The communication
software and paraliel
environment of the
IBM SP2

This paper describes the software available on
the IBM SP2™ for parallel program development
and execution. It presents the rationale for the
design of the Message-Passing Library used

on the SP2, outlines its current implementation,
and gives information on performance. In
addition, the paper describes the programming
environment and the program development tools
available for developing and executing parallel
codes,

he IBM scalable POWERparallel system* 9076

SP2* was designed to run large-scale parallel ap-
plications efficiently. A critical aspect of parallel pro-
gram support is communication: Efficient parallel
computing requires high-bandwidth, low-latency in-
terprocessor communication. The SP2 High-Perfor-
mance Switch and adapter, described elsewhere in
this issue, provide hardware support for high-per-
formance communication. In this paper, we describe
the communication software that allows parallel ap-
plications to exploit the performance characteristic
of the communication hardware.

The main parallel programming model supported
by the SP2 is message passing: A set of tasks, each
executing in its own address space, communicates
via calls to the Message-Passing Library (MPL).
This library was designed so as to provide program-
ming convenience. For example, MPL supports a
fairly extensive set of communication calls for col-
lective communication. This capability alleviates
the need to program in detail the communication

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995

0018-8670/95/$3.00 © 1995 |BM

rye

M. Sni

P. Ho ChSChI|d
D.D.F

K. J. Gildea

for a scatter-gather or transpose operation. Con-
versely, MPL has a fairly small number of calls that
can be implemented to map efficiently to the un-
derlying communication hardware. In the next sec-
tion we present the rationale for the design of MPL
and describe the services provided by the main
functions in MPL.

The implementation of a message-passing library
offers a multitude of alternatives, especially on an
architecture as rich as the SP2: some functions sup-
ported by microcode on the adapter and some by
software on the computing processor; some func-
tions executed in user space and some by kernel;
trade-offs between more extensive use of buffer-
ing and data copying and more ecager use of inter-
rupts; “push” versus “pull” protocols; flow con-
trol; etc. We describe the current implementation
of MPL, its performance, and the rationale for some
of the decisions taken. This implementation
achieves a performance that is close to the hard-
ware limitations, although improvements are still
possible.

©Copyright 1995 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is
done without alteration and (2) the Journal reference and IBM
copyright notice are included on the first page. The title and
abstract, but no other portions, of this paper may be copied or
distributed royalty free without further permission by computer-
based and other information-service systems. Permission to re-
publish any other portion of this paper must be obtained from
the Editor.

SNIR ET AL. 205

Parallel code is more complex to develop than se-
quential code. To a large extent, the complexity
is a reflection of the lower level of maturity of par-
allel software technology. Parallel languages and
compilers have a shorter history and a much

Message-passing libraries are
the main programming interface
used on distributed memory
machines and networks of
workstations.

smaller investment than languages and compilers
for uniprocessors. Beyond that, parallel comput-
ing is intrinsically harder than sequential comput-
ing. It requires the user to understand the perfor-
mance impact of at least one added dimension of
the execution model, namely parallelism. There-
fore, it is important to provide users with a rich
set of tools that will help them to understand the
behavior of parallel code, debug it, and tune it.
Such tools should provide information not only
about the individual behavior of each process but
also about the interactions and correlations be-
tween processes. In the last section of this paper
we describe the Parallel Operating Environment
available on the SP2. This environment includes fa-
cilities for compilation and parallel program sub-
mission, a source level parallel debugger, and a
trace-driven performance visualization tool.

Finally, we would like to emphasize that this pa-
per does not provide an exhaustive description of
the various programming models and services that
can be used to develop parallel applications on the
sp2. The Sp2 is an open system that can be used in
a variety of modes: processes can communicate
using standard UNIX** interprocess communica-
tion mechanisms, such as Internet Protocol (1),
User Datagram Protocol (UDP), Transmission Con-
trol Protocol (TCP), and sockets; other message-
passing libraries, such as PvM? (Parallel Virtual Ma-
chine), are supported; third-party vendors provide
support for other parallel programming paradigms,
such as LINDA® or High Performance FORTRAN;*
various users of the SP1* and SP2 have implemented

206 SNIR ET AL

their own communication libraries or tools. In ad-
dition, the SP2 provides a variety of system serv-
ices in support of parallel applications, such as par-
allel job management or parallel /0 operations. >

The Message-Passing Library

Message-passing libraries are the main program-
ming interface used on distributed memory ma-
chines and networks of workstations. Such librar-
ies support a programming model in which a
parallel program consists of a number of tasks, each
running a single execution thread within its own
address space (i.e., executing a sequential FOR-
TRAN or C program). Tasks communicate with ex-
plicit calls to a message-passing library.

At the time development started on the SP1 Par-
allel Operating Environment there was no accepted
standard for such libraries: parallel system vendors
and third-party software vendors supported pro-
prietary, incompatible libraries.™ (Since then, a
standard Message-Passing Interface [MPI] has
been designed by an open forum of vendors, cus-
tomers, and researchers.'” We plan to support this
MPI in future software releases.) PvM? was the most
popular public-domain library used on networks
of workstations. However, PvM looked less attract-
ive as an interface for a machine like the SP1. The
design of PVM, which is optimized for IP commu-
nication in a networked environment, requires data
copying operations that can be avoided with a li-
brary more directly targeted to an SP environment.
Also, PVM (Version 2) was missing support for im-
portant functions, such as collective communica-
tion. Therefore, we decided to develop our own
Message-Passing Interface for the Sp1. This library
has become known under two equally unimagina-
tive names: External User Interface (EUI)" and
Message-Passing Library (MpL). %"

The design of EU/MPL was influenced by several
prototype systems and environments developed at
1BM Research, in particular the Vulcan Operating
Environment!* and the Venus communication
library.' The library was defined by a joint team
at 1BM Research and the 1BM Highly Parallel
Supercomputing Systems Laboratory (HPSSL). !
The final specification of the library was completed
in the summer of 1992. By the fall of 1992, the first
implementations of EUI were operational on several
platforms. These platforms included a prototype
of the SP1 (demonstrated at the Supercomputing-92
conference) and clusters of RISC System/6000* work-

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995

stations. The library is available as part of the Sp1
and sp2 Parallel Operating Environment.

The design of EUI/MPL tried to balance several par-
tially conflicting requirements. We wanted a library
that would provide a convenient application pro-
gramming interface. We wanted the library to be
small, both for ease of use and for fast implemen-
tation, yet complete. We wanted nearly identical
calls to be available both from FORTRAN and from
C. We wanted calls that would be familiar to users
of existing libraries. Most importantly, we wanted
a library that can be well supported by the SP1 and
SP2 hardware. In particular, we wanted a design
that would allow the off-loading of communication
to the adapter and allow overlap of communica-
tion and computation. This off-loading would not
be possible on the SP1, as the High-Performance
Switch adapter for the SP1 has no ability to move
data on its own. However, we anticipated such
ability in the High-Performance Switch adapter for
the sp2.

We assumed that the main mechanism for allocat-
ing resources to parallel jobs would be space par-
titioning. In this model a parallel job has full con-
trol of a set of processors that is kept fixed during
the run. This model is preferred by many users and
simplifies resource allocation. A programming
model in which a parallel job consists of a fixed
number of tasks fits well with fixed physical par-
titions. It also simplifies the design of the commu-
nication subsystem and ultimately improves per-
formance, because resources can be bound at load
time, rather than dynamically. Therefore, we fo-
cused on supporting parallel applications that use
a fixed number of tasks.

We ended up with a library that includes 33 func-
tions. These functions provide three types of serv-
ices:

* Task management for initialization, termination,
and environment setting and querying

* Point-to-point communication for communica-
tion between pairs of tasks

* Collective communication for communication
and synchronization operations that involve
groups of tasks

The following sections describe these services in
further detail.

Task management. Four routines are provided for
task management and are described below.

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995

The number numtask of tasks used by a parallel
program (the partition size) is specified when
the program is submitted for execution. During
execution, each task is identified by an integer
taskid, in the range 0 to numtask —1. The proce-
dure MP_ENVIRON allows the user to find the total
number of tasks and the taskid of the calling task.
(We are using the FORTRAN names of the message-

Pairs of tasks communicate by
issuing matching send and
receive commands.

passing calls. For each FORTRAN procedure MP_xxx,
there is a corresponding C function named mpc_xxx.)

The procedures MP_TASK_QUERY and MP_TASK_SET are
used to query system-dependent execution param-
eters and, respectively, to set user-definable ex-
ecution parameters.

The procedure MP_STOPALL allows a task to abort ex-
ecution of all tasks and is used for abnormal ter-
mination. Normal termination occurs when each
task exits normally (e.g., via a STOP or END state-
ment in FORTRAN).

Point-to-point communication. Pairs of tasks com-
municate by issuing matching send and receive
commands. A send command specifies the loca-
tion in memory of the data to be sent and the taskid
of the destination. In addition, the send command
includes a type parameter that can be used to iden-
tify the message. The receive command specifies
where the message should be placed, as well as the
desired source and type of message. Either or both
of the source and type values may be a wild card
on a receive (thus matching any message). Mes-
sage truncation is supported, unless the receiving
process is set to treat overflow as an error condi-
tion. Both blocking and nonblocking send and re-
ceive operations are supported in the MPL.

A blocking send call returns after the application
buffer in the sending task is free to be reused; com-
pletion of this call does not imply that the message

SNIR ET AL. 207

has been received into the application buffer in the
destination task. A blocking receive call returns af-
ter the receive operation completes and the mes-
sage has been copied into the application buffer of
the receiving task.

The two procedures MP_BSEND and MP_BRECV are used
for blocking sends and receives. These two pro-
cedures support communication from a contigu-
ous memory area, specified by an initial address
and a byte length.

The two procedures MP_BVSEND and MP_BVRECY
allow the user to send a message from noncontig-
uous memory (and, respectively, receive it in non-
contiguous memory). The memory buffer is spec-
ified by four parameters: initial address, number
of (contiguous) blocks, the size of each block, and
the offset between successive blocks. Use of such
a strided buffer can move an arbitrary submatrix
of atwo-dimensional program array with one com-
munication call, in particular, a row of a FORTRAN
array or a column of a C array. This method saves
an additional memory-to-memory copy operation
that would be otherwise required to pack the data
into a contiguous buffer before they are sent and
unpack the data when received.

A nonblocking send call MP_SEND just notifies
the system that a message must be sent and returns
without waiting for the message to be copied out
of the user application buffer. As a result, the user
must not overwrite the application buffer until the
message has been copied by the system. Similarly,
a nonblocking receive call MP_RECV just notifies the
system that a particular application buffer is avail-
able for receiving a message and returns without
waiting for the message to arrive. As a result, the
user must check for the reception of the message
before accessing it in the application buffer. To
allow this, nonblocking send and receive calls re-
turn an integer msgid that identifies the pending
communication operation and can be used to mon-
itor its progress. The nonblocking procedure call
MP_STATUS reports the status of a pending message.
The call MP_WAIT blocks the calling task until the
specified communication has completed.

The use of nonblocking communication calls re-
sults in code that is more complex, because each
communication operation has to be coded as two
separate calls, and care has to be taken not to ac-
cess application buffers while they are accessed by
the communication library. Nevertheless, this use

208 sNIR ET AL

usually improves performance. Nonblocking com-
munications allow some overlap between compu-
tation and communication. More importantly, they
allow better decoupling of sender and receiver. If
ablocking send is executed ahead of the matching
receive, either the sending task has toidle until the
receive call occurs, or the outgoing message has
to be copied and buffered. If a blocking receive is
executed ahead of the matching send, the receiv-
ing task has to idle until the send occurs. When
nonblocking communication is used, computation
can continue until the wait call is executed. Thus,
best performance is usually achieved by posting
nonblocking send and receive calls as soon as pos-
sible (as soon as application buffers are ready) and
posting wait calls as late as possible (just before
the application buffers have to be reused).

Properties of point-to-point communication. Al-
though blocking and nonblocking message-pass-
ing operations are common to many systems, the
precise semantics of these constructs may vary in
subtle and often undocumented ways. We describe
below the main choices we made on the semantics
of message passing in MPL and the rationale for
these choices.

Order. Messages sent from a single source to a sin-
gle destination are received in the order in which
they were sent. More precisely, the following two
properties are satisfied (see Reference 16 for a for-
mal definition):

* A receive operation will receive a message only
if there is no previously sent message from the
same source that also matches the receive and
has not yet been received.

¢ A receive operation will receive a message only
if there is no previously executed (nonblocking)
receive that is still pending with the same type
and source parameters.

Order preserving reduces the amount of nondeter-
minism in the execution of parallel programs. For
example, programs that do not use wild card re-
ceives will be deterministic. Order preserving sim-
plifies programming and debugging and has no sig-
nificant impact on performance on the Sp2. Writing
deterministic programs has the further advantage
of decreasing the risk for deadlock.

Note that two posted receives may match the same

message, even though they do not have the same
type and source parameters: one of the receives

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995

may use an explicit value, whereas the other uses
adontcare (the dontcare value specifies a wild card
receive). In such a situation, there is no require-
ment in MPL that the message will be received by
the earlier receive. Consider the following exam-
ple:

void examplel();
{
int taskid, numtask, source, dest, type, msgid,
msglen, nbytes, a[10], b[10];

mpc_environ(&numtask, &taskid);

sizeof(a);

if (taskid == source) {
type = 1;
mpc_bsend(a, msglen, dest, type);
mpc_bsend(b, msgien, dest, type);

} else {
if (taskid == dest) {

type = dontcare;

mpc_recv(a, msglen, &source,
&type, &msgid);

type = 1;

mpc_brecv(b, msglen, &source,
&type, &nbytes);

mpc_wait(&msgid, &nbytes);

}
}

The first receive may receive either of the two mes-
sages sent, while the second receive receives the
other message. In contrast, if both receive oper-
ations had used the same type (either 1 or dontcare),
messages would be received in the order they were
sent.

A stricter requirement would have a message re-
ceived by the first posted receive that matches it,
even if there were several matching receives that
differ in their source or type parameters (because
of dontcares). This requirement leads to perhaps
more intuitive semantics, at the expense of more
constraints on the algorithm used to match sends
to receives. Since the difference is unlikely to af-
fect many programs, MPL chose the easier-to-im-
plement definition. Note, however, that MPI chose
the second one. We can avoid this problem alto-

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995

gether by not using wild card receives—which will
also improve performance (MPL implementations
are optimized for code that does not use them).

Bujfering. Any message-passing library hasto cope
with the limited amount of buffer space that can
be made available to the library. Consider the fol-
lowing example:

void example2();

int taskid, numtask, other, msglen, nbytes;
char a[N], b[N];

mpc_environ(&numtask, &taskid);
sizeof(a);

msglen =
type = 1

if (taskid == 0) {
other = 1;
mpc_bsend(a, msglen, other, type);
mpc_brecv(a, msglen, &other, &type,

&nbytes);
} else {
if (taskid == 1) {
other = 0;

mpc_bsend(a, msglen, other, type);
mpc_brecv(a, msglen, &other, &type,
&nbytes);

}
}

Each task sends N bytes, using a blocking send,
then receives the message sent by the other task.
Neither of the receive operations can start before
the preceding send operation completes. Thus, in
order for this program to complete, it is necessary
for at least N bytes to be copied and buffered. The
success of this program depends on the amount of
available buffering.

Messages can be buffered either in the memory of
the sending node or in the memory of the receiv-
ing node, or both. (Other alternatives, such as buff-
ering at a third node or buffering on disk, are the-
oretically possible but not practical.) When buffer
space is exhausted, the sending task blocks. Thus,
deadlock occurs if there is a cycle of tasks, each
blocked while sending a message to the next task
on the cycle. The previous program can lead to
such a deadlock situation, with a cycle of length two.

SNIR ET AL. 209

The current high-performance implementation of
MPL has a fixed amount of buffer space allocated
to each pair of communicating tasks. This imple-
mentation leads to higher performance but requires
the user to exercise some care in order to avoid
deadlocks. The simplest deadlock avoidance pol-
icy is to make sure that communications occur in
a consistent order at all tasks. That is, the com-
munication calls executed by all tasks can be to-
tally ordered in a sequence where sends occur be-
fore matching receives, and calls executed by any
one task appear in the order in which they were
issued by that task. A program that follows this
rule will not deadlock, irrespective of the size of
the messages and the amount of buffering avail-
able. Thus, deadlock can be avoided in the last ex-
ample by reversing the order of send and receive
at one task.

The use of nonblocking receives also helps. Early
posting of nonblocking receives increases the like-
lihood that receives will precede sends, thus allow-
ing the send operation to proceed without addi-
tional buffering. Deadlock can be avoided in the
last example by having each task first post a non-
blocking receive and then execute the send.

Collective communication. In parallel computations
execution of a communication that collectively in-
volves all tasks within a group is often required.
Examples of such collective communications are
broadcast, scatter, gather, and all-to-all commu-
nication. These patterns of communication are il-
lustrated in Figure 1. In this figure we represent
the global memory of all tasks that participate in
the collective communication as a two-dimensional
array, with task number being the vertical dimen-
sion and address within each task address space
being the horizontal dimension. We illustrate the
layout of data items in global memory before and
after the communication.

We also need to perform reduction operations
within groups, such as computing a global sum of
variables stored one per task. MPL supports pre-
defined and user-defined reduce operations. These
operations can be used for reduction (results re-
turned to one or all group members) and for scan
operations.

Collective operations have limited usefulness, un-
less they can be applied to arbitrary, user-defined
groups of tasks. One possible approach is to pro-
vide with each call an explicit list of group mem-

210 SNIR ET AL

bers. This approach leads to scaling problems and
is not convenient to the programmer. Rather, MPL
allows the programmer to define groups and refer
to previously defined groups in collective commu-
nication calls. A gid (group id) argument is pro-
vided with each collective call to identify the group
of participating tasks.

New groups can be defined, either by providing
an explicit list of members or by splitting an ex-
isting group. The call MP_PARTITION (parent_id,
key, label, gid) splits the group identified by
parent_id into subgroups, one for each value of
label. The processes are ordered within each sub-
group according to the value of key.

Various management functions are provided for
finding the size of a group, the rank of a task within
a group, and vice versa. See Reference 17 for ad-
ditional information on the design and implemen-
tation of the collective communication library.

MPL implementation

The Message-Passing Library is available on the
SP2 in two different implementations, one on top
of 1P, and the other where message-passing calls
are directly mapped, in user space, to the High-Per-
formance Switch adapter. The user-space version
has much better performance but can be used only
by one task at each node. Thus, if several tasks time-
share the same node, the IP version is used.

We shall discuss in detail the user-space implemen-
tation (US CSS, or user-space communication sub-
system). The IP implementation shares the same top
layer code, with the bottom layers replaced by IP.

The sp2 High-Performance Switch adapter is de-
scribed in Reference 1 in this issue. It is Micro
Channel*-attached and contains a DMA (direct
memory access) engine for moving data on the Mi-
cro Channel. In addition, it contains an i860** mi-
crocontroller, memory, and a FIFO (first-in-first-
out) interface to the switch. The adapter memory
can be accessed by the main processor using pro-
grammed 1/O (PIO).

The structure of the communication system was
heavily influenced by the design of this adapter and
by performance priorities.

A critical performance requirement was to increase
the bandwidth (which was limited to 8.7 megabytes
per second [MB/s] on the sP1). To do so, it is nec-

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995

Figure 1 Collective communication operations

MEMORY
A1 A1
Al
BROADCAST (MP_BCAST): TASKS »
A1
Al
MEMORY
Al A2 A3 A4 Al
A2
SCATTER (MP_SCATTER): TASKS »
A3
A4
MEMORY
A1 Al A2 A3 Ad
A2
GATHER (MP_GATHER): TASKS »
A3
A4
MEMORY
Al Al A2 A3 A4
A2 Al A2 A3 A4
ALLGATHER (MP_CONCAT): TASKS —p
A3 Al A2 A3 A4
Ad Al A2 A3 A4
MEMORY
rA1 A2 A3 A4 Al B1 c1 D1
By B2 B3 B4 A2 B2 c2 D2
ALL-TO-ALL (MP.INDEX): TASKS . o
Ci c2 c3 ca A3 B3 [ox} D3
D1 D2 D3 D4 Ad B4 c4 D4

Adapted from D. Walker, "The Design of a Standard Message-Passing Interface for Distributed Memory Concurrent Computers,” Paraliel Computing 20, No. 4, 657-673
(April 1994).

essary to transfer data over the Micro Channel us- area and copied from there by the adapter using
ing DMA, rather than PIO as on the SPi. This trans- DMA; data received are copied by the adapter us-
fer requires data to be available in memory that is ing DMA into a reserved buffer area, and copied
not paged or cached. Therefore, data to be sent from there by the processor to the user applica-
are copied by the processor to a reserved buffer tion space.

I1BM SYSTEMS JOURNAL, VOL 34, NO 2, 1995 SNIR ET AL. 211

Figure 2 Structure of communication software

USER KERNEL
MPL | PVYM | MPI upP TCP
MESSAGE LAYER P
PIPE LAYER NID
VIRTUAL SWITCH INTERFACE VIRTUAL SWITCH INTERFACE

i ADAPTER (MICROCODE)

Latency was a second consideration, and proces-
sor communication overhead was a third consid-
eration. Many codes are written in a loosely syn-
chronous style, with computation phases followed
by communication phases. In such codes there are
few opportunities for overlapping computation and
communication, and reduction of total communi-
cation time improves performance, even if proces-
sor overhead is increased.

The microcontroller used on the adapter is much
slower than the main processor. Therefore, any off-
loading of protocol code from the processor to the
adapter, although reducing the processor overhead
for communication, increases the total communi-
cation time. We settled on a communication pro-
tocol where very few functions are executed on
the adapter.

Communication between the processor and the
adapter memory via the Micro Channel is slow.
We therefore tried to minimize the number of ac-
cesses to adapter memory.

The communication hardware has no end-to-end
flow control. Congestion at a destination causes
saturation to occur at the switch that is connected
to the destination and then to propagate backward

212 SNIR ET AL

in the network. This phenomenon of “tree satu-
ration” can cause significant degradation in com-
munication bandwidth for other destinations as
well.®® To avoid this problem (without tossing it
back to the user), an end-to-end flow control pro-
tocol is needed.

The adapter has to support, at the same time, user-
space communication for a task that uses the Mes-
sage-Passing Library and IP communication for 1/0
and system services for that task, or other pro-
cesses running on the same node. On the SP1, 1P
communication has to use an Ethernet connection
when the adapter is used for user-space commu-
nication—thus reducing IP performance. This re-
striction is lifted on the SP2 where the adapter can
be shared between the single task using user-space
communication and any number of tasks using IP.

Finally, an important consideration resulting from
the short development cycle was reuse of commu-
nication software that was developed for the SP1.

These considerations and constraints resulted in
the implementation described below.

The overall structure of the communication soft-
ware is shown in Figure 2. The left side of the di-
agram shows the communication stack for user-
space communication.

The message layer supports a few simple, non-
blocking message-passing calls. All MPL calls are
mapped onto these calls. The collective commu-
nication layer is also implemented on top of these
point-to-point message-passing calls.

The pipe layer maintains a separate bidirectional
pipe for communicating with every other task. The
pipes provide a reliable, flow-controlled, ordered
stream of bytes between any pair of communicat-
ing processes. A variant of the sliding window pro-
tocol is used on each pipe. Acknowledgment pack-
ets with a time-out and retransmitting scheme are
used to provide reliability. A token protocol is used
on each pipe to make sure that data are sent on a
pipe only when there is available space in the buffer
at the other end of the pipe in order to avoid over-
flow.

The byte streams of outgoing pipes are multiplexed
by the processor to a shared queue in the proces-
sor memory; conversely, the processor demulti-
plexes incoming data from a shared queue into the

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995

Figure 3 Communication path from source to destination

SEND BUFFER PIPE BUFFER

RECEIVE BUFFER

t

PIPE BUFFER

| VIRTUAL SWITCH
INTERFACE

ADAPTER

VIRTUAL SWITCH
INTERFACE

ADAPTER

incoming pipe buffers. This pair of shared queues,
together with a few additional control registers,
form a virtual switch interface in the processor
memory. Data are moved between these queue
buffers and the switch by the adapter, using high-
bandwidth DMA. This data movement can occur
simultaneously with computation done by the pro-
cessor, allowing for some overlap between com-
putation and communication.

The path traversed by a message from source to
destination is illustrated in Figure 3. The transfer
consists of the following steps:

» The message layer transfers the message data
from the sender buffer to the pipe input buffer.
It is a memory-to-memory copy operation that
is executed by the sending processor.

s The pipe layer transfers the data from the pipe
input buffer to the virtual switch interface. This
memory-to-memory copy operation is also ex-
ecuted by the sending processor.

» The adapter DMA engine transfers the data from
the virtual switch interface to the adapter.

s The sending adapter transfers the data, via the
switch, to the receiving adapter.

» The DMA engine at the receiving adapter trans-
fers the incoming data to the virtual switch in-
terface.

¢ The pipe layer transfers the data from the vir-
tual switch interface to the pipe output buffer.

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995

» The message layer transfers the data from the
pipe output buffer to the receive buffer.

When a message is sent that is larger than the pipe
buffer, the communication subsystem attaches the
user buffer in place of the pipe buffer. The pipe
copy operation then moves data directly from the
send buffer to the virtual switch interface, as in-
dicated by the dashed line in Figure 3. The same
bypass mechanism is used at the receiving node.
Thus, the amount of data that is doubly copied in
memory (to the pipe buffer, next to the virtual
switch interface) is proportional to the number of
messages sent, not to the total amount of data sent;
likewise, the same applies to receives. The com-
munication subsystem sends additional tokens to
the sender to relax flow control when the receive
pipe buffer is bypassed.

The same process executes, in one address space,
the codes for the pipe layer, the message layer, and
the user application. These codes can be seen as
three coroutines that time-share the same process.

The message layer is invoked by the application
code whenever an MPL call is executed. A send call
results in data being copied from the application
send buffer to a pipe input buffer; if no room is
available in the pipe buffer, the send operation
blocks. A receive call results in data being copied
from a pipe output buffer to the application receive

SNIR ET AL. 213

buffer. If a matching message has not yet arrived,
the receive is posted for later handling.

The message layer is invoked by the pipe layer
whenever changes in the pipes allow pending com-
munications to proceed. For example, when a new
message arrives, the message layer is invoked in
order to check whether a receive operation is al-
ready posted that matches this message. If such
is found, the incoming data are copied from the pipe
output buffer to the application receive buffer.

The pipe layer is invoked by the message layer
whenever the latter executes. When invoked, the
pipe layer services each active pipe; it copies data
from the pipe input buffers to the virtual switch in-
terface if tokens are available; it copies data from
the virtual switch interface to the pipe output buff-
ers and releases back tokens if data have arrived.

The pipe layer can also be activated by external
interrupts from the adapter or by timer interrupts,
as described in the next section. Such activation
guarantees that progress occurs in data transfer
even if the application code does not execute any
MPL call.

The communication subsystem provides fair ser-
vice to all active pipes. Thus, a long data transfer
on one pipe will not block a transfer occurring on
another pipe. If two different tasks concurrently
send messages to the same destination, the des-
tination can execute the matching receives in ar-
bitrary order, without fear of deadlock. However,
if a pipe buffer is full, no new messages can be re-
ceived on that pipe until the pipe clears. In par-
ticular, if a task sends two successive messages to
the same destination, and the first message fills the
pipe buffer, the second message cannot be received
ahead of the first.

The system maintains a list of active pipes to en-
sure that the overhead of polling pipes scales as
the number of active pipes, not as the total num-
ber of pipes.

Another function provided by the adapter is trans-
lation of logical zaskids used by the communica-
tion library to physical addresses. This translation
allows the system to guarantee that user space
communication will be contained within the allo-
cated partition.

It is interesting to note that the software structure
described above is very similar to an earlier im-

214 SNIR ET AL

plementation of MPL on the SP1 machine (MPL-p).
The SP1 adapter did not support DMA, so the switch
FIFO buffers in the adapter were directly exposed
to the pipe layer. In the SP2, this implementation
has been replaced by the virtual switch interface.
Additional changes have been introduced because
of the change in protection mechanisms and for
performance tuning.

Polling versus interrupt. The pipe layer code is ex-
ecuted whenever an MPL function is invoked. In
addition, this code is invoked periodically via timer
interrupts in order to guarantee progress in the pipe
layer, even if tasks are computing with no com-
munication for a long period of time. Execution of
the communication subsystem software can also
be triggered by an interrupt from the adapter, when
buffers have filled. Thus, if a nonblocking send is
posted at a node, and a matching nonblocking re-
ceive is posted at another node, data will be moved
from the sender buffer to the receiver buffer, even
if neither node completes the communication op-
eration by calls toMP_WAIT or MP_STATUS. Note, how-
ever, that if either sender or receiver is busy com-
puting, the data transfer will be slow. If sender and
receiver are not executing the communication code
simultaneously, the amount of data that is sent on
the pipe at each invocation of the communication
subsystem will be limited by the number of cur-
rently available tokens. If the message is long, the
data transfer is likely to complete only when both
nodes block with a call to MP_WAIT.

MPL provides an alternative protocol whereby in-
coming packets arriving at a node that is comput-
ing cause an interrupt and the invocation of the
communication library (the interrupt is disabled
while the communication library executes). This
action will, in general, cause earlier completion of
data transfers, at the expense of additional over-
heads for interrupt handling.

Other communication subsystems. The High-Per-
formance Switch can support IP communication at
the same time it supports user-space communica-
tion. An AIX* (Advanced Interactive Executive*)
network interface driver (NID) serves to connect
the 1P protocol to the adapter. NID supports IP pack-
ets with a Maximum Transmission Unit (MTU) of
up to 64 kilobytes. The low-level protocol between
the adapter and this driver is similar to the inter-
rupt-driven protocol for user-space communica-
tion. However, the NID uses a separate virtual
switch interface: The queues in system memory

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995

and the registers in the adapter memory that are
accessed by NID are mapped in kernel space. The
adapter multiplexes or demultiplexes data between
the separate virtual switch interfaces and the
switch.

The message layer on top of which MPL is imple-
mented can support other message-passing librar-
ies. A product implementation of the communica-
tion functions of PVM is available.!® In addition, a
prototype implementation of MPI has been com-
pleted.? The MPI implementation required some
changes in the message layer (e.g., to handle con-
texts); in some situations, it requires additional
buffering in order to decouple communication oc-
curring in different contexts. However, no changes
were required in the pipe layer; the MPI prototype
achieves performance virtually identical to MPL for
basic communication functions.

Performance. The performance of the user-space
implementation of MPL for both the SP1 hardware
and the SP2 hardware is listed in Table 1. (The
370/TB0 numbers were measured for this paper by
Fiona Sim.) All results shown are obtained with
the sp2 software. The first row lists performance
for the sP1 hardware: a 370 (POWER1*) processor
and a TBO adapter with no DMA function. The sec-
ond row lists the performance for the SP1 (POWER1)
nodes with the enhanced TB2 (SP2) adapter, which
has DMA. The next two rows provide performance
for the SP2, with the two types of POWER2* nodes:
thin (390) and fat (590).

All numbers are measured application to applica-
tion. Latency is measured by sending a zero-byte
message round-trip between two nodes. It is cal-
culated as half the round-trip time. Blocking sends
and receives are used for the transfer. Point-to-
point bandwidth is measured in the same fashion.
The results quoted below are asymptotic band-
width results (large messages) and include the
startup time. With use of the Sp1 software, there
were Jarge discontinuities in communication time
as message size increased. With the Sp2 software,
the communication time is nearly linear as mes-
sage size increases. Also reported is exchange
bandwidth, which is the total bandwidth between
two nodes that are engaged in simultancously send-
ing messages to each other utilizing the nonblock-
ing message-passing calls. The bandwidth is mea-
sured in megabytes per second, and latency in
microseconds (us).

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995

Table 1 MPL performance (user space)

Node Switch Latency Bandwidth Bandwidth
Type Adapter (us) pt-to-pt Exchange
(MB/s) (MB/s)
370 TBO 37.6 8.7 8.8
370 TB2 55.0 31.2 34.7
Thin (390) TB2 40.0 35.5 37.0
Fat (590) TB2 39.0 35.5 48.2

The High-Performance Switch has a peak band-
width of 40 MB/s in each direction, for a total of 80
MB/s, bidirectional, per node. On the SP2, the com-
munication library achieves close to 90 percent of
the unidirectional switch bandwidth and more than
60 percent of the bidirectional switch bandwidth.
Thus, the unidirectional bandwidth is hardware
bound, at the switch.

The Micro Channel bus imposes another constraint
on peak communication bandwidth. The peak
transfer bandwidth on the Micro Channel is 80
MB/s. Due to packet size and arbitration overhead
on the bus, the Micro Channel can deliver at most
52 MB/s to the communication subsystem. Thus,
the communication library achieves more than 90
percent of the Micro Channel bandwidth for ex-
changes and close to 70 percent of its bandwidth
for unidirectional communication, on fat nodes.
Therefore, the exchange bandwidth is hardware
bound, at the Micro Channel, with fat nodes.

A third constraint on communication bandwidth
is the processor (software) overhead for data trans-
fer. The unidirectional bandwidth on the SP2 nodes
is 96 percent of the exchange bandwidth for thin
nodes. In contrast, the unidirectional bandwidth
is only 73 percent of the exchange bandwidth on
the fat nodes. The thin node exchange bandwidth
of 37.0 MBs is, essentially, the upper rate at which
the communication software can transfer data on
this processor. The processor executes 1.8 cycles
per byte transferred. A higher rate would require
support for larger packets or significant changes
in protocol. Unidirectional transfers essentially sat-
urate the thin node processor, with no spare com-
pute power left. In contrast, a fat node executes
less than 1.4 cycles per byte transferred. The im-
provement is almost entirely due to the higher
memory bandwidth (factor of four or better) that
allows us to copy data faster. Unidirectional trans-
fers utilize less than 73 percent of the compute

SNIR ET AL 215

Table 2 MPL performance (UDP/IP)

power of the fat node. The spare computation
power could be used to achieve an overlap of more
than 27 percent of computation and communica-
tion for well-structured computations.

A fourth constraint on communication bandwidth
is the adapter and the microcode it executes. It
seems, in fact, that the exchange bandwidth for fat
nodes is limited by the adapter, rather than the pro-
cessor, so that the excess compute power and pos-
sible computation-to-communication overlap is
higher than suggested by our previous analysis.

Itis worthwhile to observe that the new TB2 adapter
boosts unidirectional bandwidth from 8.7 MBss to
31.2 MB/s, even with no change in the SP1 compute
nodes. This boost reflects the difference between
PIO and DMA bandwidth on the Micro Channel.
However, the latency increases from 37.6 micro-
seconds to 55 microseconds when TB0 is replaced
by TB2. This increase is no surprise since the com-
munication pipeline is now longer (with DMA en-
gines and the i860 controller). To the (software)
delay occurring from the start of a send operation
until data are in the (virtual) switch interface, we
now add the (microcode) delay of the transfer from
the virtual switch interface to the physical switch;
likewise, the same applies on the receive end. The
latency comes down to 39 (40) microseconds on
the fat (thin) nodes, reflecting improvement in the
execution time of the communication library be-
tween POWER1 and POWER?2. The switch latency is
less than one microsecond of this total.

The corresponding numbers for the 1P version of
MPL are listed in Table 2.

The difference in performance between user-space
communication and IP communication mostly re-
flects the impact of IP software overheads. Al-
though communication performance is much
lower, the flexibility of sharing the adapter between

216 SNIR ET AL,

multiple processes may lead to better overall sys-
tem utilization for applications that do not have
stringent communication requirements.

The latency and bandwidth for the current proto-
type implementation of MPI on the SP2 were mea-
sured on a system with thin nodes;* the latency
and bandwidth numbers are virtually identical to
the MPL numbers. At the time of writing, perfor-
mance results for other libraries (such as IBM’s
implementation of PVM) are not available. It is
expected that performance will be similar but pre-
sumably somewhat worse than for MPL, since op-
timization has been done primarily for MPL.

Parallel Operating Envifonment

The Parallel Operating Environment (POE) is used
to control the execution of parallel programs. Its
structure is illustrated in Figure 4. The execution
of a parallel program is controlled by the Partition
Manager (PM) process that runs on the home node.
The home node can be any workstation that is con-
nected by alocal area network (LAN) to an SP2. The
program will execute on remote nodes, which can
be LAN-connected workstations or SP2 nodes. The
user invokes various POE functions by submitting
requests to PM. The various functions of POE can
be invoked using either a line command interface
or an Alxwindows* Parallel Desktop graphical user
interface. In addition, a (batch) POE job can be sub-
mitted using LoadLeveler* (an IBM network batch
queuing product?).

In order to run a parallel program using MPL, we
need to compile it and link it to a message-passing
library. A different Message-Passing Library is
used for user-space communication (on dedicated
sp2 nodes connected with the High-Performance
Switch) and for IP communication. The Message-
Passing Library can be linked statically or dynam-
ically when the program is loaded.

The next step is to allocate a set of nodes that will
run the parallel program. The mapping of tasks to
physical nodes can be specified explicitly by the
user, via a host file. Alternatively, the user may
require a number of nonspecific nodes on an SP2.
Nodes of an SP2 are divided into several pools (typ-
ically one for small systems), each managed by the
Resource Manager (an IBM SP2 system software
function that manages resources and controls ac-
cess to them). The Partition Manager will interact
with the Resource Manager to have the required

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995

Figure 4 Parallel Operating Environment

TASK 0

PARTITION

MANAGER
PROGRAM PDBX vT
MARKER
ARRAY

CONTROL & STANDARD TASK 3
- 10 COMMUNICATION
HOME NODE

TASK 1

css
COMMUNICATION

TASK 2

JIOY

COMPUTE NODES

number of nodes allocated. Nodes may be dedi-
cated or shared by multiple tasks.

Next, the user specifies the executable program to
be loaded on the allocated nodes. POE supports
both a single-program, multiple-data (SPMD) model,
where all tasks execute the same program, and a
multiple-program, multiple-data (MPMD) model,
where different tasks can execute different pro-
grams. In the latter case, the user can specify a dif-
ferent executable program for each task. Each task
then starts executing its code asynchronously.

The Partition Manager also connects the standard
/O streams (stdin, stdout, stderr) to each task in
the partition. Various mechanisms can be speci-
fied for demultiplexing input and multiplexing out-
put. Stdin can be sent either to all tasks in a par-
tition or to a unique, specified task. Stdout can
contain the output of a unique, specified task, or
the unordered merge of all task outputs, or ordered
merge of the contents of the output buffers of all
tasks. When multiple output streams are merged,
the outputs can be prefixed by task numbers.

Tools. The Partition Manager can be used to ac-
tivate and manage a variety of tools for program
debugging and tuning. The simplest (and perhaps
most convenient) tool for program debugging is
print statements. However, it is quite tedious to
decipher interleaved printouts of a large number

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995

of tasks. A simple “parallel output” interface is
provided by the Program Marker Array (Figure 5).
This array is a graphic display with a row associ-
ated with each task. Each row contains a number
of “LEDs” (indicators, so-called because they are
like light-emitting diodes) and additional space for
text. Calls within the program can be used by each
task to output a string on the text space of its row
or to set the color of each LED. This can provide
a simultaneous display of the state of each task
during a parallel execution. The Program Marker
Array is based on a research prototype developed
by Dror Feitelson.?

Figure 5 The Program Marker Array

=] g ey

= e

(==]

I Tasic 4, Light: 3, Value: 102 J

SNIR ET AL. 217

Figure 6 The xpdbx window

e R e ke AL =g
[Fie View Stop Group Command Holp |
; program main Deta
2 intager numtask, taslid Task O Task 1
g toger o i ot iz, i [count=0 | count=20 |
8 sirees
8 coun=20 [———— -
wom Stack
12 vall mp_envicon(umtask, task]
£ g o l | @staves.mo_initmaing, ine 8 in *slaves. | E‘
<y kA [— CH
1‘;‘ :“”Sblls"' L
g mgtlﬂl\m(mmm) Broai/Trace
%: cosel) Task 0 Tesk 1
S
% - [Tisopinmo it | [stophnmp.
B T e et —— T
:; integer m, court, tsizs, typ
2
:‘1’ ‘call mps_enwiron(runmtask, task Tasks Task
g ype=100
34 prirt ", in maaster’
3: “£L1,Mmm~' @ [A—T{jl
7 oallmp neendl. sz} Kl
5o B
f @
4 siavesiy
43 integer m, count, {, size, nby

Figure 7 The view selector window

il

S VT View Selector .

llmions

J

Compuumon

Ew[E|M]E]

rmal Kernal Processar Processor

[

Umxzanon Ut!hzanon Unnzaﬂon Utilization Wait

—
RN ERICRIE
Plooessor Processor User Load Processor
Idle (die Balance Utilization {3D)
ENE; > l
&
Communication Status Graph
Matri
(@ =M= HN L=]
System Page Page System System Context
Summary Faults Faults Calls Calls Switches

4

L L E]

Packets Packets Packets Packets
Sent Sent Recelved Received
L=l]=]p|=[™]
-
Disk Dlsk Dlsk D|sk Disk Disk
Transfers Transfers Reads Reads Writes Writes

218 sNIR ET AL

Source-level debugging of parallel codes is sup-
ported by pdbx (line interface) and xpdbx (X Win-
dows System** interface). The pdbx function is a
POE application that runs as a server task on the
home node and as a number of client dbx tasks on
the remote nodes. The pdbx function supports
most of the dbx debugger functions. Breakpoints
can be set for any task so as to halt execution when
a source line is reached, or a variable changed, or
a condition satisfied, or a procedure entered;
tracepoints can be set at any task to print tracing
information. In addition, pdbx allows the user to
define groups of tasks and to execute dbx com-
mands for all tasks in a group. Thus, we can set
a breakpoint that will halt all tasks in a group at
the same code line. Such commands are interpreted
by the pdbx server, which sends corresponding dbx
commands to the dbx clients, collects their out-
put, and displays the information to the user. The
xpdbx function provides a convenient, Motif**-
based X Windows System interface for pdbx func-
tions (Figure 6).

The Visualization Tool (VT) provides graphical
views of performance characteristics of a parallel
execution. A graphical interface is used to select
active views (Figure 7).

VT can be used on line to monitor AIX kernel sta-
tistics such as CPU activity (kernel, user), disk ac-
tivity, network TCP/IP activity, context switches,
page faults, and system calls. Some of the infor-
mation can be displayed in different views to high-
light problems specific to parallel execution. Thus,
a Kiviat diagram of (average and instantaneous)
processor utilization presents a useful graphical
display of load balance in a parallel application
(Figure 8). VT can also be used postmortem to vi-
sualize a performance trace that was collected dur-
ing execution. In this mode, we can display addi-
tional information on message-passing activity. We
can display ongomg communications in a graph or
matrix display, or in a streaming chart (Figure 9).

We can also open a source code window.

A trace playback control window allows the user
to move back and forth in execution time and ad-
just the playback speed (Figure 10).

Either an instantaneous or cumulative presenta-
tion can be selected for most of the views. Addi-
tional information can be obtained by clicking on
the view. Thus, by clicking on one of the spokes
of the load balance view, we get numerical values

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995

Figure 8 Load balance view

mﬂ e S User Load Balance

Figure 9 Streaming chart of interprocessor
communication

28|

of current times, instantaneous CPU utilization, and
average CPU utilization for the processor displayed
on that spoke. By clicking on the interprocessor
communication view, we open a menu that allows
a search for selected communication events.

VT is based on the program visualization tool de-
veloped by Doug Kimelman.?

Conclusion

The sp2 Parallel Operating Environment (POE)
allows users to develop and execute on the SP2 par-
allel jobs that take advantage of the fast commu-
nication hardware. It allows the same codes to
be developed and executed on a workstation or
workstation cluster. POE has evolved in the tran-
sition from the SP1 to the SP2 and will continue to
evolve in the future. As communication hardware
changes, the communication subsystem software
will change to take advantage of it. Future SP sys-
tems will provide more services to parallel appli-
cations and will allow more flexible resource al-
location policies; POE will evolve to support those.
POE will support new programming paradigms,
such as High Performance FORTRAN. Finally, pro-
gramming tools will continue to evolve so as to pro-
vide an increasingly user-friendly environment for
program development.

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995

[TTATIATE
llmm

TR o TR
[T CETCECTTTTTS ~YLCETRCTTATETACAT

| EIIIIIIIM!HIIIIIIIIllil’lllillllll‘*!Ilrllll

Figure 10 Trace playback control window

=] Visusiization ool 1.2 (G} 15M Corp 1904 ot

File Help '

R q @ﬁa
i 3

K[aTa > TP IS (VA " s
x 1 |@® x ot

Stop Play Step

l Trace File: Amp/domo.m{ I
Tracefile Time Control
0.0 0.2 0.40.5 0.7 0.9 1.1 1.3 1516 18
s bbb gt bbb o
. & 10KEvents
A
Acknowledgments

The design and implementation of the software ref-
erenced in this paper has been influenced by a large
number of individuals, and it is impossible to cor-
rectly and fairly differentiate individual contribu-
tions. The names of some of the contributors are
listed in References 1, 11, 14, 17, 20, 22, and 23.
In addition, we wish to acknowledge the contri-
butions of Don Grice, Pong Huang, Robert Straub,
Wendy Cheng, Bill Tuel, Dave Reynolds, Kevin
Reilly, Steve Hughes, Bob Dilly, Fiona Sim, and
Mark Smith.

This list is by no means complete. All of the in-
dividual components referenced exist today be-
cause of significant contributions from IBM Re-
search (at both the T. J. Watson Research Center
and Almaden Research Center) and from the
POWER Parallel Division. Some components exist

SNIR ET AL. 219

only because of the tightly knit joint efforts between
the various organizations. We acknowledge all the
individuals who have participated in the SP1 and
SP2 projects.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of X/Open Co. Ltd., In-
tel Corporation, Massachusetts Institute of Technology, or
Open Software Foundation, Inc.

Cited references

1. C. B. Stunkel, D. G. Shea, B. Abali, M. G. Atkins, C. A.
Bender, D. G. Grice, P. Hochschild, D. J. Joseph,
B. J. Nathanson, R. A. Swetz, R. F. Stucke, M. Tsao, and
P. R. Varker, “The SP2 High-Performance Switch,” IBM
Systems Journal 34, No. 2, 185-204 (1995, this issue).

2. G. A. Geist, A. Beguelin, J. J. Dongarra, W. Jiang,
R. Manchek, and V. S. Sunderam, PVM: Parallel Virtual
Machine—A Users’ Guide and Tutorial for Networked Par-
allel Computing, The MIT Press, Cambridge, MA (1994).

3. N. Carriero and D. Gelernter, “LINDA in Context,” Com-
munications of the ACM 32, No. 4, 444-458 (April 1989).

4. High Performance FORTRAN Forum, “High Performance
FORTRAN Language Specification,” Scientific Program-
ming 2, No. 1, 1-170 (1993).

5. T. Agerwala, J. L. Martin, J. H. Mirza, D. C. Sadler,
D. M. Dias, and M. Snir, “SP2 System Architecture,” IBM
Systems Journal 34, No. 2, 152-184 (1995, this issue).

6. P. F. Corbett, D. G. Feitelson, J.-P. Prost, G. S. Almasi,
S.J. Baylor, A. S. Bolmarcich, Y. Hsu, J. Satran, M. Snir,
R. Colao, B. D. Herr, J. Kavaky, T. R. Morgan, and A.
Zlotek, “Parallel File Systems for the IBM SP Computers,”
IBM Systems Journal 34, No. 2, 222-248 (1995, this issue).

7. nCUBE 2 Programmers Guide, nCube Corporation, Fos-
ter City, CA (1990).

8. InteliPSC/860 Programmer’s Reference Manual, Intel Cor-
poration, Beaverton, OR (1990).

9. Express 3.0Introductory Guide, Parasoft Corporation, Pas-
adena, CA (1990).

10. Message-Passing Interface Forum, “MPI: A Message-Pass-
ing Interface Standard,” International Journal of Super-
computer Applications 8, No. 3/4, 165-414 (1994).

11. V. Bala, J. Bruck, R. Bryant, R. Cypher, P. de Jong,
P. Elustondo, D. Frye, A. Ho, C-T. Ho, G. Irwin, S. Kip-
nis, R. Lawrence, and M. Snir, “The IBM External User
Interface for Scalable Parallel Systems,” Parallel Comput-
ing 20, No. 4, 445-462 (April 1994).

12. IBM AIX Parallel Environment: Parallel Programming
Subroutine Reference, Rel. 2, SH26-7228, IBM Corpora-
tion (1994); available through IBM branch offices.

13. IBM AIX Parallel Environment: Operation and Use, Rel.
2, SH26-7230, IBM Corporation (1994); available through
IBM branch offices.

14. B. G. Fitch and M. E. Giampapa, “The Vulcan Operating
Environment: A Brief Overview and Status Report,” Pro-
ceedings of the 5th Workshop on Use of Parallel Proces-
sors in Meteorology, European Centre for Medium-Range
Weather Forecasts (November 1992).

15. V. Bala and S. Kipnis, “Process Groups: A Mechanism
for the Coordination of and Communication Among Pro-
cesses in the Venus Collective Communication Library,”

220 SNIR ET AL

Proceedings of the 7th International Parallel Processing
Symposium, IEEE (April 1993).

16. R. Cypher and E. Leu, “The Semantics of Blocking and
Nonblocking Send and Receive Primitives,” Proceedings
of the 8th International Parallel Processing Symposium
(April 1994), pp. 729-735.

17. V. Bala, J. Bruck, R. Cypher, P. Elustondo, A. Ho, C. Y.
Ho, S. Kipnis, and M. Snir, “CCL: A Portable and Tun-
able Collective Communication Library for Scalable Par-
allel Computers,” to appear in IEEE Transactions on Par-
allel and Distributed Computing.

18. G. F. Pfister and V. A. Norton, ““ “Hot Spot’ Contention
and Combining in Multistage Interconnection Networks,”
Proceedings of the 1985 International Conference on Par-
allel Processing (August 1985), pp. 790-795.

19. IBM AIX PVMe User’s Guide and Subroutine Reference,
Rel. 1, SH23-0019, IBM Corporation (1993); available
through IBM branch offices.

20. H. Franke, P. Hochschild, P. Pattnaik, J-P. Prost, and
M. Snir, “MPI on IBM SP1/SP2: Current Status and Fu-
ture Directions,” Proceedings of the 2nd Workshop on
Scalable Parallel Libraries (October 1994), pp. 3948.

21. IBM LoadLeveler: User’s Guide, SH26-7226, IBM Cor-
poration (November 1994); available through IBM branch
offices.

22. D. Feitelson, “Terminal 1/O for Massively Parallel Sys-
tems,” Proceedings of the Scalable High-Performance
Computing Conference (May 1994), pp. 263-270.

23. D. N. Kimelman and T. A. Ngo, “The RP3 Program Vi-
sualization Environment,” IBM Journal of Research and
Development 35, No. 5/6, 635-652 (November 1991).

Accepted for publication January 5, 1995.

Marc Snir IBM Research Division, Thomas J. Watson Re-
search Center, P.O. Box 218, Yorktown Heights, New York
10598 (electronic mail: snir@watson.ibm.com). Dr. Snir is sen-
ior manager at the IBM Thomas J. Watson Research Center,
where he leads research on scalable parallel software and
on scalable parallel architectures. He recently led the Vulcan
software effort and the initial design and prototyping of par-
allel software for the IBM SP1. He received a Ph.D. in math-
ematics from the Hebrew University of Jerusalem in 1979. He
worked at New York University (NYU) on the NYU Ultra-
computer project from 1980-1982 and worked at the Hebrew
University of Jerusalem from 1982-1986. He has published on
computational complexity, parallel algorithms, parallel archi-
tectures, interconnection networks, and parallel programming
environments. He recently contributed to High Performance
FORTRAN and to the Message-Passing Interface. Dr. Snir is
a member of the IBM Academy of Technology, a senior mem-
ber of IEEE, and a member of ACM and SIAM.

Peter Hochschild IBM Research Division, Thomas J. Wat-
son Research Center, P.O. Box 218, Yorktown Heights, New
York 10598 (electronic mail: phoch@watson.ibm.com). Dr. Hoch-
schild works in the areas of parallel hardware and software, and
communication systems. He is the principal designer of the Vul-
can switch and the EUIH prototype message-passing software
for the IBM SP1 and SP2 machines. He received a Ph.D. in com-
puter science from Stanford University.

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995

Daniel D. Frye IBM POWER Parallel Division, Highly Par-
allel Supercomputing Systems Laboratory, 522 South Road,
Poughkeepsie, New York 12601-5400 (electronic mail:
danielf@vnet.ibm.com). Dr. Frye did graduate work at The
Johns Hopkins University in theoretical atomic physics. He
did postdoctoral work at the University of Virginia in compu-
tational atomic photoionization processes utilizing vector com-
puters and at IBM Kingston in quantum chemistry of small
molecules and in parallelization and vectorization of numer-
ically intensive codes. At IBM he was responsible for paral-
lelization of scientific applications on shared-memory and cou-
pled shared-memory systems. He transferred to the Highly
Parallel Supercomputing Systems Development Laboratory to
work on parallel applications and do performance studies in a
distributed memory environment. Dr. Frye continued work-
ing in the POWER Paralle] Development Laboratory in Kings-
ton on languages, architecture, and performance benchmark-
ing for scalable, parallel RISC-based systems. He shifted to
full-time work on software architecture for the SP2 before tak-
ing current responsibility as manager of the Software System
Design group for the IBM SP series of supercomputers.

KevinJ.Gildea IBM POWER Parallel Division, Highly Par-
allel Supercomputing Systems Laboratory, 522 South Road,
Poughkeepsie, New York 12601-5400 (electronic mail:
gildeak@vnet.ibm.com). Dr. Gildea is the lead programmer for
the communication subsystem software development team in
the POWER Parallel Division. He joined IBM in Poughkeep-
sie, New York, in 1982 upon receiving a B.S. in computer
science from the University of Scranton. He worked in Pough-

keepsie until 1987 on the development of robotic and manu-
facturing control systems. In 1987, he became IBM’s Resident
Engineer in Rensselaer Polytechnic Institute’s Center for Man-
ufacturing Productivity, where he worked on the Computer In-
tegrated Manufacturing Program. Dr. Gildea received M.S. and
Ph.D. degrees in computer science from Rensselaer Polytech-
nic Institute and joined the POWER Parallel Division in 1992.

Reprint Order No. G321-5565.

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995

SNIR ET AL. 221

