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Parallel computer architectures require 
innovative software solutions to utilize their 
capabilities. This statement is true for system 
software no less  than for application programs. 
File system development for the ISM  SP product 
line of computers started with the  Vesta  research 
project, which introduced the ideas  of parallel 
access to partitioned files. This technology was 
then integrated with a conventional Advanced 
Interactive Executivem (AIXTH) environment to 
create the ISM  AIX Parallel 1/0 File  System 
product. We describe the design and imple- 
mentation of  Vesta, including user interfaces and 
enhancements to the control environment needed 
to  run the system.  Changes to the basic design 
that were  made  as part of the AIX Parallel  I/O File 
System  are identified and justified. 

P arallel computers  are beginning to emerge as 
the dominant paradigm for high-performance 

computing  for  reasons  that  are well known:  the 
ability to employ relatively low-cost commodity 
parts  derived from personal  computers  and  work- 
stations as components of larger parallel comput- 
ers,  the rapid increase in performance of these low- 
cost parts,  and  the  development of the software 
required to integrate  these  components  into  a  co- 
hesive parallel computer.  This paper discusses  one 
such  software  system,  the parallel file system  de- 
veloped for the IBM SP computers.  The IBM AIX* 

(Advanced Interactive  Executive*) Parallel 1/0 File 
System  was  developed by  the IBM POWER Parallel 
Division, based  on  the  architecture  and implemen- 
tation of the  Vesta Parallel File  System, developed 
by the IBM Research Division. This  paper provides 
a description of both file systems, their design, 
functionality, and  interfaces,  and the technical 
decisions  that  were  made in converting  research 
technology into  a  product. 

Parallel computers  are  fundamentally different 
from serial  computers in two ways.  First,  the  par- 
allel computer divides its  work  into disjoint pieces 
that  are  executed in parallel by multiple proces- 
sors.  This division of the  work is often visible to 
the  users of the  computer.  Second,  the  concept of 
parallelism is closely  connected to  the concept of 
scalability. Once it is possible to divide the  com- 
puting task  into  smaller  units  that  are  executed by 
multiple processors, it is possible  to  consider us- 
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ing more  processors to further divide the problem, 
decreasing  its  execution time or increasing the 
amount of computation  done. In order  to achieve 
truly parallel execution of programs, all subsystems 
of the  computer  must be considered as candidates 
for parallel implementation. This  consideration  is 
essential to achieve scalability, because  any  sub- 
system  that  is  not parallel may  create  a  bottleneck 
in the computer as the  number of processors is in- 
creased. 

The file systems  described in this  paper  were  de- 
veloped in order  to  solve  the problem of a serial 
I/O bottleneck in distributed  memory parallel com- 
puters.  The main motivation was  to allow scalable 
performance of the file system and its underlying 
I/O hardware  with  increased  computer size. In the 
pursuit of this goal, it was  necessary  to  integrate 
the file system  smoothly  into  the  overall parallel 
computing environment.  This integration required 
the  creation of new file system  functions and par- 
allel programming interfaces.  This  paper  provides 
a  description of these novel parallel aspects of the 
file systems  and gives examples of how they  can 
be applied by  users in their parallel programs. 

Project history. Initial work  started in March of 
1991 in the  context of developing software  for  a 
parallel computer called Vulcan. 1,2 Vulcan was be- 
ing developed  at  the IBM Thomas J. Watson Re- 
search  Center in Yorktown  Heights,  New  York, 
as  an experimental massively parallel computer. 
Vulcan was intended to scale  to 32 768 processing 
nodes,  each  node being an  Intel i860** micropro- 
cessor  with  memory, with all nodes  connected  to- 
gether by a  fast, multistage, omega-network  cut- 
through  switch. Vulcan was intended to  be a 
usable, multipurpose computer  that would provide 
a  testbed for research  into  a  wide range of issues 
in parallel computing. The primary purpose of Vul- 
can  was  to  run numerically intensive, scientific ap- 
plications. Since Vulcan was  intended to  be a mul- 
tiuser  computer,  with  emphasis on running 
scientific applications, it was essential  that Vulcan 
provide  the  basic  features of other  supercomput- 
ers.  These  features included a compiler, an  oper- 
ating system,  a debugger, and  an I/O system. In ad- 
dition,  since Vulcan was  to  be a message-passing 
computer, message-passing software was required. 

Three  node  types  were defined for Vulcan: com- 
puting nodes,  host  nodes,  and I/O nodes.  The I/O 
nodes  were  intended to provide  disk  storage to  the 
compute  nodes within the Vulcan system.  They 
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were identical to compute  nodes,  with  the addi- 
tion of eight disks  and disk controllers.  They  at- 
tached  directly  to  the  same switching network as 
the  compute nodes. However,  no  software was 
available to control  the  storage of data on the I/O 
nodes or  to make it available to  the compute nodes. 
Thus,  the  Vesta Parallel File  System  project  was 
started. 

The goal of Vesta  was  to provide  a file system  that 
was  both parallel and scalable. These  two  concepts 
are largely overlapping when realized. A design 
point of 32768 powerful microprocessors  con- 
nected by a  switch is very different from the  de- 
sign point of computers with low levels of paral- 
lelism. Thus, we immediately realized that  the file 
system for Vulcan would have to  be fundamentally 
different from the file systems  then in use in other 
distributed,  clustered,  and parallel computers. 3” 

These  circumstances presented a good opportunity 
to look at  the whole issue of file systems  for  par- 
allel computers and to develop  a design for  a file 
system  that would meet  the  needs of the rapidly 
evolving massively parallel computers. 

Parallelism was incorporated  into  the design of 
Vesta  at all levels. Thus, all file data  and meta-data 
(data internal to  the file system  that  describe files) 
are  stored in a  distributed  and parallel fashion 
across multiple 110 nodes.  The  data of individual 
files are distributed, but  not replicated, across mul- 
tiple I/O nodes and across multiple disks within each 
110 node. Portions of the file system  meta-data  are 
likewise distributed,  but  not  replicated,  to  each  of 
the 110 nodes to manage. The unique feature of 
Vesta  that enables it to  support programs with large 
amounts of parallelism is  that  Vesta files are  ex- 
plicitly parallel; this parallelism is visible to the  user 
at  the programming interface.  Vesta  provides  the 
ability for  users  to  control  the  distribution of their 
file data  across 110 nodes, in turn providing the abil- 
ity  to  preserve parallelism from the application 
through the programming interface  and  down  to 
the 110 nodes  and disks. Of course,  such  a large 
amount of parallelism is  motivated by  the need to 
store large amounts of data.  Therefore,  Vesta is 
designed to  store a very large number of files (256) 
that  are  very large in size (2@ bytes). 

The  other distinguishing feature of Vesta is that it 
is inherently  scalable.  There  are no centralized 
points of control or  access in Vesta. All data  and 
meta-data accesses  are performed by passing mes- 
sages  directly  between the compute  node making 

COMET ET AL. 223 



the  Vesta  request  that  requires  data or meta-data 
access and the I/O node that  contains  the  data or 
meta-data. No other indirections are required. We 
designed the  architecture for Vesta  by consider- 
ing that  its design point of 32 768 processing nodes 
was essentially infinite for practical purposes. 
Thus,  no accommodation was  ever made to sim- 
plify the design by making assumptions  about  the 
maximum number of nodes in the system. Whereas 
other  systems that are built to provide concurrency 
and parallelism in computers with a small number 
of processing nodes begin to break down quickly 
when used in computers  with  greater parallelism, 
Vesta should scale linearly with  the number of 
nodes in the  system up to  any number that  can  rea- 
sonably  be built. 

Shortly after the  basic design of Vesta  was com- 
pleted, IBM began a new product development ef- 
fort  to build and  market  a massively parallel com- 
puter. Although not parallel at  the  same level as 
Vulcan, the new machine was  to  be scalable up to 
the range of hundreds of nodes and to run appli- 
cations  that required all of those nodes. The  only 
existing file systems available within IBM were all 
intended to run in a single processor or in a dis- 
tributed environment. The development laboratory 
at  what  is now known as  the IBM  POWER Parallel 
Division (PPD) quickly recognized the need for a 
new file system to  address  the  needs of parallel 
computing. Thus,  the effort at IBM Research of de- 
veloping Vesta for the Vulcan computer  was re- 
directed to developing Vesta for the SP line of com- 
puters.  A shift in focus, from a  pure  research 
project to a project that would go straight from the 
research drawing board into  a major IBM product, 
was required. 

This situation was unusual in many respects. First, 
it was  necessary to commit to building a file sys- 
tem  based  on  the  Vesta  architecture before the 
proof of concept  was in place. When the SP prod- 
uct development began, we did not yet have  a pro- 
totype of Vesta completed. Second,  a plan was re- 
quired to  move  the  Vesta  code  directly from a 
research environment into  a  product development 
environment. A division of the effort between 
the  researchers  at  the IBM T. J. Watson Research 
Center  and  the  product  developers in the new 
IBM  POWER Parallel Division, then in Kingston, 
New York, was  necessary.  It also required close 
cooperation  between  these  two  groups through all 
the  stages of coding and testing Vesta,  the  trans- 
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fer of the Vesta code to the  product development 
laboratory, and the modification of the  Vesta  code 
to meet the specific needs of the IBM AIX Parallel 
I/O File System  product (abbreviated PIOFS). 

This paper  describes  the Vesta file system as a  re- 
search technology. It  provides an overview of the 
architecture of Vesta and provides information 
about  the interfaces and usability of Vesta, includ- 
ing the run-time environment in which Vesta is 
used. The paper then  describes  the  basic design 
differences between Vesta and the IBM AIX Paral- 
lel I/O File System, and why  those design decisions 
were made. 

System interfaces 

A file system  is defined by its  user interfaces. A 
major goal of the  Vesta project was  to  introduce 
the  concept of “parallel files”-files that  are  ex- 
plicitly stored and accessible in parallel. In  Vesta, 
the  basic  architecture  prescribes  that  the file sys- 
tem runs on a  set of 110 nodes and that applications 
run on sets of compute nodes. Files are  stored in 
parallel and distributed  across multiple I/O nodes. 
Accesses to files come from any  compute node and 
are  directed to one or more I/O nodes containing 
the file data being accessed. A simple way  to  do 
this  storage and retrieval is to divide the file into 
separate pieces, called cells, and assign each cell 
to be  stored on a  separate I/O node. The  interest- 
ing problem is  to make it possible to access  this 
array of cells in parallel. Some  systems have been 
developed using a simple distribution of cells to 
nodes,  where  each cell is actually a  separate 
UNIX** file resident in the local file system of a 
node. When a  compute  process  opens  a file,  it im- 
plicitly gains access to only  the locally stored cell. 
Although this action provides parallel access from 
a parallel program to data  stored  under  one file 
name, it allows no sharing of data among the  pro- 
cesses of a parallel job. As a result of surveys of 
potential users of a parallel file system,  we  deter- 
mined that parallel files would be  a useful mech- 
anism for sharing and communicating data among 
the  processes of a parallel program. We also dis- 
covered  that  even in the  absence of data sharing 
within a program, it may  be desirable to partition 
the  data of a file  in multiple different ways.  This 
motivated the design of the  Vesta parallel file in- 
terface. 

In PIOFS, the  basic  functions of the Vesta interface 
are maintained. However,  there  was  a  strong mar- 
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ket requirement that PIOFS be an AIX- (IBM's ver- 
sion of UNIX) compatible file system. Compatibil- 
ity meant that programs compiled to perform file 
I/O operations under AIX should be able to run with- 
out modification or recompilation when  the  ac- 
cessed files are  stored in PIOFS. It  also  meant  that 
PIOFS present  the  interfaces of a standard AIX file 

A Vesta file consists of 
a two-dimensional array 

of data units. 

system and that AIX utilities work on PIOFS, requir- 
ing some changes  to Vesta. AIX provides a vnode 
layer similar to  the  vnode  layer first described by 
Sun Microsystems in its implementation of NFS** 
(Network File Sy~tem**).~ The AIX mode layer 
allows multiple file systems of different types to 
be accessed through the  same file system interface. 
To make PIOFS work in this way, it was  necessary 
to implement a vnode  layer to replace the  Vesta 
interface and to install that  layer in the AIX kernel. 

This section first presents  the parallel file interface 
introduced in Vesta and how  it supports parallel 
access  to partitioned files.  We then  discuss how 
this interface can  be used to implement a high-level 
programming interface suitable for use in a mes- 
sage-passing parallel programming environment. 
Next,  considerations  for changing the  Vesta inter- 
face to match it with the requirements of the IBM 
AIX Parallel 1/0 File System  product, including the 
mode layer,  are investigated. The final subsection 
describes  the interface used in Vesta for the im- 
port and export of file data from the file system. 

Vesta file partitioning. A Vesta file consists of a two- 
dimensional array of data units, called basic  strip- 
ingunits,  or BSUs. s'' The horizontal dimension of 
this  array  is  the number of cells in the file. The  size 
of each BSU and the number of cells are known as 
thefilestructureparameters.  They  are given when 
the file is first created and do not change through- 
out  the lifetime of the file. Cells can be thought of 
as virtual I/O nodes or containers for data. Thever- 
tical dimension of the two-dimensional Vesta file 
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array  represents  data in the cells and is unbounded 
in principle. Each cell is always contained within 
a single 110 node. Naturally, in any given instal- 
lation, the  size of the cells is bounded by the avail- 
able storage  space.  The number of cells specifies 
the maximum degree of explicit parallelism pos- 
sible when accessing the file. This degree of par- 
allelism is achieved if each cell resides on a dif- 
ferent 110 node. When a file is created, its cells are 
distributed among the available I/O nodes. If there 
are fewer cells than I/O nodes, a subset of 1/0 nodes 
will each  have  one cell. If there  are  more cells than 
I/O nodes, the cells are mapped to  the I/O nodes in 
a round-robin manner. 

Once a file is  created  with a given number of cells, 
it is viewed by the  user as having that degree of 
parallelism, whether or not all of the cells are lo- 
cated  on distinct I/O nodes. Program portability is 
enhanced, allowing programs to  be developed with 
only  one or a few 1/0 nodes and then moved to a 
larger computer with many 110 nodes without mod- 
ification. 

A Vesta file may be partitioned into subfiles, which 
are  subarrays of the two-dimensional Vesta file ar- 
ray. Each subfile is a sequence of BsUs extracted 
from the  entire file. A file can  be partitioned by a 
partitioningscheme in which a number of disjoint 
subfiles are defined, with every  byte of the file be- 
longing to one and only  one subfile. Many differ- 
ent partitioning schemes  are possible for a given 
Vesta file, depending on  the number of cells in the 
file. Once partitioned, each application process can 
open a subfile and access it as though it were an 
entire file. The subfile is seekable, with zero-based 
byte addressing, and is readable and writable se- 
quentially. 

The partitioning of files is dynamic and is done 
without physically moving data.  By specifying a 
set of partitioning parameters and a subfile num- 
ber when it opens a file, a parallel program can log- 
ically decompose a file into a set of parallel sub- 
files. The file system  then  determines  the actual 
data being accessed and performs the required 
reads  or  writes from the parallel file. The mech- 
anism for specifying a partitioning scheme that par- 
titions a Vesta file into subfiles is similar to that 
used to distribute a two-dimensional array in High 
Performance FORTRAN. l2 

A partitioning scheme  is specified by four param- 
eters: 
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1. Hbs = horizontal  size of block (number of con-  when  the file is opened. Different processes in a 
secutive cells) 

secutive BSUs within a cell) 

mension 

sion 

2. Vbs = vertical  size of block (number of con- 

3. Hn = number of subfiles in the horizontal di- 

4. Vn = number of subfiles in the  vertical dimen- 

These  four  parameters, referred to  as  thefilepar- 
titioningparameters, define a partitioning scheme 
with  an Hn X Vn array of subfiles. Each subfile 
is composed of blocks of Hbs X Vbs BSUS. These 
blocks  are  interleaved horizontally and vertically 
in the file according to  theHn and Vn parameters. 
Thus, in each dimension, the partitioning scheme 
consists of a  recurring  pattern of Hn (Vn) inter- 
leaved blocks,  where  each block contains Hbs 
(Vbs) columns (rows) of basic striping units. For 
example, if Vbs = 1 when  the file is  created,  data 
are striped with the striping unit of one BSU. If Vbs 
is larger, the effective striping unit is  a multiple of 
the BSU size.  Several  examples are given in Fig- 
ure 1. In  the figure, the subfiles are distinguished 
by different colors.  The  numbers  represent  the  se- 
quence of BSUS within each subfile. 

When a file is opened,  the application process 
opening  the file specifies the  four partitioning pa- 
rameters listed above, along with a fifth parame- 
ter  that  specifies  the subfile to  be  opened. With a 
given set of partitioning parameters,  there are Hn 
x Vn subfiles, numbered from 0 to  (Hn x Vn)  - 
1.  The Hbs X Vbs-sized  blocks of the file are  as- 
signed to subfiles according to their row-major po- 
sition in the Hn X Vn array ofHbs X Vbs blocks. 

The partitioning parameters define which BSUS be- 
long to which subfile. l t  is still necessary  to  deter- 
mine the  order of these BSUS within the subfile. 
Since  the  vertical dimension of the cells is un- 
bounded, we cannot  use  a column-major order. 
However,  a  “column first” ordering has  the ad- 
vantage  of having consecutive BSUs stored contig- 
uously, thus improving locality of access.  The 
default ordering used in Vesta is therefore  a com- 
promise: Within each  block, BSUS are  ordered in 
column-major order;  the blocks themselves are  or- 
dered in row-major order.  The  ordering is illus- 
trated in the  examples of Figure 1. Row-major or- 
dering  and column-major ordering within a single 
access  are  also  supported. l3 

There is no default partitioning of Vesta files; file 
partitioning parameters  must  always  be specified 

parallel application typically open  the file using the 
same partitioning scheme  but  access different sub- 
files within that  scheme. It is also possible for  pro- 
cesses to  share access to the  same subfiles and even 
to  open  the file with different partitioning schemes. 
In this  way,  processes  can  access  the  data in  dif- 
ferent  patterns  without  actually moving the  data 
from one I/o node  to  another. For example,  a  set 
of processes  can first open subfiles that  correspond 
to cells and write  data  into  “columns” of the file. 
Then  they  can  open subfiles that are striped  across 
cells and  read  “rows” of  file data. As a  result,  the 
operations of writing and  then reading the  data  can 
permute  the  data among the  compute nodes. 

One importance of partitioning is  that it simplifies 
parallel access  to  the file data  at two levels. First, 
by opening a subfile rather  than  the whole file, each 
process  only  sees  a  subset of the  data.  This  subset 
appears  to  be sequential,  starting from an offset of 
zero. The  process  does  not  see  other subfiles that 
are actually interleaved with the  one  that it opened. 
Thus  the programmer is relieved of the  chore of 
calculating complex indexing schemes  that  the  ap- 
plication would require to partition the data. A sim- 
ilar service is provided by High Performance 
FORTRAN“ (HPF) compilers for  partitioned  arrays. 
The  second simplification is that  when  processes 
access disjoint subfiles, no  coordination is needed 
in order  to guarantee consistent data. When subfiles 
are disjoint, accesses  are always nonconflicting. 

Another  important  consequence of partitioning is 
that  data  layout  can  be tailored to match  access 
patterns.  For example, it is  easy  to  create scenar- 
ios  where  each  process  reads  or  writes  a  distinct 
cell, which  is useful when implementing parallel 
algorithms with optimal I/O activity. 14,15 It is also 
easy  to  create situations  where  each  process  reads 
or  writes  a different set of stripes  across all the cells 
of the file. In  both  cases, and in many  other  par- 
titionings, the load is  easily  balanced  across  the 
110 nodes, reducing the potential to create hot spots 
among the I/o nodes.  This  option  does  not exist in 
other parallel file systems,  such  as  the  Intel C F S ~  
and Thinking Machines sfs. l6 These  systems  stripe 
file data  as  a single sequence  across multiple 1/0 
nodes, and users  do not have control over  the  strip- 
ing unit. 

The Vesta interface. The  fundamental  components 
of Vesta  are two distinct  pieces of software.  The 
server module is  an  active  process that runs on 



Figure 1 Different  partitioning  schemes for a  Vesta file  composed of seven cells of eight BSUs 
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each of the 110 nodes. Together,  the  server pro- 
cesses  constitute a parallel program that  provides 
parallel file service.  The client library is a library 
of functions linked to application programs. The 

The interface to Vesta 
is the collection of 

client library functions. 

client library  runs in the  context of the user’s ap- 
plication processes  at  each  compute node and ini- 
tiates message passing between the client compute 
node and one  or more 110 nodes. All interaction 
between  the client and server  is  done through mes- 
sage passing; there is no mechanism for accessing 
a Vesta server other than through the client library. 
The client library  at  each  node for the most part 
does  not  interact directly with  the client libraries 
at other nodes. 

The interface to Vesta is  the collection of client 
library functions. These functions are linked to ap- 
plications at compile time. The library includes 
some global data  that  are initialized by a special 
Vesta-Init function. The global data include a ta- 
ble of files currently being accessed, with a local 
cache of some relevant meta-data.  They  also in- 
clude a table of open file descriptors, complete with 
subfile offsets and file partitioning parameters. To 
access a Vesta file, the file must first be  attached 
to the local application process.  This  is accom- 
plished by a call to Vesta-Attach if the file already 
exists,  or  to Vesta-Create if the file is to  be  created. 
Vesta-Create also requires that the number of cells 
in the file to be  created and the  size of the  basic 
striping unit of the file be specified. 

A file must be  attached  by  every application pro- 
cess  that  wants  access to the file. Once the file is 
attached, it can  be opened one  or  more times by 
the application process, using the Vesta-Open func- 
tion. Vesta-Open allows specification of the four file 
partitioning parameters,  as well as the subfile to 
be  accessed under that partitioning. The function 
returns a file descriptor that  can be used for 

228 CORBETT ET AL. 

subsequent  access to the file. The file descriptor 
references an open  table  entry in the client library 
that records  the partitioning parameters and main- 
tains  an offset into the subfile. The offset is initially 
set  to zero and is modified with each  access  to  the 
file. It is possible when opening a file to specify 
that  the offset be  shared with one  or more other 
application processes  at  the  same or different 
compute nodes. Vesta then maintains this offset 
automatically as the  processes  each  access the file. 

The  Vesta files are  accessed through the  special 
Vesta-Read and Vesta-Wri te calls or through their 
asynchronous  counterparts Vesta-Read-Q and 
Vesta-Wri te-Q. In each  case,  the calls look much 
like the UNIX read and write calls, requiring a file 
descriptor, a pointer to the user’s buffer where  the 
data should be extracted from or placed into, a 
count of the number of bytes or BSUS to read or 
write, and an offset into  the subfile. The offset pa- 
rameter  can be absolute (relative to the beginning 
of the subfile), or relative (measured from the  cur- 
rent offset position). File offsets are updated at the 
time the  access  request is made. This  ensures  that 
in the  cases of asynchronous 110 and of shared off- 
sets,  the  data  are read from or written to the  cor- 
rect position in the file. It  is  often  the  case  that  the 
file data being accessed  are discontiguous in the 
file, since  the subfile is defined to be  only a portion 
of the  entire file. Data may be  accessed in a strided 
fashion from a single cell or from more than  one 
cell, possibly stored  on more than  one I/O node. 
Vesta  takes  care of gathering or scattering all of 
these  data to  or from the user’s buffer into  the file 
transparently to the  user.  Thus, it is possible from 
a single application process in a single read or write 
call to achieve parallel access to multiple I/O nodes. 
Within each I/O node, data  are striped transparently 
across multiple disks, so a large number of disks 
can  be involved simultaneously in retrieving or 
storing data during a read or  write call. Coupling 
this with the ability to dynamically decompose a 
file among several parallel processes, a very high 
degree of parallelism is possible, with a high de- 
gree of flexibility and control in the hands of the 
user. 

The  collective 1/0 interface. In parallel applications, 
multiple processes may perform I/O operations that 
are closely related to  one another. Individual 1/0 
operations performed by distinct processes may 
be  parts of a single larger 110 operation. It is possible 
to provide a file system  interface  that explicitly 
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identifies these larger operations. Called collective 
ZIO, it usually involves a barrier  synchronization 
point where all the  processes meet to  perfom  the 
I/O operation in tandem. 17-20 

Collective I/O in parallel systems is important for 
two reasons. First, it is a useful programming tool, 
providing a level of control and coordination on 
otherwise  asynchronous  threads of computation. 
It  is also in tune with the popular SPMD (single-pro- 
gram, multiple-data) programming style. Second, 
the implementation of collective I/O operations  can 
include provisions to ensure  that  requests  are is- 
sued in an order  that  promotes  the most efficient 
disk scheduling possible. 21 

An important aspect of collective I/O operations is 
the interface used to  express them, along with the 
precise semantics.  In  Vesta,  there is no  direct pro- 
vision for collective I/O. In this section, we describe 
a library  that could be implemented on  top of the 
existing Vesta interface to provide collective 110 
operations in parallel programs. We propose us- 
ing a message-passing metaphor in which reading 
is comparable to receiving a message from the file 
system, and writing is  comparable  to sending a 
message to the file system. Specifically, we intend 
to leverage the widely accepted Message-Passing 
Interface (MPI) for use in expressing parallel I/O ac- 
tivity. This  use has the advantage of familiar syn- 
tax and semantics for programmers. 

In message-passing libraries, such as Express, 22 

PVM,’~ and more recently MPI, 24 both point-to-point 
communications and collective communications 
are available. Point-to-point communications are 
simple send and receive operations  between a 
source  task and a destination task, and they gen- 
erally come in two kinds, blocking and nonblock- 
ing. A blocking send usually blocks the calling task 
until the message to be sent is copied into  system 
buffers. A blocking receive blocks the calling task 
until the message is actually received from the 
source task. A nonblocking operation  returns as 
soon  as  the communication is posted. In  this  latter 
case,  the  user  can  thereafter  either  check  or wait 
for the completion of the operation. 

Collective communications require the participa- 
tion and synchronization of a group of tasks in or- 
der for the communication to take place. Task 
groups are  created  by associating a group identi- 
fier with a list of tasks. A given task may belong 
to different groups. Generally, collective commu- 
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nications are blocking operations. Operations such 
as broadcast, reduction, and scatter-gather are pro- 
vided. 

The high-level collective I/O interface we propose 
applies the message-passing paradigm to express 
parallel access to Vesta files. This interface defines 
several  modes for concurrent  access to a shared 
Vesta file and distinguishes between “point-to- 
point” 110 operations, for individual accesses  to file 
data, and “collective” 110 operations, for collec- 
tive accesses  to file data by a group of compute 
tasks. Both blocking and nonblocking I/O opera- 
tions are  supported for point-to-point 1/0 opera- 
tions, whereas collective I/O operations  are always 
blocking. 

Other researchers have examined collective 1/0 and 
have developed architectures to support it. For ex- 
ample, a two-phase access scheme has been pro- 
posed,25  with  data being prefetched on reads  into 
a large distributed buffer and then  further distrib- 
uted to the  nodes running the accessing processes. 
Although such a scheme has merit, Vesta provides 
a comparable effect if data  are prefetched into 
buffer caches  at the I/O nodes before being trans- 
ferred to  the  compute nodes. 

Collective file access modes. Opening a Vesta file 
provides each task with access to a subfile. This 
operation is collective and imposes a synchroni- 
zation between all tasks to allow for consistency 
checking of the function arguments. The partition- 
ing parameters (Vbs, Vn, Hbs,  Hn and the iden- 
tifier of the subfile to be  accessed) of the Vesta file 
are specified. All tasks must agree upon the four 
partitioning parameters. The function returns a file 
descriptor, used for subsequent  accesses  to  the 
Vesta subfile. 

Open allows any of four different access modes: 

1. Inprivate mode, each  task in the calling group 
gets  access to a disjoint subfile, and  each  task 
has  its  own file pointer. Subsequent  accesses 
to the subfiles are completely asynchronous. 

2. In  coordinated mode, assignment of subfiles to 
tasks  is identical to the private mode. However, 
accesses to the subfiles will be coordinated, 
which means  that  synchronization  between all 
tasks within the group specified  will be enforced 
before any  subsequent  access to the subfiles, 
in order  to optimize performance by minimiz- 
ing disk seeks in accessing file data.21,25 
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3. In  shared mode, all tasks within the  group  ac- 
cess  the same subfile and  share  the  same file 
pointer. All subsequent  accesses  are  made in- 
dividually. Each  access atomically updates  the 
shared  pointer. 

4. In collective mode, all tasks within the  group 
access  the  same subfile and  share  the  same file 
pointer. However, all subsequent accesses must 
be made collectively, using the  functions  de- 
scribed in the subsection on collective 110. 

A file can  be  opened at the  same time by different 
task  groups,  and subfile accesses  may  overlap. If 
the file is  opened  with the  concurrency  control flag 
turned  on,  the file system will ensure  that  concur- 
rent  accesses  to  the file are  atomic, serializable, 
and causal. If the  concurrency mechanism is dis- 
abled (flag turned off), the  user  guarantees  that  no 
file data  are  shared among two  or more  groups for 
updates. 

Data accessfunctions.  Two  categories of data  ac- 
cess functions are in the collective I/O library.  The 
point-to-point I/o functions allow a  task  to individ- 
ually read  and  write  data from or  to an  opened 
Vesta file,  in blocking or nonblocking mode. These 
functions  are  layered  directly  over  the Vesta-Read 
and Vesta-Wri t e  calls  and provide the additional se- 
mantics of access  modes to these calls. These func- 
tions  can  only  be called for files opened  inprivate, 
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coordinated,  or shared mode. In private and shared 
modes,  no  synchronization  between  tasks  takes 
place. In coordinated mode, a  synchronization  be- 
tween all tasks within the group is  enforced  before 
the  data  access is performed, in order  to optimize 
performance. 

These  functions  provide  a facility to read  a  set of 
data elements from a  Vesta subfile and scatter them 
into  the application buffer with a given stride 
through  the buffer or  to write  data  scattered in the 
application buffer to  a  Vesta subfile (see Figure 2). 
This  capability is inherited from the MPI. 

In blocking mode, read  operations  block  the call- 
ing task until data  are available in the application 
buffer, and  write  operations block the calling task 
until the application buffer data  have  been copied 
into  system  space  or  written  to  the  Vesta subfile. 
In nonblocking mode, read  and  write  operations 
return  immediatelywith  a  request identifier, which 
can  be  subsequently used to  check  or wait for the 
completion of the  data  access. 

Collective ZIO. Collective I/O functions  use collec- 
tive communication  constructs  such as broadcast, 
reduce,  scatter,  and  gather  to  express  collective 
accesses  to a  Vesta subfile. These  functions  can 
only be called for subfiles opened in collective ac- 
cess mode, and all tasks from within the group  as- 
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Figure 3 The read-broadcast/write-reduce collective I/O operations 
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sociated  with the file connection  must  issue  the 
same call in order for the collective 110 to  take 
place. 

A read-broadcast  operation allows one to broad- 
cast file data  to all tasks of a group (see  Figure 3). 

When all tasks of a  group  have identical data  to 
write  to a file, a single instance of these  data  can 
be written  into  the file through  a write-reduce op- 
eration (see Figure 3) .  A flag allows the  user to  en- 
able or disable the  phase  that  checks  for  data iden- 
tity prior to  the  write operation. 

A read-scatter  operation  reads  data from a file 
and  scatters  the  data among the  tasks of the call- 
ing group. The data are  scattered among the  tasks 
in increasing group rank  order (see Figure 4). For 
performance  purposes, two types of this  function 
are provided,  one  where all tasks  read identical 
amounts of data, and the  other  one  where  each  task 
may read a different amount of data. 

Tasks of a  group  can  gather  data  into  a file through 
a writesather operation. Data to be written by 
each  task  are  concatenated in increasing rank  or- 
der,  then  the resulting data block is written onto 
the  Vesta subfile (see  Figure 4). 

It is apparent  that knowledge of collective  oper- 
ations could be exploited by  the file system  to im- 
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prove  performance.  Exploitation would require  a 
closer integration of collective I/O into  the lower 
levels of the file system,  rather  than layering it on 
top of the  Vesta  interface. In simple cases,  the ad- 
vantage of having full knowledge of a collective 
I/O operation  can be achieved by recognizing col- 
lective  access  patterns  at  the file system  servers, 
and managing caching  and prefetching of data  ac- 
cordingly. For example, recent  studies  have dis- 
covered  that parallel read  access  to  a file typically 
covers  the  entire file or large contiguous  portions 
of the file, even though each  process  reads  a dis- 
joint and  discontiguous portion of the file.26 
Prefetching large portions of a file once  such  a  pat- 
tern is recognized can  be beneficial. There  are also 
situations-for example,  the  case of extremely 
large accesses-where knowing the full extent of 
the collective access could be useful in optimizing 
performance. We  will be examining these  issues 
in depth in the  future, once  we have gained expe- 
rience  with  collective I/O. 

The IBM AIX Parallel UO File  System  interface. The 
Vesta  interfaces  discussed in preceding  subsec- 
tions were designed in the context of a  research 
project,  directed  toward  the  requirements of the 
traditional  users of massively parallel superco- 
puters, namely the  users of scientific and num, 
ically intensive applications. Typically, these  users 
are willing to put great effort into  the coding of their 
applications to obtain  the  best possible perfor- 
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Figure 4 The read-scatter/write_gather collective  I/O operations 
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mance. Efforts include writing their  applications 
to  use nonstandard  interfaces  such as  the  Vesta 
interface.  This  community of users  is small com- 
pared to  the much larger group of potential  users 
of a computer  such as  the IBM SP2*. In  the  context 
of a commercial product, a broader range of con- 
siderations apply. The goal is still to develop a par- 
allel file system  suitable  for a general engineering 
or scientific parallel programming environment. 
However,  there  is  also a need to  ensure that  ex- 
isting application codes  can  run  and benefit from 
the file system,  and  that  programmers unfamiliar 
with  the special features of the file system could 
still perform I/O using traditional interfaces. 

Considerations. The following are  some  issues  that 
have  to  be  considered. 

Portability-Most users  prefer  solutions  that  are 
not limited to a specific type of hardware or a spe- 
cific software  environment.  They  prefer  interfaces 
that  are widely accepted  and implemented by mul- 
tiple vendors.27  In the  case of parallel I/O opera- 
tions,  there  is as  yet  no  accepted  standard  inter- 
face. Users will have to  endure a period of being 
required to reprogram  their applications when 
moving from one parallel computer  to another. 
Two  factors  can mitigate the difficulties of this  sit- 
uation. One  is  that  standards  for parallel I/O inter- 
faces  are being proposed.”  Using an early imple- 

mentation of such a proposed  standard  interface 
could save time later, if in fact  the  standard is 
adopted.  Second, if users  do  not wish to use the 
special explicitly parallel I/O features of a parallel 
file system, it would be good if a current  standard 
interface  is  supported by  the file system along with 
the  new parallel interface. In UNIX systems,  the 
relevant  standard  is POSIX. * * 29 In PIoFS, a large 
subset  of  the defined POSIX functionality is  sup- 
ported.  Most typical program operations  on files, 
such as read  and  write,  open  and close, behave  ex- 
actly as defined by POSIX. Although this  approach 
allows existing applications to run, applications 
must  be modified to  take advantage of new func- 
tions  and  to  achieve significant performance im- 
provements. Most POSIX function is  supported,  but 
PIOFS is not yet fully POSIX-compliant. However, 
it is compliant to  the  degree  necessary  that  most 
existing programs will work and that  most  system 
utilities, such  as Is, cp,  and mv, work  as  they  do 
on other file systems. 

Lave  file support-AIX file systems  have a limit 
of two gigabytes for  the  size of a single file. In large 
parallel or I/o-intensive applications, two gigabytes 
are often  not large enough  to  contain all of the  data 
that  most  naturally would be placed in a single 
file.30 For  this  reason a parallel file system, which 
will be used with parallel applications and large 
files, must allow files to significantly exceed  two 
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gigabytes in size. Vesta  provides the basic  support 
for large files, up to 264  bytes in size. This  feature 
is  preserved in PIOFS, which provides  a  means  for 
existing programs to use large files. Users may read 
and  write files sequentially  beyond  the two-gi- 
gabyte limit, using conventional POSIX read and 
write  operations. If they  wish  to  seek within a file 
beyond the two-gigabyte limit, a special argument 
PIOFS-LSEEK must  be  used.  This  function sets  the 
internal offset stored by PIOFS, ignoring the 32-bit 
offset maintained in the logical file system  layer of 
AIX, above the PIOFS vnode  interface. 

Ease ofuse-Initial use of a parallel file system  that 
provides  a  standard  and well-known interface will 
be  easier  for most developers. Ease of use  for  a 
parallel file system also includes  some facility for 
users  to understand  the  performance  they are 
achieving and to find ways  to improve perfor- 
mance. If an application is not achieving an  ex- 
pected  performance improvement, the  developers 
would like some  assistance in determining where 
the  bottlenecks  are  and  an indication of how to 
eliminate or reduce  them. PIOFS is instrumented 
in order  to allow I/O activity  traces of parallel pro- 
gram executions  to  be collected. These  traces  can 
be visualized afterward  (postmortem)  for debug- 
ging and tuning purposes. 

Reliability-Some applications need continuous 
availability so that an I/O node or disk failure does 
not  disrupt  the file system.  These applications will 
justify  the  cost of redundant  hardware  and  soft- 
ware,  whereas  other  applications  are  able  to tol- 
erate  a file system failure and  complete loss of data 
in the file system.  These  latter  applications  must 
keep  a  copy of critical data  outside  the parallel file 
system  and  rerun  any  computations  needed to re- 
place  lost  data. Obviously the mean time between 
failures of a parallel file system  must  be signifi- 
cantly longer than  the time needed to  restore  the 
system  and  recalculate  any lost data. 

The  inte$ace and its consequences.  The common 
design that  emerges from these  considerations  can 
be  summarized  as follows: The  interface should 
support  programs  written  to  the POSIX interface, 
providing I/O intensive  programs with improved 
performance  without  the  necessity of recoding. It 
should have  extensions for programmers  who are 
willing to invest additional effort in order  to  obtain 
maximum performance. Ideally, the  interface 
would be a  superset of POSIX, with  the additional 
functions of the parallel file system  added in such 
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a way that  they  are  transparent to  users  who wish 
only  to  use  the  standard  interface.  In  the  case of 
PIOFS, there will be  some omissions from POSIX 
compliance because of differences in the  basic  ar- 
chitecture of Vesta  compared to  the UNIX file sys- 
tems  on  which POSIX is based.  However, to prop- 
erly  comply  with POSIX, it is sufficient to correctly 
implement the full set of mode and vfs operations 
defined in AIX. Most of these  are now working in 
a PosIx-compliant way.  However,  some  features, 
such  as  hard links, have  no simple implementation 
in the Vesta  architecture.  These  issues will be  ad- 
dressed as needed,  with  a goal of full POSIX com- 
pliance over  subsequent  releases of the file system. 
This goal may not be realized for all functions,  de- 
pending on  the  importance, difficulty, and time 
available to implement the required functionality. 

Applications  that  use  only  those UNIX functions 
(for example open, close, read,  write)  that are sup- 
ported by the parallel file system  achieve a mea- 
sure of portability  and  may  execute using either 
existing file systems  or  the parallel file system. 
Note  that  such  programs  do  not include instruc- 
tions  to  specify  the  number of cells  and  the  basic 
striping unit size of newly created files, or  the  par- 
titioning parameters of opened files. To allow users 
control of some  parameters  that  cannot  be  set  by 
standard  functions, we provide  two mechanisms. 
In  the first, under program control,  rather  than is- 
suing the normal UNIX open system call to  create 
a  new file, the  user would issue  the special 
piofsioctl call with the pfs-create argument. This 
call has additional parameters  to allow the num- 
ber of cells and the  size of the  basic striping units 
of the  new file to  be specified. In  the  second  mech- 
anism, whenever  a PIOFS file is  created through the 
AIX open system call, the file system  looks  for  a pro- 
file  file that  can  specify  the  parameters  the file 
should be  created with. The file system  looks first 
in the user’s  directory,  and, if not found, looks in 
a  system  directory.  The profile file allows users  to 
control the number of cells, the  basic striping unit 
size,  and  whether  the parallel file system  uses  the 
AIX 32-bit file offset or  its own internal 64-bit  off- 
set.  By using a profile file, existing programs  do 
not  have to  be changed to  take advantage of some 
parallel file system  functions, and moreover,  they 
even do  not have to  be recompiled. The default par- 
titioning parameters are all one,  which  leads  to  a 
single subfile striped  across all the cells of the file. 

To obtain additional control  over  special  features, 
such  as  data placement, it is  necessary to open  sub- 
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files of a parallel file by using non-PosIx  functions 
unique to PIOFS. These  functions  are  based  on  the 
Vesta  prototype.  For  example, to  access a subfile 
of a PIOFS file, the file first must  be  opened using 
the AIX open system call. This  action  returns  a file 
descriptor  that  can  be used to  access  the file in the 
default partitioning of a single subfile, striped in 
stripes  one  basic striping unit deep,  across all the 
cells of the file. To change  this partitioning, the 
piofsioctl call with the pfs-change-view argument 
can be used, with the file descriptor as an argument, 
to  set  other partitioning parameters  and  to specify 
the subfile to  view under  that  new partitioning. 
Subsequent  access to  that file using that file de- 
scriptorwill  access  the specified subfile. This  tech- 
nique provides all the  function of Vesta in a way 
that  is  not  intrusive  to  users  who  do  not  want  that 
additional function. 

Import and export. Vesta  includes  a  set of func- 
tions to  support import and export of data  to and 
from external file systems.  This functionality is  re- 
quired  to allow data  to  be  moved  between  Vesta, 
where  the  data  are highly accessible  to parallel ap- 
plications, and archival or  other external  storage 
systems,  where  the  data  may  be  permanently 
stored,  shared with other  computers  or  sites,  or 
initially resident.  Direct  access from compute 
nodes  to  external file systems (EFSS) may  be lim- 
ited. Therefore, it may  be beneficial to  import in- 
put files into  Vesta before running applications that 

use them. Likewise, it is more efficient to use Vesta 
files for output  and  then  export  these files to  other 
file systems,  and possibly to archival  storage. 

The  import and export  functions allow Vesta to in- 
teract  directly  with  a  set of parallel daemons  that 
actually  transfer  the  data.  Requests to import or 
export  data  are  issued from application code  at 
the  compute  nodes using the  Vesta  functions 
Vesta-Import and Vesta-Export. A utility program 
also provides  this  function from an  interactive 
shell. Import  and  export  requests  are  brokered by 
a  master  daemon  that is responsible  for  coordinat- 
ing transfers of data  between  Vesta  and  an  exter- 
nal  file system.  The  master  daemon  may perform 
the transfer itself or may delegate one  or more slave 
daemons to move  the  data, possibly in parallel (see 
Figure 5). In  Vesta, we did not  undertake  the im- 
plementation of a large number of master and slave 
daemons  for different external file system  types. 
Rather, we integrated the functions required to  sup- 
port  such  daemons  into  Vesta and implemented a 
daemon to move  data  between  Vesta  and AIX- 
mounted file systems  as  an  example of how import 
and export  daemons  can  be  written. 

At  present,  this  import/export functionality does 
not  exist in PIOFS. We  present  the  Vesta design be- 
cause it is an important  part of Vesta  and  because 
it is tightly coupled to another major effort in this 
area: the High-Performance Storage  System being 
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developed by  the National Storage  Laboratory  at 
Lawrence  Livermore  National  Laboratory. 31 

The  import/export mechanism must  be able to  as- 
sign data movers  to physical server nodes in a man- 
ner  that  results in  high performance. In this  con- 
text,  latencies  are  often high, on  the  order of 
seconds to hundreds of seconds  (to  fetch  data from 
tape,  for example), and the  amount of data  to  be 
moved is relatively large. The bandwidth is the  key 
performance  measure. If bandwidth can  be  scaled 
linearly by increasing parallelism of the  transfer, 
high performance can be achieved. This is provided 
for in the  Vesta design. However,  the limit on par- 
allelism is  often  the  external  device  or file system 
that is the  source  or  destination of the import or 
export. 

If the  external  storage media are  connected  phys- 
ically to  each I/O node,  that portion of a parallel 
file that  resides  on  an I/O node could be  transferred 
directly to  the local device or through  the local in- 
terface. The internal interconnection  network 
would not  be  used,  and  transfer would be in par- 
allel. Such  an  arrangement might be  suitable for 
the  backup  and  restoration of parallel files, but it 
lacks flexibility as  to how subfiles of parallel files 
are imported or exported. A more flexible method 
is to designate specific nodes  on  the  interconnec- 
tion network as gateway nodes. Gateway nodes are 
defined to  be  a  set of nodes in the  computer  that 
have  external network, channel,  or  device  connec- 
tivity. Gateway  nodes may also serve  as I/O nodes. 
They  must  be  connected to the I/O nodes  via  the 
SP High-Performance  Switch.  The  gateway  nodes 
must  have  access  to all of the I/O nodes  that  con- 
tain portions of a parallel file and to  the external 
file system. With this capability any possible par- 
titioning of the parallel file can  be accomplished. 
Parallel data  transfer  occurs  when multiple gate- 
way nodes  are used (assuming the  external file sys- 
tem will accept  reads  and  writes  concurrently from 
multiple gateway  nodes). 

It is assumed  that  many different types of EFSs will 
be  accessible from the massively parallel machine 
(for example, AIX JFS [Journal File System]  or MVS 
[Multiple Virtual Storage]). Each  has  a specific EFS 
type, known to Vesta,  that is specified at system 
configuration. An EFS interface  has  been designed 
such  that it is independent of the  external file sys- 
tem  used. As long as import/export  daemons are 
installed that  can  interact with a given EFS, it is 
possible to transfer files between  that file system 
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and Vesta.  The  interface  is designed for pipelined 
high-bandwidth data  transfer  between  the  two file 
systems. 

The  import/export  daemons run on  the  gateway 
nodes.  They wait to receive  instructions initiated 
by  an application or from the command shell. Such 
instructions include the opening and closing of ex- 
ternal files  and the import or export of data between 
the  external file and  a  Vesta file. When an  instruc- 
tion is received, the  daemons perform the  actions 
necessary to  execute  the respective  operations. 
For  open  and close, such  actions include issuing 
open and close library calls, respectively, to  the 
EFS. For import and  export,  these  actions include 
reading data from one file and writing it to  the  other. 
For example, import is implemented by reading the 
external file data  into buffers maintained by  the 
daemon  and  then writing the  data from these buff- 
ers  to  the Vesta file. In  export,  the direction is re- 
versed. Finally, the  daemons may also  be used for 
the  backup  and  restoration of Vesta files on exter- 
nal storage.  These  operations  are performed with 
the  same import and  export mechanism, but  they 
are initiated by  the  functions Vesta-Backup and 
Vesta-Restore. These  functions  cause  meta-data 
headers to  be included with  the  exported  data  on 
backup and to  be read and removed on restore. The 
header  describes  the original layout of the  Vesta 
file and its  other  meta-data  such  as  last modifica- 
tion time, so that  the file can  be  restored  exactly 
as it was when it was  backed up. 

Figure 5 shows how a  master  daemon and a set of 
parallel slave  daemons  can  interact to perform par- 
allel data  transfer in and  out of Vesta. 

The import and export  daemons  are designed to 
pipeline the  data  transfer  by using asynchronous 
Vesta  functions,  synchronous, blocking EFS func- 
tions, and multiple local buffers. It is possible to 
provide the  asynchrony  at  the EFS side or  to uti- 
lize asynchronous  access  at  both sides. As long as 
one  side of the  transfer is asynchronous,  a high 
throughput  can  be maintained. Since  Vesta  pro- 
vides  asynchronous 110 operations, we show  the 
asynchrony  on  the Vesta side. It would also be pos- 
sible to  use  a  producer-consumer model for  the 
gateway  daemons, with the  producer and con- 
sumer asynchronously piping data through a shared 
buffer. In any  case,  the  key is to maintain a  con- 
tinuous flow of data  through  the  gateway  node, 
with data moving on  both sides of the gateway node 
at all times. 



A pool of buffers in the  gateway node memory is 
used for the  data transfer. The  size and number of 
the buffers are  chosen for efficient pipelining. Ini- 
tially, the buffers allocated for the  transfer  are 
placed on  a list of free buffers. For import, block- 
ing EFS reads  are called to transfer  data from the 
EFS file to  the local buffers. When each EFS read 
completes, an asynchronous Vesta write  is called 
to transfer  the  data from the local buffer to  the 
Vesta file. Since  the  write is asynchronous,  exe- 
cution continues by reading more data from the EFS 
file to additional local buffers (if available). Once 
the  system  reaches  steady  state,  each buffer is ei- 
ther  the target of an EFS read or the  source of a 
Vestawrite.  For export, asynchronous Vesta reads 
are called to read  data from the Vesta file to the 
local buffers. Again, once  the  system  reaches 
steady  state,  each buffer is  either  the target of an 
asynchronous Vesta read or the  source of an EFS 
write. Once a  Vesta read has completed, the EFS 
write function is called to transfer  the  data to the 
EFS file. This action facilitates the pipelining of the 
data transfer. 

The IBM  AIX Parallel 110 File System, as opposed 
to Vesta,  is mountable as a virtual file system 
within the framework of the AIX file system. There- 
fore, import and export  are implicit in certain  op- 
erations. Files can  be copied, using the AIX cp com- 
mand, or moved, using the AIX mv command, 
between  the parallel file system and other file sys- 
tems  that  support  these commands. The  fastest 
mechanism for moving data is likely the AIX dd 
command, which sets up a producer-consumer pair 
of processes, allowing pipelined transfer of data 
in or out of the file system.  The  ftp program can 
also  be used to move  data. Copied or moved files 
can  use  the profile  file to provide some  control of 
file striping across YO nodes. To accomplish im- 
port or export in parallel requires  users to write  a 
program that  can utilize the parallel read-write ca- 
pability of the parallel file system and whatever 
mechanism they  choose for parallel I/O to  the  ex- 
ternal file system. 

Implementation  issues 

The unique goals of the Vesta implementation were 
to ensure  that parallelism expressed in the  inter- 
face  was  preserved to the level of disks and that 
the file system  was  inherently scalable to a very 
large number of nodes. To these  were added goals 
typical of all  file system implementations: reliabil- 
ity, availability, and fast performance. To these, 
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the IBM AIX Parallel 110 File System  further added 
the goal of compatibility with existing AIX file sys- 
tems and the ability to run existing applications. 

To fully understand the issues facing the implemen- 
tors and how these  issues  were dealt with, a brief 
overview of the history of the  project  is required. 

PIOFS is mountable as a 
virtual file system within the 

framework of the AIX file system. 

Vestawas implemented before PIOFS at  the IBM Re- 
search  laboratory. When Vesta was mostly com- 
pleted, the  code  was  transferred to  the POWER Par- 
allel Development Laboratory.  Vesta  was used as 
thevehicle for developing the bulk of the new code 
to be used in PIOFS. However, Vesta was devel- 
oped in a different operating environment than PI- 
OFS. The  reason was that  Vesta  was intended to 
serve  two purposes: as a  research  prototype to 
demonstrate  some new concepts in interfaces for 
parallel file systems, and as a  code  base from which 
the PIOFS could be derived. Thus,  the decision was 
made to develop Vesta as a  user-space  librarywith 
unique function calls directly linked to client ap- 
plications. The  task of adapting this library to  use 
in the AIX kernel was assumed by PPD as part of 
making Vesta a product. In  contrast to the client 
code, which is significantly different in Vesta and 
PIOFS, the Vesta server  code  was  adapted  with  a 
number of small modifications for use in the PIOFS 
code. Although  all the reasons for this development 
strategy  are beyond the  scope of a technical pa- 
per,  this  approach allowed each group to focus on 
the  aspects of the overall project that it was  best 
suited to accomplish. The  research team was com- 
mitted to developing the  core of the technology for 
Vesta and PIOFS and to demonstrating the new con- 
cepts  introduced in it. The development team had 
to deal with turning the  research  prototype  into  a 
useful and salable product. 

A file system  is an integral part of the operating 
environment or operating system of a  computer. 
Its implementation is necessarily based on  serv- 
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ices provided by  other  system components. In the 
case of Vesta and PIOFS, the primary components 
required are  the  interprocessor communication li- 
brary and the disk I/O drivers. In  the following para- 
graphs, we will provide an overview of the imple- 
mentation of Vesta and PIOFS, as well as examine 
the communication libraries and disk I/O drivers 
upon which each is built. 

Clientherver  structure. Since Vesta and PIOFS are 
based on an architecture providing a distinction be- 
tween compute  nodes  that run user applications 
and I/O nodes  that run the file system  servers, it 
was  necessary to implement distinct client library 
software and server  process software. Although 
having compute and 110 nodes is not the  only  pos- 
sible approach for providing parallel 110 operations, 
it is the  basic  architecture adopted by most mak- 
ers of massively parallel computers. 32 

The capability to perform direct access from a com- 
pute node to the I/O node containing the required 
data, without referencing any centralized meta- 
data, is a central  feature of the Vesta design. l3 This 
capability is achieved by a combination of means. 
First, file meta-data are distributed on all of the 110 
nodes and are found by hashing the file name to 
a 64-bit object identifier. The object identifier is fur- 
ther hashed to determine which I/O node  contains 
the file meta-data. The main  file meta-data are 
maintained in only  one I/O node,  but blocklists are 
maintained in other I/O nodes  that contain any cells 
of the file. The file meta-data are  only  accessed  by 
the client library once when the file is first attached 
(in Vesta)  or opened (in PIOFS) by  the application. 
This  access includes checking the  access permis- 
sions and retrieving the file structure  parameters. 
The file partitioning parameters  are  set  when  the 
file is  subsequently  opened (in Vesta) or when  the 
view of the file is changed (in PIOFS). Thereafter, 
compute  nodes  can identify the I/O nodes  that  con- 
tain any  data of that file using a combination of the 
file structure  parameters  they  have  obtained,  the 
file partitioning parameters given when  the file was 
opened or the view was  set, and the offset. 

Block lists for the file are maintained for each cell 
individually on  the I/O node where  the cell resides. 
If the I/O node  has multiple disks  attached  to it, 
Vesta  stripes blocks across  the available disks 
transparently to the client. Neither block lists nor 
file data  are cached on compute  nodes.  This  con- 
dition is acceptable  because of the relatively low 
latency of the interconnection network of the mul- 
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ticomputer, especially when  compared to disk ac- 
cess times. It is quite likely that higher-level 110 
libraries built on  top of Vesta or PIOFS may cache 
some data locally at  the  compute nodes. 

This distribution of meta-data results in no central- 
ized point of control or access in the file system 
servers.  The uniform distribution of file meta-data 
ensures  that meta-data requests  are distributed to 
all server nodes. Temporary hot spots may de- 
velop, for example, when a file is being attached 
by a large number of client nodes simultaneously. 
However, long-term usage patterns should show 
a uniform distribution of meta-data requests to 110 
nodes in a file system with more than a few files. 
In  Vesta,  these hot spots could be eliminated by 
special functions that allowed client processes to 
distribute file-attach information among them- 
selves, avoiding the need for each client process 
of a large parallel program to access a single server 
node for client meta-data. This function has  not 
been included in PIOFS, to eliminate the need to 
support communication among client processes. 
However, if hot spots  prove to be a problem, this 
function can  be introduced in PIOFS. 

Vesta  also avoided hot spots  by eliminating the 
need to descend through the  directory hierarchy 
by means of recursive lookup to locate  any file. 
All  files are  accessed directly by hashing their en- 
tire  path name into a unique identification for the 
file. In PIOFS, the  recursive lookup, beginningwith 
the  root of the file system,  is unavoidable, because 
it is driven by the logical file system layer of the 
kernel, which is  above  the virtual node interface 
provided by individual file systems, including 
PIOFS. In this case, it could lead to hot spots in the 
110 nodes  that contain the meta-data for the top- 
level directories of the file system. This condition 
is a potential performance issue that  we may be 
forced to address  by caching or replicating the 
meta-data for these top-level directories. 

Disk UO operations. The disk I/O drivers used are 
standard  components of the AIX operating system, 
which provides asynchronous  character mode 
(raw)  access  to unbuffered physical devices 
through a disk abstraction known as logical vol- 
umes. In addition to this  access,  the AIX JFS file 
system  was exploited to  store  Vesta and PIOFS 
meta-data in memory-mapped files on each I/O 
node. 
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In  the first version of Vesta,  disk 1/0 operations for 
file data  were performed by using large AIX JFS files 
to  store  data,  treating  these files like disks. This 
method provided a simpler path  to  start  the file sys- 
tem working, because we could rely on the  virtual 
memory management and  caching  strategies of 
AIX JFS to  handle  caching of data  at  the I/O nodes. 
Vesta handled block allocation out of the  “disk 
files” but did not manage its  own buffer cache. All 
caching of data in I/O node  memory  was handled 
by AIX JFS. Reads  and  writes  were handled using 
asynchronous I/O system  calls  provided in AIX. 
Once  this  version of Vesta  was working, a buffer 
cache layer was built into the Vesta servers, and the 
asynchronous I/O calls to  the “disk files” were re- 
placed by asynchronous calls to raw logical volume 
devices. An AIX logical volume corresponds to 
allocated portions of one  or more physical volumes 
(devices). PIOFS is following the same progression. 

Internode  communication. A key  component of the 
environment in a parallel computer  is  the commu- 
nication mechanism between  nodes.  The S P ~  com- 
puter  runs  a Message-Passing Library called MPL. 
MPL allows high-bandwidth, low-latency commu- 
nication between  processes within a parallel pro- 
gram. However, it does  not  provide  any  mecha- 
nism for communicating beyond the  set of nodes 
running any given application program. (We refer 
to  the  set of nodes running a single application as 
apartition.) Since  the  Vesta  servers  run as a  par- 
allel program on a  set of I/O nodes, it is  possible 
for them  to  communicate among themselves us- 
ing MPL. However, it is  not possible for  client  ap- 
plications, running on a different set of nodes,  to 
communicate  with  the  servers. 

Different subsystems were developed to solve  the 
communication problem for  Vesta  and  for PIOFS. 
For Vesta, we developed  a special message-pass- 
ing library, based on MPL, that allows interparti- 
tion communication. For PIOFS, the problem was 
even  more difficult. MPL works  only  between  user- 
space  processes on multiple nodes. In the  case of 
PIOFS, the client side  library  runs in the  kernel. 
Therefore, it was impossible to use  a  user-space 
communication  library to provide  communication 
between  the  client  and  server nodes. 

The MPX communication library. Vesta  uses  a 
communication  library  closely  related to  the MPL 
provided  with  the S P ~ .  This  library, called MPX (for 
message-passing cross partition), provides commu- 
nication calls similar to  those of MPL, with an ad- 
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ditional parameter specifying the  partition  to  send 
or  receive  the message to  or from. On receive,  the 
partition  parameter  can  be  a wild card, allowing 
receipt from any  other partition or can  be specific 
to match  only with a message sent  by  a specific 
partition. The  partition  can  be  a different partition 
than  the  partition of the local process  or can  be  the 
partition of the local process. 

To accomplish interpartition communication, MPX 
provides  an additional set of library calls that  re- 
quest  and  accept communication sessions between 

A key component of the 
environment in a parallel 

computer is the communication 
mechanism between nodes. 

two  partitions.  We  developed  a  protocol to allow 
this  attachment in a  clientherver  environment,  as 
required by  the Vesta  server  and  its client appli- 
cation programs. When a client application is ini- 
tialized, it requests  the ability to communicate with 
the  server partition. If the  server  grants  this  re- 
quest,  the client can  then  address  the I/O nodes  and 
is able to  send  messages to  the  server.  The  server, 
in turn,  can  address  the client nodes  and  is  able to 
send  messages  to  the client. 

An important  feature of MPX is  that it provides in- 
formation  to  the  server in the  case  where  a client 
program terminates,  either normally or  abnor- 
mally. When a client program terminates,  each 
server  process is notified through  a call-back pro- 
gram. This notification gives the  server  the  oppor- 
tunity to clear  any state relating to that client; for 
example, it can release any locked or attached files. 

The communication  library of PIOFS. One goal of 
the design of PIOFS was  to  be able to port it to mul- 
tiple platforms. Portability required  a communica- 
tion library  that would work on a  number of dif- 
ferent computers. In a UNIX system, it  implied  using 
Transmission Control ProtocoliInternet Protocol 
(TCPDP) or User Datagram ProtocoHnternet Proto- 
col (UDPDP). In the  case of PIOFS, the overhead of 
maintaining TCP connections between each server 
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process and every  other  server and  client applica- 
tion process was too high. Therefore, a communi- 
cation librarywas built over UDPDP. Client processes 
are able to discover the location of the PIOFS servers 
once the PIOFS file system is mounted at a compute 
node. More than one PIOFS file system can be 
mounted. The mount information maintained by  the 
AIX kernel includes a table of addresses of the server 
nodes run by that PIOFS file system. When any cli- 
ent process first issues a virtual node or virtual file 
system operation against a mounted PIOFS, the nec- 
essary routing information is initialized in kernel 
memory for that process. 

One  shortcoming of the uDPiIP-based message- 
passing system is that  the UDPiIP driver is not  as 
efficient as  the MPL driver. It is anticipated that  this 

developed that  approach MPL in performance. The 
message-passing system in PIOFS does  not  provide 
the  server with information about client programs. 
Rather, the  server is only aware of client processes. 
Instead of the  server being notified when  an  entire 
client job is terminated, it is notified when  each cli- 
ent  process  that it is communicating with termi- 
nates.  This  approach allows a similar method of 
protection against client failures as  is provided by 
Vesta with MPX. 

Applications experience 

In this  section,  we  describe  the  use of Vesta in a 
parallel three-dimensional (3D) seismic migration 
program that was demonstrated on an sP1* at  Uni- 
Forum ’94, and we briefly discuss  other applica- 
tions  that could benefit from the ability of Vesta 
and of PIOFS to handle files larger than two gi- 
gabytes and access  them in parallel. The applica- 
tion program described here  has  been easily ported 
from Vesta to PIOFS. At  the time we made this dem- 
onstration, Vesta  was available. We expect  to dem- 
onstrate similar applications using PIOFS in the near 
future. Two figures illustrate several different kinds 
of parallel I/O operations  that  were  achieved. Fig- 
ure 6 is a diagram of what  the  seismic  demonstra- 
tion program did. It  shows: 

Several  worker  processes  concurrently reading 
disjoint sets of slices of the input frequency  data 
file, with  each slice striped  across  the I/O nodes 
and hence being read in parallel 
The  velocity-correction file striped  across  the 1/0 
nodes  and  read in parallel by  the  master  seismic 
process 

I 

I gap will narrow significantly as new IP drivers  are 

1 

I 
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Two  visualizer  processes  concurrently reading 
the  completed  output file created by  the  seismic 
program, having opened  the file with two differ- 
ent  views  that allow one visualizer process  to dis- 
play the file as a  sequence of horizontal slices 
while at  the  same time the  other visualizer pro- 
cess is traversing and displaying the  output file 
as  a  sequence of vertical slices. The subfiles for 
the  second  view are striped  across  the 110 nodes 
and hence exhibit parallelism during the read pro- 
cess  as well. 

Later,  Figures 7A,  7B, and 7C show how these ef- 
fects  were achieved. We illustrate  the differences 
in the  way  the velocity file and the  output file were 
written  and  the differences in the  open  and  read 
calls that  were  used  for  the  two different views. 

The seismic  migration application. The seismic pro- 
gram operates in the  frequency-space or ‘‘w - x” 
domain and  uses implicit finite-difference tech- 
niques  to perform 3D post-stack  depth migration, 
an image correction technique used extensively by 
the petroleum and mining industries.  A  “manager- 
workers”  or “master-slaves” parallelization tech- 
nique was  used, similar to  the  approach used ear- 
lier for two-dimensional (2D) seismic migration. 33334 

The 2D program assumed  that  the  input data files 
would fit into  memory  and  used  a  technique in 
which,  for  each  frequency,  the signal recorded  at 
the  surface  was  extrapolated to  the full depth of 
the image in one unbroken sequence. Aworker first 
acquired its  own  copy of the  entire  velocity-cor- 
rection file and  stored it  in its memory. The  worker 
then  acquired  the  input  data for one frequency, 
stepped  through all of the  depths,  returned  the 
completed subimage for  that  frequency  to  the man- 
ager, and requested input data for another frequen- 
cy; the manager produced  the final image by sum- 
ming  all of the subimages that it was given. As 
many  tasks could be  done in parallel as there  were 
frequencies.  A  performance of five gigaflops and 
a  speedup of  88 were  achieved on a 128-node sP1 
for  this 2D program. 

The main differences between  the 2D program de- 
scribed  above  and  the 3D program used here  are: 

The  current program performs 3D migration. 
The 3D program uses  an implicit finite-difference 
technique,  whereas  the  method  used for the ZD 
program was explicit. The implicit method  uses 
fewer floating-point operations to achieve  the 
same  result, and so, other things being equal, the 
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Figure 6 Demonstration of a 3D seismic  migration  application  using  Vesta 
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single-node count of floating-point operations of 
the 3D program is about half that of the 2D pro- 
gram. 
A 3D data  set is too large to fit into  memory  at 
once,  and so a  technique different from that  for 
the 2D case is used, as described below (also see 
Figure 6). First,  the input data for all the  frequen- 
cies  is  distributed among the  workers.  Then  the 
manager reads  the  velocity-correction  data  for 
the first depth  and  broadcasts  them to  the  work- 
ers;  each  worker  then  extrapolates  the  data  for 
each of their frequencies downward by one depth 
step,  sums  the  results  together  to form the  sub- 
image for  that  depth, and returns  the result to 
the manager for the final summation  that  creates 
the  corrected image for  that  depth.  The manager 
then  reads  and  broadcasts the velocity-correc- 
tion data  for  the  next  depth,  and  the  process  re- 
peats until the final depth  is  reached. As an  op- 
tion,  the manager can  display  the  top  and  side 
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views of the  output file as it is forming, provid- 
ing a useful visualization of the program results. 

We had an eight-node sP1 available for our dem- 
onstration; we used three  as  the I/O nodes of a  Vesta 
file system and the remaining five as compute 
nodes  for  the  seismic program (one manager and 
four workers). We kept  the file sizes fairly small 
(4 to 8 megabytes,  corresponding to roughly 
100*100*100 arrays) to keep  the  demonstration 
short enough to remain interesting,  and so this 
demonstration was not  a  performance  benchmark 
so much as  one of functionality. We  showed five 
different kinds of parallel I/O operations  (Figure 6): 

1. A worker  process  accessing  the  frequency file 
could read  its  slices in parallel from all the I/O 
nodes. 

2. Multiple workers could open  and  read  the  fre- 
quency file at  the  same time. 
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Figure 7A Vesta code in writing Vvelfile  for 3D seismic migration demonstration 

/*basic stri ing unit size = 4*ceiling of (nx*ny/nionodes)7 
mybsu = (r )*sizeof(float); 1 

io io io 

nionodes 

Vests- Create(Vvelfile, 0. , 0644, cast64m( 
4 4 4 

) , - I ,  ); 
___- ____ 

ncells = nionodes 1 
flle permcsslons -++ nionodes i 
preallocated size 
(In bsus) 

Vbs,  Vn, Hbs, Hn 

I 
I ~~ 

I 
Vesta Ooen(Vvelfile. &Vvelfd, , 1 , 1 , 1 , 0 , VESTA-ORDER ): 

sue of vertical block In bsus 

number of vertically 
interleaved subfiles 

cellslhorlzontal block I 
number of horizontally I 
Interleaved subflles 

subflle to open 

bsus column-major 
blocks row-major 

Vesta -wrlte(Vvelfd, cast64m(O), , BSUS CURRENT, (char*) v); 

offset flrst bsu to wrtte f t t  t 
count = cast64m( ); 

wrlte how many th1ngs7 
measure offset and count in . . 
start where we left off 

3. The manager read  its  velocity file slices in par- 

4. The two visualization processes could access 

5. The visualization process  that  was displaying 

allel from all of the I/O nodes. 

the  depth file at the  same time. 

ncells = nionodes 

subflle = n~onodes'nz bsus 

(3 @ a 

nstripes = nz 

nx 
I I 1 1- 

I I 

the  vertical  cross  sections could read  its  slices 
in parallel from all of the I/O nodes. 

Implementation  using  Vesta. We now explain how 
the  types of parallel I/O operations described above 
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Figure 7B Vesta  code  in writing  Vdepfile  for 3D seismic  migration  demonstration 

Vesta~Create(Vdepfile, 0, , 0644, 
cast64m( ), -1, ); 

mybsu = sizeof(f1oat); 

produces an ncells*nstrlpes-slzed array of &.s 

c s  can be asslgned to IO nodes 

Vesta Open(Vdepfile, &Vdepfd, 
VESTA-ORDER): 

opens a subfile whose Hbs'Vbs-wed 
blocks can be Interleaved horlzontally wlth 
Hn-1 others, vertically wlth Vn-1 others 

for (izl=2;  izl<=nz;  izl++) ( 
count = cast64m( ): 

Vesta~ Wrlte(Vdepfd, cast64m(0), 
(char')dirnage); 
1 

the subfile that has been opened 
speclfles how data are poured Into 

BSUS ICURRENT, 

ncells = nionodes 

subflle = ny bsus 
(nz subflles) 

pe 

[bsu] = nx 

nstripes = 7 ny'nz 
nlonodes 

were  done.  Three large files are used by  the  seis- time domain to  the frequency domain to form a 3D 
mic program. The frequency file is the  primary in- (x, y, w )  array of eight-byte  complex  numbers. 
put  to  the  program and contains  the  array of input (The  coordinates along the  surface arex  andy, the 
signal traces  that  was  recorded  at  the  surface and depth  coordinate isz, and  the  frequency  is w.)  The 
then changed by  Fourier  transformation from the velocity file tells the program how the  speed  of 
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Figure 7C Vesta  code in reading  Vdepfile  for 3D seismic  migration  demonstration 

READING VdeDfile 2 VIEWS 

r 

L 

if  (my-id == VIEW1) { 

Vesta Open( Vdepfile. &vfd, my. 1 .  1, I, 0,  VESTA-ORDER) 

Vesta Read( vfd, castdm( 0 ), &count, BSUS I CURRENT, (char *) hsect); 

] else if (my-id == ) { 

for (iy=O: i y a y ;  iy=iy++) { 

count = cast64m( nY)' 

Vests Open( Vdepfile, &vfd, 1, , VESTA-ORDER); 

Vests- Read( vfd, cast64m( o ) ,  , BSUSI , (char 7 ): 
) 

count = cast64m( ); 
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[bsu] = nx 
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sound  (stored in four-byte floating-point numbers) 
varies from point to point in the ( x ,  y, z )  volume 
of interest. The depth file-the corrected  output 
image written  by  the program-is an ( x ,  y ,  z )  ar- 
ray of signal amplitudes (also four-byte floats) com- 
puted using the  other two files. The  prestack  data 
from  a 3D seismic  survey  can  easily  exceed 100  gi- 
gabytes. 

Aside from housekeeping, we use  four  basic  Vesta 
functions35 to manipulate our files: 

Vesta-Create, which creates  a file that is a  col- 
lection of BSUs arranged in a 2D array with ncells 
columns  and  nstripes rows. Each  cell (column) 

1 

1 VIEW 1 

can  be assigned to  a  separate I/O node, and for 
this program, the number of cells is  chosen to 
equalnionodes,  the number of I/O nodes. For  the 
depth file, the BSU size is nx * 4 bytes,  the  size 
of one  row of one slice of the  output image. For 
the  other two files, the BSU size is basically ~tx 

* nyhionodes, which means  that  a  stripe is just 
large enough to hold one horizontal (nx * ny) 
slice. 
Vesta-Open, which opens  a  portion of the file cre- 
ated above; it opens  a subfile whose Hbs * Vbs- 
sized blocks can  be interleaved horizontally with 
Hn - 1 others  and  vertically  with Vn - 1 oth- 
ers.  Three  examples will be  described;  also see 
Figures 7A, 7B, and 7C. 
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Vesta-Write and Vesta-Read, which specify how 
data  are  poured  into  the subfile that  has  been 
opened,  or how data  are  extracted from it. See 
the  Vesta user’s manual35  for  more detail. 

When the  Vesta  frequency file and  velocity file are 
created  and  written (by a program running on one 
of the  compute  nodes),  the subfile specified by  the 
Vesta-Open call is  the  entire file, and Vesta-Wri te is 
used to  write nionodes * nz’s worth of BSUS into 
the subfile, with the  result  that  each slice of the 
frequency file and  the  depth file is  striped  across 
all the I/O nodes  and  can be read in parallel. The 
first of these  uses of Vesta-Open enables  the  paral- 
lelism examples listed as 1 and 3 above.  Examples 
2 and 4 result from the ability of Vesta  to let mul- 
tiple processes  concurrently  read and write  a sin- 
gle file. 

For  the  frequency  and  velocity files discussed 
above, Vesta-Open specifies identical subfiles for 
both  the  read  and  write  operations.  This  is  only 
half true  when it comes  to  the depth file, which is 
the  trickiest of the  three file usages. As mentioned 
above  and  shown in Figure 7B, the  depth file is  cre- 
ated with smaller BSUS than the  other two, and  the 
subfile opened  for  each  write  operation is confined 
to  one cell (one I/O node) and is just large enough 
to hold one horizontal slice. When it comes time 
to read  the  depth file (see  Figure 7C), two differ- 
ent subfiles are  opened by  the two visualizer  pro- 
cesses. One is identical to  the subfile used for writ- 
ing and allows that  particularvisualization  process 
to read one horizontal plane from the file at  a time, 
just  as it was written. The  other  process  opens  a 
very different kind of subfile (a  sequence of sub- 
files actually), one  that  consists of thin stripes  one 
BSU wide and distributed  over  the file such  that it 
encompasses one BSU from  each  horizontal slice. 
Assume  that it is  the first BSU in each  horizontal 
slice. Then in effect, the first subfile opened by  the 
second  process  contains  the edge of each  horizon- 
tal slice-in other  words, it contains  the  outermost 
vertical slice of the 3D depth file. And since  the thin 
stripes mentioned above  span  the 110 nodes,  this 
second  visualizer  process  reads in parallel from all 
of the I/O nodes. This is parallelism example 5 listed 
earlier. 

This ability to  open two different views of the  same 
data by simply specifying different parameters in 
the Vesta-Open and Vesta-Read calls  seems to have 
real  value. The alternative of transposing  the  data 
is  expensive enough in time and  resources  that it 
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is not unusual in the  industry  to  store  three differ- 
ent files, each  representing  a different view of the 
same 3D seismic  data. To otherwise avoid keeping 
multiple copies of the data, remembering that  seis- 
mic  data files are often  many gigabytes in size, it 
would be  necessary  for  the application program to 
seek  through  the file, maintaining its  own mapping 
of the 3D structure of the  data  onto  the file. Vesta 
provides  this  capability  directly  through  its  dy- 
namic partitioning mechanism. It  also allows the 
file to  be  broken  down among the I/O nodes in a 
way that  corresponds  to  a  natural partitioning of 
the  data, while containing all the  data in a single 
file. 

One of the  interesting  experiences  at  our  UniFo- 
rum demonstration was having our  awareness  ex- 
panded by visitors  who  saw  our  seismic  demon- 
stration and then thought of other  uses  for  Vesta. 
One observer  became  excited  by  the possibility of 
visualizing data  as  they changed. When told that 
seismic  data  were  not really like that,  she said 
“Forget seismic! I’m talking about decision sup- 
port!” Several  other people echoed this sentiment. 
Other  suggestions included air traffic control  and 
satellite  data management. The  potential of Vesta 
for use in real-time systems  that  require high I/O 
bandwidth  seemed to  create  as much  interest as 
its use in  110-intensive applications that would di- 
rectly benefit from dynamic file partitioning. Our 
favorite  visitor  may  have  been  a man from The 
GAP. (“Yes,  we  make  pants.”) He spends 5?h 
hours  every day collecting data from 1500 stores. 
Writing his file  in parallel ten  times  faster would 
free  up five hours daily on his main computer.  Such 
users will be  able to benefit immediately from the 
increased  performance of PIOFS when used as a 
standard AIX file system, without concerning them- 
selves  with  the parallel interface  features. 

Conclusions 

In  this  paper, we have given an  overview of the 
Vesta file system  and  the IBM AIX Parallel I/O File 
System, including their interfaces, their implemen- 
tations,  and  a  seismic  processing example. 

The  success of this  project will be  measured in two 
ways.  First,  Vesta  has  become  established in the 
research  community as one of the first file systems 
to  provide  many of the  features  that  are being rec- 
ognized as important to support parallel comput- 
ing on large-scale parallel computers.36  Many 
groups in U.S. national laboratories,  other IBM di- 

IBM SYSTEMS JOURNAL, VOL 3 4 ,  NO 2, 1995 



visions,  and  universities  have  used  Vesta as a tool 
in their research.  Thus,  a  measure of success  has 
been  achieved  when  Vesta  is  viewed  purely as a 
research  project.  The  other  measure of the  success 
of this  project is as a  product.  The  success of the 
AIX Parallel I/o File System will be  measured in 
the  marketplace  over  the  next  few  years.  Success 
in this  arena  is of much  greater  importance to IBM 
than is success in the research community. The 
marketplace is where we will really determine 
whether  this file system  is right for parallel com- 
puters. 

*Trademark  or registered trademark of International  Business 
Machines  Corporation. 

**Trademark  or registered trademark of Intel  Corporation, 
X/Open Co., Ltd.,  Sun  Microsystems,  Inc., or Institute of Elec- 
trical and  Electronics Engineers. 
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