20 SCHOCH AND LAPLANTE

A real-time

systems context

for the framework

for information systems
architecture

In this paper we review the framework for
information systems architecture first introduced
by Zachman' and show how it can be applied in
the context of real-time systems. Discussions are
included throughout the paper to convey some of
the characteristics unique to real-time systems
and to point out areas of special architectural
concern.

In the past, when the depth and breadth of com-
puter applications were dramatically limited by
hardware technology, system architecture was
simple and straightforward. Today, business in-
formation systems are driven increasingly by
high-level business strategies, instead of smaller-
scale functional processes. Rather than just
mechanizing a manual procedure, company-wide
systems are moving and managing information
that is rapidly becoming the actual infrastructure
of the business. Furthermore, new technologies
and increasing information demands by managers
have taken business systems from batch process-
ing and time sharing to the domain of high-per-
formance, real-time systems.

An overall framework to better link systems to
businesses and at the same time guide the devel-
opment of these systems has been recognized by
many. '~ In other words, a strict discipline of con-

0018-8670/85/$3.00 © 1995 IBM

by D. J. Schoch
P. A. Laplante

struction—or architecture—must be known and
followed. In 1987 John Zachman proposed a
framework for information systems architec-
ture, ! within which all aspects of information sys-
tems architecture (ISA) are depicted, from high-
level business strategies to system coding. The
ISA logical construct serves to define the inter-
faces and integration of the various system com-
ponents.

In this paper we:

¢ Review and examine the Zachman framework
within the context of real-time systems, which
are increasingly characterizing today’s busi-
ness decision systems

* Interpret this I1SA framework so as to apply it
specifically to real-time systems architecture
(RTSA)

* Present critical areas of architectural concern
unique to real-time systems by using several

©Copyright 1995 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995

Table 1 Architectural representations produced over the process of building a complex engineering project
Representation Nature/Purpose Generic Representation Nature/Purpose
in Architecture “View” in Information
Systems
Bubble charts Basic concepts for building Ballpark Scope/objectives Strategic direction/focus of
Gross sizing, shape, spatial the business
relationships Product/service focus
Architect/owner mutual System concept/white paper
understanding Initiation of project
Initiation of project
Architect’s Final building as seen by the Owner’s Model of the Organizational or functional
drawings owner view business structure
Floor plans, cutaways, Policies, methods, and
pictures procedures for the
Architect/owner agreement business processes
on building Requirements document
Establishment of contract Specifications agreement
Architect’s plans Final building as seen by the Designer’s Model of the Translation of business
designer view information manager’s view into an
Translation of owner’s view system information system design
into a product Logical design document
Detailed drawings Logical representation of
Basis for negotiation with system to be built
general contractor
Contractor’s plans Architect’s plans constrained Builder’s Technology Logical system design
by laws of nature and view model constrained by physical
available technology technology
“How to build” description Depiction of program
Direction of construction modules to be written
activities Direction of overall
programming activities
Shop plans Subcontractor’s design of a Out-of-context Detailed Individual program design
part/section representation description Program code, database
Detailed stand-alone model description, networking
Specification of what is to be details
constructed Direction of individual
Pattern programmer activities
(Not used in architecture, Machine Machine Object code
but used frequently in language language Used by computer itself
manufacturing where representation description
computer-controlled
equipment uses this to
produce some part of the
product)
Building Physical building Actual Information Physical system
product system

Adapted from J. A. Zachman, “A Framework for Information Systems Architecture™*

discussions about important aspects of real-

time systems

future needs within the real-time systems de-
velopment process

* Provide a cursory analysis of several current

products and trends that fit into the RTSA frame-

work

* Draw some conclusions regarding current and

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995

Throughout this paper the term information sys-
tems refers to those computerized systems de-
signed primarily to support a business or business

SCHOCH AND LAPLANTE

21

Table 2 Different types of descriptions for the same product

Description | Description |i Description Ill
Orientation Material Function Location
Focus Structure Transform Flow/connection
Description WHAT the item is made of HOW the item works WHERE the connections exist
Example Bill-of-materials Functional specifications Engineering drawings
Descriptive model Part-relationship-part Input-process-output Site-link-site
1/S analog Data model Process model Network model

1/S descriptive model Entity-relationship-entity Input-process-output Node-line-node

Adapted from J. A. Zachman, “A Framework for Information Systems Architecture”?

process. The most commonly understood of these
is the management information system (MIiS),
which is “a computer-based system that makes
information available to managers with similar
needs.”? Usually these systems collect and pro-
cess data in order to support management deci-
sions. The term real-time systems is used herein
when referring to computerized systems whose
correctness depends not only on logical correct-
ness but on the timeliness of output. Real-time
systems appear in virtually every computer ap-
plication, but especially in avionics, robotics,
process control, and simulation, and increasingly
in management information systems. In practical
situations, the main difference between real-time
and non-real-time systems is an emphasis on re-
sponse time prediction and its reduction.

A framework for information systems architec-
ture. In defining an “information systems archi-
tecture,” Zachman used the field of classical ar-
chitecture itself as an objective, independent
basis upon which to develop a framework for
discussion. Using the definition of deliverables
within that field led him to the specification of
analogous information systems architectural
products and, in so doing, helped him to classify
concepts that produced this “framework” in
which to represent information systems architec-
ture.

The framework he developed in this process ad-
dresses the different views of the various partic-
ipants involved in each stage (e.g., owner’s view,
architect’s or designer’s view, builder’s view),
along with the discovery that the same product
can—and must—be described in different ways
(e.g., material: what the item is made of; function:
how the item works; and location: where the
flows or connections exist). The resulting frame-

22 SCHOCH AND LAPLANTE

work is a two-dimensional matrix that presents
different architectural representations of the
product.

In Zachman’s architectural framework, the rows
represent the perspectives of the different partic-
ipants in the architectural representations, as de-
picted in Table 1. These views and representa-
tions of the same product by the various players
in the process are different (in nature, content,
semantics, and so forth), not merely a set of rep-
resentations varying in detail. Each of these rep-
resentations is perfectly valid and necessary for
the development of the product, with the key be-
ing the transformations from one representation
to the next. The fourth column of Table 1, which
we have added to Zachman’s earlier work for
comparison, presents the analogous architectural
representations for information systems.

A second idea needs to be presented for the col-
umns of the framework matrix—different types of
descriptions exist for the same product. For ex-
ample, in manufacturing, a bill-of-materials de-
scribes what a product is made of, the functional
specifications describe how the product works,
and engineering drawings show where the con-
nections exist. Each description is required: look-
ing at a list of parts tells nothing about what the
part does or how it relates to other parts. Simi-
larly, functional specifications say nothing ex-
plicit about the parts that make up the product or
how it is constructed. Table 2 shows how different
descriptions can be used for different things, in-
cluding the analogs for information systems. No-
tice how each description has been prepared for
a different reason and purpose. Each one stands
alone and is distinct from the others, even though
all the descriptions pertain to the same object and
therefore are directly related to one another.

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995

Figure 1 Zachman’s framework for information systems architecture

OBJECTIVES/SCOPE
LIST OF THINGS LIST OF LIST OF LOCATIONS IN WHICH
IMPORTANT TO i PROCESSES 000K THE BUSINESS OPERATES
THE BUSINESS oooxmocax | | THE BUSINESS iimonlocidicg
XXXHAKXX XKKXXNK XAXX PERFORMS XXX XXKXXAXX XXXK
X) X000 xx XN XXXRXXN XXKXHKX XX
XXXXUNKAN XHOXKICKK XXXHXHKK XXAXXXXOC
XXAXRXXNK XK XXX XRXX RAXXXKXXX XX XK XXXX
oo | | PROCESS = CLASS | sooose oo woex
ENTITY = CLASS OF | xmuxamaoninx | | OF BUSINESS biescolroncroneobindog NODE = BUSINESS
BUSINESS THING PROCESS LOCATION
MODEL OF EXAMPLE: EXAMPLE: EXAMPLE:
THE BUSINESS ENTITY/ RELATIONSHIP FUNCTION FLOW LOGISTICS
DIAGRAM DIAGRAM NEM&(@)
MODEL OF EXAMPLE: EXAMPLE: EXAMPLE:
THE INFORMATION DATA MODEL DATA FLOW DISTRIBUTED SYSTEMS
SYSTEM DIAGRAM ARCHITECTURE
N
TECHNOLOGY EXAMPLE: EXAMPLE: EXAMPLE:
MODEL DATA DESIGN STRUCTURE CHART PHYSICAL SYSTEM
ARCHITECTURE O
DETAILED EXAMPLE: EXAMPLE: EXAMPLE:
REPRESENTATION DATA DESIGN ©aex ! | PROGRAM 000000 | NETWORK 000000
DESCRIPTION et ooeoono ook o || ARGHITECTURE CH000 mo00¢ XX
XXX XIOC XXX XXX XX XXX XXXXNKX XXKX XXXNKKHKX XHRKXKXX XX
XXIOCXHXHCXRX KXXXXXN XX XXX XXXXXXN XXXNHXX 00 2000(XXXXXXX XXXXXXK XX
XXIOOOKHK KHXXICKH XXKXXKXKX XXX XAXXXX XXXNXOOK XXKXHXXXX
XXM XKXX XX XXX XX XXXXHEXKH XX K XX HXXAXAHXK XX XXX XXX
KXUXX XXX XXXXX XXXXXX XXX XX XHXIOC XXXNXA
XXOOOKXXX XXXXXXK XXX XXX IOKKIOKK XXXX HODOKRXNK XXXXXKX XICK
XXKXXK XXXX XXXXX XXX XX XXXXX XXXX KXAKX XX XXH0X XXRX XXHXX XXX XX
XXKXX KKK XKNXXXK XX 200K XK XXHKXXX XX HXHKK RIEX HXXKNK XK
FUNCTIONING EXAMPLE: EXAMPLE: EXAMPLE:
SYSTEM DATA FUNCTION COMMUNICATIONS

Based on Figure 1 in Sowa and Zachman, IBM Systems Journal 31, No. 3, 1992.

The information systems architecture. By combin-
ing the notions of different descriptions and dif-
ferent participants from the architectural frame-
work and applying the method to information

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995

systems, Zachman formed the information sys-
tems architecture framework, shown in Figure 1.
Notice how this figure is essentially Table 1 but
drawn using information systems analogs, and

SCHOCH AND LAPLANTE 23

that the columns “Data,” “Function,” and “Net-
work” represent different descriptions of the sys-
tem.

Interpreting the Zachman framework
in the context of real-time systems

Like information systems, real-time systems are
increasingly complex and difficult to build and
maintain. Zachman’s framework for information
systems architecture offers an opportunity to
structure the development of real-time systems.
Before proceeding to this development, we need
to discuss a few unique aspects of real-time sys-
tems.

An overview of real-time systems. Consider a soft-
ware system in which inputs represent digital data
from hardware devices or other software sys-
tems, and outputs are digital data that control ex-
ternal hardware. The time between the presenta-
tion of a set of inputs and the appearance of all the
associated outputs is called the response time. In
hard real-time systems, response times must be
explicitly bounded, or the system is considered to
have failed. Notice that response times of, for
example, microseconds are not needed to char-
acterize a real-time system; it simply must have
response times that are constrained and thus pre-
dictable. Most of the literature also mentions soft
real-time systems—those in which performance
is degraded but not destroyed when response time
constraints are not met—and even firm real-time
systems in which a few missed deadlines can be
tolerated. (In real-time systems, one type of fault
tolerance includes design choices that transform
hard real-time deadlines into firm or soft ones.)
Throughout this paper, however, we use the term
“real time” to mean “hard real time.”

Real-time systems are often reactive or embedded
systems, or both. Reactive systems are those that
have ongoing interaction with their environment,
such as a fire-control system that reacts to a pi-
lot’s commands. Embedded systems are those
used to control specialized hardware, which com-
pletely encapsulate the software. For example, an
automatic teller machine is embedded and reactive.

An important concept in real-time systems is the
notion of an event, that is, any occurrence that
results in a change in the sequential flow of pro-
gram execution. Events can be divided into two
categories: synchronous and asynchronous. Syn-

24 SCHOCH AND LAPLANTE

chronous events occur at predictable times such
as execution of a branch instruction or hardware
trap. Asynchronous events occur at unpredict-
able points in the flow-of-control and are usually
caused by external sources such as a clock signal.
Both types of events can be signaled to the CPU by
hardware interrupts.

There is an inherent delay between when an in-
terrupt occurs and when the CPU begins reacting
to it, called the interrupt latency. Interrupt la-
tency is caused by both hardware and software
factors. Interrupts may occur periodically (at
fixed rates), aperiodically, or both. Tasks driven
by interrupts that occur aperiodically are called
sporadic tasks. Systems in which interrupts occur
only at fixed frequencies are called fixed-rate sys-
tems and those with interrupts occurring sporad-
ically are called sporadic systems. In round-robin
systems, each task is assigned a fixed-time quan-
tum in which to execute. A clock is used to initiate
an interrupt at a rate corresponding to the time
quantum. Each task executes until it completes or
its time quantum expires as indicated by the clock
interrupt. When the time quantum of a task ex-
pires, a snapshot of the machine must be saved so
that the task can be resumed later. A higher-pri-
ority task is said to preempt a lower-priority task
if it interrupts the lower-priority task; that is, a
lower-priority task is running when the higher-
priority task signals that it is about to begin. As
with the round-robin system, a snapshot of the
machine must be saved so that the lower-priority
task can be resumed when the higher-priority
task has finished. Systems that use preemption
schemes instead of round-robin or first-come-
first-served scheduling are called preemptive pri-
ority systems. The priorities assigned to each in-
terrupt are based on the urgency of the task
associated with that interrupt. Preemptive prior-
ity schemes have the associated problem of hog-
ging of resources by higher-priority tasks. In this
case, the lower-priority tasks are said to be facing
starvation. There are other, nonpreemptive, pri-
ority scheduling schemes, but these are of less
interest to us.

Prioritized interrupts can be either “fixed priori-
ty” or “dynamic priority.” Fixed priority sys-
tems are less flexible in that the task priorities
cannot be changed once the system is imple-
mented. Dynamic priority systems can allow the
priorities of tasks to change during program ex-
ecution—a feature that is particularly important

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995

in threat management systems. In a special class
of fixed-rate, preemptive priority, interrupt-
driven systems called rate-monotonic systems,
priorities are assigned so that the higher the ex-
ecution frequency, the higher the priority. This
scheme is common in embedded applications,
particularly avionics systems.

A term often used as a measurement of real-time
system performance is time-loading, or CPU uti-
lization, and is a measure of the percentage of
nonidle processing. A system is said to be “time-
overloaded™ if it is 100 percent or more time-
loaded.

Special difficulties in real-time systems develop-
ment. At least five considerations are crucial in
the development of real-time systems. We now
examine them. They are:

* Temporal behavior

* Multitasking

e Intertask communication and synchronization
* Object code efficiency and performance

* System verification

Each of these considerations relates to cell(s) in
the 1SA framework. We need to reinterpret the
framework, then, in order to accommodate these
considerations.

Temporal behavior. In real-time systems, bound-
ing response times, and thus predicting them, are
the most important considerations. Although re-
sponse times are not often perceived as a major
issue in information systems, modern applica-
tions such as program trading are highly time-
critical because they support devices such as net-
work interfaces, Quotron boxes, or high-speed
modems. Moreover, most managers would argue
that there is an intangible valuation function as-
sociated with the temporal “freshness” of any
piece of information involved in a business deci-
sion.

Since all hard real-time systems have scheduling,
timing, response time, and deadline concerns, the
design, depiction, and implementation of this be-
havior is mandatory in any architectural structure
guiding the life cycle of the real-time system. In-
deed, the ability to predict timing behaviors for
systems under development is considered by
many to be one of the most critical issues facing
real-time systems today.** Such prediction and

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995

verification is known as “schedulability analy-
sis.”®

The basic idea presented by Zachman regarding
time (a “when” description column) was that it
need not be included because the processes could
be described via “snapshots” in time and because
of the lack of formalisms needed to depict the
cells in such a column. Although it is even more
difficult for real-time systems to specify temporal
behavior (and there is no agreement on how to do
it anyway), this “Time”” (when) column cannot be
omitted since the correctness of the real-time sys-
tem is based on its satisfaction of explicit tempo-
ral behavior.

Multitasking. Although multitasking is implicitly
supported in mainframe computers, minicomput-
ers, and even personal computers, for many em-
bedded and reactive real-time applications, tem-
poral performance prediction is impossible or
unacceptably imprecise. Hence, in many time-
critical information systems applications, stream-
lined and predictable multitasking systems need
to be constructed. There are three types of mul-
titasking:

1. Cooperative schemes that do not require in-
terrupts (such as polled loops, cooperative
multitasking, and state-driven code)

2. Preemptive priority multitasking

3. Round-robin multitasking

There are also hybrids of these three. We talk
only about the second type, since the others can
be modeled as special cases of it. Typically, pre-
emptive priority multitasking allows higher-pri-
ority tasks to preempt lower-priority tasks and
permits low-priority or background tasks to easily
“slip in between” regularly scheduled or inter-
rupt-driven high-priority tasks and execute.
These foreground-background systems are the
most common solution for embedded applica-
tions. They are an improvement over the inter-
rupt-only systems in that the jump-to-self is re-
placed by non-time-critical code, called the
background. The interrupt-driven processes are
called the foreground. The background task is
fully preemptable by any foreground task and, in
a sense, represents the lowest-priority task in the
system.

It is common to increment a counter in the back-
ground to provide a measure of time-loading or

SCHOCH AND LAPLANTE 25

to detect whether any foreground process has
locked. For example, a counter is provided for
each of the foreground processes and is reset by
its respective process. If the background detects
one of the counters as not being reset, the cor-
responding task is assumed to be locked, and a
failure can be indicated. Certain types of low-
priority self-testing can also be performed in the
background. Other potential background tasks in-
clude low-priority display updates, logging to
printers, and other actions that interface to slow
devices.

Basically, preemptive priority multitasking pro-
vides for interrupt-driven systems to be written
and numerous tasks to be run concurrently. A
“Time” column is needed to depict this multi-
tasking facet of real-time systems. In addition,
“Data” cells play a major role in managing these
data structures so that the necessary bookkeeping
can be performed by the dispatcher of the oper-
ating system. At the same time, the various func-
tions of the dispatcher would be identified from a
“Function” column. A conceptual view (Objec-
tives/Scope) will probably address some of these
needs, but as development moves into the design
and construction of the system, depiction of this
view becomes crucial, further justifying the use-
fulness of all three columns (“Data,” “Func-
tion,” “Time”). Also, since the actual machine
language representation is necessary for the suc-
cessful implementation of a reliable and predict-
able interrupt scheme, a “Machine Representa-
tion” view is inserted into the RTSA framework.
Indeed, recent work with compiler optimization
stresses the need to rearrange the object code in
order to improve and monitor timing behavior.’

Intertask communication and synchronization.
The communication of data between processes
and the synchronization of tasks are two more
areas critical to real-time systems. Several tech-
niques can help implement reliable methods to
handle these issues, such as ring buffers, sema-
phores, test-and-set instructions, mailboxes, and
event flags. Some of these techniques (e.g., test-
and-set instructions) may relate to the machine
language and hardware architecture of the target
computer, again supporting the need to include
“Machine Representation” in the RTSA frame-
work.

Intertask communication can be implemented us-
ing a variety of methods. A more detailed discus-

26 SCHOCH AND LAPLANTE

sion of these approaches will be helpful in order
to address these critical real-time systems archi-
tectural concerns. For polled-loop systems, where

The communication of data between
processes and the synchronization
of tasks are critical to real-time
systems.

the polling and event processing code run in mu-
tual exclusion, intertask communication and syn-
chronization services are not obligatory. With
coroutines, synchronization and communication
are built into the code, although protection of
shared resources is not. But for foreground-back-
ground systems and operating systems based on
the task control block model, these services are
essential. Intertask communication and synchro-
nization concerns generally arise during the log-
ical design and coding implementation of the sys-
tem. The “Time” cells residing in the “designer’s”
view and especially in the “builder’s” view should
address these issues. The “owner’s” specifica-
tions may address some of these issues, but as the
system is broken down into program modules and
the intertask relationships are defined, these com-
munication and synchronization aspects become
more apparent. (Note that these communications
are between software modules and usually unre-
lated to geographic or geometric configuration,
which are more of a concern with geographically
dispersed information systems and the physical
manufacturing of products.)

Another method of handling synchronization
constraints is via an off-line pre-run-time sched-
uling algorithm, an approach that can significantly
reduce the resources needed for run-time sched-
uling and context switching.® This approach also
fits into the “Time” cells, but at the “builder’s™
or “subcontractor’s” view. Interestingly, recent
work utilizing an extended entity relationship da-
tabase to support an object-oriented program-
ming and execution system addresses the related
issue of concurrency at a higher level.’ This ap-

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995

proach quite unexpectedly tends to bring the is-
sues of synchronization and concurrency into the
“Data” column in the RTSA framework as well.

Object code efficiency and performance. Because
of the critical time-related demands of real-time
systems, the quality of the object code generated
by the compiler is a concern from at least two
perspectives:

¢ Efficiency, with respect to size, speed, and
overall performance
s Ability to predict and monitor execution time

Although there are formal methods for the deter-
mination of such performance factors as response
time and time-loading, these methods generally
are applicable in extremely restricted situations
or in theoretical studies only. In most settings,
performance analysis is done using logic analyz-
ers, simulators, or “back-of-the-envelope™ cal-
culations.

The best method for measuring the execution
time of any piece of code is to use a logic analyzer.
One advantage of its use is that hardware laten-
cies and other delays not due simply to instruction
execution times are taken into account. The
drawback of the logic analyzer is that the system
must be completely (or partially) coded and the
target hardware available. Hence, the logic ana-
lyzer is usually only employed in the late stages
of the coding phase, in the testing phase, and es-
pecially during system integration. When a logic
analyzer is not available, the code execution time
can be estimated by examining the compiler out-
put and counting macroinstructions. This tech-
nique also requires that the code be written, that
an approximation of the final code exists, or that
similar systems are available for analysis. The ap-
proach simply involves tracing the worst case
path through the code, counting the macroin-
structions along the way, and adding their exe-
cution times. These times can be found in the
manufacturer’s specifications or through mea-
surement with a logic analyzer.

Another accurate method of code execution tim-
ing uses the system clock, which is read before
and after executing code. The time difference can
then be measured to determine the actual time of
execution. This technique, however, is only via-
ble when the code to be timed is large relative to
the code that reads the clock.

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995

Time-loading requirements are specific design
goals because they affect hardware selection and
overall system performance. Several methods
can be used to predict or measure the code exe-
cution times that are needed in the calculation of
time-loading. These techniques can also be used
to calculate the context switch or software sched-
uling time for any interrupt handler.

Time-loading estimates are measures that are
meaningful primarily in cyclic real-time systems.
In polled loops, the figure is the relative percent-
age of time spent processing an event compared
to the time spent checking the flag. In state-driven
or cooperative multitasking systems, the measure
is the time spent in the dispatcher when no pro-
cesses need to run. In interrupt-driven systems,
calculation of time-loading from measured data
cannot be accurately computed for any type of
system.

Reducing execution times. ldentifying wasteful
computation is crucial in reducing response times
and time-loading. Many approaches used in com-
piler optimization can be used (see Reference 10
for a summary of these), but other methods have
evolved that are specifically oriented toward real-
time systems, and we discuss those methods
here. For example, in most computers, integer
operations are faster than floating point opera-
tions. We can exploit this fact by converting float-
ing point algorithms into scaled integer algo-
rithms. In such a scheme, the least significant bit
(LsB) of an integer variable is assigned a real num-
ber scale factor. Scaled numbers can be added
and subtracted together and multiplied and di-
vided by a constant (but not another scaled num-
ber). The results are converted to floating point
output only at the last step—a process that can
save considerable time.

These concerns relating to object code efficiency
and performance analysis resulted in the insertion
of a “Machine Representation” view into the
RTSA framework—how the computer hardware
architecture “views” the product. In other words,
what the real-time system looks like when the
computer is actually executing the code. The
needs for this view were noted above with respect
to the other function-specific “difficulties™ dis-
cussed, but the quality of the object code—from
both the efficiency and measurability perspec-
tives—must be included as a unique area of the
architecture.

SCHOCH AND LAPLANTE 27

System verification. In order to increase system
reliability, rigorous testing of the real-time system
is required. Since testing can only detect the pres-
ence of errors and not the absence of them, the
goal of testing must be to ensure that the software
meets its requirements. ' To this end, system ver-
ification answers the question, “Are we building
the system right?”” Because of the importance of
system verification in connection with the devel-
opment of real-time systems, a new column, titled
“Verification,” has been added to the RTSA
framework. Interestingly, system validation (see
DeMarco'?) answers the question, ““Are we build-
ing the right system?”” This validation falls into a
“why” column, addressing the concept of moti-
vation as presented in Zachman’s second paper
on his framework " (with Sowa). Using the build-
ing construction analog, system verification and
testing is equivalent to the building codes estab-
lished to ensure the safety and reliability of the
building. Also equivalent are quality assurance
inspections, designed to verify that the manner
in which the building is being built adheres to
established methodologies and techniques. The
building inspector checks to see whether the
building is “up to code™ at various stages during
the construction, meeting all applicable require-
ments. Similarly, a comprehensive system test
plan verifies that the deliverable by each partic-
ipant meets the original requirement. The “rules
of the framework™ presented by Sowa and Zach-
man'® are an appropriate test to ensure that this
new column adheres to the construct of the orig-
inal framework:

Rule 1. The columns have no order. The place-
ment or priority of the “Verification”
column is irrelevant to the other col-
umns. A full and complete test plan could
be developed either before or after the
work on the other columns has been
completed.

Rule 2. Each column has a simple, basic model.
The simple, basic model for the “Verifi-
cation” column could be: performance-
verification-feedback; therefore, this rule
is also met.

Rule 3. The basic model of each column must be
unique. Again, the entity and connector in
the basic, columnar model for this new col-
umn, performance and verification, are not
repeated from another column. And the ba-
sic model itself (performance-verification-
feedback) is unique as well. Due to the lim-

28 SCHOCH AND LAPLANTE

ited scope of the extensions suggested here
for the RTSA framework, the following re-
maining rules continue to be true.

Rule 4. Eachrow represents a distinct, unique per-
spective.

Rule 5. Each cell is unique.

Rule 6. The composite or integration of all cell
models in one row constitutes a complete
model from the perspective of that row.

Rule 7. The logic is recursive.

A real-time systems context for the
framework for information systems
architecture

In his paper, Zachman points out that since his
“descriptions for the same product™ answer the
three questions “what,” “how,” and “where,” it
is only logical that there must be at least “who,”
“when,” and “why” descriptions also. It is the
“when” dimension that is critical to the architec-
tural framework of real-time systems—and in fact
more important than the “where,” at least with
respect to real-time systems. In the realm of real-
time systems, any geographically distant commu-
nication is generally handled at a higher level
within the operating system and is probably trans-
parent to the real-time system application soft-
ware. As noted above, Zachman’s “Network”™
column relates to the question of “where” in the
sense of a geographic dimension, not with respect
to intertask communications inherent in all real-
time systems. This intertask communication is
more concerned with event timings and task syn-
chronization than with communications proto-
cols and session management. In simpler terms,
real-time systems are focused on brief, time-
bound “handshakes” rather than with prolonged
“conversations” which must take place irrespec-
tive of geographic proximity. Of course, as it
relates to the geographic and certainly the geo-
metric description of the hardware used in the
real-time system, this dimension remains impor-
tant; however, this discussion is left for future
work.

One fundamental modification to the ISA frame-
work in the development of the RTSA framework
became necessary, that is, the addition of a new
column. Because of the extreme criticality at ev-
ery point in the development of the real-time sys-
tem, “Verification” is introduced as an additional
column in the RTSA framework and as an addi-

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995

Figure 2 A framework for real-time systems architecture

[oata (FuncTioN (e [verrFicaTION
CENTITY:. {» FUNGTION . LJ ‘gm& o e L-, PERFORMANCE
+ RELATIONSHIP, ARG »CYCLE -~ o8 « VERIFICATION
I M I S
OBJECTIVES/
@ SCOPE LIST OF THINGS LIST OF PROCESSES LIST OF TIME-CRITICAL LIST OF KEY TESTS TO
IMPORTANT TO THE THE PHYSICAL SYSTEM | BEHAVIORS IN THE DETERMINE IF WE ARE
PHYSICAL SYSTEM PERFORMS PHYSICAL SYSTEM BUILDING THE SYSTEM
RIGHT
MODEL OF EXAMPLE: EXAMPLE: EXAMPLE: EXAMPLE:
@ THE PHYSICAL ENTITY/ RELATIONSHIP FUNCTION FLOW ENGLISH DESCRIPTION RESPONSE TIME
SYSTEM DIAGRAM DIAGRAM OF THE TIMING AND DEFINITIONS
SYNCHRONIZATION
ASPECTS OF THE
PHYSICAL PROCESS
MODEL OF EXAMPLE: EXAMPLE: EXAMPLE: EXAMPLE:
@ THE REAL-TIME DATA MODEL DATA FLOW HIGH-LEVEL STATE TRANSITIONS, | FORMAL VERIFICATION
SYSTEM DIAGRAM TIME-DEPENDENCY DIAGRAMS, OF METHODS/TOOLS,
PSEUDOCODE, PROGRAMMING PROTOTYPING,
DESIGN LANGUAGES BLACK BOX TEST PLAN
TECHNOLOGY EXAMPLE: EXAMPLE: EXAMPLE: EXAMPLE:
@ MODEL DATA DESIGN STRUCTURE CHART FINITE STATES AUTOMATA, TECHNICAL TEST
STATE CHARTS, PLAN, WHITE BOX
PETRINETS TEST PLAN
DETAILED EXAMPLE: EXAMPLE: EXAMPLE: EXAMPLE:
@ REPRESENTATION | DATA DESIGN PROGRAM CODE PROGRAM CODE USING WALK-THROUGHS,
DESCRIPTION LANGUAGES CAPABLE OF CODE INSPECTIONS
REPRESENTING TIMING,
SYNCHRONIZATION, AND
CONCURRENCY
(SUCH AS ADA AND MODULA-2)
MACHINE EXAMPLE: EXAMPLE: EXAMPLE: EXAMPLE:
@ REPRESENTATION] RAW DATA MACHINE CODE MAILBOXES, SYSTEM
SEMAPHORES, PERFORMANCE
INTERRUPT HANDLERS
FUNCTIONING EXAMPLE: EXAMPLE: EXAMPLE: EXAMPLE:
SYSTEM AVAILABLE DATA SYSTEM TEMPORAL BEHAVIOR BEHAVIOR VIS-A-VIS
FUNCTIONALITY SPECIFICATIONS

tional description of the real-time system. These
concepts lead us to propose a reinterpretation to
Zachman’s framework resulting in a “framework
for real-time systems architecture.” After pre-
senting these changes, a brief examination of a
few recent products and trends follows to show
how they fit into and support this framework con-
cept as it applies to real-time systems. This will
serve to illustrate the applicability of the RTSA
framework.

Key points for a real-time systems architectural

framework. In order to develop a framework for
real-time systems architecture (shown in Figure

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995

2), the following key points summarize the rein-
terpretation of Zachman’s work:

¢ The “Network™ description column has been
replaced by “Time.” As noted earlier, because
of the critical nature of the temporal behavior of
real-time systems, the “Time” description of
every participant’s view must be described.
Since common local and wide area networking
and remote communications would probably be
handled at the higher, operating system level,
we feel justified in relabeling the “Network”
column.

* “Machine Representation” has been inserted

SCHOCH AND LAPLANTE 29

Table 3 Different types of descriptions for the same product—as defined in RTSA framework

Description | Description 1l Description Hi Description IV
Orientation Material Function Time Verification
Focus Structure Transform Dynamics Testing/assurance
Description WHAT the item is HOW the item works WHEN the events Are we building the
made of take place product RIGHT?
Example Bill-of-materials Functional Production schedule Inspector’s checklist
specifications
Descriptive Part-relationship-part Input-process-output Event-cycle-event Construction-
model inspection-report
RT/S analog Data model Process model Response time Verification test plan
RT/S descriptive Entity-relationship- Input-process-output Event-cycle-event Performance-
model entity verification-feedback

as another perspective, or view, of the system.
Since the interrupt scheme, machine language
implementation (to ensure test-and-set instruc-
tion availability, for example), performance
predictability, and execution time are important
to a real-time system, the “Machine Represen-
tation” row was added to the framework.

e Another column has been added to the RTSA
framework to explicitly address the description
of the real-time system in the context of system
verification through testing. This column is re-
ferred to as “Verification.”

e Various minor rewordings have been made to
translate the information systems language to a
real-time systems analog. Also, row numbers
were added to facilitate references to the frame-
work in this paper. Since the rows of the ISA
framework mirror the system life cycle and re-
main virtually unchanged in the RTSA frame-
work, no further discussion is warranted. How-
ever, since the columns have been significantly
altered, Table 3 repeats Table 2 to further ex-
plain and support the four descriptions of the
real-time system.

Implications to real-time systems development.
The following subsections discuss how Zach-
man’s framework, interpreted for real-time sys-
tems, can have significant benefits during the sys-
tem definition and development process.

Provide solutions to critical real-time systems
concerns. The rigorous structure and extensive
integration that the RTSA framework brings to the
design and development of real-time systems can
help find solutions to problems of particular con-
cern, such as timing, predictability, and dead-
lock. These types of problems are frequently
caused by the complexity of the system. The

30 SCHOCH AND LAPLANTE

RTSA framework provides a means to better plan
and integrate the numerous design and implemen-
tation considerations.

This framework can help to develop an organi-
zation-specific architectural model to segregate
and define the various areas that make up the
overall architecture of a real-time system. Once
an overall architectural model has been defined,
it will contribute to a better understanding of de-
sign issues and the reasons for developing (or not
developing) the various representations, and it
will ensure that no aspect of the system is over-
looked. For example, most well-known commer-
cial operating systems are too bulky and all-pur-
pose to be useful in real-time applications with
stringent response time requirements. In addi-
tion, for custom computers, such as those used in
many embedded applications, no commercial op-
erating systems may be available. Hence, the
real-time systems designer often must design a
bare bones operating system or use one of the
specialized real-time operating systems that are
commercially available. Working with this frame-
work for the architecture could provide a better
design.

Categorize tools and techniques. A study of the
various specifications and design techniques used
in real-time systems makes it obvious that each
technique has strengths and weaknesses that can
often be confusing. This framework can classify
the different methods of depicting the time and
other dimensions of the real-time system, and
therefore who in the development cycle would
best utilize the tool or methodology. A detailed
discussion of this topic can be found later in this

paper.

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995

Guide selection of tools and techniques. When
the work is categorized into the cells of the frame-
work, a system development group can use this
understanding to select specific tools or tech-
niques, or both, that best fit into the organiza-
tional structure of the group. For example, once
a particular programming language is chosen, the
tools that best support quick and accurate soft-
ware construction using that language can be se-
lected for the requirements analysis and design
phases. When the roles, deliverables, and “hand-
offs” of the group are defined, an implementation
of CASE (computer-aided software engineering)
tools may be possible as well.

Define deliverables and hand-offs for all partici-
pants. Once each cell in the framework is under-
stood and the work that takes place within the cell
is defined, all deliverables for that piece of the
development process will be identified. When
these deliverables are documented, the hand-offs
between the cells are identified as well. This iden-
tification is critical to the project management of
the development effort and provides measurable
outputs for each participant.

Improve communications within individual proj-
ect teams. The common understanding of the
entire architectural framework by the “soup-
to-nuts” project team will provide a common lan-
guage for the architecture and improve dialog
among team members. When given a firm base-
line that can act as a reference point for the team,
they cannot help but talk the same language and
communicate better.

Facilitate communications within the real-time
systems development community. Hopefully this
framework will contribute to “establishing a
stake in the ground” for real-time systems archi-
tecture—including requirements definition and
the development structure—that can be referred
to by members of the real-time systems commu-

nity.

Analysis of current trends and products

This section offers a brief analysis of some meth-
odologies and tools that support the architectural
structure of the real-time systems environment.
This cursory survey gives some significant exam-
ples from recent literature that fit into and help
explain and support the real-time systems frame-
work.

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995

The Core method for real-time requirements. A
1992 paper by Faulk et al.** on the Core method
addressed the issue of gathering requirements for
real-time systems. The member companies of
the Software Productivity Consortium develop
large, mission-critical, real-time applications. They
have identified requirements as the top priority
problem in systems development. The board of
directors of this group stated that “Requirements
are incomplete, misunderstood, poorly defined,
and change in ways that are difficult to manage.”
The Core (Consortium Requirements Engineer-
ing) method was developed to address this prob-
lem and is a single, coherent method for specify-
ing real-time requirements.

Major features. This method uses the following
techniques in its design:

e Integrates object-oriented and formal models
* Integrates graphical and formal specifications
¢ Permits nonalgorithmic specifications

¢ Provides a machine-like model

This method is focused solely on developing re-
quirements for a real-time system with the fol-
lowing as some of its high-priority characteristics:

* Precise and testable system specifications

* Specifications that are easy to alter, and easily
indicate ripple effects

* Comprehensible and practical presentation to
all audiences

* Support for the representation of system
bounds, interface, and context

* Definition of specifications allowed as a group
of distinct and relatively independent parts

* Requirement that guidelines and examples of
required input are included

* Definition of what makes a set of specifications
congruous

Where it fits into the real-time systems frame-
work. The Core method uses Stephen Mellor’s
real-time structured analysis approach’® as one of
the existing methods used in the meld of existing
methods to form Core. Interestingly, this ap-
proach represents a system as a structure that can
be viewed in three ways:

¢ Information—What information does the sys-
tem use, and what are the relationships among
pieces of information?

SCHOCH AND LAPLANTE 31

¢ Process—What are the functions of the the sys-
tem, and what data and control information are
exchanged among functions?

» Behavior pattern—What are the states of the
system, and what events cause transitions
among states?

To point out the obvious, these map directly to
the “Data,” “Function,” and “Time” columns of
the real-time framework shown in Figure 2. The
Core method appears to be designed primarily to
address the development of the owner’s view
(rows 1, 2, and possibly even 3 of the framework)
of the requirements with much more structure
than natural language. Without delving into its
details, the Core methodology uses relatively
nontechnical methods to capture the owner’s and
possibly the designer’s perspectives. It provides
the ability to capture requirements in a rigorous
fashion, thereby enabling the designer, the
builder, or both to directly transform these re-
quirements to the next representation of the sys-
tem and ultimately to the system itself.

Ready Systems’ VRTXdesigner. In order to give
programmers the ability to verify timing require-
ments, Ready Systems’ VRTXdesigner provides
for the verification of the underlying model by
simulating the application, which must be running
with the company’s VRTX operating system’s
real-time scheduling mechanisms. ¢ This product
also provides programmers with the ability to
monitor system response to stimulus, as well as
concurrency, for the application skeleton.

Major features. VRTXdesigner is a top-down de-
sign tool, enabling users to graphically lay out
their application modules with icons. Its simu-
lated real-time operation gives the user the ability
to check for conflicts, deadlocks, lockouts, star-
vations, processing bottlenecks, and timing re-
quirements violations, including wverification of
critical timing deadlines, task preemption, and
even CPU utilization. The application modules can
utilize the capabilities of the VRTX operating sys-
tem in the areas of scheduling and processing (in-
cluding queues, mailboxes, semaphores, and
event flags). The behavior of the external world
can also be included in this simulation, either as
a periodic function or statistically as a time dis-
tribution function. The simulation is a batch run
and all results are saved. Users can then produce
graphical time lines that show individual task ex-
ecution. In later simulations, users can specify

32 SCHOCH AND LAPLANTE

individual paths that they wish to monitor and
subsequently see where the execution time is
spent and how well the defined scheduling actu-
ally performs under real-time conditions with the
VRTX OS kernel and the underlying hardware.

Where it fits into the real-time systems frame-
work. This product fits primarily into the “Time”
column, beginning in the design phase (rows 3 and
4). Although it does not actually assist in the initial
design of the system, it certainly can be used to
validate and improve the design. Its usefulness in
verifying all timing aspects of the program code is
invaluable and extends into an analysis of the ex-
ecution time using machine language timings. It re-
mains, however, a simulation tool, and in reality it
does not fit into the architectural cells relating to the
actual software construction (although depending
on the development environment, it may). Fitting
perfectly into the “Time” cell that relates to the
design of the system, this product offers two ex-
tremely robust capabilities:

* Simulation of every aspect of the system de-
sign, even down to execution timings of indi-
vidual tasks, thus allowing the designer to val-
idate and improve the design

* Ability to inherently turn itself over to the ac-
tual programmer after the design is completed,
before implementation and installation of the
code begins

Unlike any popular programming language used
in the development of information systems, this
product clearly has a home in the framework for
real-time systems architecture above the pro-
gramming cells (row 5).

Dynamo: A time-based object-oriented model. Dy-
namo is another modeling process to include in a
real-time software engineering architecture.!” An
object-oriented data model for real-time systems,
Dynamo integrates time into the object-oriented
model. The concept of time remains uniform
across all aspects of the model, from object struc-
ture and behavior, to the execution model, to syn-
chronization and concurrency control.

Major features. In Dynamo, a notion of quasi-real
time is defined, which its authors claim keeps
enough synchrony with real time to be meaning-
ful, yet allows enough slack for the computer to
do its work efficiently and reliably. Without prob-

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995

Table 4 Real-time language requirements and where they fit into the real-time framework

Language Requirement

Framework
Column

Rows in Addition to Detalled
Representation View

Predictable execution time
Schedulability analysis

Time, Verification
Time, Verification

Technology Model

Strong typing Data
Structured constructs Data
Modularity All

Error handling
Multiprogramming Time
Process synchronization mechanisms Time

Ability to access hardware locations All

Direct interrupt handling

Language readability to allow for All
long-term maintenance

Small, simple, and well-defined All

Function

Function

Technology Model

Technology Model

Technology Model

Technology Model and Machine
Representation

Machine Representation

Machine Representation

Technology Model

ing the details of “quasi-real time” nor evaluating
its validity, the authors give the following expla-
nation of this view of time:!7 “If ‘real-time” is the
notion of everyday, human-oriented time, one
may say that the computer-time is, by contrast,
artificial, or ‘virtual’ time which abstracts some
essential temporal relationships such as sequen-
tiality of events. On the other hand, in a human-
oriented interactive environment, real-time has
the advantage of being more intuitive. Our effort
to take advantage of the abstraction properties of
virtual time while retaining a notion of real-time
led to the notion of quasi-real time (qrt) . . . qrtis
real-time with a built-in slack for accommodating
events inside the computer that occur in unpre-
dictable order and take up an unpredictable length
of time. Since qrt is synchronized with the real-
time clock at event boundaries, it is guaranteed to
be ‘close enough’ to real-time.” The authors ex-
plain that this concept of quasi-real time is one of
the properties that their objects contain; the full
list of properties follows:

* A unique object identifier
* A set of attributes

* A set of constraints

* A time stamp

* A quasi-real-time clock

In the object space, there can be several tuples
with the same object identifier as long as they
have different time stamps (containing different
versions of the object in time). The quasi-real-
time clock is used to link quasi-real time with real
world time.

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995

Where it fits into the real-time systems frame-
work. Although Dynamo itself was not a full-
fledged programming language at the time the pa-
per by Bapa Rao et al.” was written, it clearly
offers an object-oriented programming technique
to be implemented in the software construction
phase of the project. It therefore belongs in the
“Technology Model” and “Detailed Representa-
tion” views (rows 4 and 5) of the framework.
Since its purpose is to directly guide and contrib-
ute to the actual programming of the system, the
user and logical designer would find little use for
the model. The technique is object-oriented, so it
already addresses both the “Data” and “Func-
tion” descriptions of the product. When the time
dimension is added into Dynamo’s object-ori-
ented model, it begins to address all of the tem-
poral behavior aspects of the system as well, and
also covers the “Time” column.

Requirements of real-time programming lan-
guages. The impact of programming language
constructs in the design and implementation of
real-time systems is often overlooked. A thor-
ough discussion of programming languages that
were specifically designed for real-time use is be-
yond the scope of this paper. Some discussion of
these topics can be found in Reference 18; the
interested reader is also referred to References
19, 20, 21, and 22.

In Reference 23 Stoyenko sets forth requirements
for a real-time programming language. In Table 4
each of these is related to the appropriate col-
umns in the RTSA framework for real-time sys-

SCHOCH AND LAPLANTE 33

tems architecture; where appropriate, affected
rows other than “Detailed Representation” (row
5—actual programming) are noted. As shown in
this table, much of his programming language re-
quirements relate to the temporal aspects of the
programming construction. As also shown in Ta-
ble 4, a significant majority of the requirements
set forth by Stoyenko deal with the temporal be-
havior of the real-time systems architecture.
Again, this framework helps to identify and cat-
egorize needs in this direction. A detailed case
study using the Flex language (one of the lan-
guages included in Reference 22) presented the
ability of the language to ensure temporal cor-
rectness as well as functional validity.* Its au-
thors summarize their requirements of a real-time
language as follows:

s Capacity to express different types of timing
requirements

s Mechanism for run-time systems to enforce
timing constraints

s Provision for ensuring the temporal correctness
of the program

All three of the above language requirements re-
late to the temporal behavior of the real-time sys-
tem, again supporting the “Time” aspect of the
architecture of the real-time system. It also reaf-
firms this needed modification of the Zachman
framework to make it applicable to the work of
building real-time systems.

Specification and design techniques—where they fit
into the framework. Many specification and de-
sign techniques are popular today, and each tech-
nique has strengths and weaknesses. The RTSA
framework can help classify these methods of de-
picting the various dimensions of the real-time
system, and therefore who in the development
cycle would best utilize it and possibly which
tools should be used for the development of that
area of the architecture. Common methods in-
clude Petri nets, finite state automata (FSA), data
flow diagrams, Warnier-Orr notation, structured
English, and temporal logic. We cannot possibly
survey these adequately here but the interested
reader can consult the references. For example,
References 25 and 26 provide a broad-based dis-
cussion of software specification, References 27
and 28 discuss the use of FSA, References 29 and
30 discuss Petri nets, References 31 and 32 dis-
cuss Warnier-Orr notation, References 12, 15,
and 33 discuss data flow diagrams, References 24

34 SCHOCH AND LAPLANTE

and 27 discuss temporal logic, and Harel’s state
charts are described in References 34 and 35. Ta-
ble 5 summarizes some of the more popular tech-
niques, the advantages and disadvantages for
each, and where they fit into the RTSA framework.
For example, usually natural language descrip-
tion is the best way for the “owner” to rep-
resent requirements for the physical system.
Pseudocode and programming design languages
are slotted for the designer’s view. Of course, one
would not expect a programmer to utilize these
tools as the sole method to implement the system.
Rather, the deliverable from each of these tools
would guide what is referred to here as the “logic
builder” (possibly the programmer, possibly
someone else) to next represent the requirements
using techniques like finite state automata and
Petri nets. Finally, these deliverables would be
used by the programmer to actually “build” the
program from this representation.

As shown, some of the techniques include the
“Time” column. This would imply that in any
requirements document for real-time systems,
certain of these techniques must be utilized in
order to include the time-related description of
the system. These tools and techniques would be
used to address system aspects such as timing,
deadlock avoidance, and response time predict-
ability. It should also be noted that some of the
tools are applicable to rows 1 and 2 of the frame-
work but only at higher levels of description. This
is understandable but certainly not the purpose of
the framework. That is, if the same tool or meth-
odology can be used by the different participants
in the development process (again: how the
“owner” sees the product, how the “designer”
designs it, and how the “builder” constructs it),
all well and good. But according to the frame-
work, these transitions are transformations from
one representation to another, not simply the
same representation with increased detail. Table
5 also points out the need of tools and method-
ologies at rows 1 and 2 of the framework to de-
scribe the “Time”” aspects of the system. Human
language and mathematical specifications can be
used, but no other techniques apply to these early
descriptions of the system. This ability to cate-
gorize and even assign tools and techniques to
each area of the architecture is perhaps one of the
most useful aspects of the framework. It can help
guide choices of tools and methodologies, define
deliverables and hand-offs, and serve as a model
for the requirements and design efforts.

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995

Table 5 Specification and design techniques

Technique

Advantages

Disadvantages

Framework
Row/Column

Human language

Mathematical
specification

Flow chart

Structure chart

Pseudocode &
programming
design language

Finite state
automaton

Data flow
diagram

Well known
Can clarify descriptions

Precise and unambiguous

Promotes formal
program-proving techniques

Rigorous code optimization
can be done

Widely used and understood
Describes individual tasks well

Widely used and understood
Best for small/simple systems
Clearly identifies function
execution sequence
Identifies recursion and
repeated modules
Encourages top-down design

Better than using high-order
language for specifications

Close to a programming
language

Adaptable to formal
program-proving techniques

Some can handle concurrency

Widely used for state-driven
systems

Easy to develop

Easy to generate code to
implement

Since based on mathematics,
can be formally optimized

Unambiguous

Can depict concurrency

Widely used and understood

Emphasizes flow of data

De-emphasizes flow of control

Useful in identifying
concurrency

Structure chart can be
derived

Can help partition system into
hardware and software
components

Ambiguous
No code generation

Can be cryptic

Difficult to do

Training in mathematical
modeling not common

Formal proofs error-prone

Cannot depict multitasking

Temporal behavior cannot be
described

Encourages GOTOs

Provides for no conditional
branching

Cannot describe concurrency
or process interaction

No way to show temporal
behavior

Still programming language in
which user must be fluent

Cost and maintenance of design
tools can be high

Errors can still be made in
high-level abstractions

“Insideness” of modules
cannot be shown

No intertask communications

Number of states can grow
very large

Difficult to show
synchronization in flow

Al/Al
All/Data, Time,

Verification

Rows 1-4/Function,
Verification

Rows 1-4/Function

Rows 3-4/Data, Function,
Time (depending on the
tool), Verification

Rows 3-4/Data (states
only), Time,
Verification

Rows 3-4/Data

System verification and testing. The crucial area of
testing is part of most software development
methodology and, therefore, must be included in
an architectural framework as well. The behavior
of the system must constantly be checked against
the system requirements. The “Verification” col-

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995

umn in the RTSA framework is designed to ensure
that this need is met and that this test plan is
robust and thorough enough to test the output of
each stage, as well as the final product. Tradi-
tional testing methods can be generally applied to
a real-time system, including black box and white

SCHOCH AND LAPLANTE 35

box testing. These techniques can be used by the
unit author and by the independent test team to
exercise each module and the overall system. The
goal of these tests is to ensure that all system
requirements, especially those concerning sys-
tem response times, have been met. These tech-
niques can also be applied at the subsystems and
system level. For a more complete discussion of
testing techniques see References 36, 37, or 38.

Summary and conclusions

This framework for real-time systems architec-
ture can have the following uses in the world of
real-time systems specification, design, develop-
ment, implementation, and testing:

s Categorize and assign tools and techniques to
each area of the architecture.

s Guide tool and methodology choices used by
the various disciplines.

¢ Define deliverables for each contributor.

¢ Clarify hand-offs between participants.

s Assist in addressing problem areas of particular
concern to real-time systems.

¢ Provide a structure in which a model can be
developed for the entire software life cycle.

s Propose a baseline for discussion of systems
architecture among the real-time systems com-
munity.

s Improve communications between participants
and understanding of each other’s individual ar-
chitecture.

It is impossible to determine exactly what is miss-
ing; that is, which cells within the framework ap-
pear to be without popular tools, etc., in the real-
time systems world. A thorough survey and
analysis of existing tools, methodologies, simu-
lation and performance evaluation environments,
and programming languages with the purpose of
“slotting™ them into one of the cells of the frame-
work would appear to contribute to the applica-
bility of the real-time framework as presented.
Undoubtedly this task would be exhausting. Un-
fortunately, the usefulness of the results would be
questionable. Many would argue about the cate-
gorizations, and others would not be interested
since so many of the products would be irrelevant
to their environment. However, it would behoove
any development organization to evaluate their
own tools, etc., within the context of the RTSA
framework for the purpose of identifying which
areas of the framework are being addressed and

36 SCHOCH AND LAPLANTE

which areas are not being addressed. In order to
build a complex real-time system, an architec-
tural framework such as that presented in this
paper can serve to ensure accuracy and depend-
ability. This work would also help the organiza-
tion realize some of the benefits noted in the pre-
vious section, such as definition of deliverables,
clarification of hand-offs and interfaces, and im-
proved communications.

Once the “missing pieces” are identified (i.e.,
cells in the framework not included in the devel-
opment methodology of an organization), how
this impacts the systems architecture and ulti-
mately the development of real-time systems
must be decided on a case-by-case basis. One or-
ganization may consciously decide to omit or
combine individual architectures, or work toward
implementing a single methodology or mecha-
nized tool, or both, to support the entire systems
life-cycle architecture. Any approach is valid,
and any approach can be successful. But the
framework can support these conscious decisions
and guide the individual model that is used for any
real-time systems architecture.

During the development of this paper, three areas
for future work became apparent:

1. Include the hardware architecture in the RTSA
framework where needed in order to more
fully support the tight integration of the soft-
ware and hardware systems.

2. Develop an entire framework for the area of
system testing. According to the seventh rule
of the 1SA framework, since the logic of the
framework is recursive, it may be an extraor-
dinary benefit to the testing and quality control
communities to develop test plans for each of
the perspectives (rows) and descriptions (col-
umns) of the system architecture. In order to
preserve most of the ISA framework when de-
veloping the RTSA framework, this concept
was not pursued.

3. Integrate the “Verification” column into the
ISA framework. Although the testing of real-
time systems requires more rigor and detail
than necessary for an information system, the
architecture of the information system would
benefit as well. It could even be argued that
business rules or policies exist that should be
captured in this column, rather than residing in
one of the others.

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995

As technology continues to climb the price-per-
formance curve, real-time systems—along with
information systems—will continue to grow in
scope and complexity. The method of construc-
tion of these systems will continue to gain in
importance. This issue of architecture must be
addressed in order to build these complex engi-
neering products called “real-time systems.” The
framework for real-time systems architecture as
presented in this paper can provide this structure.

Cited references

1.

10.

11.
12.

13.

14.

15.

16.

17.

J. A. Zachman, “A Framework for Information Systems
Architecture,” IBM Systems Journal 26, No. 3, 276-292
(1987).

. R. McLeod, Jr., Management Information Systems: A

Study of Computer-Based Information Systems, Mac-
millan Publishing Company, New York (1990).

. D. Connor, Information Systems Specification and De-

sign Road Map, Prentice-Hall, Inc., Englewood Cliffs, NJ
(1985).

. G. Pospischil, P. Puschner, A. Vrchoticky, and R. Zain-

linger, “Developing Real-Time Tasks with Predictable
Timing,” IEEE Software 9, No. 5, 35-45 (September
1992).

. C. J. Paul, A. Acharya, B. Black, and J. K. Strosnider,

“Reducing Problem-solving Variance to Improve Predict-
ability,” Communications of the ACM 34, No. 8, 81-93
(August 1991).

. A.D. Stoyenko, V. C. Hamacher, and R. C. Holt, “An-

alyzing Hard-Real-Time Programs for Guaranteed Sched-
ulability,” IEEE Transactions on Software Engineering
17, No. 8, 737-750 (August 1991).

. P. Gopinath, T. Bihari, and R. Gupta, “Compiler Support

for Object-Oriented Real-Time Software,” IEEE Soft-
ware 9, No. 5, 45-51 (September 1992).

. T. Shephard and J. A. M. Gagne, “A Pre-Run-Time

Scheduling Algorithm for Hard Real-Time Systems,”
IEEE Transactions on Software Engineering 17, No. 7,
669-677 (July 1991).

. P. Gopinath, R. Ramnath, and K. Schwan, “Data Base

Design for Real-Time Adaptations,” The Journal of Sys-
tems Software 17, No. 2, 155-168 (February 1992).

A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Prin-
ciples, Techniques and Tools, Addison-Wesley Publish-
ing Co., Reading, MA (1986).

P. A. Laplante, Real-Time Systems Design and Analysis,
IEEE Press, Piscataway, NJ (1992).

T. DeMarco, Structured Analysis and System Specifica-
tion, Prentice-Hall/Yourdon, Englewood Cliffs, NJ (1978).
J. F. Sowa and J. A. Zachman, “Extending and Formal-
izing the Framework for Information Systems Architec-
ture,” IBM Systems Journal 31, No. 3, 590-616 (1992).

S. Faulk, J. Brackett, P. Ward, and J. Kirby, Jr., “The
Core Method for Real-Time Requirements,” IEEE Soft-
ware 9, No. 5, 22-34 (September 1992).

P.T. Ward and S. J. Mellor, Structured Development for
Real-Time Systems, Vol. 1, II, 111, Prentice-Hall/Your-
don, Englewood Cliffs, NI (1986).

R. Weiss, “Real-Time System Simulator,” Electronic En-
gineering Times (September 10, 1990).

K. V. Bapa Rao, A. Gafni, and G. Raeder, “Dynamo: A

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995

18.

19.

20.

21.

22.
23.

24.

25.

26.

27.

28.

29.

30.

31.
32.
33.
34.
35.

36.

37.

38.

Time-based Object-oriented Model to Support Distrib-
uted Collaborative Development,” Proceedings of the
1990 IEEE International Conference on Computer Sys-
tems and Software Engineering (May 1990), pp. 61-69.
A. Burns and A. Wellings, Real-Time Systems and Their
Programming Languages, Addison-Wesley Publishing
Co., Reading, MA (1990).

J. R. Allard and L. B. Hawkinson, “Real-Time Program-
ming in Common LISP,” Communications of the ACM,
35, No. 9, 64-69 (September 1991).

A. D. Stoyenko and E. Kligerman, “Real-Time Euclid: A
Language for Reliable Real-Time Systems,” IEEE Trans-
actions on Software Engineering SE-12, No. 9, 940-949
(September 1986).

F. Boussinot and R. DeSimmi, “The ESTEREL Lan-
guage,” Proceedings of the IEEE 79, No. 9, 1293-1304
(September 1991).

Proceedings of the IEEE 79, No. 9 (September 1991).
A. D. Stoyenko, “The Evolution and State-of-the-Art of
Real-Time Languages,” The Journal of Systems and Soft-
ware 18, 61-84 (April 1992).

K. B. Kenny and K.-J. Lin, “Building Flexible Real-Time
Systems Using the Flex Language,” Computer 24, No. 5,
70-78 (May 1991).

I. Sommerville, Software Engineering, 4th Edition, Ad-
dison-Wesley Publishing Co., Reading, MA (1992).

C. Ghezzi, J. Mehdi, and D. Mandrioli, Fundamentals of
Software Engineering, Prentice-Hall, Inc., Englewood
Cliffs, NJ (1991).

Y. S. Ramakrishna, P. M. Melliar-Smith, L.. E. Moser,
L. K. Dillon, G. Kutty, “Really Visual Temporal Rea-
soning,” Proceedings of the Real-time Systems Sympo-
sium (1993), pp. 262-273.

E. M. Clark, Jr., D. E. Long, and K. McMillen, “A Lan-
guage for Computational Specification and Verification of
Finite State Hardware Controllers,” Proceedings of the
IEEE 79, No. 9, 1283-1292 (September 1991).

W. B. Joerg, “A Subclass of Petri Nets as a Design Ab-
straction for Parallel Architectures,”” ACM Computer Ar-
chitecture News 18, No. 4, 67-75 (December 1990).

N. G. Leveson and J. L. Stolzy, “Safety Analysis Using
Petri Nets,” IEEE Transactions on Software Engineering
13, No. 3, 386-397 (March 1987).

K. Orr, Structured System Development , Yourdon Press,
Englewood Cliffs, NJ (1977).

J. D. Warnier, Logical Construction of Programs, Van
Nostrand Reinhold, New York (1974).

D. J. Hatley and I. A. Pribhai, Strategies for Real-Time
System Specification, Dorset House, New York (1987).
D. Harel, “On Visual Formalisms,” Communications of
the ACM 31, No. 5, 514-530 (May 1988).

D. Harelet al., “STATEMATE: A Working Environment
for the Development of Complex Reactive Systems,”
IEEE Transactions on Software Engineering 16, No. 4,
403-414 (April 1990).

B. Hetzel, The Complete Guide to Software Testing, 2nd
Edition, QED Information Sciences Inc., Wellesley, MA
(1988).

W. E. Howden, “Life-Cycle Software Validation,” Soft-
ware Life-Cycle Management, Infotech, Maidenhead,
England (1980), pp. 101-116.

G. J. Myers, Reliable Software Through Composite De-
sign, Van Nostrand Reinhold, New York (1975).

Accepted for publication July 11, 1994.

SCHOCH AND LAPLANTE 37

Daniel J. Schoch AT&T Corporation, 1 Speedwell Avenue
East, Morristown, New Jersey 07962 (electronic mail:
dschoch@attmail.att.com). Mr. Schoch is manager of infor-
mation technology in the corporate human resources division
of AT&T. He holds B.S. and M.S. degrees in computer
science and has 20 years experience in applying technical so-
lutions to a variety of business and technical needs, using
mainframe-, minicomputer-, and personal computer-based
configurations. Prior to joining AT&T, Mr. Schoch worked
with real-time systems for Control Data Corporation and was
responsible for both systems and applications programming.
He later joined Citibank, NA as a technical specialist over-
seeing a regional data center and related new applications
development. In addition to several nontechnical staff assign-
ments, his AT&T career covers a variety of technical areas:
applications analysis and programming, corporate data stan-
dards development, local area network installation and man-
agement, end-user technical support, and client/server soft-
ware development.

Philllp A. Laplante Department of Mathematics and Com-
puter Science, Fairleigh Dickinson University, Madison, New
Jersey 07940 (electronic mail: laplante@sun490.fdu.edu).
Dr. Laplante is Associate Professor and Chair in the Depart-
ment of Mathematics and Computer Science and a visiting
research scientist at the Real-Time Computing Laboratory of
the New Jersey Institute of Technology. He holds a Ph.D. in
computer science and a Professional Engineering license in
the state of New Jersey. He has over 10 years experience
designing real-time systems and was the lead software engi-
neer in the design and implementation of a new generation of
inertial measurement systems for the space shuttle. He has
taught courses in real-time design throughout the world and
has published widely on real-time systems, computer-aided
design, image processing, and software engineering.

Reprint Order No. G321-5556.

38 SCHOCH AND LAPLANTE IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995

