A scalable
implementation of the
NAS Parallel Benchmark
BT on distributed
memory systems

In this paper, we describe an efficient and
scalable implementation of the NAS Parallel
Benchmark BT suitable for distributed memory
systems such as the IBM Scalable
POWERparallel Systems®. After describing the
parallelization and data partitioning methods
used, we outline some of the optimization steps
used to realize good performance on individual
processors and to reduce the communication
overheads on the IBM SP1™ and SP2™ systems.
We present performance results on up to 128
nodes of the SP1, and on the SP2 with wide
nodes. We describe the performance on the
standard Class A and Class B problem sets.

To show the scalability of our parallelization
methods, we present the performance of two
additional data sets.

n 1991, the Numerical Aerodynamic Simulation

(NAS) program at the NASA (National Aeronau-
tics and Space Administration) Ames Research
Center announced a set of applications and ker-
nels for benchmarking highly parallel supercom-
puters. 2 These benchmarks are representative of
the computations commonly encountered in aero-
physics applications. Unlike many other bench-
marks, these benchmarks are specified using the
paper-and-pencil approach. The problems are com-
pletely specified (in text form), including the
numerical methods to be used, but the benchmark-
ing rules do not specify any particular implemen-
tation techniques or algorithms for parallelization.
It is entirely up to the implementor to decide on
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the parallelization techniques, language constructs,
the data structures, memory use, or processor al-
location. Details of implementing the numerical
methods are also left out. However, there are a few
restrictions. One requirement is that the tests must
be conducted with a specified set of input param-
eters and the test results must conform with the
expected output within a specified level of toler-
ance. Another restriction is that all programs must
be written in a high-level language such as FOR-
TRAN or C; furthermore, no special-purpose library
can be accessed for executing these benchmarks.

In the recent past, performance results character-
izing various parallel platforms have been reported
by many vendors as well as by researchers at NASA
and elsewhere. The depth of these benchmarks and
the fact that they capture the essence of typical
large-scale computational fluid dynamics (CFD) ap-
plications have made these benchmarks popular,
not only for the purpose of evaluating parallel su-
percomputing systems but also in demonstrating
the viability of novel software and architectural
concepts. As aresult, the NAS parallel benchmark
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Table 1 A summary of the application benchmark
characteristics for the two problem sizes

suite has become one of the most widely used
benchmarks in many areas of high-performance
parallel computing. The NAS group at NASA Ames
routinely compiles and distributes performance re-
sults on various parallel systems. For more details,
please refer to Reference 3.

In this paper, we describe an efficient implemen-
tation of one of the three application benchmarks—
the Block Tridiagonal (BT) benchmark—on distrib-
uted memory systems. In addition to describing the
implementation strategies for scalable systems, we
also describe steps for optimizing the code on the
IBM scalable POWERparallel* 1 (SP1*) system and
the IBM scalable POWERparallel 2 with wide nodes
(SP2*-w) system. We consider single processor op-
timization steps as well as steps for reducing com-
munication overheads. Besides describing the per-
formance-enhancing techniques for SP1 and SP2-w,
a goal of this paper is to examine the scalability of
the sparchitecture for computations characterized
by the BT benchmark. For this we present results
on up to 128 processors using four different data
sets. In Reference 4, we have presented a similar
study of a distributed memory implementation of
the Scalar Pentadiagonal (SP) benchmark. An im-
plementation of the Lower-Upper Diagonal (LU)
benchmark is described in Reference 5.

As far as we know, our implementation of the BT
benchmark, as described in this paper, has deliv-
ered the best performance on the SP1 and SP2 sys-
tems. Moreover, as of the writing of this paper,
the performance of our implementation on the
SpP2-w with 32 or more processors is significantly
better than the performance of any other imple-
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mentation on any other parallel system (except for
the Fujitsu vPP500**) with the same number of pro-
cessors.* One objective of this paper is to describe
our implementation in detail so other studies, in-
cluding nonbenchmarking types, may benefit from
its understanding.

First we present some background information on
the NAS parallel benchmarks. In the section after
that, we describe the mathematical and numerical
problem solved by the BT benchmark. A sequen-
tial implementation of this benchmark is then out-
lined. Next we briefly describe the IBM SP systems
used in this study. We describe our parallel imple-
mentation and the optimizations for performance
in succeeding sections. The performance results
are presented in the two sections just before the
conclusions.

NAS parallel benchmarks

The NAS benchmark suite consists of eight prob-
lems: five kernels and three simulated CFD appli-
cations. For details and implementation rules,
please refer to References 1 and 2. The kernels rep-
resent solvers in the form of compact problems.
These kernels are relatively simple (each with a
few hundred lines of sequential FORTRAN code) and
are meant to provide insight into the performance
of particular types of numerical computations.®
The three simulated CFD applications are more
complex than the kernels. Each of these applica-
tions consists of several data structures, and a typ-
ical sequential implementation of any of these
benchmarks, in FORTRAN, results in a few thou-
sand lines of code. The data dependencies imposed
by the numerical methods in these applications and
their computational requirements resemble closely
those in the state-of-the-art CFD application codes.
Thus, the implementation techniques of these ap-
plications are more typical of real CFD applica-
tions.® However, absent from the application
benchmarks are complex boundary conditions and
/O operations that are typically present in many
real CFD applications. For that reason, the three
application benchmarks are also referred to as
pseudo applications.

The three application benchmarks are: the Scalar
Pentadiagonal (sP), Block Tridiagonal (BT), and
Lower-Upper Diagonal (LU) benchmarks. For
comparison of performance, NASA has defined two
standard problem sets for each benchmark that are
referred to as Class A and Class B size problems.’
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In Table 1, we present a summary of the compu-
tational characteristics of the three application
benchmarks under the two standard problem sets.
The floating-point operation counts and the
MFLOPS (millions of floating-point operations per
second) specified in that table are from Reference
7. Note that the floating-point operation counts are
for a particular implementation of these bench-
marks and were measured using the Cray hardware
performance monitor. ®

According to the rules of the NAS parallel bench-
marks, performance is to be reported in terms of
the elapsed time (based on “‘wall-clock” time) to
complete the computations over the required num-
ber of iterations. Another meaningful measure used
inreporting performance is the ratio to the best ex-
ecution times on a single node of a Y-MP** system
(for Class A problems) or on a single node of a C90
system (for Class B problems).

Benchmark BT

In this section, we describe some of the salient
points of the benchmark BT so as to facilitate a
meaningful discussion on the implementation and
performance issues. Most of the discussion in this
section is based on Chapter 3 of Reference 1. For
complete details, refer to that citation.

The problem solved in benchmark BT is that of
computing the numerical solution for a synthetic
system of five nonlinear partial differential equa-
tions (PDEs) representing some of the key charac-
teristics exhibited by the Navier-Stokes equations.
An implicit type of numerical solution is used in
solving this system of PDEs. This method is used
as a solver in many of the computational fluid
dynamics (CFD) programs designed for the numer-
ical solution of three-dimensional Euler/Navier-
Stokes equations using finite-volume or finite-dif-
ference discretization on structured grids.

The system of five nonlinear PDEs is as follows:

U _GE(U) oF(U)  aG(U) &T(U, Uy
ar - 9E " am T Tac T oz

avV(U, U,) 9W(U, U)
+ +
n a¢

+H(U, U, U,, U 0]
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where U = [u®, u®, 4@, u®, 417 is a vector
function of temporal variable T and spatial varia-
bles (&, m, {) that form the orthogonal coordinate
systemin R*. E,F, G, T,V, W, and Hare 5 X 1
vector functions whose components are prescribed
as functions of U or U and its derivatives. The
boundary conditions are of uncoupled Dirichlet
type and the initial values of U at 7 = 0 are obtained
by a transfinite, tri-linear interpolation of the
boundary data.'® The forcing function vector H s
chosen such that, with the specified boundary and
initial conditions, the system of PDEs given by
Equation 1 satisfies an exact solution (a fourth or-
der polynomial in &, 5, and ¢) to U. The compu-
tations of the BT benchmark seek to obtain a dis-
crete approximation to the steady-state solution of
the PDEs, using a pseudo-time marching scheme
(two-level, first-order accurate, Euler implicit) and
a spatial discretizing procedure based on finite dif-
ference approximations (second-order accurate
central difference approximations in each of the
three coordinate directions). A linear fourth-dif-
ference dissipation term is added to the right side
of Equation 1 so that the numerical scheme con-
verges to a steady-state solution. If U” and U"*!
are solutions at time-step n and n + 1, respec-
tively, and AU” is U*"! — U", then the numerical
procedure involves the solution of a linear system
of equations for AU” to determine U**'. The lin-
ear system of equations has the following form:

(I+ ATL)AU" = ATR (2)

where L consists of the flux Jacobian terms cor-
responding to the vectors E, F, G, T, V, W and the
implicitly treated dissipation terms. R consists of
the spatial difference terms for the vectors E, F,
G, T, V, W, the forcing function vector H, and the
added dissipation terms. In the above equation, the
left-hand side (LHS) is the implicit part, and the
right-hand side (RHS) is the explicit part.

All three pseudo-application benchmarks compute
AU" in Equation 2 numerically, using an iterative
method, and from that term advance the solution
to U**!. Only one iteration per time step is gen-
erally sufficient for the pseudo-time marching
schemes used in all three benchmarks. The bench-
mark BT differs from the other two (SP and LU) in
the manner in which the implicit operator in the
LHS of Equation 2 is approximated and applied. In
this benchmark, the implicit operator in Equation
2is approximately factored using the Beam-Warm-
ing Approximate Factorization scheme.® The RHS
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Figure 1 A functional outline of the BT benchmark

Set Initial values of U}, , for (i, j, k) € D,

for 7 = 1 to Maxsteps do
i Perform &sweep:
Setup coefficient matrices:

Setup coefficient matrices:

Set Boundary values of U; ;, for (i, j, k) € 4D,

Compute forcing function vector, H¥ , for (i, j, k) € D,
Initialize [RHS], ;, at 7 = 0 for (i, j, k) € D,

Solve linear system of equations for [AU,], ;, for (i, j, k) € D,:

i(a). M, = (I - A7[DLA)™" + D{N)"'])
i(b). M,AU, = [RHS]"'.
ii. Perform 7-sweep:

ii(a). M, =(d- Ar[D,B)"" + DZQ)™])
Solve linear system of equations for [AU, 1, ;, for (i, j, k) € D,:
ii(b). M,,'AUZ = AU].
iii. Perform {-sweep:
Setup coefficient matrices:
iii(a), M;=I- Ar[DC)"' + D}S)"']D
Solve linear system of equations for [AU,], ;, for (i, j, k) € D,:
iii(b). MAU™! = AU,.
iv. Update solution to time-step 7:
U = Ufr—l + AUT—]
v. Compute [RHS]/; , for (i, j, k) € D,
end for

(explicit part) of Equation 2 is unaffected by these
modifications. The LHS takes the following form:

a(A)"  IHN)"
LHS=[I—AT< oF +—6§2 >]

aB)"  8%(Q)"
.[I_AT< o on? )}
3(C)"  9¥S)"
'[I_M< T af)

where A, B, C, N, Q, and S are 5 X 5 flux Jacobian
matrices for the specified problem. For the exact
representation of these Jacobian matrices, please
refer to Reference 1.

AU" 3

A functional description of the BT benchmark is
shown in Figure 1. Observe that AU” is computed
in the (n + 1)th iteration over Steps i, ii, and iii,
where &, n, and { directional factors of the implicit
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operator are applied, respectively. Collectively, we
refer to these steps as the implicit phase of the com-
putations and the three sweeps as the implicit
sweeps. In each of these sweeps, multiple indepen-
dent systems of block tridiagonal equations (each
block being a 5 X 5 matrix) are solved. If the spa-
tial discretizationhas N, N, and N, mesh points
in &, n, and ¢ directions, respectively, then, in the
&sweep, altogether (N, — 2)(N, — 2) indepen-
dent systems of block tridiagonal equations are
computed. Each of these block tridiagonal systems
of equations has 5(N, — 2) unknowns. Similarly,
in the n- and {-sweeps, (N, — 2)(N, — 2) and
(N — 2)(N, — 2) independent systems of block
tridiagonal equations are solved, respectively. In
Steps i(a), ii(a), and iii(a) of Figure 1, coefficient
matrices are set up before performing the actual
block tridiagonal solutions. Since in each sweep
there are multiple independent block tridiagonal
systems, M, M, , M, represent multiple coefficient
matrices in those setup steps.
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As mentioned earlier, benchmark BT has two stan-
dard data sets: Class A and Class B. For the Class
A data set, N = N, = N, = N, = 64, and for
the Class B dataset, N = N,= N, = N, = 102.
In both cases, Maxsteps (see Figure 1) is 200.

A sequential implementation

The starting point for our parallel implementation
was the sequential FORTRAN 77 implementation of
the BT benchmark (written by S. Weeratunga) pro-
vided by NASA Ames as an example implementa-
tion. We found this code to be very well written,
and we will refer to this version as the unoptimized
starting-point implementation, or USl for brevity.
For our parallel implementation on the IBM SP ar-
chitecture, we modified this code significantly to
extract parallelism and to get good floating-point
performance. In the following, we first describe
some of the key features of USI and then describe
the optimizations we made to this code. Some of
these optimizations are obvious, and we would like
to note here that although we point out the obvi-
ous optimizations, we do not imply that the devel-
opers of UST were unaware of them. In our opin-
ion, the main objective of USI was to bring clarity,
modularity, and simplicity to the benchmark.

The computationally intensive steps in each iter-
ation of the BT benchmark are Steps i, ii, and iii
shown in Figure 1. In each of these steps, multiple
independent block (5 X 5) tridiagonal systems are
solved, after setting up their coefficient matrices.
In the &sweep, the block tridiagonal system has
the following structure:

[Bl,j,k][AUl]l,j,k + [Cl,j,k][AUl]Z,j,k = [RHS]l,j,k
[Ai,j,k][AUI]iAl,j,k + [Bi,j,k][AUI]i,j,k

+ [Ci; JIAU ) e = [RHS]i,j,k;

2=i=N, -1
[ANg,j,k][AUl]Ng—l,j,k + [BNg,j,k][AUI]Nf,j,k

= [RHS]Ng,j,k 4
In the above, [A], [B], and [C] are 5 X 5 matrices,
[AU,J;;« is a 5 X 1 column vector, [B,,] and
[Ax,. ;«] are identity matrices ((I]), and [C, ;] =
[0]. Att=n+ landfor2 =i = (N, — 1), the

(5 % 5) coefficient matrices are determined as fol-
lows:
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[Ai, j,k] =

1 1
- A7 {— 2_/1§ [A(Ui~l,j,k)] + h_g [N(Ui—l’f,")]}

2
[Bi,j,k] =1+ A7t h_§ [N(Uﬁj,k)]
[Ci,j,k] =

1 1
—A7 {2‘@ [A(UL 0] + h_§ [N(Ui—l,j,k)]} ®)

where h; = 1/(N; — 1) is the mesh size in ¢ di-
rection. The structures of the block tridiagonal sys-
tems involved in the 7- and {-sweeps are analo-
gous to the above-defined structure for &sweep.

In usl, for each of the Steps i, ii, and iii, first all
coeflicient matrices are evaluated and then (N —
2)? systems of equations are solved (as shown in
Figure 1). Forthe N X N X N problem, each setup
step involves computing and storing 3N(N — 2)?
coefficient matrices, each represented by a5 X §
array. For &sweep, these matrices are evaluated
as shown in Equations 5. Note that the coefficient
computations are primarily scalar-matrix multipli-
cations. Each linear system has a block tridiago-
nal structure, and hence, the coefficient matrix M,
of Step i in Figure 1 is represented not by a full
matrix, but by an array of triplets of 5 X 5 coef-
ficient matrices ([A], [B], [C]), one triplet for each
5 x 1 block of unknowns (i.e., at each interior grid
point). After the setup, (N — 2)? linear systems
are solved using a regular Gaussian elimination al-
gorithm, with no pivoting. These solutions take into
account the block tridiagonal nature of the linear
systems—all forward eliminations are computed
first, storing the intermediate results in the same
work arrays as the ones used for computing the
coefficient matrices in the setup step; this is fol-
lowed by all back-substitutions for that sweep. The
same procedure is repeated in the other two direc-
tions as indicated in Figure 1. For storage effi-
ciency, the array representing the RHS vector is
used to hold the intermediate solutions (AU, AU,,
and AU™Y),

In Step iv, the solution is advanced to the next time
step by performing a vector (5 X 1) add at each
interior grid point. Finally, the computations for
evaluating the RHS vector at the new time step are
performed in Step v. These computations are
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equivalent to three regular sparse block (5 X 5) ma-
trix-vector multiplications.

Clearly, the main data dependencies in the com-

putations of one iteration are those that character-
ize the solution of a block tridiagonal system of

We report performance on up
to 128 nodes for both the SP1
and SP2-w systems.

equations and those in a regular sparse block ma-
trix-vector multiplication. The solution of the tri-
diagonal system of equations involves a forward
elimination phase followed by a back-substitution
phase. In the forward elimination, the computa-
tions at block i depend on the values computed at
block i — 1. In the back-substitution phase, the
computations at block i depend on the values com-
puted at block i + 1. The RHS computations at a
grid point (i, j, k) require values of the U vector
at (i, j, k) and at 12 neighboring grid points: {(i =
LjxlL kx1)|l=0,1,2} (ie., along a 13-point
stencil).

Finally, associated with each grid point, altogether
a total of 90 words (double precision) of memory
is required: five for the solution vector, U, five for
the right-hand side vector, RHS, and 75 variables
for storing the coefficient matrices (work arrays).

IBM SP architecture

In this section, we briefly describe some of the ar-
chitectural details of the IBM SP1 and SP2 systems
used in this study. The details presented here are
relevant to the optimization steps we describe in
the following sections. We refer the interested
reader to References 10 and 11 for further archi-
tectural details on SP1 and to References 12 and 13
for further details on SP2.

Each processing element on the SP1 is IBM’s RISC
System/6000* (RS/6000%) Model 370 processor, with
a 32K-byte data cache and 62.5 MHz clock speed.
Each processing element on the SP2 considered in
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this study is IBM’s RS/6000 Model 590 processor, with
a256K-byte data cache and 66.5 MHz clock speed.
There are other Sp2 systems with different types
of processors, but we do not consider those in this
study. To avoid any ambiguity, in the rest of the
paper we refer to the SP2 system used in this study
as SP2-w. (The suffix “w” stands for wide—the
qualification used to describe the type of process-
ing elements used.) The SP1 processor belongs to
the POWER Architecture*, whereas the SP2 proces-
sor belongs to the POWER2 Architecture*. Read-
ers interested in the details of various aspects of
the POWER Architecture should refer to the arti-
cles that appear in Reference 14 or 15. Details on
the various aspects of the POWER2 Architecture can
be found in the articles that appear in Reference
16 or 17. The differences between the SP1 and SP2-w
processors that are relevant to this study are: (1)
in the former case, the fixed-point and the floating-
point units have one execution unit each, whereas
in the latter case, each has two execution units;
(2) in the former case, up to two floating-point op-
erations can be performed per cycle (125 MFLOPS,
peak), and in the latter case, the same is four float-
ing-point operations per cycle (266 MFLOPS, peak);
(3) the latter has the ability to perform quad-word
load or store of two adjacent double precision ref-
erences to or from two adjacent floating-point reg-
isters in one cycle; (4) the memory bus width in
the former case is eight bytes, and the same in the
latter case is 32 bytes.

On both the sP1 and SP2-w, the processors are in-
terconnected via a High-Performance Switch, the
details of which can be found in Reference 11. The
processor-switch interface is managed by a spe-
cial adapter card. The communication adapter
cards used in the Sp1 and Sp2-w systems differ sig-
nificantly. For additional details, refer to Reference
13. On both systems, explicit message passing is
the parallel programming paradigm. The SP1 pro-
vides two communication protocols: MPL and
MPL/p. In all the experiments presented in this pa-
per on the SpP1, we used the MPL/p protocol. In our
experiments on the SP2-w, message passing was
handled by the Parallel Operating Environment
(POE) using the Message-Passing Library (MPL)
protocol. 8

In this paper, for both the SP1 and SP2-w systems,
we report performance on up to 128 nodes, with
each node having 128 MB of local memory. For the
SP1 experiments, we used the system at the IBM
Thomas J. Watson Research Center in Yorktown
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Heights, New York, and, for the SP2-w experi-
ments, we used the system at the NASA Ames Re-
search Center. All parallel programs for which we
report performance in this paper were written in
the single-program, multiple-data (SPMD) style of
programming in FORTRAN, using IBM’s external
user interface (EUI)" as the message-passing in-
terface.

For the MPL/p protocol used in the SP1 experiments,
the point-to-point message latency was measured
(using ping-pong type point-to-point communica-
tion between pairs of processors) to be 30 usec.
The effective communication bandwidth under this
protocol was measured to approach 8.5 MB/sec, as-
ymptotically. For further details on the SP1 com-
munication performance, please see Reference 20.
For the sp2-w, where we used the MPL protocol,
the message latency was observed to be 42 usec,
and the effective communication bandwidth ap-
proached 34 MB/sec, asymptotically, for unidirec-
tional communication and 48 MB/sec (asymptotic)
for bidirectional (exchange type) communication.
For additional details on the SP2 communication
software, please see Reference 18.

Optimizations for single processor
performance

In achieving good performance on a parallel sys-
tem, obtaining good single processor performance
is an important step. However, single processor
performance should not be obtained at the expense
of available parallelism. In our implementation of
the benchmark BT on the IBM SP systems, we made
significant modifications to USI and optimized the
code for the RS/6000 POWER (for SP1) and POWER?2
(for sp2-w) architectures, without sacrificing the
available parallelism. Here we describe some of
these modifications. The parallel implementations
of the BT benchmark for the SP1 and Sp2-w differ
only in the optimizations for single processor per-
formance.

Computation of coefficient matrices. In USI, all the
coefficient matrices are set up before performing
the block tridiagonal solutions. As is evident from
Equations §, a significant amount of time is spent
in setting up these matrices. We found two disad-
vantages with this approach: (1) large work arrays
are necessary (75 words per grid point) and (2) lo-
cality in computations is reduced considerably
when the block tridiagonal solutions are performed
along directions involving strides (for example, in
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n- and {-sweeps). To overcome these difficulties,
in each implicit sweep we merged the coefficient
computation step with the solver step (e.g., Step
i(a) and Step i(b) in Figure 1). The first advantage
of this modification is the reduced memory require-
ment. Instead of 75 words of memory at each grid

In achieving good performance on

a parallel system, obtaining good

single processor performance is
an important step.

point in the entire three-dimensional domain, 75
words of memory per grid point along a one-dimen-
sional line of grid points (corresponding to a single
tridiagonal solution) are needed. This work space
is reused in the subsequent solutions. The main
performance benefit from this modification is that
in performing the tridiagonal solutions in the n- and
{-sweeps, the coefficient matrices can be accessed
with single stride, thus, significantly reducing cache
misses.

In addition to the above modification, we ob-
tained performance improvements in the computa-
tions of the flux Jacobians (e.g., in computing
1/(2h )[A(UL, ;0] and (1/h})[N(UL, ;)] of Equa-
tions 5). Performance was improved by carefully
rearranging the computations so as to eliminate any
duplications and also obtaining good register re-
use. In the case of the implementation for the POW-
ER2 Architecture (of the SP2-w nodes), further tun-
ing was necessary to assist the compiler in
maximizing the instruction-level parallelism to
keep the dual arithmetic units of the floating-point
unit (FPU) busy simultaneously and to take advan-
tage of quad-load or store capabilities. Primarily,
this tuning involved exposing computations for two
independent grid points at the same time (but with-
out exceeding the limitations imposed by the avail-
able number of registers or the cache size). Note
that all our implementations are of single-program,
multiple-data (SPMD) style, which means that the
code remains the same for all nodes. Since not all
processors may end up with same-size partitions
(due to load imbalance), the number of grid points
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assigned to processors may not all be the same.
As aresult, proper care must be taken in imple-
menting the above-described optimizations.

Solution of block tridiagonal systems. We replaced
the generic Gaussian elimination (with no pivot-
ing) algorithm used in USI by the Thomas algorithm.
The Thomas algorithm is a special case of Gaus-
sian elimination and is used to obtain an efficient
solution to tridiagonal and pentadiagonal systems,
when no pivoting is involved.? To explain this al-
gorithm, consider the following ith equation 2 <
i = N;— 1, in a block tridiagonal system given
by Equations 4 for some values of j and k:

[Ai][“i—l] + [Bllu] + [Cllu,. ] = [r] (6)

where [A;], [B;], and [C;] are 5 X 5 matrices, and
[u,] and [r;] are 5 X 1 column vectors. For con-
venience, in the above equation we have dropped
Jj and k suffixes. In a conventional Gaussian elim-
ination (with no pivoting) algorithm, at the ith step
of the forward elimination phase, the following
computations are performed:

[Q] = [Xi,,1[Ci ]

[B] = [B]-[AllQ]

[x] = [B]”'

[F] = [Xi-dlp;-i]

[p] = [r]-[A]lF] )

and in the back-substitution phase the following
computations take place:

(pJ = [p] - [Clu,,]
[u] = (X.1(p.] 3

where [B;], [Q;], [X;] are 5 X 5 matrices, and [p,],
[p:], and [F;] are S X 1 column vectors. When [X,],
[p.],and [u N{] are known, the solution to the block
tridiagonal system is determined.

In the Thomas algorithm, the block tridiagonal sys-
tem represented by Equations 4 is rearranged so
that the ith equation has the following form:

(u]=[p] - [Qllu;,] ©)
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Thus, at the ith step of the forward elimination
phase, the following computations are performed:

[B] = [B]-[AlQ;1]

[x] = [B]™

[Q] = [X][C]

[F] = [r]-[Allp:-1]

[p] = [XIF] (10)

and, in the back-substitution phase, the following
computations take place:

[u]=[p]-[Q][u,;,] (1

where [B;], [Q;], [X;] are 5 X 5 matrices and [p,],
and [F;] are 5 X 1 column vectors. When [Q,], [p;],
and [uy ] are known, the solution to the block tri-
diagonagl system is determined.

Comparing the steps in the conventional Gaussian
elimination (Equations 7 and Equations 8) with
those in the Thomas algorithm (Equations 10 and
Equation 11), we notice that in the former case the
information is carried forward in the [X] matrix and
[p] vector, whereas in the latter case, this is ac-
complished by matrix [Q] and vector [p]. More-
over, when we analyze the above-described Gaus-
sian elimination algorithm, we find that at the ith
step (both forward elimination and back-substitu-
tion phases combined), there are seven pairs of tri-
angular “‘solves” (counting a lower triangular solve
followed by an upper triangular solve as one pair)
involving a 5 X 5 matrix and a 5 X 1 vector,
whereas in the Thomas algorithm only six pairs of
triangular solves are performed. (Notice thatin the
back-substitution phase of the Thomas algorithm,
no triangular solves are performed.) In addition,
both algorithms perform one matrix-matrix mul-
tiply-and-add, two matrix-vector multiply-and-
adds, and one factoring of a matrix. (All matrices
are 5 X 5, and all vectors are 5 X 1.) Thus, by us-
ing the Thomas algorithm, we avoid performing N
pairs of triangular solves (a lower triangular solve
plus an upper triangular solve) in the solution of
each block tridiagonal system of equations. Recall
that altogether 3N? such systems are computed in
advancing the solution by one time step. A lower
and upper triangular pair involves 20 multiply-and-
add operations (daxpy type) and five divides.
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In addition to reducing the operation count, the
Thomas algorithm offers somewhat better locality
of computations. For example, notice from Equa-
tions 10 that immediately after [X;] is factored, it
is used in the ten triangular solves. In the Gaus-
sian elimination, however, the ten triangular solves
use [X;_;] from the previous step. Such improve-
ments in the locality of computations have a sig-
nificant effect on the performance of cache-based
RISC processors.

On the RS/6000 (as with many other microproces-
sors), floating-point reciprocals and divisions are
significantly more expensive than floating-point
multiplications. Keeping this in mind, we further
improved the performance of each block tridiag-
onal solution by reducing the number of fioating-
point reciprocal and division operations, at the ex-
pense of an increased number of floating-point
multiplications. Each upper triangular solve in-
volves five divisions. However, in all six upper tri-
angular solves performed in step i of the Thomas
algorithm (see Equations 10), the same diagonal
elements of [X;] are involved. Moreover, in the ma-
trix factoring step where [X;] is computed, the same
reciprocals are needed. When the 5 X 5 matrix is
factored, we store the reciprocals of the diagonal
elements of [X;] instead of the “normal” values,
and use these values in all upper triangular solves
involving [X;]. Thus, in the ith step of a block trid-
iagonal solution, we replaced 30 divisions by that
many multiplications. Note that this optimization
is possible even when regular Gaussian elimina-
tion is used (as in USI).

Optimization of RHS computations. After the com-
putations in the implicit sweeps, computations of
RHS are the next most expensive to evaluate.
These computations correspond to Step v in Fig-
ure 1. We made modifications to USI to improve
the single processor performance in this part of the
code as well. Most of these changes consisted of
fine tuning of the computations so as to reduce the
number of operations, especially floating-point di-
visions, improving the register reuse, and by ex-
ploiting the POWER2 Architecture (in case of the
SP2-w). In some cases, the cost of floating-point di-
visions was minimized at the expense of additional
memory usage by computing the reciprocal once
and using it as a multiplier in more than one op-
eration. We made a few significant changes in the
loop nesting to improve cache performance. We
outline that modification below.
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For each time step, RHS is evaluated in three parts.
In the first part, &direction flux differences are
computed and to these, fourth-order dissipation
terms in ¢ direction are added. In the second and
the third parts, similar computations for n and ¢
directions are performed. In computing the RHS
components in the 7 or { direction, memory ac-
cess to the data structure for the U vector involves
nonunit strides, which gives rise to a high rate of
cache misses. We mitigate this situation by rear-
ranging the nested loop structure in these parts of
the computations. In performing the n-direction
computations, in USI, the innermost loop is first
over the second dimension of the main arrays in-
volved and then over the first dimension. We re-
arranged these so the innermost loop is over the
first dimension. The net effect is that the flux dif-
ferences are now computed over a plane of grid
points (&nplane) at a time, instead of one grid point
at a time. This reduces the cache misses to a large
extent at the expense of having larger work arrays.
Similarly, in the third part, where {-direction con-
tributions are computed, the original nesting of
loops is such that the third dimension of the main
arrays is varied in the innermost loop. To improve
the cache misses in this part, we rearranged the
loops so the innermost loop is over the first dimen-
sion and the next level of looping is over the third
dimension of the arrays.

Parallel implementation

For the parallel implementation of the BT bench-
mark, we use SPMD style of programming and take
advantage of the available data parallelism. In the
following discussion, we assume N X N X N to
be the size of the grid.

Data partitioning strategies. As noted earlier, the
computationally intensive sections of the BT bench-
mark are Steps i, ii, iii, and v shown in Figure 1.
For this reason and because these steps encapsu-
late important data dependencies that affect scal-
ability, we primarily focus on the performance of
these steps in our parallel implementation.

We considered three grid-level partitioning
schemes that are suitable for parallelizing the com-
putations: 1D unipartitioning, 2D unipartitioning,
and 3D unipartitioning. These three are shown sche-
matically in Figure 2. In each case, a single con-
tiguous partition of grid points is assigned to each
processor, and hence we refer to this type of par-
titioning as unipartitioning. In 1D unipartitioning,
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Figure 2 Three block-based partitioning schemes

1D partitioning

2D partitioning

3D partitioning

the grid is partitioned along one of the three spa-
tial dimensions; under 2D unipartitioning, the grid
is partitioned along two of the three spatial dimen-
sions; and it is partitioned along all three dimen-
sions in the 3D unipartitioning case. In each case,
the associated arrays are distributed along the di-
rection of grid partitioning. These partitioning
schemes accomplish the same array distributions
as the block distribution constructs of High Per-
formance FORTRAN (HPF). InReference 22, we con-
sider another class partitioning scheme called mul-
tipartitioning which, in HPF terminology, is a type
of block-cyclic partitioning scheme. We do not
consider multipartitioning schemes in this paper.
We refer the interested reader to References 23-25
for a detailed analysis and discussion on the com-
munication, load imbalance, and scalability prop-
erties of these partitioning schemes in the context
of CFD applications. For the purpose of this dis-
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cussion, we note the following points for these par-
titioning schemes. Along the dimensions where
partitions are made, there are data dependencies
across processors that affect the solution of block
tridiagonal systems of equations and the evalua-
tion of RHS vectors. Thus, values must be commu-
nicated among processors during forward elimina-
tion and back-substitution phases. Also, at the end
of the update computations in Step iv of Figure 1,
the updated values at the partition boundaries must
be communicated among (logically) neighboring
processors so that the computations of RHS in Step
v can be completed. Note that the communication
during the forward elimination or back-substitu-
tion phases is one-directional, whereas the com-
munication after Step iv can take place in an ex-
change fashion. With the 1D partitioning, each
processor communicates with at most two other
processors. However, the adjacent surface area
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Table 2 Effect of data distribution methods on performance (Class A problem set and the SP1 system)

among partitions does not reduce when more par-
titions are made. Thus, this partitioning is the least
scalable of all.

In Table 2, we compare the performance of the
three partitioning schemes on an 8-, 16-, and 32-
node SP1 using Class A problem set. The “Parti-
tioning” columns indicate the data-partitioning
strategy used. The first number indicates the num-
ber of partitions to be made along the first spatial
array dimension (i.e., along the & direction), and
so on. Thus, for example, with eight processors
and under 1D partitioning, cight slices were made
along the third spatial dimension of the distributed
arrays (the slowest varying dimension, which is
along ¢ direction) and no partitions were made
along the other two spatial dimensions. Note that
the same code was run on all platforms, and in all
cases the same communication optimizations de-
scribed below were included. Clearly, the 3D par-
titioning has the superior performance among all
three partitioning methods.

Another important decision in data partitioning is
that of the number of partitions to make along each
dimension of partitioning. For example, with 16
processors and 3D partitioning, one may partition
thegridinto2 X2 X 4or4 X2 x2oras2 x4 X2,
This has the effect on the locality of computations
within a processor. Although we do not show the
results here, significant performance gains are re-
alized by partitioning along the slowest varying di-
mension than along the fastest varying dimension.

We used the 3D partitioning in all the experiments
reported in the rest of this paper. Whenever the
number of processors, P, is not a perfect cube of
an integer, we factor the number P into three in-
tegers that are relatively close to VP and parti-
tion the grid so that the fastest varying dimension
(¢in the current example) has the least number of
partitions and the slowest varying dimension ()
has the most number of partitions.
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Parallel block tridiagonal solutions. As described
in the previous section, we used the Thomas al-
gorithm for performing the block tridiagonal solu-
tions. As with the generic Gaussian elimination,
the Thomas algorithm is highly sequential when
used for solving a single block tridiagonal system.
However, under the 3D data-partitioning scheme,
the multiple independent systems ((N — 2)* in our
example) in each implicit sweep can be computed
in parallel. This parallelism across multiple solu-
tions helps in mitigating the adverse performance
effects of using the Thomas algorithm on multiple
processors. In the £ direction, we first complete
the forward sweep for all (N —'2)? systems and
then perform the backward sweeps. Following this,
the same procedure is repeated along 1 and ¢ di-
rections. To improve single processor computa-
tional performance and to reduce communication
overhead, in the forward elimination phase we bun-
dle together the [Q;] matrix (5 X 5) and [p;] vector
(5 x 1) corresponding to the last grid point of a line
segment assigned to a processor.

In summary, in the implicit computations along the
&direction (and analogously, along n and ¢ direc-
tions), each processor sweeps over all the segments
of grid lines in its block partition, first in the for-
ward direction and then in the backward direction.
In the forward sweep over a segment of grid lines,
the coefficient matrices are computed on the fly,
the intermediate values needed in the forward elim-
ination phase are received from the neighboring
processor (that performs the forward elimination
on the earlier part of the grid-line), the forward
elimination computations on that line segment are
completed, and then the intermediate values com-
puted at the last grid point are sent off to the pro-
cessor performing the next segment of the same
line of grid points. Following this, the same is re-
peated over the next segment of grid lines in that
partition. After completing the forward sweep over
all the grid lines, the backward sweep is performed
in a similar fashion. In the backward sweep, first
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the values of the [u;, ] are received for each line
segment from the neighboring processor and, at
end of the computations over that line segment,
values of vector [u,] are sent to the neighboring
processor in the direction of the backward sweep
(k is the first grid point of the line segment assigned
to a processor). This completes the implicit com-
putations in the £direction. The procedures for the
implicit computations along the n and ¢ direction
are analogous.

The communication costs of the parallel implemen-
tation are as follows. In the forward sweep over
each segment of grid points, a processor requires
30 words of information from a neighboring pro-
cessor (unless the segment corresponds to the be-
ginning part of the block tridiagonal system), and
that processor sends away 30 words of informa-
tion to the processor working on the subsequent
segment of that line of grid points. Similarly, in the
backward sweep over each segment of grid line,
aprocessor receives five words of information and
sends away five words of information, at the be-
ginning and at the end of the back sweep over a
grid-line, respectively. In the forward and back
sweeps, only one message needs to be sent and re-
ceived per grid-line segment.

When the information is sent and received in this
manner, the total number of messages sent or re-
ceived by a processor is quite large. For example,
if n, X n, X n, are the dimensions of the block
of grid partition assigned to a processor, then in
the implicit part of the computations in each iter-
ation, altogether a processor would send or receive
2n,n, + 2n,n, + 2n,n, messages. When the mes-
sage latency costs are relatively high as compared
to the CPU speed, this overhead turns out to be sig-
nificant. Hence, to further reduce the number of
messages sent, we combine messages from several
forward or backward sweeps together and send
that out as one message. We refer to this as co-
alescing of line solves. If (lines are coalesced, the
total number of messages communicated in the im-
plicit computations is reduced by a factor of €
However, such a coalescing of line solves increases
the number of line solves being serialized by the
same factor. Thus, there is a trade-off between re-
ducing the number of messages and maintaining
adequate parallelism. In Reference 22, the perfor-
mance effects of this trade-off are analyzed in de-
tail. Here we present experimental data to support
that analysis.
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In Figure 3, we show the variations in the total ex-
ecution time (for Class A problem set) on a 128-
node SP1 as the number of lines coalesced together
is changed. The pair (x, ¥) under each bar indi-
cates the number of lines coalesced in the forward
(x) and the backward (y) sweeps. Thus, on the
128-processor SP1, the minimum execution time is
obtained by sending one message in the forward
sweep after four line segments are computed and
by sending one message in the backward sweep
after four line segments are computed. The total
execution time drops from 55.8 seconds (1,1) to
48.0 seconds (4,4) (a gain of 16 percent). Note
also that the total execution time drops quickly in
the beginning as the number of lines coalesced
is increased from one, and after the minimum is
reached it rises gradually. Thus, it is not necessary
to get the exact optimum values for the number
of lines to coalesce together; approximate values
are sufficient to obtain good performance. We
conducted similar experiments on other processor
configurations. We found that for 64 and 128 pro-
cessors, coalescing four lines gives the best perfor-
mance, and on 8, 16, and 32 processors, coalescing
eight lines together gave the best performance. In
general, the higher the processor speed compared
to the latency, the larger the number of line solves
that need to be coalesced to minimize the total ex-
ecution time. For exact relations, which involve sev-
eral other parameters, including the number of grid
points, number of partitions, number of operations
at each grid point, and bandwidth, please refer to Ref-
erence 22.

Performance results

In the previous section, we presented some of the
highlights of our parallel implementation of the BT
benchmark. In this section, we summarize the cur-
rent best performance results for the BT benchmark
using the two standard size problems (i.e., Class
A and Class B) on the SP1 and SP2-w. We performed
all our SP1 measurements on the 128-node SP1 sys-
tem at the 1BM T. J. Watson Research Center. All
our SP2-w measurements were performed on the
128-node SP2 system at the NASA Ames Research
Center. For comparison, in our results we have in-
cluded the Cray Y-MP and Cray €90 performance
on these benchmarks.” For a compiled list of the
performance of various other parallel systems on
this benchmark, please refer to References 3
and 26.
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Figure 3 Effect of number of lines coalesced together on the performance of a 128-node SP1

Total Execution Time (sec)

The performance of the BT benchmark using the
Class A problem set is shown in Table 3, and the
Class B results are shown in Table 4. In both cases,
the performance is reported on 8 through 128 pro-
cessors, except for the Class B problem set on the
SP1 for which the performance is reported on 16
through 128 processors. In the case of Class A, we
compare the SP1 and SP2-w performance with
Y-MP/1 performance, and in the case of Class B,
we compare the performance with that of a single
processor €90. The Y-MP and €90 performance fig-
ures are from Reference 3. Note that on the Class
A problem set, the 128-node SpP2-w is able to de-
liver performance that is over 39 times higher than
that of a single Y-MP node and over 5.67 times
higher than the performance of an eight-node Y-MP.
Similarly, on the Class B problem set, the 128-node
SP2-w is able to deliver performance that is close to
19 times the performance of a single node ¢9% and
close to 1.5 times the performance of a 16-node C9%.
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In Tables 3 and 4, we also report the MFLOPS deliv-
ered by the SP1 and SP2-w on the two problem sets.
To determine the true (and meaningful) MFLOPS de-
livered by a system, it is necessary to accurately mea-
sure the number of actual floating-point operations
performed by the hardware and that contributed di-
rectly toward the solution of the problem. A simple
count of the floating-point operations in the code is
far from accurate. Similarly, counting the floating-
point operations in the assembly code has difficul-
ties. To overcome some of these difficulties, we have
used the floating-point operation counts for the BT
benchmark as reported in Reference 7. These counts
were obtained for the benchmarks tuned for the Cray
systems and were measured using the performance
monitoring hardware on the corresponding Cray sys-
tems (Cray Y-MP count for the Class A problem and
€90 count for the Class B problem). Using these op-
eration counts and the observed execution times on
the various SP1 and Sp2-w configurations, we have
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Table 3 Performance comparisons for benchmark BT (Class A problem set)

Table 4 Performance comparisons for benchmark BT (Class B problem set)

reported the MFLOPS as the equivalent Y-MP and C90
MFLOPS in Tables 3 and 4, respectively. We note here
that since our implementations of the BT benchmark
were done independent of the implementations on
the Cray systems, the MFLOPS we report may not be
true RS/6000 MFLOPS. However, since the same prob-
lem is solved in both cases, the equivalent MFLOPS
as computed here are a good measure for compar-
ing two different systems. Using this measure, we
observe that on the 128-node SP2-w system, we are
able to realize over 10 GFLOPS (billions of floating-
point operations per second) on the Class B prob-
lem set.
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Scalability of the SP architecture

One objective in any benchmarking study is to be
able to systematically compare the performance
(and, more generally, some specific characteristics
of a system) of dissimilar architectures in perform-
ing some standard set of computations. The results
presented in the previous section help toward
meeting that objective for the BT benchmark. An-
other objective for scalable architectures such as
the SP series is to quantify the scalability of the sys-
tem. Architectural scalability may be defined in
various ways. For this study, we use a restrictive
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definition of it as the ability to sustain the perfor-
mance characteristics with the incremental changes
in the system resources such as the number of pro-
cessors, memory (DRAM), and the communication
subsystem. Ideally, architectural scalability should
be quantified independent of any application-spe-
cific characteristics. However, without perform-
ing any meaningful computations, it is almost im-
possible to assess the architectural scalability of
the system as a whole. The approach we have taken
here is that of quantifying the architectural scal-
ability for a given type of computations—specif-
ically, for the BT type of computations. Results pre-
sented in this section should help in determining,
qualitatively if not quantitatively, the consistency
of the system performance characteristics when
more processors are added to the system and prob-
lems are solved without making any changes to the
application implementation (but possibly by vary-
ing the problem sizes to fully utilize available re-
sources). The results are more representative of
the computations similar to those in the BT bench-
mark. However, some generalizations can be
made. We make additional comments on this in the
concluding section.

To quantify the architectural scalability for a given
type of computations we define a new term called
scalability factor. If a problem with w(p ;) amount
of work is computed in time #(p,) on p, proces-
sors and a similar problem with w(p,) amount of
work is computed in time ¢( p,) on p, processors,
the scalability factor, o, for the system with p, pro-
cessors with respect to (w.r.t.) the system with p,
processors is given by

@ % W(Pz) % 1_7_1
t(p)  wip) p,

U(Pz’ pl) =

The scalability factor, o(p,, p;), is a relative ef-
ficiency measure weighted by the problem sizes.
It indicates the efficiency of a system with p, pro-
cessors w.r.t. a system with p, processors. When
pis1and w(p,) and w(p,) are the same, o gives
the efficiency of the parallel system with p, pro-
cessors. When p, is smaller than p,, w(p,) is at
most equal to w( p,), and the load distributions are
identical, then o(p,, p,) is at most 1, and it is de-
sired to be close to 1. Note that when one is in-
terested in the scalability of the architecture, the
application-specific effects such as the degree of
parallelism (or sequentiality) inherent to an imple-
mentation or the effects of the data-partitioning
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strategies used must be eliminated. Although it is
impossible to completely eliminate some of these
effects, by using the same algorithms, the same par-
titioning strategies, and the same implementation
methods to solve different size problems, one can
gain enough information about the architectural
scalability. In our experiments, the implementa-
tion of the BT benchmark is such that the paral-
lelization algorithms remain the same, and the data-
partitioning strategies are parameterized by the
number of processors and the problem size. Thus,
we could use the same implementation even when
processor configurations or the problem sizes were
changed. To avoid (as far as possible) variation in
the cache behavior because of change in the array
sizes, we used array sizes to appropriately fit the
corresponding partition size.

We studied the scalability of the SP architecture
using two reference point performance results: one
with a 16-processor system and the other with a
32-processor system. We considered four problem
sizes: 64 X 64 x 64, 80 X 80 x 80, 102 X 102 X
102, and 126 x 126 x 126. Recall that the 64 x 64
X 64 and 102 x 102 X 102 problem sizes are spec-
ified in the NAS parallel benchmark suite. For the
80 x 80 X 80 problem we used a time step of 0.0003,
and for the 126 X 126 X 126 problem we chose a
time step of 0.00005; in each case we performed
200 iterations, just as in the standard problem sizes.
(Note that for the 64 X 64 X 64 and the 102 x 102
X 102 problems, the prescribed time steps are
0.0008 and 0.0003, respectively. Note further that,
under ‘‘normal” conditions, the size of the time
step does not affect the total number of floating-
point operations performed, which is determined
by the number of iterations. However, an appro-
priate time step value should be chosen for numer-
ical stability.)

Determining the scalability factor using two differ-
ent problem sizes requires an estimate of the ratio
of the work associated with the two problem sizes.
Ingeneral, for the CFD problems, such as those rep-
resented by the BT benchmark, the work is pro-
portional to the number of grid points. However,
because of the complex nature of the computa-
tions, the amount of work is not exactly linear in
the number of grid points. To simplify the issue,
we assumed the time to solve a problem on one
processor to be representative of the work asso-
ciated with that problem regardless of the number
of processors used to solve that problem. Speed-
ups and efficiency measures are typically based on
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Table 5 Scalability of SP1 on benchmark BT

Table 6 Scalability of SP2-w on benchmark BT

Nb.‘ot

such an assumption. The difference in our case is
that we did not necessarily use the best possible
algorithms or implementation techniques suitable
for the single processor case (since our aim was
to achieve best possible parallel performance). In-
stead, the same parallel implementation of the BT
benchmark, but without any communication con-
structs, was used for measuring the execution time
on one processor (with suitable changes in the data
array sizes).

The memory requirements of the single processor
executables get very large; e.g., 92.8 MB, 174.7 MB,
360.6 MB, and 677.9 MB are the memory require-
ments of the four problem sizes considered. To
avoid paging effects on the execution time, we ran
these one-processor experiments on one of the pro-
cessors of a specially configured two-node sP2-w
system, which was identical in all aspects to the
larger counterparts, except that each node had 1-GB
main memory.

Another difficulty in these single processor runs
was the amount of time required to complete each
run, which was prohibitively long. Since we only
had a limited amount of machine time available,
we ran each of the four problems for only 20 it-
erations instead of the full 200 iterations. Since the
same set of computations are performed in each
iteration, we found that running the benchmark for
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only 20 iterations and linearly projecting the ob-
served time to 200 iterations was reasonable. (This
truncation to 20 iterations was done only for the
single processor runs; all other runs for which the
results are reported in this paper were carried out
for 200 iterations.) The single processor execution
times for the four problem sizes—64 X 64 X 64,
80 x 80 x 80, 102 x 102 x 102, and 126 X 126 X
126—were respectively found to be 1606, 3307,
6893, and 13 830 seconds. Thus, the ratios of the
work associated with the four problem sizes turn
outtobe 1:2.1:4.3:8.6. The scalability factors for
the sp1 and SP2-w can be computed using these
work ratios and the execution times of the four data
sets.

The performance of the SP1 and SP2-w on the four
data sets is shown in Tables 5 and 6, respectively.
In these tables, we highlight scalability factors for
32-, 64-, and 128-processor systems with respect
to a 16-processor system, using the 80 x 80 x 80,
102 x 102 x 102, and 126 X 126 X 126 problem
sizes, respectively. (See the numbers in bold font.)
We also highlight scalability factors for 64-, and
128-processor systems with respect to a 32-proces-
sor system, using the 80 X 80 x 80, 102 X 102 X
102 problem sizes, respectively. (See the numbers
in italic font.) In each of these two cases, the data
partition size per processor remains the same;i.e.,
the problem size is doubled when the number of
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processors is doubled. In the first case, the mem-
ory requirements per processor for the four pro-
cessor partition sizes are: 9.7 MB (16 processors),
10.7 MB (32 processors), 10.2 MB (64 processors),
and 10.6 MB (128 processors). In the latter case
(where scalability is computed with respect to a
32-processor system), the memory requirements
per processor are: 6.5 MB (32 processors), 5.9 MB
(64 processors), and 6.6 MB (128 processors). Thus,
the selected problem sizes assured no change in
the memory utilization per processor.

We observe from the scalability factors presented
in Tables 5 and 6 that the SP architecture scales
well on the BT type of computations when the mem-
ory utilization is maintained at the same level. Note
that this outcome is obtained despite the fact that
the memory utilization on each processor is less
than 10 percent of the available memory (which
was 128 MB per node for both the SP1 and SpP2-w).
In some cases, the SP2-w architecture seems to
scale superlinearly; i.e., the scalability factors are
greater than 1.0. However, this is because of the
load imbalance effects that we could not com-
pletely eliminate from our experiments. (In the BT
benchmark, the 64 X 64 X 64 grid essentially in-
volves working on a 62 X 62 X 62 grid, whereas
the 102 x 102 x 102 grid involves working on a
100 x 100 x 100 grid. Thus, the severity of load
imbalance in computing the 64 X 64 X 64 size prob-
lem on 16 processors is more than that in comput-
ing the 102 x 102 x 102 size problem on 64 pro-
cessors.)

In the above, we considered the scalability when
the memory utilization remained unchanged. Scal-
ability factors, when memory utilization is varied,
can also be computed from the information in Ta-
bles 5 and 6 and other information presented ear-
lier in this section. In particular, by considering
the execution times in the same column (i.e., the
execution times for the same problem size), one
can compute relative speedups and efficiencies.
Consider two extreme cases: 64 X 64 X 64 and
126 X 126 X 126. On the SP2-w, in the former case,
the scalability factor for the 128 processors w.r.t.
16 processors is 0.70 and, in the latter case, the
same is 0.87. Again both of these figures are quite
respectable considering the fact that in the former
case only 2.7 MB memory per node was required
when the problem was solved on 128 processors
and, in the latter case, the same was 10.6 MB per
node.
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Conclusions

In this paper, we have described an efficient and
scalable method for implementing the BT bench-
mark on distributed memory systems. Using the
strategies described here, we have implemented
this pseudo-application benchmark on the IBM Sp
systems (the SP1 and the sp2 with wide nodes) and
have presented performance results on up to 128
processors. The experimental results indicate that
the sp architecture delivers good performance on
this benchmark, both in terms of raw performance
and scalability. To get the level of performance that
we obtained, we used a combination of techniques
that included the use of efficient sequential algo-
rithms, the use of scalable partitioning strategies,
the use of algorithms to reduce the number of mes-
sages, the use of improved data structures to re-
duce memory requirements and memory refer-
ences, and some tuning for high cache and register
utilization. We concentrated our efforts primarily
in three areas: (1) developing a good sequential im-
plementation, (2) using appropriate data distri-
bution methods, and (3) reducing the number of
messages communicated where possible. A note-
worthy aspect of this study is that we realized good
performance on both the SP1 and SP2-w systems us-
ing implementation methods that are identical as
far as the parallelization techniques, parallel algo-
rithms, and data partitioning strategies are con-
cerned. In terms of the parallel implementation ef-
fort, these issues encompass the bulk of the
development and programming effort. The imple-
mentations for the SP1 and sp2-w differed only in
the single processor optimization techniques used
in the computationally intensive solver sections.
This is an important point since it shows that scal-
ability is achievable even at the software level and
that it is possible to reuse code without sacrificing
performance, which is critical in the development
of large, complex application software.

Obtaining good single processor performance is an
important part of parallelizing an application for
performance. To realize the significance of single
processor performance, note that when we com-
piled and ran USI without any modifications (but
using all possible compiler optimization options)
onaClass A data set, the overall performance was
about 20 MFLOPS on a single processor of the SP1.
After the modifications described in this paper, we
managed to raise the single processor performance
to about 53 MFLOPS. To obtain good performance
on a single processor, we carefully analyzed the
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computationally intensive parts of the benchmark
and replaced the conventional Gaussian elimina-
tion by the Thomas algorithm to reduce the oper-
ation count. We performed loop level optimizations
and rearranged individual segments of computa-
tions so as to keep the dual arithmetic units (ALU)
in the floating-point unit (FPU) simultaneously busy
(in the case of the SP2 processor). Optimizations
were also incorporated to improve register and
cache reuse. We emphasize here that although the
modifications described in this paper were per-
formed manually, most of these techniques are well
known. With some familiarity of the compiler and
architecture, but without being an expert (and cer-
tainly without resorting to assembly line program-
ming), most of our performance gains are realiz-
able. Although familiarity with the RS/6000
architecture helped us in fine tuning the perfor-
mance, the concepts we used are general and are
applicable to many other RISC-based architectures.

Similarly, the 3D data distribution scheme that we
used is the same as the block distribution scheme
proposed and implemented by modern compilers
for distributed memory systems (such as FORTRAN-
D). We also made use of the computation and
communication trade-off typically observed in
parallel implicit computations such as the BT
benchmark. Thus we could reduce the detrimen-
tal effects of relatively high latency in message
passing on the SP architecture. Although this as-
pect of the optimization is somewhat specialized
for incorporation into parallelizing compilers, we
believe that this concept can easily be incorporated
into special-purpose tools, particularly for CFD
applications.

We conclude this paper with a comment on the
scalability aspect. A commonly accepted meaning
of scalability is the ability to deliver a level of per-
formance that is in proportion to the available re-
sources. Typically, on distributed memory sys-
tems, as the processors are added the amount of
memory (an important resource) also increases
proportionately. When users want to upgrade a
parallel system to alarger one, in addition to speed,
they are also interested in solving larger applica-
tions by making use of all the available resources.
As it has been pointed out in various studies on
scalability, this factor should be taken into account.
This implies that performance of a smaller system
on a smaller problem should be compared with the
performance of a larger system on a correspond-
ingly larger problem. The performance metric such
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as speedup shows the effects on the performance
as resources are increased without changing the
problem size. Since speedup is truly a measure of
effective speed, its practicality is limited, especially
in the context of an application benchmark. When
speed is the sole criterion, one may in principle just
replace the CPU by another one that has corre-
spondingly faster clock speed. Scalability implies
more than speed, and as such one should conduct
experiments with proportionately larger problem
sizes on larger systems, as we have shown in this
paper. A second point is regarding comparison of
two different systems for scalability. The perfor-
mance results compiled by the NAS group give an
excellent indication of achievable performance on
various systems (e.g., see Reference 3). The raw
figures in those tables can be used to understand
the level of performance achievable on a given sys-
tem of certain configuration. However, one can-
not use these performance figures to compare the
scalability of two different systems in a meaning-
ful fashion. One meaningful way of comparing the
scalability of various systems, that does notinvolve
porting the same implementation to all systems, is
to compare the scalability factors as we have done
in this paper.

Finally, an objective of benchmarking is to obtain
enough information about the system behavior so
as to be able to make intelligent estimations about
the performance of the system when used to solve
problems that are more complex but have similar
computations as in the benchmark. One may ar-
gue that the raw performance and the scalability
results presented in this paper are useful in under-
standing the system behavior when the computa-
tions performed have characteristics similar to
those in the BT benchmark. There is no doubt that
no single benchmark or application can character-
ize the system behavior completely, and the per-
formance of a whole suite of benchmarks and ap-
plications must be studied in a similar manner to
understand the system behavior. However, the re-
sults presented in this paper have applicability be-
yond the narrow range of the BT benchmark. Fur-
ther work needs to be done to quantify the
generality of these results.
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