An architecture

for multimedia
communication and
real-time collaboration

The paper presents the requirements for real-time
multimedia communication in a collaborative
environment and describes how the requirements
can be met through the IBM Lakes architecture.
The initiatives of the ITU-T through the T.120
series of recommendations are described, and
the interoperability of Lakes with these
recommendations is discussed.

Computers attached to networks are commonly
used for collaborative activity; this is sup-
ported by a variety of mail, messaging, and data-
base products. In most cases these applications are
either person-to-person information exchanges
where the parties are working together, but not
simultaneously, or are person-to-machine interac-
tions. The first category is illustrated by mail ap-
plications, where electronic documents are pro-
cessed first by one party and then by the other;
although the turnaround time can be very short,
the essence of the application is alternate activity.
The second category involves only one person di-
rectly; therefore there is no concept of a natural
human dialog to be sustained.

In contrast, real-time collaboration has two essen-
tial elements: people are directly involved with
each other, and simultaneous activity by these peo-
ple is the essence of the interaction. Examples in-
clude desktop conferencing, distance learning, help
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desk operation, remote presentations, brainstorm-
ing, and shared document editing. Real-time col-
laboration requires multimedia communication, be-
cause the traditional data exchange between
workstations needs to be enhanced with audio to
allow conversation among the participants for
effective human interaction. An alternative,
equally valid perspective is to consider the ex-
changes as data enhancements to telephony. In ad-
dition to data and audio, live video can be justified
for some, but not all, applications. In real-time col-
laborative activity, natural interaction between
people requires low-latency transmission so that
responses are not noticeably delayed. This aspect
is much more demanding than is normal in exist-
ing messaging, mail, and related networked appli-
cations. Support for the audio and video streams
also demands isochronous communications to pre-
vent distortion, and this is not commonly available
in data networks.

A current topic for research and development ac-
tivity is the efficient provision of appropriate mul-
timedia communication services. Much of the ef-
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fort has focused either on the human factors of
computer-supported collaborative work or on the
associated computing science aspects.’ Other ac-
tivities have explored the social and organizational
implications.** Rather less academic interest has
been directed toward the design and specification

New technologies based on
ATM combine
isochronous capabilities
with high bandwidth.

of generic application programming interfaces, al-
though this has been a topic for computing and te-
lephony organizations. Many individual and col-
lective developments are underway, although little
has been published for competitive reasons.

From a standards viewpoint, the initiative by the
International Telecommunication Union-Telecom-
munication Standardization Sector (ITU-T) through
the draft recommendations of the various T.120
committees is of considerable interest, with the de-
velopment of the Multipoint Communication Ser-
vice (MCS)® and the associated Generic Conference
Call (GcC).” Previous to this work the H.320 rec-
ommendation provided the basis for audio and
video communication over the integrated services
digital network (ISDN) and allowed the develop-
ment of videoconferencing services. The require-
ments met by the H.320 recommendation were for
an endpoint attached to the network to exchange
a single audio stream, and optionally a single video
stream, with other users; multipoint operation was
being provided by multipoint control units within
the network itself. Compatibility with the existing
equipment was of primary importance and this dic-
tated call setup and the audio formats. Also rec-
ognized in the H.320 recommendation was the need
for data communication such as file transfer and
document exchange, and therefore provision for
multiplexing was included for data.

The H.320 recommendation has been widely
adopted for videoconferencing and provides in-
teroperability between different manufacturers’
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equipment; furthermore it has encouraged the de-
ployment by network operators of standard mul-
tipoint control units for multiway conferencing.
However, the absence of any definition of the con-
tents of the data channel has precluded interop-
erability for data services and this deficiency has
givenrise to the T.120 series of recommendations.
Hence MCS provides multiple logical data channels
to a user and allows multiparty operation, thus lay-
ing a foundation for collaborative data services.
GCC builds on MCS to provide call management for
conference setup and tear-down, while other T-se-
ries recommendations define application protocols
for file transfer and shared whiteboards, with oth-
ers to be added in the future.

The combination of the H.320 and T.120 recom-
mendations will be important in allowing interop-
erability between desktop conferencing users over
public switched networks. However, the real-time
collaborative opportunity is much greater than the
scope of H.320 and T.120 combined; some exam-
ples will illustrate the problems still to be ad-
dressed.

From a personal computer (PC) as opposed to a te-
lephony perspective, audio and video support is
rich and varied. Compact disk standards provide
the basis of PC audio, and many video technolo-
gies are already in use, with quality approaching
and moving beyond that of television. The G.711
audio and H.261 video recommendations of H.320
are not always acceptable substitutes, and the loss
in quality will meet resistance from customers
whose expectations are set by domestic television.
PC networks are characterized by extreme diver-
sity and do not normally have the isochronous ca-
pabilities of telephony networks; although their
bandwidths are typically orders of magnitude
greater, their high latency and jitter are problem-
atic. New technologies, such as those based on
asynchronous transfer mode (ATM), address these
deficiencies and combine isochronous capabilities
with high bandwidth. Such capacity allows video
compression without loss of information, combin-
ing high quality with low latency.

Simple hierarchical topologies as envisaged by the
authors of the ITU-T recommendations are not typ-
ical of installed corporate computer networks;
complex meshes exist and the constituent links
have widely varying, and often unpredictable,
characteristics. Frequently the challenge is to ex-
ploit what exists while allowing new capabilities
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to be selectively integrated into the infrastructure.
Multiple audio and video streams per user are re-
quired for some applications; for example, review-
ing of television commercials, and synchronization
between multiple audio, video, and data streams
is desirable. An architecture that classifies streams
into audio, video, or data fails to recognize that
the true distinction is to be made on the basis of
the communications requirements, or quality of
service needed, for the stream, independent of its
content.

From an application perspective, the requirement
is not normally for multimedia communications but
for distributed multimedia device connectivity.
With few exceptions, most multimedia streams
originate from devices, and the need is to trans-
port the output of a source to one or more remote
destination devices and provide end-to-end, de-
vice-to-device services. Many of the problems are
to be found at the end points, where the devices
are coupled to communication networks using the
shared services of an operating system, processor,
and bus.

Today the telephone is the natural choice for real-
time collaboration and no viable alternative exists
for most people; as demand increases for existing
telephone calls to be enriched with data exchanges,
and ultimately with video services, the personal
computer is destined to become the instrument for
personal communications. This can be seen either
as an evolution of the telephone, or as an evolu-
tion of the personal computer, and although the
result is the same in both cases, the process is very
different. Equally interesting is the nature of the
network to which the multimedia personal com-
puter is attached, which can be the telephony net-
work enhanced to supply the necessary bandwidth,
or a computing data network enhanced to support
low-latency isochronous communication.

This section introduced the need for real-time col-
laboration using multimedia communications. Fol-
lowing sections clarify the requirements and de-
scribe the IBM Lakes architecture designed to meet
these requirements.

The real-time collaboration requirements

The detailed requirements for a real-time multi-
media communications platform arise from three
sources: the needs of the application programmer,
the nature of the networks that form the collab-
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orative infrastructure, and the demands of users
and product developers. Requirements from each
source follow.

From an application programmer perspective, it
is preferable if applications can be developed in a
platform-independent manner, thus encouraging
portable code that can be migrated between sys-
tems. Also, applications should be independent of
the physical communications network and thus
able to perform correctly when changes occur in
that network. In other words, applications should
be programmed in terms of the logical, rather than
the physical, properties of a network, typically ex-
pressed in quality-of-service parameters such as
throughput, latency, and jitter.

The environment should support applications
simultaneously interacting with one or more other
applications in either an independent or a depen-
dent way. As an illustration, an audio application
may wish to handle multiple simultaneous calls,
where each call involves one or more other audio
applications.

The interaction between applications should be
based upon peer-to-peer responses since there can
be no certainty that a central application will be
available to mediate behavior. Peer-to-peer design
in a multiuser environment allows client/server
support to be implemented as a special case, be-
cause a client can assume the responsibility for pro-
viding common services.

The applications should be able either to handle
all aspects of application-to-application collabora-
tion themselves, or to delegate functions to oth-
ers, for example, the association and disassocia-
tion phases between applications. Such delegation
simplifies the provision of a consistent user inter-
face for call control, yet allows individual appli-
cations to specialize in particular collaborative
functions, for example, in shared text editing.

Applications should be able to collaborate freely,
without restricting themselves to particular part-
ners. Such a desirable objective is inherently un-
achievable but flexibility can be included through
careful design, for example, by the use of self-de-
scribing data streams whose format and content
description are available independently of the data.

Any applications already written and installed
should be able to be used collaboratively without
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modification. This requirement can normally be
only partially satisfied, but nevertheless useful
functions can be offered. Thus an existing single-
user application can rarely be made fully multiuser
without access to the source code, but its inputs
and outputs can usually be made accessible to re-
mote users.

Other requirements arise from a networking per-
spective. Both digital and analog networks should
be supported. Analog audio and video capabilities
are frequently available at lower cost than their dig-
ital counterparts, although this is slowly changing.
Ideally, applications should be unaffected by net-
work migration from an analog to a digital com-
munications base. Multiparty communications are
also required and this capability needs to be con-
structed out of the various underlying transport
networks available and described through entries
in address books or directories.

Network traffic in collaborative situations is in-
creasingly multimedia in nature, containing not just
coded data but one or more audio and video
streams. This requires a smooth handling of these
continuous data flows, with low latency to ensure
good usability. A telephony system model, where
data flows are directed and connected, is more
suited than one in which the applications them-
selves move data between links and devices. Col-
laboration frequently involves both computer and
telephone networks and devices, and the distinc-
tion between these is of little interest to users and
should therefore be hidden. Intelligent networks
can be exploited, allowing functions such as data
serialization to be removed from applications and
implemented more efficiently within the network
itself.

A third set of requirements emerges from the needs
of customers, users, and product developers. Stan-
dards compliance, for example with H.320and T.120,
is mandatory to ensure guaranteed interoperability.
An open specification is required, with published in-
terfaces and protocols sufficiently detailed to allow
independent implementations or extensions.

This paper describes the IBM Lakes architecture,
which is intended to meet the above require-
ments. *° It is based on experience gained with the
IBM Person-to-Person* desktop conferencing prod-
uct!®!! and studies designed to extend the range of
applicability into the broader fields of real-time col-
laboration.
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Figure 1 Principal Lakes interfaces
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A key decision in the provision of generic program-
ming platform support for collaboration is the
stance taken with regard to call models. > A call
model captures the rules of behavior that are to be
enforced between the collaborating parties. Some
questions that a call model can answer are:

e How is a call established?

e What equipment is to be interconnected?
What facilities are required to be available?
Who is in control?

How is it known who is in control?

How is a call extended?

How does a call end?

How are the actions of users made known?

Call models in desktop conferencing products are
based on those in conventional telephony. It is pos-
sible for the application programming interface to
reflect one or more of these call models, or even
to allow models to be tailored to suit user prefer-
ences; alternatively the call model can be regarded
as being above the interface and imposed by one
or more applications. Lakes takes this latter ap-
proach because of the greater flexibility provided.
The Lakes application programming interface is
based only on the assumption that a network of
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computers exists and that application instances ei-
ther are running at these computers or may be
caused to run. The model therefore is a distributed
application-based model where the applications
dominate and determine behavior. Concepts of
calls and other abstractions are built on top of this
distributed model and accessed through higher
level interfaces.

The overall structure provided by Lakes is shown
in Figure 1, with the key interfaces identified.

Four important open programming interfaces ex-
ist: the application programming interface (AP1),
which allows applications to request Lakes ser-
vices; the command level interface (CL1), which
allows applications to be controlled via commands;
the device support interface (DSI), which is pro-
vided to allow support to be added for different
software and hardware subsystems, such as com-
munication systems, video and audio devices, etc.;
and the resources level interface (RLI), through
which Lakes can be integrated into existing net-
work and user databases containing phone book
and related information.

Other interfaces and components illustrated in Fig-
ure 1 are described later.
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Principal components of the architecture

This section introduces the individual components
of the Lakes architecture and describes how they
interact to meet the requirements of multimedia
communication and real-time collaboration.

Network, nodes, and applications. At the highest
level, the Lakes programming model presents a
representation of a network to an application as a
series of interconnected nodes. A node is the ad-
dressable entity in Lakes representing a user. It
comprises an instance of the Lakes API and typ-
ically a set of resources, such as application pro-
grams, data, devices, etc. Usually a node is a ded-
icated programmable workstation capable of
communicating with its peers; in a multiuser sys-
tem a node is associated with each user. Nodes are
identified by name; ideally all node names are
unique but duplicates can be tolerated as long as
their associated nodes are never required to inter-
communicate. The node-naming scheme is not pre-
scribed by the architecture, but a system such as
that defined by the 1BM Open Blueprint* directory
services has many benefits.

A collection of intercommunicating Lakes nodes
is called a Lakes network. 1t is fundamental to the
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Figure 2 A possible Lakes network
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architecture that any node, independently of any
others, can dynamically join or leave the network.
The structure of the physical network itself is not
presented to applications and cannot be deduced.
It is a necessary condition that all nodes can be
physically interconnected, but no connection pat-
tern is prescribed or excluded. Thus multiple con-
nections between nodes can exist and will be ex-
ploited where possible, and the indirect access to
one node via other intermediate nodes is possible.
The links between nodes can vary in type, capa-
bility, and protocol. An example of such a Lakes
network is shown in Figure 2.

In the figure, workstations F, A, and B all have
ISDN capability and can connect in a pair-wise fash-
ion using the public ISDN network. B and C are also
equipped with token-ring adapters and can com-
municate with each other over the local area net-
work. C and D have asynchronous adapters and
a dedicated link between their ports. F, E, and D
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form an Ethernet local area network. Lakes ap-
plications on all nodes will have logically direct ac-
cess to all other nodes. Lakes itself may realize a
connection from, say D to A, either by using Eand
F or by using C and B; the choice will be governed
by the specific quality-of-service requirements, the
state of the network, and by the customization, or
profile, data accessed through the resources level
interface and the profile access module as shown
in Figure 1.

Although Lakes nodes are generally workstations
running applications, it is sometimes convenient
to regard other equipment as a Lakes node with-
out normal capabilities. A Lakes implementation
atone node can allow certain attached devices such
as telephones or video telephones to behave as
though they are attached Lakes nodes. It provides
this by simulating a virtual application at a virtual
node to represent the device. The advantage of this
approach is that an appropriate application pro-
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gram written to communicate with real Lakes
nodes will now also communicate with simulated
nodes without application device-specific code.
From a user perspective, telephones and video
telephones can thus participate in desktop confer-
encing and other applications, with a Lakes node
performing the role of a media server, mixing au-
dio and selecting the video for viewing.

In order for Lakes to be fully active at a node, one
particular application must be running at that node.
This application plays a unique role and is known
as the call manager. The name is misleading and
suggests that the job of this application is to pro-
vide call management facilities. From a purely
Lakes standpoint this is not the case; the job of
the call manager is to respond to certain events that
are generated by Lakes and to supply installation,
application, or user-generated information. The
call manager is involved in resource management
and gives permission for applications to reserve
communications bandwidth. Many call managers
may be available for execution at a particular node,
but by definition, only one instance can perform
this role at any time. This is in no way restrictive,
since call manager responsibility can be transferred
from one application to another. Alternatively, it
is possible for the call manager role to be combined
with an application function, if appropriate. The
limit of one active call manager at a time does not
limit the number of call models that can be simul-
taneously in use.

In responding to Lakes events, the call manager
is controlling the behavior of Lakes and is there-
fore, in some sense at least, implementing policies
and thereby one or more call models. This does
not mean that the call manager needs to establish
a dialogue with the workstation user and be the ap-
plication that establishes and terminates calls.
Other applications may do this, and may also en-
force additional rules of behavior and build on the
base created by the call manager. Although all this
is possible, simplicity and consistency generally
require that only one application, which may be
the call manager, provides the user interface and
allows the setting-up and tearing-down of calls and
the launching and termination of applications
within those calls. Other applications may provide
user functions within this framework.

A Lakes implementation may request that the re-
sources of one node be made available for Lakes
communication between two otherwise uncon-
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nected nodes; this is termed passive operation and
involves the call manager, since permission must
be granted at the passive node for this to take place.

The most fundamental concept in Lakes is that of
the application sharing set. This describes a col-
lection of applications that have agreed to collab-
orate. Before joining an application sharing set, ap-
plications can reference each other only by name;
once they become a member of an application shar-
ing set, each has direct addressability to the oth-
ers in that set. A further consequence of member-
ship is that existing members are informed, through
events generated by Lakes, of any arrivals and de-
partures. Application sharing sets are identified by
name, and any application can be a member of any
number of such sets. It will be seen that set mem-
bership is key to many of the other facilities of-
fered by Lakes for application collaboration.

One way in which applications can join a sharing
set is by initiating a share request using the
LakShareApp call and naming an application shar-
ing set, a target application, and a destination node.
This request is first passed by Lakes to the call
manager at the sending node, which will typically
transfer it to the call manager at the destination
node. Usually this second call manager will launch
the requested application and transfer the share re-
quest to it, and if successful, the source applica-
tion will be informed. The participation of the call
managers in this process allows local control of the
sharing process. It also allows other actions to be
initiated if necessary. These are, for example, user
authentication procedures or the delegation of
share requests to another node. The call manag-
ers also play a vital role in resolving the names used
by applications to identify other nodes and appli-
cations. The symbolic name references are trans-
lated into specific node identities and applications.
The sharing mechanism can be cascaded; for ex-
ample, if two applications are already sharing, one
of them can initiate a share with a third applica-
tion specifying the same sharing set, with the re-
sult that all three applications are then sharing with
one another.

Applications may also make local share requests
on behalf of other applications. It is this ability that
can be exploited to create applications that handle
call management on behalf of other applications:
a third party can put the first and second party into
communication with each other. Facilities exist for
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either the issuer or the target of the share request
to name the application sharing set.

Information on nodes in the Lakes network is as-
sumed to be held in an address book that Lakes
accesses through the resources-level interface and
the replaceable address book access module shown
in Figure 1. The address book may optionally con-
tain a variety of node-related information. The API
call LakAddressBookFind allows an application to
search the address book and retrieve parameters,
for example, node names of interest.

An application initially requests addressability to
a remote node by using the node name in a Lakes
API call. This name is first passed to the local call
manager, which has the option to modify it. The
resultant name is then used by Lakes to determine
connectivity information. This requires access to
the externally-held network and user database, us-
ing the facilities of the Lakes resources interface.
A node handle is returned to the application to re-
flect this resolution of the node name. Addressabil-
ity from one application to another requires the res-
olution of an application name. If both applications
are local to a node, then the resolution involves
the call manager at that node; if one application is
remote, then both call managers are involved. The
resolution results in the target application being
identified to the source application by an applica-
tion handle. Subsequent application requests us-
ing handles require no name resolution and are
transferred by Lakes directly to the target appli-
cation.

Channels and ports. Lakes provides two distinct
mechanisms for application-to-application commu-
nication. The simplest form uses signals and is in-
tended for the exchange of commands, control
information, and text strings. Two forms of appli-
cation signaling are supported; the LakSignalApp
request provides unidirectional communication,
and LakSignalAppWithReply supports a response.
Neither of these requests is restricted to members
of the same application sharing set. This signaling
mechanism has many uses. Among them is com-
munication between components of a single appli-
cation; for example, a processing component (en-
gine in Figure 1) and a user interface component
of the same application might exchange informa-
tion via signals. Such a design enables applications
to share a common processing component.
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More sophisticated intercommunication is sup-
ported between applications in an application shar-
ing set. This requires the establishment of data
communication links between the applications.
These logical links are known as channels. Chan-
nels are logically dedicated, unidirectional pipes,
with application-specified transmission character-
istics. Unidirectional channels are used as the ba-
sic communications building blocks to efficiently
support two-way communications, since the qual-
ity-of-service requirements are often different in
each direction. Thus in a broadcast application, no
return flow is required; in a movie-on-demand ap-
plication, only simple control data are required to
select the movie; in telephony, full capabilities are
required in both directions.

Lakes channels are always defined by the sending
application and go from it to a receiving applica-
tion. This approach is used because only the send-
ing application can be aware of the properties of
the data, which dictate how they should be trans-
mitted. The ends of channels are known as ports;
thus each channel has one sending port and one
receiving port. A sending port sends data blocks
down the channel; a receiving port receives data
blocks in the order in which they were sent down
the channel. Both sending and receiving ports can
be shared between different channels. There may
not be a direct mapping between the logical chan-
nel structure seen by the Lakes applications and
the physical communication network in existence
between the nodes; the mapping that does exist is
not identifiable by the applications. A complex ex-
ample of channels, ports, and applications is shown
in Figure 3.

An application is expected to establish multiple
channels to another application as a convenient
way to separate data traffic of different types. Thus
if an application wishes to send audio, video, and
image application data, it would be normal for the
application to create three such channels. The char-
acteristics of each of these channels would be spec-
ified differently to suit the intended traffic. If the
destination application wished to send data back,
then it would have to establish another set of chan-
nels to move data in the opposite direction. Lakes
may map some or all of the logical channels onto
a single physical link, but this will be invisible to
the application. The interface to physical commu-
nication links is provided through one or more link
support modules (LSMs) as shown in Figure 1; in-
formation in the address book identifies which LSMs
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provide access to a particular node and supplies
the connection details.

The capabilities of a channel are governed by its
quality-of-service {QOS) characteristics, initially ne-
gotiated with Lakes during the creation process,
which allow data transmission capabilities to be tai-
lored to the requirements of the expected traffic.
Such parameters are defined according to the sig-
nal type, which distinguishes analog from digital
data. Typically for digital data, QoS is defined in
terms of parameters such as throughput, latency,
and jitter. Rather than expressing these parame-
ters in the applications directly, a symbolic refer-
ence to collections of values, known as the data
class, should be used, thus allowing the values to
be changed without affecting the applications. Such
adata class might be, for example, “G.711 Audio”
for an ITU-T G.711-compliant audio stream, with
the translation into detailed communications char-
acteristics defined elsewhere.

Channel characteristics can be renegotiated after
channel creation. Channel QOS may also be left un-
defined; this allows channels to be created whose
operational characteristics depend upon the re-
sources available when data are being sent down
the channel. This reflects the reality of many ex-
isting data networks where any particular QOS can-
not be guaranteed but is wholly dependent upon
the behavior of the other simultaneous users; to-
ken-ring and Ethernet local area networks exhibit
this form of behavior.

A feature of Lakes is that channels may be col-
lected into named sets; these sets are known as
channel sets and each must also be associated with
achannel set type. Four such types exist: standard,
merged, serialized, and synchronous. The names
assigned to channel sets are local to an application
sharing set; thus duplicates may exist among shar-
ing sets.

Standard channel sets provide a convenient way
of referring to a collection of channels, for exam-
ple for program channel management. This group-
ing does not change the individual behavior of the
constituent channels in any way. Thus, in Figure
4, application A is sending squares to application
C while application B is sending circles. At C two
ports exist: one terminates the channel established
by A and from it C receives squares; the other ter-
minates the channel established by B and from it
C receives circles.

IBM SYSTEMS JOURNAL, VOL 34, NO 3, 1995

Figure 3 Channels and ports
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The merged channel set groups a collection of
channels together in a way that, for any single ap-
plication, the sending ports and receiving ports for
all channels in that set are each combined into a
single such port. A typical use of the facility is il-
lustrated by an application that sends data to mul-
tiple destinations; this can be achieved by making
all the channels to those destinations members of
a merged channel set; then the data presented by
the application at the single sending port will go
to all destinations. More importantly, an applica-
tion can often arrange for channel creation in a
merged channel set to be handled automatically by
Lakes, and so, as receiving applications come and
go, the data are sent to all the correct receiving
ports without further programming. This feature
makes merged channel sets particularly attractive.
For example, in a collaborative chat application it
is sensible for each application to establish a chan-
nel to itself; down the channel it sends its own
user’s contribution, and writes to the screen the
information it receives back from the channel. As
the application is shared with others it will receive
their contributions as well as its own; as others
leave, their contributions will disappear. Figure 5
illustrates two examples of the merged channel set;
the first is identical to the example used earlier for
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Figure 4 A standard channel set
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a standard channel set, where applications A and
B are sending squares and circles respectively to
application C. The specification of a merged chan-
nel set means that the receiving port at C is used
for the second channel, and thus both circles and
squares are available at C. The identity of the
sender is not lost through the use of a merged chan-
nel set; each data block is presented with the orig-
inator identified.

The second example in Figure 5 is more compli-
cated in that A and B are sending data respectively
to C and D through the same merged channel set.
This is interpreted to mean that all the senders of
the data are attempting to send to all the receiv-
ers; thus both C and D receive all the blocks sent
by A and B. There is no attempt to interleave the
data in an identical way, and therefore, although
C and D receive all the data and they both receive
data from A and B in the order in which the data
were sent, it may be that the interleaving of the
blocks is seen differently by C and D.

The serialized channel set is closely related to the
merged channel set and performs the same func-
tions. It has the additional property that the inter-
leaving of data from the various sources is per-
formed identically for all receivers. If serialization
could be implemented without affecting QOS, then
the serialized channel set could always be used in
place of the merged channel set. However, since
this is not the case, it is necessary to offer both
capabilities to applications. A measure of the qual-
ity of the implementation of data serialization is
the size of the added delay as determined against
a universal clock and the fidelity of the data order-
ing with respect to its actual sequence. Implemen-
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tation of serialization need not involve sending the
data to a common serialization process; instead to-
kens can be used to represent data blocks. The to-
kens can be serialized and the order returned to
the delivery mechanism. Algorithms have also
been developed ' to distribute the serialization
process, and the selection of nodes to be used can
have dramatic implications on performance. The
Lakes architecture does not dictate the algorithms
tobe used; this is an implementation decision. Fig-
ure 6 illustrates a serialized channel set.

The fourth channel set type, the synchronized
channel set, exists to allow applications to specify
that data blocks on multiple, otherwise indepen-
dent, channels are to be tied together in time and
therefore delivered together, but through the in-
dividual ports belonging to their respective chan-
nels. A number of implementation strategies ex-
ist; the data blocks from the constituent channels
can be tagged with identifiers and then either in-
terleaved down a single communications link or
transmitted through independent links and then
sorted and sequenced. Normally synchronized
channels are used for multimedia streams such as
audio and video; in these cases the QOS character-
istics will have been set to ensure low latency and
jitter. The synchronization performance is there-
fore established by the QOS for the constituent
channels. Figure 7 illustrates a synchronized chan-
nel set.

Channels, and their associated ports, can be cre-
ated explicitly or implicitly. Explicit creation uses
the LakCreateChannel request, specifying the re-
quired channel characteristics; likewise new chan-
nels can be added to an existing port through the
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Figure 5 A merged channel set
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LakAddChannel request. This mechanism also al-
lows a port to be shared across channels belong-
ing to different channel sets; for example, data can
be sent from a single port to one set of destinations
belonging to a merged channel set and to a second
set of destinations belonging to a serialized chan-
nel set.
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Channels can be implicitly created as a conse-
quence of an application being, or becoming, a
member of an application sharing set. For exam-
ple, if unshared applications already have a merged
or serialized channel, and the channel set name
used is identical across these applications, then
when the applications share with each other, the
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Figure 7 A synchronized channel set
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additional channels required will be created auto-
matically. The result obtained is independent of
whether the share precedes or follows the explicit
channel creation. Applications are notified of chan-
nels implicitly created in this way and have the
same ability to accept or reject them that they
have for explicitly created channels. A channel,
however created, can be deleted through the
LakRemoveChannel request; the channel to be de-
leted is uniquely identified by specifying both its
sending and receiving ports. Certain QOS charac-
teristics of channels, such as throughput, can be
changed after channel creation through use of the
LakChangeChannel request.

The sending and receiving ports that terminate
channels have an assigned connect type—event,
command, or null—and are associated with a port
event handler. Event ports generate an event when
data are either available or required; command
ports allow the application to drive the receipt or
supply of data to the port via explicit commands.
Null ports are ports that are unable to supply data
to an application. An example is the sending port,
associated with an analog channel, of a video cam-
era. A port can be controlled through commands
specified in a LakSignalPort request. Signal com-
mands are issued to the local port and can be
passed to the next port or the end port in the chan-
nel or channel set. Normally the signal commands
for channel ports will be sent to the port event han-
dlers of the applications supplying or receiving
data, and may be used to stop, start, decrease, or
increase the data flow. The order of signals be-
tween a source and a target is maintained. Signal
commands sent to receiving ports in a serialized
channel set are serialized with the data, so that all
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destinations receive the same sequence of com-
mands and data. A receiving port can cause the
sending port to stop sending data down the chan-
nel by issuing a LakSuspendPort request, with the
option to either discard or deliver the remaining
data in the channel. Suspended data transmission
can be restarted by a LakResumePort request.

User exits can optionally be associated with ports.
These allow monitoring or manipulation of the
data, either after the data have been supplied to
a sending port or before they have been presented
by a receiving port. In the case of synchronized
channels, synchronization is carried out from the
time the data leave the sending port user exit to
the time data are presented to the receiving port
user exit.

Ports are associated with a data class that spec-
ifies the data type and data subtype that are sent
by a sending port down the channel or received by
a receiving port. The data type identifies the na-
ture of the data, for example, audio, video, file,
etc. Data type also distinguishes analog data from
digital data. The data types themselves are further
divided into subtypes according to the precise for-
mat of the data; examples of audio subtypes are
G.711, G.721, G.722, etc. The list of recognized
data types and subtypes is accessed by each Lakes
node from a body of customization information
available to that node. The data class may be que-
ried by an application independently of the data
stream itself; this facility assists application inter-
action. The data subtype may be specified differ-
ently at the sending and receiving ports of a chan-
nel, with Lakes performing the conversions below
the API. Certain characteristics of ports, such as
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Figure 8 Port connection and welding
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data class, event handler address, user exit, and
user information, can be changed after port cre-
ation through the LakChangePort request.

Ports can be connected together, via the LakCon-
nectPorts request, to establish channel-to-channel
communication, so that an application may redi-
rect its inputs to another application for process-
ing. When ports are connected, if no user exits have
been established, no further application involve-
ment in the data flow is required, but it is allowed,
for example, with LakSignalPort. Connected ports
allow the streaming of data between applications,
between devices, and between an application and
adevice. Connected ports can be subsequently dis-
connected using the LakDisconnectPorts or may also
be welded using LakWeldConnection, so that the con-
nection is permanent and persists even when the
local application has terminated. Welding removes
any user exits that may be present on the connected
ports. The resulting channel behaves as though it
had been originally created to run from its source
directly to its destination, and may be physically
reestablished if appropriate. Figure 8 illustrates
port connection and welding.

Connection and welding of channels allows the
transport of data to drop below the API. Lakes has
the option, in some cases, of effecting the connec-
tion either at a very low level at that node or re-
routing the flow away from that node.

Negotiation of channel quality of service. Applica-
tions communicating through channels have many
requirements for both QOS and bandwidth nego-
tiation and control. Accordingly Lakes provides
mechanisms to allow applications to: request un-
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specified QOS and be given whatever is dynamically
available, request a particular QOS, and manage
their own communications resources. Another
mechanism allows the call manager to manage
communications resources across applications.

For those applications that have unspecified QOS
characteristics, channels may be established us-
ing the LakCreateChannel request, leaving the QOS
parameters empty. Throughput and other charac-
teristics will not be guaranteed by Lakes and may
change dynamically, depending upon availability.
Such channels will take from whatever bandwidth
is currently available; this includes taking from
bandwidth that may have been reserved but is not
actually in use.

Certain applications have fixed QOS requirements
for the channels that they need to communicate
with other applications. In these cases each chan-
nel may be established directly, using the LakCre-
ateChannel request. The resources are allocated by
Lakes if they are available. If the channel charac-
teristics are changed or the channel is deleted, any
freed resources are returned to Lakes.

Some applications are more flexible in their QOS
requirements and need to determine whether an
acceptable range is available to a particular node
before creating the channel. Although this can be
accomplished through the LakQueryResource re-
quest by specifying the target node, unfortunately
if used in this way, the call returns only what is
dynamically available, and there is no guarantee
of availability when a subsequent LakCreateChan-
nel is issued. One way to avoid this situation is to
issue only the LakCreateChannel to attempt to es-
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Figure 9 A Lakes logical device

AWARE APPLICATION

LakSignalPort

LAKES PORTS: 4

tablish an appropriate channel and to reissue the
request with a lower QOSs specification if the at-
tempt fails. Lakes attempts to return an indication
of the available Q0S when a channel create fails.

Other applications have flexible QOS requirements
but need the ability to manipulate the allocation of
communications resources. For example, a desk-
top conferencing application may wish to use all
the bandwidth available all the time and allocate
it to a combination of video and audio channels;
however, when data services are required, it may
wish to temporarily reallocate some video band-
width to data, restoring it to video use later. If the
channels are requested directly from Lakes, there
is no guarantee that released bandwidth will be
available to that application later. This problem is
overcome by the concept of named resource sets.
Applications can request that communications re-
sources to a remote node be allocated to an appli-
cation-owned resource set; such resources are
identified by the appropriate QOS parameters.
Channels are then allocated from this set and any
resources freed are returned to the resource set.
Only the call manager can request resources di-
rectly from Lakes; other applications must request
resources from those acquired by the call manager,
either directly or indirectly, from other applica-
tions. This gives the call manager the ability to
manage competing requests for resources between
applications. This need arises when multiple inde-
pendent applications are involved in a desktop con-
ferencing session, for example, chat, chalkboard,
video, and audio applications. Each of these is un-
aware of the others, but all request bandwidth to
the target node. The call manager can monitor their
resource requests and allocate resources effec-
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tively. In situations of this kind the call manager
will typically have acquired the resources to the
remote node before a LakShareApp request has been
issued to applications at that node, so that the re-
sources are reserved prior to the activation of the
collaborating applications. The alternative ap-
proach, where resources are requested after the
collaboration has been started, is also permissible.

In some cases, the call manager needs to negoti-
ate with applications to determine what resources
are available and to defer any reallocation until the
negotiations are complete. For example, a movie
application starting part way through a call may
require a certain minimum bandwidth that is not
available. Other applications may be already run-
ning that, between them, are using more than that
bandwidth and can be flexible in their usage. Lakes
provides requests that enable the call manager to
ask applications to prepare to free the bandwidth
and later to actually free it, if sufficient total band-
width is available.

Logical devices. Channels, as described previously,
provide application-to-application communication
but do not address the problems of coupling data
sources and sinks, which are normally devices such
as video adapters, audio adapters, and others. In
some cases obvious physical entities are not in-
volved, but windows, clipboards, and other soft-
ware elements play a similar role. Lakes provides
device access through a notion of logical devices,
which are abstractions of these entities. Logical
devices are independent of the specific details of
the particular devices and provide program inde-
pendence. Lakes does not determine the number
or nature of the logical devices but presents a pro-
totype API through which all may be controlled, or
device data supplied or accessed. In Figure 1, these
calls are illustrated as an extension of the Lakes
API. The logical device interface (LDI) provides the
mechanism through which such logical devices are
integrated into a Lakes implementation. A logical
device can be exploited in Lakes, not only to al-
low easier access to system resources and devices,
but also to allow end-to-end data streaming. One
use of a logical device is to provide access to the
inputs and outputs of non-Lakes applications and
thus to allow such applications to be used collab-
oratively.

A logical device can be represented as shown in
Figure 9.
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Figure 10 Connecting a Lakes logical device to a channel
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Logical devices are identified by name. When
opened with the LakOpenDevicePort request, they
present a port to the application; a single logical
device can have multiple such ports, and a device
can simultaneously present ports to different ap-
plications at the same node. The LakOpenDe-
vicePort request allows characteristics to be estab-
lished peculiar to that device, for example, the data
formats to be used. Opened logical devices can be
controlled through commands, specific to the par-
ticular logical device, sent via the LakSignalPort re-
quest.

Applications can connect a port on a logical de-
vice to a channel port; this enables data to flow to
or from the device and across the channel. This
data flow does not require further application in-
volvement once the connection has been made.
This is illustrated in Figure 10.

Data from the camera are streamed through the
camera logical device, across the channel, and then
displayed by the window logical device. The ap-
plication can control the two logical devices via
the LakSignalPort call; when the transmission is no
longer required the application can disconnect the
ports, close the devices, and remove the channel.
Figure 11 illustrates the data paths involved in this
example at the sending node; without port connec-
tion, device data are sent to the application from
adevice port, and from the application to the chan-
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nel with Lakes, using the full communications
stack, labeled LAKES. With port connection, low-
level paths between the device and the communi-
cations adapter can be exploited, such as multi-
vendor independent protocol connectors or bus
mastering, with the application still retaining con-
trol to the device and channel ports.

Certain logical devices present standard interfaces
so that existing drivers can be more easily accom-
modated; the audio and video logical devices ex-
ploit this with a concept of replaceable audio and
video support modules (ASMs and VSMs in Figure
1), thus enabling the standard logical devices to be
interfaced to existing audio and video subsystems.

Tokens. Collaborative activity frequently requires
that resources owned by a node, for example, a
printer device, be shared with other nodes. Such
resources are considered to be global, and appli-
cation access to them is controlled through global
tokens. Other resources are local to application
sharing sets, for example, a shared pointer, and
access to these resources is managed through ap-
plication tokens. A token owner determines the sig-
nificance of a token and allocates it on request. At
the discretion of the owner, queued requests may
be permitted, and more than one concurrent holder
of a particular token may be allowed. Token own-
ers can optionally force holders to hand back to-
kens.
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Figure 11 Data flows on port connection
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Global tokens share a common name space
throughout the Lakes network, but since applica-
tions are expected to know the identity of the node
holding the required globally available resource,
duplicate global token names are permitted. Fa-
cilities for the broadcasting of global token avail-
ability information are not provided; instead, the
call manager at the node with the global resource
isresponsible for resource management and there-
fore owns any global tokens. Such tokens may be
held by an application on an exclusive or shared
basis; token ownership cannot be transferred via
Lakes. Requests for a global token may be queued,
with the queue being held above the API and man-
aged by the owning-node call manager. Access to
global tokens is not restricted to a sharing appli-
cation set.

Application token name space is restricted to the
application sharing set. A token may be owned by
amember application, and ownership can be trans-
ferred. Application tokens may be held exclusively
or shared. Requests for tokens may be queued,
with the queue held above the API and managed
by the current application token owner.

System considerations

Whereas the previous section described individ-
ual components and interactions, this section de-
scribes services defined by the Lakes architecture
that apply across an entire system.

Monitoring, audit, and control. The Lakes archi-
tecture allows applications to monitor requests and
events at a Lakes node. A LakBeginMonitor request
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starts monitoring; specific classes of activity can
be set, and within these classes, individual requests
and events selected. Control of one application by
another is accomplished through audit managers
and is provided to allow access, costing, and bill-
ing policies to be implemented. At any node a
Lakes application may become an audit manager
by issuing the appropriate API call. Two kinds of
audit managers are supported: local and remote.
Both receive information on application activity
and may be required to approve certain actions;
additionally local audit managers give permission
for their node to be remotely audited. Depending
upon the scope, almost all activity by an audited
application raises either an information event or
an authorization event, first at the local audit man-
ager(s), then at the remote audit manager(s). In-
formation events such as removing a channel do
not require audit manager approval; authorization
events require the approval of all the audit man-
agers.

Intelligent networks. Lakes allows the exploitation
of many of the additional services provided by cur-
rent and future intelligent networks, because it
offloads functions from the application such as data
cloning, data merging, data conversions, data rout-
ing, data serialization, and data synchronization.
Although these functions can be implemented at
the local node, in some cases they can be more ef-
ficiently implemented within the network itself. For
example, a simple implementation of data serial-
ization requires that all the data in the serialized
channel set be sent to a single point, then cloned
and distributed to the receiving nodes. If this func-
tion is to be performed at the application level in
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Figure 12 The ITU-T H.320 recommendations
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a non-Lakes implementation, a decision must be
made between the collaborating instances as to
which node is selected to implement the function.
It is desirable that this node have efficient commu-
nications access to the other nodes and the nec-
essary resources available. Most application pro-
grammers are not interested in these details, and
an arbitrary node is likely to be selected and to re-
main fixed. From a Lakes application perspective,
without serialized channel support, the task would
have been even more difficult. The application
could not determine the nature of the network and
therefore would have no basis on which to make
an informed choice. In fact, the optimal location
for the serialization process may be a node in the
network that is not even part of the collaborating
set but has the necessary resources and links. A
sophisticated implementation of Lakes, by remov-
ing this function from applications and making its
existence explicit through the API, can cooperate
with other instances across the network to deter-
mine the implementation details.

Data cloning provides another example in which
the underlying network is more able to determine
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an efficient implementation than any particular
node. When data must be sent to multiple desti-
nations across a heterogeneous network, any one
application can send the data directly to each tar-
get. In practice, with knowledge of the network
and access to intermediate nodes, it would be more
efficient to replicate the data at points in the net-
work and execute a tree-structured transmission
scheme.

Interoperability with ITU-T H.320 and T.122
recommendations

Because of the importance of the H.320 and T.122
recommendations, they are more fully discussed
in this section, which also includes several scenar-
ios illustrating how Lakes supports these recom-
mendations and how it interoperates with an MCS
network.

The H.320 recommendation. The H.320 recommen-
dation provides for visual telephony services over
an isochronous digital network, for bandwidths up
to 1920 kilobits per second. An overview of the
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Figure 13 The ITU-T T.120 recommendations
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H.320 family of recommendations is shown in Fig-
ure 12.

H.320 assumes that three types of information,
video, audio, and data, need to be combined and
then transmitted. Each of these data types is en-
coded in a unique way, combined together with the
necessary control information, and then sent over
the network. The key elements of the H.320 rec-
ommendation are

* Video content: Encoding is defined by the H.261
recommendation.

* Audio content: Encoding is defined by AV.250,
a reference to a series of recommendations in-
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cluding G.711, G.722, and G.728. Audio is de-
layed for synchronization purposes since com-
pression and decompression for video takes
longer than for audio.

* Data content: This is not defined by H.320 but
is specified in the later T.120 series of recommen-
dations.

* Multiplexing of audio, video, and data: H.221
partitions the available communications band-
width to support multiple logical streams.

* System control and signaling: Control of the net-
work by the terminal, for example, establishing
the call, is transmitted over the D channel for
1SDN according to 1.400. Control information be-
tween the connected terminal equipment is de-
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fined in H.320 and uses facilities available in rec-
ommendations H.243, H.242, H.230, and H.221.
An example is the selection of an audio encod-
ing scheme.

The T.120 recommendation. The T.120 recommen-
dation is designed to support what is described as
“audiovisual conferencing services, where a con-
ference refers to a group of geographically dis-
persed nodes that are joined together and that are
capable of exchanging audiographic and audiovi-
sual information across various communication
networks.” It refers to a collection of subsidiary
recommendations, as shown in Figure 13. Al-
though a wide variety of data transports are sup-
ported, it is only for digital telephony, using ISDN
or switched 56 kilobits-per-second services with
the associated H.320 recommendation, that audio
and video are supported. Extensions to T.120, to
both exploit ATM networks and support the full
range of multimedia traffic, are under development.

T.120 requires that the stack from the T.122 API
layer and below be used in a compliant conference.
Conference control is provided by GCC and this
component can be driven by the user, through an
application known as the node controller. All ap-
plications use MCS for communication and may also
issue commands to the GCC conference control
component.

Multipoint communication service. The multipoint
communication service (MCS) is a generic service
designed to support highly-interactive multimedia
conferencing applications. The basic concept is
that of a domain established over a collection of
point-to-point MCS connections; within the domain,
application clients can send and receive data. MCS
connections are therefore logical connections de-
fined across a physical connection; one physical
connection can support more than one logical con-
nection. To create an MCS domain, an MCS imple-
mentation at a workstation, known as an MCS pro-
vider, establishes a connection to a remote MCS
provider and binds this connection to a domain.
Other MCS providers can then establish connec-
tions to these providers and bind to the same do-
main; alternatively MCS providers already with
connections to a domain can bind further connec-
tions to that domain. In this way a domain can be
established, which can vary in complexity from
a simple point-to-point connection to a multi-
branched tree structure of connections. Figure 14
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Figure 14 MCS providers and domains
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illustrates the relationship between MCS providers
and domains.

Existing domains can be combined into a single do-
main. A restriction on the establishment of a do-
main is that it be created hierarchically; this is en-
forced by ensuring that, as each binding takes
place, the called provider is explicitly positioned
as either hierarchically superior or subordinate to
the calling provider.

Application instances (known as clients or users)
can attach to domains through their local MCS pro-
vider. In this way an application instance can be
attached to one or more domains. Figure 15 illus-
trates the relationship between application clients
and domains.

Once domain setup and client attachment is com-
plete, before data can be exchanged clients must
join the right combination of interaction channels.
Channels are effectively domain-wide addresses
for the delivery of data to all, or a subset, of the
clients of a domain. A client does not have to be
joined to a channel in order to send data to it, but
must be joined to it in order to receive data from
it. Channels are classified as static or dynamic and
have a numeric identifier; dynamic channels are
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Figure 15 Application clients and domains
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further subdivided into user, private, or assigned
channels.

Static channels are permanently available and any
clients can join at will. They provide a mechanism
for clients to send data to any subset or all of the
clients. Thus, for example, the clients in a domain
may have a convention to use channel 10 to broad-
cast to all members; to achieve this they all join
channel 10 and send on this channel data to be re-
ceived by everyone. Particular uses are allocated
to individual static channels in other standards, for
example, in the GCC and the T-series applications
recommendations. Dynamic channels require cre-
ation before they exist. A user channel is created
by the original user domain attachment request and
can only be joined by the client with that identi-
fier; this therefore provides a mechanism for any
of the other clients to send data on a point-to-point
basis to that client. Private channels are created
by a client, who becomes the owner of that chan-
nel and is the only user initially joined to it. The
owner can invite other clients to join or force cli-
ents to leave. Having been invited, other clients
can send data on the private channel or join it to
receive data from it. Assigned channels provide a

mechanism for allocating an empty channel to a

client; like static channels they can be joined at will,
but for these channels the identifier is allocated by
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MCS, thus ensuring that initially the requesting cli-
ent is the only client joined to that channel. Cli-
ents that join channels may subsequently leave
them; similarly MCS domain providers can force
clients to leave channels.

Once the participating MCS providers have con-
nected and bound to the domain, and clients have
attached and joined the right combination of chan-
nels, then the clients are ready to exchange data.
Two data services provide the actual transfer of
data. Mcs-send-data sends data packets on the
specified channel to all clients, except the sender,
joined to that channel. The data packets from any
client are delivered in sequence, but the packets
from multiple clients may be interleaved in differ-
ent orders at each receiving client, a consequence
of their being delivered using the most direct route
up and down the tree of MCS providers. A variant
of send data is MCS-send-data-with-responses,
which requires each receiving client to generate a
short response, with the responses from all receiv-
ers gathered at each level and traveling back along
the distribution path of the original message. MCs-
uniformly-sequenced-data-send parallels the send
datarequest, but guarantees identical interleaving
of data packets. The packets to be serialized are
sent to the top MCS provider, and from there are
dispatched, in the same sequence, to all receiving
clients and also to the sender. Data transmission
is associated with a priority specification with four
normally available: top, high, medium, and low.
These priorities are used to resolve the contention
issues that may arise during transmission. Asso-
ciated with each priority are bandwidth and latency
specifications.

In addition to data transmission facilities, MCS also
provides token management services, which may
be used by clients to control resources.

Interoperability aspects. Support of the standards
described is important for the reasons given ear-
lier. There are three primary cases to be consid-
ered:

1. An attached Lakes node is using H.320 stan-
dards for its own communication to another
Lakes node.

2. A non-Lakes H.320-compliant terminal, such
as a video telephone, is attached to a Lakes
node and sending audio and video, where:

a. Lakes applications are unaware that the ter-
minal is not another attached Lakes node.
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b. Lakes applications are controlling the re-

mote terminal directly as an attached device.

3. Anon-Lakes T.122-compliant device or work-

station is sending audio, video, or data to a
Lakes node.

Case 1is important because it allows Lakes work-
stations to use standard H.320 components for au-
dio, video, and data transmission to other Lakes
nodes using the ISDN or related public networks
applications. The H.221 data partitions are used
by Lakes both to send control data and to realize
appropriate Lakes channels. The video and audio
partitions are also used by Lakes for those chan-
nels with a data class that identifies the traffic as
standards-compliant. Many H.320 adapters are in-
capable of routing audio and video digital streams
to the workstation bus but instead have on-board
devices that either generate or accept these
streams. For example, the received digital video
stream may be converted to analog and mixed with
the monitor output to create a video display win-
dow. From a Lakes perspective, the application
controls audio and video through logical devices
and connects logical device ports to channels with
suitable characteristics. Lakes detects the logical
connection of the devices to the audio and video
channels and passes this information to the device
drivers. Through this mechanism there is no re-
quirement to route the data into the workstation
and thus the application is not written in an adapter-
dependent manner; an attempt to connect an au-
dio or video channel from such an adapter to a de-
vice not realized on the same adapter would
necessarily be rejected. Use of H.320 in this way
is not visible to applications.

Case 2a, still at the H.320 level, applies to many
situations where a standards-compliant device is
to participate in an interaction with one or more
Lakes nodes essentially as an equal partner, al-
though its function may be restricted; the most
common examples are a telephone or a videocon-
ferencing suite where the scenario is some form of
conferencing. This is provided for by the virtual
node and virtual application components of the ar-
chitecture, where Lakes simulates the events that
areal Lakes node would have generated. The non-
Lakes device appears as a virtual node to Lakes
nodes that communicate with it, while its various
features (video, audio, etc.) appear as virtual ap-
plications running at that node. A call from such
a device causes sharing with the identified local au-
dio and video applications, just as if a callhad been
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received from a node running those applications
remotely.

Case 2b is much less common than 2a, for the
H.320 equipment is now a remote, slave device un-
der application control. The local Lakes applica-
tion accesses it through a suitable logical device.
This allows much greater control but requires spe-
cific programming to handle the situation.

Case 3 is the most important because as T.120 and
H.320 protocols become commonplace, seamless
interoperability is required. The requirement is to
allow mixed network support so that a Lakes net-
work can freely interoperate with one or more MCS
hierarchies. One example is shown in Figure 16.

In order to preserve the integrity of both the Lakes
and the MCS programming models, this mixed net-
work must appear from a Lakes viewpoint as a
Lakes network, complete with application sharing
sets, and from an MCS viewpoint as a hierarchy of
MCS providers, with the application instances in a
domain. If it is assumed that an application exists
ateachnode, A, ... Agand A, ... A,, and that
all these instances are collaborating, then the two
views can be represented as shown in Figure 17,
assuming some allocation of instances to Lakes ap-
plication sharing sets.

The Lakes node providing the link between the two
networks simulates an MCS provider providing mul-
tipoint control unit services, and the actual Lakes
nodes appear as MCS providers subservient to this
bridge. Two views are possible; the preferred one
in Figure 17 simplifies the implementation of func-
tions such as data serialization, since they can be
carried out at a Lakes node for the entire network.

Since Lakes offers a superset of the MCS capabil-
ities, a Lakes API subset can be defined that is re-
alizable on the MCS nodes; no such subset of MCS
need be defined. Given the differences in the pro-
tocol streams produced by the two architectures,
interoperability is based upon the following ele-
ments:

» Application proxies in both environments that
simulate the real applications that each environ-
ment expects

s A Lakes call manager that establishes the appli-
cation proxies and controls their operation

Each proxy collects the events that the real appli-
cation should have received; it then uses the set
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Figure 16 A mixed network
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of application proxies in the other environment—
each of which represents a different application to
itself—to create a request from one of those that
will have an equivalent effect in that environment.
This mapping process can be controlled by the
Lakes call manager at the node supplying the in-
terconnection, and the Lakes audit manager can
be used to police the compatible MCS subset of the
Lakes API subset. This is illustrated in Figure 18
for a simple mixed network involving the four ap-
plications Al, A2, B1, and B2; one at each of the
Lakes nodes L1 and L2 and the MCS providers M1
and M2.
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This can be logically implemented as shown in Fig-
ure 19.

The Lakes network comprises two nodes L1 and
L.2. Atnode L1, application Al is running; at node
L2 there are three applications running: A2, b1 and
b2. All four applications have registered with Lakes
and joined a common application sharing set. From
an MCS perspective, node L2 appears as three MCS
providers; M3 is a multipoint control unit and M4
and M5 are running applications al and a2 respec-
tively, each of which has attached to the MCS do-
main. Applications al, a2, b1, and b2 are proxies
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Figure 17 Lakes and MCS views of a mixed network
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for the real applications Al, A2, B1, and B2. Thus
application bl receives the Lakes events that the
real application B1 would have received if it were
a Lakes application; instead bl passes these events
through the interface code that translates them into
MCS requests, where they are issued in the MCS do-
main via either al or a2 as appropriate. The con-
verse scenario holds true when the process is
viewed from an MCS perspective. The proxy ap-
plications operate only at the Lakes or MCS entity
level. It is not necessary that they understand the
application significance of the information that they
manipulate; only that they are able to convert be-
tween MCS and Lakes primitives.

Thus, for Lakes applications that limit themselves
to the subset API, full interoperability with MCS
nodes is possible without any compromise to the
Lakes model; moreover the full range of Lakes net-
work configurations is enabled and all the local
node capabilities of the architecture, such as log-
ical device support, may be exploited without re-
striction.
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Figure 18 A simple mixed network
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The functional capabilities of Lakes beyond the
subset API, such as multiple audio and video
streams, synchronization across channels irrespec-
tive of stream format, passive operation, resource
management, signaling, and certain call manage-
ment functions and audit operations, can be ex-
ploited when interoperability with H.320- or T.120-
compliant nodes is not required.
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Figure 19 Implementation model
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Summary 3. R. Baecker, W. Buxton, and J. Grudin, Readings in Hu-

The Lakes architecture meets the requirements of
a broad range of real-time multimedia collabora-
tive applications and permits exploitation of net-
work connectivity, capability, and intelligence. It
allows the development of a range of call models
above the API and addresses additional opportu-
nities beyond the range of desktop conferencing
over digital telephony networks, which has been
the focus of the ITU-T H.320 and T.122 recommen-
dations. Lakes also allows full interoperability with
these standards, which is an essential prerequisite
for any successful product implementation in this
field.

*Trademark or registered trademark of International Business
Machines Corporation.
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