
A scalable
implementation of the
NAS Parallel Benchmark
BT on distributed
memory systems

by V. K. Naik

In this paper, we describe an efficient and
scalable implementation of the NAS Parallel
Benchmark BT suitable for distributed memory
systems such as the IBM Scalable
POWERparallel Systems@. After describing the
parallelization and data partitioning methods
used, we outline some of the optimization steps
used to realize good performance on individual
processors and to reduce the communication
overheads on the IBM SP1" and SP2" systems.
We present performance results on up to 128
nodes of the SP1, and on the SP2 with wide
nodes. We describe the performance on the
standard Class A and Class B problem sets.
To show the scalability of our parallelization
methods, we present the performance of two
additional data sets.

I n 1991, the Numerical Aerodynamic Simulation
(NAS) program at the NASA (National Aeronau-

tics and Space Administration) Ames Research
Center announced a set of applications and ker-
nels for benchmarking highly parallel supercom-
puters. ',* These benchmarks are representative of
the computations commonly encountered in aero-
physics applications. Unlike many other bench-
marks, these benchmarks are specified using the
paper-and-pencil approach. The problems are com-
pletely specified (in text form), including the
numerical methods to be used, but the benchmark-
ing rules do not specify any particular implemen-
tation techniques or algorithms for parallelization.
It is entirely up to the implementor to decide on

the parallelization techniques, language constructs,
the data structures, memory use, or processor al-
location. Details of implementing the numerical
methods are also left out. However, there are a few
restrictions. One requirement is that the tests must
be conducted with a specified set of input param-
eters and the test results must conform with the
expected output within a specified level of toler-
ance. Another restriction is that all programs must
be written in a high-level language such as FOR-
TRAN or C; furthermore, no special-purpose library
can be accessed for executing these benchmarks.

In the recent past, performance results character-
izing various parallel platforms have been reported
by many vendors as well as by researchers at NASA
and elsewhere. The depth of these benchmarks and
the fact that they capture the essence of typical
large-scale computational fluid dynamics (CFD) ap-
plications have made these benchmarks popular,
not only for the purpose of evaluating parallel su-
percomputing systems but also in demonstrating
the viability of novel software and architectural
concepts. As a result, the NAS parallel benchmark

Wopyright 1995 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is
done without alteration and (2) the Journal reference and IBM
copyright notice are included on the first page. The title and
abstract, but no other portions, of this paper may be copied or
distributed royalty free without further permission by computer-
based and other information-service systems. Permission to re-
publish any other portion of this paper must be obtained from
the Editor.

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995 0018-8670/951$3.00 0 1995 IBM NA~K 273

Table 1 A summary of the application benchmark
characteristics for the two problem sizes

suite has become one of the most widely used
benchmarks in many areas of high-performance
parallel computing. The NAS group at NASA Ames
routinely compiles and distributes performance re-
sults on various parallel systems. For more details,
please refer to Reference 3 .

In this paper, we describe an efficient implemen-
tation of one of the three application benchmarks-
the Block Tridiagonal (BT) benchmark-on distrib-
uted memory systems. In addition to describing the
implementation strategies for scalable systems, we
also describe steps for optimizing the code on the
IBM scalable POWERparakl" 1 (SPl") system and
the IBM scalable PowERparallel2 with wide nodes
(SP~*-W) system. We consider single processor op-
timization steps as well as steps for reducing com-
munication overheads. Besides describing the per-
formance-enhancing techniques for spl and SPEW,
a goal of this paper is to examine the scalability of
the SP architecture for computations characterized
by the BT benchmark. For this we present results
on up to 128 processors using four different data
sets. In Reference 4, we have presented a similar
study of a distributed memory implementation of
the Scalar Pentadiagonal (SP) benchmark. An im-
plementation of the Lower-Upper Diagonal (LU)
benchmark is described in Reference 5.

As far as we know, our implementation of the BT
benchmark, as described in this paper, has deliv-
ered the best performance on the sP1 and S P ~ sys-
tems. Moreover, as of the writing of this paper,
the performance of our implementation on the
SPZ-w with 32 or more processors is significantly
better than the performance of any other imple-

274 NA~K

mentation on any other parallel system (except for
the Fujitsu VPPSOO"") with the same number of pro-
c e s s o r ~ . ~ One objective of this paper is to describe
our implementation in detail so other studies, in-
cluding nonbenchmarking types, may benefit from
its understanding.

First we present some background information on
the NAS parallel benchmarks. In the section after
that, we describe the mathematical and numerical
problem solved by the BT benchmark. A sequen-
tial implementation of this benchmark is then out-
lined. Next we briefly describe the IBM SP systems
used in this study. We describe our parallel imple-
mentation and the optimizations for performance
in succeeding sections. The performance results
are presented in the two sections just before the
conclusions.

NAS parallel benchmarks

The NAS benchmark suite consists of eight prob-
lems: five kernels and three simulated CFD appli-
cations. For details and implementation rules,
please refer to References 1 and 2. The kernels rep-
resent solvers in the form of compact problems.
These kernels are relatively simple (each with a
few hundred lines of sequential FORTRAN code) and
are meant to provide insight into the performance
of particular types of numerical computations.
The three simulated CFD applications are more
complex than the kernels. Each of these applica-
tions consists of several data structures, and a typ-
ical sequential implementation of any of these
benchmarks, in FORTRAN, results in a few thou-
sand lines of code. The data dependencies imposed
by the numerical methods in these applications and
their computational requirements resemble closely
those in the state-of-the-art CFD application codes.
Thus, the implementation techniques of these ap-
plications are more typical of real CFD applica-
tions.6 However, absent from the application
benchmarks are complex boundary conditions and
I/O operations that are typically present in many
real CFD applications. For that reason, the three
application benchmarks are also referred to as
pseudo applications.

The three application benchmarks are: the Scalar
Pentadiagonal (sP), Block Tridiagonal (BT), and
Lower-Upper Diagonal (LU) benchmarks. For
comparison of performance, NASA has defined two
standard problem sets for each benchmark that are
referred to as Class A and Class B size problems.

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995

In Table 1 , we present a summary of the compu-
tational characteristics of the three application
benchmarks under the two standard problem sets.
The floating-point operation counts and the
MFLOPS (millions of floating-point operations per
second) specified in that table are from Reference
7. Note that the floating-point operation counts are
for a particular implementation of these bench-
marks and were measured using the Cray hardware
performance monitor.

According to the rules of the NAS parallel bench-
marks, performance is to be reported in terms of
the elapsed time (based on "wall-clock'' time) to
complete the computations over the required num-
ber of iterations. Another meaningful measure used
in reporting performance is the ratio to the best ex-
ecution times on a single node of a Y-MP** system
(for Class A problems) or on a single node of a C90
system (for Class B problems).

Benchmark BT

In this section, we describe some of the salient
points of the benchmark BT so as to facilitate a
meaningful discussion on the implementation and
performance issues. Most of the discussion in this
section is based on Chapter 3 of Reference 1 . For
complete details, refer to that citation.

The problem solved in benchmark BT is that of
computing the numerical solution for a synthetic
system of five nonlinear partial differential equa-
tions (PDES) representing some of the key charac-
teristics exhibited by the Navier-Stokes equations.
An implicit type of numerical solution is used in
solving this system of PDES. This method is used
as a solver in many of the computational fluid
dynamics (CFD) programs designed for the numer-
ical solution of three-dimensional EuledNavier-
Stokes equations using finite-volume or finite-dif-
ference discretization on structured grids.

The system of five nonlinear PDEs is as follows:

where U = [u (I) , u(*) , u (~) , u (~) , u (~)] is a vector
function of temporal variable 7 and spatial varia-
bles (5, 77, 5) that form the orthogonal coordinate
system in p3. E, F, G, T, V, W, and H are 5 X 1
vector functions whose components are prescribed
as functions of U or U and its derivatives. The
boundary conditions are of uncoupled Dirichlet
type and the initial values of U at r = 0 are obtained
by a transfinite, tri-linear interpolation of the
boundary data. The forcing function vector H is
chosen such that, with the specified boundary and
initial conditions, the system of PDES given by
Equation 1 satisfies an exact solution (a fourth or-
der polynomial in (, 7, and i) to U. The compu-
tations of the BT benchmark seek to obtain a dis-
crete approximation to the steady-state solution of
the PDES, using a pseudo-time marching scheme
(two-level, first-order accurate, Euler implicit) and
a spatial discretizing procedure based on finite dif-
ference approximations (second-order accurate
central difference approximations in each of the
three coordinate directions). A linear fourth-dif-
ference dissipation term is added to the right side
of Equation 1 so that the numerical scheme con-
verges to a steady-state solution. If U" and Un+l
are solutions at time-step n and n + 1, respec-
tively, and AU" is Un+l - U", then the numerical
procedure involves the solution of a linear system
of equations for AU" to determine Un+l . The lin-
ear system of equations has the following form:

(I + ArL)AU" = ArR (2)

where L consists of the flux Jacobian terms cor-
responding to the vectors E, F, G, T, V, Wand the
implicitly treated dissipation terms. R consists of
the spatial difference terms for the vectors E, F,
G, T, V, W, the forcing function vector H, and the
added dissipation terms. In the above equation, the
left-hand side (LHS) is the implicit part, and the
right-hand side (RHS) is the explicit part.

All three pseudo-application benchmarks compute
AU" in Equation 2 numerically, using an iterative
method, and from that term advance the solution
to U n + l . Only one iteration per time step is gen-
erally sufficient for the pseudo-time marching
schemes used in all three benchmarks. The bench-
mark BT differs from the other two (SP and LU) in
the manner in which the implicit operator in the
LHS of Equation 2 is approximated and applied. In
this benchmark, the implicit operator in Equation
2 is approximately factored using the Beam-Warm-
ing Approximate Factorization scheme. The RHS

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995 N A ~ K 275

Figure 1 A functional outline of the BT benchmark

Set Boundary values of Ui,j,k for (i, j , k) E aDh
Set Initial values of Uiqj,k for (i, j , k) E D h
Compute forcing function vector, HT,j,k for (i, j , k) E Dh
Initialize [RIIS]i,j,k at T = 0 for (i, j , k) E Dh
for T = 1 to Maxsteps do

i. Perform &sweep:
Setup coefficient matrices:

Solve linear system of equations for [AUl]i,j,k for (i, j , k) E D h :

i(a). M* = (I - AT[D*(A)'-~ + Dj(N)T-l])

i(b) . M,AU, = [RHS]".

Setup coefficient matrices:

Solve linear system of equations for [AU21i,j,k for (i, j , k) E Dh:

ii . Perform q-sweep:

ii(a) . M, = (I - AT[D,(B)'" + D:(Q)"])

ii(b) . M,A& = AUI.
iii. Perform 5-sweep:

Setup coefficient matrices:

Solve linear system of equations for [AU,]i,j,k for (i, j , k) E D h :

iii(a) , Mi = (I - AT[Di(C)'-' + D;(S>'-'])

iii(b) . McAUT" = AU2.
iv. Update solution to time-step T:

v. Compute [RHS]{j,k for (i, j , k) E Dh

UT = UT-' + AU-1

end for

(explicit part) of Equation 2 is unaffected by these
modifications. The LHS takes the following form:

[(W) " I a2(Q/")]
* 1 - 8 7 - arl arl

d(C)" aysy
a5 a5
- + -)]AU" (3)

where A, B, C, N, Q, and S are 5 X 5 flux Jacobian
matrices for the specified problem. For the exact
representation of these Jacobian matrices, please
refer to Reference 1 .

A functional description of the BT benchmark is
shown in Figure 1 . Observe that AU" is computed
in the (n + 1)th iteration over Steps i, ii, and iii,
where t , ~ , and ldirectional factors of the implicit

operator are applied, respectively. Collectively, we
refer to these steps as the implicitphase of the com-
putations and the three sweeps as the implicit
sweeps. In each of these sweeps, multiple indepen-
dent systems of block tridiagonal equations (each
block being a 5 X 5 matrix) are solved. If the spa-
tial discretization has N , , N , , and N , mesh points
in 5, 7, and ldirections, respectively, then, in the
&sweep, altogether (N , - 2) (N , - 2) indepen-
dent systems of block tridiagonal equations are
computed. Each of these block tridiagonal systems
of equations has 5 (N , - 2) unknowns. Similarly,
in the 7- and 5-sweeps, (N , - 2) (N , - 2) and
(N 5 - 2) (N , - 2) independent systems of block
tridiagonal equations are solved, respectively. In
Steps i(a), ii(a), and iii(a) of Figure 1, coefficient
matrices are set up before performing the actual
block tridiagonal solutions. Since in each sweep
there are multiple independent block tridiagonal
systems, M,, M,, M, represent multiple coefficient
matrices in those setup steps.

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995

As mentioned earlier, benchmark BT has two stan-
dard data sets: Class A and Class B. For the Class
A data set, N = N, = N , = N, = 64, and for
the Class B data set, N = N, =. N, = N, = 102.
In both cases, Maxsteps (see F~gure 1) is 200.

A sequential implementation

The starting point for our parallel implementation
was the sequential FORTRAN 77 implementation of
the BT benchmark (written by S. Weeratunga) pro-
vided by NASA Ames as an example implementa-
tion. We found this code to be very well written,
and we will refer to this version as the unoptimized
starting-point implementation, or USI for brevity.
For our parallel implementation on the IBM SP ar-
chitecture, we modified this code significantly to
extract parallelism and to get good floating-point
performance. In the following, we first describe
some of the key features of USI and then describe
the optimizations we made to this code. Some of
these optimizations are obvious, and we would like
to note here that although we point out the obvi-
ous optimizations, we do not imply that the devel-
opers of USI were unaware of them. In our opin-
ion, the main objective of u s 1 was to bring clarity,
modularity, and simplicity to the benchmark.

The computationally intensive steps in each iter-
ation of the BT benchmark are Steps i, ii, and iii
shown in Figure 1. In each of these steps, multiple
independent block (5 X 5) tridiagonal systems are
solved, after setting up their coefficient matrices.
In the &sweep, the block tridiagonal system has
the following structure:

[Bl,j,kl[AUlll,j,k + [Cl,j,kl[AUllt,j,k = [RHSll,j,k

[Ai,j,kl[AUlli-l,j,k + [Bi,j,kl[AUlli,j,k

+ [Ci,j,kl[Aulli+l,j,k = [RHSlr,j,k;

2 % i I N I - 1

[ANf,j,kl[AUIlN*-l,j,k + [BNf,j,klEAUllNf,j,k

= [RHSI,*,j,k (4)

In the above, [A], [B], and [C] are 5 X 5 matrices,
[AUl]i,j,k is a 5 X 1 column vector, [B,,j,k] and
[ANf,j,kl are identity matrices ([I]), and [CI,j,kl =
[O l . A t ~ = n + l a n d f o r 2 % i ~ (N ~ - 1) , t h e
(5 X 5) coefficient matrices are determined as fol-
lows:

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995

where h, = 1/(N, - 1) is the mesh size in 6 di-
rection. The structures of the block tridiagonal sys-
tems involved in the 77- and {-sweeps are analo-
gous to the above-defined structure for &sweep.

In USI, for each of the Steps i, ii, and iii, first all
coefficient matrices are evaluated and then (N -
2)* systems of equations are solved (as shown in
Figure 1). For the N X N X N problem, each setup
step involves computing and storing 3N(N - 2) *
coefficient matrices, each represented by a 5 x 5
array. For &sweep, these matrices are evaluated
as shown in Equations 5 . Note that the coefficient
computations are primarily scalar-matrix multipli-
cations. Each linear system has a block tridiago-
nal structure, and hence, the coefficient matrix M,
of Step i in Figure 1 is represented not by a full
matrix, but by an array of triplets of 5 X 5 coef-
ficient matrices ([A], [B], [C]), one triplet for each
5 X 1 block of unknowns (i.e., at each interior grid
point). After the setup, (N - 2)' linear systems
are solved using a regular Gaussian elimination al-
gorithm, with no pivoting. These solutions take into
account the block tridiagonal nature of the linear
systems-all forward eliminations are computed
first, storing the intermediate results in the same
work arrays as the ones used for computing the
coefficient matrices in the setup step; this is fol-
lowed by all back-substitutions for that sweep. The
same procedure is repeated in the other two direc-
tions as indicated in Figure 1 . For storage effi-
ciency, the array representing the RHS vector is
used to hold the intermediate solutions (AU1, AU2,
and AUT-').

In Step iv, the solution is advanced to the next time
step by performing a vector (5 X 1) add at each
interior grid point. Finally, the computations for
evaluating the RHS vector at the new time step are
performed in Step v. These computations are

equivalent to three regular sparse block (5 X 5) ma-
trix-vector multiplications.

Clearly, the main data dependencies in the com-
putations of one iteration are those that character-
ize the solution of a block tridiagonal system of

We report performance on up
to 128 nodes for both the SP1

and SP2-w systems.

equations and those in a regular sparse block ma-
trix-vector multiplication. The solution of the tri-
diagonal system of equations involves a forward
elimination phase followed by a back-substitution
phase. In the forward elimination, the computa-
tions at block i depend on the values computed at
block i - 1. In the back-substitution phase, the
computations at block i depend on the values com-
puted at block i + 1. The RHS computations at a
grid point (i, j , k) require values of the U vector
at (i, j , k) and at 12 neighboring grid points: {(i *
I, j * I, k k /) I 1 = 0, 1, 2}, (i.e., alonga 13-point
stencil).

Finally, associated with each grid point, altogether
a total of 90 words (double precision) of memory
is required: five for the solution vector, U, five for
the right-hand side vector, RHS, and 75 variables
for storing the coefficient matrices (work arrays).

IBM SP architecture

In this section, we briefly describe some of the ar-
chitectural details of the IBM SPl and SP2 systems
used in this study. The details presented here are
relevant to the optimization steps we describe in
the following sections. We refer the interested
reader to References 10 and 11 for further archi-
tectural details on sP1 and to References 12 and 13
for further details on S P ~ .

Each processing element on the SPI is IBM’s RISC
System/6000* (RS/6000*) Model 370 processor, with
a 32K-byte data cache and 62.5 MHz clock speed.
Each processing element on the S P ~ considered in

this study is IBM’s RS/6000 Model 590 processor, with
a 256K-byte data cache and 66.5 MHZ clock speed.
There are other S P ~ systems with different types
of processors, but we do not consider those in this
study. To avoid any ambiguity, in the rest of the
paper we refer to the S P ~ system used in this study
as SP~-w. (The suffix “w” stands for wide-the
qualification used to describe the type of process-
ing elements used.) The SPI processor belongs to
the POWER Architecture*, whereas the Sp2 proces-
sor belongs to the POWER2 Architecture*. Read-
ers interested in the details of various aspects of
the POWER Architecture should refer to the arti-
cles that appear in Reference 14 or 15. Details on
the various aspects of the POWER2 Architecture can
be found in the articles that appear in Reference
16 or 17. The differences between the spl and SPEW
processors that are relevant to this study are: (1)
in the former case, the fixed-point and the floating-
point units have one execution unit each, whereas
in the latter case, each has two execution units;
(2) in the former case, up to two floating-point op-
erations can be performed per cycle (125 MFLOPS,
peak), and in the latter case, the same is four float-
ing-point operations per cycle (266 MFLOPS, peak);
(3) the latter has the ability to perform quad-word
load or store of two adjacent double precision ref-
erences to or from two adjacent floating-point reg-
isters in one cycle; (4) the memory bus width in
the former case is eight bytes, and the same in the
latter case is 32 bytes.

On both the SP1 and SP~-W, the processors are in-
terconnected via a High-Performance Switch, the
details of which can be found in Reference 11. The
processor-switch interface is managed by a spe-
cial adapter card. The communication adapter
cards used in the SPI and SP2-w systems differ sig-
nificantly. For additional details, refer to Reference
13. On both systems, explicit message passing is
the parallel programming paradigm. The sP1 pro-
vides two communication protocols: MPL and
MPL/~ . In all the experiments presented in this pa-
per on the sP1, we used the MPL/p protocol. In our
experiments on the SPZ-W, message passing was
handled by the Parallel Operating Environment
(POE) using the Message-Passing Library (MPL)
protocol. ’*
In this paper, for both the SPI and sp2-w systems,
we report performance on up to 128 nodes, with
each node having 128 MB of local memory. For the
SPl experiments, we used the system at the IBM
Thomas J. Watson Research Center in Yorktown

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995

Heights, New York, and, for the Sp2-w experi-
ments, we used the system at the NASA Ames Re-
search Center. All parallel programs for which we
report performance in this paper were written in
the single-program, multiple-data (SPMD) style of
programming in FORTRAN, using IBM'S external
user interface (EUI) '~ as the message-passing in-
terface.

For the M P U ~ protocol used in the SPI experiments,
the point-to-point message latency was measured
(using ping-pong type point-to-point communica-
tion between pairs of processors) to be 30 psec.
The effective communication bandwidth under this
protocol was measured to approach 8.5 MB/SeC, as-
ymptotically. For further details on the sP1 com-
munication performance, please see Reference 20.
For the SP~-W, where we used the MPL protocol,
the message latency was observed to be 42 psec,
and the effective communication bandwidth ap-
proached 34 MB/SeC, asymptotically, for unidirec-
tional communication and 48 MB/SeC (asymptotic)
for bidirectional (exchange type) communication.
For additional details on the S P ~ communication
software, please see Reference 18.

Optimizations for single processor
performance

In achieving good performance on a parallel sys-
tem, obtaining good single processor performance
is an important step. However, single processor
performance should not be obtained at the expense
of available parallelism. In our implementation of
the benchmark BT on the IBM SP systems, we made
significant modifications to USI and optimized the
code for the RS/6000 POWER (for SP1) and POWER2
(for SPEW) architectures, without sacrificing the
available parallelism. Here we describe some of
these modifications. The parallel implementations
of the BT benchmark for the SPI and Sp2-w differ
only in the optimizations for single processor per-
formance.

Computation of coefficient matrices. In USI, all the
coefficient matrices are set up before performing
the block tridiagonal solutions. As is evident from
Equations 5 , a significant amount of time is spent
in setting up these matrices. We found two disad-
vantages with this approach: (1) large work arrays
are necessary (75 words per grid point) and (2) lo-
cality in computations is reduced considerably
when the block tridiagonal solutions are performed
along directions involving strides (for example, in

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995

77- and 5-sweeps). To overcome these difficulties,
in each implicit sweep we merged the coefficient
computation step with the solver step (e.g., Step
i(a) and Step i(b) in Figure 1). The first advantage
of this modification is the reduced memory require-
ment. Instead of 75 words of memory at each grid

In achieving good performance on
a parallel system, obtaining good
single processor performance is

an important step.

point in the entire three-dimensional domain, 75
words of memory per grid point along a one-dimen-
sional line of grid points (corresponding to a single
tridiagonal solution) are needed. This work space
is reused in the subsequent solutions. The main
performance benefit from this modification is that
in performing the tridiagonal solutions in the 7- and
5-sweeps, the coefficient matrices can be accessed
with single stride, thus, significantly reducing cache
misses.

In addition to the above modification, we ob-
tained performance improvements in the computa-
tions of the flux Jacobians (e.g., in computing
1/(2h,)[A(U,"_1,j,k)] and(l/h~)[N(Uin_l,j,k)] ofEqua-
tions 5) . Performance was improved by carefully
rearranging the computations so as to eliminate any
duplications and also obtaining good register re-
use. In the case of the implementation for the POW-
ER2 Architecture (of the Sp2-w nodes), further tun-
ing was necessary to assist the compiler in
maximizing the instruction-level parallelism to
keep the dual arithmetic units of the floating-point
unit (FPU) busy simultaneously and to take advan-
tage of quad-load or store capabilities. Primarily,
this tuning involved exposing computations for two
independent grid points at the same time (but with-
out exceeding the limitations imposed by the avail-
able number of registers or the cache size). Note
that all our implementations are of single-program,
multiple-data (SPMD) style, which means that the
code remains the same for all nodes. Since not all
processors may end up with same-size partitions
(due to load imbalance), the number of grid points

assigned to processors may not all be the same.
As a result, proper care must be taken in imple-
menting the above-described optimizations.

Solution of block tridiagonal systems. We replaced
the generic Gaussian elimination (with no pivot-
ing) algorithm used in USI by the Thomas algorithm.
The Thomas algorithm is a special case of Gaus-
sian elimination and is used to obtain an efficient
solution to tridiagonal and pentadiagonal systems,
when no pivoting is involved. To explain this al-
gorithm, consider the following ith equation 2 5
i I N , - 1, in a block tridiagonal system given
by Equations 4 for some values o f j and k :

[A;I[u;-ll + [Bil[uiI + [CJ[u,+11 = [ril (6)

where [Ai], [I$], and [Cil are 5 X 5 matrices, and
[u,] and [r,] are 5 X 1 column vectors. For con-
venience, in the above equation we have dropped
j and k suffixes. In a conventional Gaussian elim-
ination (with no pivoting) algorithm, at the ith step
of the forward elimination phase, the following
computations are performed:

[QJ = [Xi-II[Ci-11

[BiI = [BiI - [Ail [Oil
[X;] = [E,] - I

[Fil = [Xi-ll[pi-13

[PJ = [.;I - [A,I[F,I (7)

and in the back-substitution phase the following
computations take place:

[pi1 = [pi1 - [Cil[u,+Il

[uil= [xil[~;l (8)

where [E,], [Q i] , [X,] are 5 X 5 matrices, and [pi],
[pi] , and [Fi] are 5 x 1 column vectors. When [Xl],
[pJ, and [uNJ are known, the solution to the block
tridiagonal system is determined.

In the Thomas algorithm, the block tridiagonal sys-
tem represented by Equations 4 is rearranged so
that the ith equation has the following form:

[uil = [PJ - [QiI[ui+ll (9)

280 NAIK

Thus, at the ith step of the forward elimination
phase, the following computations are performed:

[BJ = [BiI-[A,I[Q,-lI

[X,] = [E;] - I

[QiI = [XiI[Cil

[‘;I = [rJ- [Ail[~i-,l

[pi1 = [Xil[F,I (10)

and, in the back-substitution phase, the following
computations take place:

[uJ = [PJ - [Q;I[ui+lI (1 1)

where [Ei], [QJ , [X,] are 5 X 5 matrices and [pi],
and [F,] are5 X 1 columnvectors. When [Ql], [pl],
and [uN] are known, the solution to the block tri-
diagonaj system is determined.

Comparing the steps in the conventional Gaussian
elimination (Equations 7 and Equations 8) with
those in the Thomas algorithm (Equations 10 and
Equation 1 1), we notice that in the former case the
information is carried forward in the [x] matrix and
[p] vector, whereas in the latter case, this is ac-
complished by matrix [Q] and vector [p]. More-
over, when we analyze the above-described Gaus-
sian elimination algorithm, we find that at the ith
step (both forward elimination and back-substitu-
tion phases combined), there are seven pairs of tri-
angular “solves” (counting a lower triangular solve
followed by an upper triangular solve as one pair)
involving a 5 X 5 matrix and a 5 X 1 vector,
whereas in the Thomas algorithm only six pairs of
triangular solves are performed. (Notice that in the
back-substitution phase of the Thomas algorithm,
no triangular solves are performed.) In addition,
both algorithms perform one matrix-matrix mul-
tiply-and-add, two matrix-vector multiply-and-
adds, and one factoring of a matrix. (All matrices
are 5 X 5 , and all vectors are 5 X 1.) Thus, by us-
ing the Thomas algorithm, we avoid performing N
pairs of triangular solves (a lower triangular solve
plus an upper triangular solve) in the solution of
each block tridiagonal system of equations. Recall
that altogether 3 N 2 such systems are computed in
advancing the solution by one time step. A lower
and upper triangular pair involves 20 multiply-and-
add operations (daxpy type) and five divides.

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995

In addition to reducing the operation count, the
Thomas algorithm offers somewhat better locality
of computations. For example, notice from Equa-
tions 10 that immediately after [X,] is factored, it
is used in the ten triangular solves. In the Gaus-
sian elimination, however, the ten triangular solves
use [X,-1] from the previous step. Such improve-
ments in the locality of computations have a sig-
nificant effect on the performance of cache-based
RISC processors.

On the RS/~OOO (as with many other microproces-
sors), floating-point reciprocals and divisions are
significantly more expensive than floating-point
multiplications. Keeping this in mind, we further
improved the performance of each block tridiag-
onal solution by reducing the number of floating-
point reciprocal and division operations, at the ex-
pense of an increased number of floating-point
multiplications. Each upper triangular solve in-
volves five divisions. However, in all six upper tri-
angular solves performed in step i of the Thomas
algorithm (see Equations lo), the same diagonal
elements of [X,] are involved. Moreover, in the ma-
trix factoring step where [X,] is computed, the same
reciprocals are needed. When the 5 X 5 matrix is
factored, we store the reciprocals of the diagonal
elements of [X,] instead of the “normal” values,
and use these values in all upper triangular solves
involving [X,]. Thus, in the ith step of a block trid-
iagonal solution, we replaced 30 divisions by that
many multiplications. Note that this optimization
is possible even when regular Gaussian elimina-
tion is used (as in USI).

Optimization of RHS computations. After the com-
putations in the implicit sweeps, computations of
RHS are the next most expensive to evaluate.
These computations correspond to Step v in Fig-
ure 1. We made modifications to USI to improve
the single processor performance in this part of the
code as well. Most of these changes consisted of
fine tuning of the computations so as to reduce the
number of operations, especially floating-point di-
visions, improving the register reuse, and by ex-
ploiting the POWER2 Architecture (in case of the
SPZ-w). In some cases, the cost of floating-point di-
visions was minimized at the expense of additional
memory usage by computing the reciprocal once
and using it as a multiplier in more than one op-
eration. We made a few significant changes in the
loop nesting to improve cache performance. We
outline that modification below.

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995

For each time step, RHS is evaluated in three parts.
In the first part, &direction flux differences are
computed and to these, fourth-order dissipation
terms in 5 direction are added. In the second and
the third parts, similar computations for 7 and [
directions are performed. In computing the RHS
components in the 7 or [direction, memory ac-
cess to the data structure for the U vector involves
nonunit strides, which gives rise to a high rate of
cache misses. We mitigate this situation by rear-
ranging the nested loop structure in these parts of
the computations. In performing the 7-direction
computations, in USI, the innermost loop is first
over the second dimension of the main arrays in-
volved and then over the first dimension. We re-
arranged these so the innermost loop is over the
first dimension. The net effect is that the flux dif-
ferences are now computed over a plane of grid
points (5-7 plane) at a time, instead of one grid point
at a time. This reduces the cache misses to a large
extent at the expense of having larger work arrays.
Similarly, in the third part, where [-direction con-
tributions are computed, the original nesting of
loops is such that the third dimension of the main
arrays is varied in the innermost loop. To improve
the cache misses in this part, we rearranged the
loops so the innermost loop is over the first dimen-
sion and the next level of looping is over the third
dimension of the arrays.

Parallel implementation

For the parallel implementation of the BT bench-
mark, we use SPMD style of programming and take
advantage of the available data parallelism. In the
following discussion, we assume N X N x N to
be the size of the grid.

Data partitioning strategies. As noted earlier, the
computationally intensive sections of the BT bench-
mark are Steps i, ii, iii, and v shown in Figure 1.
For this reason and because these steps encapsu-
late important data dependencies that affect scal-
ability, we primarily focus on the performance of
these steps in our parallel implementation.

We considered three grid-level partitioning
schemes that are suitable for parallelizing the com-
putations: ID unipartitioning, 2D unipartitioning,
and 3D unipartitioning. These three are shown sche-
matically in Figure 2. In each case, a single con-
tiguous partition of grid points is assigned to each
processor, and hence we refer to this type of par-
titioning as unipartitioning. In I D unipartitioning,

Figure 2 Three block-based partitioning schemes
~~~ 

1 D partitioning 20 partitioning 30 partitioning 

the grid is partitioned along one of the  three spa- 
tial dimensions;  under 2D unipartitioning, the grid 
is partitioned along two of the  three spatial dimen- 
sions;  and it is partitioned along all three dimen- 
sions in the 3D unipartitioning case.  In  each  case, 
the  associated  arrays  are  distributed along the di- 
rection of grid partitioning. These partitioning 
schemes accomplish the  same  array  distributions 
as  the block distribution  constructs of High Per- 
formance FORTRAN (HPF). In Reference 22, we con- 
sider  another  class partitioning scheme called mul- 
tipartitioning which, in HPF terminology, is a  type 
of block-cyclic partitioning scheme. We do not 
consider multipartitioning schemes in this paper. 
We refer  the  interested  reader  to  References 23-25 
for  a  detailed  analysis  and  discussion  on  the com- 
munication, load imbalance,  and scalability prop- 
erties of these partitioning schemes in the  context 
of CFD applications. For  the  purpose of this dis- 

cussion, we note  the following points  for  these  par- 
titioning schemes. Along the  dimensions  where 
partitions  are  made,  there  are data dependencies 
across  processors  that affect the  solution of block 
tridiagonal systems of equations  and  the  evalua- 
tion of RHS vectors.  Thus, values must  be  commu- 
nicated among processors during forward elimina- 
tion and  back-substitution  phases.  Also,  at  the  end 
of the  update  computations in Step iv of Figure 1, 
the updated values at  the partition boundaries must 
be communicated among (logically) neighboring 
processors so that  the  computations of RHS in Step 
v can be completed. Note that the communication 
during the  forward elimination or back-substitu- 
tion phases is one-directional,  whereas  the  com- 
munication after  Step iv can  take  place in an  ex- 
change fashion. With the I D  partitioning,  each 
processor  communicates with at  most  two  other 
processors.  However,  the  adjacent  surface  area 

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995 



Table 2 Effect of data  distribution  methods  on  performance  (Class A problem  set  and  the SPl system) 

among partitions  does  not  reduce when more par- 
titions are  made.  Thus, this partitioning is the  least 
scalable of all. 

In Table 2, we  compare  the  performance of the 
three partitioning schemes  on  an 8-, 16-, and 32- 
node sp1 using Class  A problem set.  The  “Parti- 
tioning” columns  indicate  the  data-partitioning 
strategy  used.  The first number indicates the num- 
ber of partitions  to be made along the first spatial 
array dimension (i.e., along the 5 direction),  and 
so on.  Thus,  for example, with eight processors 
and  under ID partitioning, eight slices were made 
along the third spatial dimension of the  distributed 
arrays  (the slowest varying dimension, which is 
along c direction) and no partitions  were made 
along the  other  two  spatial  dimensions.  Note  that 
the  same  code  was  run  on all platforms,  and in  all 
cases  the  same  communication optimizations de- 
scribed below were  included.  Clearly,  the 3D par- 
titioning has the superior  performance among all 
three partitioning methods. 

Another  important decision in data partitioning is 
that of the number of partitions  to make along each 
dimension of partitioning. For example, with 16 
processors  and 3D partitioning, one may partition 
thegridinto2 X 2 X 4or4  X 2 X 2oras2  X 4 X 2. 
This has the effect on the locality of computations 
within a  processor. Although we do not show the 
results  here, significant performance gains are  re- 
alized by partitioning along the slowest varying di- 
mension than along the  fastest varying dimension. 

We used the 3D partitioning in  all the  experiments 
reported in the  rest of this  paper. Whenever the 
number of processors, P ,  is not a perfect  cube of 
an  integer,  we  factor  the  number P into  three in- 
tegers  that are relatively close  to Y@ and parti- 
tion the grid so that  the  fastest varying dimension 
([in the  current example) has  the  least number of 
partitions  and the slowest varying dimension (0 
has  the  most  number of partitions. 

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995 

Parallel block tridiagonal  solutions. As described 
in the  previous  section, we used the  Thomas al- 
gorithm for performing the block tridiagonal solu- 
tions. As with the  generic  Gaussian  elimination, 
the  Thomas algorithm is highly sequential  when 
used for solving a single block tridiagonal system. 
However,  under  the 3D data-partitioning  scheme, 
the multiple independent  systems ( ( N  - 2) * in our 
example) in each implicit sweep  can be computed 
in parallel. This parallelism across multiple solu- 
tions helps in mitigating the  adverse  performance 
effects of using the  Thomas algorithm on multiple 
processors.  In  the 5 direction,  we first complete 
the  forward  sweep  for all ( N  -’2)* systems  and 
then perform the backward sweeps. Following this, 
the  same  procedure is repeated along 77 and 6 di- 
rections.  To  improve single processor  computa- 
tional performance  and  to  reduce  communication 
overhead, in the forward elimination phase we bun- 
dle together  the [Qi] matrix ( 5  X 5 )  and [pi] vector 
(5  X 1) corresponding  to  the  last grid point of a line 
segment assigned to a  processor. 

In summary, in the implicit computations along the 
5 direction (and analogously, along 77 and  direc- 
tions), each processor sweeps  over all the segments 
of grid lines in its block partition, first in the  for- 
ward direction and  then in the  backward  direction. 
In  the  forward  sweep  over a segment of grid lines, 
the coefficient matrices are computed  on  the fly, 
the intermediate values needed in the forward elim- 
ination phase  are  received from the neighboring 
processor  (that  performs  the  forward elimination 
on  the  earlier  part of the grid-line), the forward 
elimination computations  on  that line segment are 
completed,  and  then  the  intermediate  values  com- 
puted at  the  last grid point are  sent off to  the pro- 
cessor performing the  next segment of the  same 
line of grid points. Following this,  the  same is re- 
peated  over  the  next segment of grid lines in that 
partition. After completing the forward sweep  over 
all the grid lines,  the backward sweep  is performed 
in a similar fashion.  In  the  backward  sweep, first 



the values of the [ui+,] are received  for  each line 
segment from the neighboring processor  and,  at 
end of the  computations  over  that line segment, 
values of vector [uk] are  sent  to  the neighboring 
processor in the  direction of the  backward  sweep 
( k  is the first grid point of the line segment assigned 
to  a  processor).  This  completes  the implicit com- 
putations in the (direction. The procedures  for  the 
implicit computations along the 77 and  [direction 
are analogous. 

The communication costs of the parallel implemen- 
tation are  as follows. In  the  forward  sweep  over 
each segment of grid points, a processor  requires 
30 words of information from a neighboring pro- 
cessor  (unless the segment corresponds  to  the be- 
ginning part of the block tridiagonal system),  and 
that  processor  sends  away 30 words of informa- 
tion to  the  processor working on  the  subsequent 
segment of that line of grid points. Similarly, in the 
backward  sweep  over  each segment of grid line, 
a  processor  receives five words of information and 
sends  away five words of information,  at  the be- 
ginning and  at the end of the  back  sweep  over a 
grid-line, respectively.  In  the  forward  and  back 
sweeps, only one message needs to be sent  and  re- 
ceived per grid-line segment. 

When the information is sent  and  received in this 
manner,  the  total  number of messages sent  or re- 
ceived by a processor is quite large. For example, 
if n, X n, X n ,  are  the  dimensions of the block 
of  grid partition assigned to  a  processor,  then in 
the implicit part of the computations in each  iter- 
ation,  altogether aprocessor would send or receive 
2n,ny + 2nynz + 2n,nz  messages. When the mes- 
sage latency  costs are relatively high as compared 
to  the CPU speed,  this  overhead  turns  out  to be sig- 
nificant. Hence,  to  further reduce  the  number of 
messages sent, we combine messages from several 
forward or backward  sweeps  together  and send 
that  out  as  one  message. We refer to this  as co- 
alescing ofline solves. If  Llines are coalesced,  the 
total  number of messages communicated in the im- 
plicit computations is reduced by a  factor of L. 
However, such a coalescing of line solves increases 
the number of line solves being serialized by the 
same  factor.  Thus,  there is a trade-off between  re- 
ducing the  number of messages  and maintaining 
adequate parallelism. In  Reference 22, the perfor- 
mance effects of this trade-off are  analyzed in de- 
tail. Here  we  present  experimental  data  to  support 
that  analysis. 

284 NA~K 

In Figure 3, we  show  the  variations in the  total  ex- 
ecution time (for Class  A problem set)  on  a 128- 
node sp1 as the  number of lines coalesced  together 
is changed.  The  pair (x, y )  under  each  bar indi- 
cates  the  number of lines coalesced in the  forward 
(x) and  the  backward ( y )  sweeps.  Thus,  on  the 
128-processor sP1, the minimum execution time is 
obtained by sending one message in the  forward 
sweep  after  four line segments are computed  and 
by sending one message in the  backward  sweep 
after  four line segments are  computed.  The  total 
execution time drops from 55.8 seconds (1,l)  to 
48.0 seconds (4,4) (a gain of  16 percent). Note 
also that  the  total  execution  time drops quickly in 
the beginning as  the  number of lines coalesced 
is increased from one, and  after  the minimum is 
reached it rises gradually. Thus, it  is not  necessary 
to get the  exact  optimum values for  the  number 
of lines to  coalesce  together;  approximate  values 
are sufficient to  obtain good performance. We 
conducted similar experiments on  other  processor 
configurations. We found  that  for 64 and 128 pro- 
cessors, coalescing four lines gives the best perfor- 
mance, and on  8,16, and 32 processors, coalescing 
eight lines together gave the best performance. In 
general, the higher the processor speed compared 
to the latency, the larger the number of line solves 
that need to  be coalesced to minimize the total ex- 
ecution time. For exact relations, which involve sev- 
eral other parameters, including the number of grid 
points, number of partitions, number of operations 
at each grid point, and bandwidth, please refer to Ref- 
erence 22. 

Performance results 

In  the  previous  section, we  presented  some of the 
highlights of our parallel implementation of the BT 
benchmark.  In this section,  we  summarize  the  cur- 
rent best performance results for  the BT benchmark 
using the  two  standard  size  problems  (i.e.,  Class 
A and Class B) on  the sP1 and SP~-w. We performed 
all our sP1 measurements  on  the 128-node sP1 sys- 
tem at  the IBM T. J. Watson  Research  Center. All 
our SP~-w measurements  were  performed  on  the 
128-node sp2 system  at the NASA Ames  Research 
Center.  For  comparison, in our  results  we  have in- 
cluded the  Cray Y-MP and  Cray C90 performance 
on  these  benchmarks.’ For a compiled list of the 
performance of various  other parallel systems  on 
this benchmark,  please  refer to References  3 
and 26. 

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995 



Figure 3 Effect of number of lines coalesced together on the performance of a  128-node SP1 

60 

55 

50 

45 

40 

35 

30 I 

The performance of the BT benchmark using the 
Class A problem set is shown in Table 3,  and  the 
Class B results are shown in Table 4. In both cases, 
the performance is reported  on 8 through 128 pro- 
cessors,  except  for  the  Class B problem set  on  the 
SP1 for which the  performance is reported  on 16 
through 128 processors.  In  the  case of Class A, we 
compare  the sP1 and SPEW performance with 
Y-MPh performance,  and in the  case of Class B, 
we  compare  the  performance with that of a single 
processor C90. The Y-MP and C90 performance fig- 
ures  are  from  Reference 3.  Note  that  on  the  Class 
A problem set, the 128-node SPZ-w is able  to  de- 
liver  performance  that is over 39 times higher than 
that of a single Y-MP node  and  over 5.67 times 
higher than  the performance of an eight-node Y-MP. 
Similarly, on the Class B problem set, the 128-node 
Sp2-w is able to deliver performance that is close to 
19 times the performance of a single node c90 and 
close to 1.5 times the performance of a 16-node c90. 

In Tables 3 and 4, we also report the MFLOPS deliv- 
ered by the sP1 and SPEW on the  two problem sets. 
To determine the  true (and meaningful) MFLOPS de- 
livered by a system, it  is necessary to accurately mea- 
sure the number of actual floating-point operations 
performed by the hardware and that contributed di- 
rectly toward the solution of the problem. A simple 
count of the floating-point operations in the  code is 
far from accurate. Similarly, counting the floating- 
point operations in the assembly code has dficul- 
ties. To overcome some of these dficulties, we have 
used the floating-point operation counts  for  the BT 
benchmark as reported in Reference 7. These counts 
were obtained for the benchmarks tuned for  the Cray 
systems and were measured using the performance 
monitoring hardware on the corresponding Cray sys- 
tems (Cray Y-MP count  for  the Class A problem and 
c90 count for  the Class B problem). Using these op- 
eration counts and the observed execution times on 
the various sp1 and SPZ-w configurations, we have 

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995 



Table 4 Performance  comparisons for benchmark BT (Class B problem  set) 

reported the MFLOPS as  the equivalent Y-MP and C90 
MFLOPS in Tables 3 and 4, respectively. We note here 
that since our implementations of the BT benchmark 
were done independent of the implementations on 
the Cray systems,  the MFLOPS we report may not be 
true RW6000 MFLOPS. However, since the same prob- 
lem is solved in both cases,  the equivalent MFLOPS 
as computed here are a good measure for compar- 
ing two daerent systems. Using this measure, we 
observe  that on the 128-node SP~-w system, we are 
able to realize over 10 GFLOPS (billions of  floating- 
point operations per second) on  the Class B prob- 
lem set. 

Scalability of the SP architecture 

One objective in any  benchmarking  study is to  be 
able to systematically  compare  the  performance 
(and, more generally, some specific characteristics 
of a system) of dissimilar architectures in perform- 
ing some standard  set of computations.  The  results 
presented in the  previous  section help toward 
meeting that  objective  for  the BT benchmark. An- 
other  objective  for  scalable  architectures  such as 
the SP series is to quantify the scalability of the  sys- 
tem.  Architectural scalability may be defined in 
various  ways. For this  study,  we  use a restrictive 

IBM SYSTEMS JOURNAL,  VOL 34, NO 2, 1995 



definition of it as  the ability to  sustain  the perfor- 
mance characteristics with the incremental changes 
in the system  resources  such as  the  number of pro- 
cessors, memory (DRAM), and  the communication 
subsystem. Ideally, architectural scalability should 
be quantified independent of any application-spe- 
cific characteristics.  However,  without perform- 
ing any meaningful computations, it is almost im- 
possible to  assess  the architectural scalability of 
the system as a whole. The  approach we have taken 
here is that of quantifying the  architectural scal- 
ability for  a given type of computations-specif- 
ically, for  the BT type of computations. Results pre- 
sented in this  section should help in determining, 
qualitatively if not  quantitatively,  the  consistency 
of the  system  performance  characteristics when 
more  processors  are  added  to  the  system  and prob- 
lems are solved without making any changes to  the 
application implementation (but possibly by vary- 
ing the problem sizes to fully utilize available re- 
sources).  The  results are more representative of 
the computations similar to  those in the BT bench- 
mark.  However,  some generalizations can be 
made. We make additional comments  on this in the 
concluding section. 

To quantify the  architectural scalability for a given 
type of computations  we define a new term called 
scalabilityfuctor. If a problem with w( p I >  amount 
of work is computed in time t(  p on p , proces- 
sors and a similar problem with w( p , )  amount of 
work is computed in time t (  p ,) on p , processors, 
the scalability factor, cr, for  the  system withp, pro- 
cessors with respect  to (w.r.t.) the system withp, 
processors is given by 

t(Pl) W ( P Z )  PI 
d P 2 ,  PI) = f o  x w(p,) “p, 
The scalability factor, u( p 2  , p ,) , is a relative ef- 
ficiency measure weighted by the problem sizes. 
It  indicates the efficiency of a system withp2 pro- 
cessors  w.r.t. a system withp, processors. When 
p , is 1 and w( p and w( p , )  are  the  same, crgives 
the efficiency of the parallel system with p 2  pro- 
cessors. When p , is smaller than p , ,  w ( p  is at 
most  equal  to w( p, ) ,  and  the load distributions are 
identical,  then u( p , ,  p ,) is at most 1 ,  and it is de- 
sired to be close  to l .  Note  that  when  one is in- 
terested in the scalability of the  architecture,  the 
application-specific effects such  as  the  degree of 
parallelism (or sequentiality)  inherent to an imple- 
mentation or the effects of the data-partitioning 

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995 

strategies used must be  eliminated. Although it is 
impossible to completely eliminate some of these 
effects, by using the same algorithms, the same par- 
titioning strategies,  and  the  same  implementation 
methods  to  solve different size problems,  one  can 
gain enough information about  the  architectural 
scalability. In  our  experiments,  the implementa- 
tion of the BT benchmark is such that  the paral- 
lelization algorithms remain the  same,  and  the  data- 
partitioning strategies are parameterized by the 
number of processors  and  the problem size. Thus, 
we could use  the  same  implementation  even  when 
processor configurations or the problem sizes  were 
changed. To avoid (as far  as possible) variation in 
the  cache  behavior  because of change in the  array 
sizes, we used array  sizes  to  appropriately fit the 
corresponding  partition  size. 

We studied the scalability of the SP architecture 
using two reference point performance  results:  one 
with a 16-processor system  and the  other with a 
32-processor system. We considered  four problem 
sizes: 64 x 64 x 64, 80 x 80 x 80, 102 X 102 X 
102, and 126 X 126 X 126. Recall that  the 64 X 64 
X 64 and 102 x 102 X 102 problem  sizes are spec- 
ified in the NAS parallel benchmark  suite. For the 
80 X 80 X 80 problem we used a time step of 0.0005, 
and  for  the 126 X 126 X 126 problem  we  chose a 
time step of 0.00005; in each  case  we  performed 
200 iterations, just  as in the  standard problem sizes. 
(Note  that  for  the 64 X 64 X 64 and  the 102 X 102 
X 102 problems,  the  prescribed  time  steps are 
0.0008 and 0.0003, respectively. Note  further  that, 
under  “normal”  conditions,  the  size of the time 
step  does not affect the  total  number of floating- 
point operations  performed, which is determined 
by the  number of iterations.  However, an appro- 
priate time step value should be  chosen  for  numer- 
ical stability.) 

Determining the scalability factor using two differ- 
ent problem sizes  requires an estimate of the  ratio 
of the  work  associated with the  two  problem  sizes. 
In general, for the CFD problems,  such as those rep- 
resented by the BT benchmark,  the  work is pro- 
portional to  the number of  grid points.  However, 
because of the  complex  nature of the computa- 
tions,  the  amount of work is not  exactly  linear in 
the  number of grid points. To simplify the  issue, 
we assumed  the  time to solve a problem on  one 
processor to  be  representative of the  work  asso- 
ciated with that problem regardless of the  number 
of processors used to  solve  that  problem.  Speed- 
ups  and efficiency measures are typically based on 



Table 5 Scalability of SP1 on  benchmark BT 

Table 6 Scalability of SP2-w on benchmark BT 

such an assumption.  The difference in our  case is 
that we did not  necessarily  use  the  best possible 
algorithms or implementation techniques suitable 
for  the single processor  case  (since  our aim was 
to  achieve  best  possible parallel performance). In- 
stead,  the same parallel implementation of the BT 
benchmark,  but  without  any communication con- 
structs,  was used for measuring the  execution time 
on  one  processor (with suitable changes in the  data 
array  sizes). 

The memory requirements of the single processor 
executables get very  large; e.g., 92.8 MB, 174.7 MB, 
360.6 MB, and 677.9 MB are  the memory require- 
ments of the  four problem sizes  considered.  To 
avoid paging effects on  the  execution  time, we ran 
these  one-processor experiments on  one of the pro- 
cessors of a specially configured two-node SPEW 
system, which was  identical in all aspects  to  the 
larger counterparts,  except  that  each node had 1-GB 
main memory. 

Another difficulty in these single processor  runs 
was  the  amount of time  required  to  complete  each 
run, which was prohibitively long. Since  we only 
had a limited amount of machine time  available, 
we  ran  each of the  four  problems  for only 20 it- 
erations  instead of the full 200 iterations.  Since  the 
same  set of computations are performed in each 
iteration,  we found that running the benchmark for 

only 20 iterations  and linearly projecting the ob- 
served time to 200 iterations  was  reasonable. (This 
truncation to 20 iterations  was  done only for the 
single processor  runs; all other  runs  for which the 
results are reported in this  paper  were  carried  out 
for 200 iterations.)  The single processor  execution 
times for  the  four problem sizes-64 X 64 x 64, 
80 x 80 x 80, 102 X 102 X 102, and 126 X 126 X 
126-were respectively  found  to  be 1606,  3307, 
6893, and 13  830 seconds.  Thus,  the  ratios of the 
work associated with the  four  problem  sizes  turn 
out  to  be 1 : 2.1 : 4.3 : 8.6. The scalability factors  for 
the sp1 and SPEW can  be  computed using these 
work ratios and the  execution times of the  four  data 
sets. 

The  performance of the sP1 and sp2-w on  the  four 
data  sets is shown in Tables 5 and 6, respectively. 
In  these  tables, we highlight scalability factors  for 
32-, 64-, and 128-processor systems with respect 
to  a  16-processor  system, using the 80 X 80 X 80, 
102 X 102 X 102, and 126 X 126 X 126 problem 
sizes,  respectively.  (See  the  numbers in bold font.) 
We also highlight scalability factors  for 64-, and 
128-processor systems with respect  to a 32-proces- 
sor  system, using the 80 X 80 X 80, 102 x 102 x 
102 problem sizes,  respectively.  (See  the  numbers 
in italicfont.) In  each of these  two  cases,  the  data 
partition size  per  processor  remains the  same;  i.e., 
the problem size is doubled  when  the  number of 

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995 



processors is doubled.  In  the first case,  the mem- 
ory  requirements  per  processor  for  the  four pro- 
cessor  partition  sizes are: 9.7 MB (16 processors), 
10.7 MB (32  processors), 10.2 MB (64 processors), 
and 10.6 MB (128 processors).  In  the  latter  case 
(where scalability is computed with respect  to  a 
32-processor system),  the memory requirements 
per  processor  are: 6.5 MB (32 processors), 5.9 MB 
(64 processors), and 6.6 MB (128 processors). Thus, 
the  selected problem sizes  assured no change in 
the memory utilization per  processor. 

We observe  from  the scalability factors  presented 
in Tables 5 and 6 that  the SP architecture  scales 
well on the BT type of computations when the mem- 
ory utilization is maintained at  the same level. Note 
that  this  outcome is obtained  despite  the  fact  that 
the memory utilization on  each  processor is less 
than 10 percent of the available memory (which 
was 128 MB per  node  for  both  the SPI and Sp2-w). 
In  some cases,  the SP~-w architecture  seems  to 
scale  superlinearly; i.e.,  the scalability factors are 
greater  than 1 .O. However,  this is because of the 
load imbalance effects that we could not com- 
pletely eliminate from our  experiments. (In the BT 
benchmark,  the 64 X 64 X 64 grid essentially in- 
volves working on a 62 X 62 X 62 grid,  whereas 
the 102 X 102 X 102 grid involves working on a 
100 X 100 X 100 grid. Thus,  the severity of load 
imbalance in computing the 64 X 64 X 64 size prob- 
lem on 16 processors is more  than  that in comput- 
ing the 102 X 102 X 102 size problem on 64 pro- 
cessors.) 

In  the  above,  we  considered  the scalability when 
the memory utilization remained unchanged. Scal- 
ability factors, when memory utilization is varied, 
can  also  be  computed from the information in Ta- 
bles 5 and 6 and  other information presented  ear- 
lier in this  section.  In  particular, by considering 
the execution times in the  same column (i.e.,  the 
execution times for  the  same problem size),  one 
can  compute relative speedups  and efficiencies. 
Consider  two  extreme  cases: 64 X 64 X 64 and 
126 X 126 X 126. On the SPEW, in the  former  case, 
the scalability factor  for  the 128 processors w.r.t. 
16 processors is 0.70 and, in the  latter  case,  the 
same is 0.87. Again both of these figures are quite 
respectable considering the  fact  that in the  former 
case only 2.7 MB memory per  node was required 
when the problem was solved on 128 processors 
and, in the  latter  case,  the  same was 10.6 MB per 
node. 

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995 

Conclusions 

In this paper,  we  have  described  an efficient and 
scalable method for implementing the BT bench- 
mark on distributed memory systems. Using the 
strategies  described  here, we have implemented 
this pseudo-application  benchmark on  the IBM SP 
systems  (the SPI and  the S P ~  with wide nodes) and 
have  presented  performance  results  on  up to 128 
processors.  The  experimental  results  indicate  that 
the SP architecture  delivers good performance  on 
this benchmark,  both in terms of raw  performance 
and scalability. To get the level of performance that 
we  obtained, we used a combination of techniques 
that included the use of efficient sequential algo- 
rithms,  the  use of scalable partitioning strategies, 
the  use of algorithms to  reduce  the  number of mes- 
sages,  the use of improved  data  structures  to re- 
duce memory requirements  and memory refer- 
ences,  and some tuning for high cache  and  register 
utilization. We concentrated  our efforts primarily 
in three  areas: (1) developing a good sequential im- 
plementation, (2) using appropriate  data  distri- 
bution methods,  and (3) reducing  the  number of 
messages communicated  where  possible. A note- 
worthy aspect of this study is  that  we realized good 
performance on  both  the sP1 and SPEW systems us- 
ing implementation methods  that are identical  as 
far  as  the parallelization techniques, parallel algo- 
rithms,  and  data partitioning strategies  are  con- 
cerned.  In  terms of the parallel implementation ef- 
fort,  these  issues  encompass  the bulk of the 
development  and programming effort.  The imple- 
mentations  for  the SPI and SP~-w differed only in 
the single processor  optimization  techniques  used 
in the computationally intensive  solver  sections. 
This is an  important point since it shows  that scal- 
ability is achievable  even at  the software level and 
that it is possible to reuse  code  without sacrificing 
performance, which is critical in the  development 
of large, complex application  software. 

Obtaining good single processor  performance is an 
important  part of parallelizing an application  for 
performance. To realize the significance of single 
processor  performance,  note that when we com- 
piled and  ran USI without  any modifications (but 
using all possible compiler optimization  options) 
on a  Class  A  data set,  the overall  performance was 
about 20 MFLOPS on a single processor of the SPI . 
After the modifications described in this  paper, we 
managed to raise  the single processor performance 
to about 53 MFLOPS. To  obtain good performance 
on  a single processor, we carefully analyzed  the 



computationally  intensive  parts of the  benchmark 
and  replaced  the  conventional  Gaussian elimina- 
tion by the  Thomas algorithm to  reduce  the  oper- 
ation count. We performed loop level optimizations 
and  rearranged individual segments of computa- 
tions so as  to  keep  the  dual  arithmetic units (ALU) 
in the floating-point unit (FPU) simultaneously busy 
(in the  case of the S P ~  processor). Optimizations 
were  also  incorporated to improve  register  and 
cache  reuse. We emphasize  here  that although the 
modifications described in this  paper  were  per- 
formed manually, most of these techniques are well 
known. With some familiarity of the compiler and 
architecture,  but  without being an  expert (and cer- 
tainly without  resorting to assembly line program- 
ming), most of our  performance gains are realiz- 
able. Although familiarity with the RS/6000 
architecture helped us in fine tuning the perfor- 
mance,  the  concepts  we used are  general  and are 
applicable to many other Rrsc-based architectures. 

Similarly, the 3D data  distribution  scheme  that we 
used is the  same as  the block distribution  scheme 
proposed  and implemented by modern compilers 
for distributed memory systems (such as FORTRAN- 
D). We also made use of the  computation  and 
communication trade-off typically observed in 
parallel implicit computations  such  as  the BT 
benchmark.  Thus we could reduce  the  detrimen- 
tal effects of relatively high latency in message 
passing on  the SP architecture. Although this as- 
pect of the optimization is somewhat specialized 
for  incorporation  into parallelizing compilers, we 
believe that this concept  can easily be incorporated 
into  special-purpose  tools, particularly for CFD 
applications. 

We conclude  this  paper with a comment  on  the 
scalability aspect.  A commonly accepted meaning 
of scalability is the ability to deliver a level of per- 
formance  that is in proportion to  the available re- 
sources.  Typically,  on  distributed memory sys- 
tems,  as  the  processors  are  added  the  amount of 
memory (an  important  resource)  also  increases 
proportionately. When users  want  to upgrade a 
parallel system  to a larger one, in addition to speed, 
they are also  interested in solving larger applica- 
tions by making use of  all the available resources. 
As it has  been  pointed  out in various  studies  on 
scalability, this factor should be taken  into account. 
This implies that  performance of a smaller system 
on a smaller problem should be  compared with the 
performance of a larger system  on a correspond- 
ingly larger problem. The performance metric such 

as  speedup  shows the effects on  the performance 
as  resources are increased  without changing the 
problem size.  Since  speedup is truly a  measure of 
effective speed, its practicality is limited, especially 
in the  context of an  application  benchmark. When 
speed is the sole criterion,  one may  in principle just 
replace  the CPU by another  one  that  has  corre- 
spondingly faster clock speed. Scalability implies 
more than  speed,  and  as  such  one should conduct 
experiments with proportionately  larger problem 
sizes on larger systems,  as we have  shown in this 
paper.  A  second point is regarding comparison of 
two different systems  for scalability. The  perfor- 
mance results compiled by the NAS group give an 
excellent indication of achievable  performance  on 
various  systems  (e.g.,  see  Reference 3). The raw 
figures in those  tables  can be used to  understand 
the level of performance achievable on a given sys- 
tem of certain configuration. However,  one  can- 
not use  these  performance figures to  compare  the 
scalability of two different systems in a meaning- 
ful fashion.  One meaningful way of comparing  the 
scalability of various systems,  that  does not involve 
porting the  same implementation to all systems, is 
to  compare  the scalability factors  as  we  have  done 
in this paper. 

Finally,  an  objective of benchmarking  is to obtain 
enough information about  the  system  behavior so 
as  to be able  to make intelligent estimations  about 
the  performance of the  system  when  used  to  solve 
problems that  are  more complex but  have similar 
computations as in the  benchmark.  One may ar- 
gue that  the raw performance  and the scalability 
results  presented in this  paper are useful in under- 
standing the  system  behavior  when  the  computa- 
tions performed have  characteristics similar to 
those in the BT benchmark.  There is no  doubt  that 
no single benchmark or application  can  character- 
ize the  system  behavior  completely,  and  the  per- 
formance of a whole suite of benchmarks  and  ap- 
plications must be studied in a similar manner  to 
understand the system  behavior.  However, the re- 
sults  presented in this  paper  have applicability be- 
yond the  narrow range of the BT benchmark.  Fur- 
ther work needs  to  be  done to quantify the 
generality of these  results. 

Acknowledgments 

The  author is grateful to  Idajean  Fisher  and Bob 
Walkup of the  Center  for  Scalable Computing So- 
lutions at  the IBM T. J. Watson  Research  Center 
for  their  expert  assistance in completing the ex- 

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995 



periments on  the 128-way sp1 system. The  author 
is  also grateful to the NASA Ames Research Cen- 
ter and to the helpful staff at NAS for allowing the 
use of their S P ~  system. The  author would also like 
to thank Wei-Hwan Chiang and Mike Pettigrew of 
the IBM POWER Parallel Division for their help in 
completing the single processor  runs  on  an S P ~  sys- 
tem with large memory nodes. 
*Trademark or registered trademark of International Business 
Machines Corporation. 
**Trademark or registered trademark of Fujitsu America, Inc., 
or Cray Research, Inc. 

Cited references 

1. D. Bailey, J. Barton, T. Lasinski, and H. Simon, The NAS 
ParalklBenchmarks, NASA Ames Research Center Tech- 
nical Report, No. RNR-91-002  (1991). 

2.  D. Bailey, J. Barton, T. Lasinski, and H. Simon, “The NAS 
Parallel Benchmarks,” IntemationalJoumalof Supercom- 
puter Applications 5, 63-73  (1991). 

3.  D. Bailey,  E. Barszcz, L. Dagum,  and  H. Simon,NAS Par- 
allel Benchmark Results 10-94,  NASA Ames Research 
Center Technical Report, No. RNR-94-006  (1994). 

4.  V. Naik, “Performance of NAS Parallel Application- 
Benchmarks on IBM SPl,”Proceedingsof  Scalable High 
Pedormance Computing Conference, IEEE (1994), pp. 
121-128. 

5. V. Naik, “Performance of NAS Parallel Benchmark LU 
on IBM SP Systems,” to appear in Proceedings of Par- 
allel CFD’94,  A. Ecer  et al., Editors, Elsevier (1995). 

6.  D. Bailey, E. Barszcz, L.  Dagum,  and H. Simon, “NAS 
Parallel BenchmarkResults, IEEEParallel and Distributed 
Technology 1, 43-51  (1993). 

7.  D. Bailey, E. Barszcz, L.  Dagum,  and H. Simon, NASPar- 
allel Benchmark Results 10-93, NASA Ames Research 
Center Technical Report, No. RNR-93-016  (1993). 

8.  W. Gordon, “Blending Function Methods for Bivariate and 
Multivariate Interpolation,” SLAM Journal of Numerical 
AnaIysis 8, 158  (1971). 

9.  R. Beam  and R. Warming,  “An  Implicit Finite Difference 
Algorithm for Hyperbolic Systems in Conservation Form,” 
Journal of Computational Physics 23, 87-110  (1976). 

10. IBM 9076 Scalable POWERparallel 1: General Informa- 
tion Manual, GH26-7219-00,  IBM Corporation (1993); 
available through IBM branch offices. 

11. C. Stunkel, D. Shea, D. Grice, P. Hochschild, and M. Tsao, 
“The SP1 High-Performance Switch,”hceedings of the 
1994 Scalable High Performance Computing Conference 
(1994), pp. 150-157. 

12. T. Agerwala, J. L. Martin, J. H. Mirza, D.  C. Sadler, 
D.  M. Dias,  and M. Snir, “SP2 SystemArchitecture,”IBM 
Systems Joumal 34, No. 2,  152-184  (1995, this issue). 

13.  C.  B. Stunkel, D.  G. Shea, B. Abali, M. G. Atkins, C.  A. 
Bender, D.  G. Grice, P. Hochschild, D. J. Joseph, 
B. J. Nathanson, R.A. Swetz, R. F. Stucke, M. Tsao, and 
P. R. Varker, “The SP2 High-Performance Switch,” IBM 
Systems Journal 34, No. 2,  185-204  (1995, this issue). 

14. IBMRISC System/6ooO Technology, SA23-2619,  IBM Cor- 
poration (1990); available through IBM branch offices. 

15. Special issue on the IBM RISC Systed6000 processor, 
IBM  Journal of Research and Development 34, No. 1 
(1990). 

16. PowerPC and POWER2: Technical Aspects of the New 
IBM RISC Systeml6000,  SA23-2619,  IBM Corporation 
(1990); available through IBM branch offices. 

17. Special issue on POWER2  and PowerPC, IBMJournal of 
Research and Development 38, No. 5 (1994). 

18.  M. Snir, P. Hochschild, D. D. Frye, and K. J. Gildea, “The 
Communication Software and Parallel Environment of the 
IBM SP2,” IBM Systems Journal 34, No. 2,205-221 (1995, 

19. V. Bala, J. Bruck, R. Bryant, et al., “The IBM External 
this  issue). 

User Interface for Scalable Parallel Systems,” Parallel 
Computing 20, 445462 (1994). 

20.  W.  D. Gropp and E.  Lusk, “Experiences with the IBM 
SP1,” IBMSystems Journal 34, No. 2,249-262  (1995, this 

21. J. Strikwerda, Finite Difference Schemes and  Partial D$- 
issue). 

ferential Equations, Wordsworth and Brooks, Inc., Pacific 
Grove, CA (1989). 

22. N. Naik, V. Naik, and M. Nicoules, “Parallelization of a 
Class of Implicit Finite Difference Schemes in Computa- 
tional  Fluid  Dynamics, InternationalJournalofHigh Speed 
Computing 5, 1-50 (1993). 

23.  V. Naik, “Performance Effects of Load Imbalance in Par- 
allel CFD Applications,” Proceedings of the Fifh SLAM 
Conference on Parallel  Processing for Scientific Comput- 
ing, J. Dongarra et al., Editors, SIAM (1992), pp. 425434. 

24. V. Naik, “Scalability Issues for a Class of CFD Applica- 
tions,” Proceedings of Scalable High Performance Com- 
puting Conference, IEEE (1992),  pp.  26&275. 

25. V. Naik, N. Naik, and M. Nicoules, “Implementation of 
Implicit Scheme Based CFD Applications on Message 
Passing Multiprocessor Systems,” in Parallel CFD: Im- 
plementations and Results Using Parallel Computers, 
H. Simon, Editor, The MIT Press (1992), pp. 97-125. 

26.  D. Bailey, E. Barszcz, L.  Dagum,  and  H. Simon, “NAS 
Parallel  Benchmark Results,”hceedingsof the 1994 Scal- 
able High Performance Computing Conference, IEEE 
(1994), pp. 111-120. 

Accepted for publication February 13, 1995. 

Vijay K. Naik IBMResearch Division, Thomas J. Watson Re- 
search Center,  P.O.  Box 218,  Yorktown Heights, New York 
10598 (electronic mail: vkn@watson.ibm.com).  Dr. Naik is a 
research staff  member  in the Parallel Applications Methods and 
Analysis group at the Thomas J. Watson Research Center. His 
current research interests include development of application 
interfaces and runtime systems for load balancing and resource 
sharing on scalable high-performance multiprocessor systems. 
He is also interested in the characterization of architectures 
and applications for high-performance computing and devel- 
opment of systems that are tuned to application characteris- 
tics. Prior to joining IBM,  he was a staff scientist at ICASE, 
NASA Langley Research Center. He received a Ph.D.  and 
A.M.  in computer science in  1988  and  1984, respectively, both 
from Duke University. In  1982,  he received an M.S. from the 
University of  Miami and, in  1980, a B.Tech. from the Indian 
Institute of Technology, Madras, both in mechanical engineer- 
ing. 

Reprint Order No. G321-5569. 

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995 


