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The  rate  of  increase in database  size  and 
response-time  requirements  has  outpaced 
advancements in processor  and  mass  storage 
technology.  One way to satisf'y the  increasing 
demand  for  processing  power  and  inputloutput 
bandwidth in database  applications  is to have  a 
number  of  processors,  loosely  or  tightly  coupled, 
serving  database  requests  concurrently. 
Technologies  developed  during  the  last  decade 
have  made  commercial  parallel  database  systems 
a  reality,  and  these  systems  have  made an inroad 
into the  stronghold of traditionally  mainframe- 
based  large  database  applications.  This  paper 
describes  the DB2@ Parallel  Edition  product  that 
evolved  from  a  prototype  developed at IBM 
Research in Hawthorne,  New  York,  and  now  is 
being jointly developed  with  the  IBM  Toronto 
laboratory- 

L arge-scale parallel processing  technology  has 
made giant strides in the  past  decade,  and 

there  is  no  doubt  that it has  established  a place for 
itself. At  this time, however, almost all of the  ap- 
plications harnessing this technology are scientific 
or engineering applications. The  lack of commer- 
cial applications for  these parallel processors may 
in part be  due  to  the perceived  robustness  and  us- 
ability of these  systems.  Compared to mainframe 
systems, large-scale parallel processing  systems 
have not emphasized availability and reliability and 
have  not  been  supported with adequate  software 
for system management and application develop- 
ment.  However,  the  current  generation of mas- 
sively parallel processor  systems,  such as  the IBM 
Scalable PowERparallel Systems*  (the sPl*  and 
S P ~ *  class of systems), are much  more  robust and 
easier to use. 

Database management systems (DBMSS) provide 
important  support  for commercial applications. 
Currently  there is a rapidly growing trend among 
businesses to analyze  their increasing volumes of 
transaction data for various  types of trends, includ- 
ing sales  and purchasing, inventory,  and budget. 
This  class of applications, called decision  support 
applications, poses  complex  queries on the large 
volumes of data  that  have  been collected fromvar- 
ious  sources. Single-system (or serial) DBMSS can-, 
not handle the  capacity and the complexity require- 
ments of these applications. In addition to decision 
support  applications,  there  are  other new applica- 
tion classes  such as  data mining, digital libraries, 
and multimedia that  require  either large capacity 
or  the ability to handle complexity. The emergence 
of these applications has fueled the need for  par- 
allel DBMS software from commercial vendors. 

In the  past,  a  number of research  prototypes, in- 
cluding Gamma, ' Bubba, ' and XPRS, have tried 
to understand  the  issues in parallel databases. 
These  and  other  projects  addressed  important is- 
sues  such  as parallel algorithms for  execution of 
important  database  operations,  query optimiza- 
tion  technique^,^,^ data placement,'@'3 and  data- 
base  performance. l~ The results of these  stud- 
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ies form a  basis for our knowledge of parallel 
database  issues today. However,  two major lim- 
itations with many of these  projects  were: (1) Many 
of the  problems  were  considered in isolation, so 
the implementation tended to  be  very simple, and 
(2) in several  cases,  people  resorted to simulation 
and  analysis  because the implementation required 
enormous effort. Recognizing the  importance of an 
“industrial strength” parallel database  system,  we 
initiated a  project  at IBM Research  that  has now 
led to  the emergence of the  product DB2* Parallel 
Edition. 

DB2 Parallel Edition (DB2 PE) is a parallel database 
software program that  currently  operates  on AIX*- 
based parallel processing  systems,  such  as  the IBM 
S P ~  system,  and will be available in the  future  on 
other  architecture and operating system platforms. 
Its shared-nothing (SN) architecture and function 
shipping execution model (discussed later) provide 
two important assets: scalability and capacity. DB2 
PE can  easily  accommodate  databases  with hun- 
dreds of gigabytes of data.  Likewise,  the  system 
model enables  databases  to  be  easily  scaled with 
the addition of system  processor  and disk re- 
sources.  The  architecture and implementation of 
DB2 PE provide  the  opportunity  for  the  best  query 
processing  performance. 

The  query optimization technology  considers  a 
variety of parallel execution  strategies  for differ- 
ent  operations and queries  and  uses  cost in or- 
der  to  choose the  best possible execution  strat- 
e w -  
The execution time environment  is optimized to 
reduce  process  overhead,  synchronization  over- 
head, and  data  transfer  overhead. 
The ACID (a  term meaning atomicity,  consis- 
tency, isolation, and durability-all properties of 
a  transaction)  transaction  properties”  are  en- 
forced in a  very efficient manner in the  system 
to provide full transaction capabilities. 
Utilities such  as  load,  import, reorganize data, 
and create  index  have  been efficiently structured 
to run in parallel. 
A parallel reorganization utility (redistribute) is 
used to effectively correct  data  and  processing 
load imbalance across different nodes of the sys- 
tem. 

It  must be noted  that  companies  such as Tandem 
Computers  Incorporated  and  Teradata  Corpora- 
tion have built and  sold parallel database  products 
for  a few years. 16,18~19 Teradata’s DBC/1012 system 
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is targeted  for  decision  support  applications while 
most of the  Tandem  systems  target high-perfor- 
mance on-line transaction  processing (OLTP) ap- 
plications. Proprietary  hardware  increases  the  cost 
of such  systems  and also inhibits the development 
of a full set of application enablers  on them. Be- 
sides  the  fact  that DB2 PE does  not impose such  a 
limitation, we believe that  there  are  several novel 
aspects  that  are  addressed  by DB2 PE that  have  not 
been addressed elsewhere. Several of these  aspects 
are highlighted later in this  paper. 

The  next  section in this  paper  describes the gen- 
eral architecture of the DB2 PE system and discusses 
the  merits of the  shared-nothing  architecture  and 
the  function shipping execution model. Following 
sections  discuss the  three  layers of the  system in 
detail: the  user-controlled  data  layout for optimal 
performance,  the  salient  features of the DB2 PE 
query optimization, and  the run-time internals of 
the  system.  Next we discuss  database utilities such 
as load and unload that are  very useful for deci- 
sion support applications. Finally we present ini- 
tial performance  numbers of some  controlled  ex- 
periments. The  paper  ends with a discussion of our 
experience,  our conclusions, and  directions  for fu- 
ture  work. 

Architecture overview 

Parallel database  systems  can  be built on top of 
different hardware  architectures,  and given a  spe- 
cific hardware  architecture,  they  can  be imple- 
mented using one  or  both of the  function shipping 
and I/O shipping paradigms. This  section  describes 
the specifics of each of these  architecture  and 
execution models and the  choices we  made for 
DB2 PE. 

Hardware  architecture. Three different approaches 
can  be used in building high-performance parallel 
database  systems,” namely, shared-memory 
(shared  everything, tightly coupled),  shared-disk 
(data sharing, loosely coupled), and  shared-noth- 
ing (partitioned  data)  approaches.  Figure 1 illus- 
trates  the  three different parallel database  system 
architectures. 

In shared-memory  systems, multiple processors 
share  a common central  memory. With this ap- 
proach,  communication among processors  is 
through shared  memory,  thus  there is little mes- 
sage overhead. In addition, the software  required 
to provide parallel database  processing is consid- 
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Figure 1 Shared-memory,  shared-disk,  and  shared-nothing  approaches 
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erably  less complex. Consequently,  many com- 
mercial parallel database  systems available today 
are  based  on  the  shared-memory  architecture. 

Although shared-memory systems  are  easier  to de- 
velop and support,  one major limitation is that  this 
approach cannot  be scaled to  a large number of pro- 
cessors.  Research  has  shown  that  beyond  a  cer- 
tain number of processors,  access to memory  be- 
comes  a  bottleneckz1  and  the  processing  speed  of 
the  system will be limited by memory  access and 
will not be  determined by  the  speed of the  proces- 
sors.  State-of-the-art  technology  can build mem- 
ory  to  support about 500 million instructions  per 
second (MIPS) of CPU power.  This implies that  a 
shared-memory  system  can  support  less  than 10 
RISC System/6000* processors of the current gener- 
ation accessing the shared memory at the same time. 

In  shared-disk  systems,” multiple processors, 
each with its local memory,  share  a pool of disks. 
Shared-disk  systems avoid the  central  memory  ac- 
cess bottleneck,  but  introduce  the difficult prob- 
lem of connecting all processors  to all disks. This 
can be especially difficult  in the  case of a large num- 
ber of processors and disks. In addition, shared 
disks  present  the  most challenging task of trans- 
action management because of the  need  to  coor- 
dinate global locking activities  (without  the help 
of shared  memory)  and to synchronize log writing 
among all processors. 

With the  shared-nothing  approach,  each  proces- 
sor  has  its  own  memory  as well as local disks. Ex- 
cept for the communication network,  no  other  re- 
sources  are  shared among processors.  Shared 
nothing does  not  have  the  memory  access  bottle- 
neck problem, nor does it have  the problem of in- 
terconnecting  a large number of processors and 
disks. The major complexity in supporting  the 
shared-nothing  approach is the  requirement of 
breaking a  Structured  Query  Language (SQL) re- 
quest  into multiple subrequests  sent  to different 
nodes in the  system  and merging the  results  gen- 
erated by multiple nodes. In addition, shared noth- 
ing requires  distributed  deadlock  detection  and 
multiphase commit protocol to  be implemented. 
Researchers  and  developers  have argued that  the 
shared-nothing  approach is the most cost-effective 
alternative  and  the  most promising approach  for 
high-performance parallel database  systems. 20,23,24 

Many  research  projects, including Gamma’  and 
Bubba,’ have  studied  various  aspects of parallel 
database  system design based  on  this  approach. 
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Because  a  shared-nothing  system  can easily be 
scaled  to  hundreds of processors, while shared- 
memory and shared-disk systems  are limited either 
by memory bus bandwidth or  by input/output chan- 
nel bandwidth,  and  because  a  shared-nothing sys- 
tem can grow gracefully, i.e., adding more diskca- 
pacity  or  processing  power as needed, DB2 PE 
adopts  the  shared-nothing  approach. 

Function shipping. Because  resources  are  not 
shared in a shared-nothing  system, typical imple- 
mentations  use  function shipping, wherein  data- 
base  operations  are performed where  the  data 
reside. This minimizes network traffic by filtering 
out  unimportant  data and achieving good parallel- 
ism. A major task in a  shared-nothing implemen- 
tation is to split the incoming SQL request into  many 
subtasks;  these  subtasks  are  then  executed  on dif- 
ferent  processors (if required,  interprocess  and 
interprocessor communication is used for  data  ex- 
changes). Typically, a  coordinator  serves as  the 
application interface, receiving the SQL request and 
associated host variables and returning the  answers 
to  the application. 

Figure 2 shows some of the  task  structure for avery 
simple query.  The  table T1 is shown horizontally 
partitioned13 across all the nodes; thus,  based  on 
the function shipping paradigm, the  coordinator  re- 
quests  a  slave task-one on  each node-to fetch 
its  partition of T1 and send  the result to it. The  re- 
sults  are  then  returned to  the application. In  more 
complicated SQL statements,  the  task  structure is 
inherently  more complex; it is the  job of the  query 
compiler to  derive  the  best (Le., optimal)  task 
structure for the  execution of a  query.  The  query 
compiler determines  the  function to  be performed 
by each  task  at  run time; the  coordinator  task is 
typically instantiated  (or specifically determined) 
on  the  node  to which the application connects, and 
each  slave  task is instantiated on  the nodes  where 
the  data it accesses reside. Thus in Figure 2, there 
is one  coordinator,  and  there  are five instances of 
slave  tasks.  In  this  paper, we use  the  terms  slave 
task,subordinate  task,  subsection,  andsubplan in- 
terchangeably. 

As an example of more complex function shipping, 
consider the following join query: 

select T.A, S.A from T, S where T.B = S.B 

Figure 3A shows  a  serial  execution plan for this 
query. When tables T and S are horizontally par- 
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Figure 2 Task  structure  for a  simple  query 

Figure 3 Examples  of a serial  and  a  parallel  execution  strategy 
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titioned, a possible parallel execution  strategy 
could be  the  one  that  maintains  the  serial  struc- 
ture,  but  executes  each  operator in parallel. In Fig- 
ure 3B, circled Xs indicate  data  exchanges. (We 
show  later how in a large number of cases even 
such  exchanges  can be avoided.)  The parallel ex- 
ecution of this  query plan may  require  a  coordi- 
nator  (not  shown) and three  slave  tasks  (one  slave 
task  scans,  sorts, and ships  its  partition of T to a 
second  slave  task,  a  third  slave  task  does the same 
against S, and  the  second  slave  task  performs  the 
actual SQL join function). 

One of the  advantages  that we realized from using 
function shipping was  that we could use much of 
the existing code;  the  scans,  sorts,  joins, etc., 
shown in Figure 3B are identical to  the  operators 
in Figure 3A. A fundamental  technology in Figure 
3B is the mechanism that glues the  nodes  together 
to  provide  a single-system view to  the user. In ad- 
dition to function shipping, other technologies re- 
quired to  support an  environment  shown in Fig- 
ure  3  are (1) generation of parallel plans, (2) 
streaming of data  and  control flow, (3) process 
management, (4) parallel transaction and lockman- 
agement, and (5) parallel utilities. 

Figure 4 describes the system  architecture of one 
node of a DB2 PE system at a  conceptual level. Op- 
erations  on a  node  are  either on behalf of external 
applications, or internal requests from other  nodes 
in the  system.  External  requests include SQL calls, 
utilities (load, unload, rebalance, etc.), or  other 
calls (commit, start using database, etc.). SQLCdlS 
can  be  broken  into  data definition language (DDL) 
and data manipulation language (DML). DDL is used 
to define and manipulate the  structure of the  data 
(meta-data), such  as creating databases, tables, and 
indices. DML is used for populating, querying, or 
modifying the  data in the database. 

Execution of the  external  and  internal  requests  is 
primarily driven through the run-time layer. An ex- 
ample function of this  layer is to  traverse  the “op- 
erator”  graph of an optimized DML statement and 
to call lower-level functions  for executing each  op- 
erator.  The run-time system  is also responsible for 
allocating and deallocating processes  for  process- 
ing local and remote  requests. 

Below this  layer  are two distinct components: data 
management services (DMS), which deal with op- 
erations on local data,  and  communication  serv- 
ices, which deal with operations on remote  data. 
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DB2 PE built upon and modified the DMS layer of 
the existing (nonparallel) IBM product ~ ~ 2 / 6 0 0 0 * ,  but 
the  changes  are relatively modest.  However,  the 
communication services  is an entirely new com- 
ponent. 

The  communication  services  component  provides 
two types of interfaces, one for control  messages 
and the  other  for  data.  The  control  messages  can 
be either  synchronous or asynchronous. All mes- 
saging is through a communication manager, which 
is responsible for multiplexing, demultiplexing, and 
reliable delivery to  other DB2 PE processes. 

In addition, the  data protection services (DPS) layer 
of DB2/6000, responsible  for locking, logging, and 
recovery, had to  be extended to account  for  the 
fact  that  a  transaction  can  activate  more  than one 
process  and  can  involve  more  than  one  node.  The 
extensions to DPS use the control message inter- 
face of the communication services for global dead- 
lock detection,  two-phase commit protocol, and 
recovery  from  system failures. 

These building blocks of the DB2 PE system are dis- 
cussed  later in more detail. We discuss  changes to 
the DDL and  its processing, DML statements  and 
their optimization (including the new operators  re- 
quired to execute  them in a  function shipping par- 
adigm), changes in the run-time system and the DPS 
layer,  the  new communication component  and, fi- 
nally, some of the  new parallel database utilities. 

Data  definition  language 

DB2 PE provides  extensions to SQL in the form of 
new data definition language (DDL) statements  that 
allow users  to control the placement of database 
tables  across  the  nodes of a parallel system. Be- 
fore describing the DDL extensions, we provide  a 
general discussion of data  placement  issues in 
shared-nothing parallel database  systems. 

Data placement. The data placement problem is  the 
problem of determining the  best  storage  strategy 
for the  tables in a given database.  Data placement 
in parallel database  systems  is known to  be a dif- 
ficult  problem13 and several  approaches  have  been 
taken to solve it. 10~13,25,26 The  three  key  aspects of 
the  data  placement problem are declustering,  as- 
signment, and partitioning. l3 Declustering refers 
to the technique of distributing the  rows of a  sin- 
gle table  across multiple nodes. If the rows  are 
stored  across all the  nodes of the parallel database 
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Figure 4 Major  system  components  at  one  node 
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system,  then  the table is said to be fully declus- 
tered. If the  rows  are distributed across  a  subset 
of the  nodes,  then  the table is said to be partially 
declustered. Partial declustering subsumes full de- 
clustering, and provides more flexibility for assign- 
ment of tables. The number of nodes  across which 
a  table  is  declustered  is referred to as the degree 
of declustering of the table. The  term tublepur- 
tition refers  to  the  set of rows of a given table that 
are all stored at  one node of the shared-nothing sys- 
tem  (therefore,  the number of table partitions 
equals degree of declustering). 

After choosing the degree of declustering, it is nec- 
essary to solve the assignment problem, which is 
the problem of determining the particular set of 
nodes on which the table partitions are to be stored. 
The following issues arise during assignment. 
Given any two database tables, their assignment 
maybe nonoverlapped, i.e., the two tables  do not 
share  any common nodes. Conversely, their as- 
signment may be overlapped, in which case the two 
tables  share  at least one node. If both  tables  share 
exactly  the  same  set of nodes, then the tables are 
said to  be fully overlapped. Full declustering re- 
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stricts assignment to  be fully overlapped,  whereas 
partial declustering allows for full freedom in as- 
signment of table partitions. Finally, the problem 
of partitioning refers to  the problem of choosing 
a  technique to assign each row of a  table  to  a  table 
partition. Common techniques  are  round-robin, 
hash, and range partitioning. In  the  last two, a  set 
of columns  (attributes) of the  table  are defined as 
the partitioning keys  and their values in each  row 
are used for  hash or range partitioning. 

Nodegroup DDL. DB2 PE supports partial declus- 
tering, overlapped assignment, and hash partition- 
ing of database  tables using the notion of node- 
groups. A nodegroup is  a named subset of nodes 
in the parallel database  system.  The following ex- 
ample illustrates  the  use of the  nodegroup DDL 
statement: 

CREATE  NODEGROUP  GROUP -1 

CREATE  NODEGROUP  GROUP  -2 

CREATE  NODEGROUP  GROUP -3 

ON  NODES (1 TO 32, 40, 45, 48) 

ON NODES (1 ,  3, 33) 

ON  NODES (1 TO 32, 40, 45, 48) 

In the  above example, GROUP -1 and GROUP -3 
are two different nodegroups, even though they 
contain  the  same  set of nodes  (nodes 1 to 32, 40, 
45, and  48). Nodegroup GROUP -2 is partially over- 
lapped with GROUP -1 and GROUP  3 (on  nodes 
1 and 3). 

To support scalability, a  data redistribution utility 
is provided to add and drop  nodes to  or from a 
nodegroup  (see  the  subsection  on  data redistribu- 
tion later in this  paper). 

Extensions to CREATE  TABLE DDL. When cre- 
ating a  table, it is possible to specify the nodegroup 
on which the table will be  declustered.  The  car- 
dinality of the  nodegroup is the  degree of declus- 
tering of the table. In addition, it is possible to  spec- 
ify the  columns to  be used for the partitioning key. 
The following example  illustrates  the  use of DDL 
extensions  to  the CREATE  TABLE statement: 

CREATE TABLE PARTS (Partkey integer, 

PARTITIONING  KEY (Partkey) USING  HASHING 

CREATE TABLE PARTSUPP (Partkey integer, 

IN GROUP -1 PARTITIONING  KEY (Partkey) 

Partno integer) IN GROUP -1 

Suppkey integer, PS-Descp  char(501) 

USING  HASHING 
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Figure 5 The  concept of partitioning  keys and  maps 

TABLE 

CREATE  TABLE  CUSTOMERS (Custkey integer, 

PARTITIONING  KEY (Custkey) USING  HASHING 

CREATE  TABLE  SUPPLIERS (Suppkey integer, 

PARTITIONING  KEY (Suppkey) USING  HASHING 

CREATE  TABLE  ORDERS (Orderkey integer, 

PARTITIONING KEY (Orderkey) USING  HASHING 

C-Nation char[20]) IN GROUP -1 

S-Nation char[20]) IN GROUP -1 

Custkey integer, Orderdate date) IN GROUP -1 

The partitioning key of tables PARTS and PART- 
SUPP is Partkey. All tables  are partitioned across 
the  set of nodes identified by  the nodegroup, 
GROUP -1. 

For  each  row of a table, the hash partitioning strat- 
egy applies an internal hash function  to the par- 
titioning key  value to obtain  a  partition  (or  bucket) 
number. This partition number is used as an  index 
into  an internal data  structure  associated with each 
nodegroup (thepartitioning map), which is an  ar- 
ray of node numbers. Each  nodegroup is associ- 
ated with  a  distinct partitioning map. If a  partition- 
ing key  value  hashes  to  partition i in the map, then 
the  corresponding row will be  stored  at  the  node 
whose  node  number  appears in the  ith location in 
the map. Figure  5  shows  a  table with partitioning 
keyA . The hash  function H ( A )  is applied on a  tu- 
ple’sA value  and  that  is used as  an  index  into  the 
partition map  to  determine  the  actual  node  num- 
ber. 
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If there arep partitions in the partitioning map  and 
if d is  the  degree of declustering of a table, then 
it is  necessary  that d 5 p .  In DB2 PE, the  value of 
p is  chosen to  be 4096. Typically, d << 4096, thus 
several  partitions  are  mapped to  the same node. 
Initially, the 4096 hash  partitions are assigned to 
nodes using a  round-robin  scheme.  Thus,  each 
node  has  at  most 4096/d partitions of a given ta- 
ble. 

In  the above  example, all tables  use  the  same  par- 
titioning map  since  they  are defined in the  same 
nodegroup. In addition, if the  data  types of the  par- 
titioning keys  are  compatible,  then  the  tables  are 
said to  be collocated. Since  the  data  types of the 
partitioning keys of PARTS and PARTSUPP are  the 
same,  they  are  compatible  by definition. DB2 PE 
provides  a simple set of rules  that define compat- 
ibility of unequal data types. The partitioning strat- 
egy ensures  that  rows  from  collocated  tables  are 
mapped to  the same  partition  (and  therefore  the 
same node) if their partitioning key  values  are  the 
same.  This is the  primary  property of collocated 
tables.  Conversely, if rows from collocated  tables 
map to different nodes,  then  their partitioning key 
values  must  be different. Collocation is an impor- 
tant  concept  since  the equi-join of collocated  ta- 
bles  on  the  respective partitioning key attributes 
can  be  computed efficiently in parallel by execut- 
ing joins locally at  each  node  without requiring in- 
ternode  data  transfers.  Such  joins  are called col- 
bcatedjoins and  have the  property of being highly 
scalable (perfectly scalable in the ideal case). Thus, 
in the above  example,  the following is  a  collocated 
join: 

select * from PARTS, PARTSUPP 
where PARTSPARTKEY = PARTSUPP.PARTKEY 

Query optimization 

The compiler component of DB2 Parallel Edition 
is  responsible for generating  the parallel query  ex- 
ecution strategies for the different types of SQL que- 
ries. The DB2 PE compiler is implemented on  the 
basis of a  number of unique principles: 

Full-fledged cost-based optimization-The  optimi- 
zation  phase of the compiler generates different 
parallel execution  plans  and  chooses  the  execu- 
tion plan with  the  least  cost.  The  optimizer  ac- 
counts  for  the  inherent parallelism of different 
operations  and  the additional costs  introduced 
by messages while comparing different strate- 
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gies. This  approach is similar to  the cost-based 
query  optimization performed by System R* for 
a  distributed  database  environment. 27 

Comprehensive usage of data  distribution infor- 
mation-The optimizer makes full use of the  data 
distribution and partitioning information of the 
base  and  intermediate  tables involved in each 
query while trying to choose parallel execution 
strategies. 
Transparent parallelism-The user  applications 
issuing data manipulation SQL statements  do  not 
have  to change in order  to  execute  on DB2 PE. 
Hence,  the  investment  that  users  and  custom- 
ers have made already in generating applications 
is fully protected  and  the migration task for the 
DML applications is trivial. Application programs 
written  for the DB2/6000 product  do  not  even need 
to  be recompiled fully when  they are migrated 
to DB2 PE; the application only  requires  a rebind 
to  the parallel database, which generates  the least 
cost parallel plan for the different SQL statements, 
and, if appropriate,  stores  them. 

The following subsections  describe  the  key  fea- 
tures of the  query compilation technology in DB2 
PE. We describe  the important operator  extensions 
that are required for parallel processing,  the dif- 
ferent  types of operator  execution  strategies,  and 
finally, the  generation of the overall parallel exe- 
cution plan. We use  several  examples to illustrate 
these  concepts. 

Operator  extensions. For  the  most  part, parallel 
processing of database  operations implies replicat- 
ing the  basic relational operators  at different nodes. 
Thus,  the  basic  set of operators (such as table  ac- 
cess,  join,  etc.)  are  used  without  much change. 
However,  the  function shipping execution  para- 
digm introduces two new  concepts  that  are  not 
present in a  serial engine: 

Query  execution  may  require multiple logical 
tasks  and  each taskmay  be executed  across mul- 
tiple nodes.  Consequently, we need  operators 
that  the  coordinator  task  can  use to control  the 
run-time execution of slave  tasks.  This  operator, 
called distribute  subsection,  is described in more 
detail in a  later  section. 
As a  consequence of multiple processes,  inter- 
process communication operators  (notably  send 
and receive)  are  required in DB2 PE. These  op- 
erators  can  have  attributes (e.g., send  can  be 
broadcast  or  directed;  receive  can  be  determin- 
istic or random). 
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Partitioning  knowledge. In DB2 PE, we  are conscious 
about partitioning in the DDL, data manipulation 
SQL, and  at  run time. The partitioning methodol- 
ogy of DB2 PE can  be  viewed simply as a load bal- 
ancing tool (by changing the  key  and partition map, 
we can  adjust  the number of tuples  on  any  node); 
however, by making the compiler and the run-time 
systems  understand  it, we have  succeeded in  im- 
proving SQL performance  beyond simply load bal- 
ancing. As mentioned before,  an  example of this 
is  collocated  joins.  The compiler, being fully cog- 
nizant of table partition keys, nodegroups, etc., can 
evaluate  the  costs of different operations (collocat- 
ed vs broadcast  joins,  for example, as described 
later)  and  thus  choose  the optimal execution  strat- 
egy for a given SQL statement. In the  case of cer- 
tain  directed  joins,  the run-time system  uses  the 
knowledge of partitioning to  correctly direct tuples 
to  the appropriate  nodes. 

Query  optimization  and  execution  plan  generation. 
In this section, we describe  the  query  execution 
plans as trees of operators  separated  into  tasks. 
The  query  execution  can  be  viewed  as  a  data flow 
on  this  tree,  with  sends  and  receives being used 
for  intertask communication. 

A query optimizer typically chooses: (1) the  op- 
timal join order and (2) the  best  method  to  access 
base  tables  and to compute  each join. This  task  is 
inherently exp~nential*~J~ and many optimizers use 
heuristics  such as postponing of cross products, 
left-deep  trees, etc., in order  to prune  the  search 
space.  In  the  case of a parallel database,  query  op- 
timization is further complicated by: (3) determin- 
ing the  nodes on which operations  need to  be done 
(this is called the repartitioning strategy and is  re- 
quired  because  the  inner  and  the  outer  tables  may 
not  be  on  the  same  set of nodes)  and (4) choosing 
between  system  resources  and  response time as 
the  appropriate  metric  for determining the  cost of 
a plan. 

In DB2 PE, we have made a few simplifying assump- 
tions in order  to keep  the  query optimization prob- 
lem tractable: 

We keep  track, on a  per-node basis, of the  total 
system  resource  accumulated during the bot- 
tom-up generation of a  query plan. The maximum 
resources  used  across all the  nodes  and  the  net- 
work  is  a  measure of the  response time of a 
query- 

* Of all the possible subsets of nodes  that  can  be 

used to execute  a  join, we typically consider only 
a  few  subsets: all the  nodes,  the  nodes on which 
the inner table is partitioned, the  nodes  on which 
the-outer table  is  partitioned,  and  a few others. 
In keeping with the DB2/6000 query optimization 
strategy, we use agreedy heuristic while choos- 
ing between different parallel join execution strat- 
egies. The join execution strategies are described 
later. The best locally-optimized strategy  is  the 
one  that  survives. 

In  some  queries, the optimal strategy  is obvious. 
For example, consider  the following query: 

select  S-NAME,  S-ADDRESS from SUPPLIERS 
where S-REGION= ' ASIA' 

If a  secondary  index  exists  on SUPPL1ERS.S-RE- 
GION, then  the  query plan will use it to restrict the 
tuples on  each node; otherwise  each  node will have 
to fetch all its SUPPLIERS tuples  and eliminate 
those  that are not from I ASIA' . The run-time ex- 
ecution  strategy  is very similar to Figure 2. 

In  a  more  complicated  query,  such as  one  shown 
in Figure 6A, the  coordinator  not  only  returns  the 
answer  to the application, but also binds in any in- 
formation required to  compute  the  answer  (pass- 
ing this information to  the slave  task if required). 
In  this  case,  an additional feature  that DB2 PE sup- 
ports  is  to perform aggregation such as count(*) in 
two steps-the slave  tasks  compute their local 
counts  and  then  the  coordinator  sums  the  counts 
and  returns  the  result  to  the application. The ar- 
rows from the  coordinator to  the slave  task  rep- 
resent  the passing of all the information required 
for the  slave  task to correctly  execute (i.e., the 
query  subplan, including the input host variable), 
and the  arrows from the  slave  task to  the coordi- 
nator  indicate  return of their local counts. 

In  these  two  examples,  the  query  optimizer had to 
do little; we now turn  to  some examples of joins 
where the optimizer has  to actually make decisions. 

SELECT CUSTNAME from CUSTOMERS, ORDERS 

where 0-CUSTKEY = C-CUSTKEY 

and 0-ORDERDATE > '02/02/94' 

The  query  selects  the  names of all customers  who 
placed orders after a  certain  date. It requires  that 
the ORDERS and CUSTOMERS tables  be joined on 
their CUSTKEY attribute.  This  join  operation  can 
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Figure 6 Task structure  for a query and  join 
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be performed by  avariety of different strategies in them be in the  same nodegroup. Then,  the  records 
a parallel database environment. of both  tables having a particular CUSTKEY value 

will reside on  the  same  node.  For example, CUST- 
Collocated join. Let  the partition keys of the OR- KEY value of 10 000 may be mapped to node 100 
DERS and CUSTOMERS tables be CUSTKEY and let but is the  same for both tables. Thus,  the join op- 
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eration  can be performed on  the local partitions of 
the  two  tables.  The  execution  strategy  for  this is 
shown in Figure 3A except  that  the circled cross 
operators  are null operators-no data  exchange is 
required,  and the entire  operation  can be done in 
one  slave  process  that  scans  the  two  tables  and 
joins  them  and  then  ships  the result to  the coor- 
dinator. Figure 6B shows  the  task  structure for this 
join. 

Directedjoin. Let  the  partition key for CUSTOM- 
ERS be CUSTKEY and ORDERS be ORDERKEY. 
Here,  we  cannot perform a  collocated join oper- 
ation since  records of the ORDERS table with a  par- 
ticular CUSTKEY value could reside on all nodes. 
The compiler recognizes  this from the  partition- 
ing information of the CUSTOMERS and ORDERS 
tables. It then  considers  a few execution strategies, 
the  foremost of which is  the  directed join. 

The optimizer recognizes that  the CUSTOMERS ta- 
ble is partitioned  on CUSTKEY. So, one efficient 
way  to match  the CUSTKEYs of ORDERS and CUS- 
TOMERS is  to hash the selected ORDERS rows us- 
ing its CUSTKEY attribute  and direct the  rows  to 
the  appropriate CUSTOMERS nodes. This  strategy 
localizes the  cost of the  join to partitions  at  each 
node  and  at  the  same time tries to minimize the 
data  transfer. Figure 6C shows  the compiled plan 
for  this  strategy. 

Broadcastjoin. Consider  the following query  be- 
tween  the CUSTOMERS and SUPPLIERS table. 

SELECT CUSTNAME, SUPPNAME, C-NATION 

from CUSTOMERS, SUPPLIERS 

where C-NATION = S-NATION 

The  query  tries  to find customers  and  suppliers in 
the same region. Let  the partitioning key  for CUS- 
TOMERS be CUSTKEY and  that of SUPPLIERS be 
SUPPKEY. Note that C-NATION and S-NATION 
could have  been  the  respective  partition  keys of 
the  two  tables;  however, CUSTKEY and SUPPKEY 
are used more  often in queries  and  are  more likely 
candidates. Given this,  the  optimizer  cannot try 
to localize the  join  operation on the C-NATION and 
S-NATION attributes.  Hence,  a  strategy of broad- 
casting  the  selected  rows of either  table to all the 
nodes of the  other  tables  is  considered.  The  broad- 
cast  essentially  causes  one  table to be materialized 
fully at each node containing a partition of the  other 
table.  Now,  a  join  at all nodes will produce  the 
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complete result of the  query. Figure 6C also shows 
a  broadcast  join (with the ORDERS table being re- 
placed by SUPPLIERS) and  the  arrow  connecting 
slave  task 1 to slave  task 2 being of type  broadcast 
as opposed to directed. 

The  broadcast join operation  is relatively expen- 
sive  both in terms of network  cost  and  join  pro- 
cessor  cost.  However,  there  are  instances  where 
this  strategy  is still very useful. These  instances 
include situations  where  one of the joining tables 
is  much smaller than  the  other,  when  there is an 
index  on  a joining attribute,  or in nonequijoin sit- 
uations. 

Repartitioned joins. We  also  consider  a  reparti- 
tioned strategy of join  execution in cases  such  as 
the  query  described previously. In this  strategy, 
the optimizer decides to explicitly repartition  both 
tables on their joining attributes in order  to local- 
ize and minimize the join effort. In  the  example 
query  previously  described,  the  optimizer will re- 
partition the CUSTOMERS table on C-NATION and 
the SUPPLIERS table on S-NATION on  some com- 
mon set of nodes. The repartitioned tables  can  then 
be  joined in a  collocated  join  fashion  at  each  node. 
Figure 6D shows  the  repartitioned  join  strategy. 

The  repartitioned  join  requires  message traffic to 
redistribute rows of both tables involved in the join. 
Once  redistributed,  the  join  processor  cost  is sim- 
ilar to  the collocated  join  case. 

Cost-based  optimization. One of the  most impor- 
tant  features of the optimizer is  that it uses  cost 
estimates  when deciding among different execu- 
tion choices.  This  is to  be  contrasted with an  op- 
timization technique  that heuristically decides  to 
go with a  particular  strategy. For example, given 
a join operation, the optimizer  estimates  the  cost 
of each of the  join  strategies  previously  described 
and  chooses  the  one with the  least  cost  estimate 
for  a given join step.  The cost basis  makes  the  op- 
timizer decisions  more  robust  when  choosing  be- 
tween  strategies  such as broadcast or repartitioned 
joins. 

Cost  estimation  also  enables  the optimizer to 
choose  the  best  query  execution plan in a parallel 
environment. It  accounts  for  the messaging costs 
incurred by operations. Most importantly, estima- 
tion tries to influence parallel processing of differ- 
ent  parts of the  query  whenever possible. Figure 
7 shows  two different types of query  execution 



Figure 7 Different  execution  strategies in serial and 
parallel  environments 

plans  for  a  four-way join query.  Assume  that  ta- 
bles  T1  and  T2  are  collocated  on  a nodegroup, 
while T3 and T4 are  collocated  on  an  entirely dif- 
ferent nodegroup in a parallel environment. An op- 
timizer for a  serial DBMS could choose  the  strat- 
egy in Figure 7A, because all the  operations  are 
performed in the  same  node  and  that is the  best 
serial strategy (possibly influenced by indexes, sort 
orders, etc.). However,  the DB2 PE optimizer may 
try  to favor  the parallel plan represented by Fig- 
ure 7B since  more  work  can  be performed in par- 
allel and the partitioning of tables  for  the  two low- 
ermost  joins  are optimal. Thus  proper  “parallel 
cost  measures”  are critical for parallel query  op- 
timization. 

Parallelism for all  operations. A guiding principle 
in the compiler design has  been  to  enable parallel 
processing  for all types of SQL constructs  and  op- 
erations. For  the  sake of brevity,  only  a list of other 
operations  and  constructs  where  we apply paral- 
lelism while generating  the  execution  strategies  is 
provided. 
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Aggregation-The ability to perform aggregation 
is required at individual slave  tasks and may be 
required  at  a global level. 
Set operations-We consider  collocated, di- 
rected,  repartitioned, or a global strategy akin 
to  the join  strategies  previously  described. 
Updates-The ability to perform inserts  with 
subselect,  updates, and deletes in parallel is re- 
quired. 
Subqueries-We consider  collocated,  directed, 
and broadcast  methods of returning subquery  re- 
sults  to  the  sites  where  the  subquery predicate 
is evaluated. 

DB2 Parallel  Edition  run  time 

In order  to execute  a  query plan or a DDL state- 
ment in parallel, DB2/6000 run-time mechanisms had 
to  be augmented considerably. The following new 
components  were  added to provide  interprocess 
(processes  may  be  on different nodes) communi- 
cation: 

Control services-These services deal with in- 
terprocess  control  message flow (start  and  stop 
of processes,  error reporting, interrupts,  paral- 
lel remote  procedure call, etc.). 
Table  queue services-These services  deal  with 
exchange of rows  between DB2 PE agents  across 
or within a  node  and  are  responsible  for  the  cor- 
rect execution of the  data flow operators  connect- 
ing different slave  tasks. 
Communication manager-This service  per- 
forms the  actual routing of messages using the 
underlying communications  protocol. 

In addition, several existing components had to  be 
modified for DB2 PE. They include the interpreter 
(the component that drives the execution of a  query 
plan),  deadlock  detector,  lock manager, transac- 
tion manager,  etc. In this  section, we describe  the 
new components, as well as  the modifications to 
the existing ones. 

Control  services. When  an application connects  to 
a  database  (see  Figure 8), a  special  process  (or  an 
agent) called the coordinator is  created.  This  pro- 
cess  is responsible for executing database  requests 
on behalf of the application, returning  any  results 
through  the  reply  queue  and  shared-memory  area. 
In  the serial case  this is all there is; but in the  par- 
allel case multiple processes  need  to  be  created  to 
execute  requests.  These  processes (agents) are  or- 
ganized into  a  network of producer-consumer  pro- 
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Figure 8 Application  and  coordinator  agent 
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cesses.  The  data flow through table queues, which 
are described in the following section. 

The  query  subtask  (subsection)  executed  by  the 
coordinator distributes the  other  subsections to the 
appropriate  nodes to  be executed. Along with  ev- 
ery request, it sends connection information for the 
table queues  and  any host variable information that 
may  be required. There  are  separate  distribute  op- 
erators in the coordinator for each subsection. Typ- 
ically, the compiler can make static decisions about 
where  a  particular  subsection  needs  to  be  instan- 
tiated (generally based  on  the  nodegroups of the 
tables  that  the  particular  slave  task  accesses). 
However, DB2 PE is capable of choosing  nodes  at 
run time, based  either on the  query  structure (e.g., 
a  query  select * from T1,  where T1.a = host-vari- 
able with T1.a being the partitioning key of T1, al- 
lows  the  table  access  to  happen  only on the  node 
that  contains  the partition for T1.a = host-vari- 
able), or on the  current I/O and  processing  activity 
of the nodes (for those  subsections  that  are not tied 
to specific nodes, e.g., those  that  execute  repar- 
titioned joins). 

Creating  a  process  can be an expensive  operation. 
For long-running queries,  this  process is amortized 
over  many millions of instructions,  but  for  shorter 
queries  this  can  be  considerable  overhead.  There- 
fore  several  optimizations  have  been  done  to  de- 
crease  this  overhead. 

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995 

The  purist  view of process management is that  the 
“abstract  database  process” is created to  execute 
its  subsection,  then  terminates  when  the  subsec- 
tion is finished. In DB2 PE a pool of processes is 
initiated when  the  database manager is started  at 
a  node, and any of the  processes  can  be  reused  by 
different subtasks of the  same application or dif- 
ferent applications. The  process pool can signif- 
icantly reduce  process  creation  overheads for short 
queries. 

Certain sequences of sQL operations  have  a  por- 
tion that is inherently  state-based. For example, 
cursor-based  updates  depend on a  previous  state- 
ment to position the  cursor.  Therefore DB2 PE pro- 
videspersistent agents  that remain assigned until 
the application disconnects. After such  an agent 
starts working on behalf of a  request, it remains 
attached to  the request’s  state until the  request 
completes. An alternative we explored was discon- 
necting a  process from a  subsection during idle 
times,  such as when waiting for a message to  be 
received or  sent.  The  extra overhead of saving and 
restoring  state  seemed  to overwhelm the  system 
savings. The  parameters determining this trade-off 
may change as system  speed  increases  dispropor- 
tionately to  the disk swap time. 

In addition to the  requests  to  start  or  stop  pro- 
cesses,  the  control  component  also  handles  re- 
quests  to  stop  or  interrupt  processes,  returns  con- 
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trol replies to applications, and  provides parallel 
remote  procedure call support for low-level data- 
base manager functions (such as “retrieve long 
field” or “load access plan from catalog”). 

Table  queue  services. The  interprocess  data flow 
constructs  are called table queues, and are similar 
to Gamma’s split tables. However, they  are richer 
in functionality. Intuitively, they  can  be thought 
of as a  temporary table. The most important dif- 
ference  is  that  they  do not need to  be completely 
built before rows  can be fetched from them. They 
are in effect streams of rows for interprocess com- 
munication, controlled by  the receiver’s ability to 
handle the traffic (back pressure). They have a  send 
operator  (table  queue build) and a  receive  oper- 
ator  (table  queue  access). 

Table  queues  are designed to provide maximum 
flexibility to the SQL compiler and optimizer in gen- 
erating the  most efficient parallel plan. The plan 
specifies that  a  certain  table  queue is to connect 
two subsections of a plan. However,  each  subsec- 
tion can be instantiated  on  more  than  one node. 
Therefore  a single table  queue  can  have more than 
one sender and more than one receiver; thus  a com- 
munication path  exists  between multiple producer 
and multiple consumer  processes  (see  Figure 9A). 
Although it should be thought of as  one  entity, it 
is implemented by multiple connections,  between 
each  senderheceiver pair. Each sending process 
can  send  each row to every receiver process,  or 
to  just  one  process depending on  the partitioning 
information associated with the table queue. 

There  are many attributes  associated  with table 
queues. An important  one of them is  Broadcast vs 
directing-does one row at the sending end go to 
all the  receivers, or only to  one?  See  Figure 9B for 
an example of a  directed table queue. In this fig- 
ure, all “A” values  are  directed  to  the first receive 
node from all sending nodes, all “B” values  to  the 
second, and so on. 

Communication  subsystem. The parallel commu- 
nications component  is layered in a similar fash- 
ion to  the  rest of the run time. It  accepts messages 
(either  control messages or buffers of rows) and 
guarantees ordered delivery between nodes (or be- 
tween processes on the same node). It also performs 
multiplexing and demultiplexing of messages be- 
tween nodes of a DB2 PE system. Underneath this 
layer, it uses the delivery layer, which can be  the 
User Datagram Protocol/Internet Protocol (UDPDP), 

306 BARU ET AL. 

Transmission Control Protocolflnternet Protocol 
(TCPDP), or proprietary high-speed switch interface. 

Because  a message can  be  sent before the  process 
waiting for it is  ready to receive it, the communi- 
cations layer must hold messages until the receiv- 
ing process is ready. Some of the  issues  that had 
to be  solved  here  were determining if the  process 
to which a message was  directed had already  ter- 
minated, in which case  the arriving (or “in-flight”) 
message should be  dropped; or whether  the pro- 
cess had not  yet been created and so the message 
should be kept. The solution to this question re- 
lied on the communication manager to guarantee 
order of arrival of messages. That is, if message 
A is  sent from sender S on node 1 to receiver R 
on  node 2, then it must be received by R before 
R can receive any  other message sent  later  by S 
to R. (Exceptions  are made for the  class of “in- 
terrupt” messages.) 

Interrupt  and  error  handling. The assumption in- 
herent in the serial database manager is that  either 
the application is  busy  or  the  database  system is 
busy,  but not both  at  the  same time. Further,  the 
database  system is busy handling only  one  request 
per application. In DB2 PE, not only  can  the  data- 
base  system be active  concurrently  with  the ap- 
plication, it can be processing more than  one  query 
on behalf of the  same application. Multiple cursors 
may be open  at  any given time. Each  fetch of a 
cursor  returns  a single row, but  there could be pro- 
cesses on many nodes working to retrieve rows for 
that  cursor. A process may be initiated at  a  node 
when a  cursor is opened (execution of an open cur- 
sor  statement  by  the application) and it remains 
until it has completed processing of all its data or 
until the  cursor is closed by  the application. 

So although a  row  may  be  ready  to  be  fetched, an- 
other node may have had an error.  The  semantics 
had to be defined for when  the  error indication is 
returned to  the application, whether it should be 
returned as soon as possible, as late as possible, 
or in its  “natural”  order. DB2 PE implements the 
“as soon as possible” policy, but it is by no  means 
clear this  is always the  best.  There  are many other 
examples of similar problems, where serial seman- 
tics  just  cannot  be maintained, e.g., interrupt  han- 
dling, forward recovery to current time, etc. 

Concurrency  control  and  recovery. A parallel da- 
tabase must ensure  that individual transactions can 
be serialized and that  recovery from software and 
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Figure 9 Table  queues 
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hardware  failures  are possible. Serializability (se- 
rialization of transactions)  is  obtained by using a 
standard  two-phase locking protocol,  and  recov- 
ery from failures (durability) is obtained by using 
a two-phase commit protocol.  This  section  de- 
scribes  the specifics of each of these  subjects. 

Two-phase commitprotocol. One  important prop- 
erty of database  systems  is  to  guarantee  that ei- 
ther all actions of a user  transaction  take effect or 
none  take effect. Since a transaction  can  be  exe- 
cuted  on multiple processors  concurrently in a par- 
allel database  system, it is  much  harder to provide 
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the all or nothing property.  To  guarantee this prop- 
erty, most parallel systems  adapt a two-phase com- 
mit protocol  that  includes a prepare  phase  and a 
commit or abort phase. The two-phase commit pro- 
tocol may result in blockirtg if the  coordinator fails 
after it has  received  votes  but  before it sends  out 
an  outcome. When blocking occurs,  participants 
will hold or lock  resources for a long time, result- 
ing in significant degradation in system perfor- 
mance. Three-phase commit protocol30  has  been 
proposed  to  remedy  the blocking problem. But  be- 
cause a three-phase commit protocol  imposes 
much higher overhead  than a two-phase  protocol, 



Figure 10 Transaction  state  transition in DB2 PE 

and the blocking problem can be “resolved”  by 
system  administrators, none of the existing com- 
mercial systems currently supports  the three-phase 
protocol. 

There  are  three  variations of the  two-phase com- 
mit protocol: presumed nothing, presumed com- 
mit, and presumed abort. 31 DB2 PE adopts  the  pre- 
sumed  abort protocol that  assumes  a  transaction 
has  aborted  when  the  state of the transaction  was 
inquired by any subordinate  nodes and the  state 
cannot  be found in the in-memory transaction  ta- 
ble. Figure 10 shows  the transition of transaction 
state in DB2 PE. When a  transaction  starts,  a  co- 
ordinator agent is activated to coordinate  the ex- 
ecution of the transaction. Subordinate agents (DB2 
PE agents), if needed,  are activated by  the  requests 
sent from the  coordinator agent. Before process- 
ing a commit or rollback request,  the  transaction 
at both coordinator and subordinate nodes is in the 
active state. 

DB2 PE maintains a  transaction node list for every 
active  transaction  that  contains  the  node  numbers 
of all nodes participating in executing the  trans- 
action. When a  coordinator agent receives  a com- 
mit request from an application, it sends  out  pre- 
pare-to-commit requests to the PDB request  queues 
of all nodes  recorded in the  transaction  node list, 
including the  coordinator  node itself. At this point, 
the  coordinator agent enters  the prepare state. 
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Upon receiving the prepare-to-commit request, the 
DB2 PE agent controller  at the coordinator node is 
responsible for stopping active  agents  associated 
with the committing transaction. However,  the  co- 
ordinator itself is responsible for processing the 
prepare-to-commit locally. Notice that  there is no 
prepare log written  at  the  coordinator node before 
starting  the prepare phase in DB2 PE. At a  subor- 
dinate node,  a prepare-to-commit request  is  pro- 
cessed by an active agent associated with the trans- 
action if one exists. Otherwise, a new agent is 
selected by  the DB2 PE agent controller to process 
the  request. The commit agent first checks  the 
transaction  state  stored in the local transaction  ta- 
ble. If the transaction  encountered  any  error and 
thus  cannot  be  committed, it  will vote  “no”  to  the 
coordinator and enters  the abort state. Otherwise, 
it  will reply  “yes” and enters  the prepared state if 
it has modified its local database. If a participant 
does not update  its local database and is ready to 
commit, it  will reply “read-only” and enters  the 
commit state. 

If everyone  votes  “yes” or read-only, the coor- 
dinator commits the  transaction and informs all 
participants  who  have  voted  “yes.” At this point, 
the  transaction  state  changes  to commit at  the  co- 
ordinator node. Otherwise, the  coordinator  aborts 
the transaction and forwards the decision to all sub- 
ordinate  nodes  that  voted  “yes.” All actions  per- 
formed for the  transaction  at all nodes  are rolled 
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back  (undone) and the  transaction  state is changed 
to abort. 

Concurrency control. Parallel database  systems 
need to maintain consistent global locking across 
all nodes  because  a  database  object  (record,  table, 
index,  etc.)  may  be  accessed by multiple nodes 
concurrently  and  deadlocks may occur among 
nodes.  This  requirement  posts  a significant chal- 
lenge to parallel database  system designers. In 
shared-memory and shared-disk  systems,  data  can 
be  accessed by multiple nodes  concurrently. In or- 
der  to maintain a  consistent global locking, a  node 
needs  to  obtain read and write permission either 
explicitly or implicitly from all other  nodes  before 
reading or writing a  data  object  for which it does 
not already own an  appropriate  access permis- 
sion-hence the  requirement  for  some form of 
global lock management. In DB2 PE, each  proces- 
sor  accesses  only  the  portion of the  database  that 
it owns locally. Consequently,  a  processor  does 
not have  to  request  access permission from remote 
processors  before  accessing  its local data;  thus  a 
global lock table is not  required.  However, DB2 PE 
does  require  a  distributed  deadlock  detector  to 
check for global deadlocks. 

In DB2 PE, a  lock table and local deadlock  detector 
are  created for each  database and node  to main- 
tain locking information and to  resolve conflicts 
among lock requests  for  a given database.  A  trans- 
action  may  have multiple processes  active  on  its 
behalf and  each  process  requesting  a  lock will be 
assigned a  separate lock request block. When two 
processes of the  transaction make a  lock  request 
to  the same  object,  the  one lock request block per 
process design uses  more  memory  space.  How- 
ever, it  simplifies the design in processing lock con- 
version  requests and lock  release  requests  before 
the  end of a  transaction.  The local deadlock  de- 
tector  is implemented as a  separate  process  and 
awakens periodically (becomes  active) to scan  the 
local lock table and to build the local wait-for graph. 
It then  sends  the local wait-for graph  to  the global 
deadlock  detector (GDD) for processing. 

Global deadlock  detection is also implemented as 
a  separate  process.  There is one global deadlock 
detector  per  database  opened  per DB2 PE system. 
Currently,  a  transaction is not allowed to  access 
multiple databases  at  the  same  time and thus  one 
GDD per  database is the  most efficient method. The 
GDD process  resides  on  a preconfigured node. On 
a  user configurable time interval, local deadlock 
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detectors  send  their local wait-for  graphs  to the 
GDD. The GDD merges the  graphs  received and 
builds a global wait-for graph based  on  the  trans- 
action identifier that  is unique across all nodes in 
a DB2 PE system.  After  the completion of building 
the global wait-for graph,  the GDD goes through it 
to find deadlock  cycles in the graph. When a  cycle 
is detected,  one or more  transactions  are  selected 
and rolled back to break  the cycle. When a  trans- 
action  has  been  selected as a  deadlock  “victim,” 
its  coordinator agent (process)  is informed by the 
agent requesting the lock and the coordinator agent 
will send  a rollback request to its  subordinate 
agents  (processes)  to  undo  the  action of the  trans- 
action. 

Database utilities 

DB2 PE provides  a  variety of utilities to manage the 
parallel database  system.  Some of the  important 
utilities are described in the following subsections. 

Data loading. The load utility allows bulk loading 
of database  tables from flat files. To  support ap- 
plications requiringvery large database  sizes (hun- 
dreds of gigabytes and higher), DB2 PE provides ef- 
ficient ways of loading large volumes of data  into 
the  database.  Data  can be loaded in parallel into 
a single table  by invoking the load utility at each 
of the  nodes  that  contains  a  table partition for  the 
given table. Typically, the input data  are  stored in 
a single flat  file. A  data partitioning utility as well 
as application programming interfaces provided 
with the  database  system  can  be used to partition 
an input file into multiple files, one  per  table  par- 
tition. The partitioned files can  then  be  loaded in 
parallel. In addition, at  each  node,  the load utility 
reads  the input data file and  creates  data  pages in 
the  internal  format used by  the  database engine. 
These pages are  directly  appended to  the existing 
database file, thereby  greatly increasing the  speed 
of the load utility. 

Adding nodes to  the system. DB2 PE supports  scal- 
ability by allowing incremental addition of nodes 
to  the shared-nothing parallel system.  Thus,  a  user 
can  start with a  system configuration that is suf- 
ficient to handle current  storage and performance 
requirements and add  new  nodes as  the size of the 
database grows. New  nodes  can  be  added to in- 
crease  storage  capacity as well as performance. 
The  command, Add Node, allows users  to  add 
nodes to  the parallel database  system configura- 
tion and to initialize the  node  for  use by  any da- 



tabase. Once added,  a  node  can  be used by  a da- 
tabase by including it in one of the nodegroups in 
the  database (either the CREATE or REDISTRIBUTE 
NODEGROUP statements  can  be used for this pur- 
pose). Since DB2 PE supports partial declustering 
of tables, the set of all tables for a given database 
may reside  only on a  subset of the  nodes in the sys- 
tem. However,  an application can  connect to any 
database from any  node in the  system, regardless 
of whether  that node contains  data pertaining to 
that  database. 

The  Drop  Node command can  be used to verify 
whether  a  node  can  be dropped from the  database 
configuration. If the node to be dropped is currently 
in use  by a  database,  then  the node should not be 
dropped.  The Redistribute Nodegroup command 
(described in the  later  subsection  on  data redistri- 
bution) should be used to remove any  data from 
this  node before dropping it. 

Creating  a  database. Normally, issuing the  Create 
Database command ensures  that  the  database  is 
defined across all the  nodes  that  are  currently in 
the  system. Similarly, the  Drop  Database com- 
mand drops  the  database definition from all nodes. 
However,  there  are  situations in which one may 
wish to  create and drop  the  database  only  at  a sin- 
gle node. For example, the Add Node command 
described above implicitly performs a  create-da- 
tabase-at-node  operation for each existing data- 
base. Also, in case the database at a particular node 
happens to  be damaged, the  Drop  Database At 
Node command allows the  user to drop  only  the 
database  at  that  node  rather  than dropping the  en- 
tire database  across all the  nodes of the system. 
Since DB2 PE supports node-level backup and re- 
store  (see  the  later  section  on  backup and restore), 
after dropping a  database  at  a  node,  the  database 
backup image can be used to restore  the  database 
at  that  node (and roll forward the logs, if neces- 
sary) - 
Data  reorganization. As a result of insert,  delete, 
and update activity, the physical layout of data- 
base  tables may change. Insertions may result in 
the  creation of overflow data blocks and, as a  re- 
sult,  the disk pages containing data belonging to 
the  table may no longer be stored contiguously. 
On the  other  hand, deletions may create gaps in 
disk pages, thereby resulting in an inefficient uti- 
lization of disk space. If a table is partitioned across 
a set of nodes, insert and delete activity may also 
result in table partitions at some nodes having more 
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data than those  at  other nodes, thus creating a skew 
in data distribution. Also, in many decision sup- 
port applications, the  database  size  increases  with 
time. Thus, it may be  necessary to increase  the de- 
gree of declustering of a  table in order  to accom- 
modate the additional data. Finally, even if the size 
of the  database remains the same, the workload 
may change, thereby requiring a change in data 
placement. 

In all  of the  above  situations,  data reorganization 
utilities can  be used to manage the physical stor- 
age of the table. The following subsections describe 
the  data reorganization utilities available in DB2 PE. 

Table reorganization. The Reorg utility can  be used 
for compaction and reclustering of database files 
at each node. The Reorg operation executes in par- 
allel across all the  nodes  that  contain  a table par- 
tition for a given table. The file  in which the da- 
tabase  table is stored  is reorganized by creating  a 
new file without any page gaps and overflow 
blocks. If the  operation completes successfully on 
some nodes  but  not  on  others,  then  the  table  par- 
titions remain successfullyreorganized at the nodes 
where Reorg succeeded. 

This is an example of an operation  where  the 
atomic commit semantics of the database  opera- 
tion have been relaxed. If the  operation  were to 
be atomic, then upon failure, the Reorg would have 
to  be  undone  at all the  nodes  where it completed 
successfully. However,  the Reorg operation may 
be time-consuming and undoing it may be even 
more expensive.  In addition, consider  the  case 
when Reorg succeeds on, say, 60 nodes  but fails 
on 1. It  is more beneficial not to undo  the  oper- 
ation. In  this  case,  the  operation  returns an error 
message but is not undone  since  there is no pen- 
alty if some  partitions  are reorganized while oth- 
ers are not. On the  other hand, the  nodes  at which 
the partitions were reorganized would benefit from 
the resulting file compaction. 

Data redistribution. The partitioning strategy used 
to partition tables may, in some  situations,  cause 
a  skew in the distribution of data across nodes. This 
can  be  due to  avariety of factors, including the dis- 
tribution of attribute  values in a relation and the 
nature of the partitioning strategy itself. At initial 
placement time, it is possible to analyze the dis- 
tribution of input attributevalues and obtain a  data 
placement that minimizes skew. However,  data 
skew may be  reintroduced  over  the  database life- 
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time due to insertion and deletion of data. DB2 PE 
provides  a  data redistribution utility to redistrib- 
ute  the  data in a  table in order  to minimize skew. 

For a given nodegroup, the  data redistribution op- 
eration  determines  the  set of partitions of the  par- 
titioning map  that should be moved in order  to  ob- 
tain an  even  distribution of data  across  the  nodes 
of the nodegroup. The default assumption is that 
the  data  are  evenly  distributed  across  the 4K par- 
titions; thus, if the partitions are evenly distributed 
among the  set of nodes,  then  the  data are also  as- 
sumed to  be evenly  distributed  across  the  nodes. 
The user may override  this default assumption by 
providing a distribution  file that assigns a weight 
to each of the 4K partitions.  In  this  case,  the  re- 
distribution  operation will attempt to redistribute 
partitions among nodes  such  that  the  sum of the 
weights at each node is  approximately  the  same. 

If a  nodegroup  contains  several  tables,  then redis- 
tributing only one table and not  the  others will re- 
sult in a loss of collocation among the tables. In 
order  to  preserve  table collocation at all times, the 
redistribution  operation is applied to all the  tables 
in the nodegroup and each  table is redistributed in 
turn. If a  redistribute  operation  does not complete 
successfully, it is likely that  some  tables in the 
nodegroup  have  been  redistributed while others 
have not. In  this  case,  the  operation  can  be  com- 
pleted by issuing the  Redistribute command with 
the restart option. It is also possible to issue  the 
Redistribute command with  a rollback option, in 
order  to  undo  the effects of the failed redistribu- 
tion. The  Redistribute  Nodegroup command is an 
on-line operation  that  locks  only  the  table  that  is 
currently being redistributed. All other  tables in 
the  nodegroup  are normally accessible. 

The  data redistribution utility also  permits  users 
to redistribute data  by specifying a targetpartition- 
ing map for  a given nodegroup. Data  redistribu- 
tion of all tables in the  nodegroup using the  target 
positioning map is initiated through the application 
programming interface. This  interface  can be used 
to achieve  “custom”  redistribution of tables, e.g., 
send all rows with a  particular partitioning key 
value  to  a  particular  node,  create  skewed distri- 
butions,  etc.  The  current  data  distribution  across 
partitions and nodes  can be determined using two 
new SQL scalar  functions, namely, PARTITION and 
NODE. These  functions  return  the  partition num- 
ber  and  node number to which a given row in a 
table is mapped. 
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The following example illustrates how the new SQL 
functions  can  be  used to obtain  the  distribution of 
the  rows of a PARTS table: 

Query 1: 

CREATE  VIEW  Partition-Nums(Pnum)  AS 
SELECT  PARTITION(PARTS) 
FROM  PARTS; 

SELECT  Pnum, COUNT(*) 
FROM  Partition-Nums 
GROUP BY Pnum 
ORDER BY Pnum; 

Query 2: 

CREATE  VIEW  Node-Nums(Nnum)  AS 
SELECT  NODENUMBER(PARTS) 
FROM  PARTS; 

SELECT  Nnum,  COUNT(*) 
FROM  Node-Nums 
GROUP BY Nnum 
ORDER  BY  Nnum; 

The  output of Query 1 is a  set of rows  where  each 
row  contains  the  partition number (0 to 4095) and 
the  number of rows of the  table  that  map to that 
partition.  The  output of Query 2 is  a  set of rows 
where  each row contains  the  node  number and the 
number of rows of the  table  that  map  to  that  node. 

Backup  and restore. The  degree of parallelism 
achieved during backup  and  restore of a  database 
is  determined by  the number of backup  devices 
available. The DB2 PE backup  and  restore design 
allows each  node in the  system  to  be  backed up 
independently. Thus,  data from several  nodes  can 
be  backed  up  simultaneously, if multiple backup 
devices are available. The backup utility creates 
a  backup image of the  entire  database partition res- 
ident  at  a given node. 

At  restore time, it is  necessary  to  ensure  that the 
database  partition  that  is being restored  is in a  con- 
sistent  state with respect to  the rest of the  nodes 
in the  system.  This  can be achieved by either  re- 
storing all nodes in the  system using backup im- 
ages that  are known to  be consistent, or  by restor- 
ing the single node  and rolling forward logs to  a 
point in time where  the  database  state is consis- 
tent  across all nodes. DB2 PE supports  the ability 
to roll forward logs across  nodes  to  a specific point 
in time. 

BARU ET AL. 311 



High availability. High availability is  supported by 
the  use of HACMP (highly available cluster multi- 
proce~sor)~’ software.  The HACMP software pro- 
vides  transparent  takeover of the disk and com- 
munications resources of the failed node. System 
nodes  are paired together  and  each pair has  access 
to twin-tailed disks (disks connected to two nodes). 
If one of the  processors in a pair fails, the  other 
processor  can  take  over and the  system  can  con- 
tinue to operate. To enable use Of HACMP software, 
the  database engine has  been designed to allow the 
situation  where a single processor  executes mul- 
tiple copies of the  database engine. In other  words, 
multiple database  nodes or logical nodes are 
mapped to the  same physical node. While this 
method provides  quick  takeover of a failed node, 
there may be  an impact on performance due to in- 
creased load on  the  takeover  processor.  In  many 
decision support applications, it is  not essential to 
provide instant  takeover capability, whereas it is 
important not to degrade overall  system perfor- 
mance. Thus, it may be acceptable to have a par- 
ticular node  become inaccessible, for example for 
ten minutes, in order  to  be able to recover from 
a failure of that node without any  subsequent  per- 
formance penalty. This  can be achieved by con- 
figuring one  or more spare  nodes in the  system  that 
can  take  over on behalf of any failed node. When 
a node fails, its  database files are copied to  the 
spare node (access to the  disks  on  the failed node 
is available due to twin tailing) and the  spare  is now 
restarted as the original, failed node. In  this  sce- 
nario, only  the  node  that failed is inaccessible for 
a brief period of time while the remaining nodes 
in the  system  are still operational. 

Performance  monitoring  and  configuration  manage- 
ment. Database monitoring tools allow users to 
identify performance bottlenecks and take  appro- 
priate action to relieve the bottlenecks. DB2 PE pro- 
vides a database monitoring facility that allows 
users to gather  data on resource  consumption at 
the  database manager, database, application, and 
individual process levels. These  data  are  collected 
at each  node and can be used to identify bottle- 
necks  at individual nodes. To obtain a global pic- 
ture of the  performance of the  entire  system, it is 
necessary to combine performance monitoring data 
across all nodes. A performance monitoring tool 
is being developed as a separate  product for this 
purpose. 

The  database manager provides  several configura- 
tion parameters at  the  database manager and in- 
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dividual database levels, that  can be used to  tune 
the performance of each  database and the  database 
manager as a whole. For example, users  can  con- 
trol the  size of buffers, maximum number of pro- 
cesses,  size of log  files, etc.  These  parameters  can 
be  set independently at each node, thereby allow- 
ing users  to  tune  the performance of each individ- 
ual node. Thus,  the configuration parameters  can 
be adjusted to account for differences in hardware 
capacities, database partition sizes, and workloads 
at each node. 

Results 

We have performed a number of internal IBM and 
customer  benchmarks on DB2 PE and a brief syn- 
opsis of these  results  is presented here. The  results 
are divided into  three categories: 

Stand-alone numbers-This basic  metric in- 
cludes  capacity and load times. 
Speedup-This metric  measures  the perfor- 
mance of queries and utilities as  we increase  the 
number of nodes in the  system while maintain- 
ing the  same  database size. 
ScaleuyThis metric measures the performance 
of the  system as  the  database  size,  the number 
of concurrent  users, and the number of nodes are 
scaled proportionately. 

The  system configuration for many of the  bench- 
marks  has  been  the IBM sP2 or sP1 systems.  The 
systems  have ranged from 8 nodes to 64 nodes  de- 
pending upon the  database  requirements of the in- 
dividual benchmarks. Typically, each node has 128 
or 256 megabytes of memory and 2 to 48 gigabytes 
of disk capacity. The  nodes  are  interconnected us- 
ing a high-speed switch. In  some of the bench- 
marks, we have  only used the slower Ethernet as 
the  interconnect path. 

The  results  that  are described in this  section  were 
measured using early untuned drivers of the DB2 PE 
software, and specific hardware configurations (of- 
ten having a single disk per node). As such, the re- 
sults obtained in a different hardware or software 
environment may vary significantly. Users of these 
results should verify if they are applicable for their 
environments. The absolute values of a number of 
different metrics are likely to be different  in the final 
product. 

Stand-alone  metrics. Table 1 describes  the impor- 
tant stand-alone metrics based on results of bench- 
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marks performed to-date. One of the foremost met- 
rics  we would like to present is system  capacity. 
When stating  capacity,  we must differentiate be- 
tween  user  data  size  (the  size of flat  files contain- 
ing the  data in normalized form), database size (the 
space occupied once  the  data  have  been loaded in 
DBZ PE, relevant indexes  created, and any required 
denormalized tables  created), and disk capacity 
(the total disk space used to support  the  database 
workload, including internal work  areas, interim 
load files, etc.). We have benchmarked applica- 
tions  with  over 100 gigabytes (GB) of user  data,  da- 
tabases of over 250 GB, and systems with more than 
600 GB of disk space. One of the  tables in the da- 
tabase  has  been as large as 84 GB and contained 
over  2 billion rows. We expect  to  support config- 
urations in the  terabyte size. To put this into per- 
spective, even mainframe relational databases  are 
rarely  over 200 GB in size. Some of the  measure- 
ments  were  done using tables larger than  the 64 
GB limit of many relational database management 
systems. 

Another  very important metric is data load times. 
Our fastload utility is  able to load data  at  rates of 
up to 2 GB/per node/per hour. The dataload utility 
runs in parallel at all nodes, hence it demonstrates 
a completely linear speedup of load rates.  In  a 32- 
node  system,  one could load at  the  rate of 64 GB 
per hour. 

Before loading, the data must be  declustered and 
sent  to  the  appropriate node. The utility used to 
decluster  data  (data  splitter)  is flexible and can  be 
modified by  the user in situations  where fine tun- 
ing is required. The  data  splitter  can  be  executed 
on  a  variety of IBM operating system platforms in- 
cluding Advanced  Interactive  Executive* (AIX), 
Multiple Virtual Storage ( M V S ) ,  and VM. In most 
cases  we also divided the input data so as  to run 
the  splitter in parallel. The  output of the splitter 
must  then  be  sent  to  the  appropriate  node for load- 
ing. In certain  benchmarks  this  was  done by send- 
ing the data in  file format using FTP (File Transfer 
Protocol), while in other  benchmarks  the  output 
from the  splitter  was piped directly into  the load 
program. In most cases,  the  connectivity  between 
the  system containing the  source  data and the  tar- 
get database  system  was  the limiting factor  on  the 
entire  database load process.  For  a 100 GB data- 
base  on  a 46-node SPZ system,  the elapsed time for 
partitioning all the  data, loading the  data, and cre- 
ating indexes on the tables was  just 12 hours. 
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Table 1 Stand-alone  metrics .. 
Data size 100 GB and larger 
Database size 250 GB and larger 
Table size 84 GB (2 OOO OOO OD0 rows) 
Total disk space over 600 GB 
Data splitting 2 GB per node per hour 
Data load rate 2 GB per node per hour 

Table 2 Database  description  for  speedup  experiments 

fable No. of Rows Row Size Total Sire 

1 OOOo00 100 MB 
T2 1OOOo00 100 100 M 3  
w1 1OOOooo loo0 1 GB 

The final stand-alone metric is availability. In  these 
benchmarks,  we  have tried to maintain several 
spare  nodes for replacement in the  event of node 
failures. Due to the decision support  nature of the 
benchmarks, only a few nodes  (those containing 
database catalogs) in the  system may need the  use 
of special availability mechanisms such as twin- 
tailing of disks. For all other  nodes, in the  event 
of failure, the  data residing on  the failed node can 
be reloaded onto  the  spare node and the  spare node 
is  then used as a replacement node. We have  been 
able to accomplish this  task in a time that  is  only 
dependent on the  data load rate for the node. For 
example, on the 100 GB database on 46 nodes, this 
task  was accomplished in less  than two hours. 

Speedup results. For  speedup, we present  results 
from an internal benchmark performed on 4,8,16, 
and 32 node SPZ systems. 33 Table  2  describes  the 
database configuration used. The database consists 
of four main tables (Sl, T1, T2,  W1) and each  ta- 
ble contains  a primary key along with  other non- 
essential attributes.  The S1 table contains 100 000 
rows, while the T1, T2, and W1 tables contain a 
million rows, respectively. S1, T1, and T2 tables 
contain  rows with a  size of 100 bytes, while the 
W1 table has  a maximum row size of 1000 bytes 
and an average row size of 560 bytes. 

Scan  performance. Figure 11 shows  the  execution 
times and the  speedup of parallel scan  operations 
on  tables T1 and W1 returning 1 row to the appli- 
cation. They axis on  the left shows  the  execution 
times, while the y axis on the right measures 
speedup  that  can be a maximum of 8. The  scan of 



Figure 11 Execution  times  and  speedup of parallel  scan  returning 1 row of T1 and W1 tables 
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the  T1 table  exhibits linear speedup, i.e., the  ratio 
of the execution times is auct ly  the  inverse of the 
ratio of the number of nodes,  when  the  number of 
nodes is increased from 4 to 8. Beyond this point, 
the speedup  becomes  sublinear,  due to  the smaller 
size of the table. In contrast,  the  scan of the  W1 
table  exhibits linear speedup  up  to 16 nodes  and 
only  then  becomes slightly sublinear. If the  table 
scans had been performed using more  nodes, the 
execution times would eventually flatten out  when 
the table  partitions  at  each  node  become small 
enough so that  the  overhead of initiating the  scans 
at  the different nodes offsets the performance gain 
from the parallel scan.  This figure illustrates  that 
the parallelism benefits are  bounded by  the  sizes 
of the  tables  for  any  operation. 

Figure 12 illustrates the performance of a parallel 
scan  operation on  the W1 table  that  returns 10 per- 
cent of the  rows to  the application. The  execution 
times  improve as  the  system  size is increased  but 
the  speedup  is  quite  sublinear.  The  reason for this 
has  to  do with the processing performed at the  co- 
ordinator node in fetching 100 000 rows (10 percent) 
of the  data  and  returning it to  the application. Am- 

dahl's Law effectively limits the maximum perfor- 
mance  improvement  from  such  queries  due to  the 
serial bottleneck. To overcome this bottleneck,  the 
application must be parallelized. One simple way 
of doing this  on DB2 PE is to divide the application 
into multiple tasks,  each running on a  separate  co- 
ordinator.  The division can  either  be  based on 
range of data  or  be  such that  each  task  operates 
on a  subset of the  database nodes. The issue of par- 
allel applications is further  discussed in a  later  sec- 
tion on experiences  and  observations. 

Insert, updatepe$ormance. Figure 13 shows  the 
execution times for performing insert  into  a  tem- 
porary  table of 1 row, 1 percent of the  rows, and 
10 percent of the  rows of the T1 table.  The figure 
is plotted using a logarithmic scale  (base 2) on both 
thex  andy axes.  In  such  a  graph, linear execution 
time curves (with appropriate  slope)  indicate lin- 
ear  speedup. All three  curves  show  near linear 
speedup gains with increasing system size. We  are 
able to parallelize both  the insert as well as the  sub- 
select  operations of this  statement resulting in lin- 
ear  speedup of the  statement  across different 
nodes. 
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Figure 14 shows  the  execution times of update col- 
umn operations on 1 percent, 10 percent, and 100 
percent of the rows of the S1 table. Once again, 
the  execution times decrease  linearlywith  increas- 
ing system size. The 1 percent and 10 percent up- 
date  curves  show  somewhat  anomalous  behavior 
at 32 nodes. We  conjecture  that  the relatively small 
number of updates at each  node of the 32-node sys- 
tem  (approximately 300 for 1 percent)  makes  the 
execution  times really dependent on the parallel 
scan times for 32 nodes. Both  these  results illus- 
trate  the  extremely parallel query  execution  strat- 
egies that DB2 PE is able  to  generate  for  insert, up- 
date, and delete SQL statements.  The parallel insert 
was particularly useful in benchmarks  when in- 
terim results  were  saved in tables  for  later anal- 
ysis .or when denormalized tables  were  created 
from normalized ones. 

Indexcreatepegormance. Figure 15 shows  the  ex- 
ecution  times of a  secondary  index  creation on the 
100  000-row S1 table  and  the 1000 000-row T1 ta- 
ble. Both curves illustrate close  to linear perfor- 
mance  improvement, indicating that  the  create in- 
dex operations  are very efficiently parallelized in 
DB2 PE. The  reader  should  note  that  there is no dif- 
ference  between primary indexes  and  secondary 
indexes in our  system  due to  the function shipping 
model of execution.  However,  the  same is not true 
for  other parallel database  processing  systems, 
where  secondary  indexes  are global and  cannot be 
efficiently parallelized. 

Scalability results. We present  three different types 
of scalability results: 

1. Results from performance  experiments  as  the 
database  size  scales from 10 GB to 100 GB on 
the  same number of nodes 

2.  Results from performance  experiments as  the 
database size and the  system size are scaled pro- 
portionately 

3. Results from performance  experiments as the 
number of concurrent  users on the  system is in- 
creased 

The  results for all three  cases  have  been  obtained 
from customer  benchmarks. 

Table 3 shows  the  performance of DB2 PE on a 46- 
node SP2 system for 10 GB and 100 GB versions of 
a  scalable  database.  The  results  are  shown for a 
variety of complex  queries on the  database.  The 
scaling ratios for the different queries  varies  be- 
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Figure 12 Execution  times  and  speedup of parallel  scan 
returning 10 percent of the  rows on W1 table 
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Figure 13 Execution  times of 1 row, 1 percent,  and 
10 percent  insert  with  subselect  statements 

TABLE  T1 

- 
4 c 16 32 
NUMBER OF NODES 

- 10 PERCENT OF THE ROWS - 1 ROW 
.""_" 1 PERCENT  OF  THE  ROWS 



Figure  14  Execution  times of 1 percent, 10 percent,  and 
100  percent  update  with  subselect  statements 

Figure 15 Execution  times of create  secondary  index 
statements  on  the  S1  and  T1  tables 

Table 3 Performance of complex  queries on  a 46-node SP2 for  database  sizes of 10  GB  and 100 GB 

Query Descrlptlon  Response  Times 
10 GB 100  GB Ratio 

Six-way  join, 14 columns,  three  tables 22  132 5.0 
Insert/select of two-way join, select  temp 26  186 7.15 
Simple select, SUM, group  by,  order by 163  1  177 7.22 
Two-way join, not e q u a l  predicate, in list 174 1 521 8.74 
Create  temp,  inserthelect  (four-way join), select  temp 694 7 234 10.42 
Union of two two-way  joins 253 2 647  10.46 
Three-way join, three  tables,  avg.,  group  by,  order by 240 3 340 13.91 
Two-way  join,  between  predicate,  group by, order  by 164 3  682  22.45 
Insert/select,  select,  three  tables,  distinct 157 4 147 26.4 

tween 5 and 26.4. Since the 100 GB table is  ten times 
(10 X )  as large as the 10 GB table, strictly linear scal- 
ability would result in response-time ratios of 10. 
Response-time ratios of less  than 10 show  super- 
linear speedup;  thus for most of the  queries, DB2 
PE is able to generate an equal or larger amount of 
parallelism on the 100 GB database  when compared 
to  the 10 GB database.  The scaling factor of the last 
three  queries in Table 3 is sublinear (ratio  greater 
than 10). These  three  queries include order  by  or 
distinct clauses that require sorting to be performed 
on  the intermediate results  at  the coordinator. This 

causes  a serial bottleneck and translates  into  a re- 
duction in the  scaleup ratio. Consider next  the fol- 
lowing complex  business  query: 

SELECT Count(*) FROM  Customers 
WHERE  Class IN ( ' l ' ,  '2', ' 4 ' ,  ' 6 ' )  

AND  Cust-No  NOT IN 
(SELECT  0-CUST-NO  FROM  Offers 

WHERE 0-DATE IN (list of dates)) 

(SELECT  0-CUST-NO  FROM Offers 
AND  Cust-No IN 

WHERE 0-DATE IN (list of 2 dates) 
AND  Response = ' Y ' ) 
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Figure 16 shows  the scalability results for this 
query, as the  system  size is increased from 4 to 64 
nodes and the  database  size (which includes index 
files) is  proportionately  increased from 2.5 GB to 
40 GB. This  is  an important result, since it indicates 
that  the  overhead  introduced by the function ship- 
ping model of execution is relatively small and does 
not affect the  execution times of complex queries. 

Table 4 shows  the  results of a concurrent execu- 
tion scalability test on  the system. The  test was 
performed using a 23 GB database on an eight-node 
S P ~  system. In  this  test, we compare  the  response 
time of queries submitted by a single user to that 
of 20 and 30 concurrent  users.  First,  we measured 
the  execution times of the  query  suite consisting 
of 15 complex  queries  when  they  were submitted 
in a single stream  by  the single user.  These  exe- 
cution times  are shown in the  second column of 
Table 4. Next,  the  queries  were  concurrently  sub- 
mitted by 20 and 30 users, respectively. Each  user 
submitted  one of the 15 queries. In  order  to dis- 
tribute  the  coordinator  activity  over all nodes in 
the system, the  users  were connected to the 8 nodes 
in the S P ~  in a round-robin fashion. Columns three 
and four show  the scaling ratios of the  execution 
times of the different queries for the 20 and 30 
users, respectively. The  results  show  that DB2 PE 
is able to scale superlinearly with respect to the 
concurrent users. There  are several reasons for the 
superlinear performance scaleup. Similar to serial 
databases, DB2 PE is able to make better  reuse of 
the  database buffers at  each  node  due to  the com- 
mon concurrent  requests.  This  reuse  occurs  at all 
nodes, thereby providing a significant benefit. An- 
other very big contributing factor  is  that  the  con- 
current  users  can  connect to all nodes in the  sys- 
tem and distribute  the application and coordinator 
load evenly  across  the nodes. In  this experiment, 
the last row of Table 4 shows  the  total elapsed time 
for completing the  entire  query  suite.  The  results 
show  that 30 queries (two executions of the  query 
suite)  were completed concurrently in a time that 
was only 1.5 times worse  than  the single user, sin- 
gle stream  test.  Not all parallel database  systems 
have this feature. Many of the parallel database 
systems  are backend machines that  have specific 
interfacing systems  for application entry, and their 
multiprogramming levels are limited by the  capa- 
bilities of this front-end system. DB2 PE does  not 
have  this restriction and  provides significant con- 
currency benefits to users. 
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Figure 16 Performance of a  complex  query  as  both 
system  size  and  database  size  are 
proportionately  increased 
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Table 4 Performance of queries  with  scaling of the 
number of concurrent  users 

Query  Slngle  User Scaling Ratios 
Exec. Tlmes 20 30 

(sea) Users  Usen, 

QO1 2 5 8 
Q02 15 3.4 3.4 
Q03  45 7.1 12.4 
Q04 68 12.4 23.24 
Q05 93 1.34 2.08 
Q06  331 10.6 18.9 
Q07  447 3.53 6.55 
Q08  493 4.84 8.62 
Q09  541 4.77 8.57 
Q10 722 4.9 8.77 
Q11  755 4.69 8.57 
Ql2 1140 4.75 8.74 
Q13  1159 3.4 6.17 
Q14  1557 4.24 8.23 
Q15  1592 4.23 7.95 

Total 
Elapsed 
Time 8491  8435  12828 

BARU ET AL. 317 



Discussion. We have  presented  a flavor of the  re- 
sults  obtained from several  internal  and  external 
benchmarks  performed so far using DB2 PE. The 
results  that are presented  here  have all been  ex- 
tremely positive on the performance of the  system. 
The  speedup  and scalability results  have  been  con- 
sistently  excellent for most  types of queries  and 
utilities. The  results  vindicate  most of our design 
decisions in the  generation  and  execution of op- 
timal parallel strategies. 

There  are  a few types of queries  that do not  result 
in linear speedup or scaleup. These  queries  are typ- 
ically those  that require significant serial workwith 
respect  to  the total  work in the queries.  The  per- 
formance of an  example  query  type, which returns 
a significant number of rows to  the application, was 
described in the section on scan  performance.  An- 
other  example  is  a  query requiring coordinator 
sorts  or distinct  operations. When the  coordina- 
tor  activity  is high  in proportion  to  the  total  activ- 
ity,  the  performance  improvement of the  system 
can  decrease.  We  are  working  on improving the 
execution  strategies  for  such  types of queries to 
improve  performance. 

Also, the  performance of queries  that  are  executed 
in extremely  short  times on a  serial  database  can- 
not be  improved much further  by  the  use of par- 
allelism. This is because  the  serial  database  exe- 
cution  strategy is quite efficient, and parallelism is 
not going to provide  any  improvement on the ex- 
ecution of such  a  strategy. An example is index- 
only  selection of a single row of values.  Here, the 
result  is  a single row and  only  requires  access to 
the  appropriate  index  entry. Parallelism can  ben- 
efit such  a  query  only if the  index  happens to  be 
extremely large. 

Overall, the  capacity,  speedup,  and  scaleup im- 
provements of DB2 PE for  a very high majority of 
the  queries  far outweigh the  very small class of que- 
ries  described  above  with smaller performance 
gains. 

Experiences  and  observations 

We  have  learned  much,  both  technically  and  or- 
ganizationally, during the four years  we have 
worked  on  this project. The  Research Division pro- 
duced  an initial prototype, with function incremen- 
tally added.  This allowed us  to show “proof of con- 
cept,” and maintain project  momentum during the 
organizational changes that occurred. When the de- 
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velopment  laboratories  became involved with the 
project, we continued in a closely allied joint de- 
velopment mode, with the product  development 
meeting ISO 9000 standards.  The  joint development 
worked  much  better  than  the alternatives-spec- 
ifying the  product in intimate  detail,  or  just  hand- 
ing over  the  prototype. It  has  certainly  been  a  re- 
markable experience that two teams-research and 
development-with such  disparate  backgrounds 
have  been  able  to  work so closely  together. 

As  the  work progressed, it became increasingly 
clear that while the initial prototyping efforts in the 
project had given us a good understanding of the 
fundamental issues (section management, run time, 
initial query optimization, etc.),  the  work required 
to produce  an industrial strength parallel database 
manager was still sizeable. 

In the  rest of this  section, we highlight some of our 
technical observations  about  the  product. 

Function  shipping. At  the  onset,  we  made  a  tech- 
nical decision to use function shipping with shared- 
nothing hardware.  This decision provided multi- 
ple benefits. Because we were working on a  shared- 
nothing platform, we had to parallelize every 
database operation-query operator, DDL state- 
ment, and utility. While this resulted in a larger de- 
velopment effort, its positive impact was  that it dis- 
ciplined us  to  think in parallel concepts.  The  result 
is a  scalable  product  where parallelism is  the  cor- 
nerstone-not just in simple scans and joins,  but 
also in updates,  subqueries, utilities, etc.  Contrast 
this with some of the  alternatives, which build lim- 
ited parallelism on top of a shared-something envi- 
ronment and leave the more difficult operators (up- 
dates,  subqueries, etc.) single-threaded. 

Another benefit of our initial decision has been that 
most of our  system limits scale linearly. Thus  our 
tables  (base  and  intermediate)  can  be N times 
larger, a  query  can typically acquire N times the 
number of locks, etc.  This  is  a straightforward con- 
sequence of doing all operations in parallel. 

Query  optimization. Our initial effort for  generat- 
ing parallel plans  was to transform  the optimized 
serial plan into  a parallel plan. This decision was 
a  matter of programming convenience, encouraged 
by initial studies  that indicated that  this  often  pro- 
duced  the  best parallel plan.3  However, as  we 
explored  more and more  complex SQL, it became 
increasingly clear  that  our  approach,  far from min- 
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imizing coding, was doing quite the opposite. For 
example, we  were making the  same  kinds of dis- 
covery  about  ordering  requirements in the  post- 
optimization phase  as  the optimizer had made. Fur- 
thermore, it was also clear  that  without knowledge 
of partitioning, the optimizer was likely to come up 
with some very inefficient  plans. For example, in 

select * from T1, T2, T3 where T1 .A = T2.B 
and T2.C = T3.D 

the optimizer might decide to join T2 and T3 first 
(because of its  internal  decisions on size,  etc.), 
whereas in the parallel environment, T1 and T2 
might be  compatibly  partitioned and hence should 
be  joined first. 

We  therefore rejected the  post-optimization ap- 
proach and developed an integrated cost-based op- 
timizer that  understands parallelism, partitioning, 
messages, etc.  This  has  been  a  sound decision re- 
sulting in a  quality  product. 

Parallel  utilities. Database  literature  and  research 
in parallel databases  have generally concentrated 
on what is considered  the  hardest problem-join 
processing. However, as  we dug more  and  more 
into  the making of a  product, we realized that in 
a  true  decision  support  environment, we cannot 
operate on data until the  data  are  correctly in place. 
We thus  put in a lot of effort to make sure  that  the 
data  can  be initially loaded,  balanced, and indexes 
created and generally prepared for subsequent que- 
ries, all at  speeds viable for hundreds  or  thousands 
of gigabytes that  are typical in these environments. 
People have criticized the shared-nothing approach 
because  its  static  data partitionings can  be skewed. 
We  have provided rebalancing tools  that  do  not 
bring database  operations to a grinding halt and 
work  one  table  at  a time. Overall, our parallel util- 
ities are  as important as our parallel query  process- 
ing, and we will strive to continuously  improve on 
them. 

Serial  semantics. We have tried to provide  trans- 
parent parallelism by maintaining serial semantics. 
Since we  try and  achieve  the maximum parallel- 
ism by invoking read-ahead  operations  wherever 
possible, the  users  can  see  behavior different from 
their serial applications. An example of such  be- 
havior can  happen  when  cursor-controlled  oper- 
ations  interact with read-ahead  operations.  Other 
examples  where  the  semantics  are different from 
a serial database engine include error reporting and 
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recovery triggered during blocked inserts. In se- 
rial machines  the  behavior is fairly predictable, 
since all operations are done by  one  process.  The 
same  cannot be said of the parallel product. In such 
cases,  the  user will have to  choose between  per- 
formance  and  deterministic  semantics. 

Parallel  applications. Sometimes the amount of data 
crossing the  database/application  interface  can 
overwhelm  the  improvements  due to parallelism 
(explained by Amdahl’s Law). We are  studying 
ways  to  improve  the  performance of such appli- 
cations by: 

Providing for parallel application support  (pro- 
gramming model, SQL language extensions,  and 
DBMS extensions required to  transfer  data in par- 
allel) 
Examining means for pushing down some of the 
application logic into  the  database.  This could 
involve object-oriented  extensions  such as user- 
defined functions and extending SQL to  under- 
stand  statistical  issues  such as correlation  and 
sampling. 

Summary  and  future. In summary,  our parallel da- 
tabase implementation on an open platform has 
been  a  successful  one, especially for complex 
query  environments.  We  have  shown  that  a seal- 
able shared-nothing  database  system  can  be built 
by extending  a  serial  database  system with soft- 
ware  that glues nodes  together in order  to provide 
a single system image to  the  user.  The  key com- 
ponents of this software-query optimization and 
processing, run-time system  and  database utili- 
ties-have been  described in this  paper. We have 
also  shown  that  such  a  system  can handle decision 
support  applications on hundreds or thousands of 
gigabytes (thus  extending  them  beyond  the  reach 
of shared-memory  architectures). 

In the  future we will be enhancing it to incorpo- 
rate  better technology, newer applications and  par- 
adigms (e.g., parallel applications); exploit fully 
other  hardware  platforms (e.g., SMPS); and ensure 
our  technology is best-of-breed in business-criti- 
cal environments. 

Acknowledgments 

The  seeds for DB2 PE were  sown  at  the IBM T. J. 
Watson  Research  Center,  starting in 1989. We 
started  prototyping  work with IBM Austin,  and  our 
initial technology achievements were showcased 

BARU ET AL. 319 



in the Fall Comdex 1990 industry  computer show. 
For this  demonstration, a small number of local 
area  network- (LAN) connected P S / ~ *  processors 
were used. Although much of the underlying run- 
time infrastructure had been  prototyped by then, 
the parallel query plans were hand-generated. The 
initial architecture design was led by Ambuj Goyal 
and Francis  Parr from Research, and George 
Copeland from IBM Austin, with help from the IBM 
Almaden Research Center. Joint work  started with 
IBM’s Software  Solutions Division (then Program- 
ming Systems) in Toronto  when  the  latter got the 
DB2 clientherver mission in late 1992. A full de- 
velopment  team  under  Harry Chow was  put in 
place  starting mid-1993, when it became  clear  that 
the  market  was ripe for an  open massively parallel 
processing- (MPP) based  database  system. 

This  product would not be possible without  the 
hard work  and  contributions of the  Toronto and 
Hawthorne development teams. Several of the  ar- 
chitectural  issues discussed in this paper  were  de- 
veloped by people on  these teams. In addition to 
the  core development team, a successful product 
involves testing, benchmarking, marketing and 
sales.  The  authors acknowledge the  contributions 
of the performance benchmarking teams from IBM 
Toronto and IBM Kingston (POWER Parallel Divi- 
sion)-several of their results  are  presented here. 
In addition, initial versions of DB2 Parallel Edition 
have had success in the field, mainly because of 
the  tremendous  job  done by a number of D B ~  PE 
specialists, some from marketing and sales, and 
others from consultancy organizations like the 
IBM Issc .  We have  freely  borrowed from their 
benchmark  results and thank all the people in- 
volved. 
*Trademark or registered trademark of International Business 
Machines Corporation. 

Cited  references  and  note 
1. D. DeWitt et al., “The Gamma Database Machine Proj- 

ect,”  IEEE Transactions on Knowledge and  Data Engi- 
neering 2, No. 1, 44-62 (March  1990). 

2. H. Boral et al., “Prototyping Bubba: AHighly Parallel Da- 
tabase System,” IEEE Transactions on Knowledge and 
Data Engineering 2, No. 1, 4-24 (March 1990). 

3.  W. Hong and M. Stonebraker, “Optimization of Parallel 
Query Execution Plans in  XPRS,” Proceedings of the 1st 
International Conference on Parallel  and Distributed In- 
formation Systems (PDIS) (1991), pp. 218-225. 

4. C. Baru and S. Padmanabhan, “Join and Data Redistribu- 
tion Algorithms for Hypercubes,” IEEE Transactions on 
Knowledge and  Data Engineering 5, No. 1,161-168 (Feb- 
ruary 1993). 

320 BARU ET AL. 

5. M. Kitsuregawa and Y. Ogawa, “Bucket Spreading Par- 
allel Hash: A New, Robust, Parallel Hash-Join Method for 
Data Skew in the Super Database Computer (SDC),”Pro- 
ceedings of the 16th International Conference on Very 
Large  Data Bases, Brisbane, Australia, Morgan Kaufman, 
Palo Alto, CA (August 1990),  pp.  210-221. 

6.  M. Lakshmi and P. Yu, “Effectiveness of Parallel Joins,” 
IEEE Transactions on Knowledge and  Data Engineering 
2, No. 4,  41&424 (December 1990). 

7.  D. Schneider  and D. DeWitt, “A Performance  Evaluation of 
Four Parallel  Join  Algorithms  in  a  Shared-Nothing  Multipro- 
cessor Environment,” Proceedings of the ACM SIGMOD 
Conference,  Portland,  Oregon  (May  1989),  pp. 110-121. 

8. S. Khoshafian and  P. Valduriez, “Parallel Execution Strat- 
egies for Declustered Databases,” DatabaseMachines and 
Knowledge Base Machines, M. Kitsuregawa and H. Ta- 
naka, Editors, Kluwer Acad. Publishers, Boston, MA 
(1988), pp.  458-471. 

9.  D. Schneider and D. DeWitt, “Tradeoffs in Processing 
Complex Join Queries via Hashing in Multiprocessor Da- 
tabase Machines,” Proceedings of the 16th International 
Conference on Vey  Large  Data Bases, Brisbane, Austra- 
lia,  Morgan Kaufman (August 1990), pp. 469481. 

10.  G. Copeland et al., “Data Placement in Bubba,”Proceed- 
ings of the 1988 ACM SIGMOD Conference, Chicago, IL 
(June 1988), pp. 99-108. 

11. S. Ghandeharizadeh and D. Dewitt, “Performance Anal- 
ysis of Alternative Declustering Strategies,”Proceedings 
of 6th International Conference on Data Engineering, Los 
Angeles, CA (Feb. 1990),  pp.  466-475. 

12. K. A. Hua and C. Lee, “An Adaptive Data Placement 
Scheme for Parallel Database Computer Systems,” Pro- 
ceedings of the 16th International Conference on Very 
Large  Data Bases, Brisbane, Australia, Morgan Kaufman 
(August 1990),  pp.  493-506. 

13. S. Padmanabhan, Data Placementin  Shared-NothingPar- 
allelDatabase Systems, Ph.D. thesis, EECS Department, 
University of Michigan, Ann Arbor, MI  48109-2122  (1992). 

14.  D. DeWitt, S. Ghandeharizadeh, and D. Schneider, “APer- 
formance Analysis of the Gamma Database Machine”Pr0- 
ceedings of the 1988ACMSIGMOD Conference,  Chicago, 
IL (June 1988), pp. 350-360. 

15.  D. DeWitt, M. Smith, and H. Boral, “A Single-User Per- 
formance Evaluation of the Teradata Database Machine,” 
Proceedings of the 2nd International Workshop on High 
Performance Transaction Systems (Lecture Notes in  Com- 
puterscience, No. 3591, Pacific Grove, CA, Springer-Ver- 
lag (September 1987),  pp. 244-269. 

16. The Tandem Performance Group, “A Benchmark of Non- 
Stop SQL on the Debit Credit Transaction,”Proceedings 
of the ACM SIGMOD Conference, Chicago, IL (June 
1988),  pp. 337-341. 

17.  T. Haerder and A. Reuter, “Principles of Transaction-Ori- 
ented Database Recovery,”ACM Computing Surveys 15, 
No. 4,  287-317  (1983). 

18. The Tandem Database Group, “Nonstop S Q L  A Distrib- 
uted, High-Performance,  High-Availability  Implementation 
of SQL,” Proceedings of the 2nd International Workshop 
on High Performance Transaction Systems (Lecture Notes 
in Computerscience, No. 359),  Pacific Grove, CA, Spring- 
er-Verlag (September 1987),  pp.  60-104. 

19. DBCll012 Data Base Computer Concepts and Facilities, 
cO2-0001-05 Edition, Teradata Cop, CA (1988). 

20. M. Stonebraker, “The Case for Shared Nothing,” Data- 
base Engineering 9, No. l (March 1986). 

IBM SYSTEMS JOURNAL, VOL 3 4 ,  NO 2, 1995 



21.  A. Bhide  and M. Stonebraker, “A Performance Compar- 
ison of Two Architectures for Fast Transaction Process- 
ing,” Proceedings of the 1988lnternational Conference on 
Data Engineering, Los Angeles,  CA (February 1988),  pp. 
536-545. 

22. C. Mohan, H. Pirahesh, W. Tang, and Y. Wang, “Paral- 
lelism  in  Relational Database Management Systems,”lBM 
Systems Journal 33, No. 2,  349-371 (1994). 

23.  D. DeWitt  and J. Gray, “Parallel Database Systems: The 
Future of High Performance Database Systems,” Commu- 
nications ofthe  ACM 35, No. 6,  85-98 (June 1992). 

24.  D. Davis, “ORACLE’S Parallel Punch for OLTP,” Data- 
mation 38, No. 16,  67-71 (August  1992). 

25. E. Ozkarahan and M. Ouksel, “Dynamic and Order Pre- 
serving Data Partitioning for Database Machines,” Pro- 
ceedings of the 1985 Very Large  Data Bases  International 
Conference  (1985),  pp. 358-368. 

26. S. Ghandeharizadeh and D. J. DeWitt,  “Magic: A Multi- 
attribute Declustering Mechanism for Multiprocessor Da- 
tabase Machines,”lEEE Transactions on Paralleland Dis- 
tributed Systems 5, No. 5, 509-524 (May  1994). 

27.  C. Mohan  and  B. Lindsay, “Efficient  Commit Protocols 
for the Tree of Processes Model of Distributed Transac- 
tions,”Proceedings of the 2ndAnnual Symposium on Prin- 
ciples of Distributed Computing, ACM (August 1993),  pp. 
76-88. 

28.  P. Selinger et al., “Access Path Selection in a Relational 
Database Management System,” Proceedings of the 1979 
ACM SIGMOD Conference  (1979),  pp. 23-34. 

29. S. Ganguly,  W. Hasan, and  R. Krishnamurthy, “QueryOp- 
timization for Parallel Execution,”Proceedings of the 1992 
ACM SIGMOD Conference  (May 1992), pp. 9-18. 

30.  D. Skeen, “Non-Blocking Commit Protoco1,”Proceedings 
of the 1981 ACM SIGMOD Conference, Orlando, FL 
(i981), pp. 133-142. 

31. G. Lohman. C.  Mohan.  L. Haas. D.  Daniels.  B. Lindsav, ~~ 

P.  Selinger,’  and  P.  Wilms, “Query Processing in R*:’ 
Query Processing in Database Systems, W. Kim, 
D. Reiner, and D. Batory, Editors, Springer-Verlag, Inc., 
New York (1985),  pp. 31-48. 

32. AIXHighAvailability ClusterMulti-Processing/6000, Con- 
cepts and Facilities, SC23-2699,  IBM Corporation; avail- 
able through IBM branch offices. 

33. SP2performance measurement data are available from the 
IBM POWERParallel Division,  P.O.  Box 100, Somers, NY 
10589. 

Accepted for publication January 11,  1995. 

Chaltanya K. Baru IBM Toronto Laboratory, 1150 Eglinton 
Ave. East, North York, Ontario, M3C l H 7  Canada. Dr. Baru 
is currently an advisory development analyst in the Database 
Technology division at the IBM Toronto laboratory, and one 
of the team leaders in the DB2 Parallel Edition (DB2 PE) proj- 
ect.  He joined IBM Canada in  1992. He has been involved in 
the design  and development of the data manager extensions 
and some of the database utilities for DB2 PE. Prior to joining 
IBM,  he was Assistant Professor of Computer Science and En- 
gineering in the Electrical Engineering and Computer Science 
Department at the University of Michigan,  Ann Arbor, Mich- 
igan. He has published several papers related to parallel da- 
tabase systems in technical conferences and journals. Dr. Baru 
is a senior member of the IEEE and a member of the Computer 
and Information Sciences Grants Selection Committee of the 

Natural Sciences and Engineering Research Council (NSERC) 
of Canada. He received his B. Tech. degree from the Indian 
Institute of Technology, Madras, India in  1979, and  M.E.  and 
Ph.D. degrees in electrical engineering from the University of 
Florida, Gainesville, in  1983 and 1985, respectively. 

Gilles Fecteau ZBM Toronto Laboratory, 1150 Eglinton Ave. 
East, North York, Ontario, M3C lH7 Canada. Mr. Fecteau 
has been in information technology for 25 years,  as an IBM 
Canada employee. His experience includes application pro- 
gramming, systems programming, capacity planning, database 
design, operating systems, and database management systems 
design  and implementation. His primary technical focus for the 
past nine years has been IBM’s relational database systems de- 
sign, where he has focused on performance and manageability 
enhancements. He holds the degree of Bachelor of Engineer- 
ing Science (applied physic) from Lava1 University in Quebec 
city, Canada. Since 1990  Mr. Fecteau has been involved  in sev- 
eral advanced technology efforts in  IBM to bring to market a 
parallel database. In 1991  he joined the workstation database 
group in Toronto  as a lead designer on the implementation of 
a parallel version of the DB2 workstation database products 
(DB2/2  and DB216000). 

Ambuj Goyal IBM  Research Division, Thomas J. Watson 
Research Center, P. 0. Box 704,  Yorktown Heights, New York 
10598 (electronic mail: ambuj@watson.ibm.com). Dr. Goyal 
joined IBM as a research staff member at the Thomas J. Wat- 
son Research Center in Yorktown Heights, New York, in  May 
1982 and assumed a first-line  management  position in July 1988. 
He became the senior manager of the Parallel and Fault-Tol- 
erant Computinggroup in October 1990, and thenwas promoted 
to his present position of Director, Servers and Parallel Sys- 
tems.  All of Dr. Goyal’s assignments have been with the IBM 
Research Division at the Yorktown Heights, New York, lo- 
cation. He received the B. Tech. degree from the Indian In- 
stitute of Technology, Kanpur, in  1978,  and the M.S. and  Ph.D. 
degrees from The University of Texas at Austin, in  1979 and 
1982, respectively. As director, he is responsible for setting Re- 
search Division strategy in servers and  parallel systems, includ- 
ing establishing a technical program in this area that is vital to 
IBM’s success and  is known for its technical innovations. 

HUM HslaoIBM Research Division, Thomas J. Watson 
Research Center, P. 0. Box 704,  Yorktown Heights, New York 
10598 (electronic mail: hhsiao@watson.ibm.com). Dr. Hsiao 
has been a research staff member at the IBM Thomas J. Wat- 
son Reseach Center since 1990. Currently, he is a member of 
the parallel database project, working on the research and de- 
velopment of IBM’s  first  highly parallel database system. His 
research interests include parallel database architecture, par- 
allel query and transaction processing strategies, and database 
performance  analysis. Prior to joining  IBM,  he worked as a soft- 
ware engineer at Nicolet Instrument Corporation, where he re- 
ceived a Nicolet Associate Fellow Award. He was a member 
of the Gamma database machine project at the University of 
Wisconsin.  Dr. Hsiao received a B.S. degree from National 
Taiwan University, and  M.S.  and  Ph.D. degrees in computer 
science from the University of Wisconsin at Madison. 

Anant  Jhlngran IBM Research Division, Thomas J. Watson 
Research Center, P. 0. Box 704,  Yorktown Heights, New York 
10598 (electronic mail: anant@watson. ibm.  com) . Dr. Jhingran 

IBM SYSTEMS JOURNAL,  VOL 34, NO 2, 1995 



is  currently  the manager of information systems  at  the IBM 
Thomas  J.  Watson Research Center.  His  group  is engaged in 
several  areas of database  research, including parallelism, avail- 
ability,  transaction  processing, data mining, and  warehousing. 
Over  the last several  years, he has  been  workingwith  IBMTor- 
onto  on all aspects of DB2  Parallel  Edition. Dr. Jhingran has 
contributed significantly to  various  components of DB2 Par- 
allel Edition, including query optimization and processing,  run- 
time subsystem, data partitioning, and reliability and availablity. 
He  has filed several invention disclosures  and  patents in sev- 
eral  areas of parallel database  systems,  and  has actively  pub- 
lished in leading conferences like ACM  SIGMOD, VLDB,  and 
Data Engineering. He has  also  served  on  the program  commit- 
tee of SIGMOD. He received  his Ph.D. and M.S. degrees in 
computer  science from the  University of California, Berkeley, 
in 1990 and 1987 respectively, and his  bachelor’s  degree in elec- 
trical  engineering from  the Indian Institute of Technology, 
Delhi, India, in 1985. 

Sriram Padmanabhan IBM Research Division, Thomas 
J. Watson Research Center, P. 0. Box  704, Yorktown Heights, 
New York 10598 (electronic mail: srp@watson.ibm.comj. Dr. 
Padmanabhan  is a research staff member at  the IBM Thomas 
J. Watson  Research  Center,  Hawthorne,  New  York, which he 
joined in 1992. He is an  active  member of the  DB2  Parallel Edi- 
tion research  and development effort and  has  contributed  to 
several  architectural  aspects of the  system  and significantly to 
the  query optimization  and  parallel query  execution  areas. Be- 
sides parallel databases, he is  interested in object-oriented  and 
distributed databases, information retrieval,  massive  data-stor- 
age  applications,  and parallel architectures  and algorithms.  Dr. 
Padamanabhan received  his Ph.D. and M.S. degrees in com- 
puter  science from the  University of Michigan, Ann Arbor, in 
1992 and 1990, respectively, and his B. Tech.  degree  from the 
Indian Institute of Technology,  Madras,  India in 1986. 

George P. Copeland IBM Corporation, Personal Sojiware 
Products Division, 11400 Burnet Road, Austin, Texas 78758 
(electronic mail: copeland@austin.ibm.com). Dr. Copeland is 
currently a Senior Technical Staff Member at IBM  Austin. He 
received his B.S. degree from Christian Brothers College, Mem- 
phis, in 1969, and his M.E. and Ph.D. degrees from  the  Uni- 
versity of Florida, Gainesville, in 1970 and 1974, respectively. 
He  has  worked for NASA, the Bank of America, and Tektronix, 
and  was chief architect and  a founder of Servio  Corporation, 
an  object-oriented database (OODB) vendor. At MCC, he 
served  as chief architect of the  Bubba parallel  OODB  project. 
He joined  IBM in 1989 as chief architect of the OSi2 Database 
Manager, helping initiate and  contribute  to  projects  to  make 
it portable and parallel. He has  also  contributed  to  the IBM 
microkernel and file systems.  His major area of interest  is ap- 
plying to objects the same kinds of systems  services  that 
database  systems  apply  to  data,  such  as  persistence,  concur- 
rency,  recovery, transactions, distribution, security,  etc.  He 
is a  member of IEEE and  ACM, and  has  served  on  numerous 
conference program committees  and panels. 

Walter G. Wilson Red Brick Systems, 485 Albert0 Way, Los 
Gatos, California  95032 (electronic mail: walter@redbrick com) . 
Dr. Wilson is currently  Director, Parallel Systems, at Red Brick 
Systems. He received  his B.S. in mathematics  from Stanford 
University,  and his M.S. and Ph.D. in computer  science from 
Syracuse University.  Previous  experience  includes that of proj- 

322 BARU ET AL. 

ect  leader for the parallel database project at IBM’s 
Thomas J. Watson Research Center, manager of systems  ad- 
vanced technology at IBM’s Enterprise  Systems division, and 
manager of the Symbolic  Programming department  at  the 
Thomas  J.  Watson  Research Center. 

Reprint Order No. G321-5570. 

IBM SYSTEMS JOURNAL, VOL 34, NO 2, 1995 


