call. Sec-

IBM SYSTEMS JOURNAL, VOL 34, NO 3, 1995

ondary information contains a condition code, a
description of the condition, the cause of the con-
dition, suggested actions, and any additional infor-
mation supplied by the implementation.

Conformance classes

An important aspect of a standard is ensuring con-
sistency in implementation and providing a means
of describing what has been implemented. The
ISO/IEC standards body addresses this issue by de-
fining profiles, subset descriptions for consistent
implementation across systems, for various inter-
national standards, and the X/Open consortium de-
fines conformance statement questionnaires to be
provided by implementers of its APIs. Similarly, the
CIW (CPI-C Implementers’ Workshop) has defined
a set of conformance classes to foster an orderly
marketplace for implementation, product selec-
tion, and use of CPI-C. The conformance classes
are used in product announcements, requirement
specifications, and procurement specifications.

The definition specifies one mandatory confor-
mance class (conversations) and a set of optional
conformance classes. The mandatory class con-
tains function that allows a program to start and
end half-duplex conversations, exchange data, use
confirmation and error notification, and set and
modify conversation characteristics. Optional con-
formance classes include recoverable transactions,
full-duplex, queue-level nonblocking, and direc-
tory. As an example, the 1BM Operating Sys-
tem/400* (0S/400*) product implements the conver-
sations, LU 6.2, recoverable transactions, security,
and data conversion routines conformance classes.
For more information on IBM product support of
conformance classes, see Reference 23.

Future extensions

Extensions to CPI-C are being defined in the CIw.
Data mapping, improved server support, and ob-
ject-oriented programming are three likely exten-
sions.

The distributed processing environment encom-
passes heterogeneous systems with different data
representations, such as EBCDIC and ASCII for char-
acter data. As a result, data flowing between sys-
tems may require conversion. Data mapping sup-
port will allow programs to instruct CPI-C to use
conversion routines to convert user data.

ARNETTE ET AL. 513




The Accept_Conversation call currently accepts an
incoming conversation for any name registered by
the program. Improved server support will enable
aprogram to create separate threads, each of which
can accept incoming conversations for a specific
name associated with the particular service offered
by that thread.

CPI-C is currently a procedural API: programs is-
sue subroutine calls to CPI-C library routines. The
definition of a CPI-C object class library will allow
programs to use object-oriented programming tech-
niques with CPI-C.

Conclusion

CPI-Cis an evolving programming interface for pro-
gram-to-program communication. From its defini-
tion and initial development by IBM in 1988, it has
been extended to meet new requirements and to re-
spond to industry trends and advances in technol-
ogy. The latest version, CPI-C 2.0, was published in
June 1994, by the CPI-C Implementers” Workshop.

CPI-C has become a standard interface for conver-
sations—standard across languages, protocols, and
systems. Wide implementation facilitates program
portability, and ease-of-use features enable high
programmer productivity. With a rich set of con-
versation services and extensions to meet new re-
quirements under development, CPI-C is poised to
serve distributed applications well into the future.

Acknowledgment

The authors gratefully acknowledge the assiduous
support of Gary Schultz during the preparation of
this paper. His editorial suggestions and those of
the anonymous reviewers contributed greatly to
the improvement of its structure and presentation.

Appendix A. C source code examples

The following examples and discussion are derived
from Reference 24, which contains many other
CPI-C programming examples as well. Portions of
this appendix are reproduced with permission from
McGraw-Hill, New York.

The source code files for our two programs are
named HELLO.C and HELLOD.C. We are using a
naming convention that has been adopted by
UNIX** programmers. The server side (the side sit-
ting and waiting for something to do) is referred

514 ARNETTE ET AL.

to as the “daemon.” Its name is constructed by
adding a D to the name of its partner, the client
program. Thus, the client’s name is HELLO and
server’s name is HELLOD. The two programs each
comprise basic logic shown in boldface, and con-
firmation logic shown in plain font. Two pairs of
partner programs are formed by either omitting or
using the confirmation logic.

You will see that every parameter on every call is
a pointer. CPI-C calls only by reference, which lets
itwork the same across all programming languages.

The HELLO source code with the confirmation logic
is a good starting place for someone who wants to
start writing a CPI-C application. With confirmation
processing, a programmer can ensure that the
server program actually starts and runs properly.
If this runs, then everything has been set up prop-
erly between the two programs.

The Hello, World client. We will show the source
code for the Hello, World client first. The reader
will see that without confirmation, it consists of
four boldface CPI-C calls and a return statement.
The four CPI-C calls are the same four shown in the
Hello, World examples earlier.

CPI-C call parameters either supply input to CPI-C
as part of the call, or get output information back
from CPI-C. For example, the first call in HELLO is
Initialize_Conversation(). It has three parameters:
conversation_ID, symbolic_destination_name, and
epic_return_code, and looks like this:

cminit(

/* Initialize_Conversation *f
conversation_ID,

/* O: returned conversation ID */
SYM_DEST_NAME,

/* I: symbolic destination name */
&cpic_return_code);

/* O: return code from this call */

The conversation_|D parameter is an output param-
eter; it points to a field into which CPI-C will return
information.

The symbolic_destination_name is an input param-
eter; it points to the name that CPI-C uses to decide
who and where the partner program is. The sym-
bolic destination name is the CPI-C method of let-
ting one say to whom one wants to talk. The field
always is eight characters long, so if the name is

IBM SYSTEMS JOURNAL, VOL 34, NO 3, 1995




less than eight characters long, it needs to be pad-
ded on the right with blanks. The SYM_DEST_
NAME information is located in the CPI-C side in-
formation file discussed previously.

The cpic_return_code parameter is an output param-
eter; it points to a field where CPI-C will write an
integer that represents the return code from the
call.

The following example client program is named
HELLO.C. The basic program (in boldface) contains
two CPI-C calls to set up the conversation: one call
to send the data, and one call to take down the con-
versation. The plain font portions add confirma-
tion logic.

/*

* CPI-C “Hello, world” program.
* Code sample (Client side (file HELLO.C))
* Example modified to fit page

* */
#include (cpic.h)

/* conversation AP library /
#include (string.h)

/* strings and memory *
#include (stdlib.h)

/* standard library */

/* this hardcoded sym_dest_name is 8 chars

long & blank padded ¥
#define SYM_DEST_NAME

(unsigned char*)"'HELLO2S"

/* this is the string we’re sending to the partner */
#define SEND_THIS
(unsigned char*)''Hello, world"

int main(void)
{
unsigned char
conversation_ID[CM_CID_SIZE];
unsigned char
*  data_buffer = SEND_THIS;
CM_INT32
send_length =
(CM_INT32)strlen(SEND_THIS);
CM_RETURN_CODE cpic_return_code;
CM_SYNC_LEVEL
sync_level = CM_CONFIRM,;

CM_REQUEST_TO_SEND_RECEIVED
rts_received;
cminit(
/* Initialize_Conversation *
conversation_|ID,

IBM SYSTEMS JOURNAL, VOL 34, NO 3, 1995

/*  O: returned conversation ID */
SYM_DEST_NAME,

/* 1: symbolic destination name */
&cpic_return_code);
f*  O: return code from this call *
cmssl(
/* Set_Sync_Level *
conversation_ID,
/* L conversation ID */
&sync_level,
/* 1. set sync_level to CONFIRM */
&cpic_return_code);
/¥ O: return code from this call *
cmalle(
/* Allocate */
conversation_ID,
/* 1: conversation ID *
&cpic_return_code);
/* Ot return code from this call */
cmsend(
/* Send_Data */
conversation_ID,
/* |: conversation ID */
data_buffer,
/* I send this buffer ¥
&send_length,
/* I: length to send ¥
&rts_received,
/* O:was RTS received? *
&cpic_return_code);
/*  O: return code from this call */
cmdeal(
/* Deallocate *
conversation_ID,
/* 1: conversation ID ¥
&cpic_return_code);
/*  O: return code from this call *
return(EXIT_SUCCESS);

}

The Hello, World server. The code in the basic
server, HELLOD, contains just two starter set CPI-C
calls. Accept_Conversation() gets a conversation ID
for the server side. The Receive() call gets the ar-
riving data, as well as the notification that the con-
versation has already been deallocated. (Again, the
plain font adds the confirmation logic.)

We set aside a data_buffer to receive into that we
have arbitrarily made 101 bytes long. On the
Receive(), we set the requested length to only 100

ARNETTE ET AL §15H




bytes. In case we receive exactly 100 bytes, we
want to have room to append a ‘“\@” on the end,
so we can use printf() to display it.

Also, notice that we have added a call to the C
getchar() routine on the server side. On most com-
puters, the server program can be automatically
started, pop up in a window, receive the string from
the client and call printf(), then quickly close the
window. By calling getchar(), the server program
will at least wait for a user to press a key before
it vanishes.

The following example server program is named
HELLOD.C. The basic program (in boldface) in-
cludes just two CPI-C calls and a call to printf and
getchar. The plain font portions are for the added
confirmation logic. The Confirmed() call is issued,
assuming the client issued a corresponding
Confirm().

/*

* CPI-C '""Hello, world'* program.
* Code Sample (Server side (file HELLOD.C))
* Example modified to fit page

* */
#include (cpic.h)

/* conversation API library */
#include (stdio.h)

[* file /O */
#include (string.h)

[* strings and memory *
#include (stdlib.h)

/* standard library *

int main(void)
{
unsigned char
conversation_ID[CM_CID_SIZE];
unsigned char data_buffer[106+1];
CM_INT32 requested_length =
(CM_INT32)sizeof(data_buffer)-1;
CM_INT32 received_length = ©;
CM_RETURN_CODE cpic_return_code;

CM_DATA_RECEIVED_TYPE data_received;

CM_STATUS_ RECEIVED status_received;

CM_REQUEST TO SEND_RECEIVED
ris_received;

cmaccp(
/* Accept_Conversation */
conversation_ID,
/*  O: returned conversation ID ¥/
&cpic_return_code);
/*  O: return code from this cali */

516 ARNETTE ET AL

cmrev(

/* Receive *
conversation_ID,

/* I: conversation ID *
data_buffer,

/*  1: where to put received data *
&requested_length,

/*  1: maximum length to receive */
&data_received,

/* O: data complete or not? *
&received_length,

/*  O: length of received data *
&status_received,

/*  O: has status changed? */
&rts_received,

/* O: was RTS received? */
&cpic_return_code);

/*  O: return code from this call */

data_buffer{received length] = '\0';
* insert a null */
(void)printf(''%s\nPress a key to end the
program...\n", data_buffer);

cmcfmd(
/* Confirmed */
conversation_ID,
/* |: conversation ID */
&cpic_return_code);
/¥ O: return code from this call */

(void)getchar();
/* pause for any keystroke */

return(EXIT_SUCCESS);
}

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of X/Open Co., Ltd.

Cited references

1. J. P. Gray, P. J. Hansen, P. Homan, M. A. Lerner,, and
M. Pozefsky, “Advanced Program-to-Program Communi-
cation in SNA,” IBM Systems Journal 22, No. 4, 298-318
(1983).

2. SNA LU 6.2 Peer Protocols Reference, SC31-6808, IBM
Corporation (1988); available through IBM branch offices.

3. Systems Network Architecture Transaction Programmer’s
Reference Manual for LU Type 6.2, GC30-3084, IBM Cor-
poration; available through IBM branch offices.

4. J. Sanders, M. Jones, J. Fetvedt, and M. Ferree, “A Com-
munications Interface for Systems Application Architec-
ture,” Selected Areas in Communications, IEEE Journal
7, No. 7, 1073-1081 (Sept 1989).

5. X/Open Developers’ Specification: CPI-C, X/Open Com-
pany Limited, Apex Plaza, Forbury Road, Reading, Berk-
sire, RG1, 1AX UK (1990).

IBM SYSTEMS JOURNAL, VOL 34, NO 3, 1995




6. Information Technology—Open Systems Interconnection-
Distributed Transaction Processing—Part 1: OSI TP Mod-
el; Part 2: OSI TP Service, ISO/IEC JTC 1/SC 21N, ISO
Central Secretariat, 1 rue de Varembe, Case postale 56,
CH-1211 Geneva 20, Switzerland (April 1992).

7. D. Pozefsky, R. Turner, A. K. Edwards, S. Sarkar,
J. Mathew, G. Bollella, K. Tracey, D. Poirier, J. Fetvedt,
W.S. Hobgood, W. A. Doeringer, and D. Dykeman, “Mul-
tiprotocol Transport Networking: Eliminating Application
Dependencies on Communications Protocols,” IBM Sys-
tems Journal 34, No. 3, 472-500 (1995, this issue).

8. X/Open CAE Specification: CPI-C, X/Open Company Lim-
ited, Apex Plaza, Forbury Road, Reading, Berksire, RG1,
1AX UK (1992).

9. Common Programming Interface Communications CPI-C
2.0 Specification, SC31-6180, IBM Corporation (1994);
available through IBM branch offices.

10. Distributed Transaction Processing: The CPI-C Specifi-
cation, Version 2, X/Open Preliminary Specification,
X/Open Company Limited, Apex Plaza, Forbury Road,
Reading, Berksire, RG1, 1AX UK (1994).

11. M. L. Hess, J. A. Lorrain, and G. R. McGee, “Multipro-
tocol Networking—a Blueprint,” IBM Systems Journal 34,
No. 3, 330-346 (1995, this issue).

12. A.D.Birrelland B. J. Nelson, “Implementing Remote Pro-
cedure Calls,” ACM Transactions on Computer Systems
2, No. 1, 39-59 (Feb. 1984).

13. B. Blakeley, H. Harris, and R. Lewis, Messaging and

Queuing Using the MQI: Concepts and Analysis, Design’

and Development, McGraw-Hill, Inc., New York (May
1995).

14. P. A. Bernstein, V. Hadzilacos, and N. Goodman, Con-
currency Control and Recovery in Database Systems, Ad-
dison-Wesley Publishing Co., Reading, MA (1987).

15. J.N. Gray, “Notes on Database Operating Systems,” Op-
erating Systems—An Advanced Course, R. Bayer, R. Gra-
ham, and G. Seegmuller, Editors, Lecture Notes on Com-
puter Science, Vol. 60, Springer-Verlag, Inc., New York
(1978).

16. B. W.Lampson, “Atomic Transactions,” Distributed Sys-
tems: Architecture and Implementation—An Advanced
Course, B. W. Lampson, Editor, Lecture Notes on Com-
puter Science, Vol. 105, 246-265, Springer-Verlag, Inc.,
New York (1981).

17. Systems Network Architecture Sync Point Services Archi-
tecture Reference, SC31-8134, IBM Corporation (1994);
available through IBM branch offices.

18. Systems Application Architecture Common Programming
Interface—Resource Recovery, SC31-6821, IBM Corpo-
ration (1991); available through IBM branch offices.

19. X/Open Distributed TP: a) The TX Specification, b) The
XA Specification, c) The XA+ Specification, X/Open Con-
sortium, Apex Plaza, Forbury Road, Reading, Berksire,
RG1, 1AX UK (November 1992, February 1992, April
1993).

20. Information Technology—Open Systems Interconnect—
The Directory: Overview of Concepts, Models, and Ser-
vices, 1S0 9594-1, CCITT X.500, ISO Central Secretariat,
1 rue de Varembe, Case postale 56, CH-1211 Geneva 20,
Switzerland.

21. Open Software Foundation (OSF) Distributed Computing
Environment (DCE) 1.0: Introduction to DCE, OSF, 1SO
Central Secretariat, 1 rue de Varembe, Case postale 56,
CH-1211 Geneva 20, Switzerland (March 1992).

22. G. Samaras, A. Kshemkalyani, A. Citron, “Reconciling

IBM SYSTEMS JOURNAL, VOL 34, NO 3, 1995

Communication Protocol Support for Chained and Un-
chained Transactions,” Proceedings 2nd International
Conference on Computer Applications to Engineering Sys-
tems, Cyprus (July 1993), pp. 238-244.

23. Common Programming Interface Communications CPI-C
Reference Version 2.0, SC26-4399, IBM Corporation; avail-
able through IBM branch offices.

24. J. Q. Walker II and P. J. Schwaller, CPI-C Programming
in C: An Application Developer’s Guide to APPC,
McGraw-Hill, New York (1994).

Accepted for publication March 13, 1995.

Wendy S. Arnette IBM Networking Software Division, P.O.
Box 12195, Research Triangle Park, North Carolina 27709 (elec-
tronic mail: wsa@vnet.ibm.com). Ms. Arnette is an SNA net-
working advisor in the APPC Market Enablement group at IBM.
Currently she provides technical and marketing support and
education for both customers and vendors on APPC, APPN,
and CPI-C. She also provides press and consultant relations
for SNA and APPN on IBM’s networking software products.
Previously, Ms. Arnette worked on converting LU2 applica-
tions to APPCin IBM Systems Network Architecture. She has
also published several APPC and APPN articles and papers.
Ms. Arnette received a B.S. degree in computer science from
North Carolina State University.

Ajay D. Kshemkalyani IBM Networking Software Division,
P.O. Box 12195, Research Triangle Park, North Carolina 27709
(electronic mail: ajayk@vnet.ibm.com). Dr. Kshemkalyani re-
ceived the B. Tech. degree in computer science and engineer-
ing from the Indian Institute of Technology, Bombay, India,
in 1987, and the M.S. and Ph.D. degrees in computer and in-
formation science from the Ohio State University, Columbus,
in 1988 and 1991, respectively. He is currently an advisory pro-
grammer in the Networking Systems Architecture area in IBM
at Research Triangle Park and an adjunct assistant professor
at North Carolina State University. He is presently involved
with the networking broadband systems architecture at IBM.
His current research interests include distributed systems, op-
erating systems, computer architecture, and databases. He is
a member of the ACM and the IEEE Computer Society.

Wayne B. Riley IBM Networking Software Division, P.O. Box
12195, Research Triangle Park, North Carolina 27709 (elec-
tronic mail: wriley@vnet.ibm.com). Mr. Riley has been in-
volved in the distributed applications arena since 1986. He has
led APPC client/server application development projects for
Nabisco Brands, Dun & Bradstreet, and University of North
Carolina Hospitals. He joined IBM in August 1992 and is cur-
rently designing object-oriented distributed agents utilizing
APPC. Mr. Riley received a B.S. degree from Fairleigh Dick-
inson University in Madison, New Jersey.

Jack P. Sanders IBM Networking Software Division, P.O. Box
12195, Research Triangle Park, North Carolina 27709 (elec-
tronic mail: jsanders@vnet.ibm.com). Dr. Sanders is a senior
engineer at IBM’s Research Triangle Park facility. Prior to his
current assignment in product development, he served as chair

ARNETTE ET AL

517




of the CPI-C Implementers’ Workshop and led the develop-
ment of CPI-C 2.0 to a successful conclusion. His earlier work
included managing the LU 6.2 Architecture department and
contributing to the development of Systems Network Archi-
tecture. He earned a Ph.D. in mathematics from the Univer-
sity of Virginia and enjoyed an academic career before joining
IBM in 1981.

Peter J. Schwaller Ganymede Software Inc., 2 Davis Drive,
Suite 124, Research Triangle Park, North Carolina 27709 (elec-
tronic mail: pjs @ffmail.nctda. org). Mr. Schwaller joined IBM
in 1989 to work on APPN architecture and later was a key mem-
ber of the development team for IBM Networking Services/2.
Most recently, he developed the CPI-C Sample Programs Tool-
kit available on CompuServe. Mr. Schwaller received a B.S.E.
degree in electrical engineering and computer science from
Duke University. He has recently completed a new book with
John Q. Walker called CPI-C Programming in C, available from
McGraw-Hill, Inc.

J. Chuck Terrien IBM Networking Software Division, P.O.
Box 12195, Research Triangle Park, North Carolina 27709 (elec-
tronic mail: chuck@vnet.ibm.com). Mr. Terrien joined IBM
in 1984 as a member of the Office Systems Product Assurance
area. From there he moved to the Network Management Ar-
chitecture area, where he was instrumental in developing an
architectural strategy to address integrated SNA and OSI net-
work management. In 1989 he became a manager in the
NetView Systems Test area, which provided testing for prod-
ucts such as NetView, NetView/PC, and DCAF. Mr. Terrien
is currently in APPC Market Enablement, a technical market-
ing group that supports IBM customers, IBM products, and
other APPC/APPN vendors. One of his responsibilities in APPC
Market Enablement was managing the CPI-Carchitecture team.
Mr. Terrien received a B.A. degree in business administration
from Michigan State University and an M.S. degree in systems
science from the State University of New York at Bingham-
ton.

John Q. Walker Ganymede Software Inc., 2 Davis Drive, Suite
124, Research Triangle Park, North Carolina 27709 (electron-
ic mail: johnq@ganymede.nctda.org). Dr. Walker is the Vice
President for Development at Ganymede Software Inc., a com-
pany specializing in network software tools. In recent years,
he managed departments in IBM networking and was respon-
sible for network management, architecture, and software de-
velopment. He helped found IBM’s APPC market enablement
team. In the early 1980s, he was a designer at IBM for the token-
ring local area network, serving as editor for the IEEE 802.5
standard. Dr. Walker is the author of numerous articles and is
a widely-traveled speaker on programming and networking
technology. He recently completed a book with Peter Schwaller
for McGraw-Hill, Inc., entitled CPI-C Programming in C. Dr.
Walker received a B.S. in mathematics and a B.A. in music
from Southern Illinois University. He also received an M.S.
in computer science from Southern Illinios University, and a
Ph.D. in computer science from the University of North Caro-
lina.

Reprint Order No. G321-5579.

518 ARNETTE ET AL. IBM SYSTEMS JOURNAL, VOL 34, NO 3, 1995




