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In  this  paper, we describe an efficient  and 
scalable  implementation of the  NAS  Parallel 
Benchmark  BT  suitable  for  distributed  memory 
systems  such as the  IBM  Scalable 
POWERparallel  Systems@.  After  describing  the 
parallelization  and data partitioning  methods 
used, we outline  some of the  optimization  steps 
used to realize  good  performance  on  individual 
processors  and to reduce  the  communication 
overheads on the  IBM SP1"  and  SP2"  systems. 
We present  performance  results  on  up to 128 
nodes of the SP1,  and  on  the SP2 with  wide 
nodes.  We describe the performance on the 
standard  Class A and  Class  B  problem  sets. 
To show  the  scalability of  our parallelization 
methods,  we present  the  performance of  two 
additional data sets. 

I n 1991, the Numerical Aerodynamic Simulation 
(NAS) program at  the NASA (National  Aeronau- 

tics  and  Space Administration) Ames Research 
Center  announced  a  set of applications and ker- 
nels for benchmarking highly parallel supercom- 
puters. ',* These  benchmarks are representative of 
the computations commonly encountered in aero- 
physics  applications. Unlike many other bench- 
marks,  these  benchmarks are specified using the 
paper-and-pencil approach.  The problems are com- 
pletely specified (in text  form), including the 
numerical methods to  be  used, but  the benchmark- 
ing rules do not specify any  particular implemen- 
tation  techniques or algorithms for parallelization. 
It is entirely up  to  the implementor to decide  on 

the parallelization techniques, language constructs, 
the  data  structures, memory use, or processor al- 
location. Details of implementing the numerical 
methods are also left out.  However,  there are a few 
restrictions.  One  requirement is that  the  tests must 
be conducted with a specified set of input  param- 
eters  and  the  test  results  must  conform with the 
expected  output within a specified level of toler- 
ance.  Another  restriction is that all programs  must 
be written in a high-level language such as FOR- 
TRAN or C; furthermore, no special-purpose library 
can be  accessed  for  executing  these  benchmarks. 

In the  recent  past,  performance  results  character- 
izing various parallel platforms have  been  reported 
by  many vendors as well as by researchers at NASA 
and elsewhere. The  depth of these  benchmarks  and 
the  fact  that  they  capture  the  essence of typical 
large-scale computational fluid dynamics (CFD) ap- 
plications have made these  benchmarks  popular, 
not only for  the  purpose of evaluating parallel su- 
percomputing systems  but  also in demonstrating 
the viability of novel software  and  architectural 
concepts. As a  result,  the NAS parallel  benchmark 
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Table 1 A summary of the application benchmark 
characteristics for the two problem sizes 

suite  has  become  one of the  most widely used 
benchmarks in many areas of high-performance 
parallel computing. The NAS group  at NASA Ames 
routinely compiles and  distributes performance re- 
sults on various parallel systems. For more details, 
please  refer to Reference 3 .  

In this  paper,  we  describe  an efficient implemen- 
tation of one of the  three application benchmarks- 
the Block Tridiagonal (BT)  benchmark-on distrib- 
uted memory systems.  In addition to describing the 
implementation strategies for scalable systems,  we 
also  describe  steps  for optimizing the  code  on  the 
IBM scalable POWERparakl" 1 (SPl") system and 
the IBM scalable PowERparallel2 with wide nodes 
(SP~*-W) system. We consider single processor  op- 
timization steps as well as  steps  for reducing com- 
munication overheads. Besides describing the per- 
formance-enhancing  techniques  for spl and SPEW, 
a goal of this  paper is to examine  the scalability of 
the SP architecture  for  computations  characterized 
by the BT benchmark. For this we present  results 
on up to 128 processors using four different data 
sets.  In Reference 4, we  have  presented a similar 
study of a  distributed memory implementation of 
the  Scalar Pentadiagonal (SP) benchmark. An  im- 
plementation of the  Lower-Upper Diagonal (LU) 
benchmark is described in Reference 5. 

As far  as we know,  our implementation of the BT 
benchmark, as described in this paper, has deliv- 
ered  the  best  performance  on  the sP1 and S P ~  sys- 
tems.  Moreover,  as of the writing of this paper, 
the  performance of our implementation on  the 
SPZ-w with 32 or more  processors is significantly 
better  than  the  performance of any other imple- 
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mentation on  any  other parallel system  (except  for 
the Fujitsu VPPSOO"") with the same  number of pro- 
c e s s o r ~ . ~  One objective of this  paper is to describe 
our implementation in detail so other  studies, in- 
cluding nonbenchmarking types, may benefit from 
its  understanding. 

First we present some background information on 
the NAS parallel benchmarks.  In  the  section  after 
that,  we  describe  the  mathematical  and numerical 
problem solved by the BT benchmark.  A  sequen- 
tial implementation of this  benchmark is then  out- 
lined. Next we  briefly describe  the IBM SP systems 
used in this study. We describe  our parallel imple- 
mentation and  the  optimizations  for  performance 
in succeeding sections.  The  performance  results 
are  presented in the  two  sections just before  the 
conclusions. 

NAS parallel benchmarks 

The NAS benchmark  suite  consists of eight prob- 
lems: five kernels and  three simulated CFD appli- 
cations. For details  and implementation rules, 
please refer to References 1 and 2. The kernels rep- 
resent  solvers in the form of compact  problems. 
These  kernels  are relatively simple (each with a 
few hundred lines of sequential FORTRAN code) and 
are meant to provide insight into  the  performance 
of particular  types of numerical computations. 
The  three simulated CFD applications are more 
complex than  the  kernels.  Each of these applica- 
tions consists of several  data  structures,  and  a  typ- 
ical sequential implementation of any of these 
benchmarks, in FORTRAN, results in a few  thou- 
sand lines of code.  The  data  dependencies imposed 
by the numerical methods in these applications and 
their computational requirements resemble closely 
those in the  state-of-the-art CFD application  codes. 
Thus,  the implementation techniques of these  ap- 
plications are more typical of real CFD applica- 
tions.6  However,  absent from the  application 
benchmarks are complex boundary conditions and 
I/O operations  that are typically present in many 
real CFD applications. For  that  reason,  the  three 
application benchmarks are  also  referred  to  as 
pseudo  applications. 

The  three application benchmarks are:  the Scalar 
Pentadiagonal (sP), Block Tridiagonal (BT), and 
Lower-Upper Diagonal (LU) benchmarks. For 
comparison of performance, NASA has defined two 
standard problem sets  for  each  benchmark  that  are 
referred to  as Class A  and  Class B size  problems. 
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In  Table 1 , we  present  a summary of the compu- 
tational  characteristics of the  three application 
benchmarks  under  the  two  standard problem sets. 
The floating-point operation  counts and the 
MFLOPS (millions of floating-point operations  per 
second) specified in that  table are from Reference 
7. Note  that  the floating-point operation counts are 
for  a  particular implementation of these bench- 
marks and  were measured using the Cray hardware 
performance  monitor. 

According to  the rules of the NAS parallel bench- 
marks,  performance is to be reported in terms of 
the  elapsed time (based on "wall-clock'' time) to 
complete  the  computations  over  the required num- 
ber of iterations. Another meaningful measure used 
in reporting  performance is the  ratio to  the best ex- 
ecution times on  a single node of a Y-MP** system 
(for Class  A problems) or  on a single node of a C90 
system  (for  Class B problems). 

Benchmark BT 

In this section, we describe some of the salient 
points of the  benchmark BT so  as  to facilitate a 
meaningful discussion on the implementation and 
performance  issues. Most of the  discussion in this 
section is based  on  Chapter 3 of Reference 1 .  For 
complete  details,  refer to that  citation. 

The problem solved in benchmark BT is that of 
computing the numerical solution for a synthetic 
system of five nonlinear partial differential equa- 
tions (PDES) representing some of the key charac- 
teristics exhibited by the Navier-Stokes equations. 
An implicit type of numerical solution is used in 
solving this system of PDES. This method is used 
as a  solver in many of the  computational fluid 
dynamics (CFD) programs designed for  the numer- 
ical solution of three-dimensional EuledNavier- 
Stokes  equations using finite-volume or finite-dif- 
ference  discretization  on  structured  grids. 

The  system of five nonlinear PDEs is as follows: 

where U = [u ( I ) ,  u(* ) ,  u ( ~ ) ,  u ( ~ ) ,  u ( ~ ) ]  is a  vector 
function of temporal variable 7 and  spatial varia- 
bles (5, 77, 5 )  that form the  orthogonal  coordinate 
system in p3. E,  F,  G,  T,  V, W,  and H are 5 X 1 
vector functions whose components  are prescribed 
as  functions of U or U and  its  derivatives.  The 
boundary  conditions are of uncoupled Dirichlet 
type and the initial values of U at r = 0 are obtained 
by a transfinite, tri-linear interpolation of the 
boundary data.  The forcing function  vector H is 
chosen  such that, with the specified boundary  and 
initial conditions,  the  system of PDES given by 
Equation 1 satisfies an  exact solution (a fourth  or- 
der polynomial in (, 7, and i) to U. The compu- 
tations of the BT benchmark  seek  to  obtain a dis- 
crete approximation to  the  steady-state solution of 
the PDES, using a  pseudo-time marching scheme 
(two-level, first-order accurate,  Euler implicit) and 
a spatial discretizing procedure  based  on finite dif- 
ference  approximations  (second-order  accurate 
central difference approximations in each of the 
three  coordinate  directions).  A  linear fourth-dif- 
ference  dissipation  term is added to  the right side 
of Equation 1 so that  the numerical scheme  con- 
verges to  a  steady-state  solution. If U" and Un+l 
are solutions at time-step n and n + 1, respec- 
tively,  and AU" is Un+l - U", then the numerical 
procedure involves the solution of a linear system 
of equations  for AU" to  determine Un+l .  The lin- 
ear  system of equations  has  the following form: 

(I + ArL)AU" = ArR ( 2 )  

where L consists of the flux Jacobian  terms  cor- 
responding to the  vectors E,  F,  G,  T, V, Wand  the 
implicitly treated dissipation terms. R consists of 
the spatial difference terms  for  the  vectors E,  F, 
G,  T, V,  W, the forcing function  vector H, and  the 
added dissipation terms.  In  the  above  equation,  the 
left-hand side (LHS) is the implicit part,  and  the 
right-hand side (RHS) is the explicit part. 

All three pseudo-application benchmarks  compute 
AU" in Equation 2 numerically, using an  iterative 
method,  and from that  term  advance  the  solution 
to U n + l .  Only one  iteration  per time step is gen- 
erally sufficient for  the  pseudo-time marching 
schemes used in all three  benchmarks.  The  bench- 
mark BT differs from the  other  two (SP and LU) in 
the  manner in which the implicit operator in the 
LHS of Equation 2 is approximated  and  applied.  In 
this benchmark,  the implicit operator in Equation 
2 is approximately factored using the Beam-Warm- 
ing Approximate  Factorization  scheme. The RHS 
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Figure 1 A functional  outline of the BT benchmark 

Set Boundary  values  of Ui,j,k for (i, j ,  k )  E aDh 
Set Initial values of Uiqj,k for (i, j ,  k )  E D h  
Compute forcing  function vector, HT,j,k for (i, j ,  k )  E Dh 
Initialize [RIIS]i,j,k at T = 0 for (i, j ,  k )  E Dh 
for T = 1 to Maxsteps do 

i. Perform &sweep: 
Setup coefficient  matrices: 

Solve linear  system  of  equations  for [AUl]i,j,k for (i, j ,  k )  E D h :  

i( a). M* = (I - AT[D*(A)'-~ + Dj(N)T-l]) 

i(b) . M,AU, = [RHS]". 

Setup coefficient  matrices: 

Solve linear  system of  equations for [AU21i,j,k for (i, j ,  k )  E Dh: 

ii . Perform q-sweep: 

ii(a) . M, = (I - AT[D,(B)'" + D:(Q)"]) 

ii(b) . M,A& = AUI. 
iii. Perform 5-sweep: 

Setup coefficient  matrices: 

Solve linear  system of  equations for [AU,]i,j,k for (i, j ,  k )  E D h :  

iii( a) , Mi = (I - AT[Di(C)'-' + D;(S>'-']) 

iii(b) . McAUT" = AU2. 
iv. Update solution  to  time-step T: 

v. Compute  [RHS]{j,k for (i, j ,  k )  E Dh 

UT = UT-' + AU-1 

end  for 

(explicit part) of Equation 2 is unaffected by these 
modifications. The LHS takes  the following form: 

[ ( W ) "  I a2(Q/")] 
* 1 - 8 7  - arl arl 

d(C)" aysy 
a5 a5 
- + -)]AU" (3) 

where A, B, C, N, Q, and S are 5 X 5 flux Jacobian 
matrices for  the specified problem. For the exact 
representation of these  Jacobian  matrices, please 
refer to Reference 1 .  

A functional description of the BT benchmark is 
shown in Figure 1 .  Observe  that AU" is computed 
in the ( n  + 1)th iteration  over  Steps  i, ii, and iii, 
where t , ~ ,  and  ldirectional  factors of the implicit 

operator are applied, respectively. Collectively, we 
refer to these steps as the  implicitphase of the com- 
putations and the  three  sweeps as the implicit 
sweeps. In  each of these  sweeps, multiple indepen- 
dent  systems of block tridiagonal equations  (each 
block being a 5 X 5 matrix) are  solved. If the  spa- 
tial discretization has N , ,   N , ,  and N ,  mesh points 
in 5, 7, and ldirections, respectively,  then, in the 
&sweep,  altogether ( N ,  - 2 ) ( N ,  - 2) indepen- 
dent  systems of block tridiagonal equations  are 
computed. Each of these block tridiagonal systems 
of equations has 5 ( N ,  - 2) unknowns. Similarly, 
in the 7- and 5-sweeps, ( N ,  - 2 ) ( N ,  - 2) and 
( N 5  - 2 ) ( N ,  - 2) independent  systems of block 
tridiagonal equations  are  solved,  respectively.  In 
Steps  i(a), ii(a), and iii(a) of Figure 1, coefficient 
matrices are  set up before performing the  actual 
block tridiagonal solutions. Since in each  sweep 
there  are multiple independent block tridiagonal 
systems, M,, M,, M, represent multiple  coefficient 
matrices in those  setup  steps. 
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As mentioned earlier,  benchmark BT has  two  stan- 
dard  data  sets:  Class  A  and  Class B. For  the Class 
A  data  set, N = N, = N ,  = N, = 64, and for 
the  Class B data  set,  N = N, =. N, = N, = 102. 
In  both  cases, Maxsteps (see F~gure 1) is 200. 

A sequential  implementation 

The starting  point  for our parallel implementation 
was  the  sequential FORTRAN 77 implementation of 
the BT benchmark (written by S. Weeratunga) pro- 
vided by NASA Ames as  an example implementa- 
tion. We found this code  to  be  very well written, 
and we  will refer to this version as  the unoptimized 
starting-point  implementation,  or USI for  brevity. 
For  our parallel implementation on  the IBM SP ar- 
chitecture,  we modified this code significantly to 
extract parallelism and to get good floating-point 
performance.  In  the following, we first describe 
some of the  key  features of USI and  then  describe 
the optimizations we made to this  code.  Some of 
these optimizations are  obvious,  and we  would like 
to  note  here  that although we point out  the obvi- 
ous optimizations, we do  not imply that  the devel- 
opers of USI were  unaware of them.  In  our opin- 
ion,  the main objective of u s 1  was to bring clarity, 
modularity,  and simplicity to  the benchmark. 

The computationally intensive  steps in each  iter- 
ation of the BT benchmark  are  Steps  i, ii, and iii 
shown in Figure 1. In  each of these  steps, multiple 
independent block (5 X 5 )  tridiagonal systems  are 
solved,  after setting up  their coefficient matrices. 
In  the  &sweep,  the block tridiagonal system  has 
the following structure: 

[Bl,j,kl[AUlll,j,k + [Cl,j,kl[AUllt,j,k = [RHSll,j,k 

[Ai,j,kl[AUlli-l,j,k + [Bi,j,kl[AUlli,j,k 

+ [Ci,j,kl[Aulli+l,j,k = [RHSlr,j,k; 

2 % i I N I - 1  

[ANf,j,kl[AUIlN*-l,j,k + [BNf,j,klEAUllNf,j,k 

= [RHSI,*,j,k (4) 

In  the  above, [A], [B], and [C] are 5 X 5 matrices, 
[AUl]i,j,k is a 5 X 1 column vector, [B,,j,k] and 
[ANf,j,kl are identity matrices ([I]), and [CI,j,kl = 
[ O l . A t ~ = n +   l a n d f o r 2 % i ~ ( N ~ -   1 ) , t h e  
(5  X 5 )  coefficient matrices are determined  as fol- 
lows: 
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where  h, = 1/(N, - 1)  is the  mesh size in 6 di- 
rection. The  structures of the block tridiagonal sys- 
tems involved in the 77- and {-sweeps are analo- 
gous to  the above-defined structure  for  &sweep. 

In USI, for  each of the  Steps  i, ii, and iii, first all 
coefficient matrices are evaluated  and  then ( N  - 
2)*  systems of equations are solved  (as  shown in 
Figure 1). For  the  N X N X N  problem,  each  setup 
step involves computing  and  storing 3N(N - 2) * 
coefficient matrices,  each  represented by a 5 x 5 
array.  For  &sweep,  these  matrices  are  evaluated 
as shown in Equations 5 .  Note  that  the coefficient 
computations are primarily scalar-matrix multipli- 
cations.  Each  linear  system  has a block tridiago- 
nal structure,  and  hence,  the coefficient matrix M, 
of Step  i in Figure 1 is represented  not by a full 
matrix,  but by an  array of triplets of 5 X 5 coef- 
ficient matrices ([A], [B], [C]), one  triplet for  each 
5 X 1 block of unknowns (i.e.,  at  each interior grid 
point).  After  the  setup, ( N  - 2)' linear  systems 
are solved using a regular Gaussian elimination al- 
gorithm, with no pivoting. These solutions take  into 
account  the block tridiagonal nature of the  linear 
systems-all forward eliminations are computed 
first, storing the  intermediate  results in the  same 
work arrays  as  the  ones used for  computing  the 
coefficient matrices in the  setup  step;  this is fol- 
lowed by all back-substitutions for  that  sweep.  The 
same  procedure is repeated in the  other two  direc- 
tions as indicated in Figure 1 .  For storage effi- 
ciency,  the  array  representing the RHS vector is 
used to hold the  intermediate  solutions (AU1,  AU2, 
and AUT-'). 

In Step iv, the solution is advanced to  the next  time 
step by performing a  vector (5 X 1) add at each 
interior grid point.  Finally, the computations  for 
evaluating the RHS vector at  the new time step  are 
performed in Step v. These  computations are 



equivalent to three regular sparse block (5  X 5 )  ma- 
trix-vector multiplications. 

Clearly, the main data  dependencies in the com- 
putations of one  iteration are  those  that  character- 
ize the  solution of a block tridiagonal system of 

We report  performance on  up 
to 128 nodes for both the SP1 

and SP2-w systems. 

equations  and  those in a regular sparse block ma- 
trix-vector multiplication. The solution of the tri- 
diagonal system of equations involves a  forward 
elimination phase followed by a back-substitution 
phase.  In  the  forward elimination, the  computa- 
tions at block i depend  on  the values computed  at 
block i - 1.  In  the  back-substitution  phase,  the 
computations at block i depend on the values com- 
puted at block i + 1.  The RHS computations at a 
grid point (i, j ,  k )  require values of the U vector 
at (i, j ,  k )  and  at 12 neighboring grid points: {(i * 
I, j * I, k k / ) I 1  = 0, 1, 2}, (i.e.,  alonga 13-point 
stencil). 

Finally,  associated with each grid point, altogether 
a  total of 90 words (double precision) of memory 
is required: five for  the  solution  vector, U, five for 
the right-hand side  vector, RHS, and 75 variables 
for storing the coefficient matrices (work arrays). 

IBM SP architecture 

In  this  section,  we briefly describe some of the  ar- 
chitectural  details of the IBM SPl and SP2 systems 
used in this  study.  The  details  presented  here  are 
relevant  to the optimization  steps  we  describe in 
the following sections. We refer  the  interested 
reader  to  References 10 and 11 for  further  archi- 
tectural  details  on sP1 and  to  References 12 and 13 
for  further  details  on S P ~ .  

Each processing  element  on  the SPI is IBM’s RISC 
System/6000* (RS/6000*) Model 370 processor, with 
a  32K-byte data  cache  and 62.5 MHz clock speed. 
Each  processing  element  on  the S P ~  considered in 

this study is IBM’s RS/6000 Model 590 processor, with 
a 256K-byte data  cache  and 66.5 MHZ clock speed. 
There are  other S P ~  systems with different types 
of processors, but we do not  consider  those in this 
study. To avoid any  ambiguity, in the  rest of the 
paper we refer to  the S P ~  system  used in this  study 
as  SP~-w. (The suffix “w”  stands  for wide-the 
qualification used to describe  the  type of process- 
ing elements used.) The SPI processor belongs to 
the POWER Architecture*,  whereas  the Sp2 proces- 
sor belongs to  the POWER2 Architecture*.  Read- 
ers interested in the  details of various  aspects of 
the POWER Architecture should refer to  the arti- 
cles  that  appear in Reference 14 or 15. Details on 
the various aspects of the POWER2 Architecture  can 
be found in the  articles  that  appear in Reference 
16 or 17. The differences between  the spl and SPEW 
processors  that  are  relevant  to  this  study  are: (1) 
in the  former  case,  the fixed-point and  the floating- 
point units  have  one  execution unit each, whereas 
in the  latter  case,  each  has  two  execution  units; 
(2)  in the  former  case,  up  to  two floating-point op- 
erations  can  be  performed  per  cycle (125 MFLOPS, 
peak),  and in the  latter  case,  the  same is four float- 
ing-point operations  per  cycle (266 MFLOPS, peak); 
(3) the  latter  has  the ability to perform quad-word 
load or  store of two  adjacent  double  precision ref- 
erences to  or from two  adjacent floating-point reg- 
isters in one  cycle; (4) the memory bus width in 
the  former  case is eight bytes,  and  the  same in the 
latter  case is 32 bytes. 

On both  the SP1 and SP~-W, the  processors  are in- 
terconnected via a  High-Performance  Switch,  the 
details of which can be found in Reference 11. The 
processor-switch  interface is managed by a  spe- 
cial adapter  card.  The  communication  adapter 
cards used in the SPI and SP2-w systems differ sig- 
nificantly. For additional details, refer to Reference 
13.  On both  systems, explicit message passing is 
the parallel programming paradigm.  The sP1 pro- 
vides two  communication  protocols: MPL and 
MPL/~ .  In all the  experiments  presented in this pa- 
per  on  the sP1, we used the MPL/p protocol.  In  our 
experiments  on  the  SPZ-W, message passing  was 
handled by the Parallel Operating  Environment 
(POE) using the Message-Passing Library (MPL) 
protocol. ’* 
In this paper,  for  both  the SPI and sp2-w systems, 
we report  performance  on  up to 128 nodes, with 
each  node having 128 MB of local memory. For  the 
SPl experiments,  we  used  the  system  at  the IBM 
Thomas J. Watson  Research  Center in Yorktown 
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Heights,  New  York, and,  for  the Sp2-w experi- 
ments, we used  the  system at  the NASA Ames Re- 
search  Center. All parallel programs  for which we 
report  performance in this  paper  were  written in 
the single-program, multiple-data (SPMD) style of 
programming in FORTRAN, using IBM'S external 
user  interface (EUI) '~ as  the message-passing in- 
terface. 

For the M P U ~  protocol used in the SPI experiments, 
the point-to-point message latency was measured 
(using ping-pong type point-to-point communica- 
tion between  pairs of processors)  to  be 30 psec. 
The effective communication bandwidth under this 
protocol was measured to approach  8.5 MB/SeC, as- 
ymptotically. For  further  details  on  the sP1 com- 
munication performance, please see Reference 20. 
For  the SP~-W,  where we used the MPL protocol, 
the  message  latency was observed to  be 42 psec, 
and  the effective communication bandwidth ap- 
proached 34  MB/SeC, asymptotically,  for unidirec- 
tional communication  and 48  MB/SeC (asymptotic) 
for bidirectional (exchange type)  communication. 
For additional  details  on  the S P ~  communication 
software,  please  see  Reference 18. 

Optimizations  for  single  processor 
performance 

In achieving good performance  on  a parallel sys- 
tem, obtaining good single processor  performance 
is an important  step.  However, single processor 
performance should not be obtained at  the  expense 
of available parallelism. In our implementation of 
the benchmark BT on  the IBM SP systems, we made 
significant modifications to USI and optimized the 
code  for  the RS/6000 POWER (for SP1) and POWER2 
(for SPEW) architectures,  without sacrificing the 
available parallelism. Here  we  describe some of 
these modifications. The parallel implementations 
of the BT benchmark  for  the SPI and Sp2-w differ 
only in the  optimizations  for single processor  per- 
formance. 

Computation of coefficient matrices. In USI, all the 
coefficient matrices are  set up before performing 
the block tridiagonal solutions. As is evident from 
Equations 5 ,  a significant amount of time is spent 
in setting  up  these  matrices. We found  two  disad- 
vantages with this  approach: (1) large work arrays 
are necessary (75 words  per grid point) and (2) lo- 
cality in computations is reduced  considerably 
when the block tridiagonal solutions are performed 
along directions involving strides (for example, in 
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77- and 5-sweeps). To  overcome  these difficulties, 
in each implicit sweep  we merged the coefficient 
computation  step with the  solver step (e.g.,  Step 
i(a) and  Step i(b) in Figure 1). The first advantage 
of this modification  is the  reduced memory require- 
ment. Instead of 75 words of memory at  each grid 

In achieving good performance on 
a parallel system, obtaining good 
single processor performance is 

an important step. 

point in the  entire  three-dimensional  domain, 75 
words of memory per grid point along a one-dimen- 
sional line of grid points  (corresponding  to a single 
tridiagonal solution) are  needed.  This  work  space 
is reused in the  subsequent  solutions.  The main 
performance benefit from this modification is that 
in performing the tridiagonal solutions in the 7- and 
5-sweeps, the coefficient matrices  can  be  accessed 
with  single stride,  thus, significantly reducing cache 
misses. 

In addition to  the  above modification, we  ob- 
tained performance improvements in the  computa- 
tions of the flux Jacobians  (e.g., in computing 
1/(2h,)[A(U,"_1,j,k)] and(l/h~)[N(Uin_l,j,k)]  ofEqua- 
tions 5 ) .  Performance  was  improved by carefully 
rearranging the computations so as  to eliminate any 
duplications and  also obtaining good register  re- 
use.  In  the  case of the implementation for  the POW- 
ER2 Architecture (of the Sp2-w nodes),  further  tun- 
ing was necessary  to  assist  the compiler in 
maximizing the  instruction-level parallelism to 
keep  the  dual  arithmetic  units of the floating-point 
unit (FPU) busy simultaneously and  to  take  advan- 
tage of quad-load or  store capabilities. Primarily, 
this tuning involved exposing computations for  two 
independent grid points at  the same  time (but with- 
out exceeding the limitations imposed by  the avail- 
able number of registers or  the  cache size). Note 
that all our implementations are of single-program, 
multiple-data (SPMD) style, which means  that  the 
code  remains the same  for all nodes.  Since  not all 
processors may end  up with same-size  partitions 
(due to load imbalance),  the  number of  grid points 



assigned to  processors may not all be the  same. 
As a result,  proper  care  must  be  taken in imple- 
menting the  above-described  optimizations. 

Solution of block  tridiagonal systems. We replaced 
the generic  Gaussian elimination (with no pivot- 
ing) algorithm used in USI by the Thomas algorithm. 
The Thomas algorithm is a special case of Gaus- 
sian elimination and is used to obtain  an efficient 
solution to tridiagonal and pentadiagonal systems, 
when no pivoting is involved.  To explain this al- 
gorithm,  consider  the following ith  equation 2 5 
i I N ,  - 1, in a block tridiagonal system given 
by Equations 4 for  some values o f j  and k :  

[A;I[u;-ll + [Bil[uiI + [CJ[u,+11 = [ril (6) 

where [Ai], [I$], and [Cil are 5 X 5 matrices,  and 
[u,] and [r,] are 5 X 1 column vectors. For con- 
venience, in the  above  equation  we  have  dropped 
j and k suffixes. In  a  conventional  Gaussian elim- 
ination (with no pivoting) algorithm,  at  the  ith  step 
of the forward elimination phase,  the following 
computations are performed: 

[QJ = [Xi-II[Ci-11 

[BiI = [BiI - [Ail [Oil 
[X;] = [E,] - I  

[Fil = [Xi-ll[pi-13 

[PJ = [.;I - [A,I[F,I (7) 

and in the  back-substitution  phase  the following 
computations  take place: 

[pi1 = [pi1 - [Cil[u,+Il 

[uil= [xil[~;l (8) 

where [E,], [ Q i ] ,  [X,] are 5 X 5 matrices,  and [pi], 
[pi] , and [Fi] are 5 x 1 column vectors. When [Xl], 
[pJ, and [uNJ are  known,  the solution to  the block 
tridiagonal system is determined. 

In  the Thomas algorithm, the block tridiagonal sys- 
tem represented  by  Equations 4 is rearranged so 
that  the  ith  equation  has  the following form: 

[uil = [PJ - [QiI[ui+ll (9) 
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Thus,  at  the  ith  step of the  forward elimination 
phase,  the following computations are performed: 

[BJ = [BiI-[A,I[Q,-lI 

[X,] = [E;] - I  

[QiI = [XiI[Cil 

[‘;I = [rJ-  [Ail[~i-,l 

[pi1 = [Xil[F,I (10) 

and, in the  back-substitution  phase, the following 
computations  take  place: 

[uJ = [PJ - [Q;I[ui+lI (1 1) 

where [Ei],  [QJ , [X,] are 5 X 5 matrices  and [pi], 
and [F,] are5 X 1 columnvectors. When [Ql],  [pl], 
and [uN ] are known,  the solution to the block tri- 
diagonaj system is determined. 

Comparing the  steps in the conventional  Gaussian 
elimination (Equations 7 and  Equations 8) with 
those in the Thomas algorithm (Equations 10 and 
Equation 1 1), we  notice  that in the  former  case  the 
information is carried forward in the [x] matrix and 
[p] vector,  whereas in the  latter  case, this is ac- 
complished by matrix [Q] and  vector [p]. More- 
over, when we analyze  the  above-described  Gaus- 
sian elimination algorithm,  we find that  at  the  ith 
step (both forward elimination and  back-substitu- 
tion phases  combined),  there are seven  pairs of tri- 
angular “solves” (counting a lower triangular solve 
followed by  an  upper triangular solve as  one pair) 
involving a 5 X 5 matrix and a 5 X 1 vector, 
whereas in the  Thomas algorithm only six pairs of 
triangular solves are performed. (Notice  that in the 
back-substitution  phase of the  Thomas  algorithm, 
no triangular solves are performed.)  In  addition, 
both algorithms perform one matrix-matrix mul- 
tiply-and-add, two  matrix-vector multiply-and- 
adds,  and  one  factoring of a matrix. (All matrices 
are 5 X 5 ,  and all vectors  are 5 X 1.) Thus, by us- 
ing the  Thomas  algorithm,  we avoid performing N 
pairs of triangular solves (a lower triangular solve 
plus an upper triangular solve) in the solution of 
each block tridiagonal system of equations. Recall 
that  altogether 3 N 2  such  systems are computed in 
advancing the solution by one time  step. A lower 
and upper triangular pair involves 20 multiply-and- 
add  operations (daxpy type) and five divides. 
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In addition to reducing the  operation  count,  the 
Thomas algorithm offers somewhat  better locality 
of computations. For example, notice from  Equa- 
tions 10 that immediately after [X,] is factored, it 
is used in the  ten triangular solves.  In  the Gaus- 
sian elimination, however,  the  ten triangular solves 
use [X,-1] from the  previous  step.  Such improve- 
ments in the locality of computations  have a sig- 
nificant effect on  the  performance of cache-based 
RISC processors. 

On the RS/~OOO (as with many other  microproces- 
sors), floating-point reciprocals  and divisions are 
significantly more  expensive  than floating-point 
multiplications. Keeping this in mind, we further 
improved  the  performance of each block tridiag- 
onal solution by reducing the  number of floating- 
point reciprocal  and division operations,  at  the  ex- 
pense of an  increased  number of floating-point 
multiplications. Each  upper triangular solve in- 
volves five divisions.  However, in  all six upper tri- 
angular solves performed in step i of the  Thomas 
algorithm (see  Equations lo),  the same diagonal 
elements of [X,] are involved. Moreover, in the ma- 
trix factoring step where [X,] is computed,  the same 
reciprocals are needed. When the 5 X 5 matrix is 
factored,  we  store  the  reciprocals of the diagonal 
elements of [X,] instead of the  “normal”  values, 
and  use  these values in all upper triangular solves 
involving [X,]. Thus, in the  ith  step of a block trid- 
iagonal solution, we replaced 30 divisions by that 
many multiplications. Note  that  this optimization 
is possible  even when regular  Gaussian elimina- 
tion is used (as in USI). 

Optimization of RHS computations. After the com- 
putations in the implicit sweeps,  computations of 
RHS are  the  next most expensive to evaluate. 
These  computations  correspond to  Step v in  Fig- 
ure 1. We made modifications to USI to improve 
the single processor  performance in this  part of the 
code  as well. Most of these  changes  consisted of 
fine tuning of the  computations so as  to reduce  the 
number of operations, especially floating-point di- 
visions, improving the  register  reuse,  and by ex- 
ploiting the POWER2 Architecture (in case of the 
SPZ-w). In  some  cases,  the  cost of floating-point di- 
visions was minimized at  the expense of additional 
memory usage by computing the  reciprocal  once 
and using it as a multiplier in more than  one  op- 
eration. We made  a  few significant changes in the 
loop nesting to  improve  cache  performance. We 
outline  that modification below. 
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For  each time step, RHS is evaluated in three  parts. 
In the first part,  &direction flux differences are 
computed  and to  these,  fourth-order  dissipation 
terms in 5 direction are  added.  In  the  second  and 
the third parts, similar computations  for 7 and [ 
directions are performed.  In  computing  the RHS 
components in the 7 or [ direction, memory ac- 
cess  to  the  data  structure  for  the U vector  involves 
nonunit strides, which gives rise to a high rate of 
cache  misses. We mitigate this situation by rear- 
ranging the  nested  loop  structure in these  parts of 
the  computations. In performing the 7-direction 
computations, in USI, the innermost  loop is first 
over  the  second dimension of the main arrays in- 
volved and  then  over  the first dimension. We re- 
arranged  these so the  innermost  loop is over  the 
first dimension. The net effect is that  the flux dif- 
ferences are now computed  over  a plane of grid 
points (5-7 plane) at a time, instead of one grid point 
at  a time. This  reduces  the  cache misses to  a large 
extent at  the expense of having larger work  arrays. 
Similarly, in the third part,  where [-direction con- 
tributions are  computed,  the original nesting of 
loops is such  that the third dimension of the main 
arrays is varied in the  innermost  loop. To improve 
the  cache misses in this  part, we rearranged  the 
loops so the  innermost  loop is over  the first dimen- 
sion and  the  next level of looping is over  the  third 
dimension of the  arrays. 

Parallel implementation 

For  the parallel implementation of the BT bench- 
mark, we use SPMD style of programming and  take 
advantage of the available data parallelism. In  the 
following discussion,  we  assume N X N x N to 
be the size of the  grid. 

Data partitioning strategies. As noted  earlier,  the 
computationally intensive sections of the BT bench- 
mark are  Steps i, ii, iii, and v shown in Figure 1. 
For this  reason  and  because  these  steps  encapsu- 
late  important  data  dependencies  that affect scal- 
ability, we primarily focus  on the performance of 
these  steps in our parallel implementation. 

We considered  three grid-level partitioning 
schemes  that are suitable for parallelizing the com- 
putations: ID unipartitioning, 2D unipartitioning, 
and 3D unipartitioning. These  three  are shown sche- 
matically in Figure 2. In  each case, a single con- 
tiguous partition of grid points is assigned to  each 
processor,  and  hence  we  refer  to  this  type of par- 
titioning as unipartitioning. In I D  unipartitioning, 



Figure 2 Three block-based partitioning schemes 
~~~ 

1 D partitioning 20 partitioning 30 partitioning 

the grid is partitioned along one of the  three spa- 
tial dimensions;  under 2D unipartitioning, the grid 
is partitioned along two of the  three spatial dimen- 
sions;  and it is partitioned along all three dimen- 
sions in the 3D unipartitioning case.  In  each  case, 
the  associated  arrays  are  distributed along the di- 
rection of grid partitioning. These partitioning 
schemes accomplish the  same  array  distributions 
as  the block distribution  constructs of High Per- 
formance FORTRAN (HPF). In Reference 22, we con- 
sider  another  class partitioning scheme called mul- 
tipartitioning which, in HPF terminology, is a  type 
of block-cyclic partitioning scheme. We do not 
consider multipartitioning schemes in this paper. 
We refer  the  interested  reader  to  References 23-25 
for  a  detailed  analysis  and  discussion  on  the com- 
munication, load imbalance,  and scalability prop- 
erties of these partitioning schemes in the  context 
of CFD applications. For  the  purpose of this dis- 

cussion, we note  the following points  for  these  par- 
titioning schemes. Along the  dimensions  where 
partitions  are  made,  there  are data dependencies 
across  processors  that affect the  solution of block 
tridiagonal systems of equations  and  the  evalua- 
tion of RHS vectors.  Thus, values must  be  commu- 
nicated among processors during forward elimina- 
tion and  back-substitution  phases.  Also,  at  the  end 
of the  update  computations in Step iv of Figure 1, 
the updated values at  the partition boundaries must 
be communicated among (logically) neighboring 
processors so that  the  computations of RHS in Step 
v can be completed. Note that the communication 
during the  forward elimination or back-substitu- 
tion phases is one-directional,  whereas  the  com- 
munication after  Step iv can  take  place in an  ex- 
change fashion. With the I D  partitioning,  each 
processor  communicates with at  most  two  other 
processors.  However,  the  adjacent  surface  area 
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Table 2 Effect of data  distribution  methods  on  performance  (Class A problem  set  and  the SPl system) 

among partitions  does  not  reduce when more par- 
titions are  made.  Thus, this partitioning is the  least 
scalable of all. 

In Table 2, we  compare  the  performance of the 
three partitioning schemes  on  an 8-, 16-, and 32- 
node sp1 using Class  A problem set.  The  “Parti- 
tioning” columns  indicate  the  data-partitioning 
strategy  used.  The first number indicates the num- 
ber of partitions  to be made along the first spatial 
array dimension (i.e., along the 5 direction),  and 
so on.  Thus,  for example, with eight processors 
and  under ID partitioning, eight slices were made 
along the third spatial dimension of the  distributed 
arrays  (the slowest varying dimension, which is 
along c direction) and no partitions  were made 
along the  other  two  spatial  dimensions.  Note  that 
the  same  code  was  run  on all platforms,  and in  all 
cases  the  same  communication optimizations de- 
scribed below were  included.  Clearly,  the 3D par- 
titioning has the superior  performance among all 
three partitioning methods. 

Another  important decision in data partitioning is 
that of the number of partitions  to make along each 
dimension of partitioning. For example, with 16 
processors  and 3D partitioning, one may partition 
thegridinto2 X 2 X 4or4  X 2 X 2oras2  X 4 X 2. 
This has the effect on the locality of computations 
within a  processor. Although we do not show the 
results  here, significant performance gains are  re- 
alized by partitioning along the slowest varying di- 
mension than along the  fastest varying dimension. 

We used the 3D partitioning in  all the  experiments 
reported in the  rest of this  paper. Whenever the 
number of processors, P ,  is not a perfect  cube of 
an  integer,  we  factor  the  number P into  three in- 
tegers  that are relatively close  to Y@ and parti- 
tion the grid so that  the  fastest varying dimension 
([in the  current example) has  the  least number of 
partitions  and the slowest varying dimension (0 
has  the  most  number of partitions. 
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Parallel block tridiagonal  solutions. As described 
in the  previous  section, we used the  Thomas al- 
gorithm for performing the block tridiagonal solu- 
tions. As with the  generic  Gaussian  elimination, 
the  Thomas algorithm is highly sequential  when 
used for solving a single block tridiagonal system. 
However,  under  the 3D data-partitioning  scheme, 
the multiple independent  systems ( ( N  - 2) * in our 
example) in each implicit sweep  can be computed 
in parallel. This parallelism across multiple solu- 
tions helps in mitigating the  adverse  performance 
effects of using the  Thomas algorithm on multiple 
processors.  In  the 5 direction,  we first complete 
the  forward  sweep  for all ( N  -’2)* systems  and 
then perform the backward sweeps. Following this, 
the  same  procedure is repeated along 77 and 6 di- 
rections.  To  improve single processor  computa- 
tional performance  and  to  reduce  communication 
overhead, in the forward elimination phase we bun- 
dle together  the [Qi] matrix ( 5  X 5 )  and [pi] vector 
(5  X 1) corresponding  to  the  last grid point of a line 
segment assigned to a  processor. 

In summary, in the implicit computations along the 
5 direction (and analogously, along 77 and  direc- 
tions), each processor sweeps  over all the segments 
of grid lines in its block partition, first in the  for- 
ward direction and  then in the  backward  direction. 
In  the  forward  sweep  over a segment of grid lines, 
the coefficient matrices are computed  on  the fly, 
the intermediate values needed in the forward elim- 
ination phase  are  received from the neighboring 
processor  (that  performs  the  forward elimination 
on  the  earlier  part of the grid-line), the forward 
elimination computations  on  that line segment are 
completed,  and  then  the  intermediate  values  com- 
puted at  the  last grid point are  sent off to  the pro- 
cessor performing the  next segment of the  same 
line of grid points. Following this,  the  same is re- 
peated  over  the  next segment of grid lines in that 
partition. After completing the forward sweep  over 
all the grid lines,  the backward sweep  is performed 
in a similar fashion.  In  the  backward  sweep, first 



the values of the [ui+,] are received  for  each line 
segment from the neighboring processor  and,  at 
end of the  computations  over  that line segment, 
values of vector [uk] are  sent  to  the neighboring 
processor in the  direction of the  backward  sweep 
( k  is the first grid point of the line segment assigned 
to  a  processor).  This  completes  the implicit com- 
putations in the (direction. The procedures  for  the 
implicit computations along the 77 and  [direction 
are analogous. 

The communication costs of the parallel implemen- 
tation are  as follows. In  the  forward  sweep  over 
each segment of grid points, a processor  requires 
30 words of information from a neighboring pro- 
cessor  (unless the segment corresponds  to  the be- 
ginning part of the block tridiagonal system),  and 
that  processor  sends  away 30 words of informa- 
tion to  the  processor working on  the  subsequent 
segment of that line of grid points. Similarly, in the 
backward  sweep  over  each segment of grid line, 
a  processor  receives five words of information and 
sends  away five words of information,  at  the be- 
ginning and  at the end of the  back  sweep  over a 
grid-line, respectively.  In  the  forward  and  back 
sweeps, only one message needs to be sent  and  re- 
ceived per grid-line segment. 

When the information is sent  and  received in this 
manner,  the  total  number of messages sent  or re- 
ceived by a processor is quite large. For example, 
if n, X n, X n ,  are  the  dimensions of the block 
of  grid partition assigned to  a  processor,  then in 
the implicit part of the computations in each  iter- 
ation,  altogether aprocessor would send or receive 
2n,ny + 2nynz + 2n,nz  messages. When the mes- 
sage latency  costs are relatively high as compared 
to  the CPU speed,  this  overhead  turns  out  to be sig- 
nificant. Hence,  to  further reduce  the  number of 
messages sent, we combine messages from several 
forward or backward  sweeps  together  and send 
that  out  as  one  message. We refer to this  as co- 
alescing ofline solves. If  Llines are coalesced,  the 
total  number of messages communicated in the im- 
plicit computations is reduced by a  factor of L. 
However, such a coalescing of line solves increases 
the number of line solves being serialized by the 
same  factor.  Thus,  there is a trade-off between  re- 
ducing the  number of messages  and maintaining 
adequate parallelism. In  Reference 22, the perfor- 
mance effects of this trade-off are  analyzed in de- 
tail. Here  we  present  experimental  data  to  support 
that  analysis. 
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In Figure 3, we  show  the  variations in the  total  ex- 
ecution time (for Class  A problem set)  on  a 128- 
node sp1 as the  number of lines coalesced  together 
is changed.  The  pair (x, y )  under  each  bar indi- 
cates  the  number of lines coalesced in the  forward 
(x) and  the  backward ( y )  sweeps.  Thus,  on  the 
128-processor sP1, the minimum execution time is 
obtained by sending one message in the  forward 
sweep  after  four line segments are computed  and 
by sending one message in the  backward  sweep 
after  four line segments are  computed.  The  total 
execution time drops from 55.8 seconds (1,l)  to 
48.0 seconds (4,4) (a gain of  16 percent). Note 
also that  the  total  execution  time drops quickly in 
the beginning as  the  number of lines coalesced 
is increased from one, and  after  the minimum is 
reached it rises gradually. Thus, it  is not  necessary 
to get the  exact  optimum values for  the  number 
of lines to  coalesce  together;  approximate  values 
are sufficient to  obtain good performance. We 
conducted similar experiments on  other  processor 
configurations. We found  that  for 64 and 128 pro- 
cessors, coalescing four lines gives the best perfor- 
mance, and on  8,16, and 32 processors, coalescing 
eight lines together gave the best performance. In 
general, the higher the processor speed compared 
to the latency, the larger the number of line solves 
that need to  be coalesced to minimize the total ex- 
ecution time. For exact relations, which involve sev- 
eral other parameters, including the number of grid 
points, number of partitions, number of operations 
at each grid point, and bandwidth, please refer to Ref- 
erence 22. 

Performance results 

In  the  previous  section, we  presented  some of the 
highlights of our parallel implementation of the BT 
benchmark.  In this section,  we  summarize  the  cur- 
rent best performance results for  the BT benchmark 
using the  two  standard  size  problems  (i.e.,  Class 
A and Class B) on  the sP1 and SP~-w. We performed 
all our sP1 measurements  on  the 128-node sP1 sys- 
tem at  the IBM T. J. Watson  Research  Center. All 
our SP~-w measurements  were  performed  on  the 
128-node sp2 system  at the NASA Ames  Research 
Center.  For  comparison, in our  results  we  have in- 
cluded the  Cray Y-MP and  Cray C90 performance 
on  these  benchmarks.’ For a compiled list of the 
performance of various  other parallel systems  on 
this benchmark,  please  refer to References  3 
and 26. 
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Figure 3 Effect of number of lines coalesced together on the performance of a  128-node SP1 
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The performance of the BT benchmark using the 
Class A problem set is shown in Table 3,  and  the 
Class B results are shown in Table 4. In both cases, 
the performance is reported  on 8 through 128 pro- 
cessors,  except  for  the  Class B problem set  on  the 
SP1 for which the  performance is reported  on 16 
through 128 processors.  In  the  case of Class A, we 
compare  the sP1 and SPEW performance with 
Y-MPh performance,  and in the  case of Class B, 
we  compare  the  performance with that of a single 
processor C90. The Y-MP and C90 performance fig- 
ures  are  from  Reference 3.  Note  that  on  the  Class 
A problem set, the 128-node SPZ-w is able  to  de- 
liver  performance  that is over 39 times higher than 
that of a single Y-MP node  and  over 5.67 times 
higher than  the performance of an eight-node Y-MP. 
Similarly, on the Class B problem set, the 128-node 
Sp2-w is able to deliver performance that is close to 
19 times the performance of a single node c90 and 
close to 1.5 times the performance of a 16-node c90. 

In Tables 3 and 4, we also report the MFLOPS deliv- 
ered by the sP1 and SPEW on the  two problem sets. 
To determine the  true (and meaningful) MFLOPS de- 
livered by a system, it  is necessary to accurately mea- 
sure the number of actual floating-point operations 
performed by the hardware and that contributed di- 
rectly toward the solution of the problem. A simple 
count of the floating-point operations in the  code is 
far from accurate. Similarly, counting the floating- 
point operations in the assembly code has dficul- 
ties. To overcome some of these dficulties, we have 
used the floating-point operation counts  for  the BT 
benchmark as reported in Reference 7. These counts 
were obtained for the benchmarks tuned for  the Cray 
systems and were measured using the performance 
monitoring hardware on the corresponding Cray sys- 
tems (Cray Y-MP count  for  the Class A problem and 
c90 count for  the Class B problem). Using these op- 
eration counts and the observed execution times on 
the various sp1 and SPZ-w configurations, we have 
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Table 4 Performance  comparisons for benchmark BT (Class B problem  set) 

reported the MFLOPS as  the equivalent Y-MP and C90 
MFLOPS in Tables 3 and 4, respectively. We note here 
that since our implementations of the BT benchmark 
were done independent of the implementations on 
the Cray systems,  the MFLOPS we report may not be 
true RW6000 MFLOPS. However, since the same prob- 
lem is solved in both cases,  the equivalent MFLOPS 
as computed here are a good measure for compar- 
ing two daerent systems. Using this measure, we 
observe  that on the 128-node SP~-w system, we are 
able to realize over 10 GFLOPS (billions of  floating- 
point operations per second) on  the Class B prob- 
lem set. 

Scalability of the SP architecture 

One objective in any  benchmarking  study is to  be 
able to systematically  compare  the  performance 
(and, more generally, some specific characteristics 
of a system) of dissimilar architectures in perform- 
ing some standard  set of computations.  The  results 
presented in the  previous  section help toward 
meeting that  objective  for  the BT benchmark. An- 
other  objective  for  scalable  architectures  such as 
the SP series is to quantify the scalability of the  sys- 
tem.  Architectural scalability may be defined in 
various  ways. For this  study,  we  use a restrictive 
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definition of it as  the ability to  sustain  the perfor- 
mance characteristics with the incremental changes 
in the system  resources  such as  the  number of pro- 
cessors, memory (DRAM), and  the communication 
subsystem. Ideally, architectural scalability should 
be quantified independent of any application-spe- 
cific characteristics.  However,  without perform- 
ing any meaningful computations, it is almost im- 
possible to  assess  the architectural scalability of 
the system as a whole. The  approach we have taken 
here is that of quantifying the  architectural scal- 
ability for  a given type of computations-specif- 
ically, for  the BT type of computations. Results pre- 
sented in this  section should help in determining, 
qualitatively if not  quantitatively,  the  consistency 
of the  system  performance  characteristics when 
more  processors  are  added  to  the  system  and prob- 
lems are solved without making any changes to  the 
application implementation (but possibly by vary- 
ing the problem sizes to fully utilize available re- 
sources).  The  results are more representative of 
the computations similar to  those in the BT bench- 
mark.  However,  some generalizations can be 
made. We make additional comments  on this in the 
concluding section. 

To quantify the  architectural scalability for a given 
type of computations  we define a new term called 
scalabilityfuctor. If a problem with w( p I >  amount 
of work is computed in time t(  p on p , proces- 
sors and a similar problem with w( p , )  amount of 
work is computed in time t (  p ,) on p , processors, 
the scalability factor, cr, for  the  system withp, pro- 
cessors with respect  to (w.r.t.) the system withp, 
processors is given by 

t(Pl) W ( P Z )  PI 
d P 2 ,  PI) = f o  x w(p,) “p, 
The scalability factor, u( p 2  , p ,) , is a relative ef- 
ficiency measure weighted by the problem sizes. 
It  indicates the efficiency of a system withp2 pro- 
cessors  w.r.t. a system withp, processors. When 
p , is 1 and w( p and w( p , )  are  the  same, crgives 
the efficiency of the parallel system with p 2  pro- 
cessors. When p , is smaller than p , ,  w ( p  is at 
most  equal  to w( p, ) ,  and  the load distributions are 
identical,  then u( p , ,  p ,) is at most 1 ,  and it is de- 
sired to be close  to l .  Note  that  when  one is in- 
terested in the scalability of the  architecture,  the 
application-specific effects such  as  the  degree of 
parallelism (or sequentiality)  inherent to an imple- 
mentation or the effects of the data-partitioning 
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strategies used must be  eliminated. Although it is 
impossible to completely eliminate some of these 
effects, by using the same algorithms, the same par- 
titioning strategies,  and  the  same  implementation 
methods  to  solve different size problems,  one  can 
gain enough information about  the  architectural 
scalability. In  our  experiments,  the implementa- 
tion of the BT benchmark is such that  the paral- 
lelization algorithms remain the  same,  and  the  data- 
partitioning strategies are parameterized by the 
number of processors  and  the problem size. Thus, 
we could use  the  same  implementation  even  when 
processor configurations or the problem sizes  were 
changed. To avoid (as far  as possible) variation in 
the  cache  behavior  because of change in the  array 
sizes, we used array  sizes  to  appropriately fit the 
corresponding  partition  size. 

We studied the scalability of the SP architecture 
using two reference point performance  results:  one 
with a 16-processor system  and the  other with a 
32-processor system. We considered  four problem 
sizes: 64 x 64 x 64, 80 x 80 x 80, 102 X 102 X 
102, and 126 X 126 X 126. Recall that  the 64 X 64 
X 64 and 102 x 102 X 102 problem  sizes are spec- 
ified in the NAS parallel benchmark  suite. For the 
80 X 80 X 80 problem we used a time step of 0.0005, 
and  for  the 126 X 126 X 126 problem  we  chose a 
time step of 0.00005; in each  case  we  performed 
200 iterations, just  as in the  standard problem sizes. 
(Note  that  for  the 64 X 64 X 64 and  the 102 X 102 
X 102 problems,  the  prescribed  time  steps are 
0.0008 and 0.0003, respectively. Note  further  that, 
under  “normal”  conditions,  the  size of the time 
step  does not affect the  total  number of floating- 
point operations  performed, which is determined 
by the  number of iterations.  However, an appro- 
priate time step value should be  chosen  for  numer- 
ical stability.) 

Determining the scalability factor using two differ- 
ent problem sizes  requires an estimate of the  ratio 
of the  work  associated with the  two  problem  sizes. 
In general, for the CFD problems,  such as those rep- 
resented by the BT benchmark,  the  work is pro- 
portional to  the number of  grid points.  However, 
because of the  complex  nature of the computa- 
tions,  the  amount of work is not  exactly  linear in 
the  number of grid points. To simplify the  issue, 
we assumed  the  time to solve a problem on  one 
processor to  be  representative of the  work  asso- 
ciated with that problem regardless of the  number 
of processors used to  solve  that  problem.  Speed- 
ups  and efficiency measures are typically based on 



Table 5 Scalability of SP1 on  benchmark BT 

Table 6 Scalability of SP2-w on benchmark BT 

such an assumption.  The difference in our  case is 
that we did not  necessarily  use  the  best possible 
algorithms or implementation techniques suitable 
for  the single processor  case  (since  our aim was 
to  achieve  best  possible parallel performance). In- 
stead,  the same parallel implementation of the BT 
benchmark,  but  without  any communication con- 
structs,  was used for measuring the  execution time 
on  one  processor (with suitable changes in the  data 
array  sizes). 

The memory requirements of the single processor 
executables get very  large; e.g., 92.8 MB, 174.7 MB, 
360.6 MB, and 677.9 MB are  the memory require- 
ments of the  four problem sizes  considered.  To 
avoid paging effects on  the  execution  time, we ran 
these  one-processor experiments on  one of the pro- 
cessors of a specially configured two-node SPEW 
system, which was  identical in all aspects  to  the 
larger counterparts,  except  that  each node had 1-GB 
main memory. 

Another difficulty in these single processor  runs 
was  the  amount of time  required  to  complete  each 
run, which was prohibitively long. Since  we only 
had a limited amount of machine time  available, 
we  ran  each of the  four  problems  for only 20 it- 
erations  instead of the full 200 iterations.  Since  the 
same  set of computations are performed in each 
iteration,  we found that running the benchmark for 

only 20 iterations  and linearly projecting the ob- 
served time to 200 iterations  was  reasonable. (This 
truncation to 20 iterations  was  done only for the 
single processor  runs; all other  runs  for which the 
results are reported in this  paper  were  carried  out 
for 200 iterations.)  The single processor  execution 
times for  the  four problem sizes-64 X 64 x 64, 
80 x 80 x 80, 102 X 102 X 102, and 126 X 126 X 
126-were respectively  found  to  be 1606,  3307, 
6893, and 13  830 seconds.  Thus,  the  ratios of the 
work associated with the  four  problem  sizes  turn 
out  to  be 1 : 2.1 : 4.3 : 8.6. The scalability factors  for 
the sp1 and SPEW can  be  computed using these 
work ratios and the  execution times of the  four  data 
sets. 

The  performance of the sP1 and sp2-w on  the  four 
data  sets is shown in Tables 5 and 6, respectively. 
In  these  tables, we highlight scalability factors  for 
32-, 64-, and 128-processor systems with respect 
to  a  16-processor  system, using the 80 X 80 X 80, 
102 X 102 X 102, and 126 X 126 X 126 problem 
sizes,  respectively.  (See  the  numbers in bold font.) 
We also highlight scalability factors  for 64-, and 
128-processor systems with respect  to a 32-proces- 
sor  system, using the 80 X 80 X 80, 102 x 102 x 
102 problem sizes,  respectively.  (See  the  numbers 
in italicfont.) In  each of these  two  cases,  the  data 
partition size  per  processor  remains the  same;  i.e., 
the problem size is doubled  when  the  number of 
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processors is doubled.  In  the first case,  the mem- 
ory  requirements  per  processor  for  the  four pro- 
cessor  partition  sizes are: 9.7 MB (16 processors), 
10.7 MB (32  processors), 10.2 MB (64 processors), 
and 10.6 MB (128 processors).  In  the  latter  case 
(where scalability is computed with respect  to  a 
32-processor system),  the memory requirements 
per  processor  are: 6.5 MB (32 processors), 5.9 MB 
(64 processors), and 6.6 MB (128 processors). Thus, 
the  selected problem sizes  assured no change in 
the memory utilization per  processor. 

We observe  from  the scalability factors  presented 
in Tables 5 and 6 that  the SP architecture  scales 
well on the BT type of computations when the mem- 
ory utilization is maintained at  the same level. Note 
that  this  outcome is obtained  despite  the  fact  that 
the memory utilization on  each  processor is less 
than 10 percent of the available memory (which 
was 128 MB per  node  for  both  the SPI and Sp2-w). 
In  some cases,  the SP~-w architecture  seems  to 
scale  superlinearly; i.e.,  the scalability factors are 
greater  than 1 .O. However,  this is because of the 
load imbalance effects that we could not com- 
pletely eliminate from our  experiments. (In the BT 
benchmark,  the 64 X 64 X 64 grid essentially in- 
volves working on a 62 X 62 X 62 grid,  whereas 
the 102 X 102 X 102 grid involves working on a 
100 X 100 X 100 grid. Thus,  the severity of load 
imbalance in computing the 64 X 64 X 64 size prob- 
lem on 16 processors is more  than  that in comput- 
ing the 102 X 102 X 102 size problem on 64 pro- 
cessors.) 

In  the  above,  we  considered  the scalability when 
the memory utilization remained unchanged. Scal- 
ability factors, when memory utilization is varied, 
can  also  be  computed from the information in Ta- 
bles 5 and 6 and  other information presented  ear- 
lier in this  section.  In  particular, by considering 
the execution times in the  same column (i.e.,  the 
execution times for  the  same problem size),  one 
can  compute relative speedups  and efficiencies. 
Consider  two  extreme  cases: 64 X 64 X 64 and 
126 X 126 X 126. On the SPEW, in the  former  case, 
the scalability factor  for  the 128 processors w.r.t. 
16 processors is 0.70 and, in the  latter  case,  the 
same is 0.87. Again both of these figures are quite 
respectable considering the  fact  that in the  former 
case only 2.7 MB memory per  node was required 
when the problem was solved on 128 processors 
and, in the  latter  case,  the  same was 10.6 MB per 
node. 
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Conclusions 

In this paper,  we  have  described  an efficient and 
scalable method for implementing the BT bench- 
mark on distributed memory systems. Using the 
strategies  described  here, we have implemented 
this pseudo-application  benchmark on  the IBM SP 
systems  (the SPI and  the S P ~  with wide nodes) and 
have  presented  performance  results  on  up to 128 
processors.  The  experimental  results  indicate  that 
the SP architecture  delivers good performance  on 
this benchmark,  both in terms of raw  performance 
and scalability. To get the level of performance that 
we  obtained, we used a combination of techniques 
that included the use of efficient sequential algo- 
rithms,  the  use of scalable partitioning strategies, 
the  use of algorithms to  reduce  the  number of mes- 
sages,  the use of improved  data  structures  to re- 
duce memory requirements  and memory refer- 
ences,  and some tuning for high cache  and  register 
utilization. We concentrated  our efforts primarily 
in three  areas: (1) developing a good sequential im- 
plementation, (2) using appropriate  data  distri- 
bution methods,  and (3) reducing  the  number of 
messages communicated  where  possible. A note- 
worthy aspect of this study is  that  we realized good 
performance on  both  the sP1 and SPEW systems us- 
ing implementation methods  that are identical  as 
far  as  the parallelization techniques, parallel algo- 
rithms,  and  data partitioning strategies  are  con- 
cerned.  In  terms of the parallel implementation ef- 
fort,  these  issues  encompass  the bulk of the 
development  and programming effort.  The imple- 
mentations  for  the SPI and SP~-w differed only in 
the single processor  optimization  techniques  used 
in the computationally intensive  solver  sections. 
This is an  important point since it shows  that scal- 
ability is achievable  even at  the software level and 
that it is possible to reuse  code  without sacrificing 
performance, which is critical in the  development 
of large, complex application  software. 

Obtaining good single processor  performance is an 
important  part of parallelizing an application  for 
performance. To realize the significance of single 
processor  performance,  note that when we com- 
piled and  ran USI without  any modifications (but 
using all possible compiler optimization  options) 
on a  Class  A  data set,  the overall  performance was 
about 20 MFLOPS on a single processor of the SPI . 
After the modifications described in this  paper, we 
managed to raise  the single processor performance 
to about 53 MFLOPS. To  obtain good performance 
on  a single processor, we carefully analyzed  the 



computationally  intensive  parts of the  benchmark 
and  replaced  the  conventional  Gaussian elimina- 
tion by the  Thomas algorithm to  reduce  the  oper- 
ation count. We performed loop level optimizations 
and  rearranged individual segments of computa- 
tions so as  to  keep  the  dual  arithmetic units (ALU) 
in the floating-point unit (FPU) simultaneously busy 
(in the  case of the S P ~  processor). Optimizations 
were  also  incorporated to improve  register  and 
cache  reuse. We emphasize  here  that although the 
modifications described in this  paper  were  per- 
formed manually, most of these techniques are well 
known. With some familiarity of the compiler and 
architecture,  but  without being an  expert (and cer- 
tainly without  resorting to assembly line program- 
ming), most of our  performance gains are realiz- 
able. Although familiarity with the RS/6000 
architecture helped us in fine tuning the perfor- 
mance,  the  concepts  we used are  general  and are 
applicable to many other Rrsc-based architectures. 

Similarly, the 3D data  distribution  scheme  that we 
used is the  same as  the block distribution  scheme 
proposed  and implemented by modern compilers 
for distributed memory systems (such as FORTRAN- 
D). We also made use of the  computation  and 
communication trade-off typically observed in 
parallel implicit computations  such  as  the BT 
benchmark.  Thus we could reduce  the  detrimen- 
tal effects of relatively high latency in message 
passing on  the SP architecture. Although this as- 
pect of the optimization is somewhat specialized 
for  incorporation  into parallelizing compilers, we 
believe that this concept  can easily be incorporated 
into  special-purpose  tools, particularly for CFD 
applications. 

We conclude  this  paper with a comment  on  the 
scalability aspect.  A commonly accepted meaning 
of scalability is the ability to deliver a level of per- 
formance  that is in proportion to  the available re- 
sources.  Typically,  on  distributed memory sys- 
tems,  as  the  processors  are  added  the  amount of 
memory (an  important  resource)  also  increases 
proportionately. When users  want  to upgrade a 
parallel system  to a larger one, in addition to speed, 
they are also  interested in solving larger applica- 
tions by making use of  all the available resources. 
As it has  been  pointed  out in various  studies  on 
scalability, this factor should be taken  into account. 
This implies that  performance of a smaller system 
on a smaller problem should be  compared with the 
performance of a larger system  on a correspond- 
ingly larger problem. The performance metric such 

as  speedup  shows the effects on  the performance 
as  resources are increased  without changing the 
problem size.  Since  speedup is truly a  measure of 
effective speed, its practicality is limited, especially 
in the  context of an  application  benchmark. When 
speed is the sole criterion,  one may  in principle just 
replace  the CPU by another  one  that  has  corre- 
spondingly faster clock speed. Scalability implies 
more than  speed,  and  as  such  one should conduct 
experiments with proportionately  larger problem 
sizes on larger systems,  as we have  shown in this 
paper.  A  second point is regarding comparison of 
two different systems  for scalability. The  perfor- 
mance results compiled by the NAS group give an 
excellent indication of achievable  performance  on 
various  systems  (e.g.,  see  Reference 3). The raw 
figures in those  tables  can be used to  understand 
the level of performance achievable on a given sys- 
tem of certain configuration. However,  one  can- 
not use  these  performance figures to  compare  the 
scalability of two different systems in a meaning- 
ful fashion.  One meaningful way of comparing  the 
scalability of various systems,  that  does not involve 
porting the  same implementation to all systems, is 
to  compare  the scalability factors  as  we  have  done 
in this paper. 

Finally,  an  objective of benchmarking  is to obtain 
enough information about  the  system  behavior so 
as  to be able  to make intelligent estimations  about 
the  performance of the  system  when  used  to  solve 
problems that  are  more complex but  have similar 
computations as in the  benchmark.  One may ar- 
gue that  the raw performance  and the scalability 
results  presented in this  paper are useful in under- 
standing the  system  behavior  when  the  computa- 
tions performed have  characteristics similar to 
those in the BT benchmark.  There is no  doubt  that 
no single benchmark or application  can  character- 
ize the  system  behavior  completely,  and  the  per- 
formance of a whole suite of benchmarks  and  ap- 
plications must be studied in a similar manner  to 
understand the system  behavior.  However, the re- 
sults  presented in this  paper  have applicability be- 
yond the  narrow range of the BT benchmark.  Fur- 
ther work needs  to  be  done to quantify the 
generality of these  results. 
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