
An architecture 
for multimedia 
communication  and 
real-time collaboration 

by B. K. Aldred 
G. W. Bonsall 
H. S. Lambert 
H.  D. Mitchell 

The paper  presents the requirements  for  real-time 
multimedia  communication in a  collaborative 
environment  and describes how the requirements 
can be met through the IBM Lakes  architecture. 
The initiatives of the /TU-T through the T. 120 
series of recommendations are described,  and 
the interoperability of Lakes  with  these 
recommendations  is  discussed. 

C omputers attached to networks  are commonly 
used for  collaborative  activity;  this is sup- 

ported by a  variety of mail, messaging, and  data- 
base products. In most cases  these applications are 
either  person-to-person information exchanges 
where  the  parties  are working together,  but  not 
simultaneously, or  are person-to-machine  interac- 
tions.  The first category is illustrated by mail ap- 
plications, where  electronic  documents  are  pro- 
cessed first by  one  party  and  then  by  the  other; 
although the  turnaround time can  be very  short, 
the  essence of the application is alternate  activity. 
The  second  category  involves  only one person di- 
rectly;  therefore  there is no  concept of a  natural 
human dialog to be sustained. 

In  contrast, real-time collaboration  has  two  essen- 
tial elements:  people  are  directly involved with 
each  other,  and simultaneous activity by these peo- 
ple is the  essence of the  interaction.  Examples  in- 
clude desktop conferencing, distance learning, help 

desk  operation,  remote  presentations,  brainstorm- 
ing, and  shared  document editing. Real-time col- 
laboration requires multimedia communication, be- 
cause  the traditional data  exchange  between 
workstations  needs to  be enhanced with audio to 
allow conversation among the  participants  for 
effective human interaction. An alternative, 
equally valid perspective is to  consider  the  ex- 
changes as data  enhancements to telephony. In ad- 
dition to data  and audio, live video  can  be justified 
for some,  but  not all, applications. In real-time col- 
laborative  activity,  natural  interaction  between 
people requires  low-latency  transmission so that 
responses are not  noticeably delayed. This  aspect 
is much  more demanding than  is normal in exist- 
ing messaging, mail, and  related  networked appli- 
cations.  Support  for  the  audio  and  video  streams 
also demands isochronous communications to  pre- 
vent distortion, and this  is  not commonly available 
in data  networks. 

A current  topic  for  research  and  development  ac- 
tivity is the efficient provision of appropriate mul- 
timedia communication  services. Much of the  ef- 
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fort has focused either on the human factors of 
computer-supported collaborative work  or on the 
associated computing science aspects. ’-’ Other ac- 
tivities have explored the social and organizational 
implications. 435 Rather  less academic interest  has 
been  directed toward the design and specification 

New technologies  based on 
ATM combine 

isochronous capabilities 
with high bandwidth. 

of generic application programming interfaces, al- 
though this has been a topic for computing and te- 
lephony organizations. Many individual and col- 
lective developments are underway, although little 
has  been published for competitive reasons. 

From  a  standards viewpoint, the initiative by the 
International Telecommunication Union-Telecom- 
munication Standardization Sector (ITU-T) through 
the draft recommendations of the  various T.120 
committees is of considerable interest, with the  de- 
velopment of the Multipoint Communication Ser- 
vice (MCS)~ and the associated Generic Conference 
Call (GCC).’ Previous to this work  the H.320 rec- 
ommendation provided the basis for audio and 
video communication over  the integrated services 
digital network (ISDN) and allowed the develop- 
ment of videoconferencing services.  The require- 
ments met by the H.320 recommendation were for 
an endpoint attached  to  the  network to exchange 
a single audio stream, and optionally a  singlevideo 
stream,  with  other  users; multipoint operation was 
being provided by multipoint control  units within 
the  network itself. Compatibility with the existing 
equipment was of primary importance and this dic- 
tated call setup and the audio formats. Also rec- 
ognized  in the H.320 recommendation was the need 
for data communication such as file transfer and 
document exchange, and therefore provision for 
multiplexing was included for data. 

The H.320 recommendation has  been widely 
adopted for videoconferencing and provides in- 
teroperability  between different manufacturers’ 

equipment; furthermore it has encouraged the  de- 
ployment by  network  operators of standard mul- 
tipoint control  units for multiway conferencing. 
However,  the  absence of any definition of the  con- 
tents of the  data  channel  has precluded interop- 
erability for data  services and this deficiency has 
given rise to the T.120 series of recommendations. 
Hence MCS provides multiple logical data channels 
to a  user and allows multiparty operation, thus lay- 
ing a foundation for collaborative data  services. 
GCC builds on MCS to provide call management for 
conference setup and tear-down, while other  T-se- 
ries recommendations define application protocols 
for file transfer and shared  whiteboards, with oth- 
ers  to  be added in the  future. 

The combination of the H.320 and T.120 recom- 
mendations will be important in  allowing interop- 
erability between desktop conferencing users  over 
public switched networks. However,  the real-time 
collaborative opportunity is much greater than the 
scope of H.320 and T.120 combined; some exam- 
ples will illustrate the problems still to be ad- 
dressed. 

From  a personal computer (PC) as opposed to a  te- 
lephony perspective, audio and video  support  is 
rich and varied. Compact disk standards provide 
the basis of PC audio, and many video technolo- 
gies are already in use,  with quality approaching 
and moving beyond that of television. The G.711 
audio and H.261 video recommendations of H.320 
are not always acceptable  substitutes, and the  loss 
in quality will meet  resistance from customers 
whose expectations are  set  by domestic television. 
PC networks  are  characterized  by  extreme  diver- 
sity and do not normally have  the  isochronous ca- 
pabilities of telephony networks; although their 
bandwidths are typically orders of magnitude 
greater, their high latency and jitter  are problem- 
atic. New technologies, such as those  based  on 
asynchronous  transfer mode (ATM), address  these 
deficiencies and combine isochronous capabilities 
with high bandwidth. Such  capacity allows video 
compression without loss of information, combin- 
ing  high quality with low latency. 

Simple hierarchical topologies as envisaged by  the 
authors of the ITU-T recommendations are not typ- 
ical of installed corporate  computer networks; 
complex meshes exist and the  constituent links 
have widely varying, and often unpredictable, 
characteristics.  Frequently  the challenge is to ex- 
ploit what  exists while allowing new capabilities 
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to  be selectively integrated into  the  infrastructure. 
Multiple audio  and  video  streams  per  user  are  re- 
quired for  some applications; for example, review- 
ing of television commercials, and synchronization 
between multiple audio, video,  and  data  streams 
is desirable. An architecture  that classifies streams 
into audio, video,  or  data fails to recognize that 
the  true  distinction is to  be made  on  the  basis of 
the  communications  requirements, or quality of 
service  needed,  for the stream,  independent of its 
content. 

From an application perspective,  the  requirement 
is not normally for multimedia communications but 
for  distributed multimedia device  connectivity. 
With few exceptions,  most multimedia streams 
originate from devices, and  the  need is to trans- 
port  the  output of a  source  to  one  or  more remote 
destination  devices  and  provide  end-to-end,  de- 
vice-to-device  services.  Many of the  problems are 
to  be found at  the  end  points,  where  the  devices 
are coupled to communication  networks using the 
shared  services of an operating  system,  processor, 
and bus. 

Today  the  telephone is the natural  choice  for real- 
time collaboration  and  no  viable  alternative  exists 
for  most  people; as demand increases  for existing 
telephone calls to  be enriched with data exchanges, 
and ultimately with video  services,  the  personal 
computer  is  destined to become  the  instrument  for 
personal  communications.  This  can be  seen either 
as  an evolution of the  telephone, or  as an evolu- 
tion of the  personal  computer,  and although the 
result  is the same in both  cases,  the  process  isvery 
different. Equally  interesting  is  the  nature of the 
network to which  the multimedia personal com- 
puter  is  attached, which can be  the telephony  net- 
work enhanced to supply the  necessary bandwidth, 
or a  computing  data  network  enhanced to  support 
low-latency  isochronous communication. 

This  section  introduced  the  need  for real-time col- 
laboration using multimedia communications. Fol- 
lowing sections clarify the  requirements and de- 
scribe  the IBM Lakes  architecture designed to meet 
these  requirements. 

The  real-time  collaboration  requirements 

The detailed requirements  for  a real-time multi- 
media communications platform arise from three 
sources:  the  needs of the application programmer, 
the  nature of the networks  that  form the collab- 
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orative  infrastructure,  and  the  demands of users 
and product  developers.  Requirements from each 
source follow. 

From  an application programmer perspective, it 
is  preferable if applications can be  developed in a 
platform-independent  manner,  thus encouraging 
portable  code  that  can  be migrated between  sys- 
tems. Also, applications should be  independent of 
the physical communications  network  and  thus 
able to perform correctly  when  changes  occur in 
that  network.  In  other  words,  applications should 
be programmed in terms of the logical, rather  than 
the physical, properties of a  network, typically ex- 
pressed in quality-of-service  parameters  such as 
throughput,  latency,  and  jitter. 

The  environment should support applications 
simultaneously  interacting with one  or more  other 
applications in either  an  independent or a  depen- 
dent  way.  As  an illustration, an  audio application 
may wish to handle multiple simultaneous calls, 
where  each call involves  one or more  other  audio 
applications. 

The  interaction  between applications should be 
based upon peer-to-peer  responses  since  there  can 
be  no  certainty  that  a  central application will be 
available to mediate behavior. Peer-to-peer design 
in a  multiuser  environment allows client/server 
support to  be implemented as a special case,  be- 
cause  a client can assume the responsibility for pro- 
viding common  services. 

The  applications should be  able  either  to handle 
all aspects of application-to-application collabora- 
tion themselves, or  to delegate  functions to oth- 
ers,  for example, the  association  and  disassocia- 
tion phases  between applications. Such delegation 
simplifies the provision of a  consistent  user  inter- 
face  for call control, yet allows individual appli- 
cations  to specialize in particular  collaborative 
functions,  for  example, in shared  text editing. 

Applications should be  able to collaborate  freely, 
without  restricting  themselves to particular  part- 
ners. Such  a  desirable  objective is inherently un- 
achievable  but flexibility can  be included through 
careful design, for example, by  the  use of self-de- 
scribing data  streams  whose  format and content 
description are available independently of the  data. 

Any  applications  already  written  and installed 
should be  able to  be used collaboratively  without 
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modification. This  requirement  can normally be 
only partially satisfied, but  nevertheless useful 
functions  can be offered. Thus  an existing single- 
user application can  rarely  be  made fully multiuser 
without  access  to  the  source  code,  but  its  inputs 
and  outputs  can usually be  made  accessible  to  re- 
mote  users. 

Other  requirements  arise from a  networking  per- 
spective.  Both digital and analog networks should 
be  supported. Analog audio and video  capabilities 
are frequently available at lower cost  than their dig- 
ital counterparts, although this is slowly changing. 
Ideally, applications should be unaffected by net- 
work migration from an analog to a digital com- 
munications base. Multiparty communications are 
also  required  and  this  capability  needs to  be  con- 
structed  out of the  various underlying transport 
networks available and  described  through  entries 
in address  books  or  directories. 

Network traffic  in collaborative  situations is in- 
creasingly multimedia in nature, containing not just 
coded  data  but  one  or  more  audio  and  video 
streams.  This  requires  a  smooth handling of these 
continuous  data flows, with low latency  to  ensure 
good usability. A telephony  system model, where 
data flows are directed  and  connected, is more 
suited  than one in which the applications them- 
selves  move  data  between links and devices. Col- 
laboration  frequently  involves  both  computer  and 
telephone  networks  and  devices, and the distinc- 
tion between  these is of little interest to  users and 
should therefore  be hidden. Intelligent networks 
can  be  exploited, allowing functions  such as  data 
serialization  to  be  removed from applications  and 
implemented more efficiently within the  network 
itself. 

A third set of requirements emerges from the  needs 
of customers,  users,  and  product developers. Stan- 
dards compliance,  for  example  with  H.320  and  T. 120, 
is mandatory to  ensure guaranteed interoperability. 
An open specification is required, with published  in- 
terfaces and protocols sufficiently detailed to allow 
independent implementations or extensions. 

This  paper  describes  the IBM Lakes  architecture, 
which  is  intended  to  meet  the  above  require- 
ments.s,9 It  is  based on experience gained with the 
IBM Person-to-Person*  desktop conferencing prod- 
uct  and  studies designed to extend  the range of 
applicability into  the  broader fields of real-time col- 
laboration. 
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Figure 1 Principal Lakes interfaces 
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A key decision in the provision of generic program- 
ming platform support for collaboration is the 
stance  taken with regard to call models. 12-15 A call 
model captures  the  rules of behavior  that  are to  be 
enforced  between the collaborating parties.  Some 
questions  that  a call model can  answer  are: 

How is a call established? 
What equi 
What facil 
Who is in control? 
How is it known who  is in control? 
How is a call extended? 
How  does  a call end? 
How  are  the  actions of users  made known? 

Call models in desktop conferencing products  are 
based on those in conventional telephony. It is pos- 
sible for  the application programming interface to 
reflect one  or  more of these call models, or  even 
to allow models to  be tailored to suit  user  prefer- 
ences;  alternatively  the call model can  be regarded 
as being above  the  interface  and imposed by  one 
or more applications. Lakes  takes  this  latter  ap- 
proach  because of the greater flexibility 1 
The  Lakes application programming interface is 
based  only on the  assumption  that  a  network of 
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Figure 2 A possible Lakes  network 

architecture  that  any  node,  independently of any 
others,  can dynamically join or leave  the  network. 
The  structure of the physical network itself is  not 
presented to applications  and  cannot  be  deduced. 
It  is  a  necessary  condition  that all nodes  can  be 
physically interconnected,  but no connection  pat- 
tern is prescribed  or  excluded.  Thus multiple con- 
nections  between  nodes  can  exist  and will be  ex- 
ploited where possible, and  the indirect access  to 
one node  via  other  intermediate  nodes  is possible. 
The links between  nodes  can vary in type,  capa- 
bility, and  protocol. An example of such  a Lakes 
network  is  shown in Figure 2. 

In  the figure, workstations F, A, and B all have 
ISDN capability and can  connect in a pair-wise fash- 
ion using the public ISDN network. B and C are also 
equipped with  token-ring  adapters  and  can com- 
municate  with  each  other  over  the local area  net- 
work. C and D have  asynchronous  adapters  and 
a  dedicated link between their ports. F, E, and D 

form an  Ethernet local area  network. Lakes ap- 
plications on all nodes will have logically direct  ac- 
cess  to all other  nodes. Lakes itself may realize a 
connection from, say D to A, either by using E and 
F or  by using C and B; the  choice will be governed 
by the specific quality-of-service requirements, the 
state of the  network,  and by the  customization, or 
profile, data  accessed  through  the  resources level 
interface  and  the profile access module as  shown 
in Figure 1. 

Although Lakes nodes  are generally workstations 
running applications, it is  sometimes  convenient 
to regard other  equipment as a Lakes node  with- 
out normal capabilities. A Lakes implementation 
at one node can allow certain attached devices such 
as telephones or  video telephones to behave as 
though they  are  attached  Lakes  nodes.  It  provides 
this by simulating a virtual application at  a virtual 
node to represent  the device. The advantage of this 
approach is that an appropriate application pro- 
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gram written to communicate with real Lakes 
nodes will now also communicate with simulated 
nodes  without application device-specific code. 
From  a  user  perspective,  telephones and video 
telephones  can  thus  participate in desktop confer- 
encing and  other applications, with a  Lakes node 
performing the role of a media server, mixing au- 
dio and selecting the  video for viewing. 

In  order for Lakes  to  be fully active  at  a node, one 
particular application must be running at that node. 
This application plays a unique role and is known 
as the call manager.  The name is misleading and 
suggests that  the  job of this application is to pro- 
vide call management facilities. From  a purely 
Lakes  standpoint this is  not  the  case;  the job of 
the call manager is  to respond to certain events that 
are  generated by  Lakes and to  supply installation, 
application, or user-generated information. The 
call manager is involved in resource management 
and gives permission for applications to reserve 
communications bandwidth. Many call managers 
may be available for execution at a particular node, 
but by definition, only one  instance  can perform 
this role at  any time. This is in no  way  restrictive, 
since call manager responsibility can be transferred 
from one application to another. Alternatively, it 
is possible for the call manager role to be combined 
with an application function, if appropriate.  The 
limit of one  active call manager at a time does not 
limit the number of call models that  can be simul- 
taneously in use. 

In responding to  Lakes  events,  the call manager 
is controlling the behavior of Lakes and is there- 
fore, in some  sense  at  least, implementing policies 
and thereby  one  or more call models. This  does 
not mean that  the call manager needs to establish 
a dialogue with  the  workstation  user and be the ap- 
plication that  establishes and terminates calls. 
Other applications may do this, and may also en- 
force additional rules of behavior and build on  the 
base  created by the call manager. Although all this 
is possible, simplicity and consistency generally 
require that  only  one application, which may be 
the call manager, provides the user  interface and 
allows the setting-up and tearing-down of calls and 
the launching and termination of applications 
within those calls. Other applications may provide 
user  functions within this framework. 

A Lakes implementation may  request  that  the re- 
sources of one node be made available for Lakes 
communication between two otherwise uncon- 
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nected nodes; this is termedpassive  operation and 
involves the call manager, since permission must 
be granted at the passive node for this to  take place. 

The most fundamental concept in Lakes is that of 
the application sharing set. This describes  a col- 
lection of applications that  have agreed to collab- 
orate. Before joining an application sharing set, ap- 
plications can  reference  each  other  only  by name; 
once  they become a member of an application shar- 
ing set,  each  has direct addressability to the  oth- 
ers in that  set.  A  further  consequence of member- 
ship is that existing members are informed, through 
events generated by Lakes, of any arrivals and de- 
partures. Application sharing sets  are identified by 
name, and any application can be a member of any 
number of such  sets.  It will be  seen  that  set mem- 
bership is key to many of the  other facilities of- 
fered by  Lakes for application collaboration. 

One way in which applications can join a sharing 
set is by initiating a  share  request using the 
LakShareApp call and naming an application shar- 
ing set,  a target application, and a destination node. 
This  request  is first passed by  Lakes  to  the call 
manager at  the sending node, which will typically 
transfer it to  the call manager at  the destination 
node. Usually this second call manager will launch 
the requested application and transfer the  share re- 
quest to it, and if successful, the  source applica- 
tion will be informed. The participation of the call 
managers in this  process allows local control of the 
sharing process.  It  also allows other  actions to be 
initiated if necessary. These  are, for example, user 
authentication procedures  or  the delegation of 
share  requests  to  another node. The call manag- 
ers also play avital role in resolving the names used 
by applications to identify other  nodes and appli- 
cations. The symbolic name references  are  trans- 
lated into specific node identities and applications. 
The sharing mechanism can  be  cascaded; for ex- 
ample, if two applications are  already sharing, one 
of them can initiate a  share with a third applica- 
tion specifying the  same sharing set,  with  the  re- 
sult that all three applications are then sharingwith 
one  another. 

Applications may also make local share  requests 
on behalf of other applications. It is this ability that 
can be exploited to  create applications that handle 
call management on behalf of other applications: 
a third party  can put the first and second  party  into 
communication with each other. Facilities exist for 
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either  the  issuer or  the target of the  share  request 
to name the application sharing  set. 

Information on nodes in the  Lakes network is as- 
sumed to  be held in an address book that  Lakes 
accesses through the resources-level interface  and 
the replaceable address  book  access module shown 
in Figure 1. The  address  book may optionally  con- 
tain a  variety of node-related information. The API 
call LakAddressBookFind allows an application to 
search  the  address  book and retrieve  parameters, 
for  example,  node  names of interest. 

An application initially requests  addressability to 
a  remote  node by using the  node  name in a Lakes 
API call. This name is first passed  to  the local call 
manager, which has  the  option to modify it. The 
resultant  name is then  used by  Lakes  to determine 
connectivity information. This  requires  access  to 
the externally-held network  and  user  database,  us- 
ing the facilities of the  Lakes resources  interface. 
A node  handle is returned  to  the application to  re- 
flect this resolution of the  node name. Addressabil- 
ity from one application to another requires the  res- 
olution of an application name. If both applications 
are local to a  node,  then  the  resolution involves 
the call manager at  that node; if one application is 
remote,  then  both call managers  are involved. The 
resolution  results in the target application being 
identified to  the  source application by an applica- 
tion  handle. Subsequent application requests us- 
ing handles  require no name resolution and are 
transferred by  Lakes directly to  the target appli- 
cation. 

Channels and ports. Lakes provides  two  distinct 
mechanisms for application-to-application commu- 
nication. The simplest form uses signals and is in- 
tended  for  the  exchange of commands,  control 
information, and text  strings.  Two  forms of appli- 
cation signaling are supported; the LakSignalApp 
request  provides unidirectional communication, 
and LakSignalAppWithReply supports  a  response. 
Neither of these  requests  is  restricted  to  members 
of the  same application sharing  set.  This signaling 
mechanism has  many  uses. Among them  is com- 
munication between  components of a single appli- 
cation;  for  example,  a  processing  component  (en- 
gine in Figure 1) and a  user  interface  component 
of the  same application might exchange informa- 
tionvia signals. Such  a design enables applications 
to  share  a  common  processing  component. 
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More sophisticated  intercommunication is sup- 
ported between applications in an application shar- 
ing set.  This  requires the establishment of data 
communication links between  the applications. 
These logical links are  known as channels. Chan- 
nels are logically dedicated, unidirectional pipes, 
with application-specified transmission character- 
istics. Unidirectional  channels are used  as  the  ba- 
sic communications building blocks to efficiently 
support two-way communications,  since  the qual- 
ity-of-service  requirements  are  often different in 
each direction. Thus in a  broadcast application, no 
return flow is required; in a movie-on-demand ap- 
plication, only simple control  data  are required to 
select  the movie; in telephony, full capabilities are 
required in both  directions. 

Lakes channels are always defined by the sending 
application and go from it to a receiving applica- 
tion. This  approach  is used because  only  the  send- 
ing application can  be  aware of the  properties of 
the  data, which dictate how they should be  trans- 
mitted. The  ends of channels are known asports; 
thus  each  channel  has  one sending port and one 
receiving port. Asendingport sends  data blocks 
down the  channel;  a receivingport receives  data 
blocks in the  order in which they  were  sent  down 
the  channel. Both sending and receiving ports  can 
be  shared  between different channels.  There  may 
not be  a  direct mapping between  the logical chan- 
nel structure  seen  by  the  Lakes applications and 
the physical communication network in existence 
between  the  nodes;  the mapping that  does  exist is 
not identifiable by  the applications. A complex  ex- 
ample of channels, ports, and applications is shown 
in Figure 3. 

An application is expected to establish multiple 
channels  to  another application as a  convenient 
way  to  separate  data traffic of different types.  Thus 
if an application wishes to send audio, video, and 
image application data, it would be normal for  the 
application to create  three  such channels. The  char- 
acteristics of each of these channels would be  spec- 
ified differently to suit  the  intended traffic. If the 
destination application wished to send  data  back, 
then it would have to establish another  set of chan- 
nels to  move  data in the  opposite direction. Lakes 
may  map  some or all of the logical channels onto 
a single physical link, but  this will be invisible to 
the application. The  interface to physical commu- 
nication links is provided through  one  or  more link 
support  modules (LSMS) as shown in Figure 1; in- 
formation in the  address  book identifies which LSMS 
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provide  access to a  particular  node  and  supplies 
the connection details. 

The capabilities of a  channel  are  governed by its 
quality-ofsewice (QOS) characteristics, initially ne- 
gotiated with Lakes during the  creation  process, 
which allow data transmission capabilities to be tai- 
lored  to  the  requirements of the  expected traffic. 
Such  parameters  are defined according to  the sig- 
nal type, which distinguishes analog from digital 
data. Typically for digital data, QOS is defined in 
terms of parameters  such  as  throughput,  latency, 
and  jitter.  Rather  than  expressing  these  parame- 
ters in the  applications  directly,  a  symbolic  refer- 
ence  to collections of values,  known  as  the data 
class, should be used,  thus allowing the  values  to 
be changed without affecting the applications. Such 
a  data  class might be,  for example, “G.711 Audio” 
for  an ITU-T G.711-compliant audio  stream,  with 
the translation  into detailed communications  char- 
acteristics defined elsewhere. 

Channel  characteristics  can  be renegotiated after 
channel  creation. Channel QOS may also  be left un- 
defined; this allows channels  to  be  created  whose 
operational  characteristics  depend  upon  the  re- 
sources available when  data  are being sent  down 
the  channel.  This reflects the reality of many  ex- 
isting data  networks  where  any  particular QOS can- 
not be guaranteed  but is wholly dependent  upon 
the behavior of the  other  simultaneous  users;  to- 
ken-ring and  Ethernet local area  networks exhibit 
this form of behavior. 

A feature of Lakes  is that  channels  may  be  col- 
lected  into named sets;  these  sets  are known as 
channelsets and  each  must  also  be  associated with 
a channel set type. Four  such  types exist: standard, 
merged, serialized,  and  synchronous. The names 
assigned to channel sets  are local to an application 
sharing  set;  thus  duplicates  may  exist among shar- 
ing sets. 

Standard channel sets provide  a  convenient way 
of referring to  a collection of channels, for exam- 
ple for program channel management. This group- 
ing does  not  change  the individual behavior of the 
constituent  channels in any  way.  Thus, in Figure 
4, application A is sending squares  to application 
C while application B is sending circles. At  C two 
ports exist: one  terminates  the  channel established 
by A and from it C  receives  squares;  the  other  ter- 
minates the channel  established by B and from it 
C  receives  circles. 
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Figure 3 Channels  and ports 
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The merged channel set groups  a collection of 
channels  together in a way  that, for  any single ap- 
plication, the sending ports and receiving ports  for 
all channels in that  set  are  each combined into  a 
single such  port.  A typical use of the facility is il- 
lustrated by an application that  sends  data  to mul- 
tiple destinations;  this  can  be achieved by making 
all the channels to those  destinations  members of 
a merged channel  set;  then  the  data  presented by 
the application at the single sending  port will go 
to all destinations.  More  importantly, an applica- 
tion can  often  arrange for channel  creation in a 
merged channel  set to  be handled automatically by 
Lakes,  and so, as receiving applications come  and 
go, the  data  are  sent  to all the  correct receiving 
ports  without  further programming. This  feature 
makes merged channel sets particularly attractive. 
For example, in a  collaborative  chat application it 
is sensible  for  each application to establish  a  chan- 
nel to itself; down the  channel it sends  its own 
user’s contribution,  and  writes to  the  screen  the 
information it receives  back  from the channel. As 
the application is shared with others it  will receive 
their  contributions as well as its  own;  as  others 
leave,  their  contributions will disappear.  Figure 5 
illustrates two examples of the merged channel set; 
the first is identical to  the example  used earlier for 
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Figure 4 A standard  channel  set 
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a  standard  channel  set,  where applications A and 
B are sending squares  and  circles  respectively  to 
application C. The specification of a merged chan- 
nel set means  that  the receiving port  at C is used 
for  the  second  channel,  and  thus  both  circles  and 
squares  are available at C. The  identity of the 
sender is not lost through the use of a merged chan- 
nel set;  each  data block is  presented  with  the orig- 
inator identified. 

The  second  example in Figure 5 is more compli- 
cated in that A and B are sending data  respectively 
to C  and D through  the  same merged channel  set. 
This  is  interpreted  to mean that all the  senders of 
the  data  are  attempting  to  send  to all the  receiv- 
ers;  thus  both  C  and D receive all the  blocks  sent 
by A and B. There is no  attempt  to  interleave  the 
data in an  identical  way,  and  therefore, although 
C  and D receive all the  data  and  they  both  receive 
data from A and B in the  order in which the  data 
were  sent, it may  be  that  the interleaving of the 
blocks is seen differently by C and D. 

The serialized channel set is closely  related to  the 
merged channel set and  performs  the  same  func- 
tions. It  has  the additional property  that  the  inter- 
leaving of data from the  various  sources  is  per- 
formed identically for all receivers. If serialization 
could be implemented without affecting QOS, then 
the  serialized  channel  set  could  always  be used in 
place of the merged channel  set.  However,  since 
this  is not the  case, it is  necessary  to offer both 
capabilities to applications. A measure of the qual- 
ity of the implementation of data  serialization is 
the  size of the  added  delay as determined against 
a  universal  clock and the fidelity of the  data  order- 
ing with respect to its  actual  sequence. Implemen- 
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tation of serialization need  not involve sending the 
data to a common serialization process;  instead  to- 
kens  can  be used to  represent  data blocks. The  to- 
kens  can  be serialized and  the  order  returned to 
the  delivery mechanism. Algorithms have  also 
been developed161s to  distribute  the serialization 
process,  and  the  selection of nodes to  be used can 
have  dramatic implications on  performance.  The 
Lakes architecture  does  not  dictate  the algorithms 
to be used;  this is an implementation decision. Fig- 
ure 6 illustrates  a serialized channel  set. 

The fourth  channel  set  type,  the synchronized 
channelset, exists  to allow applications  to  specify 
that  data  blocks  on multiple, otherwise  indepen- 
dent,  channels  are to  be tied together in time and 
therefore delivered together,  but through the in- 
dividual ports belonging to their respective  chan- 
nels. A number of implementation strategies  ex- 
ist; the  data  blocks from the constituent  channels 
can be tagged with identifiers and  then  either in- 
terleaved  down  a single communications link or 
transmitted through independent links and then 
sorted  and  sequenced.  Normally  synchronized 
channels  are used for multimedia streams  such  as 
audio  and  video; in these  cases  the QOS character- 
istics will have  been  set  to  ensure low latency  and 
jitter.  The  synchronization  performance is there- 
fore  established by  the QOS for the constituent 
channels. Figure 7 illustrates  a  synchronized  chan- 
nel set. 

Channels,  and  their  associated  ports,  can  be  cre- 
ated explicitly or implicitly. Explicit creation  uses 
the LakCreateChannel request, specifying the  re- 
quired channel  characteristics; likewise new chan- 
nels can  be  added to  an existing port  through  the 
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Figure 5 A merged  channel  set 
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Figure 6 A serialized  channel  set 

LakAddChannel request. This mechanism also al- 
lows  a port to  be shared  across  channels belong- 
ing to different channel sets; for example, data  can 
be  sent from a single port  to  one  set of destinations 
belonging to a merged channel  set and to a  second 
set of destinations belonging to a serialized chan- 
nel set. 

Channels can  be implicitly created as a  conse- 
quence of an application being, or becoming, a 
member of an application sharing set.  For exam- 
ple, if unshared applications already have  a merged 
or serialized channel, and the channel set name 
used is identical across  these applications, then 
when the applications share with each  other,  the 
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Figure 7 A synchronized  channel set 
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additional channels  required will be  created  auto- 
matically. The result obtained is independent of 
whether  the  share  precedes  or follows the explicit 
channel creation. Applications are  notifed of chan- 
nels implicitly created in this way and  have  the 
same ability to  accept or reject  them  that  they 
have for explicitly created  channels.  A  channel, 
however created,  can  be deleted through  the 
LakRemoveChannel request; the channel to  be de- 
leted is uniquely identified by specifying both  its 
sending and receiving ports.  Certain QOS charac- 
teristics of channels,  such as throughput,  can be 
changed after  channel  creation through use of the 
LakChangeChannel request. 

The sending and receiving ports  that  terminate 
channels  have  an assigned connect type-event, 
command, or null-and are associated with aport 
event  handler. Eventports generate  an  event  when 
data  are  either available or required; command 
ports allow the application to drive  the  receipt or 
supply of data  to  the port  via explicit commands. 
Nullports  are  ports that  are unable to  supply  data 
to an application. An example is the sending port, 
associated with an analog channel, of avideo cam- 
era.  A  port  can  be  controlled through commands 
specified in a LakSignalPort request. Signal com- 
mands  are  issued  to  the local port  and  can  be 
passed to  the next  port or  the end  port in the  chan- 
nel or channel  set.  Normally  the signal commands 
for  channel  ports will be  sent  to  the port  event han- 
dlers of the applications supplying or receiving 
data, and may be used to  stop,  start,  decrease,  or 
increase  the  data flow. The  order of signals be- 
tween  a  source  and  a target is maintained. Signal 
commands  sent to receiving ports in a serialized 
channel  set  are serialized with the  data, so that all 

destinations  receive  the  same  sequence of com- 
mands  and  data. A receiving port  can  cause  the 
sending port to  stop sending data  down  the  chan- 
nel by issuing a LakSuspendPort request, with the 
option to either  discard or deliver the remaining 
data in the  channel.  Suspended  data  transmission 
can be restarted by a LakResumePort request. 

Userexits  can optionally be  associated with ports. 
These allow monitoring or manipulation of the 
data,  either after the  data  have  been supplied to 
a sending port or before  they  have  been  presented 
by a receiving port.  In  the  case of synchronized 
channels,  synchronization  is  carried  out from the 
time the  data  leave  the sending port  user  exit to 
the time data  are  presented to  the receiving port 
user exit. 

Ports  are  associated with a data class that  spec- 
ifies the data type and data subtype  that  are  sent 
by a  sending  port down the  channel or received by 
a receiving port.  The  data  type identifies the  na- 
ture of the  data,  for example, audio,  video, file, 
etc.  Data  type also distinguishes analog data from 
digital data. The data  types  themselves  are  further 
divided into  subtypes  according to the  precise for- 
mat of the data;  examples of audio  subtypes  are 
G.711,  G.721,  G.722, etc.  The list of recognized 
data  types  and  subtypes is accessed by  each  Lakes 
node from a  body of customization information 
available to  that node. The  data  class may be  que- 
ried by an application independently of the  data 
stream itself; this facility assists application inter- 
action. The  data  subtype  may  be specified differ- 
ently  at  the sending and receiving ports of a  chan- 
nel, with Lakes performing the  conversions below 
the API. Certain  characteristics of ports,  such as 
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Figure 8 Port connection  and  welding 
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data  class,  event handler address,  user exit, and 
user information, can  be changed after port cre- 
ation through the LakChangePort request. 

Ports can be connected together, via  the LakCon- 
nectPorts request,  to establish channel-to-channel 
communication, so that an application may redi- 
rect  its  inputs to another application for process- 
ing. When ports  are connected, if no  user exits have 
been established, no further application involve- 
ment in the  data flow is required, but it is allowed, 
for example, with LakSignalPort. Connected ports 
allow the streaming of data  between applications, 
between  devices, and between an application and 
a device. Connected ports  can be subsequently dis- 
connected using the LakDisconnectPorts or may also 
be welded using LakWeldConnection, so that  the con- 
nection is permanent and persists  even when the 
local application has terminated. Welding removes 
any user exits that may be present on the connected 
ports.  The resulting channel behaves as though it 
had been originally created to run from its  source 
directly to  its  destination, and may be physically 
reestablished if appropriate. Figure 8 illustrates 
port connection and welding. 

Connection and welding of channels allows the 
transport of data to  drop below the MI. Lakes  has 
the option, in some  cases, of effecting the  connec- 
tion either  at  a  very low level at that  node or re- 
routing the flow away from that  node. 

Negotiation of channel quality of service. Applica- 
tions communicating through channels  have many 
requirements for both QOS and bandwidth nego- 
tiation and control. Accordingly Lakes  provides 
mechanisms to allow applications to: request un- 
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specified QOS and be given whatever is dynamically 
available, request  a particular QOS,  and manage 
their own communications resources.  Another 
mechanism allows the call manager to manage 
communications resources  across applications. 

For  those applications that  have unspecified QOS 
characteristics,  channels may be established us- 
ing the LakCreateChannel request, leaving the QOS 
parameters empty. Throughput and other  charac- 
teristics will not be guaranteed by  Lakes and may 
change dynamically, depending upon availability. 
Such  channels will take from whatever bandwidth 
is currently available; this includes taking from 
bandwidth that may have been reserved  but is not 
actually in use. 

Certain applications have fixed Qos requirements 
for the  channels  that  they need to communicate 
with other applications. In  these  cases each chan- 
nel may be established directly, using the LakCre- 
atechannel request. The  resources  are allocated by 
Lakes if they  are available. If the  channel  charac- 
teristics  are changed or  the channel is deleted,  any 
freed  resources  are  returned to Lakes. 

Some applications are more flexible  in their QOS 
requirements and need to determine whether an 
acceptable range is available to a particular node 
before creating the channel. Although this can  be 
accomplished through the LakQueryResource re- 
quest  by specifying the target node, unfortunately 
if used in this  way,  the call returns  only  what  is 
dynamically available, and there is no  guarantee 
of availability when  a  subsequent LakCreateChan- 
ne1 is issued. One way  to avoid this situation is to 
issue only  the LakCreateChannel to attempt  to  es- 
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Figure 9 A Lakes  logical  device 
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tablish an  appropriate  channel  and to reissue the 
request with a lower QOS specification if the  at- 
tempt fails. Lakes  attempts  to  return  an indication 
of the available QOS when  a  channel  create fails. 

Other applications have flexible QOS requirements 
but need the ability to manipulate the allocation of 
communications  resources. For example,  a  desk- 
top conferencing application may wish to use all 
the bandwidth available all the time and  allocate 
it to  a combination of video  and  audio  channels; 
however,  when  data  services  are  required, it may 
wish to temporarily  reallocate  some  video  band- 
width  to  data,  restoring it to  video use  later. If the 
channels  are  requested  directly from Lakes,  there 
is  no  guarantee  that  released  bandwidth will be 
available to  that application later.  This problem is 
overcome by  the  concept of named resource sets. 
Applications  can  request  that  communications  re- 
sources  to a  remote  node  be allocated to an appli- 
cation-owned  resource  set;  such  resources are 
identified by the  appropriate QOS parameters. 
Channels are then  allocated from this  set  and  any 
resources  freed  are  returned to  the resource  set. 
Only  the call manager can  request  resources di- 
rectly from Lakes;  other applications must  request 
resources from those acquired by  the call manager, 
either  directly or indirectly, from other applica- 
tions. This gives the call manager the ability to 
manage competing requests for resources  between 
applications. This need arises  when multiple inde- 
pendent applications are involved in a  desktop  con- 
ferencing session,  for example, chat,  chalkboard, 
video,  and  audio applications. Each of these is un- 
aware of the  others,  but all request  bandwidth to 
the target node. The call manager can monitor their 
resource  requests and allocate  resources effec- 
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tively. In  situations of this kind the call manager 
will typically  have  acquired  the  resources to  the 
remote node before a LakShareApp request has  been 
issued to  applications  at  that  node, so that  the  re- 
sources  are  reserved  prior  to  the  activation of the 
collaborating applications. The alternative ap- 
proach,  where  resources  are  requested after the 
collaboration has  been  started, is also permissible. 

In  some  cases,  the call manager needs  to negoti- 
ate with applications to determine  what  resources 
are available and to defer any reallocation until the 
negotiations are complete. For example,  a movie 
application starting  part way through  a call may 
require  a  certain minimum bandwidth  that is not 
available. Other  applications  may  be  already run- 
ning that,  between  them, are using more  than  that 
bandwidth and  can  be flexible in their usage. Lakes 
provides  requests  that  enable the call manager to 
ask  applications to prepare  to  free the bandwidth 
and later  to actually  free it, if sufficient total  band- 
width is available. 

Logical  devices. Channels, as described previously, 
provide application-to-application communication 
but  do  not  address  the  problems of coupling data 
sources and sinks, which are normally devices such 
as video  adapters,  audio  adapters, and others.  In 
some  cases  obvious physical entities are not in- 
volved,  but windows, clipboards,  and  other  soft- 
ware  elements  play  a similar role. Lakes provides 
device  access  through  a  notion of logical devices, 
which are abstractions of these  entities. Logical 
devices  are  independent of the specific details of 
the  particular  devices  and  provide program inde- 
pendence. Lakes  does not  determine the number 
or  nature of the logical devices  but  presents  a  pro- 
totype API through which all may be controlled, or 
device data supplied or accessed. In Figure 1, these 
calls are illustrated as an  extension of the  Lakes 
API. The logical device  interface (LDI) provides  the 
mechanism through which such logical devices are 
integrated  into  a Lakes implementation. Alogical 
device can  be  exploited in Lakes,  not  only  to al- 
low easier  access to system  resources  and devices, 
but also to allow end-to-end  data streaming. One 
use of a logical device  is to provide  access to  the 
inputs and outputs of non-Lakes applications and 
thus to allow such  applications to  be used collab- 
oratively. 

A logical device  can be represented as shown in 
Figure 9. 
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Logical devices are identified by name. When 
opened  with  the LakOpenDevicePort request,  they 
present  a port to the application; a single logical 
device can  have multiple such  ports, and a device 
can simultaneously present  ports to different ap- 
plications at  the  same node. The LakOpenDe- 
viceport request allows characteristics to  be estab- 
lished peculiar to that device, for example, the  data 
formats to be  used. Opened logical devices can be 
controlled through commands, specific to the  par- 
ticular logical device, sent  via  the LakSignalPort re- 
quest. 

Applications can  connect  a port on  a logical de- 
vice  to  a  channel  port;  this  enables  data to flow to 
or from the device and across  the channel. This 
data flow does not require  further application in- 
volvement  once  the connection has  been made. 
This is illustrated in Figure 10. 

Data from the  camera  are  streamed through the 
camera logical device, across  the channel, and then 
displayed by  the window logical device. The ap- 
plication can  control  the two logical devices  via 
the LakSignalPort call; when  the transmission is no 
longer required the application can  disconnect  the 
ports,  close  the devices, and remove  the channel. 
Figure 11 illustrates  the  data  paths involved in this 
example at  the sending node; without port connec- 
tion, device data are sent  to  the application from 
a device port, and from the application to  the chan- 
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ne1 with Lakes, using the full communications 
stack, labeled LAKES. With port connection, low- 
level paths  between  the device and the communi- 
cations  adapter  can  be exploited, such as multi- 
vendor  independent protocol connectors or bus 
mastering, with  the application still retaining con- 
trol to the device and  channel  ports. 

Certain logical devices present standard interfaces 
so that existing drivers  can  be more easily accom- 
modated; the  audio and video logical devices ex- 
ploit this with a  concept of replaceable audio and 
video  support modules (ASMS and VSMS in Figure 
l), thus enabling the  standard logical devices to  be 
interfaced to existing audio andvideo subsystems. 

Tokens. Collaborative activity frequently  requires 
that  resources owned by  a  node, for example, a 
printer device, be  shared with other nodes. Such 
resources  are  considered to  be global, and appli- 
cation  access to them is controlled throughglobal 
tokens. Other  resources  are local to application 
sharing sets, for example, a  shared pointer, and 
access  to  these  resources  is managed through ap- 
plication tokens. A token owner determines the sig- 
nificance of a  token and allocates it on  request. At 
the discretion of the  owner, queued requests  may 
be permitted, and more than one concurrent holder 
of a  particular  token may be allowed. Token own- 
ers  can optionally force holders to hand back  to- 
kens. 
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Figure 11 Data flows on port connection 

Global tokens  share  a  common name space 
throughout the  Lakes network,  but  since applica- 
tions  are  expected to know  the  identity of the  node 
holding the  required globally available resource, 
duplicate global token  names  are  permitted. Fa- 
cilities for the broadcasting of global token avail- 
ability information are  not provided; instead,  the 
call manager at the  node with the global resource 
is responsible for  resource management and  there- 
fore  owns any global tokens.  Such  tokens may be 
held by an application on an exclusive  or  shared 
basis;  token  ownership  cannot  be  transferred  via 
Lakes.  Requests for a global token may be  queued, 
with  the  queue being held above  the API and man- 
aged by  the owning-node call manager.  Access to 
global tokens is not  restricted  to  a  sharing appli- 
cation  set. 

Application token  name  space  is  restricted to  the 
application sharing  set.  A  token may be owned by 
a member application, and ownership can be trans- 
ferred. Application tokens  may  be held exclusively 
or shared.  Requests  for  tokens  may  be  queued, 
with  the  queue held above the API and managed 
by  the  current application token  owner. 

System  considerations 

Whereas  the  previous  section  described individ- 
ual components  and  interactions,  this  section  de- 
scribes  services defined by  the  Lakes  architecture 
that apply across  an  entire  system. 

Monitoring,  audit,  and  control. The Lakes archi- 
tecture allows applications to monitor requests and 
events  at  a  Lakes node. A LakBeginMonitor request 
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starts monitoring; specific classes of activity  can 
be set,  and within these classes, individual requests 
and  events  selected.  Control of one application by 
another  is accomplished through audit managers 
and is provided to allow access,  costing,  and bill- 
ing policies to  be implemented. At  any  node  a 
Lakes application may  become an audit manager 
by issuing the  appropriate API call. Two  kinds of 
audit managers  are  supported: local and remote. 
Both receive information on application activity 
and  may  be required to approve  certain  actions; 
additionally local audit managers give permission 
for their node to  be remotely  audited. Depending 
upon the  scope,  almost all activity by an audited 
application raises  either  an information event  or 
an  authorization  event, first at the local audit man- 
ager(s),  then  at  the  remote audit manager(s). In- 
formation  events  such as removing a  channel  do 
not  require audit manager approval;  authorization 
events  require  the  approval of all the audit man- 
agers. 

Intelligent  networks. Lakes allows the exploitation 
of many of the additional services provided by  cur- 
rent  and  future intelligent networks,  because it 
offloads functions from the application such  as  data 
cloning, data merging, data  conversions,  data  rout- 
ing, data  serialization,  and  data  synchronization. 
Although these  functions  can  be implemented at 
the local node, in some  cases  they  can  be  more ef- 
ficiently implemented within the network itself. For 
example, a simple implementation of data  serial- 
ization requires  that all the  data in the serialized 
channel  set  be  sent  to  a single point, then cloned 
and  distributed to  the receiving nodes. If this  func- 
tion is to  be performed at  the application level in 
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Figure 12 The ITU-T H.320 recommendations 
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a  non-Lakes implementation, a decision must be 
made  between  the collaborating instances as  to 
which  node is selected to implement the  function. 
It  is  desirable  that  this  node  have efficient commu- 
nications  access to  the  other nodes and the  nec- 
essary  resources available. Most application pro- 
grammers  are  not  interested in these  details,  and 
an  arbitrary  node is likely to  be  selected  and to re- 
main fixed. From  a  Lakes application perspective, 
without serialized channel  support,  the  taskwould 
have  been  even  more difficult. The application 
could not  determine  the  nature of the  network  and 
therefore would have no basis on which to make 
an informed choice.  In  fact,  the  optimal location 
for  the serialization process  may  be  a  node in the 
network  that  is not even  part of the collaborating 
set but  has  the  necessary  resources  and links. A 
sophisticated implementation of Lakes, by remov- 
ing this  function from applications and making its 
existence explicit through the API, can  cooperate 
with  other  instances  across  the  network  to  deter- 
mine the implementation details. 

Data cloning provides  another  example in which 
the underlying network  is  more  able  to  determine 

an efficient implementation than  any  particular 
node. When data  must be  sent  to multiple desti- 
nations  across  a  heterogeneous  network,  any  one 
application can  send  the  data  directly  to  each  tar- 
get. In practice, with knowledge of the  network 
and access to intermediate nodes, it would be  more 
efficient to replicate  the  data at points in the  net- 
work and execute  a  tree-structured  transmission 
scheme. 

lnteroperability with ITU-T H.320 and T.122 
recommendations 

Because of the  importance of the H.320 and T.122 
recommendations,  they  are  more fully discussed 
in this  section, which also includes  several  scenar- 
ios illustrating how Lakes  supports  these recom- 
mendations  and how it interoperates with an MCS 
network. 

The H.320 recommendation. The H.320 recommen- 
dation  provides  for  visual  telephony  services  over 
an isochronous digital network,  for  bandwidths  up 
to 1920 kilobits per  second. An overview of the 
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Figure 13 The ITU-T T.120  recommendations 
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H.320 family of recommendations is shown in Fig- 
ure 12. 

H.320 assumes  that  three  types of information, 
video, audio, and  data, need to  be combined and 
then  transmitted.  Each of these  data  types is en- 
coded in a unique way, combined together with the 
necessary  control information, and  then  sent  over 
the  network.  The key elements of the H.320 rec- 
ommendation  are 

Video  content: Encoding is defined by  the H.261 
recommendation. 
Audio  content: Encoding is defined by AV.250, 
a  reference to a  series of recommendations in- 

cluding G.711,  G.722, and G.728. Audio is de- 
layed for  synchronization  purposes  since com- 
pression  and  decompression  for  video  takes 
longer than for audio. 
Data  content: This is not defined by H.320 but 
is specified in the  later T.120 series of recommen- 
dations. 
Multiplexing of audio,  video, and data: H.221 
partitions  the available communications  band- 
width  to  support multiple logical streams. 
System control and signaling: Control of the  net- 
work  by  the terminal, for example, establishing 
the call, is transmitted  over  the D channel  for 
ISDN according to 1.400. Control information be- 
tween  the  connected terminal equipment  is  de- 
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fined in H.320 and uses facilities available in rec- 
ommendations H.243,  H.242,  H.230, and H.221. 
An example is the  selection of an  audio  encod- 
ing scheme. 

The  T.120  recommendation. The T. 120 recommen- 
dation is designed to  support  what is described as 
“audiovisual conferencing services,  where  a  con- 
ference  refers to a  group of geographically dis- 
persed  nodes  that  are  joined  together  and  that  are 
capable of exchanging audiographic  and audiovi- 
sual information across  various  communication 
networks.”  It  refers to a collection of subsidiary 
recommendations, as  shown in Figure 13. Al- 
though a  wide  variety of data  transports  are  sup- 
ported, it is only for digital telephony, using ISDN 
or switched 56 kilobits-per-second  services with 
the  associated H.320 recommendation,  that  audio 
and  video  are  supported.  Extensions to T.120, to 
both exploit ATM networks and support  the full 
range of multimedia traffic, are under development. 

T.120 requires  that  the stack from the T.122 API 
layer and below be used in a compliant conference. 
Conference  control is provided by GCC and this 
component  can be driven by  the  user, through an 
application known as  the  node  controller. All ap- 
plications use MCS for communication and may also 
issue  commands  to  the GCC conference  control 
component. 

Multipoint  communication  service. The multipoint 
communication  service (MCS) is  a  generic  service 
designed to  support highly-interactive multimedia 
conferencing applications. The  basic  concept is 
that of a domain established  over  a collection of 
point-to-point MCS connections; within the domain, 
application clients  can  send  and  receive  data. MCS 
connections are therefore logical connections  de- 
fined across  a physical connection; one physical 
connection  can  support  more  than one logical con- 
nection. To create  an MCS domain, an MCS imple- 
mentation at a  workstation,  known as an MCSprO- 
vider, establishes  a  connection to a  remote MCS 
provider  and  binds  this  connection  to  a domain. 
Other MCS providers  can  then  establish  connec- 
tions to  these providers  and bind to  the same  do- 
main; alternatively MCS providers  already with 
connections to a domain can bind further  connec- 
tions to that domain. In  this way a domain can  be 
established,  which  can vary in complexity from 
a simple point-to-point  connection to a multi- 
branched tree  structure of connections.  Figure 14 

IBM SYSTEMS JOURNAL, VOL 34, NO 3, 1995 

Figure 14 MCS providers and  domains 

illustrates  the  relationship  between MCS providers 
and domains. 

Existing domains can  be combined into  a single do- 
main. A restriction on the  establishment of a  do- 
main is  that it be created hierarchically; this  is  en- 
forced by ensuring that,  as  each binding takes 
place,  the called provider  is explicitly positioned 
as either hierarchically superior or subordinate  to 
the calling provider. 

Application instances  (known as clients or users) 
can  attach  to domains through their local MCS pro- 
vider. In this way an application instance  can  be 
attached  to  one  or more domains. Figure 15 illus- 
trates  the  relationship  between application clients 
and domains. 

Once domain setup  and client attachment is com- 
plete,  before  data  can  be  exchanged  clients  must 
join the right combination of interaction channels. 
Channels  are effectively domain-wide addresses 
for  the  delivery of data  to all, or a  subset, of the 
clients of a domain. A client does  not  have  to  be 
joined to a  channel in order  to  send  data  to  it,  but 
must  be  joined  to it in order  to receive  data from 
it. Channels  are classified as static or dynamic and 
have  a  numeric identifier; dynamic  channels  are 
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Figure 15 Application  clients  and  domains 

further subdivided into  user,  private,  or assigned 
channels. 

Static channels are  permanently available and any 
clients  can  join at will. They  provide  a mechanism 
for clients  to  send  data  to  any  subset or all of the 
clients. Thus,  for  example,  the  clients in a domain 
may have  a  convention to use  channel 10 to  broad- 
cast  to all members;  to  achieve  this  they all join 
channel 10 and send on this  channel  data to  be  re- 
ceived by everyone.  Particular  uses  are allocated 
to individual static  channels in other  standards,  for 
example, in the GCC and  the  T-series applications 
recommendations. Dynamic channels require cre- 
ation  before  they  exist. A user channel is created 
by  the original user domain attachment request and 
can  only  be  joined by the client with  that identi- 
fier; this  therefore  provides  a mechanism for  any 
of the  other  clients  to  send  data on a point-to-point 
basis  to  that client. Private channels are  created 
by a  client,  who  becomes  the  owner of that  chan- 
nel and  is  the  only  user initially joined to it. The 
owner  can invite other  clients  to  join or force cli- 
ents  to leave. Having  been invited, other  clients 
can  send  data on the  private  channel or join it to 
receive  data from it. Assigned channels provide  a 
mechanism for allocating an  empty  channel  to  a 
client; like static channels they can be joined at will, 
but  for  these  channels  the identifier is allocated by 
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MCS, thus ensuring that initially the  requesting cli- 
ent  is  the  only client joined  to  that channel. Cli- 
ents  that join channels  may  subsequently  leave 
them; similarly MCS domain providers  can  force 
clients  to  leave  channels. 

Once the participating MCS providers  have  con- 
nected  and  bound to  the domain, and  clients  have 
attached  and  joined  the right combination of chan- 
nels, then  the  clients are ready to exchange  data. 
Two  data  services  provide  the  actual  transfer of 
data. MCS-send-data sends  data  packets on the 
specified channel  to all clients,  except  the  sender, 
joined to  that  channel.  The  data  packets from any 
client are delivered in sequence,  but  the  packets 
from multiple clients  may  be  interleaved in differ- 
ent orders at each receiving client,  a  consequence 
of their being delivered using the  most  direct  route 
up  and  down  the  tree of MCS providers. A variant 
of send  data is Mcs-send-data-with-responses, 
which requires  each receiving client to generate  a 
short  response, with the  responses from all receiv- 
ers gathered at each level and traveling back along 
the  distribution  path of the original message. MCS- 
uniformly-sequenced-data-send parallels the  send 
data  request,  but  guarantees identical interleaving 
of data  packets.  The  packets to  be serialized are 
sent  to  the  top MCS provider, and from there  are 
dispatched, in the  same  sequence, to all receiving 
clients  and  also to  the sender.  Data  transmission 
is  associated with apriority specification with four 
normally available: top, high, medium, and low. 
These  priorities are used to resolve  the  contention 
issues  that  may  arise during transmission. Asso- 
ciated with each priority are bandwidth and latency 
specifications. 

In addition to data transmission facilities, MCS also 
provides token  management services, which may 
be used by clients to control  resources. 

Interoperability aspects. Support of the  standards 
described is important for the  reasons given ear- 
lier. There  are  three  primary  cases  to be consid- 
ered: 

1. An attached Lakes node is using H.320 stan- 
dards for its own communication to  another 
Lakes node. 

2. A non-Lakes H.320-compliant terminal, such 
as a  video  telephone,  is  attached to a Lakes 
node and sending audio  and  video,  where: 
a. Lakes applications  are  unaware  that  the  ter- 

minal is not  another  attached  Lakes node. 
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b. Lakes applications  are controlling the  re- 
mote terminal directly as an attached device. 

3. A  non-Lakes T.122-compliant device or work- 
station is sending audio, video, or  data  to a 
Lakes node. 

Case 1 is important  because it allows Lakes work- 
stations  to use  standard H.320 components  for  au- 
dio, video,  and  data  transmission  to  other  Lakes 
nodes using the ISDN or  related public networks 
applications. The H.221 data  partitions  are used 
by Lakes  both  to send control  data  and  to realize 
appropriate Lakes channels.  The  video  and  audio 
partitions  are  also used by  Lakes for  those  chan- 
nels with a  data  class  that identifies the traffic as 
standards-compliant. Many H.320 adapters  are in- 
capable of routing audio and video digital streams 
to  the workstation  bus  but  instead  have  on-board 
devices  that  either  generate or accept  these 
streams. For example, the  received digital video 
stream may be  converted to analog and mixed with 
the  monitor  output  to  create  a  video  display win- 
dow. From  a  Lakes  perspective,  the application 
controls  audio  and  video through logical devices 
and  connects logical device  ports to channels with 
suitable  characteristics. Lakes  detects  the logical 
connection of the  devices to  the audio and video 
channels  and  passes  this information to  the device 
drivers.  Through  this mechanism there  is no re- 
quirement to  route  the  data into  the  workstation 
and thus  the application is not written in an adapter- 
dependent  manner;  an  attempt  to  connect  an au- 
dio or  video channel from such an adapter  to  a  de- 
vice  not realized on the  same  adapter would 
necessarily be rejected. Use of H.320  in this  way 
is not visible to applications. 

Case 2a, still at  the H.320 level, applies to many 
situations  where  a  standards-compliant  device is 
to participate in an  interaction  with  one or more 
Lakes nodes  essentially as an  equal  partner, al- 
though its function may  be  restricted;  the  most 
common  examples  are  a  telephone  or  a  videocon- 
ferencing suite  where  the  scenario is some form of 
conferencing. This  is  provided for by  the  virtual 
node and virtual application components of the  ar- 
chitecture,  where Lakes simulates the  events  that 
a  real Lakes node would have  generated.  The non- 
Lakes device  appears  as a virtual  node  to  Lakes 
nodes  that  communicate with it, while its  various 
features  (video, audio, etc.)  appear  as  virtual  ap- 
plications running at that node. A call from such 
a  device  causes sharing with the identified local au- 
dio andvideo applications, just  as if a call had been 
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received from a  node running those applications 
remotely. 

Case 2b is much less  common  than 2a, for the 
H.320 equipment is now a  remote,  slave device un- 
der application control.  The local Lakes applica- 
tion accesses it through a  suitable logical device. 
This allows much greater  control  but  requires  spe- 
cific programming to handle the  situation. 

Case  3 is the  most  important  because as T.120 and 
H.320 protocols  become  commonplace,  seamless 
interoperability is required. The  requirement is to 
allow mixed network  support so that  a Lakes net- 
work  can  freely  interoperate with one  or more MCS 
hierarchies. One  example is shown in Figure 16. 

In  order  to preserve  the integrity of both  the  Lakes 
and the MCS programming models, this mixed net- 
work  must  appear from a  Lakes  viewpoint as a 
Lakes network,  complete with application sharing 
sets,  and from an MCS viewpoint  as  a  hierarchy of 
MCS providers, with the application instances in a 
domain. If it is assumed  that an application exists 
at  each  node, AA . . . AE  and AI . . . A4, and  that 
all these  instances are collaborating, then  the  two 
views  can  be represented as shown in Figure 17, 
assuming some allocation of instances  to  Lakes ap- 
plication sharing  sets. 

The  Lakes node providing the link between  the  two 
networks simulates an MCS provider providing mul- 
tipoint control unit services, and the  actual Lakes 
nodes  appear as MCS providers  subservient to this 
bridge. Two  views  are possible; the  preferred  one 
in Figure 17 simplifies the implementation of func- 
tions  such as  data  serialization,  since  they  can  be 
carried  out  at  a Lakes node for the  entire  network. 

Since Lakes offers a  superset of the MCS capabil- 
ities,  a Lakes API subset  can  be defined that is re- 
alizable on  the MCS nodes; no such  subset of MCS 
need be defined. Given the differences in the  pro- 
tocol streams  produced by the  two  architectures, 
interoperability is based upon the following ele- 
ments: 

Application proxies in both  environments  that 
simulate  the real applications  that  each  environ- 
ment expects 
A Lakes call manager that  establishes  the appli- 
cation  proxies  and  controls  their  operation 

Each  proxy  collects  the  events  that  the real appli- 
cation should have  received; it then  uses  the  set 
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Figure 16 A mixed  network 

LAKES  NETWORK 
ASYNC 

MCS NETWORK 

of application proxies in the  other environment- 
each of which  represents  a different application to 
itself-to create  a  request from one of those  that 
will have  an equivalent effect in that  environment. 
This mapping process  can  be controlled by the 
Lakes call manager at the  node supplying the in- 
terconnection,  and  the Lakes audit manager can 
be used to police the compatible MCS subset of the 
Lakes API subset.  This is illustrated in Figure 18 
for  a simple mixed network involving the  four ap- 
plications Al,  A 2 ,  B1, and B2; one  at  each of the 
Lakes nodes L1 and L2 and  the MCS providers M1 
and M2. 

This can  be logically implemented as shown in  Fig- 
ure 19. 

The  Lakes network  comprises  two  nodes L1 and 
L2. At node L1, application A1 is running; at  node 
L2 there  are  three applications running: A 2 ,  b l  and 
b2.  All four applications have registered with Lakes 
and joined a common application sharing set.  From 
an MCS perspective,  node L2  appears  as  three MCS 
providers; M3 is  a multipoint control unit and M4 
and M5 are running applications a1 and a2 respec- 
tively, each of which has  attached  to  the MCS do- 
main. Applications al ,  a2, bl ,  and b2 are  proxies 
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Figure 17 Lakes  and MCS views of a  mixed  network 
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for  the  real  applications Al,  A 2 ,  B1, and B2. Thus 
application b l  receives  the Lakes  events  that  the 
real application B1 would have  received if it were 
a  Lakes application; instead b l  passes  these  events 
through the interface code  that  translates  them  into 
MCS requests,  where  they  are issued in the MCS do- 
main via  either  a1  or a2 as appropriate.  The  con- 
verse  scenario holds true  when  the  process is 
viewed from an MCS perspective.  The  proxy  ap- 
plications  operate  only  at  the Lakes  or MCS entity 
level. It is not  necessary  that  they  understand  the 
application significance of the information that  they 
manipulate; only  that  they  are  able to convert  be- 
tween MCS and Lakes primitives. 

Thus,  for  Lakes  applications  that limit themselves 
to  the  subset MI, full interoperability  with MCS 
nodes is possible without  any  compromise to  the 
Lakes model; moreover the full range of Lakes net- 
work configurations is enabled  and all the local 
node  capabilities of the  architecture,  such as log- 
ical device  support,  may  be  exploited  without  re- 
striction. 

Figure 18 A simple  mixed  network 
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The functional capabilities of Lakes beyond  the 
subset API, such as multiple audio  and  video 
streams, synchronization across channels irrespec- 
tive of stream  format,  passive  operation,  resource 
management, signaling, and  certain call manage- 
ment functions  and  audit  operations,  can  be  ex- 
ploited when  interoperabilitywith H.320- or T. 120- 
compliant nodes  is not required. 
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Figure 19 Implementation  model 
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Summary 

The  Lakes  architecture  meets  the  requirements of 
a  broad range of real-time multimedia collabora- 
tive  applications and permits  exploitation of net- 
work  connectivity, capability, and intelligence. It 
allows the  development of a range of call models 
above  the API and  addresses additional opportu- 
nities  beyond  the range of desktop conferencing 
over digital telephony  networks, which has  been 
the  focus of the ITU-T H.320 and  T. 122 recommen- 
dations. Lakes also allows full interoperabilitywith 
these  standards, which is  an  essential  prerequisite 
for any  successful  product implementation in this 
field. 

*Trademark  or registered trademark of International Business 
Machines  Corporation. 
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