
Parallel file systems for
the IBM SP computers

by P. F. Corbett
D. G. Feitelson
J.-P. Prost
G. S. Almasi
S. J. Baylor
A. S. Bolmarcich
Y. Hsu
J. Satran
M. Snir
R. Colao
B. D. Herr
J. Kavaky
T. R. Morgan
A. Zlotek

Parallel computer architectures require
innovative software solutions to utilize their
capabilities. This statement is true for system
software no less than for application programs.
File system development for the ISM SP product
line of computers started with the Vesta research
project, which introduced the ideas of parallel
access to partitioned files. This technology was
then integrated with a conventional Advanced
Interactive Executivem (AIXTH) environment to
create the ISM AIX Parallel 1/0 File System
product. We describe the design and imple-
mentation of Vesta, including user interfaces and
enhancements to the control environment needed
to run the system. Changes to the basic design
that were made as part of the AIX Parallel I/O File
System are identified and justified.

P arallel computers are beginning to emerge as
the dominant paradigm for high-performance

computing for reasons that are well known: the
ability to employ relatively low-cost commodity
parts derived from personal computers and work-
stations as components of larger parallel comput-
ers, the rapid increase in performance of these low-
cost parts, and the development of the software
required to integrate these components into a co-
hesive parallel computer. This paper discusses one
such software system, the parallel file system de-
veloped for the IBM SP computers. The IBM AIX*

(Advanced Interactive Executive*) Parallel 1/0 File
System was developed by the IBM POWER Parallel
Division, based on the architecture and implemen-
tation of the Vesta Parallel File System, developed
by the IBM Research Division. This paper provides
a description of both file systems, their design,
functionality, and interfaces, and the technical
decisions that were made in converting research
technology into a product.

Parallel computers are fundamentally different
from serial computers in two ways. First, the par-
allel computer divides its work into disjoint pieces
that are executed in parallel by multiple proces-
sors. This division of the work is often visible to
the users of the computer. Second, the concept of
parallelism is closely connected to the concept of
scalability. Once it is possible to divide the com-
puting task into smaller units that are executed by
multiple processors, it is possible to consider us-

Topyright 1995 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is
done without alteration and (2) theJoumaZ reference and IBM
copyright notice are included on the first page. The title and
abstract, but no other portions, of this paper may be copied or
distributed royalty free without further permission bycomputer-
based and other information-service systems. Permission tore-
publish any other portion of this paper must be obtained from
the Editor.

222 CORBEl l ET AL. 0018-8670/95/$3.00 0 1995 IBM IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995

ing more processors to further divide the problem,
decreasing its execution time or increasing the
amount of computation done. In order to achieve
truly parallel execution of programs, all subsystems
of the computer must be considered as candidates
for parallel implementation. This consideration is
essential to achieve scalability, because any sub-
system that is not parallel may create a bottleneck
in the computer as the number of processors is in-
creased.

The file systems described in this paper were de-
veloped in order to solve the problem of a serial
I/O bottleneck in distributed memory parallel com-
puters. The main motivation was to allow scalable
performance of the file system and its underlying
I/O hardware with increased computer size. In the
pursuit of this goal, it was necessary to integrate
the file system smoothly into the overall parallel
computing environment. This integration required
the creation of new file system functions and par-
allel programming interfaces. This paper provides
a description of these novel parallel aspects of the
file systems and gives examples of how they can
be applied by users in their parallel programs.

Project history. Initial work started in March of
1991 in the context of developing software for a
parallel computer called Vulcan. 1,2 Vulcan was be-
ing developed at the IBM Thomas J. Watson Re-
search Center in Yorktown Heights, New York,
as an experimental massively parallel computer.
Vulcan was intended to scale to 32 768 processing
nodes, each node being an Intel i860** micropro-
cessor with memory, with all nodes connected to-
gether by a fast, multistage, omega-network cut-
through switch. Vulcan was intended to be a
usable, multipurpose computer that would provide
a testbed for research into a wide range of issues
in parallel computing. The primary purpose of Vul-
can was to run numerically intensive, scientific ap-
plications. Since Vulcan was intended to be a mul-
tiuser computer, with emphasis on running
scientific applications, it was essential that Vulcan
provide the basic features of other supercomput-
ers. These features included a compiler, an oper-
ating system, a debugger, and an I/O system. In ad-
dition, since Vulcan was to be a message-passing
computer, message-passing software was required.

Three node types were defined for Vulcan: com-
puting nodes, host nodes, and I/O nodes. The I/O
nodes were intended to provide disk storage to the
compute nodes within the Vulcan system. They

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995

were identical to compute nodes, with the addi-
tion of eight disks and disk controllers. They at-
tached directly to the same switching network as
the compute nodes. However, no software was
available to control the storage of data on the I/O
nodes or to make it available to the compute nodes.
Thus, the Vesta Parallel File System project was
started.

The goal of Vesta was to provide a file system that
was both parallel and scalable. These two concepts
are largely overlapping when realized. A design
point of 32768 powerful microprocessors con-
nected by a switch is very different from the de-
sign point of computers with low levels of paral-
lelism. Thus, we immediately realized that the file
system for Vulcan would have to be fundamentally
different from the file systems then in use in other
distributed, clustered, and parallel computers. 3”

These circumstances presented a good opportunity
to look at the whole issue of file systems for par-
allel computers and to develop a design for a file
system that would meet the needs of the rapidly
evolving massively parallel computers.

Parallelism was incorporated into the design of
Vesta at all levels. Thus, all file data and meta-data
(data internal to the file system that describe files)
are stored in a distributed and parallel fashion
across multiple 110 nodes. The data of individual
files are distributed, but not replicated, across mul-
tiple I/O nodes and across multiple disks within each
110 node. Portions of the file system meta-data are
likewise distributed, but not replicated, to each of
the 110 nodes to manage. The unique feature of
Vesta that enables it to support programs with large
amounts of parallelism is that Vesta files are ex-
plicitly parallel; this parallelism is visible to the user
at the programming interface. Vesta provides the
ability for users to control the distribution of their
file data across 110 nodes, in turn providing the abil-
ity to preserve parallelism from the application
through the programming interface and down to
the 110 nodes and disks. Of course, such a large
amount of parallelism is motivated by the need to
store large amounts of data. Therefore, Vesta is
designed to store a very large number of files (256)
that are very large in size (2@ bytes).

The other distinguishing feature of Vesta is that it
is inherently scalable. There are no centralized
points of control or access in Vesta. All data and
meta-data accesses are performed by passing mes-
sages directly between the compute node making

COMET ET AL. 223

the Vesta request that requires data or meta-data
access and the I/O node that contains the data or
meta-data. No other indirections are required. We
designed the architecture for Vesta by consider-
ing that its design point of 32 768 processing nodes
was essentially infinite for practical purposes.
Thus, no accommodation was ever made to sim-
plify the design by making assumptions about the
maximum number of nodes in the system. Whereas
other systems that are built to provide concurrency
and parallelism in computers with a small number
of processing nodes begin to break down quickly
when used in computers with greater parallelism,
Vesta should scale linearly with the number of
nodes in the system up to any number that can rea-
sonably be built.

Shortly after the basic design of Vesta was com-
pleted, IBM began a new product development ef-
fort to build and market a massively parallel com-
puter. Although not parallel at the same level as
Vulcan, the new machine was to be scalable up to
the range of hundreds of nodes and to run appli-
cations that required all of those nodes. The only
existing file systems available within IBM were all
intended to run in a single processor or in a dis-
tributed environment. The development laboratory
at what is now known as the IBM POWER Parallel
Division (PPD) quickly recognized the need for a
new file system to address the needs of parallel
computing. Thus, the effort at IBM Research of de-
veloping Vesta for the Vulcan computer was re-
directed to developing Vesta for the SP line of com-
puters. A shift in focus, from a pure research
project to a project that would go straight from the
research drawing board into a major IBM product,
was required.

This situation was unusual in many respects. First,
it was necessary to commit to building a file sys-
tem based on the Vesta architecture before the
proof of concept was in place. When the SP prod-
uct development began, we did not yet have a pro-
totype of Vesta completed. Second, a plan was re-
quired to move the Vesta code directly from a
research environment into a product development
environment. A division of the effort between
the researchers at the IBM T. J. Watson Research
Center and the product developers in the new
IBM POWER Parallel Division, then in Kingston,
New York, was necessary. It also required close
cooperation between these two groups through all
the stages of coding and testing Vesta, the trans-

224 C O R B ~ ET AL.

fer of the Vesta code to the product development
laboratory, and the modification of the Vesta code
to meet the specific needs of the IBM AIX Parallel
I/O File System product (abbreviated PIOFS).

This paper describes the Vesta file system as a re-
search technology. It provides an overview of the
architecture of Vesta and provides information
about the interfaces and usability of Vesta, includ-
ing the run-time environment in which Vesta is
used. The paper then describes the basic design
differences between Vesta and the IBM AIX Paral-
lel I/O File System, and why those design decisions
were made.

System interfaces

A file system is defined by its user interfaces. A
major goal of the Vesta project was to introduce
the concept of “parallel files”-files that are ex-
plicitly stored and accessible in parallel. In Vesta,
the basic architecture prescribes that the file sys-
tem runs on a set of 110 nodes and that applications
run on sets of compute nodes. Files are stored in
parallel and distributed across multiple I/O nodes.
Accesses to files come from any compute node and
are directed to one or more I/O nodes containing
the file data being accessed. A simple way to do
this storage and retrieval is to divide the file into
separate pieces, called cells, and assign each cell
to be stored on a separate I/O node. The interest-
ing problem is to make it possible to access this
array of cells in parallel. Some systems have been
developed using a simple distribution of cells to
nodes, where each cell is actually a separate
UNIX** file resident in the local file system of a
node. When a compute process opens a file, it im-
plicitly gains access to only the locally stored cell.
Although this action provides parallel access from
a parallel program to data stored under one file
name, it allows no sharing of data among the pro-
cesses of a parallel job. As a result of surveys of
potential users of a parallel file system, we deter-
mined that parallel files would be a useful mech-
anism for sharing and communicating data among
the processes of a parallel program. We also dis-
covered that even in the absence of data sharing
within a program, it may be desirable to partition
the data of a file in multiple different ways. This
motivated the design of the Vesta parallel file in-
terface.

In PIOFS, the basic functions of the Vesta interface
are maintained. However, there was a strong mar-

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995

ket requirement that PIOFS be an AIX- (IBM's ver-
sion of UNIX) compatible file system. Compatibil-
ity meant that programs compiled to perform file
I/O operations under AIX should be able to run with-
out modification or recompilation when the ac-
cessed files are stored in PIOFS. It also meant that
PIOFS present the interfaces of a standard AIX file

A Vesta file consists of
a two-dimensional array

of data units.

system and that AIX utilities work on PIOFS, requir-
ing some changes to Vesta. AIX provides a vnode
layer similar to the vnode layer first described by
Sun Microsystems in its implementation of NFS**
(Network File Sy~tem**).~ The AIX mode layer
allows multiple file systems of different types to
be accessed through the same file system interface.
To make PIOFS work in this way, it was necessary
to implement a vnode layer to replace the Vesta
interface and to install that layer in the AIX kernel.

This section first presents the parallel file interface
introduced in Vesta and how it supports parallel
access to partitioned files. We then discuss how
this interface can be used to implement a high-level
programming interface suitable for use in a mes-
sage-passing parallel programming environment.
Next, considerations for changing the Vesta inter-
face to match it with the requirements of the IBM
AIX Parallel 1/0 File System product, including the
mode layer, are investigated. The final subsection
describes the interface used in Vesta for the im-
port and export of file data from the file system.

Vesta file partitioning. A Vesta file consists of a two-
dimensional array of data units, called basic strip-
ingunits, or BSUs. s'' The horizontal dimension of
this array is the number of cells in the file. The size
of each BSU and the number of cells are known as
thefilestructureparameters. They are given when
the file is first created and do not change through-
out the lifetime of the file. Cells can be thought of
as virtual I/O nodes or containers for data. Thever-
tical dimension of the two-dimensional Vesta file

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995

array represents data in the cells and is unbounded
in principle. Each cell is always contained within
a single 110 node. Naturally, in any given instal-
lation, the size of the cells is bounded by the avail-
able storage space. The number of cells specifies
the maximum degree of explicit parallelism pos-
sible when accessing the file. This degree of par-
allelism is achieved if each cell resides on a dif-
ferent 110 node. When a file is created, its cells are
distributed among the available I/O nodes. If there
are fewer cells than I/O nodes, a subset of 1/0 nodes
will each have one cell. If there are more cells than
I/O nodes, the cells are mapped to the I/O nodes in
a round-robin manner.

Once a file is created with a given number of cells,
it is viewed by the user as having that degree of
parallelism, whether or not all of the cells are lo-
cated on distinct I/O nodes. Program portability is
enhanced, allowing programs to be developed with
only one or a few 1/0 nodes and then moved to a
larger computer with many 110 nodes without mod-
ification.

A Vesta file may be partitioned into subfiles, which
are subarrays of the two-dimensional Vesta file ar-
ray. Each subfile is a sequence of BsUs extracted
from the entire file. A file can be partitioned by a
partitioningscheme in which a number of disjoint
subfiles are defined, with every byte of the file be-
longing to one and only one subfile. Many differ-
ent partitioning schemes are possible for a given
Vesta file, depending on the number of cells in the
file. Once partitioned, each application process can
open a subfile and access it as though it were an
entire file. The subfile is seekable, with zero-based
byte addressing, and is readable and writable se-
quentially.

The partitioning of files is dynamic and is done
without physically moving data. By specifying a
set of partitioning parameters and a subfile num-
ber when it opens a file, a parallel program can log-
ically decompose a file into a set of parallel sub-
files. The file system then determines the actual
data being accessed and performs the required
reads or writes from the parallel file. The mech-
anism for specifying a partitioning scheme that par-
titions a Vesta file into subfiles is similar to that
used to distribute a two-dimensional array in High
Performance FORTRAN. l2

A partitioning scheme is specified by four param-
eters:

CORBETT ET AL. 225

1. Hbs = horizontal size of block (number of con- when the file is opened. Different processes in a
secutive cells)

secutive BSUs within a cell)

mension

sion

2. Vbs = vertical size of block (number of con-

3. Hn = number of subfiles in the horizontal di-

4. Vn = number of subfiles in the vertical dimen-

These four parameters, referred to as thefilepar-
titioningparameters, define a partitioning scheme
with an Hn X Vn array of subfiles. Each subfile
is composed of blocks of Hbs X Vbs BSUS. These
blocks are interleaved horizontally and vertically
in the file according to theHn and Vn parameters.
Thus, in each dimension, the partitioning scheme
consists of a recurring pattern of Hn (Vn) inter-
leaved blocks, where each block contains Hbs
(Vbs) columns (rows) of basic striping units. For
example, if Vbs = 1 when the file is created, data
are striped with the striping unit of one BSU. If Vbs
is larger, the effective striping unit is a multiple of
the BSU size. Several examples are given in Fig-
ure 1. In the figure, the subfiles are distinguished
by different colors. The numbers represent the se-
quence of BSUS within each subfile.

When a file is opened, the application process
opening the file specifies the four partitioning pa-
rameters listed above, along with a fifth parame-
ter that specifies the subfile to be opened. With a
given set of partitioning parameters, there are Hn
x Vn subfiles, numbered from 0 to (Hn x Vn) -
1. The Hbs X Vbs-sized blocks of the file are as-
signed to subfiles according to their row-major po-
sition in the Hn X Vn array ofHbs X Vbs blocks.

The partitioning parameters define which BSUS be-
long to which subfile. l t is still necessary to deter-
mine the order of these BSUS within the subfile.
Since the vertical dimension of the cells is un-
bounded, we cannot use a column-major order.
However, a “column first” ordering has the ad-
vantage of having consecutive BSUs stored contig-
uously, thus improving locality of access. The
default ordering used in Vesta is therefore a com-
promise: Within each block, BSUS are ordered in
column-major order; the blocks themselves are or-
dered in row-major order. The ordering is illus-
trated in the examples of Figure 1. Row-major or-
dering and column-major ordering within a single
access are also supported. l3

There is no default partitioning of Vesta files; file
partitioning parameters must always be specified

parallel application typically open the file using the
same partitioning scheme but access different sub-
files within that scheme. It is also possible for pro-
cesses to share access to the same subfiles and even
to open the file with different partitioning schemes.
In this way, processes can access the data in dif-
ferent patterns without actually moving the data
from one I/o node to another. For example, a set
of processes can first open subfiles that correspond
to cells and write data into “columns” of the file.
Then they can open subfiles that are striped across
cells and read “rows” of file data. As a result, the
operations of writing and then reading the data can
permute the data among the compute nodes.

One importance of partitioning is that it simplifies
parallel access to the file data at two levels. First,
by opening a subfile rather than the whole file, each
process only sees a subset of the data. This subset
appears to be sequential, starting from an offset of
zero. The process does not see other subfiles that
are actually interleaved with the one that it opened.
Thus the programmer is relieved of the chore of
calculating complex indexing schemes that the ap-
plication would require to partition the data. A sim-
ilar service is provided by High Performance
FORTRAN“ (HPF) compilers for partitioned arrays.
The second simplification is that when processes
access disjoint subfiles, no coordination is needed
in order to guarantee consistent data. When subfiles
are disjoint, accesses are always nonconflicting.

Another important consequence of partitioning is
that data layout can be tailored to match access
patterns. For example, it is easy to create scenar-
ios where each process reads or writes a distinct
cell, which is useful when implementing parallel
algorithms with optimal I/O activity. 14,15 It is also
easy to create situations where each process reads
or writes a different set of stripes across all the cells
of the file. In both cases, and in many other par-
titionings, the load is easily balanced across the
110 nodes, reducing the potential to create hot spots
among the I/o nodes. This option does not exist in
other parallel file systems, such as the Intel C F S ~
and Thinking Machines sfs. l6 These systems stripe
file data as a single sequence across multiple 1/0
nodes, and users do not have control over the strip-
ing unit.

The Vesta interface. The fundamental components
of Vesta are two distinct pieces of software. The
server module is an active process that runs on

Figure 1 Different partitioning schemes for a Vesta file composed of seven cells of eight BSUs

Hn = 4
Vn = 1
HbS = 2
vbs = a

Hn
Vn
Hbs
Vbs

= 1 = 4

= 1
= 1

12

~

Hn = 2
Vn = 2

Vbs = 4
HbS = 4

7

Ht-jH
22 23

Hn = 1
Vn = 3
Hbs= 7
Vbs = 3

Hn = 2
Vn = 2

Vbs = 2
HbS= 1

Hn = 2
Vn = 2

Vbs = 1
Hbs = 5

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995

each of the 110 nodes. Together, the server pro-
cesses constitute a parallel program that provides
parallel file service. The client library is a library
of functions linked to application programs. The

The interface to Vesta
is the collection of

client library functions.

client library runs in the context of the user’s ap-
plication processes at each compute node and ini-
tiates message passing between the client compute
node and one or more 110 nodes. All interaction
between the client and server is done through mes-
sage passing; there is no mechanism for accessing
a Vesta server other than through the client library.
The client library at each node for the most part
does not interact directly with the client libraries
at other nodes.

The interface to Vesta is the collection of client
library functions. These functions are linked to ap-
plications at compile time. The library includes
some global data that are initialized by a special
Vesta-Init function. The global data include a ta-
ble of files currently being accessed, with a local
cache of some relevant meta-data. They also in-
clude a table of open file descriptors, complete with
subfile offsets and file partitioning parameters. To
access a Vesta file, the file must first be attached
to the local application process. This is accom-
plished by a call to Vesta-Attach if the file already
exists, or to Vesta-Create if the file is to be created.
Vesta-Create also requires that the number of cells
in the file to be created and the size of the basic
striping unit of the file be specified.

A file must be attached by every application pro-
cess that wants access to the file. Once the file is
attached, it can be opened one or more times by
the application process, using the Vesta-Open func-
tion. Vesta-Open allows specification of the four file
partitioning parameters, as well as the subfile to
be accessed under that partitioning. The function
returns a file descriptor that can be used for

228 CORBETT ET AL.

subsequent access to the file. The file descriptor
references an open table entry in the client library
that records the partitioning parameters and main-
tains an offset into the subfile. The offset is initially
set to zero and is modified with each access to the
file. It is possible when opening a file to specify
that the offset be shared with one or more other
application processes at the same or different
compute nodes. Vesta then maintains this offset
automatically as the processes each access the file.

The Vesta files are accessed through the special
Vesta-Read and Vesta-Wri te calls or through their
asynchronous counterparts Vesta-Read-Q and
Vesta-Wri te-Q. In each case, the calls look much
like the UNIX read and write calls, requiring a file
descriptor, a pointer to the user’s buffer where the
data should be extracted from or placed into, a
count of the number of bytes or BSUS to read or
write, and an offset into the subfile. The offset pa-
rameter can be absolute (relative to the beginning
of the subfile), or relative (measured from the cur-
rent offset position). File offsets are updated at the
time the access request is made. This ensures that
in the cases of asynchronous 110 and of shared off-
sets, the data are read from or written to the cor-
rect position in the file. It is often the case that the
file data being accessed are discontiguous in the
file, since the subfile is defined to be only a portion
of the entire file. Data may be accessed in a strided
fashion from a single cell or from more than one
cell, possibly stored on more than one I/O node.
Vesta takes care of gathering or scattering all of
these data to or from the user’s buffer into the file
transparently to the user. Thus, it is possible from
a single application process in a single read or write
call to achieve parallel access to multiple I/O nodes.
Within each I/O node, data are striped transparently
across multiple disks, so a large number of disks
can be involved simultaneously in retrieving or
storing data during a read or write call. Coupling
this with the ability to dynamically decompose a
file among several parallel processes, a very high
degree of parallelism is possible, with a high de-
gree of flexibility and control in the hands of the
user.

The collective 1/0 interface. In parallel applications,
multiple processes may perform I/O operations that
are closely related to one another. Individual 1/0
operations performed by distinct processes may
be parts of a single larger 110 operation. It is possible
to provide a file system interface that explicitly

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995

identifies these larger operations. Called collective
ZIO, it usually involves a barrier synchronization
point where all the processes meet to perfom the
I/O operation in tandem. 17-20

Collective I/O in parallel systems is important for
two reasons. First, it is a useful programming tool,
providing a level of control and coordination on
otherwise asynchronous threads of computation.
It is also in tune with the popular SPMD (single-pro-
gram, multiple-data) programming style. Second,
the implementation of collective I/O operations can
include provisions to ensure that requests are is-
sued in an order that promotes the most efficient
disk scheduling possible. 21

An important aspect of collective I/O operations is
the interface used to express them, along with the
precise semantics. In Vesta, there is no direct pro-
vision for collective I/O. In this section, we describe
a library that could be implemented on top of the
existing Vesta interface to provide collective 110
operations in parallel programs. We propose us-
ing a message-passing metaphor in which reading
is comparable to receiving a message from the file
system, and writing is comparable to sending a
message to the file system. Specifically, we intend
to leverage the widely accepted Message-Passing
Interface (MPI) for use in expressing parallel I/O ac-
tivity. This use has the advantage of familiar syn-
tax and semantics for programmers.

In message-passing libraries, such as Express, 22

PVM,’~ and more recently MPI, 24 both point-to-point
communications and collective communications
are available. Point-to-point communications are
simple send and receive operations between a
source task and a destination task, and they gen-
erally come in two kinds, blocking and nonblock-
ing. A blocking send usually blocks the calling task
until the message to be sent is copied into system
buffers. A blocking receive blocks the calling task
until the message is actually received from the
source task. A nonblocking operation returns as
soon as the communication is posted. In this latter
case, the user can thereafter either check or wait
for the completion of the operation.

Collective communications require the participa-
tion and synchronization of a group of tasks in or-
der for the communication to take place. Task
groups are created by associating a group identi-
fier with a list of tasks. A given task may belong
to different groups. Generally, collective commu-

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995

nications are blocking operations. Operations such
as broadcast, reduction, and scatter-gather are pro-
vided.

The high-level collective I/O interface we propose
applies the message-passing paradigm to express
parallel access to Vesta files. This interface defines
several modes for concurrent access to a shared
Vesta file and distinguishes between “point-to-
point” 110 operations, for individual accesses to file
data, and “collective” 110 operations, for collec-
tive accesses to file data by a group of compute
tasks. Both blocking and nonblocking I/O opera-
tions are supported for point-to-point 1/0 opera-
tions, whereas collective I/O operations are always
blocking.

Other researchers have examined collective 1/0 and
have developed architectures to support it. For ex-
ample, a two-phase access scheme has been pro-
posed,25 with data being prefetched on reads into
a large distributed buffer and then further distrib-
uted to the nodes running the accessing processes.
Although such a scheme has merit, Vesta provides
a comparable effect if data are prefetched into
buffer caches at the I/O nodes before being trans-
ferred to the compute nodes.

Collective file access modes. Opening a Vesta file
provides each task with access to a subfile. This
operation is collective and imposes a synchroni-
zation between all tasks to allow for consistency
checking of the function arguments. The partition-
ing parameters (Vbs, Vn, Hbs, Hn and the iden-
tifier of the subfile to be accessed) of the Vesta file
are specified. All tasks must agree upon the four
partitioning parameters. The function returns a file
descriptor, used for subsequent accesses to the
Vesta subfile.

Open allows any of four different access modes:

1. Inprivate mode, each task in the calling group
gets access to a disjoint subfile, and each task
has its own file pointer. Subsequent accesses
to the subfiles are completely asynchronous.

2. In coordinated mode, assignment of subfiles to
tasks is identical to the private mode. However,
accesses to the subfiles will be coordinated,
which means that synchronization between all
tasks within the group specified will be enforced
before any subsequent access to the subfiles,
in order to optimize performance by minimiz-
ing disk seeks in accessing file data.21,25

Figure 2 Point-to-point 110; "type size" is the size of the basic data element type

TYPE SIZE

USERS BUFFER c-) STRIDE -
FILE

AL A

POINTER - - NEW POINTER

3. In shared mode, all tasks within the group ac-
cess the same subfile and share the same file
pointer. All subsequent accesses are made in-
dividually. Each access atomically updates the
shared pointer.

4. In collective mode, all tasks within the group
access the same subfile and share the same file
pointer. However, all subsequent accesses must
be made collectively, using the functions de-
scribed in the subsection on collective 110.

A file can be opened at the same time by different
task groups, and subfile accesses may overlap. If
the file is opened with the concurrency control flag
turned on, the file system will ensure that concur-
rent accesses to the file are atomic, serializable,
and causal. If the concurrency mechanism is dis-
abled (flag turned off), the user guarantees that no
file data are shared among two or more groups for
updates.

Data accessfunctions. Two categories of data ac-
cess functions are in the collective I/O library. The
point-to-point I/o functions allow a task to individ-
ually read and write data from or to an opened
Vesta file, in blocking or nonblocking mode. These
functions are layered directly over the Vesta-Read
and Vesta-Wri t e calls and provide the additional se-
mantics of access modes to these calls. These func-
tions can only be called for files opened inprivate,

230 CORBETT ET AL.

coordinated, or shared mode. In private and shared
modes, no synchronization between tasks takes
place. In coordinated mode, a synchronization be-
tween all tasks within the group is enforced before
the data access is performed, in order to optimize
performance.

These functions provide a facility to read a set of
data elements from a Vesta subfile and scatter them
into the application buffer with a given stride
through the buffer or to write data scattered in the
application buffer to a Vesta subfile (see Figure 2).
This capability is inherited from the MPI.

In blocking mode, read operations block the call-
ing task until data are available in the application
buffer, and write operations block the calling task
until the application buffer data have been copied
into system space or written to the Vesta subfile.
In nonblocking mode, read and write operations
return immediatelywith a request identifier, which
can be subsequently used to check or wait for the
completion of the data access.

Collective ZIO. Collective I/O functions use collec-
tive communication constructs such as broadcast,
reduce, scatter, and gather to express collective
accesses to a Vesta subfile. These functions can
only be called for subfiles opened in collective ac-
cess mode, and all tasks from within the group as-

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995

Figure 3 The read-broadcast/write-reduce collective I/O operations

~~

PROC 2 BUFFER PROC 3 BUFFER

. .
I i i
1 /J

Ab

POINTER - NEW POINTER

sociated with the file connection must issue the
same call in order for the collective 110 to take
place.

A read-broadcast operation allows one to broad-
cast file data to all tasks of a group (see Figure 3).

When all tasks of a group have identical data to
write to a file, a single instance of these data can
be written into the file through a write-reduce op-
eration (see Figure 3) . A flag allows the user to en-
able or disable the phase that checks for data iden-
tity prior to the write operation.

A read-scatter operation reads data from a file
and scatters the data among the tasks of the call-
ing group. The data are scattered among the tasks
in increasing group rank order (see Figure 4). For
performance purposes, two types of this function
are provided, one where all tasks read identical
amounts of data, and the other one where each task
may read a different amount of data.

Tasks of a group can gather data into a file through
a writesather operation. Data to be written by
each task are concatenated in increasing rank or-
der, then the resulting data block is written onto
the Vesta subfile (see Figure 4).

It is apparent that knowledge of collective oper-
ations could be exploited by the file system to im-

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995

prove performance. Exploitation would require a
closer integration of collective I/O into the lower
levels of the file system, rather than layering it on
top of the Vesta interface. In simple cases, the ad-
vantage of having full knowledge of a collective
I/O operation can be achieved by recognizing col-
lective access patterns at the file system servers,
and managing caching and prefetching of data ac-
cordingly. For example, recent studies have dis-
covered that parallel read access to a file typically
covers the entire file or large contiguous portions
of the file, even though each process reads a dis-
joint and discontiguous portion of the file.26
Prefetching large portions of a file once such a pat-
tern is recognized can be beneficial. There are also
situations-for example, the case of extremely
large accesses-where knowing the full extent of
the collective access could be useful in optimizing
performance. We will be examining these issues
in depth in the future, once we have gained expe-
rience with collective I/O.

The IBM AIX Parallel UO File System interface. The
Vesta interfaces discussed in preceding subsec-
tions were designed in the context of a research
project, directed toward the requirements of the
traditional users of massively parallel superco-
puters, namely the users of scientific and num,
ically intensive applications. Typically, these users
are willing to put great effort into the coding of their
applications to obtain the best possible perfor-

CORBETT ET AL. 231

Figure 4 The read-scatter/write_gather collective I/O operations

PROC 1 BUFFER
COUNT=P COUNT=I

PROC 2 BUFFER PROC 3 BUFFER
COUNT=3

POINTER L NEW POINTER

7

mance. Efforts include writing their applications
to use nonstandard interfaces such as the Vesta
interface. This community of users is small com-
pared to the much larger group of potential users
of a computer such as the IBM SP2*. In the context
of a commercial product, a broader range of con-
siderations apply. The goal is still to develop a par-
allel file system suitable for a general engineering
or scientific parallel programming environment.
However, there is also a need to ensure that ex-
isting application codes can run and benefit from
the file system, and that programmers unfamiliar
with the special features of the file system could
still perform I/O using traditional interfaces.

Considerations. The following are some issues that
have to be considered.

Portability-Most users prefer solutions that are
not limited to a specific type of hardware or a spe-
cific software environment. They prefer interfaces
that are widely accepted and implemented by mul-
tiple vendors.27 In the case of parallel I/O opera-
tions, there is as yet no accepted standard inter-
face. Users will have to endure a period of being
required to reprogram their applications when
moving from one parallel computer to another.
Two factors can mitigate the difficulties of this sit-
uation. One is that standards for parallel I/O inter-
faces are being proposed.” Using an early imple-

mentation of such a proposed standard interface
could save time later, if in fact the standard is
adopted. Second, if users do not wish to use the
special explicitly parallel I/O features of a parallel
file system, it would be good if a current standard
interface is supported by the file system along with
the new parallel interface. In UNIX systems, the
relevant standard is POSIX. * * 29 In PIoFS, a large
subset of the defined POSIX functionality is sup-
ported. Most typical program operations on files,
such as read and write, open and close, behave ex-
actly as defined by POSIX. Although this approach
allows existing applications to run, applications
must be modified to take advantage of new func-
tions and to achieve significant performance im-
provements. Most POSIX function is supported, but
PIOFS is not yet fully POSIX-compliant. However,
it is compliant to the degree necessary that most
existing programs will work and that most system
utilities, such as Is, cp, and mv, work as they do
on other file systems.

Lave file support-AIX file systems have a limit
of two gigabytes for the size of a single file. In large
parallel or I/o-intensive applications, two gigabytes
are often not large enough to contain all of the data
that most naturally would be placed in a single
file.30 For this reason a parallel file system, which
will be used with parallel applications and large
files, must allow files to significantly exceed two

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995

gigabytes in size. Vesta provides the basic support
for large files, up to 264 bytes in size. This feature
is preserved in PIOFS, which provides a means for
existing programs to use large files. Users may read
and write files sequentially beyond the two-gi-
gabyte limit, using conventional POSIX read and
write operations. If they wish to seek within a file
beyond the two-gigabyte limit, a special argument
PIOFS-LSEEK must be used. This function sets the
internal offset stored by PIOFS, ignoring the 32-bit
offset maintained in the logical file system layer of
AIX, above the PIOFS vnode interface.

Ease ofuse-Initial use of a parallel file system that
provides a standard and well-known interface will
be easier for most developers. Ease of use for a
parallel file system also includes some facility for
users to understand the performance they are
achieving and to find ways to improve perfor-
mance. If an application is not achieving an ex-
pected performance improvement, the developers
would like some assistance in determining where
the bottlenecks are and an indication of how to
eliminate or reduce them. PIOFS is instrumented
in order to allow I/O activity traces of parallel pro-
gram executions to be collected. These traces can
be visualized afterward (postmortem) for debug-
ging and tuning purposes.

Reliability-Some applications need continuous
availability so that an I/O node or disk failure does
not disrupt the file system. These applications will
justify the cost of redundant hardware and soft-
ware, whereas other applications are able to tol-
erate a file system failure and complete loss of data
in the file system. These latter applications must
keep a copy of critical data outside the parallel file
system and rerun any computations needed to re-
place lost data. Obviously the mean time between
failures of a parallel file system must be signifi-
cantly longer than the time needed to restore the
system and recalculate any lost data.

The inte$ace and its consequences. The common
design that emerges from these considerations can
be summarized as follows: The interface should
support programs written to the POSIX interface,
providing I/O intensive programs with improved
performance without the necessity of recoding. It
should have extensions for programmers who are
willing to invest additional effort in order to obtain
maximum performance. Ideally, the interface
would be a superset of POSIX, with the additional
functions of the parallel file system added in such

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995

a way that they are transparent to users who wish
only to use the standard interface. In the case of
PIOFS, there will be some omissions from POSIX
compliance because of differences in the basic ar-
chitecture of Vesta compared to the UNIX file sys-
tems on which POSIX is based. However, to prop-
erly comply with POSIX, it is sufficient to correctly
implement the full set of mode and vfs operations
defined in AIX. Most of these are now working in
a PosIx-compliant way. However, some features,
such as hard links, have no simple implementation
in the Vesta architecture. These issues will be ad-
dressed as needed, with a goal of full POSIX com-
pliance over subsequent releases of the file system.
This goal may not be realized for all functions, de-
pending on the importance, difficulty, and time
available to implement the required functionality.

Applications that use only those UNIX functions
(for example open, close, read, write) that are sup-
ported by the parallel file system achieve a mea-
sure of portability and may execute using either
existing file systems or the parallel file system.
Note that such programs do not include instruc-
tions to specify the number of cells and the basic
striping unit size of newly created files, or the par-
titioning parameters of opened files. To allow users
control of some parameters that cannot be set by
standard functions, we provide two mechanisms.
In the first, under program control, rather than is-
suing the normal UNIX open system call to create
a new file, the user would issue the special
piofsioctl call with the pfs-create argument. This
call has additional parameters to allow the num-
ber of cells and the size of the basic striping units
of the new file to be specified. In the second mech-
anism, whenever a PIOFS file is created through the
AIX open system call, the file system looks for a pro-
file file that can specify the parameters the file
should be created with. The file system looks first
in the user’s directory, and, if not found, looks in
a system directory. The profile file allows users to
control the number of cells, the basic striping unit
size, and whether the parallel file system uses the
AIX 32-bit file offset or its own internal 64-bit off-
set. By using a profile file, existing programs do
not have to be changed to take advantage of some
parallel file system functions, and moreover, they
even do not have to be recompiled. The default par-
titioning parameters are all one, which leads to a
single subfile striped across all the cells of the file.

To obtain additional control over special features,
such as data placement, it is necessary to open sub-

*
Figure 5 Example of importing a file using multiple slave daemons

L

ti
Vesta-Write-Q

DAEMON
MASTER SLAVE

DAEMON

CN

+ (3) EFS-Read

files of a parallel file by using non-PosIx functions
unique to PIOFS. These functions are based on the
Vesta prototype. For example, to access a subfile
of a PIOFS file, the file first must be opened using
the AIX open system call. This action returns a file
descriptor that can be used to access the file in the
default partitioning of a single subfile, striped in
stripes one basic striping unit deep, across all the
cells of the file. To change this partitioning, the
piofsioctl call with the pfs-change-view argument
can be used, with the file descriptor as an argument,
to set other partitioning parameters and to specify
the subfile to view under that new partitioning.
Subsequent access to that file using that file de-
scriptorwill access the specified subfile. This tech-
nique provides all the function of Vesta in a way
that is not intrusive to users who do not want that
additional function.

Import and export. Vesta includes a set of func-
tions to support import and export of data to and
from external file systems. This functionality is re-
quired to allow data to be moved between Vesta,
where the data are highly accessible to parallel ap-
plications, and archival or other external storage
systems, where the data may be permanently
stored, shared with other computers or sites, or
initially resident. Direct access from compute
nodes to external file systems (EFSS) may be lim-
ited. Therefore, it may be beneficial to import in-
put files into Vesta before running applications that

use them. Likewise, it is more efficient to use Vesta
files for output and then export these files to other
file systems, and possibly to archival storage.

The import and export functions allow Vesta to in-
teract directly with a set of parallel daemons that
actually transfer the data. Requests to import or
export data are issued from application code at
the compute nodes using the Vesta functions
Vesta-Import and Vesta-Export. A utility program
also provides this function from an interactive
shell. Import and export requests are brokered by
a master daemon that is responsible for coordinat-
ing transfers of data between Vesta and an exter-
nal file system. The master daemon may perform
the transfer itself or may delegate one or more slave
daemons to move the data, possibly in parallel (see
Figure 5). In Vesta, we did not undertake the im-
plementation of a large number of master and slave
daemons for different external file system types.
Rather, we integrated the functions required to sup-
port such daemons into Vesta and implemented a
daemon to move data between Vesta and AIX-
mounted file systems as an example of how import
and export daemons can be written.

At present, this import/export functionality does
not exist in PIOFS. We present the Vesta design be-
cause it is an important part of Vesta and because
it is tightly coupled to another major effort in this
area: the High-Performance Storage System being

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995

developed by the National Storage Laboratory at
Lawrence Livermore National Laboratory. 31

The import/export mechanism must be able to as-
sign data movers to physical server nodes in a man-
ner that results in high performance. In this con-
text, latencies are often high, on the order of
seconds to hundreds of seconds (to fetch data from
tape, for example), and the amount of data to be
moved is relatively large. The bandwidth is the key
performance measure. If bandwidth can be scaled
linearly by increasing parallelism of the transfer,
high performance can be achieved. This is provided
for in the Vesta design. However, the limit on par-
allelism is often the external device or file system
that is the source or destination of the import or
export.

If the external storage media are connected phys-
ically to each I/O node, that portion of a parallel
file that resides on an I/O node could be transferred
directly to the local device or through the local in-
terface. The internal interconnection network
would not be used, and transfer would be in par-
allel. Such an arrangement might be suitable for
the backup and restoration of parallel files, but it
lacks flexibility as to how subfiles of parallel files
are imported or exported. A more flexible method
is to designate specific nodes on the interconnec-
tion network as gateway nodes. Gateway nodes are
defined to be a set of nodes in the computer that
have external network, channel, or device connec-
tivity. Gateway nodes may also serve as I/O nodes.
They must be connected to the I/O nodes via the
SP High-Performance Switch. The gateway nodes
must have access to all of the I/O nodes that con-
tain portions of a parallel file and to the external
file system. With this capability any possible par-
titioning of the parallel file can be accomplished.
Parallel data transfer occurs when multiple gate-
way nodes are used (assuming the external file sys-
tem will accept reads and writes concurrently from
multiple gateway nodes).

It is assumed that many different types of EFSs will
be accessible from the massively parallel machine
(for example, AIX JFS [Journal File System] or MVS
[Multiple Virtual Storage]). Each has a specific EFS
type, known to Vesta, that is specified at system
configuration. An EFS interface has been designed
such that it is independent of the external file sys-
tem used. As long as import/export daemons are
installed that can interact with a given EFS, it is
possible to transfer files between that file system

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995

and Vesta. The interface is designed for pipelined
high-bandwidth data transfer between the two file
systems.

The import/export daemons run on the gateway
nodes. They wait to receive instructions initiated
by an application or from the command shell. Such
instructions include the opening and closing of ex-
ternal files and the import or export of data between
the external file and a Vesta file. When an instruc-
tion is received, the daemons perform the actions
necessary to execute the respective operations.
For open and close, such actions include issuing
open and close library calls, respectively, to the
EFS. For import and export, these actions include
reading data from one file and writing it to the other.
For example, import is implemented by reading the
external file data into buffers maintained by the
daemon and then writing the data from these buff-
ers to the Vesta file. In export, the direction is re-
versed. Finally, the daemons may also be used for
the backup and restoration of Vesta files on exter-
nal storage. These operations are performed with
the same import and export mechanism, but they
are initiated by the functions Vesta-Backup and
Vesta-Restore. These functions cause meta-data
headers to be included with the exported data on
backup and to be read and removed on restore. The
header describes the original layout of the Vesta
file and its other meta-data such as last modifica-
tion time, so that the file can be restored exactly
as it was when it was backed up.

Figure 5 shows how a master daemon and a set of
parallel slave daemons can interact to perform par-
allel data transfer in and out of Vesta.

The import and export daemons are designed to
pipeline the data transfer by using asynchronous
Vesta functions, synchronous, blocking EFS func-
tions, and multiple local buffers. It is possible to
provide the asynchrony at the EFS side or to uti-
lize asynchronous access at both sides. As long as
one side of the transfer is asynchronous, a high
throughput can be maintained. Since Vesta pro-
vides asynchronous 110 operations, we show the
asynchrony on the Vesta side. It would also be pos-
sible to use a producer-consumer model for the
gateway daemons, with the producer and con-
sumer asynchronously piping data through a shared
buffer. In any case, the key is to maintain a con-
tinuous flow of data through the gateway node,
with data moving on both sides of the gateway node
at all times.

A pool of buffers in the gateway node memory is
used for the data transfer. The size and number of
the buffers are chosen for efficient pipelining. Ini-
tially, the buffers allocated for the transfer are
placed on a list of free buffers. For import, block-
ing EFS reads are called to transfer data from the
EFS file to the local buffers. When each EFS read
completes, an asynchronous Vesta write is called
to transfer the data from the local buffer to the
Vesta file. Since the write is asynchronous, exe-
cution continues by reading more data from the EFS
file to additional local buffers (if available). Once
the system reaches steady state, each buffer is ei-
ther the target of an EFS read or the source of a
Vestawrite. For export, asynchronous Vesta reads
are called to read data from the Vesta file to the
local buffers. Again, once the system reaches
steady state, each buffer is either the target of an
asynchronous Vesta read or the source of an EFS
write. Once a Vesta read has completed, the EFS
write function is called to transfer the data to the
EFS file. This action facilitates the pipelining of the
data transfer.

The IBM AIX Parallel 110 File System, as opposed
to Vesta, is mountable as a virtual file system
within the framework of the AIX file system. There-
fore, import and export are implicit in certain op-
erations. Files can be copied, using the AIX cp com-
mand, or moved, using the AIX mv command,
between the parallel file system and other file sys-
tems that support these commands. The fastest
mechanism for moving data is likely the AIX dd
command, which sets up a producer-consumer pair
of processes, allowing pipelined transfer of data
in or out of the file system. The ftp program can
also be used to move data. Copied or moved files
can use the profile file to provide some control of
file striping across YO nodes. To accomplish im-
port or export in parallel requires users to write a
program that can utilize the parallel read-write ca-
pability of the parallel file system and whatever
mechanism they choose for parallel I/O to the ex-
ternal file system.

Implementation issues

The unique goals of the Vesta implementation were
to ensure that parallelism expressed in the inter-
face was preserved to the level of disks and that
the file system was inherently scalable to a very
large number of nodes. To these were added goals
typical of all file system implementations: reliabil-
ity, availability, and fast performance. To these,

236 C O R B ~ ET AL.

the IBM AIX Parallel 110 File System further added
the goal of compatibility with existing AIX file sys-
tems and the ability to run existing applications.

To fully understand the issues facing the implemen-
tors and how these issues were dealt with, a brief
overview of the history of the project is required.

PIOFS is mountable as a
virtual file system within the

framework of the AIX file system.

Vestawas implemented before PIOFS at the IBM Re-
search laboratory. When Vesta was mostly com-
pleted, the code was transferred to the POWER Par-
allel Development Laboratory. Vesta was used as
thevehicle for developing the bulk of the new code
to be used in PIOFS. However, Vesta was devel-
oped in a different operating environment than PI-
OFS. The reason was that Vesta was intended to
serve two purposes: as a research prototype to
demonstrate some new concepts in interfaces for
parallel file systems, and as a code base from which
the PIOFS could be derived. Thus, the decision was
made to develop Vesta as a user-space librarywith
unique function calls directly linked to client ap-
plications. The task of adapting this library to use
in the AIX kernel was assumed by PPD as part of
making Vesta a product. In contrast to the client
code, which is significantly different in Vesta and
PIOFS, the Vesta server code was adapted with a
number of small modifications for use in the PIOFS
code. Although all the reasons for this development
strategy are beyond the scope of a technical pa-
per, this approach allowed each group to focus on
the aspects of the overall project that it was best
suited to accomplish. The research team was com-
mitted to developing the core of the technology for
Vesta and PIOFS and to demonstrating the new con-
cepts introduced in it. The development team had
to deal with turning the research prototype into a
useful and salable product.

A file system is an integral part of the operating
environment or operating system of a computer.
Its implementation is necessarily based on serv-

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995

ices provided by other system components. In the
case of Vesta and PIOFS, the primary components
required are the interprocessor communication li-
brary and the disk I/O drivers. In the following para-
graphs, we will provide an overview of the imple-
mentation of Vesta and PIOFS, as well as examine
the communication libraries and disk I/O drivers
upon which each is built.

Clientherver structure. Since Vesta and PIOFS are
based on an architecture providing a distinction be-
tween compute nodes that run user applications
and I/O nodes that run the file system servers, it
was necessary to implement distinct client library
software and server process software. Although
having compute and 110 nodes is not the only pos-
sible approach for providing parallel 110 operations,
it is the basic architecture adopted by most mak-
ers of massively parallel computers. 32

The capability to perform direct access from a com-
pute node to the I/O node containing the required
data, without referencing any centralized meta-
data, is a central feature of the Vesta design. l3 This
capability is achieved by a combination of means.
First, file meta-data are distributed on all of the 110
nodes and are found by hashing the file name to
a 64-bit object identifier. The object identifier is fur-
ther hashed to determine which I/O node contains
the file meta-data. The main file meta-data are
maintained in only one I/O node, but blocklists are
maintained in other I/O nodes that contain any cells
of the file. The file meta-data are only accessed by
the client library once when the file is first attached
(in Vesta) or opened (in PIOFS) by the application.
This access includes checking the access permis-
sions and retrieving the file structure parameters.
The file partitioning parameters are set when the
file is subsequently opened (in Vesta) or when the
view of the file is changed (in PIOFS). Thereafter,
compute nodes can identify the I/O nodes that con-
tain any data of that file using a combination of the
file structure parameters they have obtained, the
file partitioning parameters given when the file was
opened or the view was set, and the offset.

Block lists for the file are maintained for each cell
individually on the I/O node where the cell resides.
If the I/O node has multiple disks attached to it,
Vesta stripes blocks across the available disks
transparently to the client. Neither block lists nor
file data are cached on compute nodes. This con-
dition is acceptable because of the relatively low
latency of the interconnection network of the mul-

IBM SYSTEMS JOURNAL, VOL 34, NO 2. 1995

ticomputer, especially when compared to disk ac-
cess times. It is quite likely that higher-level 110
libraries built on top of Vesta or PIOFS may cache
some data locally at the compute nodes.

This distribution of meta-data results in no central-
ized point of control or access in the file system
servers. The uniform distribution of file meta-data
ensures that meta-data requests are distributed to
all server nodes. Temporary hot spots may de-
velop, for example, when a file is being attached
by a large number of client nodes simultaneously.
However, long-term usage patterns should show
a uniform distribution of meta-data requests to 110
nodes in a file system with more than a few files.
In Vesta, these hot spots could be eliminated by
special functions that allowed client processes to
distribute file-attach information among them-
selves, avoiding the need for each client process
of a large parallel program to access a single server
node for client meta-data. This function has not
been included in PIOFS, to eliminate the need to
support communication among client processes.
However, if hot spots prove to be a problem, this
function can be introduced in PIOFS.

Vesta also avoided hot spots by eliminating the
need to descend through the directory hierarchy
by means of recursive lookup to locate any file.
All files are accessed directly by hashing their en-
tire path name into a unique identification for the
file. In PIOFS, the recursive lookup, beginningwith
the root of the file system, is unavoidable, because
it is driven by the logical file system layer of the
kernel, which is above the virtual node interface
provided by individual file systems, including
PIOFS. In this case, it could lead to hot spots in the
110 nodes that contain the meta-data for the top-
level directories of the file system. This condition
is a potential performance issue that we may be
forced to address by caching or replicating the
meta-data for these top-level directories.

Disk UO operations. The disk I/O drivers used are
standard components of the AIX operating system,
which provides asynchronous character mode
(raw) access to unbuffered physical devices
through a disk abstraction known as logical vol-
umes. In addition to this access, the AIX JFS file
system was exploited to store Vesta and PIOFS
meta-data in memory-mapped files on each I/O
node.

CORBElT ET AL. 237

In the first version of Vesta, disk 1/0 operations for
file data were performed by using large AIX JFS files
to store data, treating these files like disks. This
method provided a simpler path to start the file sys-
tem working, because we could rely on the virtual
memory management and caching strategies of
AIX JFS to handle caching of data at the I/O nodes.
Vesta handled block allocation out of the “disk
files” but did not manage its own buffer cache. All
caching of data in I/O node memory was handled
by AIX JFS. Reads and writes were handled using
asynchronous I/O system calls provided in AIX.
Once this version of Vesta was working, a buffer
cache layer was built into the Vesta servers, and the
asynchronous I/O calls to the “disk files” were re-
placed by asynchronous calls to raw logical volume
devices. An AIX logical volume corresponds to
allocated portions of one or more physical volumes
(devices). PIOFS is following the same progression.

Internode communication. A key component of the
environment in a parallel computer is the commu-
nication mechanism between nodes. The S P ~ com-
puter runs a Message-Passing Library called MPL.
MPL allows high-bandwidth, low-latency commu-
nication between processes within a parallel pro-
gram. However, it does not provide any mecha-
nism for communicating beyond the set of nodes
running any given application program. (We refer
to the set of nodes running a single application as
apartition.) Since the Vesta servers run as a par-
allel program on a set of I/O nodes, it is possible
for them to communicate among themselves us-
ing MPL. However, it is not possible for client ap-
plications, running on a different set of nodes, to
communicate with the servers.

Different subsystems were developed to solve the
communication problem for Vesta and for PIOFS.
For Vesta, we developed a special message-pass-
ing library, based on MPL, that allows interparti-
tion communication. For PIOFS, the problem was
even more difficult. MPL works only between user-
space processes on multiple nodes. In the case of
PIOFS, the client side library runs in the kernel.
Therefore, it was impossible to use a user-space
communication library to provide communication
between the client and server nodes.

The MPX communication library. Vesta uses a
communication library closely related to the MPL
provided with the S P ~ . This library, called MPX (for
message-passing cross partition), provides commu-
nication calls similar to those of MPL, with an ad-

238 CORBET ET AL.

ditional parameter specifying the partition to send
or receive the message to or from. On receive, the
partition parameter can be a wild card, allowing
receipt from any other partition or can be specific
to match only with a message sent by a specific
partition. The partition can be a different partition
than the partition of the local process or can be the
partition of the local process.

To accomplish interpartition communication, MPX
provides an additional set of library calls that re-
quest and accept communication sessions between

A key component of the
environment in a parallel

computer is the communication
mechanism between nodes.

two partitions. We developed a protocol to allow
this attachment in a clientherver environment, as
required by the Vesta server and its client appli-
cation programs. When a client application is ini-
tialized, it requests the ability to communicate with
the server partition. If the server grants this re-
quest, the client can then address the I/O nodes and
is able to send messages to the server. The server,
in turn, can address the client nodes and is able to
send messages to the client.

An important feature of MPX is that it provides in-
formation to the server in the case where a client
program terminates, either normally or abnor-
mally. When a client program terminates, each
server process is notified through a call-back pro-
gram. This notification gives the server the oppor-
tunity to clear any state relating to that client; for
example, it can release any locked or attached files.

The communication library of PIOFS. One goal of
the design of PIOFS was to be able to port it to mul-
tiple platforms. Portability required a communica-
tion library that would work on a number of dif-
ferent computers. In a UNIX system, it implied using
Transmission Control ProtocoliInternet Protocol
(TCPDP) or User Datagram ProtocoHnternet Proto-
col (UDPDP). In the case of PIOFS, the overhead of
maintaining TCP connections between each server

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995

process and every other server and client applica-
tion process was too high. Therefore, a communi-
cation librarywas built over UDPDP. Client processes
are able to discover the location of the PIOFS servers
once the PIOFS file system is mounted at a compute
node. More than one PIOFS file system can be
mounted. The mount information maintained by the
AIX kernel includes a table of addresses of the server
nodes run by that PIOFS file system. When any cli-
ent process first issues a virtual node or virtual file
system operation against a mounted PIOFS, the nec-
essary routing information is initialized in kernel
memory for that process.

One shortcoming of the uDPiIP-based message-
passing system is that the UDPiIP driver is not as
efficient as the MPL driver. It is anticipated that this

developed that approach MPL in performance. The
message-passing system in PIOFS does not provide
the server with information about client programs.
Rather, the server is only aware of client processes.
Instead of the server being notified when an entire
client job is terminated, it is notified when each cli-
ent process that it is communicating with termi-
nates. This approach allows a similar method of
protection against client failures as is provided by
Vesta with MPX.

Applications experience

In this section, we describe the use of Vesta in a
parallel three-dimensional (3D) seismic migration
program that was demonstrated on an sP1* at Uni-
Forum ’94, and we briefly discuss other applica-
tions that could benefit from the ability of Vesta
and of PIOFS to handle files larger than two gi-
gabytes and access them in parallel. The applica-
tion program described here has been easily ported
from Vesta to PIOFS. At the time we made this dem-
onstration, Vesta was available. We expect to dem-
onstrate similar applications using PIOFS in the near
future. Two figures illustrate several different kinds
of parallel I/O operations that were achieved. Fig-
ure 6 is a diagram of what the seismic demonstra-
tion program did. It shows:

Several worker processes concurrently reading
disjoint sets of slices of the input frequency data
file, with each slice striped across the I/O nodes
and hence being read in parallel
The velocity-correction file striped across the 1/0
nodes and read in parallel by the master seismic
process

I

I gap will narrow significantly as new IP drivers are

1

I

I IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995

Two visualizer processes concurrently reading
the completed output file created by the seismic
program, having opened the file with two differ-
ent views that allow one visualizer process to dis-
play the file as a sequence of horizontal slices
while at the same time the other visualizer pro-
cess is traversing and displaying the output file
as a sequence of vertical slices. The subfiles for
the second view are striped across the 110 nodes
and hence exhibit parallelism during the read pro-
cess as well.

Later, Figures 7A, 7B, and 7C show how these ef-
fects were achieved. We illustrate the differences
in the way the velocity file and the output file were
written and the differences in the open and read
calls that were used for the two different views.

The seismic migration application. The seismic pro-
gram operates in the frequency-space or ‘‘w - x”
domain and uses implicit finite-difference tech-
niques to perform 3D post-stack depth migration,
an image correction technique used extensively by
the petroleum and mining industries. A “manager-
workers” or “master-slaves” parallelization tech-
nique was used, similar to the approach used ear-
lier for two-dimensional (2D) seismic migration. 33334

The 2D program assumed that the input data files
would fit into memory and used a technique in
which, for each frequency, the signal recorded at
the surface was extrapolated to the full depth of
the image in one unbroken sequence. Aworker first
acquired its own copy of the entire velocity-cor-
rection file and stored it in its memory. The worker
then acquired the input data for one frequency,
stepped through all of the depths, returned the
completed subimage for that frequency to the man-
ager, and requested input data for another frequen-
cy; the manager produced the final image by sum-
ming all of the subimages that it was given. As
many tasks could be done in parallel as there were
frequencies. A performance of five gigaflops and
a speedup of 88 were achieved on a 128-node sP1
for this 2D program.

The main differences between the 2D program de-
scribed above and the 3D program used here are:

The current program performs 3D migration.
The 3D program uses an implicit finite-difference
technique, whereas the method used for the ZD
program was explicit. The implicit method uses
fewer floating-point operations to achieve the
same result, and so, other things being equal, the

CORBETT ET AL. 239

Figure 6 Demonstration of a 3D seismic migration application using Vesta

/01:- I I

I
I
I
I
I

x-Y(Z) x-Z(Y) I

"""""""""~

MOVIE

L"""

single-node count of floating-point operations of
the 3D program is about half that of the 2D pro-
gram.
A 3D data set is too large to fit into memory at
once, and so a technique different from that for
the 2D case is used, as described below (also see
Figure 6). First, the input data for all the frequen-
cies is distributed among the workers. Then the
manager reads the velocity-correction data for
the first depth and broadcasts them to the work-
ers; each worker then extrapolates the data for
each of their frequencies downward by one depth
step, sums the results together to form the sub-
image for that depth, and returns the result to
the manager for the final summation that creates
the corrected image for that depth. The manager
then reads and broadcasts the velocity-correc-
tion data for the next depth, and the process re-
peats until the final depth is reached. As an op-
tion, the manager can display the top and side

240 C O R B ~ ET AL

views of the output file as it is forming, provid-
ing a useful visualization of the program results.

We had an eight-node sP1 available for our dem-
onstration; we used three as the I/O nodes of a Vesta
file system and the remaining five as compute
nodes for the seismic program (one manager and
four workers). We kept the file sizes fairly small
(4 to 8 megabytes, corresponding to roughly
100*100*100 arrays) to keep the demonstration
short enough to remain interesting, and so this
demonstration was not a performance benchmark
so much as one of functionality. We showed five
different kinds of parallel I/O operations (Figure 6):

1. A worker process accessing the frequency file
could read its slices in parallel from all the I/O
nodes.

2. Multiple workers could open and read the fre-
quency file at the same time.

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995

Figure 7A Vesta code in writing Vvelfile for 3D seismic migration demonstration

/*basic stri ing unit size = 4*ceiling of (nx*ny/nionodes)7
mybsu = (r)*sizeof(float); 1

io io io

nionodes

Vests- Create(Vvelfile, 0. , 0644, cast64m(
4 4 4

) , - I ,);
___- ____

ncells = nionodes 1
flle permcsslons -++ nionodes i
preallocated size
(In bsus)

Vbs, Vn, Hbs, Hn

I
I ~~

I
Vesta Ooen(Vvelfile. &Vvelfd, , 1 , 1 , 1 , 0 , VESTA-ORDER):

sue of vertical block In bsus

number of vertically
interleaved subfiles

cellslhorlzontal block I
number of horizontally I
Interleaved subflles

subflle to open

bsus column-major
blocks row-major

Vesta -wrlte(Vvelfd, cast64m(O), , BSUS CURRENT, (char*) v);

offset flrst bsu to wrtte f t t t
count = cast64m();

wrlte how many th1ngs7
measure offset and count in . .
start where we left off

3. The manager read its velocity file slices in par-

4. The two visualization processes could access

5. The visualization process that was displaying

allel from all of the I/O nodes.

the depth file at the same time.

ncells = nionodes

subflle = n~onodes'nz bsus

(3 @ a

nstripes = nz

nx
I I 1 1-

I I

the vertical cross sections could read its slices
in parallel from all of the I/O nodes.

Implementation using Vesta. We now explain how
the types of parallel I/O operations described above

C O R B E ~ ET AL. 241 IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995

Figure 7B Vesta code in writing Vdepfile for 3D seismic migration demonstration

Vesta~Create(Vdepfile, 0, , 0644,
cast64m(), -1,);

mybsu = sizeof(f1oat);

produces an ncells*nstrlpes-slzed array of &.s

c s can be asslgned to IO nodes

Vesta Open(Vdepfile, &Vdepfd,
VESTA-ORDER):

opens a subfile whose Hbs'Vbs-wed
blocks can be Interleaved horlzontally wlth
Hn-1 others, vertically wlth Vn-1 others

for (izl=2; izl<=nz; izl++) (
count = cast64m():

Vesta~ Wrlte(Vdepfd, cast64m(0),
(char')dirnage);
1

the subfile that has been opened
speclfles how data are poured Into

BSUS ICURRENT,

ncells = nionodes

subflle = ny bsus
(nz subflles)

pe

[bsu] = nx

nstripes = 7 ny'nz
nlonodes

were done. Three large files are used by the seis- time domain to the frequency domain to form a 3D
mic program. The frequency file is the primary in- (x, y, w) array of eight-byte complex numbers.
put to the program and contains the array of input (The coordinates along the surface arex andy, the
signal traces that was recorded at the surface and depth coordinate isz, and the frequency is w.) The
then changed by Fourier transformation from the velocity file tells the program how the speed of

242 CORBET ET AL. IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995


~~~ ~ 

Figure 7C Vesta  code in reading  Vdepfile  for 3D seismic  migration  demonstration 

READING VdeDfile 2 VIEWS 

r 

L 

if  (my-id == VIEW1) { 

Vesta Open( Vdepfile. &vfd, my. 1 .  1, I, 0,  VESTA-ORDER) 

Vesta Read( vfd, castdm( 0 ), &count, BSUS I CURRENT, (char *) hsect); 

] else if (my-id == ) { 

for (iy=O: i y a y ;  iy=iy++) { 

count = cast64m( nY)' 

Vests Open( Vdepfile, &vfd, 1, , VESTA-ORDER); 

Vests- Read( vfd, cast64m( o ) ,  , BSUSI , (char 7 ): 
) 

count = cast64m( ); 

1 

[bsu] = nx 

r 
t 

sound  (stored in four-byte floating-point numbers) 
varies from point to point in the ( x ,  y, z )  volume 
of interest. The depth file-the corrected  output 
image written  by  the program-is an ( x ,  y ,  z )  ar- 
ray of signal amplitudes (also four-byte floats) com- 
puted using the  other two files. The  prestack  data 
from  a 3D seismic  survey  can  easily  exceed 100  gi- 
gabytes. 

Aside from housekeeping, we use  four  basic  Vesta 
functions35 to manipulate our files: 

Vesta-Create, which creates  a file that is a  col- 
lection of BSUs arranged in a 2D array with ncells 
columns  and  nstripes rows. Each  cell (column) 

1 

1 VIEW 1 

can  be assigned to  a  separate I/O node, and for 
this program, the number of cells is  chosen to 
equalnionodes,  the number of I/O nodes. For  the 
depth file, the BSU size is nx * 4 bytes,  the  size 
of one  row of one slice of the  output image. For 
the  other two files, the BSU size is basically ~tx 

* nyhionodes, which means  that  a  stripe is just 
large enough to hold one horizontal (nx * ny) 
slice. 
Vesta-Open, which opens  a  portion of the file cre- 
ated above; it opens  a subfile whose Hbs * Vbs- 
sized blocks can  be interleaved horizontally with 
Hn - 1 others  and  vertically  with Vn - 1 oth- 
ers.  Three  examples will be  described;  also see 
Figures 7A, 7B, and 7C. 

IBM SYSTEMS  JOURNAL, VOL 34, NO 2, 1995 



Vesta-Write and Vesta-Read, which specify how 
data  are  poured  into  the subfile that  has  been 
opened,  or how data  are  extracted from it. See 
the  Vesta user’s manual35  for  more detail. 

When the  Vesta  frequency file and  velocity file are 
created  and  written (by a program running on one 
of the  compute  nodes),  the subfile specified by  the 
Vesta-Open call is  the  entire file, and Vesta-Wri te is 
used to  write nionodes * nz’s worth of BSUS into 
the subfile, with the  result  that  each slice of the 
frequency file and  the  depth file is  striped  across 
all the I/O nodes  and  can be read in parallel. The 
first of these  uses of Vesta-Open enables  the  paral- 
lelism examples listed as 1 and 3 above.  Examples 
2 and 4 result from the ability of Vesta  to let mul- 
tiple processes  concurrently  read and write  a sin- 
gle file. 

For  the  frequency  and  velocity files discussed 
above, Vesta-Open specifies identical subfiles for 
both  the  read  and  write  operations.  This  is  only 
half true  when it comes  to  the depth file, which is 
the  trickiest of the  three file usages. As mentioned 
above  and  shown in Figure 7B, the  depth file is  cre- 
ated with smaller BSUS than the  other two, and  the 
subfile opened  for  each  write  operation is confined 
to  one cell (one I/O node) and is just large enough 
to hold one horizontal slice. When it comes time 
to read  the  depth file (see  Figure 7C), two differ- 
ent subfiles are  opened by  the two visualizer  pro- 
cesses. One is identical to  the subfile used for writ- 
ing and allows that  particularvisualization  process 
to read one horizontal plane from the file at  a time, 
just  as it was written. The  other  process  opens  a 
very different kind of subfile (a  sequence of sub- 
files actually), one  that  consists of thin stripes  one 
BSU wide and distributed  over  the file such  that it 
encompasses one BSU from  each  horizontal slice. 
Assume  that it is  the first BSU in each  horizontal 
slice. Then in effect, the first subfile opened by  the 
second  process  contains  the edge of each  horizon- 
tal slice-in other  words, it contains  the  outermost 
vertical slice of the 3D depth file. And since  the thin 
stripes mentioned above  span  the 110 nodes,  this 
second  visualizer  process  reads in parallel from all 
of the I/O nodes. This is parallelism example 5 listed 
earlier. 

This ability to  open two different views of the  same 
data by simply specifying different parameters in 
the Vesta-Open and Vesta-Read calls  seems to have 
real  value. The alternative of transposing  the  data 
is  expensive enough in time and  resources  that it 

244 CORBET ET AL. 

is not unusual in the  industry  to  store  three differ- 
ent files, each  representing  a different view of the 
same 3D seismic  data. To otherwise avoid keeping 
multiple copies of the data, remembering that  seis- 
mic  data files are often  many gigabytes in size, it 
would be  necessary  for  the application program to 
seek  through  the file, maintaining its  own mapping 
of the 3D structure of the  data  onto  the file. Vesta 
provides  this  capability  directly  through  its  dy- 
namic partitioning mechanism. It  also allows the 
file to  be  broken  down among the I/O nodes in a 
way that  corresponds  to  a  natural partitioning of 
the  data, while containing all the  data in a single 
file. 

One of the  interesting  experiences  at  our  UniFo- 
rum demonstration was having our  awareness  ex- 
panded by visitors  who  saw  our  seismic  demon- 
stration and then thought of other  uses  for  Vesta. 
One observer  became  excited  by  the possibility of 
visualizing data  as  they changed. When told that 
seismic  data  were  not really like that,  she said 
“Forget seismic! I’m talking about decision sup- 
port!” Several  other people echoed this sentiment. 
Other  suggestions included air traffic control  and 
satellite  data management. The  potential of Vesta 
for use in real-time systems  that  require high I/O 
bandwidth  seemed to  create  as much  interest as 
its use in  110-intensive applications that would di- 
rectly benefit from dynamic file partitioning. Our 
favorite  visitor  may  have  been  a man from The 
GAP. (“Yes,  we  make  pants.”) He spends 5?h 
hours  every day collecting data from 1500 stores. 
Writing his file  in parallel ten  times  faster would 
free  up five hours daily on his main computer.  Such 
users will be  able to benefit immediately from the 
increased  performance of PIOFS when used as a 
standard AIX file system, without concerning them- 
selves  with  the parallel interface  features. 

Conclusions 

In  this  paper, we have given an  overview of the 
Vesta file system  and  the IBM AIX Parallel I/O File 
System, including their interfaces, their implemen- 
tations,  and  a  seismic  processing example. 

The  success of this  project will be  measured in two 
ways.  First,  Vesta  has  become  established in the 
research  community as one of the first file systems 
to  provide  many of the  features  that  are being rec- 
ognized as important to support parallel comput- 
ing on large-scale parallel computers.36  Many 
groups in U.S. national laboratories,  other IBM di- 

IBM SYSTEMS JOURNAL, VOL 3 4 ,  NO 2, 1995 



visions,  and  universities  have  used  Vesta as a tool 
in their research.  Thus,  a  measure of success  has 
been  achieved  when  Vesta  is  viewed  purely as a 
research  project.  The  other  measure of the  success 
of this  project is as a  product.  The  success of the 
AIX Parallel I/o File System will be  measured in 
the  marketplace  over  the  next  few  years.  Success 
in this  arena  is of much  greater  importance to IBM 
than is success in the research community. The 
marketplace is where we will really determine 
whether  this file system  is right for parallel com- 
puters. 

*Trademark  or registered trademark of International  Business 
Machines  Corporation. 

**Trademark  or registered trademark of Intel  Corporation, 
X/Open Co., Ltd.,  Sun  Microsystems,  Inc., or Institute of Elec- 
trical and  Electronics Engineers. 

Cited  references and note 

1. C. B. Stunkel, D. G.  Shea, B. Abali, M. M. Denneau, 
P. H. Hochschild,D. J. Joseph, B. J.  Nathanson, M. Tsao, 
and P. R. Varker,  “Architecture  and Implementation of 
Vulcan,” 8th  International ParallelProcessing Symposium 
(April 1994), pp. 268-274. 

2. C. B. Stunkel, D. G. Shea, D.  G. Grice, P. H.  Hochschild, 
and M. Tsao,  “The SP1 High-Performance Switch,” Scal- 
able  High-Performance Computer Conference (May 1994), 
pp. 150-157. 

3. R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh,  and 
B. Lyon, “Design and Implementation of the Sun  Network 
File System,”Proceedings of the  Summer USENIX Tech- 
nical Conference (June 1985), pp. 119-130. 

4. E. Levy and A. Silberschatz, “Distributed  File  Systems: 
Concepts  and  Examples,” ACM Computing Surveys 22, 
No. 4,  321-374 (December 1990). 

5.  M. Satyanarayanan, “Scalable, Secure, and HighlyAvail- 
able  Distributed  File Access,” Computer 23, No. 5, 9-21 
(May 1990). 

6. P. Pierce, “A  Concurrent File System for  a  Highly Par- 
allel Mass  Storage Subsystem,” 4th Conference on Hyper- 
cubes, Concurrent  Computing,  and Applications, Vol. I 
(March 1989), pp. 155-160. 

7. E. DeBenedictis and  J. M. del  Rosario, “nCUBE Parallel 
1/0 Software,” 11th International  Phoenix Conference on 
Computersand Communications (April 1992), pp. 117-124. 

8. M. Henderson, B. Nickless,  and R. Stevens,  “A Scalable 
High-Performance I/O System,” Scalable High-Perfor- 
mance Computer Conference (May 1994), pp. 79-86. 

9. The terminology  used here is slightly different  from that 
used in the original Vesta papers.  “Physical  partitions” 
are  now called “cells,” “logical partitions” are now  called 
“subfiles,” and  “records”  are now called “BSUs.” 

10. P. F. Corbett, S. J. Baylor, and D. G. Feitelson,  “Over- 
view of the  Vesta Parallel  File System,” Proceedings of 
IPPS ’93 Workshop on I10 in Parallel Computer Systems 
(April 1993), pp. 1-16. Reprinted in Computer Architec- 
ture News 21, No. 5, 7-14 (December 1993). 

11. P. F. Corbett, D. G. Feitelson, J.-P. Prost, and S. J. Bay- 
lor,  “Parallel Access  to  Files in the  Vesta File System,” 
Supercomputing ’93 (November 1993), pp. 472481. 

IBM SYSTEMS JOURNAL, VOL 34, NO 2. 1995 

12. D. B. Loveman, “High Performance  Fortran,” IEEE Par- 
allel  and Distributed Technology 1, No. 1 ,2542  (Febru- 
ary 1993). 

13. P. F. Corbett  and D. G. Feitelson,  “Design  and  Implemen- 
tation of the  Vesta Parallel  File System,” Scalable High- 
Performance Computer Conference (May 1994), pp. 63- 
70. 

14. J. S. Vitter  and E. A. M.  Shriver,  “Optimal  Disk 1/0 with 
Parallel  Block  Transfer,” 22ndAnnual  Symposium on The- 
ory of Computing (May 1990), pp. 159-169. 

15. M. H. Nodine  and  J. S. Vitter,  “Large-Scale  Sorting in Par- 
allel Memories,” 3rd Symposium on Parallel Algorithms 
and Architectures (July 1991), pp. 29-39. 

16. S. J. LoVerso, M. Isman, A. Nanopoulos, W. Nesheim, 
E. D. Milne, and R. Wheeler, “sfs: A  Parallel  File System 
for the CM-5,”Proceedingsof the Summer USENIXCon- 
ference (June 1993), pp. 291-305. 

17. J. Salmon, “CUBIX: Programming Hypercubes Without 
Programming Hosts,” Hypercube Multiprocessors 1987, 
M. T. Heath,  Editor,  SIAM (1987). 

18.  M. L. Best, A. Greenberg, C. Stanfill, and L. W. Tucker, 
“CMMD I/O: A  Parallel Unix I/O,” 7th  International Par- 
allel Processing Symposium (April 1993), pp. 489495. 

19. P. Brezany, M. Gerndt, P. Mehrotra,  and H. Zima, “Con- 
current File Operations in a  High Performance FOR- 
TRAN,” Proceedings of Supercomputing ’92 (November 
1992), pp. 230-237. 

20. R. Bordawekar, J. M. del Rosario, and A. Choudhary,  “De- 
sign and Evaluation of Primitives  for  Parallel I/O,” Super- 
computing ’93 (November 1993), pp. 45U61.  

21. D. Kotz, Disk-directed I/O for MIMD Multiprocessors, 
Technical  Report PCS-TR94-226, Department of Computer 
Science, Dartmouth College, Hanover, NH (July 1994, re- 
vised  November 1994). 

22. Express Version 1.0: A Communication  Environment for 
Parallel Computers, Parasoft Corp., Pasadena, CA(1988). 

23. V. S. Sunderam, “PVM:  A Framework  for Parallel Dis- 
tributed  Computing,” Concurrency-Practical  and  Exper- 
imental 2, No. 4,  315-339 (December 1990). 

24. Message-Passing Interface  Forum,  “MPI:  A Message-Pass- 
ing Interface  Standard,” International  Journal ofsuper- 
computer Applications 8, No. 3/4, 165414 (1994). 

25. J. M. del  Rosario, R. Bordawekar, and A. Choudhary,  “Im- 
proved Parallel I/Ovia a  Two-phase  Run-time Access  Strat- 
egy,” Proceedings of IPPS  ’93 Workshop on I/O in Par- 
allel Computer Systems (April 1993), pp. 56-70. Reprinted 
in ComputerArchitecture News 21, No. 5,31-38 (Decem- 
ber 1993). 

26. D. Kotz  and N. Nieuwejaar,  “Dynamic  File-Access  Char- 
acteristics of a  Production  Parallel  Scientific  Workload,” 
Supercomputing ’94 (November 1994), pp. 64&649. 

27. J. D. Mooney,  “Strategies  for  Supporting Application Port- 
ability,” Computer 23, No. 11, 59-70 (November 1990). 

28. P. Corbett, D. Feitelson, Y. Hsu, J.-P. Prost, M. Snir, 
S. Fineberg, B. Nitzberg, B. Traversat,  and  P.  Wong,MPI- 
IO: A Parallel File I10 Interface for MPI, Version 0.2., Re- 
search  Report 19841 (87784), IBM T. J.  Watson  Research 
Center,  Yorktown Heights, NY  (November 1994). 

29. IEEE Standard Portable Operating System Interface for 
ComputerEnvironments, IEEE Standard 1003.1-1988, In- 
stitute of Electrical  and Electronics Engineers, New  York. 

30. J. M. del  Rosario  and A. N. Choudhary, “High-Perfor- 
mance 1/0 for Massively Parallel Computers:  Problems  and 
Prospects,” Computer 27, No. 3, 59-68 (March 1994). 

31.  R.  A. Coyne, H. Hulen, and R. Watson,  “The High Per- 

CORBET ET AL. 245 



formance Storage System,”Supercomputing ’93 (Novem- 
ber 1993), pp. 83-92. 

32. D.  G. Feitelson, P. F. Corbett, S. J. Baylor, and  Y. Hsu, 
Satisfiing the I10 Requirements of Massively Parallel Su- 
percomputers, Research Report RC 19008 (83016), IBM 
T. J. Watson Research Center, Yorktown Heights, NY 
(July 1993). 

33. G. S. Almasi, T. McLuckie, J. Bell, A. Gordon, and 
D. Hale, “Parallel Distributed Seismic Migration,” Con- 
currency-Practical and Experimental 5, No. 2,101-131 
(April 1993). 

34. G. S. Almasi and A. Gottlieb, Highly Parallel Computing, 
2nd edition, Benjamin  Cummings  Publishing  Inc., Addison- 
Wesley Publishing &., Reading, MA (1994). 

35. P. F. Corbett and D.  G. Feitelson, Vesta File System Pro- 
grammer’s Reference, Version 1.01, IBM  T. J. Watson Re- 
search Center, Yorktown Heights, NY (October 1994). 

36. T. H. Cormen and D. Kotz, “Integrating Theory and Prac- 
tice in Parallel File Systems,”Proceedings ofDAGS Sym- 
posium on ParallelZlO and Databases (June 1993), pp. 6 4  
74. 

Accepted for publication January 5, 1995. 

Peter F. Corben ZBM Research Division, Thomas J. Wat- 
son Research Center, P. 0. Box  218, Yorktown Heights, New 
York 10598 (electronic mail: corbett@watson.ibm.com). Dr. 
Corbett has been a research staff member at the IBM Thomas 
J. Watson Research Center since 1990, where he has been proj- 
ect leader for the Vesta Parallel File System, developing the 
overall architecture and implementing the server module. He 
has worked closely with IBM  POWER Parallel Systems in the 
development of PIOFS. He received a B.A.Sc.  in 1983 and  an 
M.A.Sc.  in 1985 in electrical engineering from the University 
of Waterloo, Canada. From 1985 to 1987 he worked as an as- 
sociate staff member of General Electric’s Corporate Research 
and Development Centre, where he helped develop a silicon 
compiler for digit serial integrated circuits. Dr. Corbett received 
his Ph.D.  in electrical engineering from Princeton University 
in 1990, doing research on interconnection networks and par- 
allel sorting algorithms. He holds 13 U.S. patents and has au- 
thored 25 technical papers. 

Dror G. Feitelson ZBMResearch Division, Thomas J. Wat- 
son Research Center, P. 0. Box 218, Yorktown Heights, New 
York 10598 (electronic mail: feit@watson. ibm. com). Dr. Fei- 
telson has been at IBM Research since December 1991 as a 
postdoctoral visiting scientist. Initially he worked on terminal 
I/O for massively parallel systems. This workwas the basis for 
the Program Marker Array feature in the AIX Parallel Oper- 
ating Environment, for which  he received an Outstanding Tech- 
nical Achievement Award. He then contributed to the design 
of the Vesta Parallel File System and to the notion of parti- 
tionable parallel files. He implemented the Vesta client library 
and the importlexport mechanism used to migrate files from 
Vesta to AIX and vice versa. Dr. Feitelson received a B.Sc. 
degree in mathematics, physics, and computer science in 1985, 
an M.Sc. degree in computer science in 1987 (cum laude), and 
a Ph.D. degree in computer science in 1991, all from the He- 
brew University of Jerusalem. He is the author of Optical Com- 
puting: A Survey for Computer Scientists (The MIT Press, 

246 C O R B ~  ET AL. 

1988), which was selected by the Association of American Pub- 
lishers as the best new professional and scholarly published 
book in computer science for 1988, and was later translated 
into Japanese. 

Jean-Pierre  Prost ZBMResearchDivision, Thomas J. Wat- 
son Research Center, P.O. Box 218, Yorktown Heights, New 
York 10598 (electronic mail: jpprost@watson. ibm. com). Dr. 
Prost received his Ph.D.  in computer science from the National 
Polytechnic Institute of Grenoble, France, in 1989. In 1990, he 
did postdoctoral work at the IBM Scientific and Engineering 
Computations Department in Kingston, New York, where his 
main contribution was the design  and implementation of a dis- 
tributed memory programming environment on a network of 
workstations. In 1991, he joined the Parallel Systems organi- 
zation at IBM Research in Yorktown Heights, New York, 
where his research studies focused on trace-driven simulation 
of message-passing applications. After one  year at IBM Paris, 
supporting sales forces for customer code parallelization, Dr. 
Prost came back to IBM Research and joined the Vesta Par- 
allel File System team. He is currently responsible for the def- 
inition and the implementation of a high-level user interface 
for the IBM AIX Parallel I/O File System. He is an author and 
coauthor of over 20 papers in computer science and is a mem- 
ber of the IEEE Computer Society. 

George S. Almasl ZBMResearch Division, Thomas J. Wat- 
son Research Center, P. 0. Box  218, Yorktown Heights, New 
York 10598 (electronic mail: almasi@watson.ibm. corn). Dr.  Al- 
masi is a member of the research staff  in the Computer Science 
Department of the IBM Thomas J. Watson Research Center. 
He received his  Ph.D.  in electrical engineering from the Mas- 
sachusetts Institute of Technology. He has a variety of tech- 
nical  and management experiences in parallel computing, and 
is coauthor of the book Highly Parallel Computing, now  in its 
second edition. During 1990 he was IBM Distinguished Pro- 
fessor of Geophysics and Computer Science at the Colorado 
School of Mines, where he  led a team that developed a parallel 
seismic migration program with useful speedup on a cluster of 
RISC System/6000@ workstations. His current interests are 
technical and  commercial applications on the IBM SP2 that ben- 
efit from parallel computing as well as parallel I/O operations. 

Sandra  Johnson  Baylor ZBM Research Division, Thomas 
J. Watson Research Center, P. 0. Box218, Yorktown Heights, 
New York 10598 (electronic mail: sandyj@watson. ibm. com). 
Dr. Baylor received her  B.S. degree (summa cum laude) in 1982 
from Southern University, her M.S. degree in 1984 from Stan- 
ford University, and her Ph.D. degree in 1988 from Rice Uni- 
versity, all in electrical engineering. She joined IBM at the 
Thomas J. Watson Research Center in 1988. Since then, she 
has conducted research, studying the memory-reference be- 
havior of parallel programs, the evaluation of cache coherence 
protocols, and the design of the Vesta Parallel File System. She 
is currently evaluating the performance of parallel I/O sub- 
systems and is studying the application workload character- 
istics of parallel 110. Dr. Baylor is a member of the Institute 
of Electrical and Electronics Engineers, the IEEE Computer 
Society, ACM,  and Eta Kappa Nu. She is also a member of 
the Computing Research Association’s committee on the sta- 
tus of women in computer science (CRAW). 

Anthony S. Bolmarclch ZBM Research Division, Thomas 
J. Watson Research Center, P. 0. Box 218, Yorktown Heights, 

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995 



New York 10598 (electronic mail: tonyb@watson. ibrn. com). 
Mr. Bolmarcich  received  a B.S. degree in physics from  Saint 
Joseph's College (Philadelphia) in  1973, and M.S. degrees in 
nuclear  engineering  and computer  sciences  from  the Univer- 
sity of Wisconsin-Madison in  1975 and 1982, respectively. Prior 
to joining IBM's  Research  Division, he worked  as a  program- 
medanalyst  for the state of Wisconsin. At IBM he  has contrib- 
uted to experimental  software  projects in the areas of database, 
shared-memory parallel processing,  and  message-passing  par- 
allel processing. 

Yarsun HSU IBMResearch Division, ThomasJ. Watson Re- 
search Center, P.O. Box  218, Yorktown Heights, New York 
10598 (electronic mail: hsu@watson.ibm.com). Dr. Hsu re- 
ceived  both the B.S. and M.S. degrees in electronics engineer- 
ing from  National  Chiao Tung  University, Taiwan, in 1971 and 
1973, respectively, and his Ph.D. degree from Rensselaer  Poly- 
technic  Institute in 1979. After  working three  years  at  General 
Electric Company, he joined  the IBM Thomas J. Watson Re- 
search  Center in  1982 as a research staff member.  Since 1984, 
he has been  involved in the design and analysis of multipro- 
cessor  systems, initially working on a  MIN-based  (Multistage 
Interconnection  Network)  shared-memory scalable parallel sys- 
tem,  and latelyworkingon technologies  for  IBM SPxmachines. 
Presently  he is the manager of a parallel system  group  respon- 
sible  for  performance modeling and parallel I/O, as well as  the 
design and implementation of a parallel file system. Dr. Hsu 
holds five patents and received an Outstanding Technical 
Achievement Award. 

Juiian  Satran IBM Israel Science and Technology, Haifa 
Research Laboratory, Haifa, Israel 31905 (electronic mail: 
JulianSatran@vnet.ibm.com). Mr. Satran received  a Dipl. 
Eng. degree  from  the Bucharest Polytechnic in 1962. After 
working at  various technical  positions in Romania  and Israel, 
he joined  the  IBM Haifa Research Laboratory in  1987, where 
he is currently a staff member. During his long career in com- 
puting he was involved in computer architecture,  operating sys- 
tems,  communications  and networks, embedded computer  en- 
gineering, and  controllers. In recent  years Mr. Satran  has  done 
research in the  areas of distributed systems,  clusters,  and par- 
allel systems,  and from 1993 to 1994 was on  assignment to  the 
IBM T. J. Watson  Research Center for the parallel 1/0 work. 
His  current  research activity  includes parallel and distributed 
systems and  multimedia  networking. 

Marc  Snir IBM Research Division, Thomas J .  Watson Re- 
search Center, P.O. Box  218, Yorktown Heights, New York 
10598 (electronic mail: snir@watson. ibm. com). Dr. Snir is sen- 
ior  manager at  the IBM Thomas J. Watson Research Center, 
where he leads  research on scalable parallel software and on 
scalable parallel architectures.  He recently led the Vulcan  soft- 
ware effort and the initial design and  prototyping of parallel soft- 
ware for the IBM SP1. He received  a  Ph.D. in mathematics 
from the Hebrew  University of Jerusalem in  1979. He  worked 
at  New  York  University ( N Y U )  on the NYU  Ultracomputer 
project  from 1980-1982 and  worked  at  the  Hebrew  University 
of Jerusalem  from 1982-1986. He  has published on  computa- 
tional  complexity,  parallel  algorithms, parallel architectures, 
interconnection networks, and  parallel  programming  environ- 
ments. He  recently  contributed  to High  Performance 
FORTRAN  and  to  the Message-Passing Interface. Dr. Snir is 
a  member of the  IBM Academy of Technology,  a  senior  mem- 
ber of IEEE,  and a  member of ACM  and SIAM. 

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995 

Robert Colao IBM POWER Parallel Division, Highly Par- 
allel Supercomputing Systems Laboratory, 522 South Road, 
Poughkeepsie, New York 12601-5400 (electronic mail: cola0 
@vnet.ibm.com). Mr Colao is a  senior  programming  manager 
in the  POWER  Parallel laboratory, responsible  for  parallel file 
system development and for  developing products  that facili- 
tate interoperability  between the IBM SP family of parallel  pro- 
cessors  and System/390" mainframes. He  has  heldvarious  po- 
sitions in the  area of scientific and engineering processor 
development since 1982, including  technical and management 
positions in processor development.  After  receiving B.S. and 
M.S. degrees in electrical  engineering, Mr. Colao joined  IBM 
in  1978 to  work  on CMOS and bi-polar  circuit  design,  includ- 
ing advanced technology work  on laser  personalization of Pro- 
grammable  Logic Arrays  (PLA).  He  also received  an M.B.A. 
in  1985. 

Brian D. Herr IBMPOWER Parallel Division, Highly Par- 
allel Supercomputing Systems Laboratory, 522 South Road, 
Poughkeepsie, New York 12601-5400 (electronic mail: bdherr 
@vnet.ibm.corn). Mr. Herr  is  currently working on the  devel- 
opment of the Parallel I/O File System.  His main contribution 
was taking  the Vesta Parallel  File System  and porting  the cli- 
ent  code  into  the  AIX kernel. It involved  writing  an AIX vir- 
tual file system layer that allows  a standard  UNIX interface to 
be  presented  to  the  end user. His previous work  experience in 
I/O subsystems  for  VM  and in ESCON communications  adapter 
microcode has been helpful in working in the  AIX kernel.  Mr. 
Herr received  a B.A. in mathematics and  a B.S.  in computer 
science,  both  from Millersville State University. 

Joe  Kavaky IBM POWER Parallel Division, Highly Par- 
allel Supercomputing Systems Laboratory, 522  South Road, 
Poughkeepsie, New York 12601-5400 (electmnic mail:  jjkavahy 
@vnet.ibrn. com). Mr. Kavaky received a BSEE from Ohio  Uni- 
versity in 1966 and  started working  for  IBM in that  year. He 
has been  involved  with the development of I/O device code for 
most of his career, including some testing of new  CPUs.  Prior 
to joining the development effort for  parallel file systems,  he 
worked in the  related area of the Parallel I/O Access Method 
(PIOAM)  for IBM 3090TM MVS systems.  Before that  heworked 
on  the development of the  Shared  Data Facility  (SDF),  an ex- 
perimental hardware  version of a  parallel file system.  Mr. Ka- 
vaky received two division awards,  one for work on the 8300 
CPU  and  one  for the work  on  SDF. 

Thomas R. Morgan IBMPOWER ParallelDivision, Highly 
Parallel  Supercomputing Systems Laboratory, 522  South Road, 
Poughkeepsie, New York 12601-5400 (electronic mail:  tmorgan 
@minnie.nic.kingston.ibm.com). Dr. Morgan has  over20years 
of experience in the petroleum  exploration  industry. During his 
career he has had  assignments in nearly all major  phases of seis- 
mic  exploration, including data acquisition,  processing,  inter- 
pretation, research, teaching, and  computer systems. He holds 
a B.S. in geology and an M.S. in geophysics from Rensselaer 
Polytechnic Institute and was awarded the Ph.D. in geophys- 
ics by  The  University of Houston in 1981. Currently, Dr. Mor- 
gan is a senior scientist  and team  leader for  the  Petroleum E&P 
Market and Application  Development Department of IBM's 
POWER  Parallel  laboratory. He  is responsible  for all market 
development, application  enablement, and  computer  product 
requirements for  petroleum  exploration and production  cus- 
tomers for the IBM SP2 parallel supercomputer.  His technical 
activities  involve  parallelization,  performance programming, 

CORBETT ET AL. 247 



and development of methods addressing the  numericallyinten- 
sive  computation  and  mass  data  transfer  aspects of seismic  ex- 
ploration  applications on the SP2. 

Anthony Zlotek IBMPOWER ParallelDivision, Highly Par- 
allel Supercomputing Systems Laboratory, 522 South Road, 
Poughkeepsie, New York 12601-5400 (electronic mail: azlotek 
@vnet.ibm.com). Mr Zlotek  received  a B.S. in computer sci- 
ence  from  the  University of Massachusetts,  Amherst in 1989, 
and joined IBM that  same year. He  has  been involved in the 
development of several AIX file systems for various IBM  hard- 
ware platforms,  including System/390, RISC System/6000, and 
SP2. He joined the  development effort for  the Parallel I/O File 
System in July of 1994. 

Reprint Order No. G321-5566. 


