
The  communication 
software  and parallel 
environment of the 
IBM SP2 

by M. Snir 
P. Hochschild 
D.  D. Frye 
K. J. Gildea 

This  paper  describes the software  available  on 
the ISM SP2TM for parallel  program  development 
and  execution.  It  presents the rationale for the 
design  of the Message-Passing  Library  used 
on  the  SP2,  outlines its current  implementation, 
and  gives  information  on  performance. In 
addition,  the  paper  describes  the  programming 
environment  and  the  program  development tools 
available for developing  and  executing  parallel 
codes. 

T he IBM scalable POWERparakI system* 9076 
S P ~ *  was designed to run large-scale  parallel ap- 

plications  efficiently. A critical aspect of parallel pro- 
gram support is communication: Efficient  parallel 
computing requires high-bandwidth, low-latency in- 
terprocessor communication. The S P ~  High-Perfor- 
mance Switch and adapter, described elsewhere in 
this issue, provide hardware support for high-per- 
formance communication. In this paper, we describe 
the communication software that allows parallel ap- 
plications to exploit the performance characteristic 
of the communication hardware. 

The main parallel programming model  supported 
by  the S P ~  is message passing: A set of tasks,  each 
executing in its own address  space,  communicates 
via calls to  the Message-Passing Library (MPL). 
This library was designed so as  to provide program- 
ming convenience. For example, MPL supports  a 
fairly  extensive set of communication calls for col- 
lective  communication.  This  capability  alleviates 
the need to program in detail  the  communication 

for  a  scatter-gather  or  transpose  operation.  Con- 
versely, MPL has  a  fairly small number of calls that 
can  be implemented to map efficiently to  the un- 
derlying communication hardware. In  the  next  sec- 
tion we  present  the rationale  for  the design of MPL 
and  describe  the  services provided by the main 
functions in MPL. 

The implementation of a message-passing library 
offers a  multitude of alternatives,  especially  on  an 
architecture as rich as  the S P ~ :  some  functions  sup- 
ported by microcode  on  the  adapter  and  some by 
software  on  the  computing  processor;  some  func- 
tions  executed in user  space  and  some  by  kernel; 
trade-offs between  more  extensive  use of buffer- 
ing and data  copying  and  more  eager  use of inter- 
rupts; “push”  versus “pull”  protocols; flow con- 
trol;  etc.  We  describe  the  current implementation 
of MPL, its performance, and  the rationale for some 
of the  decisions  taken.  This implementation 
achieves  a  performance  that is close  to  the  hard- 
ware limitations, although improvements are still 
possible. 
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Parallel code is more  complex to develop  than  se- 
quential  code. To a large extent,  the  complexity 
is  a reflection of the lower level of maturity of par- 
allel software technology. Parallel languages and 
compilers  have  a  shorter  history  and  a  much 

Message-passing  libraries  are 
the main programming  interface 

used on distributed memory 
machines  and networks of 

workstations. 

smaller investment  than languages and  compilers 
for uniprocessors. Beyond that, parallel comput- 
ing is intrinsically harder  than  sequential  comput- 
ing. It  requires  the  user  to  understand  the  perfor- 
mance impact of at  least one added dimension of 
the  execution model, namely parallelism. There- 
fore, it is important to provide  users  with  a rich 
set of tools  that will help them  to  understand  the 
behavior of parallel code,  debug  it,  and  tune it. 
Such  tools  should  provide information not  only 
about  the individual behavior of each  process  but 
also  about  the  interactions  and  correlations  be- 
tween  processes. In the  last  section of this  paper 
we describe  the Parallel Operating Environment 
available on the S P ~ .  This  environment includes fa- 
cilities for compilation and parallel program sub- 
mission, a  source level parallel debugger, and  a 
trace-driven  performance  visualization tool. 

Finally, we would like to  emphasize  that  this  pa- 
per  does  not  provide  an  exhaustive  description of 
the  various programming models and  services  that 
can  be  used  to develop parallel applications  on  the 
S P ~ .  The S P ~  is  an  open  system  that  can  be used in 
a  variety of modes:  processes  can  communicate 
using standard UNIX* * interprocess communica- 
tion mechanisms,  such as  Internet  Protocol (IP), 
User Datagram Protocol (UDP), Transmission Con- 
trol  Protocol (TCP), and sockets;  other message- 
passing libraries, such as P V M ~  (Parallel Virtual Ma- 
chine),  are  supported; third-party vendors provide 
support for other parallel programming paradigms, 
such as LINDA3 or High Performance FORTRAN;4 
various  users of the sP1* and S P ~  have implemented 
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their own  communication  libraries or tools. In ad- 
dition, the S P ~  provides  a  variety of system  serv- 
ices in support of parallel applications, such as par- 
allel job management or parallel I/O operations. 'z6 

The  Message-Passing  Library 

Message-passing libraries  are the main program- 
ming interface used on distributed  memory ma- 
chines  and  networks of workstations.  Such  librar- 
ies  support  a programming model in which a 
parallel program consists of a number of tasks,  each 
running a single execution  thread within its own 
address  space (Le., executing  a  sequential FOR- 
TRAN or C program).  Tasks  communicate with ex- 
plicit calls to a message-passing library. 

At  the time development  started on the sP1 Par- 
allel Operating Environment there was no accepted 
standard for such libraries: parallel systemvendors 
and third-party  software  vendors  supported  pro- 
prietary, incompatible libraries. 7-9 (Since  then,  a 
standard Message-Passing Interface [MPI] has 
been designed by an  open  forum of vendors,  cus- 
tomers,  and  researchers. We plan to  support  this 
MPI in future software releases.) PVM' was  the most 
popular public-domain library  used on networks 
of workstations. However, PVM looked less  attract- 
ive as an  interface for a  machine like the SP1. The 
design of PVM, which is optimized for IP commu- 
nication in a networked environment, requires data 
copying operations  that  can  be avoided with a li- 
brary  more  directly targeted to an s p  environment. 
Also, PVM (Version 2) was missing support  for im- 
portant  functions,  such as collective communica- 
tion. Therefore, we decided to develop  our own 
Message-Passing Interface for the sP1. This  library 
has  become known under  two equally unimagina- 
tive  names:  External User Interface (EUI)" and 
Message-Passing Library (MPL). 12,13 

The design of EUI/MPL was influenced by several 
prototype  systems  and  environments developed at 
IBM Research, in particular  the Vulcan Operating 
En~ironment '~  and  the  Venus  communication 
library. l5 The  library was defined by a  joint  team 
at IBM Research  and  the IBM Highly Parallel 
Supercomputing  Systems  Laboratory (HPSSL). '' 
The final specification of the library was completed 
in the  summer of 1992. By  the fall of  1992, the first 
implementations Of EUI were operational on several 
platforms. These  platforms included a  prototype 
of the sp1 (demonstrated at the Supercomputing-92 
conference) and clusters Of RISC System/6000* work- 
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stations. The library is available as part of the sP1 
and S P ~  Parallel Operating Environment. 

The design of EUIMPL tried to balance  several  par- 
tially conflicting requirements. We wanted  a library 
that would provide  a  convenient application pro- 
gramming interface.  We  wanted  the  library  to  be 
small, both for ease of use  and  for  fast implemen- 
tation,  yet  complete. We wanted  nearly identical 
calls to  be available both from FORTRAN and from 
C .  We  wanted calls that would be familiar to  users 
of existing libraries. Most  importantly, we wanted 
a  library  that  can  be well supported by the sP1 and 
S P ~  hardware.  In  particular, we wanted  a design 
that would allow the off-loading of communication 
to  the  adapter  and allow overlap of communica- 
tion and computation.  This off-loading would not 
be  possible on  the sP1, as  the  High-Performance 
Switch adapter  for  the sP1 has no ability to  move 
data  on  its  own.  However,  we  anticipated  such 
ability in the High-Performance Switch adapter  for 
the S P ~ .  

We assumed  that  the main mechanism for  allocat- 
ing resources  to parallel jobs would be  space  par- 
titioning. In  this model a parallel job  has full con- 
trol of a  set of processors  that is kept fixed during 
the run. This model is preferred  by  many  users  and 
simplifies resource allocation. A programming 
model in which a parallel job  consists of a fixed 
number of tasks fits well with fixed physical par- 
titions. It  also simplifies the design of the commu- 
nication subsystem and ultimately improves  per- 
formance,  because  resources  can  be  bound  at load 
time, rather  than dynamically. Therefore, we fo- 
cused  on  supporting parallel applications  that  use 
a fixed number of tasks. 

We ended up with a  library  that  includes 33 func- 
tions. These  functions  provide  three  types of serv- 
ices: 

Task management for initialization, termination, 
and  environment  setting  and  querying 
Point-to-point communication for communica- 
tion between  pairs of tasks 
Collective communication for communication 
and synchronization  operations  that involve 
groups of tasks 

The following sections  describe  these  services in 
further detail. 

Task  management. Four  routines  are  provided for 
task management and are  described  below. 
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The  number nurntask of tasks used by a parallel 
program (the  partition  size) is specified when 
the program is submitted for execution. During 
execution,  each  task  is identified by an integer 
tuskid, in the range 0 to numtask - 1. The  proce- 
dure MP-ENVIRON allows the  user to find the  total 
number of tasks  and  the taskid of the calling task. 
(We are using the FORTRAN names of the message- 

Pairs of tasks communicate by 
issuing  matching send and 

receive commands. 

passing calls. For each FORTRAN procedure MP-xxx, 
there is a corresponding C function named rnpc-xxx.) 

The  procedures MP-TASK-QUERY and MP-TASK-SET are 
used to  query system-dependent  execution param- 
eters and,  respectively, to  set user-definable ex- 
ecution  parameters. 

The  procedure MP-STOPALL allows a  task  to  abort  ex- 
ecution of all tasks  and  is used for abnormal  ter- 
mination. Normal termination occurs  when  each 
task  exits normally (e.g., via  a STOP or END state- 
ment in FORTRAN). 

Point-to-point  communication. Pairs of tasks  com- 
municate by issuing matching send  and  receive 
commands. A send command specifies the  loca- 
tion in memory of the  data  to  be  sent and  the taskid 
of the  destination. In addition, the  send command 
includes a type parameter  that  can  be used to iden- 
tify the message. The  receive command specifies 
where  the message should be placed, as well as  the 
desired source  and  type of message. Either or  both 
of the  source  and  type  values  may  be  a wild card 
on a  receive  (thus matching any  message). Mes- 
sage truncation  is  supported,  unless the receiving 
process is set  to  treat overflow as  an  error condi- 
tion. Both blocking and nonblocking send  and  re- 
ceive  operations  are  supported in the MPL. 

A blocking  send call returns  after  the application 
buffer in the sending task  is  free to  be reused; com- 
pletion of this call does  not imply that  the message 
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has  been received into  the application buffer  in the 
destination task. A blockingreceive call returns af- 
ter  the receive operation  completes and the mes- 
sage has  been copied into  the application buffer of 
the receiving task. 

The  two  procedures MP-BSEND and MP-SRECV are used 
for blocking sends and receives. These  two pro- 
cedures  support communication from a contigu- 
ous memory area, specified by an initial address 
and a byte length. 

The  two  procedures MP-SVSEND and MP-SVRECV 
allow the  user to send a message from noncontig- 
uous memory (and, respectively, receive it in non- 
contiguous memory). The memory buffer is  spec- 
ified by four parameters: initial address, number 
of (contiguous) blocks, the  size of each block, and 
the offset between  successive blocks. Use of such 
a strided buffer can  move  an  arbitrary  submatrix 
of a two-dimensional program array with one com- 
munication call, in particular, a row of a FORTRAN 
array  or a column of a C array.  This method saves 
an additional memory-to-memory copy  operation 
that would be otherwise required to pack  the  data 
into a contiguous buffer before  they  are  sent and 
unpack  the  data  when received. 

A nonblocking  send call MP-SEND just notifies 
the  system  that a message must be  sent and returns 
without waiting for the message to be copied out 
of the  user application buffer. As a result, the  user 
must  not  overwrite  the application buffer until the 
message has  been copied by  the system. Similarly, 
a nonblockingreceive call MP-RECV just notifies the 
system  that a particular application buffer is avail- 
able for receiving a message and returns without 
waiting for the message to arrive. As a result, the 
user  must  check for the  reception of the message 
before accessing it in the application buffer. To 
allow this, nonblocking send and receive calls re- 
turn an integer msgid that identifies the pending 
communication operation and can  be used to mon- 
itor  its progress. The nonblocking procedure call 
MP-STATUS reports  the  status of a pending message. 
The call MP-WAIT blocks  the calling task until the 
specified communication has completed. 

The  use of nonblocking communication calls re- 
sults in code  that is more complex, because  each 
communication operation  has to  be coded as two 
separate calls, and care  has  to  be  taken  not  to  ac- 
cess application buffers while they  are accessed by 
the communication library. Nevertheless, this use 
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usually improves performance. Nonblocking com- 
munications allow some  overlap  between compu- 
tation and communication. More importantly, they 
allow better decoupling of sender and receiver. If 
a blocking send is executed ahead of the matching 
receive, either  the sending task  has to idle until the 
receive call occurs, or the outgoing message has 
to be copied and buffered. If a blocking receive is 
executed ahead of the matching send,  the receiv- 
ing task  has to idle until the  send  occurs. When 
nonblocking communication is used, computation 
can  continue until the wait call is  executed.  Thus, 
best performance is usually achieved by posting 
nonblocking send and receive calls as soon as pos- 
sible (as  soon as application buffers are  ready) and 
posting wait calls as late as possible (just before 
the application buffers have to  be reused). 

Properties of point-to-point  communication. Al- 
though blocking and nonblocking message-pass- 
ing operations  are common to many systems,  the 
precise semantics of these  constructs may vary in 
subtle and often undocumented ways. We describe 
below the main choices we made on  the  semantics 
of message passing in MPL and the rationale for 
these choices. 

Order. Messages sent from a single source to a sin- 
gle destination are received in the  order in which 
they  were  sent. More precisely, the following two 
properties  are satisfied (see Reference 16 for a for- 
mal definition): 

A receive  operation will receive a message only 
if there is no previously sent message from the 
same  source  that  also  matches  the receive and 
has not yet been received. 
A receive  operation will receive a message only 
if there is no previously executed (nonblocking) 
receive that  is still pending with  the  same  type 
and source  parameters. 

Order preserving reduces  the amount of nondeter- 
minism  in the  execution of parallel programs. For 
example, programs that do not use wild card re- 
ceives will be deterministic. Order preserving sim- 
plifies programming and debugging and has  no sig- 
nificant impact on performance on the S P ~ .  Writing 
deterministic programs has  the  further advantage 
of decreasing the  risk for deadlock. 

Note  that  two posted receives may match the  same 
message, even though they  do not have  the  same 
type and source  parameters:  one of the  receives 
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may use  an explicit value,  whereas  the  other  uses 
a  dontcare  (the  dontcare  value specifies a wild card 
receive). In such  a  situation,  there is no require- 
ment in MPL that  the message will be received by 
the earlier receive. Consider the following exam- 
ple: 

v o i d  exampl e l  () ; 
{ 

i n t   t a s k i d ,  numtask,   source,   dest ,   type,   msgid,  
msglen,   nbytes,   a[ lO]  , b[10] ; 

mpc-environ(  &numtask,  &taskid); 

source = 0; 
d e s t  = 1; 
msglen = s i z e o f ( a )  ; 

i f  ( t a s k i d  == source) { 
t y p e  = 1; 
mpc-bsend( a ,   msglen ,   des t ,   type) ;  
mpc-bsend( b ,   msglen ,   des t ,   type) ;  

} e l s e  { 
i f  ( t a s k i d  == d e s t )  { 

t y p e  = dontcare ;  
mpc-recv ( a ,  msgl  en,  &source, 

t y p e  = 1; 
mpc-brecv(  b,  msglen,  &source, 

&type,   &nbytes)  ; 
mpc-wait(  &msgid,  &nbytes); 

&type,  &msgid);  

1 
1 

} 

The first receive may receive either of the two mes- 
sages  sent, while the second receive receives  the 
other message. In  contrast, if both receive oper- 
ations had used the same type (either 1 or dontcare), 
messages would be received in the  order theywere 
sent. 

A stricter requirement would have a message re- 
ceived by the first posted receive that  matches it, 
even if there  were  several matching receives  that 
differ  in their source or type  parameters  (because 
of dontcares).  This requirement leads to perhaps 
more intuitive semantics,  at  the  expense of more 
constraints  on  the algorithm used to match  sends 
to receives. Since  the difference is unlikely to af- 
fect many programs, MPL chose  the easier-to-im- 
plement definition. Note, however, that MPI chose 
the  second one. We can avoid this problem alto- 
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gether  by not using wild card receives-which  will 
also improve performance (MPL implementations 
are optimized for code  that  does  not  use them). 

Buffering. Any message-passing library has to cope 
with the limited amount of buffer space  that  can 
be made available to  the library. Consider the fol- 
lowing example: 

v o i d  exampl  e2 () ; 
{ 

i n t   t a s k i d ,  numtask,  other,   msglen,  nbytes; 
char  a[N] ,  b[N] ; 

mpc-environ(  &numtask,  &taskid); 

msglen = s i z e o f ( a ) ;  
t y p e  = 1; 

i f  ( t a s k i d  == 0) { 
o t h e r  = 1; 
mpc-bsend( a ,   msglen ,   o ther ,   type) ;  
mpc-brecv( a ,   msglen,   &other ,   &type,  

&nbytes)  ; 

} e l s e  { 
i f  ( t a s k i d  == 1) { 
o t h e r  = 0; 
mpc-bsend( a, msglen ,   o ther ,   type) ;  
mpc-brecv(  a,   msglen,  &other,   &type, 

&nbytes)  ; 
1 

1 
1 

Each  task  sends N bytes, using a blocking send, 
then receives  the message sent by the  other task. 
Neither of the receive operations  can  start before 
the preceding send  operation completes. Thus, in 
order for this program to complete, it is  necessary 
for at  least N bytes  to  be copied and buffered. The 
success of this program depends  on  the amount of 
available buffering. 

Messages can  be buffered either in the memory of 
the sending node or in the memory of the receiv- 
ing node, or both. (Other alternatives, such as buff- 
ering at  a third node or buffering on disk, are  the- 
oretically possible but not practical.) When buffer 
space is exhausted,  the sending task blocks. Thus, 
deadlock occurs if there  is  a cycle of tasks,  each 
blocked while sending a message to the  next  task 
on the cycle. The  previous program can lead to 
such a deadlock situation,  with a cycle of length two. 
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The  current high-performance implementation of 
MPL has  a fixed amount of buffer space  allocated 
to  each pair of communicating tasks.  This imple- 
mentation leads to higher performance but requires 
the  user to exercise  some  care in order  to avoid 
deadlocks.  The simplest deadlock  avoidance pol- 
icy is to  make  sure  that  communications  occur in 
a  consistent  order  at all tasks.  That  is, the com- 
munication calls executed by all tasks  can  be  to- 
tally ordered in a  sequence  where  sends  occur  be- 
fore matching receives, and calls executed by  any 
one  task  appear in the  order in which they  were 
issued by that  task. A program that follows this 
rule will not  deadlock,  irrespective of the  size of 
the  messages and the  amount of buffering avail- 
able. Thus,  deadlock  can be avoided in the  last  ex- 
ample by reversing the  order of send  and  receive 
at  one  task. 

The use of nonblocking receives also helps. Early 
posting of nonblocking receives  increases  the like- 
lihood that receives will precede sends, thus allow- 
ing the  send  operation  to  proceed  without addi- 
tional buffering. Deadlock can  be avoided in the 
last example by having each  task first post  a non- 
blocking receive and then  execute  the  send. 

Collective communication. In parallel computations 
execution of a communication that collectively in- 
volves all tasks within a  group is often required. 
Examples of such collective communications are 
broadcast,  scatter,  gather,  and all-to-all commu- 
nication. These  patterns of communication are il- 
lustrated in Figure l. In this figure we represent 
the global memory of all tasks  that  participate in 
the collective communication as a two-dimensional 
array, with task number being the  vertical dimen- 
sion and  address within each  task  address  space 
being the  horizontal dimension. We illustrate the 
layout of data  items in global memory  before  and 
after  the communication. 

We  also need to perform reduction  operations 
within groups,  such as computing a global sum of 
variables  stored one per  task. MPL supports  pre- 
defined and user-defined reduce  operations.  These 
operations  can  be  used  for  reduction  (results  re- 
turned  to one  or all group  members)  and  for  scan 
operations. 

Collective operations  have limited usefulness, un- 
less  they  can be applied to arbitrary, user-defined 
groups of tasks. One possible approach is to pro- 
vide  with  each call an explicit list of group mem- 
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bers.  This  approach  leads to scaling problems and 
is  not  convenient to  the programmer. Rather, MPL 
allows the programmer to define groups and refer 
to previously defined groups in collective commu- 
nication calls. A gid (group id) argument is  pro- 
vided with each collective call to identify the group 
of participating tasks. 

New  groups  can  be defined, either by providing 
an explicit list of members or  by splitting an  ex- 
isting group.  The call MP-PARTITION (parent-id, 
key, 1 abel,  gid) splits  the  group identified by 
parent-id into  subgroups,  one  for  each  value of 
1 abel . The  processes  are  ordered within each  sub- 
group  according to  the value of key. 

Various management functions are provided for 
finding the  size of a group, the  rank of a  task within 
a  group, and vice  versa.  See  Reference 17 for ad- 
ditional information on the design and implemen- 
tation of the collective communication library. 

MPL implementation 

The Message-Passing Library is available on the 
S P ~  in two different implementations, one on top 
of IP, and  the  other  where message-passing calls 
are directly mapped, in user space, to the High-Per- 
formance Switch adapter. The user-space version 
has much better performance but can be used only 
by one  task at each node. Thus, if several tasks time- 
share the same node, the IP version is used. 

We shall discuss in detail the user-space implemen- 
tation (us css, or user-space communication sub- 
system). The IP implementation shares the same top 
layer code, with the bottom layers replaced by IP. 

The SPZ High-Performance Switch adapter is de- 
scribed in Reference l in this  issue. It is Micro 
Channel*-attached  and  contains  a DMA (direct 
memory  access) engine for moving data on the Mi- 
cro Channel. In addition, it contains an i860**  mi- 
crocontroller,  memory,  and  a FIFO (first-in-first- 
out)  interface to  the switch. The  adapter  memory 
can be accessed by the main processor using pro- 
grammed 110 (PIO). 

The  structure of the communication system  was 
heavily influenced by  the design of this  adapter  and 
by performance priorities. 

A critical performance requirement was  to increase 
the bandwidth (which was limited to 8.7megabytes 
per  second [MB/s] on the SP1). To  do so, it is nec- 

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995 



Figure 1 Collective  communication  operations 
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Adapted  from D. Walker,  "The Design of a Standard Message-Passing Interface  for  Distributed  Memory  Concurrent Computers,"Parallel Computing 20, No. 4, 657-673 
(Apnl 1994). 

essary  to  transfer  data  over  the Micro Channel us- area and copied from there  by  the  adapter using 
ing DMA, rather than Pro as on the SPI. This trans- DMA; data received are copied by  the  adapter us- 
fer  requires  data  to  be available in memory that is ing DMA into  a  reserved buffer area, and copied 
not paged or cached. Therefore,  data to be  sent from there by the processor to the user applica- 
are copied by the  processor  to  a  reserved buffer tion space. 
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Figure 2 Structure of communication  software 
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Latency  was a second  consideration,  and  proces- 
sor communication  overhead was a third consid- 
eration.  Many  codes are written in a loosely  syn- 
chronous  style, with computation  phases followed 
by communication phases.  In  such  codes  there  are 
few opportunities for overlapping computation and 
communication, and  reduction of total communi- 
cation time improves  performance,  even if proces- 
sor  overhead  is  increased. 

The microcontroller used on  the  adapter is much 
slower than the main processor. Therefore, anyoff- 
loading of protocol  code from the  processor  to  the 
adapter, although reducing the  processor  overhead 
for communication, increases  the  total communi- 
cation time. We settled on a communication  pro- 
tocol  where very few functions are executed  on 
the  adapter. 

Communication between  the  processor  and  the 
adapter  memory  via  the Micro Channel is slow. 
We therefore tried to minimize the  number of ac- 
cesses  to  adapter memory. 

The communication hardware  has  no  end-to-end 
flow control. Congestion at a destination  causes 
saturation to  occur  at  the switch  that  is  connected 
to  the  destination  and  then to propagate  backward 
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in the  network.  This  phenomenon of "tree  satu- 
ration" can  cause significant degradation in com- 
munication bandwidth for other  destinations as 
we11.18 To avoid this problem (without tossing it 
back to  the  user), an  end-to-end flow control  pro- 
tocol is needed. 

The  adapter  has  to  support,  at  the  same time, user- 
space communication for a task  that  uses  the Mes- 
sage-Passing Library  and IP communication for 110 
and system  services  for  that  task, or  other pro- 
cesses running on  the same node. On the w l ,  IP 
communication has  to use  an  Ethernet  connection 
when the  adapter  is  used  for  user-space commu- 
nication-thus reducing IP performance. This  re- 
striction  is lifted on  the S P ~  where  the  adapter  can 
be  shared  between  the single task using user-space 
communication and any number of tasks using IP. 

Finally, an  important  consideration resulting from 
the  short  development  cycle  was  reuse of commu- 
nication software  that was developed  for  the sP1. 

These  considerations  and  constraints  resulted in 
the implementation described below. 

The  overall  structure of the communication soft- 
ware is shown in Figure 2. The left side of the di- 
agram shows  the  communication  stack for user- 
space communication. 

The message layer supports a few simple, non- 
blocking message-passing calls. All MPL calls are 
mapped onto  these calls. The  collective commu- 
nication layer is also implemented on  top of these 
point-to-point message-passing calls. 

Thepipe layer maintains a separate bidirectional 
pipe for communicating with  every  other  task.  The 
pipes provide a reliable, flow-controlled, ordered 
stream of bytes  between any pair of communicat- 
ing processes.  Avariant of the sliding window pro- 
tocol is used on  each pipe. Acknowledgment pack- 
ets with a time-out and  retransmitting  scheme  are 
used to provide reliability. A token protocol is used 
on  each pipe to make  sure  that  data  are  sent  on a 
pipe onlywhen  there is available space in the buffer 
at  the  other  end of the pipe in order  to avoid over- 
flow. 

The  byte  streams of outgoing pipes are multiplexed 
by  the  processor  to a shared  queue in the  proces- 
sor memory; conversely,  the  processor demulti- 
plexes incoming data from a shared  queue  into  the 
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~ Figure 3 Communication path from  source  to  destination 

incoming pipe buffers. This pair of shared  queues, 
together  with  a few additional control registers, 
form a virtual switch integace in the  processor 
memory. Data  are moved between  these  queue 
buffers and  the switch by  the  adapter, using high- 
bandwidth DMA. This data movement can  occur 
simultaneouslywith computation done  by  the pro- 
cessor, allowing for some  overlap  between com- 
putation and communication. 

The  path  traversed  by  a message from source  to 
destination  is illustrated in Figure 3. The  transfer 
consists of the following steps: 

The message layer  transfers  the message data 
from the  sender buffer to the pipe input buffer. 
It  is  a memory-to-memory copy  operation  that 
is executed  by  the sending processor. 
The pipe layer  transfers  the  data from the pipe 
input buffer to the  virtual switch interface. This 
memory-to-memory copy  operation  is also ex- 
ecuted by  the sending processor. 
The  adapter DMA engine transfers  the  data from 
the  virtual switch interface to the  adapter. 
The  sending  adapter  transfers  the  data,  via  the 
switch, to  the receiving adapter. 
The DMA engine at  the receiving adapter  trans- 
fers  the incoming data  to  the  virtual switch in- 
terface. 
The pipe layer  transfers  the  data from the  vir- 
tual switch interface to  the pipe output buffer. 

1 
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The message layer transfers  the  data from the 
pipe output buffer to  the receive buffer. 

When a message is  sent  that is larger than  the pipe 
buffer, the communication subsystem  attaches  the 
user buffer  in place of the pipe buffer. The pipe 
copy  operation  then  moves  data directly from the 
send buffer to  the  virtual  switch interface, as in- 
dicated by the dashed line in Figure 3. The  same 
bypass mechanism is used at  the receiving node. 
Thus,  the amount of data  that  is  doubly copied in 
memory (to  the pipe buffer, next to the  virtual 
switch interface) is  proportional to  the number of 
messages sent, not to  the total amount of data  sent; 
likewise, the  same applies to receives. The com- 
munication subsystem  sends additional tokens to 
the  sender to relax flow control  when  the receive 
pipe buffer is bypassed. 

The  same  process  executes, in one  address  space, 
the  codes for the pipe layer, the message layer, and 
the  user application. These  codes  can  be  seen  as 
three  coroutines  that time-share the  same process. 

The message layer  is invoked by  the application 
code whenever an MPL call is executed. A send call 
results in data being copied from the application 
send buffer to a pipe input buffer; if no room is 
available in the pipe buffer, the  send  operation 
blocks. A receive call results in data being copied 
from a pipe output buffer to the application receive 
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buffer. If a matching message  has  not  yet  arrived, 
the  receive  is  posted  for  later handling. 

The message layer is invoked by  the pipe layer 
whenever  changes in the pipes allow pending com- 
munications to proceed. For example, when  a new 
message arrives,  the message layer  is invoked in 
order  to  check  whether  a  receive  operation is al- 
ready  posted  that  matches  this message. If such 
is found, the incoming data  are copied from the pipe 
output buffer to  the application receive buffer. 

The pipe layer is invoked by  the message layer 
whenever  the  latter  executes. When invoked,  the 
pipe layer  services  each  active pipe; it copies  data 
from the pipe input buffers to  the virtual  switch in- 
terface if tokens  are available; it copies  data from 
thevirtual switch  interface to  the pipe output buff- 
ers and  releases  back  tokens if data  have  arrived. 

The pipe layer  can  also  be  activated by external 
interrupts from the  adapter  or  by timer interrupts, 
as described in the  next  section.  Such  activation 
guarantees  that  progress  occurs in data  transfer 
even if the application code  does  not  execute  any 
MPL call. 

The communication subsystem  provides fair ser- 
vice to all active pipes. Thus,  a long data  transfer 
on one pipe will not  block  a  transfer  occurring on 
another pipe. If two different tasks  concurrently 
send  messages to  the same  destination,  the  des- 
tination can  execute  the matching receives in ar- 
bitrary  order,  without  fear of deadlock.  However, 
if a pipe buffer is full, no new  messages  can  be re- 
ceived on that pipe until the pipe clears.  In  par- 
ticular, if a  task  sends  two  successive  messages  to 
the  same  destination,  and  the first message fills the 
pipe buffer, the second message cannot be received 
ahead of the first. 

The  system  maintains  a list of active  pipes to  en- 
sure  that  the  overhead of polling pipes  scales  as 
the  number of active  pipes,  not as  the  total num- 
ber of pipes. 

Another  function  provided by  the  adapter  is  trans- 
lation of logical tuskids used by  the communica- 
tion library  to physical addresses.  This  translation 
allows the  system to guarantee  that  user  space 
communication will be  contained within the allo- 
cated partition. 

It  is  interesting to note  that  the  software  structure 
described  above is very similar to  an earlier im- 
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plementation of MPL on the sP1 machine (MPL-p). 
The sP1 adapter did not  support DM, so the switch 
FIFO buffers in the  adapter  were  directly  exposed 
to  the pipe layer. In the S P ~ ,  this implementation 
has  been  replaced  by  the  virtual  switch interface. 
Additional changes  have  been  introduced  because 
of the  change in protection  mechanisms and for 
performance tuning. 

Polling versus  interrupt. The pipe layer  code  is  ex- 
ecuted  whenever  an MPL function  is  invoked.  In 
addition, this code is invoked periodically via timer 
interrupts in order  to guarantee progress in the pipe 
layer,  even if tasks  are computing with no  com- 
munication for  a long period of time. Execution of 
the communication subsystem  software  can also 
be triggered by an interrupt from the  adapter, when 
buffers have filled. Thus, if a nonblocking send is 
posted  at  a  node,  and  a matching nonblocking re- 
ceive is posted at another node, data will be moved 
from the  sender buffer to  the receiver buffer, even 
if neither  node  completes  the communication op- 
eration by calls to MP-WAIT or MP-STATUS. Note, how- 
ever,  that if either  sender or receiver is busy  com- 
puting, the  data  transferwill  be slow. If sender  and 
receiver are not executing the communication code 
simultaneously,  the  amount of data  that is sent on 
the pipe at  each  invocation of the communication 
subsystem will be limited by  the  number of cur- 
rently available tokens. If the message is long, the 
data  transfer is likely to complete  only  when  both 
nodes  block with a call to MP-WAIT. 

MPL provides an alternative  protocol  whereby in- 
coming packets arriving at  a  node  that is comput- 
ing cause  an  interrupt  and  the  invocation of the 
communication library  (the  interrupt is disabled 
while the communication library  executes).  This 
action will, in general, cause earlier completion of 
data  transfers,  at  the  expense of additional over- 
heads  for  interrupt handling. 

Other  communication  subsystems. The High-Per- 
formance Switch can  support IP communication at 
the  same time it supports  user-space communica- 
tion. An AIX* (Advanced  Interactive  Executive*) 
network  interface  driver  (NID)  serves  to  connect 
the IP protocol to  the  adapter. NID supports IP pack- 
ets with a Maximum Transmission Unit (MTU) of 
up  to 64 kilobytes. The low-level protocol between 
the  adapter  and  this  driver is similar to  the inter- 
rupt-driven  protocol  for  user-space communica- 
tion. However,  the NID uses  a  separate  virtual 
switch interface: The  queues in system  memory 
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and  the  registers in the  adapter  memory  that  are 
accessed by NID are mapped in kernel  space. The 
adapter multiplexes or demultiplexes data between 
the  separate  virtual  switch  interfaces  and  the 
switch. 

The message layer on  top of which MPL is imple- 
mented  can  support  other  message-passing  librar- 
ies. A product implementation of the communica- 
tion functions of PVM is available. l9 In  addition,  a 
prototype implementation of MPI has  been com- 
pleted.”  The MPI implementation required  some 
changes in the  message  layer (e.g., to handle  con- 
texts); in some  situations, it requires additional 
buffering in order  to  decouple  communication  oc- 
curring in different contexts.  However,  no changes 
were required in the  pipe  layer;  the MPI prototype 
achieves  performancevirtually identical to MPL for 
basic  communication  functions. 

Performance. The  performance of the  user-space 
implementation of MPL for both  the sP1 hardware 
and the S P ~  hardware is listed in Table 1. (The 
370lTBO numbers  were  measured  for  this  paper by 
Fiona Sim.) All results  shown  are  obtained with 
the S P ~  software.  The first row  lists  performance 
for the sP1 hardware:  a 370 (POWERI*) processor 
and  a TBO adapter with no DMA function.  The  sec- 
ond  row  lists  the  performance  for  the sP1 (POWERI) 
nodes with the  enhanced TB2  (sP2) adapter, which 
has DMA. The next  two  rows  provide  performance 
for  the sP2, with the  two  types of POWER2* nodes: 
thin (390) and  fat (590). 

All numbers  are  measured application to applica- 
tion. Latency  is  measured by sending a  zero-byte 
message round-trip  between two nodes. It is cal- 
culated as half the  round-trip time. Blocking sends 
and  receives  are used for  the  transfer.  Point-to- 
point bandwidth  is  measured in the  same fashion. 
The  results  quoted below are  asymptotic band- 
width  results (large messages)  and include the 
startup time. With use of the sp1 software,  there 
were large discontinuities in communication time 
as message size  increased. With the S P ~  software, 
the communication time is  nearly linear as mes- 
sage size  increases. Also reported is exchange 
bandwidth,  which is the total  bandwidth  between 
two nodes that  are engaged in simultaneouslysend- 
ing messages  to  each  other utilizing the  nonblock- 
ing message-passing calls. The  bandwidth  is  mea- 
sured in megabytes  per  second,  and  latency in 
microseconds (ps). 
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Table 1 MPL performance  (user  space) 

Node Switch Latency Bandwidth Bandwidth 
Type Adapter ( p s )  pt-to-pt Exchange 

(MB/s) (MB/s) 

370 TBO 31.6 8.7 8.8 
370 TB2 55.0 31.2 34.1 
Thin (390) TB2 40.0 35.5 37.0 
Fat (590) TB2 39.0 35.5 48.2 

The  High-Performance Switch has  a  peak  band- 
width of 40 MB/s in each  direction,  for  a total of 80 
M B ~ ,  bidirectional, per node. On the SP2, the  com- 
munication library  achieves  close  to 90 percent of 
the unidirectional switch bandwidth and more than 
60 percent of the bidirectional switch bandwidth. 
Thus,  the unidirectional bandwidth is hardware 
bound,  at  the switch. 

The Micro Channel bus imposes another constraint 
on  peak  communication  bandwidth. The peak 
transfer  bandwidth  on  the Micro Channel is 80 
M B ~ .  Due to  packet  size and arbitration  overhead 
on  the bus, the Micro Channel can  deliver at most 
52 MB/S to  the communication subsystem.  Thus, 
the  communication  library  achieves  more  than 90 
percent of the Micro Channel  bandwidth for ex- 
changes  and  close to 70 percent of its bandwidth 
for unidirectional communication, on fat nodes. 
Therefore,  the  exchange  bandwidth  is  hardware 
bound,  at  the Micro Channel, with fat nodes. 

A third constraint on communication  bandwidth 
is the  processor (software) overhead  for  data  trans- 
fer. The unidirectional bandwidth on  the S P ~  nodes 
is 96 percent of the  exchange bandwidth for thin 
nodes.  In  contrast,  the unidirectional bandwidth 
is only 73 percent of the  exchange  bandwidth  on 
the  fat  nodes.  The thin node  exchange  bandwidth 
of  37.0 MB/S is, essentially, the upper  rate at which 
the  communication  software  can  transfer  data on 
this  processor.  The  processor  executes 1.8 cycles 
per byte  transferred. A higher rate would require 
support  for larger packets  or significant changes 
in protocol. Unidirectional transfers essentially sat- 
urate  the thin node  processor,  with  no  spare  com- 
pute  power left. In contrast,  a  fat  node  executes 
less  than 1.4 cycles  per  byte  transferred.  The im- 
provement is almost entirely  due to  the higher 
memory  bandwidth  (factor of four or better)  that 
allows us to  copy  data  faster. Unidirectional trans- 
fers utilize less  than 73 percent of the compute 
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Table 2 MPL performance (UDP/IP) 

power of the fat node. The  spare computation 
power could be used to achieve an overlap of more 
than 27 percent of computation and communica- 
tion for well-structured computations. 

A fourth  constraint on communication bandwidth 
is  the  adapter and the microcode it executes.  It 
seems, in fact,  that  the  exchange bandwidth for fat 
nodes is limited by  the adapter, rather than the pro- 
cessor, so that  the  excess compute power and pos- 
sible computation-to-communication overlap  is 
higher than suggested by our  previous analysis. 

It  is worthwhile to observe that the new TB2 adapter 
boosts unidirectional bandwidth from 8.7 MB/s to 
31.2 M B ~ ,  even with no change in the sP1 compute 
nodes. This boost reflects the difference between 
PIO and DMA bandwidth on  the Micro Channel. 
However,  the  latency  increases from 37.6 micro- 
seconds to 55 microseconds  when TBO is replaced 
by TB2. This increase  is  no  surprise  since  the com- 
munication pipeline is now longer (with DMA en- 
gines and the i860 controller). To the  (software) 
delay  occurring from the  start of a send  operation 
until data  are in the (virtual) switch interface, we 
now add the (microcode) delay of the transfer from 
the  virtual  switch interface to  the physical switch; 
likewise, the  same applies on  the receive end. The 
latency  comes down to 39 (40) microseconds on 
the  fat  (thin)  nodes, reflecting improvement in the 
execution time of the communication library be- 
tween POWER1 and POWER2. The switch latency is 
less than one microsecond of this total. 

The  corresponding numbers for the IP version of 
MPL are listed in Table 2. 

The difference in performance between user-space 
communication and IP communication mostly re- 
flects the impact of IP software  overheads. Al- 
though communication performance is much 
lower, the flexibility of sharing the adapter between 

multiple processes  may lead to better overall sys- 
tem utilization for applications that do not have 
stringent communication requirements. 

The latency and bandwidth for the  current  proto- 
type implementation of MPI on the SP2 were mea- 
sured  on a system with thin nodes;*O the  latency 
and bandwidth numbers  are  virtually identical to 
the MPL numbers. At the time of writing, perfor- 
mance  results for other libraries (such as IBM's 
implementation of PVM) are not available. It is 
expected  that performance will be similar but pre- 
sumably somewhat  worse  than  for MPL, since  op- 
timization has  been  done primarily for MPL. 

Parallel  Operating  Environment 

The Parallel Operating Environment (PoE) is used 
to control  the  execution of parallel programs. Its 
structure is illustrated in Figure 4. The execution 
of a parallel program is controlled by  the Partition 
Manager (PM) process  that  runs  on  the home node. 
The home node can  be  any  workstation  that  is con- 
nected by a local area network (LAN) to an S P ~ .  The 
program will execute  on  remote nodes, which can 
be  Lm-connected workstations or S P ~  nodes. The 
user invokes various POE functions by submitting 
requests to PM. The  various  functions of POE can 
be invoked using either a line command interface 
or an AIxwindows* Parallel Desktop graphical user 
interface. In addition, a (batch) POE job  can  be  sub- 
mitted using LoadLeveler* (an IBM network  batch 
queuing product 'l). 

In  order  to run a parallel program using MPL, we 
need to compile it and link it to a message-passing 
library. A different Message-Passing Library  is 
used for user-space communication (on dedicated 
S P ~  nodes  connected  with  the High-Performance 
Switch) and for IP communication. The Message- 
Passing Library  can  be linked statically or dynam- 
ically when  the program is loaded. 

The  next  step  is to allocate a set of nodes  that will 
run  the parallel program. The mapping of tasks to 
physical nodes  can be specified explicitly by  the 
user, via a host file. Alternatively, the user may 
require a number of nonspecific nodes  on an S P ~ .  
Nodes of an S P ~  are divided into several pools (typ- 
ically one for small systems), each managed by  the 
Resource Manager (an IBM SP2 system  software 
function that manages resources and controls  ac- 
cess  to them). The Partition Manager will interact 
with the  Resource Manager to have  the required 
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Figure 4 Parallel  Operating  Environment 
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number of nodes allocated. Nodes  may  be dedi- 
cated  or  shared  by multiple tasks. 

Next,  the  user specifies the  executable program to 
be loaded  on  the allocated nodes. POE supports 
both  a single-program, multiple-data (SPMD) model, 
where all tasks  execute  the  same program, and a 
multiple-program, multiple-data (MPMD) model, 
where different tasks  can  execute different pro- 
grams. In  the  latter  case,  the  user  can specify a dif- 
ferent  executable program for  each  task.  Each  task 
then starts executing  its  code  asynchronously. 

The Partition Manager also  connects  the  standard 
110 streams  (stdin,  stdout,  stderr) to  each  task in 
the partition. Various  mechanisms  can  be  speci- 
fied for demultiplexing input and multiplexing out- 
put.  Stdin  can  be  sent  either  to all tasks in a  par- 
tition  or to a unique, specified task.  Stdout  can 
contain  the  output of a unique, specified task, or 
the  unordered merge of all task  outputs, or ordered 
merge of the  contents of the  output buffers of all 
tasks. When multiple output  streams  are merged, 
the  outputs  can  be prefixed by  task  numbers. 

Tools. The Partition Manager can be used to ac- 
tivate  and manage a variety of tools  for program 
debugging and tuning. The simplest (and perhaps 
most  convenient) tool for program debugging is 
print  statements.  However, it is  quite  tedious to 
decipher  interleaved  printouts of a large number 
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of tasks. A simple “parallel  output”  interface is 
provided by the Program Marker  Array  (Figure 5).  
This  array  is  a  graphic display with a  row  associ- 
ated with each  task.  Each  row  contains  a  number 
of  ‘‘LEDs’’ (indicators, so-called because  they  are 
like light-emitting diodes) and additional space  for 
text. Calls within the program can  be  used by each 
task  to  output a  string on  the  text  space of its row 
or  to  set  the color of each LED. This  can  provide 
a  simultaneous display of the  state of each  task 
during a parallel execution.  The Program Marker 
Array is based  on  a  research  prototype  developed 
by Dror Feitelson. 22 

Figure 5 The  Program  Marker  Array 
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Figure 6 The  xpdbx  window 
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Figure 7 The  view  selector  window 
~~ 

SNlR ET AL. 

Source-level debugging of parallel codes is sup- 
ported bypdbx (line interface) andxpdbx (X Win- 
dows  System* * interface).  The  pdbx  function is a 
POE application that  runs  as  a  server  task on the 
home node  and  as  a  number of client dbx  tasks on 
the  remote nodes. The  pdbx  function  supports 
most of the dbx debugger functions.  Breakpoints 
can  be  set for any  task so as  to halt execution  when 
a  source line is  reached, or a  variable  changed, or 
a condition satisfied, or a  procedure  entered; 
tracepoints  can  be  set  at  any  task  to print tracing 
information. In addition, pdbx allows the  user  to 
define groups of tasks  and  to  execute  dbx  com- 
mands for all tasks in a group.  Thus,  we  can set 
a  breakpoint  that will halt all tasks in a group at 
the  same  code line. Such commands are interpreted 
by the  pdbx  server, which sends corresponding dbx 
commands to the dbx clients,  collects their out- 
put, and displays the information to  the  user.  The 
xpdbx  function  provides  a  convenient, Motif**- 
based X Windows System  interface  for  pdbx  func- 
tions  (Figure 6). 

The Visualization Tool (VT) provides graphical 
views of performance  characteristics of a parallel 
execution.  A graphical interface is used to  select 
active  views  (Figure 7). 

VT can be used on line to  monitor AIX kernel  sta- 
tistics  such as CPU activity  (kernel,  user), disk ac- 
tivity, network TCP/IP activity,  context  switches, 
page faults, and system calls. Some of the infor- 
mation can  be displayed in different views  to high- 
light problems specific to parallel execution.  Thus, 
a Kiviat diagram of (average  and  instantaneous) 
processor utilization presents  a useful graphical 
display of load balance in a parallel application 
(Figure 8). VT can also  be used postmortem  to  vi- 
sualize a performance trace  that  was collected dur- 
ing execution. In this mode, we can display addi- 
tional information on message-passing activity. We 
can  display ongoing communications in a  graph  or 
matrix  display,  or in a  streaming  chart (Figure 9). 
We can also open  a  source  code window. 

A trace playback control window allows the  user 
to move  back  and  forth in execution time and  ad- 
just  the  playback  speed  (Figure 10). 

Either  an  instantaneous or cumulative presenta- 
tion can be selected  for  most of the  views. Addi- 
tional information can  be  obtained by clicking on 
the view. Thus, by clicking on one of the  spokes 
of the load balance  view, we get numerical values 
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Figure 8 Load  balance  view 

of current times, instantaneous CPU utilization, and 
average CPU utilization for the  processor displayed 
on that  spoke.  By clicking on  the  interprocessor 
communication view, we  open a menu that allows 
a  search  for  selected  communication  events. 

VT is  based  on the program visualization tool de- 
veloped by Doug Kimelman.23 

Conclusion 

The sp2 Parallel Operating Environment (POE) 
allows users  to develop  and  execute  on  the S P ~  par- 
allel jobs that  take  advantage of the  fast commu- 
nication hardware.  It allows the  same  codes  to 
be  developed  and  executed  on  a  workstation or 
workstation  cluster. POE has evolved in the tran- 
sition from the sp1 to  the S P ~  and will continue  to 
evolve in the  future. As communication  hardware 
changes,  the  communication  subsystem  software 
will change to  take advantage of it. Future SP sys- 
tems will provide more services to parallel appli- 
cations  and will allow more flexible resource al- 
location policies; POE Will evolve  to  support those. 
POE will support new programming paradigms, 
such  as High Performance FORTRAN. Finally, pro- 
gramming tools will continue to evolve so as  to pro- 
vide  an increasingly user-friendly environment  for 
program development. 

Figure 9 Streaming  chart of interprocessor 
communication 

Figure 10 Trace  playback  control  window 
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