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DB2 Parallel Edition

The rate of increase in database size and
response-time requirements has outpaced
advancements in processor and mass storage
technology. One way to satisfy the increasing
demand for processing power and input/output
bandwidth in database applications is to have a
number of processors, loosely or tightly coupled,
serving dalabase requests concurrently.
Technologies developed during the last decade
have made commercial parallel database systems
a reality, and these systems have made an inroad
into the stronghold of traditionally mainframe-
based large database applications. This paper
describes the DB2® Parallel Edition product that
evolved from a prototype developed at IBM
Research in Hawthorne, New York, and now is
being jointly developed with the IBM Toronto
laboratory.

arge-scale parallel processing technology has

made giant strides in the past decade, and
there is no doubt that it has established a place for
itself. At this time, however, almost all of the ap-
plications harnessing this technology are scientific
or engineering applications. The lack of commer-
cial applications for these parallel processors may
in part be due to the perceived robustness and us-
ability of these systems. Compared to mainframe
systems, large-scale parallel processing systems
have not emphasized availability and reliability and
have not been supported with adequate software
for system management and application develop-
ment. However, the current generation of mas-
sively parallel processor systems, such as the IBM
Scalable POWERparallel Systems* (the SP1* and
SP2* class of systems), are much more robust and
easier to use.
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Database management systems (DBMSs) provide
important support for commercial applications.
Currently there is a rapidly growing trend among
businesses to analyze their increasing volumes of
transaction data for various types of trends, includ-
ing sales and purchasing, inventory, and budget.
This class of applications, called decision support
applications, poses complex queries on the large
volumes of data that have been collected from var-
ious sources. Single-system (or serial) DBMSs can-
not handle the capacity and the complexity require-
ments of these applications. In addition to decision
support applications, there are other new applica-
tion classes such as data mining, digital libraries,
and multimedia that require either large capacity
or the ability to handle complexity. The emergence
of these applications has fueled the need for par-
allel DBMS software from commercial vendors.

In the past, a number of research prototypes, in-
cluding Gamma,' Bubba,? and XPRS,> have tried
to understand the issues in parallel databases.
These and other projects addressed important is-
sues such as parallel algorithms for execution of
important database operations,*”’ query optimiza-
tion techniques,®® data placement, > and data-
base performance.*'® The results of these stud-
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ies form a basis for our knowledge of parallel
database issues today. However, two major lim-
itations with many of these projects were: (1) Many
of the problems were considered in isolation, so
the implementation tended to be very simple, and
(2) in several cases, people resorted to simulation
and analysis because the implementation required
enormous effort. Recognizing the importance of an
“industrial strength” parallel database system, we
initiated a project at IBM Research that has now
led to the emergence of the product DB2* Parallel
Edition.

DB2 Parallel Edition (DB2 PE) is a parallel database
software program that currently operates on AIX*-
based parallel processing systems, such as the IBM
SP2 system, and will be available in the future on
other architecture and operating system platforms.
Its shared-nothing (SN) architecture and function
shipping execution model (discussed later) provide
two important assets: scalability and capacity. DB2
PE can easily accommodate databases with hun-
dreds of gigabytes of data. Likewise, the system
model enables databases to be easily scaled with
the addition of system processor and disk re-
sources. The architecture and implementation of
DB2 PE provide the opportunity for the best query
processing performance.

* The query optimization technology considers a
variety of parallel execution strategies for differ-
ent operations and queries and uses cost in or-
der to choose the best possible execution strat-
egy.

¢ The execution time environment is optimized to
reduce process overhead, synchronization over-
head, and data transfer overhead.

s The ACID (a term meaning atomicity, consis-
tency, isolation, and durability—all properties of
a transaction) transaction properties!’ are en-
forced in a very efficient manner in the system
to provide full transaction capabilities.

» Utilities such as load, import, reorganize data,
and create index have been efficiently structured
to run in parallel.

* A parallel reorganization utility (redistribute) is
used to effectively correct data and processing
load imbalance across different nodes of the sys-
tem.

It must be noted that companies such as Tandem
Computers Incorporated and Teradata Corpora-
tion have built and sold parallel database products
for a few years. %! Teradata’s DBC/1012 system
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is targeted for decision support applications while
most of the Tandem systems target high-perfor-
mance on-line transaction processing (OLTP) ap-
plications. Proprietary hardware increases the cost
of such systems and also inhibits the development
of a full set of application enablers on them. Be-
sides the fact that DB2 PE does not impose such a
limitation, we believe that there are several novel
aspects that are addressed by DB2 PE that have not
been addressed elsewhere. Several of these aspects
are highlighted later in this paper.

The next section in this paper describes the gen-
eral architecture of the DB2 PE system and discusses
the merits of the shared-nothing architecture and
the function shipping execution model. Following
sections discuss the three layers of the system in
detail; the user-controlled data layout for optimal
performance, the salient features of the DB2 PE
query optimization, and the run-time internals of
the system. Next we discuss database utilities such
as load and unload that are very useful for deci-
sion support applications. Finally we present ini-
tial performance numbers of some controlled ex-
periments. The paper ends with a discussion of our
experience, our conclusions, and directions for fu-
ture work.

Architecture overview

Parallel database systems can be built on top of
different hardware architectures, and given a spe-
cific hardware architecture, they can be imple-
mented using one or both of the function shipping
and 1/0 shipping paradigms. This section describes
the specifics of each of these architecture and
execution models and the choices we made for
DB2 PE.

Hardware architecture. Three different approaches
can be used in building high-performance parallel
database systems,” namely, shared-memory
(shared everything, tightly coupled), shared-disk
(data sharing, loosely coupled), and shared-noth-
ing (partitioned data) approaches. Figure 1 illus-
trates the three different parallel database system
architectures.

In shared-memory systems, multiple processors
share a common central memory. With this ap-
proach, communication among processors is
through shared memory, thus there is little mes-
sage overhead. In addition, the software required
to provide paralle] database processing is consid-
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Figure 1 Shared-memory, shared-disk, and shared-nothing approaches
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erably less complex. Consequently, many com-
mercial parallel database systems available today
are based on the shared-memory architecture.

Although shared-memory systems are easier to de-
velop and support, one major limitation is that this
approach cannot be scaled to a large number of pro-
cessors. Research has shown that beyond a cer-
tain number of processors, access to memory be-
comes a bottleneck? and the processing speed of
the system will be limited by memory access and
will not be determined by the speed of the proces-
sors. State-of-the-art technology can build mem-
ory to support about 500 million instructions per
second (MIPS) of CPU power. This implies that a
shared-memory system can support less than 10
RISC System/6000* processors of the current gener-
ation accessing the shared memory at the same time.
In shared-disk systems,* multiple processors,
each with its local memory, share a pool of disks.
Shared-disk systems avoid the central memory ac-
cess bottleneck, but introduce the difficult prob-
lem of connecting all processors to all disks. This
can be especially difficult in the case of a large num-
ber of processors and disks. In addition, shared
disks present the most challenging task of trans-
action management because of the need to coor-
dinate global locking activities (without the help
of shared memory) and to synchronize log writing
among all processors.

With the shared-nothing approach, each proces-
sor has its own memory as well as local disks. Ex-
cept for the communication network, no other re-
sources are shared among processors. Shared
nothing does not have the memory access bottle-
neck problem, nor does it have the problem of in-
terconnecting a large number of processors and
disks. The major complexity in supporting the
shared-nothing approach is the requirement of
breaking a Structured Query Language (SQL) re-
quest into multiple subrequests sent to different
nodes in the system and merging the results gen-
erated by multiple nodes. In addition, shared noth-
ing requires distributed deadlock detection and
multiphase commit protocol to be implemented.
Researchers and developers have argued that the
shared-nothing approach is the most cost-effective
alternative and the most promising approach for
high-performance parallel database systems. %%
Many research projects, including Gamma' and
Bubba,? have studied various aspects of parallel
database system design based on this approach.
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Because a shared-nothing system can easily be
scaled to hundreds of processors, while shared-
memory and shared-disk systems are limited either
by memory bus bandwidth or by input/output chan-
nel bandwidth, and because a shared-nothing sys-
tem can grow gracefully, i.e., adding more disk ca-
pacity or processing power as needed, DB2 PE
adopts the shared-nothing approach.

Function shipping. Because resources are not
shared in a shared-nothing system, typical imple-
mentations use function shipping, wherein data-
base operations are performed where the data
reside. This minimizes network traffic by filtering
out unimportant data and achieving good parallel-
ism. A major task in a shared-nothing implemen-
tation is to split the incoming SQL request into many
subtasks; these subtasks are then executed on dif-
ferent processors (if required, interprocess and
interprocessor communication is used for data ex-
changes). Typically, a coordinator serves as the
application interface, receiving the SQL request and
associated host variables and returning the answers
to the application.

Figure 2 shows some of the task structure for a very
simple query. The table T1 is shown horizontally
partitioned ™ across all the nodes; thus, based on
the function shipping paradigm, the coordinator re-
quests a slave task—one on each node—to fetch
its partition of T1 and send the result to it. The re-
sults are then returned to the application. In more
complicated SQL statements, the task structure is
inherently more complex; it is the job of the query
compiler to derive the best (i.e., optimal) task
structure for the execution of a query. The query
compiler determines the function to be performed
by each task at run time; the coordinator task is
typically instantiated (or specifically determined)
on the node to which the application connects, and
each slave task is instantiated on the nodes where
the data it accesses reside. Thus in Figure 2, there
is one coordinator, and there are five instances of
slave tasks. In this paper, we use the terms slave
task, subordinate task, subsection, and subplan in-
terchangeably.

As an example of more complex function shipping,
consider the following join query:

select T A, SAAfrom T, S where T.B = S.B

Figure 3A shows a serial execution plan for this
query. When tables T and S are horizontally par-
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Figure 2 Task structure for a simple query
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titioned, a possible parallel execution strategy
could be the one that maintains the serial struc-
ture, but executes each operator in parallel. In Fig-
ure 3B, circled Xs indicate data exchanges. (We
show later how in a large number of cases even
such exchanges can be avoided.) The parallel ex-
ecution of this query plan may require a coordi-
nator (not shown) and three slave tasks (one slave
task scans, sorts, and ships its partition of T to a
second slave task, a third slave task does the same
against S, and the second slave task performs the
actual SQL join function).

One of the advantages that we realized from using
function shipping was that we could use much of
the existing code; the scans, sorts, joins, etc.,
shown in Figure 3B are identical to the operators
in Figure 3A. A fundamental technology in Figure
3B is the mechanism that glues the nodes together
to provide a single-system view to the user. In ad-
dition to function shipping, other technologies re-
quired to support an environment shown in Fig-
ure 3 are (1) generation of parallel plans, (2)
streaming of data and control flow, (3) process
management, (4) parallel transaction and lock man-
agement, and (5) parallel utilities.

Figure 4 describes the system architecture of one
node of a DB2 PE system at a conceptual level. Op-
erations on a node are either on behalf of external
applications, or internal requests from other nodes
in the system. External requests include SQL calls,
utilities (load, unload, rebalance, etc.), or other
calls (commit, start using database, etc.). SQL calls
can be broken into data definition language (DDL)
and data manipulation language (DML). DDL is used
to define and manipulate the structure of the data
(meta-data), such as creating databases, tables, and
indices. DML is used for populating, querying, or
modifying the data in the database.

Execution of the external and internal requests is
primarily driven through the run-time layer. An ex-
ample function of this layer is to traverse the “op-
erator” graph of an optimized DML statement and
to call lower-level functions for executing each op-
erator. The run-time system is also responsible for
allocating and deallocating processes for process-
ing local and remote requests.

Below this layer are two distinct components: data
management services (DMS), which deal with op-
erations on local data, and communication serv-
ices, which deal with operations on remote data.
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DB2 PE built upon and modified the DMS layer of
the existing (nonparallel) IBM product DB2/6000*, but
the changes are relatively modest. However, the
communication services is an entirely new com-
ponent.

The communication services component provides
two types of interfaces, one for control messages
and the other for data. The control messages can
be either synchronous or asynchronous. All mes-
saging is through a communication manager, which
is responsible for multiplexing, demultiplexing, and
reliable delivery to other DB2 PE processes.

In addition, the data protection services (DPS) layer
of DB2/6000, responsible for locking, logging, and
recovery, had to be extended to account for the
fact that a transaction can activate more than one
process and can involve more than one node. The
extensions to DPS use the control message inter-
face of the communication services for global dead-
lock detection, two-phase commit protocol, and
recovery from system failures.

These building blocks of the DB2 PE system are dis-
cussed later in more detail. We discuss changes to
the DDL and its processing, DML statements and
their optimization (including the new operators re-
quired to execute them in a function shipping par-
adigm), changes in the run-time system and the DPS
layer, the new communication component and, fi-
nally, some of the new parallel database utilities.

Data definition language

DB2 PE provides extensions to SQL in the form of
new data definition language (DDL) statements that
allow users to control the placement of database
tables across the nodes of a parallel system. Be-
fore describing the DDL extensions, we provide a
general discussion of data placement issues in
shared-nothing parallel database systems.

Data placement. The data placement problem is the
problem of determining the best storage strategy
for the tables in a given database. Data placement
in parallel database systems is known to be a dif-
ficult problem™ and several approaches have been
taken to solve it.**%% The three key aspects of
the data placement problem are declustering, as-
signment, and partitioning." Declustering refers
to the technique of distributing the rows of a sin-
gle table across multiple nodes. If the rows are
stored across all the nodes of the parallel database
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Figure 4 Major system components at one node

saL UTILITIES OTHERS

DATA DATA

MANIPULATION DEFINITION

LANGUAGE LANGUAGE

(OML) (DDL)

RUN-TIME FUNCTIONS

DATA DATA PROTECTION

MANAGEMENT SERVICES (DPS)

SERVICES

(OMS) : s

COMMUNICATION SERVICES

CONTROL DATA
MESSAGES
ASYNC SYNC

COMMUNICATION
MANAGER

NETWORK (TO OTHER NODES)

system, then the table is said to be fully declus-
tered. If the rows are distributed across a subset
of the nodes, then the table is said to be partially
declustered. Partial declustering subsumes full de-
clustering, and provides more flexibility for assign-
ment of tables. The number of nodes across which
a table is declustered is referred to as the degree
of declustering of the table. The term table par-
tition refers to the set of rows of a given table that
are all stored at one node of the shared-nothing sys-
tem (therefore, the number of table partitions
equals degree of declustering).
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After choosing the degree of declustering, it is nec-
essary to solve the assignment problem, which is
the problem of determining the particular set of
nodes on which the table partitions are to be stored.
The following issues arise during assignment.
Given any two database tables, their assignment
may be nonoverlapped, i.e., the two tables do not
share any common nodes. Conversely, their as-
signment may be overlapped, in which case the two
tables share at least one node. If both tables share
exactly the same set of nodes, then the tables are
said to be fully overlapped. Full declustering re-
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stricts assignment to be fully overlapped, whereas
partial declustering allows for full freedom in as-
signment of table partitions. Finally, the problem
of partitioning refers to the problem of choosing
a technique to assign each row of a table to a table
partition. Common techniques are round-robin,
hash, and range partitioning. In the last two, a set
of columns (attributes) of the table are defined as
the partitioning keys and their values in each row
are used for hash or range partitioning.

Nodegroup DDL. DB2 PE supports partial declus-
tering, overlapped assignment, and hash partition-
ing of database tables using the notion of node-
groups. A nodegroup is a named subset of nodes
in the parallel database system. The following ex-
ample illustrates the use of the nodegroup DDL
statement:

CREATE NODEGROUP GROUP _1
ON NODES (1 TO 32, 40, 45, 48)

CREATE NODEGROUP GROUP _2
ON NODES (1, 3, 33)

CREATE NODEGROUP GROUP _3
ON NODES (1 TO 32, 40, 45, 48)

In the above example, GROUP _1 and GROUP _3
are two different nodegroups, even though they
contain the same set of nodes (nodes 1 to 32, 40,
45, and 48). Nodegroup GROUP _2is partially over-
lapped with GROUP _1 and GROUP _3 (on nodes
1 and 3).

To support scalability, a data redistribution utility
is provided to add and drop nodes to or from a
nodegroup (see the subsection on data redistribu-
tion later in this paper).

Extensions to CREATE TABLE DDL. When cre-
ating a table, it is possible to specify the nodegroup
on which the table will be declustered. The car-
dinality of the nodegroup is the degree of declus-
tering of the table. In addition, it is possible to spec-
ify the columns to be used for the partitioning key.
The following example illustrates the use of DDL
extensions to the CREATE TABLE statement:

CREATE TABLE PARTS (Partkey integer,
Partno integer) IN GROUP _1
PARTITIONING KEY (Partkey) USING HASHING

CREATE TABLE PARTSUPP (Partkey integer,
Suppkey integer, PS_Descp char{50]}

IN GROUP _1 PARTITIONING KEY (Partkey)
USING HASHING
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Figure 5 The concept of partitioning keys and maps
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CREATE TABLE CUSTOMERS (Custkey integer,
C_Nation char[20]) IN GROUP _1
PARTITIONING KEY (Custkey) USING HASHING

CREATE TABLE SUPPLIERS (Suppkey integer,
S_Nation char[20]) IN GROUP _1
PARTITIONING KEY (Suppkey) USING HASHING

CREATE TABLE ORDERS (Orderkey integer,
Custkey integer, Orderdate date) IN GROUP _1
PARTITIONING KEY (Orderkey) USING HASHING

The partitioning key of tables PARTS and PART-
SUPP is Partkey. All tables are partitioned across
the set of nodes identified by the nodegroup,
GROUP _1.

For each row of a table, the hash partitioning strat-
egy applies an internal hash function to the par-
titioning key value to obtain a partition (or bucket)
number. This partition number is used as an index
into an internal data structure associated with each
nodegroup (the partitioning map), which is an ar-
ray of node numbers. Each nodegroup is associ-
ated with a distinct partitioning map. If a partition-
ing key value hashes to partition i in the map, then
the corresponding row will be stored at the node
whose node number appears in the ith location in
the map. Figure 5 shows a table with partitioning
key A. The hash function H(A4) is applied on a tu-
ple’s A value and that is used as an index into the
partition map to determine the actual node num-
ber.
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If there are p partitions in the partitioning map and
if d is the degree of declustering of a table, then
it is necessary that d < p. In DB2 PE, the value of
p is chosen to be 4096. Typically, d << 4096, thus
several partitions are mapped to the same node.
Initially, the 4096 hash partitions are assigned to
nodes using a round-robin scheme. Thus, each
node has at most 4096/d partitions of a given ta-
ble.

In the above example, all tables use the same par-
titioning map since they are defined in the same
nodegroup. In addition, if the data types of the par-
titioning keys are compatible, then the tables are
said to be collocated. Since the data types of the
partitioning keys of PARTS and PARTSUPP are the
same, they are compatible by definition. DB2 PE
provides a simple set of rules that define compat-
ibility of unequal data types. The partitioning strat-
egy ensures that rows from collocated tables are
mapped to the same partition (and therefore the
same node) if their partitioning key values are the
same. This is the primary property of collocated
tables. Conversely, if rows from collocated tables
map to different nodes, then their partitioning key
values must be different. Collocation is an impor-
tant concept since the equi-join of collocated ta-
bles on the respective partitioning key attributes
can be computed efficiently in parallel by execut-
ing joins locally at each node without requiring in-
ternode data transfers. Such joins are called col-
located joins and have the property of being highly
scalable (perfectly scalable in the ideal case). Thus,
in the above example, the following is a collocated
join:

select » from PARTS, PARTSUPP
where PARTS.PARTKEY = PARTSUPP.PARTKEY

Query optimization

The compiler component of DB2 Parallel Edition
is responsible for generating the parallel query ex-
ecution strategies for the different types of SQL que-
ries. The DB2 PE compiler is implemented on the
basis of a number of unique principles:

¢ Full-fledged cost-based optimization—The optimi-
zation phase of the compiler generates different
parallel execution plans and chooses the execu-
tion plan with the least cost. The optimizer ac-
counts for the inherent parallelism of different
operations and the additional costs introduced
by messages while comparing different strate-
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gies. This approach is similar to the cost-based
query optimization performed by System R+ for
a distributed database environment.?

¢ Comprehensive usage of data distribution infor-
mation—The optimizer makes full use of the data
distribution and partitioning information of the
base and intermediate tables involved in each
query while trying to choose parallel execution
strategies.

* Transparent parallelism—The user applications
issuing data manipulation SQL statements do not
have to change in order to execute on DB2 PE.
Hence, the investment that users and custom-
ers have made already in generating applications
is fully protected and the migration task for the
DML applications is trivial. Application programs
written for the DB2/6000 product do not even need
to be recompiled fully when they are migrated
to DB2 PE; the application only requires a rebind
tothe parallel database, which generates the least
cost parallel plan for the different SQL statements,
and, if appropriate, stores them.

The following subsections describe the key fea-
tures of the query compilation technology in DB2
PE. We describe the important operator extensions
that are required for parallel processing, the dif-
ferent types of operator execution strategies, and
finally, the generation of the overall parallel exe-
cution plan. We use several examples to illustrate
these concepts.

Operator extensions. For the most part, parallel
processing of database operations implies replicat-
ing the basic relational operators at different nodes.
Thus, the basic set of operators (such as table ac-
cess, join, etc.) are used without much change.
However, the function shipping execution para-
digm introduces two new concepts that are not
present in a serial engine:

* Query execution may require multiple logical
tasks and each task may be executed across mul-
tiple nodes. Consequently, we need operators
that the coordinator task can use to control the
run-time execution of slave tasks. This operator,
called distribute subsection, is described in more
detail in a later section.

* As a consequence of multiple processes, inter-
process communication operators (notably send
and receive) are required in DB2 PE. These op-
erators can have attributes (e.g., send can be
broadcast or directed; receive can be determin-
istic or random).
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Partitioning knowledge. In DB2 PE, we are conscious
about partitioning in the DDL, data manipulation
SQL, and at run time. The partitioning methodol-
ogy of DB2 PE can be viewed simply as a load bal-
ancing tool (by changing the key and partition map,
we can adjust the number of tuples on any node);
however, by making the compiler and the run-time
systems understand it, we have succeeded in im-
proving SQL performance beyond simply load bal-
ancing. As mentioned before, an example of this
is collocated joins. The compiler, being fully cog-
nizant of table partition keys, nodegroups, etc., can
evaluate the costs of different operations (collocat-
ed vs broadcast joins, for example, as described
later) and thus choose the optimal execution strat-
egy for a given SQL statement. In the case of cer-
tain directed joins, the run-time system uses the
knowledge of partitioning to correctly direct tuples
to the appropriate nodes.

Query optimization and execution plan generation.
In this section, we describe the query execution
plans as trees of operators separated into tasks.
The query execution can be viewed as a data flow
on this tree, with sends and receives being used
for intertask communication.

A query optimizer typically chooses: (1) the op-
timal join order and (2) the best method to access
base tables and to compute each join. This task is

inherently exponential®®** and many optimizers use

heuristics such as postponing of cross products,
left-deep trees, etc., in order to prune the search
space. In the case of a parallel database, query op-
timization is further complicated by: (3) determin-
ing the nodes on which operations need to be done
(this is called the repartitioning strategy and is re-
quired because the inner and the outer tables may
not be on the same set of nodes) and (4) choosing
between system resources and response time as
the appropriate metric for determining the cost of
a plan.

InDB2PE, we have made a few simplifying assump-
tions in order to keep the query optimization prob-
lem tractable:

» We keep track, on a per-node basis, of the total
system resource accumulated during the bot-
tom-up generation of a query plan. The maximum
resources used across all the nodes and the net-
work is a measure of the response time of a
query.

e Of all the possible subsets of nodes that can be
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used to execute a join, we typically consider only
a few subsets: all the nodes, the nodes on which
the inner table is partitioned, the nodes on which
the-outer table is partitioned, and a few others.

» In keeping with the DB2/6000 query optimization
strategy, we use a greedy heuristic while choos-
ing between different parallel join execution strat-
egies. The join execution strategies are described
later. The best locally-optimized strategy is the
one that survives.

In some queries, the optimal strategy is obvious.
For example, consider the following query:

select S_NAME, S_ADDRESS from SUPPLIERS
where S_REGION="'ASIA'

If a secondary index exists on SUPPLIERS.S_RE-
GION, then the query plan will use it to restrict the
tuples on each node; otherwise each node will have
to fetch all its SUPPLIERS tuples and eliminate
those that are not from 'ASIA'. The run-time ex-
ecution strategy is very similar to Figure 2.

In a more complicated query, such as one shown
in Figure 6A, the coordinator not only returns the
answer to the application, but also binds in any in-
formation required to compute the answer (pass-
ing this information to the slave task if required).
In this case, an additional feature that DB2 PE sup-
ports is to perform aggregation such as count(*) in
two steps—the slave tasks compute their local
counts and then the coordinator sums the counts
and returns the result to the application. The ar-
rows from the coordinator to the slave task rep-
resent the passing of all the information required
for the slave task to correctly execute (i.e., the
query subplan, including the input host variable),
and the arrows from the slave task to the coordi-
nator indicate return of their local counts.

In these two examples, the query optimizer had to
do little; we now turn to some examples of joins
where the optimizer has to actually make decisions.

SELECT CUSTNAME from CUSTOMERS, ORDERS
where O_CUSTKEY = C_CUSTKEY
and O_ORDERDATE > '02/02/94'

The query selects the names of all customers who
placed orders after a certain date. It requires that
the ORDERS and CUSTOMERS tables be joined on
their CUSTKEY attribute. This join operation can
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Figure 6 Task structure for a query and join
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be performed by a variety of different strategies in
a parallel database environment.

Collocated join. Let the partition keys of the OR-
DERS and CUSTOMERS tables be CUSTKEY and let
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them be in the same nodegroup. Then, the records
of both tables having a particular CUSTKEY value
will reside on the same node. For example, CUST-
KEY value of 10 000 may be mapped to node 100
but is the same for both tables. Thus, the join op-
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eration can be performed on the local partitions of
the two tables. The execution strategy for this is
shown in Figure 3A except that the circled cross
operators are null operators—no data exchange is
required, and the entire operation can be done in
one slave process that scans the two tables and
joins them and then ships the result to the coor-
dinator. Figure 6B shows the task structure for this
join.

Directed join. Let the partition key for CUSTOM-
ERS be CUSTKEY and ORDERS be ORDERKEY.
Here, we cannot perform a collocated join oper-
ation since records of the ORDERS table with a par-
ticular CUSTKEY value could reside on all nodes.
The compiler recognizes this from the partition-
ing information of the CUSTOMERS and ORDERS
tables. It then considers a few execution strategies,
the foremost of which is the directed join.

The optimizer recognizes that the CUSTOMERS ta-
ble is partitioned on CUSTKEY. So, one efficient
way to match the CUSTKEYs of ORDERS and CUS-
TOMERS is to hash the selected ORDERS rows us-
ing its CUSTKEY attribute and direct the rows to
the appropriate CUSTOMERS nodes. This strategy
localizes the cost of the join to partitions at each
node and at the same time tries to minimize the
data transfer. Figure 6C shows the compiled plan
for this strategy.

Broadcast join. Consider the following query be-
tween the CUSTOMERS and SUPPLIERS table.

SELECT CUSTNAME, SUPPNAME, C_NATION
from CUSTOMERS, SUPPLIERS
where C_NATION = S_NATION

The query tries to find customers and suppliers in
the same region. Let the partitioning key for CUS-
TOMERS be CUSTKEY and that of SUPPLIERS be
SUPPKEY. Note that C_NATION and S_NATION
could have been the respective partition keys of
the two tables; however, CUSTKEY and SUPPKEY
are used more often in queries and are more likely
candidates. Given this, the optimizer cannot try
to localize the join operation on the C_NATION and
S_NATION attributes. Hence, a strategy of broad-
casting the selected rows of either table to all the
nodes of the other tables is considered. The broad-
cast essentially causes one table to be materialized
fully at each node containing a partition of the other
table. Now, a join at all nodes will produce the
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complete result of the query. Figure 6C also shows
a broadcast join (with the ORDERS table being re-
placed by SUPPLIERS) and the arrow connecting
slave task 1 to slave task 2 being of type broadcast
as opposed to directed.

The broadcast join operation is relatively expen-
sive both in terms of network cost and join pro-
cessor cost. However, there are instances where
this strategy is still very useful. These instances
include situations where one of the joining tables
is much smaller than the other, when there is an
index on a joining attribute, or in nonequijoin sit-
uations.

Repartitioned joins. We also consider a reparti-
tioned strategy of join execution in cases such as
the query described previously. In this strategy,
the optimizer decides to explicitly repartition both
tables on their joining attributes in order to local-
ize and minimize the join effort. In the example
query previously described, the optimizer will re-
partition the CUSTOMERS table on C_NATION and
the SUPPLIERS table on S_NATION on some com-
mon set of nodes. The repartitioned tables can then
be joined in a collocated join fashion at each node.
Figure 6D shows the repartitioned join strategy.

The repartitioned join requires message traffic to
redistribute rows of both tables involved in the join.
Once redistributed, the join processor cost is sim-
ilar to the collocated join case.

Cost-based optimization. One of the most impor-
tant features of the optimizer is that it uses cost
estimates when deciding among different execu-
tion choices. This is to be contrasted with an op-
timization technique that heuristically decides to
go with a particular strategy. For example, given
a join operation, the optimizer estimates the cost
of each of the join strategies previously described
and chooses the one with the least cost estimate
for a given join step. The cost basis makes the op-
timizer decisions more robust when choosing be-
tween strategies such as broadcast or repartitioned
joins.

Cost estimation also enables the optimizer to
choose the best query execution plan in a parallel
environment. It accounts for the messaging costs
incurred by operations. Most importantly, estima-
tion tries to influence parallel processing of differ-
ent parts of the query whenever possible. Figure
7 shows two different types of query execution
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Figure 7 Different execution strategies in serial and
parallel environments
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plans for a four-way join query. Assume that ta-
bles T1 and T2 are collocated on a nodegroup,
while T3 and T4 are collocated on an entirely dif-
ferent nodegroup in a parallel environment. An op-
timizer for a serial DBMS could choose the strat-
egy in Figure 7A, because all the operations are
performed in the same node and that is the best
serial strategy (possibly influenced by indexes, sort
orders, etc.). However, the DB2 PE optimizer may
try to favor the parallel plan represented by Fig-
ure 7B since more work can be performed in par-
allel and the partitioning of tables for the two low-
ermost joins are optimal. Thus proper “parallel
cost measures” are critical for parallel query op-
timization.

Parallelism for all operations. A guiding principle
in the compiler design has been to enable parallel
processing for all types of SQL constructs and op-
erations. For the sake of brevity, only a list of other
operations and constructs where we apply paral-
lelism while generating the execution strategies is
provided.
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¢ Aggregation—The ability to perform aggregation
is required at individual slave tasks and may be
required at a global level.

* Set operations—We consider collocated, di-
rected, repartitioned, or a global strategy akin
to the join strategies previously described.

* Updates—The ability to perform inserts with
subselect, updates, and deletes in parallel is re-
quired.

» Subqueries—We consider collocated, directed,
and broadcast methods of returning subquery re-
sults to the sites where the subquery predicate
is evaluated.

DB2 Parallel Edition run time

In order to execute a query plan or a DDL state-
ment in parallel, DB2/6000 run-time mechanisms had
to be augmented considerably. The following new
components were added to provide interprocess
(processes may be on different nodes) communi-
cation:

* Control services—These services deal with in-
terprocess control message flow (start and stop
of processes, error reporting, interrupts, paral-
lel remote procedure call, etc.).

» Table queue services—These services deal with
exchange of rows between DB2 PE agents across
or within a node and are responsible for the cor-
rect execution of the data flow operators connect-
ing different slave tasks.

* Communication manager—This service per-
forms the actual routing of messages using the
underlying communications protocol.

In addition, several existing components had to be
modified for DB2 PE. They include the interpreter
(the component that drives the execution of a query
plan), deadlock detector, lock manager, transac-
tion manager, etc. In this section, we describe the
new components, as well as the modifications to
the existing ones.

Control services. When an application connects to
a database (see Figure 8), a special process (or an
agent) called the coordinator is created. This pro-
cess is responsible for executing database requests
on behalf of the application, returning any results
through the reply queue and shared-memory area.
In the serial case this is all there is; but in the par-
allel case multiple processes need to be created to
execute requests. These processes (agents) are or-
ganized into a network of producer-consumer pro-
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Figure 8 Application and coordinator agent
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cesses. The data flow through table queues, which
are described in the following section.

The query subtask (subsection) executed by the
coordinator distributes the other subsections to the
appropriate nodes to be executed. Along with ev-
ery request, it sends connection information for the
table queues and any host variable information that
may be required. There are separate distribute op-
erators in the coordinator for each subsection. Typ-
ically, the compiler can make static decisions about
where a particular subsection needs to be instan-
tiated (generally based on the nodegroups of the
tables that the particular slave task accesses).
However, DB2 PE is capable of choosing nodes at
run time, based either on the query structure (e.g.,
a query select * from T1, where Tl.a = host-vari-
able with T1.a being the partitioning key of T1, al-
lows the table access to happen only on the node
that contains the partition for T1.a = host-vari-
able), or on the current I/0 and processing activity
of the nodes (for those subsections that are not tied
to specific nodes, e.g., those that execute repar-
titioned joins).

Creating a process can be an expensive operation.
For long-running queries, this process is amortized
over many millions of instructions, but for shorter
queries this can be considerable overhead. There-
fore several optimizations have been done to de-
crease this overhead.
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The purist view of process management is that the
‘““abstract database process” is created to execute
its subsection, then terminates when the subsec-
tion is finished. In DB2 PE a pool of processes is
initiated when the database manager is started at
anode, and any of the processes can be reused by
different subtasks of the same application or dif-
ferent applications. The process pool can signif-
icantly reduce process creation overheads for short
queries.

Certain sequences of SQL operations have a por-
tion that is inherently state-based. For example,
cursor-based updates depend on a previous state-
ment to position the cursor. Therefore DB2 PE pro-
vides persistent agents that remain assigned until
the application disconnects. After such an agent
starts working on behalf of a request, it remains
attached to the request’s state until the request
completes. An alternative we explored was discon-
necting a process from a subsection during idle
times, such as when waiting for a message to be
received or sent. The extra overhead of saving and
restoring state seemed to overwhelm the system
savings. The parameters determining this trade-off
may change as system speed increases dispropor-
tionately to the disk swap time.

In addition to the requests to start or stop pro-

cesses, the control component also handles re-
quests to stop or interrupt processes, returns con-
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trol replies to applications, and provides parallel
remote procedure call support for low-level data-
base manager functions (such as “retrieve long
field” or “load access plan from catalog™).

Table queue services. The interprocess data flow
constructs are called table queues, and are similar
to Gamma’s split tables.' However, they are richer
in functionality. Intuitively, they can be thought
of as a temporary table. The most important dif-
ference is that they do not need to be completely
built before rows can be fetched from them. They
are in effect streams of rows for interprocess com-
munication, controlled by the receiver’s ability to
handle the traffic (back pressure). They have a send
operator (table queue build) and a receive oper-
ator (table queue access).

Table queues are designed to provide maximum
flexibility to the SQL compiler and optimizer in gen-
erating the most efficient parallel plan. The plan
specifies that a certain table queue is to connect
two subsections of a plan. However, each subsec-
tion can be instantiated on more than one node.
Therefore a single table queue can have more than
one sender and more than one receiver; thus a com-
munication path exists between multiple producer
and multiple consumer processes (see Figure 9A).
Although it should be thought of as one entity, it
is implemented by multiple connections, between
each sender/receiver pair. Each sending process
can send each row to every receiver process, or
to just one process depending on the partitioning
information associated with the table queue.

There are many attributes associated with table
queues. An important one of them is Broadcast vs
directing—does one row at the sending end go to
all the receivers, or only to one? See Figure 9B for
an example of a directed table queue. In this fig-
ure, all “A” values are directed to the first receive
node from all sending nodes, all “B”” values to the
second, and so on.

Communication subsystem. The parallel commu-
nications component is layered in a similar fash-
ion to the rest of the run time. It accepts messages
(either control messages or buffers of rows) and
guarantees ordered delivery between nodes (or be-
tween processes on the same node). It also performs
multiplexing and demultiplexing of messages be-
tween nodes of a DB2 PE system. Underneath this
layer, it uses the delivery layer, which can be the
User Datagram Protocol/Internet Protocol (UDP/IP),
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Transmission Control Protocol/Internet Protocol
(TCP/IP), OF proprietary high-speed switch interface.

Because a message can be sent before the process
waiting for it is ready to receive it, the communi-
cations layer must hold messages until the receiv-
ing process is ready. Some of the issues that had
to be solved here were determining if the process
to which a message was directed had already ter-
minated, in which case the arriving (or “in-flight™)
message should be dropped; or whether the pro-
cess had not yet been created and so the message
should be kept. The solution to this question re-
lied on the communication manager to guarantee
order of arrival of messages. That is, if message
A is sent from sender S on node 1 to receiver R
on node 2, then it must be received by R before
R can receive any other message sent later by S
to R. (Exceptions are made for the class of “in-
terrupt” messages.)

Interrupt and error handling. The assumption in-
herent in the serial database manager is that either
the application is busy or the database system is
busy, but not both at the same time. Further, the
database system is busy handling only one request
per application. In DB2 PE, not only can the data-
base system be active concurrently with the ap-
plication, it can be processing more than one query
on behalf of the same application. Multiple cursors
may be open at any given time. Each fetch of a
cursor returns a single row, but there could be pro-
cesses on many nodes working to retrieve rows for
that cursor. A process may be initiated at a node
when a cursor is opened (execution of an open cur-
sor statement by the application) and it remains
until it has completed processing of all its data or
until the cursor is closed by the application.

So although a row may be ready to be fetched, an-
other node may have had an error. The semantics
had to be defined for when the error indication is
returned to the application, whether it should be
returned as soon as possible, as late as possible,
or in its “natural” order. DB2 PE implements the
‘“as soon as possible” policy, but it is by no means
clear this is always the best. There are many other
examples of similar problems, where serial seman-
tics just cannot be maintained, e.g., interrupt han-
dling, forward recovery to current time, etc.

Concurrency control and recovery. A parallel da-

tabase must ensure that individual transactions can
be serialized and that recovery from software and
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Figure 9 Table queues
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hardware failures are possible. Serializability (se-
rialization of transactions) is obtained by using a
standard two-phase locking protocol, and recov-
ery from failures (durability) is obtained by using
a two-phase commit protocol. This section de-
scribes the specifics of each of these subjects.

Two-phase commit protocol. One important prop-
erty of database systems is to guarantee that ei-
ther all actions of a user transaction take effect or
none take effect. Since a transaction can be exe-
cuted on multiple processors concurrently in a par-
allel database system, it is much harder to provide
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the all or nothing property. To guarantee this prop-
erty, most parallel systems adapt a two-phase com-
mit protocol that includes a prepare phase and a
commit or abort phase. The two-phase commit pro-
tocol may result in blocking if the coordinator fails
after it has received votes but before it sends out
an outcome. When blocking occurs, participants
will hold or lock resources for a long time, result-
ing in significant degradation in system perfor-
mance. Three-phase commit protocol® has been
proposed to remedy the blocking problem. But be-
cause a three-phase commit protocol imposes
much higher overhead than a two-phase protocol,
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Figure 10 Transaction state transition in DB2 PE
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and the blocking problem can be “resolved” by
system administrators, none of the existing com-
mercial systems currently supports the three-phase
protocol.

There are three variations of the two-phase com-
mit protocol: presumed nothing, presumed com-
mit, and presumed abort.* DB2 PE adopts the pre-
sumed abort protocol that assumes a transaction
has aborted when the state of the transaction was
inquired by any subordinate nodes and the state
cannot be found in the in-memory transaction ta-
ble. Figure 10 shows the transition of transaction
state in DB2 PE. When a transaction starts, a co-
ordinator agent is activated to coordinate the ex-
ecution of the transaction. Subordinate agents (DB2
PE agents), if needed, are activated by the requests
sent from the coordinator agent. Before process-
ing a commit or rollback request, the transaction
at both coordinator and subordinate nodes is in the
active state.

DB2 PE maintains a transaction node list for every
active transaction that contains the node numbers
of all nodes participating in executing the trans-
action. When a coordinator agent receives a com-
mit request from an application, it sends out pre-
pare-to-commit requests to the PDB request queues
of all nodes recorded in the transaction node list,
including the coordinator node itself. At this point,
the coordinator agent enters the prepare state.
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Upon receiving the prepare-to-commit request, the
DB2 PE agent controller at the coordinator node is
responsible for stopping active agents associated
with the committing transaction. However, the co-
ordinator itself is responsible for processing the
prepare-to-commit locally. Notice that there is no
prepare log written at the coordinator node before
starting the prepare phase in DB2 PE. At a subor-
dinate node, a prepare-to-commit request is pro-
cessed by an active agent associated with the trans-
action if one exists. Otherwise, a new agent is
selected by the DB2 PE agent controller to process
the request. The commit agent first checks the
transaction state stored in the local transaction ta-
ble. If the transaction encountered any error and
thus cannot be committed, it will vote “no” to the
coordinator and enters the abort state. Otherwise,
it will reply “yes” and enters the prepared state if
it has modified its local database. If a participant
does not update its local database and is ready to
commit, it will reply “read-only” and enters the
commit state.

If everyone votes “yes” or read-only, the coor-
dinator commits the transaction and informs all
participants who have voted “yes.” At this point,
the transaction state changes to commit at the co-
ordinator node. Otherwise, the coordinator aborts
the transaction and forwards the decision to all sub-
ordinate nodes that voted “yes.” All actions per-
formed for the transaction at all nodes are rolled
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back (undone) and the transaction state is changed
to abort.

Concurrency control. Parallel database systems
need to maintain consistent global locking across
all nodes because a database object (record, table,
index, etc.) may be accessed by multiple nodes
concurrently and deadlocks may occur among
nodes. This requirement posts a significant chal-
lenge to parallel database system designers. In
shared-memory and shared-disk systems, data can
be accessed by multiple nodes concurrently. In or-
der to maintain a consistent global locking, a node
needs to obtain read and write permission either
explicitly or implicitly from all other nodes before
reading or writing a data object for which it does
not already own an appropriate access permis-
sion—hence the requirement for some form of
global lock management. In DB2 PE, each proces-
sor accesses only the portion of the database that
it owns locally. Consequently, a processor does
not have to request access permission from remote
processors before accessing its local data; thus a
global lock table is not required. However, DB2 PE
does require a distributed deadlock detector to
check for global deadlocks.

In DB2 PE, a lock table and local deadlock detector
are created for each database and node to main-
tain locking information and to resolve conflicts
among lock requests for a given database. A trans-
action may have multiple processes active on its
behalf and each process requesting a lock will be
assigned a separate lock request block. When two
processes of the transaction make a lock request
to the same object, the one lock request block per
process design uses more memory space. How-
ever, it simplifies the design in processing lock con-
version requests and lock release requests before
the end of a transaction. The local deadlock de-
tector is implemented as a separate process and
awakens periodically (becomes active) to scan the
local lock table and to build the local wait-for graph.
It then sends the local wait-for graph to the global
deadlock detector (GDD) for processing.

Global deadlock detection is also implemented as
a separate process. There is one global deadlock
detector per database opened per DB2 PE system.
Currently, a transaction is not allowed to access
multiple databases at the same time and thus one
GDD per database is the most efficient method. The
GDD process resides on a preconfigured node. On
a user configurable time interval, local deadlock
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detectors send their local wait-for graphs to the
GDD. The GDD merges the graphs received and
builds a global wait-for graph based on the trans-
action identifier that is unique across all nodes in
a DB2 PE system. After the completion of building
the global wait-for graph, the GDD goes through it
to find deadlock cycles in the graph. When a cycle
is detected, one or more transactions are selected
and rolled back to break the cycle. When a trans-
action has been selected as a deadlock “victim,”
its coordinator agent (process) is informed by the
agent requesting the lock and the coordinator agent
will send a rollback request to its subordinate
agents (processes) to undo the action of the trans-
action.

Database utilities

DB2 PE provides a variety of utilities to manage the
parallel database system. Some of the important
utilities are described in the following subsections.

Data loading. The load utility allows bulk loading
of database tables from flat files. To support ap-
plications requiring very large database sizes (hun-
dreds of gigabytes and higher), DB2 PE provides ef-
ficient ways of loading large volumes of data into
the database. Data can be loaded in parallel into
a single table by invoking the load utility at each
of the nodes that contains a table partition for the
given table. Typically, the input data are stored in
a single flat file. A data partitioning utility as well
as application programming interfaces provided
with the database system can be used to partition
an input file into multiple files, one per table par-
tition. The partitioned files can then be loaded in
parallel. In addition, at each node, the load utility
reads the input data file and creates data pages in
the internal format used by the database engine.
These pages are directly appended to the existing
database file, thereby greatly increasing the speed
of the load utility.

Adding nodes to the system. DB2 PE supports scal-
ability by allowing incremental addition of nodes
to the shared-nothing parallel system. Thus, a user
can start with a system configuration that is suf-
ficient to handle current storage and performance
requirements and add new nodes as the size of the
database grows. New nodes can be added to in-
crease storage capacity as well as performance.
The command, Add Node, allows users to add
nodes to the parallel database system configura-
tion and to initialize the node for use by any da-
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tabase. Once added, a node can be used by a da-
tabase by including it in one of the nodegroups in
the database (either the CREATE or REDISTRIBUTE
NODEGROUP statements can be used for this pur-
pose). Since DB2 PE supports partial declustering
of tables, the set of all tables for a given database
may reside only on a subset of the nodes in the sys-
tem. However, an application can connect to any
database from any node in the system, regardless
of whether that node contains data pertaining to
that database.

The Drop Node command can be used to verify
whether a node can be dropped from the database
configuration. If the node to be dropped is currently
in use by a database, then the node should not be
dropped. The Redistribute Nodegroup command
{described in the later subsection on data redistri-
bution) should be used to remove any data from
this node before dropping it.

Creating a database. Normally, issuing the Create
Database command ensures that the database is
defined across all the nodes that are currently in
the system. Similarly, the Drop Database com-
mand drops the database definition from all nodes.
However, there are situations in which one may
wish to create and drop the database only at a sin-
gle node. For example, the Add Node command
described above implicitly performs a create-da-
tabase-at-node operation for each existing data-
base. Also, in case the database at a particular node
happens to be damaged, the Drop Database At
Node command allows the user to drop only the
database at that node rather than dropping the en-
tire database across all the nodes of the system.
Since DB2 PE supports node-level backup and re-
store (see the later section on backup and restore),
after dropping a database at a node, the database
backup image can be used to restore the database
at that node (and roll forward the logs, if neces-

sary).

Data reorganization. As a result of insert, delete,
and update activity, the physical layout of data-
base tables may change. Insertions may result in
the creation of overflow data blocks and, as a re-
sult, the disk pages containing data belonging to
the table may no longer be stored contiguously.
On the other hand, deletions may create gaps in
disk pages, thereby resulting in an inefficient uti-
lization of disk space. If a table is partitioned across
a set of nodes, insert and delete activity may also
resultin table partitions at some nodes having more
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data than those at other nodes, thus creating a skew
in data distribution. Also, in many decision sup-
port applications, the database size increases with
time. Thus, it may be necessary to increase the de-
gree of declustering of a table in order to accom-
modate the additional data. Finally, even if the size
of the database remains the same, the workload
may change, thereby requiring a change in data
placement.

In all of the above situations, data reorganization
utilities can be used to manage the physical stor-
age of the table. The following subsections describe
the data reorganization utilities available in DB2 PE.

Table reorganization. The Reorg utility can be used
for compaction and reclustering of database files
ateach node. The Reorg operation executes in par-
allel across all the nodes that contain a table par-
tition for a given table. The file in which the da-
tabase table is stored is reorganized by creating a
new file without any page gaps and overflow
blocks. If the operation completes successfully on
some nodes but not on others, then the table par-
titions remain successfully reorganized at the nodes
where Reorg succeeded.

This is an example of an operation where the
atomic commit semantics of the database opera-
tion have been relaxed. If the operation were to
be atomic, then upon failure, the Reorg would have
to be undone at all the nodes where it completed
successfully. However, the Reorg operation may
be time-consuming and undoing it may be even
more expensive. In addition, consider the case
when Reorg succeeds on, say, 60 nodes but fails
on 1. It is more beneficial not to undo the oper-
ation. In this case, the operation returns an error
message but is not undone since there is no pen-
alty if some partitions are reorganized while oth-
ers are not. On the other hand, the nodes at which
the partitions were reorganized would benefit from
the resulting file compaction.

Data redistribution. The partitioning strategy used
to partition tables may, in some situations, cause
askew in the distribution of data across nodes. This
can be due to a variety of factors, including the dis-
tribution of attribute values in a relation and the
nature of the partitioning strategy itself. At initial
placement time, it is possible to analyze the dis-
tribution of input attribute values and obtain a data
placement that minimizes skew. However, data
skew may be reintroduced over the database life-
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time due to insertion and deletion of data. DB2 PE
provides a data redistribution utility to redistrib-
ute the data in a table in order to minimize skew.

For a given nodegroup, the data redistribution op-
eration determines the set of partitions of the par-
titioning map that should be moved in order to ob-
tain an even distribution of data across the nodes
of the nodegroup. The default assumption is that
the data are evenly distributed across the 4K par-
titions; thus, if the partitions are evenly distributed
among the set of nodes, then the data are also as-
sumed to be evenly distributed across the nodes.
The user may override this default assumption by
providing a distribution file that assigns a weight
to each of the 4K partitions. In this case, the re-
distribution operation will attempt to redistribute
partitions among nodes such that the sum of the
weights at each node is approximately the same.

If a nodegroup contains several tables, then redis-
tributing only one table and not the others will re-
sult in a loss of collocation among the tables. In
order to preserve table collocation at all times, the
redistribution operation is applied to all the tables
in the nodegroup and each table is redistributed in
turn. If a redistribute operation does not complete
successfully, it is likely that some tables in the
nodegroup have been redistributed while others
have not. In this case, the operation can be com-
pleted by issuing the Redistribute command with
the restart option. It is also possible to issue the
Redistribute command with a rollback option, in
order to undo the effects of the failed redistribu-
tion. The Redistribute Nodegroup command is an
on-line operation that locks only the table that is
currently being redistributed. All other tables in
the nodegroup are normally accessible.

The data redistribution utility also permits users
to redistribute data by specifying a target partition-
ing map for a given nodegroup. Data redistribu-
tion of all tables in the nodegroup using the target
positioning map is initiated through the application
programming interface. This interface can be used
to achieve “custom” redistribution of tables, e.g.,
send all rows with a particular partitioning key
value to a particular node, create skewed distri-
butions, etc. The current data distribution across
partitions and nodes can be determined using two
new SQL scalar functions, namely, PARTITION and
NODE. These functions return the partition num-
ber and node number to which a given row in a
table is mapped.
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The following example illustrates how the new SQL
functions can be used to obtain the distribution of
the rows of a PARTS table:

Query 1:

CREATE VIEW Partition_Nums(Pnum) AS
SELECT PARTITION(PARTS)
FROM PARTS;

SELECT Pnum, COUNT (x)
FROM Partition_Nums
GROUP BY Pnum
ORDER BY Pnum;

Query 2:

CREATE VIEW Node_Nums{(Nnum) AS
SELECT NODENUMBER(PARTS)
FROM PARTS;

SELECT Nnum, COUNT(*)
FROM Node_Nums
GROUP BY Nnum
ORDER BY Nnum;

The output of Query 1 is a set of rows where each
row contains the partition number (0 to 4095) and
the number of rows of the table that map to that
partition. The output of Query 2 is a set of rows
where each row contains the node number and the
number of rows of the table that map to that node.

Backup and restore. The degree of parallelism
achieved during backup and restore of a database
is determined by the number of backup devices
available. The DB2 PE backup and restore design
allows each node in the system to be backed up
independently. Thus, data from several nodes can
be backed up simultaneously, if multiple backup
devices are available. The backup utility creates
abackup image of the entire database partition res-
ident at a given node.

At restore time, it is necessary to ensure that the
database partition that is being restored is in a con-
sistent state with respect to the rest of the nodes
in the system. This can be achieved by either re-
storing all nodes in the system using backup im-
ages that are known to be consistent, or by restor-
ing the single node and rolling forward logs to a
point in time where the database state is consis-
tent across all nodes. DB2 PE supports the ability
to roll forward logs across nodes to a specific point
in time.
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High availability. High availability is supported by
the use of HACMP (highly available cluster multi-
processor)* software. The HACMP software pro-
vides transparent takeover of the disk and com-
munications resources of the failed node. System
nodes are paired together and each pair has access
to twin-tailed disks (disks connected to two nodes).
If one of the processors in a pair fails, the other
processor can take over and the system can con-
tinue to operate. To enable use of HACMP software,
the database engine has been designed to allow the
situation where a single processor executes mul-
tiple copies of the database engine. In other words,
multiple database nodes or logical nodes are
mapped to the same physical node. While this
method provides quick takeover of a failed node,
there may be an impact on performance due to in-
creased load on the takeover processor. In many
decision support applications, it is not essential to
provide instant takeover capability, whereas it is
important not to degrade overall system perfor-
mance. Thus, it may be acceptable to have a par-
ticular node become inaccessible, for example for
ten minutes, in order to be able to recover from
a failure of that node without any subsequent per-
formance penalty. This can be achieved by con-
figuring one or more spare nodes in the system that
can take over on behalf of any failed node. When
a node fails, its database files are copied to the
spare node (access to the disks on the failed node
isavailable due to twin tailing) and the spare is now
restarted as the original, failed node. In this sce-
nario, only the node that failed is inaccessible for
a brief period of time while the remaining nodes
in the system are still operational.

Performance monitoring and configuration manage-
ment. Database monitoring tools allow users to
identify performance bottlenecks and take appro-
priate action to relieve the bottlenecks. DB2 PE pro-
vides a database monitoring facility that allows
users to gather data on resource consumption at
the database manager, database, application, and
individual process levels. These data are collected
at each node and can be used to identify bottle-
necks at individual nodes. To obtain a global pic-
ture of the performance of the entire system, it is
necessary to combine performance monitoring data
across all nodes. A performance monitoring tool
is being developed as a separate product for this

purpose.

The database manager provides several configura-
tion parameters at the database manager and in-
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dividual database levels, that can be used to tune
the performance of each database and the database
manager as a whole. For example, users can con-
trol the size of buffers, maximum number of pro-
cesses, size of log files, etc. These parameters can
be set independently at each node, thereby allow-
ing users to tune the performance of each individ-
ual node. Thus, the configuration parameters can
be adjusted to account for differences in hardware
capacities, database partition sizes, and workloads
at each node.

Results

We have performed a number of internal 1BM and
customer benchmarks on DB2 PE and a brief syn-
opsis of these results is presented here. The results
are divided into three categories:

* Stand-alone numbers—This basic metric in-
cludes capacity and load times.

¢ Speedup—This metric measures the perfor-
mance of queries and utilities as we increase the
number of nodes in the system while maintain-
ing the same database size.

* Scaleup—This metric measures the performance
of the system as the database size, the number
of concurrent users, and the number of nodes are
scaled proportionately.

The system configuration for many of the bench-
marks has been the IBM SP2 or SP1 systems. The
systems have ranged from 8 nodes to 64 nodes de-
pending upon the database requirements of the in-
dividual benchmarks. Typically, each node has 128
or 256 megabytes of memory and 2 to 48 gigabytes
of disk capacity. The nodes are interconnected us-
ing a high-speed switch. In some of the bench-
marks, we have only used the slower Ethernet as
the interconnect path.

The results that are described in this section were
measured using early untuned drivers of the DB2 PE
software, and specific hardware configurations (of-
ten having a single disk per node). As such, the re-
sults obtained in a different hardware or software
environment may vary significantly. Users of these
results should verify if they are applicable for their
environments. The absolute values of a number of
different metrics are likely to be different in the final
product.

Stand-alone metrics. Table 1 describes the impor-
tant stand-alone metrics based on results of bench-
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marks performed to-date. One of the foremost met-
rics we would like to present is system capacity .
When stating capacity, we must differentiate be-
tween user data size (the size of flat files contain-
ing the data in normalized form), database size (the
space occupied once the data have been loaded in
DB2 PE, relevant indexes created, and any required
denormalized tables created), and disk capacity
(the total disk space used to support the database
workload, including internal work areas, interim
load files, etc.). We have benchmarked applica-
tions with over 100 gigabytes (GB) of user data, da-
tabases of over 250 GB, and systems with more than
600 GB of disk space. One of the tables in the da-
tabase has been as large as 84 GB and contained
over 2 billion rows. We expect to support config-
urations in the terabyte size. To put this into per-
spective, even mainframe relational databases are
rarely over 200 GB in size. Some of the measure-
ments were done using tables larger than the 64
GB limit of many relational database management
systems.

Another very important metric is data load times.
Our fastload utility is able to load data at rates of
up to 2 GB/per node/per hour. The dataload utility
runs in parallel at all nodes, hence it demonstrates
a completely linear speedup of load rates. In a 32-
node system, one could load at the rate of 64 GB
per hour.

Before loading, the data must be declustered and
sent to the appropriate node. The utility used to
decluster data (data splitter) is flexible and can be
modified by the user in situations where fine tun-
ing is required. The data splitter can be executed
on a variety of IBM operating system platforms in-
cluding Advanced Interactive Executive* (AIX),
Multiple Virtual Storage (MVS), and VM. In most
cases we also divided the input data so as to run
the splitter in parallel. The output of the splitter
must then be sent to the appropriate node for load-
ing. In certain benchmarks this was done by send-
ing the data in file format using FTP (File Transfer
Protocol), while in other benchmarks the output
from the splitter was piped directly into the load
program. In most cases, the connectivity between
the system containing the source data and the tar-
get database system was the limiting factor on the
entire database load process. For a 100 GB data-
base on a 46-node SP2 system, the elapsed time for
partitioning all the data, loading the data, and cre-
ating indexes on the tables was just 12 hours.
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Table 1 Stand-alone metrics

Data size 100 GB and larger
Database size 250 GB and larger

Table size 84 GB (2 000 000 000 rows)
Total disk space over 600 GB

Data splitting 2 GB per node per hour
Data load rate 2 GB per node per hour

Table 2 Database description for speedup experiments

Table No. of Rows Row Size Total Size
S1 100 000 100 10 MB
T1 1 000 000 100 100 MB
T2 1 000 000 100 100 MB
W1 1000 000 1000 1 GB

The final stand-alone metric is availability. In these
benchmarks, we have tried to maintain several
spare nodes for replacement in the event of node
failures. Due to the decision support nature of the
benchmarks, only a few nodes (those containing
database catalogs) in the system may need the use
of special availability mechanisms such as twin-
tailing of disks. For all other nodes, in the event
of failure, the data residing on the failed node can
be reloaded onto the spare node and the spare node
is then used as a replacement node. We have been
able to accomplish this task in a time that is only
dependent on the data load rate for the node. For
example, on the 100 GB database on 46 nodes, this
task was accomplished in less than two hours.

Speedup results. For speedup, we present results
from an internal benchmark performed on 4, 8, 16,
and 32 node sP2 systems. * Table 2 describes the
database configuration used. The database consists
of four main tables (S1, T1, T2, W1) and each ta-
ble contains a primary key along with other non-
essential attributes. The S1 table contains 100 000
rows, while the T1, T2, and W1 tables contain a
million rows, respectively. S1, T1, and T2 tables
contain rows with a size of 100 bytes, while the
W1 table has a maximum row size of 1000 bytes
and an average row size of 560 bytes.

Scan performance. Figure 11 shows the execution
times and the speedup of parallel scan operations
on tables T1 and W1 returning 1 row to the appli-
cation. The y axis on the left shows the execution
times, while the y axis on the right measures
speedup that can be a maximum of 8. The scan of
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Figure 11 Execution times and speedup of parallel scan returning 1 row of T1 and W1 tables
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the T1 table exhibits linear speedup, i.e., the ratio
of the execution times is exactly the inverse of the
ratio of the number of nodes, when the number of
nodes is increased from 4 to 8. Beyond this point,
the speedup becomes sublinear, due to the smaller
size of the table. In contrast, the scan of the W1
table exhibits linear speedup up to 16 nodes and
only then becomes slightly sublinear. If the table
scans had been performed using more nodes, the
execution times would eventually flatten out when
the table partitions at each node become small
enough so that the overhead of initiating the scans
at the different nodes offsets the performance gain
from the parallel scan. This figure illustrates that
the parallelism benefits are bounded by the sizes
of the tables for any operation.

Figure 12 illustrates the performance of a parallel
scan operation on the W1 table that returns 10 per-
cent of the rows to the application. The execution
times improve as the system size is increased but
the speedup is quite sublinear. The reason for this
has to do with the processing performed at the co-
ordinator node in fetching 100 000 rows (10 percent)
of the data and returning it to the application. Am-
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dahl’s Law effectively limits the maximum perfor-
mance improvement from such queries due to the
serial bottleneck. To overcome this bottleneck, the
application must be parallelized. One simple way
of doing this on DB2 PE is to divide the application
into multiple tasks, each running on a separate co-
ordinator. The division can either be based on
range of data or be such that each task operates
on a subset of the database nodes. The issue of par-
allel applications is further discussed in a later sec-
tion on experiences and observations.

Insert, update performance. Figure 13 shows the
execution times for performing insert into a tem-
porary table of 1 row, 1 percent of the rows, and
10 percent of the rows of the T1 table. The figure
is plotted using a logarithmic scale (base 2) on both
thex and y axes. In such a graph, linear execution
time curves (with appropriate slope) indicate lin-
ear speedup. All three curves show near linear
speedup gains with increasing system size. We are
able to parallelize both the insert as well as the sub-
select operations of this statement resulting in lin-
ear speedup of the statement across different
nodes.
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Figure 14 shows the execution times of update col-
umn operations on 1 percent, 10 percent, and 100
percent of the rows of the S1 table. Once again,
the execution times decrease linearly with increas-
ing system size. The 1 percent and 10 percent up-
date curves show somewhat anomalous behavior
at32nodes. We conjecture that the relatively small
number of updates at each node of the 32-node sys-
tem (approximately 300 for 1 percent) makes the
execution times really dependent on the parallel
scan times for 32 nodes. Both these results illus-
trate the extremely parallel query execution strat-
egies that DB2 PE is able to generate for insert, up-
date, and delete SQL statements. The parallel insert
was particularly useful in benchmarks when in-
terim results were saved in tables for later anal-
ysis 'or when denormalized tables were created
from normalized ones.

Index create performance. Figure 15 shows the ex-
ecution times of a secondary index creation on the
100 000-row S1 table and the 1000 000-row T1 ta-
ble. Both curves illustrate close to linear perfor-
mance improvement, indicating that the create in-
dex operations are very efficiently parallelized in
DB2 PE. The reader should note that there is no dif-
ference between primary indexes and secondary
indexes in our system due to the function shipping
model of execution. However, the same is not true
for other parallel database processing systems,
where secondary indexes are global and cannot be
efficiently parallelized.

Scalability results. We present three different types
of scalability results:

1. Results from performance experiments as the
database size scales from 10 GB to 100 GB on
the same number of nodes

2. Results from performance experiments as the
database size and the system size are scaled pro-
portionately

3. Results from performance experiments as the
number of concurrent users on the system is in-
creased

The results for all three cases have been obtained
from customer benchmarks.

Table 3 shows the performance of DB2 PE on a 46-
node Sp2 system for 10 GB and 100 GB versions of
a scalable database. The results are shown for a
variety of complex queries on the database. The
scaling ratios for the different queries varies be-
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Figure 12 Execution times and speedup of parallel scan
returning 10 percent of the rows on W1 table
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Figure 13 Execution times of 1 row, 1 percent, and
10 percent insert with subselect statements
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Figure 14 Execution times of 1 percent, 10 percent, and
100 percent update with subselect statements

Figure 15 Execution times of create secondary index
statements on the S1 and T1 tables
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Table 3 Performance of complex queries on a 46-node SP2 for database sizes of 10 GB and 100 GB
Query Description k Response Times
‘ 10 GB 100 GB Ratio
Six-way join, 14 columns, three tables 22 132 5.0
Insert/select of two-way join, select temp 26 186 7.15
Simple select, SUM, group by, order by 163 1177 7.22
Two-way join, not equal predicate, in list 174 1521 8.74
Create temp, insert/select (four-way join), select temp 694 7234 10.42
Union of two two-way joins 253 2647 10.46
Three-way join, three tables, avg., group by, order by 240 3340 13.91
Two-way join, between predicate, group by, order by 164 3682 22.45
Insert/select, select, three tables, distinct 157 4147 26.4

tween 5 and 26.4. Since the 100 GB table is ten times
(10x) aslarge as the 10 GB table, strictly linear scal-
ability would result in response-time ratios of 10.
Response-time ratios of less than 10 show super-
linear speedup; thus for most of the queries, DB2
PEis able to generate an equal or larger amount of
parallelism on the 100 GB database when compared
to the 10 GB database. The scaling factor of the last
three queries in Table 3 is sublinear (ratio greater
than 10). These three queries include order by or
distinct clauses that require sorting to be performed
on the intermediate results at the coordinator. This
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causes a serial bottleneck and translates into a re-
duction in the scaleup ratio. Consider next the fol-
lowing complex business query:

SELECT Count(+x) FROM Customers
WHERE Class IN ('1', '2', '4', '6')
AND Cust_No NOT IN
(SELECT O_CUST_NO FROM Offers
WHERE O_DATE IN (list of dates))
AND Cust_No IN
(SELECT O_CUST_NO FROM Offers
WHERE O_DATE IN (list of 2 dates)
AND Response = 'Y"')
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Figure 16 shows the scalability results for this Figure 16 Performance of a complex query as both
query, as the system size is increased from 4 to 64 system size and database size are

nodes and the database size (which includes index proportionately increased
files) is proportionately increased from 2.5 GB to
40 GB. This is an important result, since it indicates
that the overhead introduced by the function ship-

ping model of execution is relatively small and does 7
not affect the execution times of complex queries. §

@ 800
Table 4 shows the results of a concurrent execu- Y
tion scalability test on the system. The test was s
performed using a 23 GB database on an eight-node g 800 -
SP2 system. In this test, we compare the response 2
time of queries submitted by a single user to that o w00

of 20 and 30 concurrent users. First, we measured
the execution times of the query suite consisting
of 15 complex queries when they were submitted 200 -
in a single stream by the single user. These exe-
cution times are shown in the second column of

Table 4. Next, the queries were concurrently sub- 0 ' ' '

mitted by 20 and 30 users, respectively. Each user 4 8 * 2 64
submitted one of the 15 queries. In order to dis- NUMBER OF NODES

tribute the coordinator activity over all nodes in (2.5GB) (5 GB) (10GB) (20 GB) {40 GB)

DATABASE SIZE IN GIGABYTES
the system, the users were connected to the 8 nodes

in the SP2 in a round-robin fashion. Columns three
and four show the scaling ratios of the execution
times of the different queries for the 20 and 30
users, respectively. The results show that DB2 PE
is able to scale superlinearly with respect to the
concurrent users. There are several reasons for the
superlinear performance scaleup. Similar to serial

Table 4 Performance of queries with scaling of the

databases, DB2 PE is able to make better reuse of number of concurrent users
the database buffers at each node due to the com-
mon concurrent requests. This reuse occurs at all Query Single User Scaling Ratios
nodes, thereby providing a significant benefit. An- Exec. Times 20 30
other very big contributing factor is that the con- (secs) Users  Users
current users can connect to all nodes in the sys- Qo1 2 5 8
tem and distribute the application and coordinator Q02 15 3.4 3.4
load evenly across the nodes. In this experiment, Qo3 45 7.1 12.4
the last row of Table 4 shows the total elapsed time 88‘5‘ gg 1%-; " 2;-%‘;
for completing thc? entire query S}lite. The results Q06 331 10.6 18.9
show that 30 queries (two executions of the query Qo7 447 3.53 6.55
suite) were completed concurrently in a time that Qo8 493 4.84 8.62
was only 1.5 times worse than the single user, sin- 8‘1)3 ;g :;7 g-g;
gle stream test. Not all parallel database systems o1l 755 4.69 8.57
have this feature. Many of the parallel database Q12 1140 4.75 8.74
systems are backend machines that have specific Q13 1159 3.4 6.17
interfacing systems for application entry, and their Q14 1557 4.24 8.23

. . g Q15 1592 4.23 7.95
multiprogramming levels are limited by the capa-
bilities of this front-end system. DB2 PE does not Total
have this restriction and provides significant con- Elapsed

Time 8491 8435 12828

currency benefits to users.
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Discussion. We have presented a flavor of the re-
sults obtained from several internal and external
benchmarks performed so far using DB2 PE. The
results that are presented here have all been ex-
tremely positive on the performance of the system.
The speedup and scalability results have been con-
sistently excellent for most types of queries and
utilities. The results vindicate most of our design
decisions in the generation and execution of op-
timal parallel strategies.

There are a few types of queries that do not result
inlinear speedup or scaleup. These queries are typ-
ically those that require significant serial work with
respect to the total work in the queries. The per-
formance of an example query type, which returns
a significant number of rows to the application, was
described in the section on scan performance. An-
other example is a query requiring coordinator
sorts or distinct operations. When the coordina-
tor activity is high in proportion to the total activ-
ity, the performance improvement of the system
can decrease. We are working on improving the
execution strategies for such types of queries to
improve performance.

Also, the performance of queries that are executed
in extremely short times on a serial database can-
not be improved much further by the use of par-
allelism. This is because the serial database exe-
cution strategy is quite efficient, and parallelism is
not going to provide any improvement on the ex-
ecution of such a strategy. An example is index-
only selection of a single row of values. Here, the
result is a single row and only requires access to
the appropriate index entry. Parallelism can ben-
efit such a query only if the index happens to be
extremely large.

Overall, the capacity, speedup, and scaleup im-
provements of DB2 PE for a very high majority of
the queries far outweigh the very small class of que-
ries described above with smaller performance
gains.

Experiences and observations

We have learned much, both technically and or-
ganizationally, during the four years we have
worked on this project. The Research Division pro-
duced an initial prototype, with function incremen-
tally added. This allowed us to show “proof of con-
cept,” and maintain project momentum during the
organizational changes that occurred. When the de-
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velopment laboratories became involved with the
project, we continued in a closely allied joint de-
velopment mode, with the product development
meeting IS0 9000 standards. The joint development
worked much better than the alternatives—spec-
ifying the product in intimate detail, or just hand-
ing over the prototype. It has certainly been a re-
markable experience that two teams—research and
development—with such disparate backgrounds
have been able to work so closely together.

As the work progressed, it became increasingly
clear that while the initial prototyping efforts in the
project had given us a good understanding of the
fundamental issues (section management, run time,
initial query optimization, etc.), the work required
to produce an industrial strength parallel database
manager was still sizeable.

In the rest of this section, we highlight some of our
technical observations about the product.

Function shipping. At the onset, we made a tech-
nical decision to use function shipping with shared-
nothing hardware. This decision provided multi-
ple benefits. Because we were working on a shared-
nothing platform, we had to parallelize every
database operation—query operator, DDL state-
ment, and utility. While this resulted in a larger de-
velopment effort, its positive impact was that it dis-
ciplined us to think in parallel concepts. The result
is a scalable product where parallelism is the cor-
nerstone—not just in simple scans and joins, but
also in updates, subqueries, utilities, etc. Contrast
this with some of the alternatives, which build lim-
ited parallelism on top of a shared-something envi-
ronment and leave the more difficult operators (up-
dates, subqueries, ctc.) single-threaded.

Another benefit of our initial decision has been that
most of our system limits scale linearly. Thus our
tables (base and intermediate) can be N times
larger, a query can typically acquire N times the
number of locks, etc. This is a straightforward con-
sequence of doing all operations in parallel.

Query optimization. Our initial effort for generat-
ing parallel plans was to transform the optimized
serial plan into a parallel plan. This decision was
a matter of programming convenience, encouraged
by initial studies that indicated that this often pro-
duced the best parallel plan.®> However, as we
explored more and more complex SQL, it became
increasingly clear that our approach, far from min-
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imizing coding, was doing quite the opposite. For
example, we were making the same kinds of dis-
covery about ordering requirements in the post-
optimization phase as the optimizer had made. Fur-
thermore, it was also clear that without knowledge
of partitioning, the optimizer was likely to come up
with some very inefficient plans. For example, in

select * from T1, T2, T3 where T1.A = T2.B
and T2.C = T3.D

the optimizer might decide to join T2 and T3 first
(because of its internal decisions on size, etc.),
whereas in the parallel environment, T1 and T2
might be compatibly partitioned and hence should
be joined first.

We therefore rejected the post-optimization ap-
proach and developed an integrated cost-based op-
timizer that understands parallelism, partitioning,
messages, etc. This has been a sound decision re-
sulting in a quality product.

Parallel utilities. Database literature and research
in parallel databases have generally concentrated
on what is considered the hardest problem—join
processing. However, as we dug more and more
into the making of a product, we realized that in
a true decision support environment, we cannot
operate on data until the data are correctly in place.
We thus put in a lot of effort to make sure that the
data can be initially loaded, balanced, and indexes
created and generally prepared for subsequent que-
ries, all at speeds viable for hundreds or thousands
of gigabytes that are typical in these environments.
People have criticized the shared-nothing approach
because its static data partitionings can be skewed.
We have provided rebalancing tools that do not
bring database operations to a grinding halt and
work one table at a time. Overall, our parallel util-
ities are as important as our parallel query process-
ing, and we will strive to continuously improve on
them.

Serial semantics. We have tried to provide trans-
parent parallelism by maintaining serial semantics.
Since we try and achieve the maximum parallel-
ism by invoking read-ahead operations wherever
possible, the users can see behavior different from
their serial applications. An example of such be-
havior can happen when cursor-controlled oper-
ations interact with read-ahead operations. Other
examples where the semantics are different from
a serial database engine include error reporting and
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recovery triggered during blocked inserts. In se-
rial machines the behavior is fairly predictable,
since all operations are done by one process. The
same cannot be said of the parallel product. In such
cases, the user will have to choose between per-
formance and deterministic semantics.

Parallel applications. Sometimes the amount of data
crossing the database/application interface can
overwhelm the improvements due to parallelism
(explained by Amdahl’s Law). We are studying
ways to improve the performance of such appli-
cations by:

* Providing for parallel application support (pro-
gramming model, SQL language extensions, and
DBMS extensions required to transfer data in par-
allel)

» Examining means for pushing down some of the
application logic into the database. This could
involve object-oriented extensions such as user-
defined functions and extending SQL to under-
stand statistical issues such as correlation and
sampling.

Summary and future. In summary, our parallel da-
tabase implementation on an open platform has
been a successful one, especially for complex
query environments. We have shown that a scal-
able shared-nothing database system can be built
by extending a serial database system with soft-
ware that glues nodes together in order to provide
a single system image to the user. The key com-
ponents of this software—query optimization and
processing, run-time system and database utili-
ties—have been described in this paper. We have
also shown that such a system can handle decision
support applications on hundreds or thousands of
gigabytes (thus extending them beyond the reach
of shared-memory architectures).

In the future we will be enhancing it to incorpo-
rate better technology, newer applications and par-
adigms (e.g., parallel applications); exploit fully
other hardware platforms (e.g., SMPs); and ensure
our technology is best-of-breed in business-criti-
cal environments.
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