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In  this  paper  we  review  the  framework  for 
information  systems  archkecture  first  introduced 
by  Zachman'  and  show  how  it  can  be  applied in 
the  context of real-time  systems.  Discussions  are 
included  throughout  the  paper to convey  some  of 
the  characteristics  unique to real-time  systems 
and to point  out  areas  of  special  architectural 
concern. 

I n  the  past,  when  the  depth  and  breadth of com- 
puter  applications were dramatically limited by 

hardware technology, system  architecture  was 
simple and  straightforward.  Today,  business in- 
formation  systems are driven increasingly by 
high-level business  strategies,  instead of smaller- 
scale  functional  processes.  Rather  than  just 
mechanizing a manual procedure,  company-wide 
systems  are moving and managing information 
that  is rapidly becoming the  actual  infrastructure 
of the business.  Furthermore, new technologies 
and increasing information demands by managers 
have  taken  business  systems from batch  process- 
ing and time sharing to  the domain of high-per- 
formance, real-time systems. 

An overall  framework to  better link systems  to 
businesses  and  at  the  same time guide the  devel- 
opment of these  systems  has  been recognized by 
many. In other  words,  a  strict discipline of con- 

struction-or architecture-must be known and 
followed. In 1987 John  Zachman  proposed  a 
framework  for information systems  architec- 
ture, within which all aspects of information sys- 
tems  architecture (ISA) are  depicted, from high- 
level business  strategies  to  system coding. The 
ISA logical construct  serves  to define the  inter- 
faces  and integration of the  various  system com- 
ponents. 

In this  paper we: 

Review and examine the Zachman  framework 
within the  context of real-time systems,  which 
are increasingly characterizing  today's  busi- 
ness decision systems 
Interpret  this ISA framework so as  to apply it 
specifically to real-time systems  architecture 
(RTSA) 
Present critical areas of architectural  concern 
unique to real-time systems by using several 
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Table 1 Architectural  representations  produced  over the process of building  a  complex  engineering  project 
~~ 

Representation  Nature/Purpose  Generic  Representation  Nature/Purpose 
in Architecture  “View” in Information 

Systems 

Bubble charts 

Architect’s 
drawings 

Architect’s plans 

Contractor’s plans 

Shop plans 

Building 

Basic concepts for building 
Gross sizing, shape, spatial 

relationships 
Architect/owner mutual 

understanding 
Initiation of project 

Final building as seen by the 

Floor plans, cutaways, 

Architect/owner agreement 

Establishment of contract 

Final building as seen by the 
designer 

Translation of owner’s view 
into a product 

Detailed drawings 
Basis for negotiation with 

owner 

pictures 

on building 

general contractor 

Architect’s plans constrained 
by laws of nature and 
available technology 

“How to build” description 
Direction of construction 

activities 

Subcontractor’s design of a 

Detailed stand-alone model 
Specification of what is to be 

Pattern 

(Not used  in architecture, 
but used frequently in 
manufacturing where 
computer-controlled 
equipment uses this to 
produce some part of the 
product) 

parthection 

constructed 

Physical building 

Ballpark 

Owner’s 
view 

Designer’s 
view 

Builder’s 
view 

Out-of-context 
representation 

Machine 
language 
representation 

Scope/objectives 

Model of the 
business 

Model of the 
information 
system 

Technology 
model 

Detailed 
description 

Machine 
language 
description 

Strategic direction/focus of 

Product/service focus 
System concepthvhite paper 
Initiation of project 

the business 

Organizational or functional 
structure 

Policies, methods, and 
procedures for the 
business processes 

Requirements document 
Specifications agreement 

Translation of business 
manager’s view into an 
information system design 

Logical  design document 
Logical representation of 

system to be  built 

Logical system design 
constrained by physical 
technology 

modules to be written 

programming activities 

Individual program design 
Program code, database 

description, networking 
details 

programmer activities 

Depiction of program 

Direction of overall 

Direction of individual 

Object code 
Used by computer itself 

Actual 
product 

Information 
system 

Physical system I 

discussions  about  important  aspects of real- future  needs within the real-time systems  de- 
time systems velopment  process 

products  and  trends  that fit into  the RTSA frame- Throughout  this  paper  the  term information sys- 
work terns refers to those  computerized  systems  de- 

* Draw some  conclusions regarding current  and signed primarily to  support a  business or business 

Provide a  cursory analysis of several  current 
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Table 2 Dlfferent  types of descrlptlons  for  the  same  product 

Descriptlon I Description II Description 111 

Orientation Material Function Location 
Focus Structure Transform Flow/connection 
Description WHAT the item is made of HOW the item works WHERE the connections exist 
Example Bill-of-materials Functional specifications Engineering drawings 
Descriptive model Part-relationship-part Input-process-output Site-link-site 
I/S analog Data model Process model Network model 
I/S descriptive model Entity-relationship-entity Input-process-output Node-line-node 

Adapted from J. A. Zachman, “A Framework for Information Systems Architecture”’ 

process. The most commonly understood of these 
is  the management information system (MIS), 
which is “a computer-based  system  that  makes 
information available to  managers with similar 
needs.”’ Usually  these  systems collect and  pro- 
cess data in order to support management deci- 
sions.  The  term real-time systems is  used herein 
when referring to computerized  systems  whose 
correctness  depends  not  only  on logical correct- 
ness  but  on  the timeliness of output. Real-time 
systems  appear in virtually  every  computer ap- 
plication, but  especially in avionics, robotics, 
process  control, and simulation, and increasingly 
in management information systems. In practical 
situations, the main difference between real-time 
and non-real-time systems  is  an  emphasis on re- 
sponse time prediction  and  its  reduction. 

A framework  for  information  systems  architec- 
ture. In defining an  “information  systems  archi- 
tecture,”  Zachman used the field  of classical ar- 
chitecture itself as an  objective,  independent 
basis upon which to  develop  a  framework  for 
discussion. Using the definition of deliverables 
within that field led him to  the specification of 
analogous information systems  architectural 
products  and, in so doing, helped him to classify 
concepts  that  produced  this  “framework” in 
which to  represent information systems  architec- 
ture. 

The framework he developed in this  process  ad- 
dresses  the different views of the  various  partic- 
ipants involved in each  stage (e.g., owner’s  view, 
architect’s or designer’s view, builder’s view), 
along with the  discovery  that  the  same  product 
can-and  must-be described in different ways 
(e.g., material: what  tbe item is  made of; function: 
how the item works;  and location: where  the 
flows or  connections exist). The resulting frame- 
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work  is  a two-dimensional matrix  that  presents 
different architectural  representations of the 
product. 

In Zachman’s architectural  framework,  the rows 
represent  the  perspectives of the different partic- 
ipants in the  architectural  representations, as de- 
picted in Table l. These  views  and  representa- 
tions of the  same  product by the  various  players 
in the  process  are different (in nature,  content, 
semantics,  and so forth),  not  merely  a set of rep- 
resentations  varying in detail. Each of these  rep- 
resentations is perfectly valid and  necessary  for 
the development of the  product,  with  the key  be- 
ing the  transformations from one  representation 
to  the  next.  The  fourth column of Table 1, which 
we have  added to Zachman’s earlier work for 
comparison,  presents the analogous architectural 
representations for information systems. 

A second idea needs to  be presented for the col- 
umns of the  framework matrix-different  types of 
descriptions  exist for the  same  product. For ex- 
ample, in manufacturing, a bill-of-materials de- 
scribes  what  a  product  is  made of, the functional 
specifications describe how the  product  works, 
and engineering drawings show  where  the  con- 
nections  exist.  Each  description is required: look- 
ing at a list of parts tells nothing about  what the 
part  does  or how it relates to  other parts. Simi- 
larly, functional specifications say nothing ex- 
plicit about  the  parts  that  make  up  the  product  or 
how it is constructed.  Table 2 shows how different 
descriptions  can be used for different things, in- 
cluding the analogs for information systems. No- 
tice how each  description  has  been  prepared  for 
a different reason  and  purpose. Each  one  stands 
alone  and  is  distinct from the  others,  even though 
all the  descriptions  pertain to  the  same object  and 
therefore  are  directly  related to  one another. 
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Figure 1 Zachman’s  framework  for information systems  architecture 

OBJECTIVES/SCOPE 
LIST OF 
PROCESSES 
THE BUSINESS 
PERFORMS 

LIST OF LOCATIONS IN WHICH 
THE BUSINESS OPERATES 

LIST OF THINGS 
IMPORTANT TO 
THE BUSINESS 

PROCESS = CLASS 
OF BUSINESS ENTITY = CLASS OF 

BUSINESS THING 
NODE =BUSINESS \ 
LOCATION PROCESS u I 

MODEL OF 
THE  BUSINESS 

EXAMPLE: 
ENTITY/ RELATIONSHIP 
DIAGRAM 

EXAMPLE: EXAMPLE: 
FUNCTION FLOW 
DIAGRAM 

LOGISTICS 
NETWORK 

MODEL OF 
THE  INFORMATION 
SYSTEM 

EXAMPLE: 
DISTRIBUTED SYSTEMS 
ARCHITECTURE 

EXAMPLE: 
DATA FLOW 
DIAGRAM 

EXAMPLE: 
DATA MODEL 

TECHNOLOGY 
MODEL 

EXAMPLE: 
DATA DESIGN 

EXAMPLE: 
STRUCTURE CHART 

EXAMPLE: 

ARCHITECTURE 
PHYSICAL SYSTEM 

/ n 
-I- 

DETAILED 
REPRESENTATION 

EXAMPLE: 
PROGRAM 

EXAMPLE: EXAMPLE: 
DATA DESIGN 

EXAMPLE: 
COMMUNICATIONS 

FUNCTIONING 
SYSTEM 

EXAMPLE: 
FUNCTION 

EXAMPLE: 
DATA 

Based on Figure 1 in Sowa  and  Zachman, IBM Systems Journal 31, No. 3, 1992. 

The  information  systems  architecture. By combin- systems,  Zachman formed the information sys- 
ing the  notions of different descriptions and dif- tems  architecture  framework,  shown in Figure 1. 
ferent  participants from the  architectural frame- Notice how this figure is  essentially  Table 1 but 
work  and applying the  method to information drawn using information systems analogs, and 
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that  the  columns  “Data,”  “Function,” and “Net- 
work”  represent different descriptions of the  sys- 
tem. 

Interpreting the Zachman framework 
in the context of real-time systems 

Like information systems, real-time systems  are 
increasingly complex  and difficult to build and 
maintain. Zachman’s  framework  for information 
systems  architecture offers an  opportunity to 
structure  the  development of real-time systems. 
Before  proceeding  to  this  development, we need 
to  discuss  a few unique aspects of real-time sys- 
tems. 

An overview of real-time  systems. Consider  a  soft- 
ware  system in which  inputs  represent digital data 
from  hardware  devices or other  software  sys- 
tems, and outputs  are digital data  that  control  ex- 
ternal  hardware.  The time between  the  presenta- 
tion of a  set of inputs and the  appearance of all the 
associated  outputs is called the  response time. In 
hard real-time systems,  response  times must be 
explicitly bounded, or  the system is considered to 
have failed. Notice  that  response times of, for 
example, microseconds  are  not  needed  to  char- 
acterize  a real-time system; it simply must  have 
response  times  that are constrained  and  thus  pre- 
dictable. Most of the  literature also mentions  soft 
real-time systems-those in which performance 
is degraded but  not  destroyed  when  response time 
constraints  are  not met-and even firm real-time 
systems in which  a few missed deadlines  can  be 
tolerated. (In real-time systems,  one  type of fault 
tolerance  includes design choices  that  transform 
hard real-time deadlines  into firm or soft  ones.) 
Throughout  this  paper,  however, we use  the  term 
“real  time” to mean “hard  real  time.” 

Real-time systems are often  reactive or embedded 
systems,  or  both. Reactive systems  are  those  that 
have ongoing interaction  with their environment, 
such  as  a fire-control system  that  reacts  to  a pi- 
lot’s commands.  Embedded  systems  are  those 
used to control specialized hardware, which com- 
pletely  encapsulate  the  software. For example, an 
automatic  teller  machine  is  embedded  and  reactive. 

An important  concept in real-time systems is the 
notion of an  event,  that is, any  occurrence  that 
results in a  change in the  sequential flow  of pro- 
gram execution.  Events  can be divided into  two 
categories:  synchronous  and  asynchronous.  Syn- 
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chronous  events  occur at predictable times such 
as execution of a  branch  instruction or hardware 
trap.  Asynchronous  events  occur  at  unpredict- 
able points in the flow-of-control and  are usually 
caused by external  sources  such as a  clock signal. 
Both types of events  can  be signaled to  the CPU by 
hardware  interrupts. 

There is an  inherent  delay  between  when an in- 
terrupt  occurs and when  the CPU begins reacting 
to it, called the  interrupt latency. Interrupt la- 
tency is caused  by  both  hardware  and  software 
factors.  Interrupts  may  occur periodically (at 
fixed rates), aperiodically, or both.  Tasks driven 
by  interrupts  that  occur aperiodically are called 
sporadic tusks. Systems in which interrupts  occur 
only  at fixed frequencies  are  called@ed-rute sys- 
tems and  those with interrupts  occurring  sporad- 
ically are called sporadic  systems. In round-robin 
systems,  each  task is assigned a fixed-time quan- 
tum in which to  execute. A  clock is used to initiate 
an  interrupt  at  a  rate  corresponding to the time 
quantum. Each task  executes until it completes  or 
its time quantum  expires as indicated by  the  clock 
interrupt. When the time quantum of a  task  ex- 
pires, a  snapshot of the machine must  be  saved so 
that  the  task  can  be  resumed  later.  A higher-pri- 
ority  task is said to  preempt  a  lower-priority  task 
if it interrupts  the  lower-priority  task;  that  is,  a 
lower-priority  task is running when  the higher- 
priority  task signals that it is  about to begin. As 
with the  round-robin  system,  a  snapshot of the 
machine must  be  saved so that  the  lower-priority 
task  can  be  resumed  when  the higher-priority 
task  has finished. Systems  that  use  preemption 
schemes  instead of round-robin or first-come- 
first-served scheduling are called preemptivepri- 
ority systems.  The  priorities assigned to  each in- 
terrupt  are  based on the  urgency of the  task 
associated  with  that  interrupt.  Preemptive prior- 
ity  schemes  have  the  associated problem of hog- 
ging of resources by higher-priority tasks. In this 
case,  the  lower-priority  tasks  are said to  be facing 
starvation.  There  are  other,  nonpreemptive, pri- 
ority scheduling schemes,  but  these  are of less 
interest to us. 

Prioritized interrupts  can  be  either “fixed priori- 
ty”  or “dynamic priority.” Fixed  priority  sys- 
tems  are  less flexible in that  the  task priorities 
cannot  be changed once  the  system is imple- 
mented. Dynamic priority  systems  can allow the 
priorities of tasks to change during program ex- 
ecution-a feature  that is particularly  important 
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in threat management systems. In a special class 
of fixed-rate, preemptive priority, interrupt- 
driven  systems called rate-monotonic vstems, 
priorities are assigned so that  the higher the  ex- 

scheme is common in embedded applications, 
particularly avionics systems. 

A term  often used as a  measurement of real-time 
system  performance  is time-loading, or CPU uti- 
lization, and is a  measure of the  percentage of 
nonidle processing. A system is said to  be “time- 
overloaded” if it is 100 percent  or  more time- 
loaded. 

1 ecution  frequency,  the higher the priority. This 

Special  difficulties  in  real-time  systems  develop- 
ment. At  least five considerations  are crucial in 

examine them. They  are: 

Temporal behavior 
Multitasking 
Intertask  communication and synchronization 
Object code efficiency and performance 
System verification 

Each of these  considerations  relates to cell(s) in 
the ISA framework. We need to reinterpret  the 
framework,  then, in order  to accommodate  these 
considerations. 

Temporal  behavior. In real-time systems,  bound- 
ing response times, and  thus predicting them, are 
the  most  important  considerations. Although re- 
sponse  times  are not often  perceived  as  a major 
issue in information systems,  modern applica- 
tions  such as program trading are highly time- 
critical because  they  support  devices  such  as  net- 
work  interfaces,  Quotron  boxes,  or high-speed 
modems. Moreover, most managers would argue 
that  there is an intangible valuation  function  as- 
sociated  with  the  temporal  “freshness” of any 
piece of information involved in a  business deci- 
sion. 

1 the  development of real-time systems. We now 

1 

1 

Since all hard real-time systems  have scheduling, 
timing, response time, and deadline concerns,  the 
design, depiction, and implementation of this  be- 
havior is mandatory in any  architectural  structure 
guiding the life cycle of the real-time system. In- 
deed,  the ability to  predict timing behaviors  for 
systems  under development is considered  by 
many to be one of the  most critical issues facing 
real-time systems  today. 4,5 Such prediction and 
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verification is known as “schedulability analy- 
sis. ” 

The  basic idea presented  by  Zachman regarding 
time (a “when”  description column) was  that it 
need not be included because  the  processes could 
be described  via  “snapshots” in time and because 
of the  lack of formalisms needed  to  depict  the 
cells in such  a column. Although it is even  more 
difficult for real-time systems  to specify temporal 
behavior  (and  there is no agreement on how to  do 
it anyway), this  “Time” (when) column cannot  be 
omitted  since  the  correctness of the real-time sys- 
tem is based on its satisfaction of explicit tempo- 
ral behavior. 

Multitasking. Although multitasking is implicitly 
supported in mainframe computers, minicomput- 
ers, and even  personal  computers,  for  many em- 
bedded  and  reactive real-time applications, tem- 
poral performance  prediction is impossible or 
unacceptably imprecise. Hence, in many time- 
critical information systems  applications,  stream- 
lined and  predictable multitasking systems need 
to  be constructed.  There  are  three  types of mul- 
titasking: 

1. Cooperative  schemes  that do not  require in- 
terrupts  (such  as polled loops, cooperative 
multitasking, and  state-driven  code) 

2. Preemptive  priority multitasking 
3. Round-robin multitasking 

There  are  also  hybrids of these  three. We talk 
only  about  the  second  type,  since  the  others  can 
be modeled as special cases of it. Typically, pre- 
emptive  priority multitasking allows higher-pri- 
ority  tasks to preempt  lower-priority  tasks  and 
permits low-priority or  background  tasks to easily 
“slip in between” regularly scheduled or inter- 
rupt-driven high-priority tasks  and  execute. 
These foreground-background systems  are  the 
most common solution for embedded applica- 
tions. They  are  an  improvement  over  the  inter- 
rupt-only  systems in that  the jump-to-self is  re- 
placed by non-time-critical code, called the 
background.  The  interrupt-driven  processes  are 
called the  foreground.  The background task is 
fully preemptable by  any foreground task  and, in 
a  sense,  represents  the  lowest-priority  task in the 
system. 

It is common to increment  a  counter in the  back- 
ground to provide  a  measure of time-loading or 
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to  detect  whether  any foreground  process  has 
locked. For example, a  counter is provided  for 
each of the foreground processes  and is reset by 
its  respective  process. If the  background  detects 
one of the  counters as not being reset, the  cor- 
responding  task  is  assumed to  be locked,  and  a 
failure  can  be  indicated.  Certain  types of low- 
priority self-testing can  also  be  performed in the 
background.  Other  potential  background  tasks in- 
clude  low-priority  display  updates, logging to 
printers,  and  other  actions  that  interface to slow 
devices. 

Basically, preemptive  priority multitasking pro- 
vides  for  interrupt-driven  systems to be  written 
and numerous  tasks to  be  run concurrently.  A 
“Time” column is  needed to depict  this multi- 
tasking facet of real-time systems.  In addition, 
“Data” cells  play  a  major role in managing these 
data  structures so that  the  necessary  bookkeeping 
can  be performed by  the  dispatcher of the  oper- 
ating system.  At  the  same time, the  various  func- 
tions of the  dispatcher would be identified from a 
“Function” column. A  conceptual  view (Objec- 
tives/Scope) will probably  address  some of these 
needs,  but as development  moves  into  the design 
and  construction of the  system,  depiction of this 
view  becomes crucial, further justifying the  use- 
fulness of all three  columns  (“Data,”  “Func- 
tion,”  “Time”). Also, since  the  actual  machine 
language representation is necessary for the suc- 
cessful implementation of a reliable and predict- 
able  interrupt  scheme,  a  “Machine  Representa- 
tion”  view  is  inserted  into  the RTSA framework. 
Indeed,  recent  work with compiler optimization 
stresses  the  need  to  rearrange  the  object  code in 
order  to improve and monitor timing behavior.7 

Intertask  communication and synchronization. 
The communication of data  between  processes 
and  the  synchronization of tasks  are  two  more 
areas critical to real-time systems.  Several  tech- 
niques  can help implement reliable methods  to 
handle  these  issues,  such as ring buffers, sema- 
phores,  test-and-set  instructions, mailboxes, and 
event flags. Some of these  techniques (e.g., test- 
and-set  instructions)  may  relate  to the machine 
language and  hardware  architecture of the  target 
computer, again supporting  the need to include 
“Machine Representation’’ in the RTSA frame- 
work. 

Intertask  communication  can be implemented us- 
ing a  variety of methods.  A  more detailed discus- 

26 SCHOCH AND LAPLANTE 

sion of these  approaches will be helpful in order 
to  address  these critical real-time systems  archi- 
tectural concerns. For polled-loop systems, where 

- 

The  communication of data  between 
processes and the synchronization 

of tasks are  critical to real-time 
systems. 

the polling and event  processing  code  run in mu- 
tual  exclusion,  intertask  communication and syn- 
chronization  services  are not obligatoly. With 
coroutines,  synchronization  and communication 
are built into  the  code, although protection of 
shared  resources is not. But for foreground-back- 
ground systems and operating  systems  based on 
the  task  control block model, these  services are 
essential.  Intertask  communication  and  synchro- 
nization concerns  generally  arise during the log- 
ical d sign and coding implementation of the  sys- 
tem. J he “Time” cells residing  in the “designer’s” 
view and especially in the “builder’s” view should 
address  these issues. The  “owner’s” specifica- 
tions may address  some of these  issues,  but as  the 
system is broken  down  into program modules  and 
the  intertask relationships are defined, these com- 
munication and synchronization  aspects  become 
more  apparent.  (Note  that  these  communications 
are  between  software  modules  and usually unre- 
lated to geographic or geometric configuration, 
which are  more of a  concern  with geographically 
dispersed information systems  and  the physical 
manufacturing of products.) 

Another  method of handling synchronization 
constraints is via  an off-line pre-run-time  sched- 
uling algorithm, an  approach  that  can significantly 
reduce  the  resources  needed for run-time sched- 
uling and context switching. This  approach  also 
fits into  the  “Time”  cells,  but at the “builder’s” 
or “ ~ u b ~ ~ n t r a ~ t o r ~ ~ ”  view. Interestingly,  recent 
work utilizing an  extended  entity relationship da- 
tabase  to  support  an  object-oriented program- 
ming and  execution  system  addresses  the  related 
issue of concurrency  at  a higher level.’ This ap- 
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proach  quite  unexpectedly  tends  to bring the is- 
sues of synchronization and concurrency  into  the 
“Data” column in the RTSA framework as well. 

Object  code  eficiency  andperformance. Because 
of the  critical time-related demands of real-time 
systems,  the  quality of the  object  code  generated 
by  the compiler is a  concern from at least two 
perspectives: 

Efficiency, with  respect to size,  speed, and 

Ability to predict and  monitor  execution time 

Although there  are formal methods  for the deter- 
mination of such  performance  factors as response 
time and time-loading, these  methods generally 
are applicable in extremely  restricted  situations 
or in theoretical  studies only. In  most  settings, 
performance  analysis is done using logic analyz- 
ers,  simulators, or “back-of-the-envelope7’ cal- 
culations. 

The best  method  for measuring the  execution 
time of any  piece of code  is to use a logic analyzer. 
One  advantage of its use is that  hardware laten- 
cies and other  delays  not  due simply to instruction 
execution  times  are  taken  into  account.  The 
drawback of the logic analyzer is that  the  system 
must be completely  (or partially) coded and the 
target  hardware available. Hence,  the logic ana- 
lyzer is usually only employed in the  late  stages 
of the coding phase, in the testing phase, and es- 
pecially during system integration. When a logic 
analyzer is not available, the  code  execution time 
can  be  estimated  by examining the compiler out- 
put  and  counting  macroinstructions.  This  tech- 
nique also  requires  that  the  code  be  written,  that 
an approximation of the final code  exists, or that 
similar systems  are available for analysis. The  ap- 
proach simply involves tracing the  worst  case 
path  through  the  code,  counting  the macroin- 
structions along the  way,  and adding their exe- 
cution times. These times can  be found in the 
manufacturer’s specifications or  through mea- 
surement  with  a logic analyzer. 

Another  accurate method of code  execution tim- 
ing uses the system  clock,  which is read  before 
and after executing  code.  The time difference can 
then be measured  to  determine  the  actual time of 
execution.  This  technique,  however, is only  via- 
ble when  the  code  to  be timed is large relative to 
the  code  that  reads  the  clock. 

overall  performance 
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Time-loading requirements are specific design 
goals because  they affect hardware  selection and 
overall  system  performance.  Several  methods 
can  be used to predict or measure  the  code  exe- 
cution times that  are  needed in the calculation of 
time-loading. These  techniques  can  also  be used 
to calculate  the  context switch or  software  sched- 
uling time for any  interrupt handler. 

Time-loading estimates are  measures  that  are 
meaningful primarily in cyclic real-time systems. 
In polled loops,  the figure is the relative percent- 
age of time spent  processing  an  event  compared 
to the time spent  checking  the flag. In state-driven 
or cooperative multitasking systems,  the  measure 
is  the time spent in the  dispatcher  when  no  pro- 
cesses need to run. In interrupt-driven  systems, 
calculation of time-loading from measured  data 
cannot  be  accurately  computed for any  type of 
system. 

Reducing  execution  times. Identifying wasteful 
computation is crucial in reducing response  times 
and time-loading. Many  approaches used in com- 
piler optimization can  be used (see  Reference 10 
for  a  summary of these), but  other  methods  have 
evolved that  are specifically oriented  toward real- 
time systems,  and we discuss  those  methods 
here. For example, in most  computers, integer 
operations are faster  than floating point opera- 
tions. We can exploit this  fact by converting float- 
ing point algorithms into  scaled integer algo- 
rithms. In such  a  scheme,  the  least significant bit 
(LSB) of an integer variable is assigned a real num- 
ber  scale  factor.  Scaled  numbers  can be added 
and subtracted  together and multiplied and di- 
vided by a  constant (but not another  scaled num- 
ber). The  results  are  converted to floating point 
output  only  at  the  last step-a process  that  can 
save  considerable time. 

These  concerns relating to  object  code efficiency 
and performance  analysis resulted in the  insertion 
of a  “Machine  Representation”  view  into  the 
RTSA framework-how the  computer  hardware 
architecture “views7’ the product. In other words, 
what  the real-time system  looks like when  the 
computer is actually  executing  the  code.  The 
needs for this  view  were  noted  above  with  respect 
to  the  other function-specific “difficulties” dis- 
cussed,  but  the  quality of the  object code-from 
both  the efficiency and measurability perspec- 
tives-must be included as a unique area of the 
architecture. 
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System verification. In order  to  increase  system 
reliability, rigorous testing of the real-time system 
is required. Since  testing  can  only  detect  the  pres- 
ence of errors  and  not  the  absence of them,  the 
goal of testing must be  to  ensure  that  the  software 
meets  its  requirements. To this  end, systemver- 
ification answers  the  question,  “Are  we building 
the  system right?” Because of the  importance of 
system verification in connection  with  the  devel- 
opment of real-time systems,  a new column, titled 
“Verifi~ation,~’ has  been  added  to  the RTSA 
framework.  Interestingly,  system  validation  (see 
DeMarco”)  answers  the  question,  “Are  we build- 
ing the right system?”  This  validation falls into  a 
“why”  column,  addressing  the  concept of moti- 
vation  as  presented in Zachman’s second  paper 
on his framework13 (with  Sowa). Using the build- 
ing construction analog, system verification and 
testing is equivalent to  the building codes  estab- 
lished to  ensure  the  safety and reliability of the 
building. Also equivalent  are  quality  assurance 
inspections, designed to verify  that  the  manner 
in which the building is being built adheres  to 
established methodologies and  techniques. The 
building inspector  checks to  see  whether  the 
building is  “up  to  code” at various  stages during 
the  construction, meeting all applicable require- 
ments. Similarly, a  comprehensive  system  test 
plan verifies that  the deliverable by  each  partic- 
ipant meets  the original requirement.  The  “rules 
of the  framework”  presented by Sowa  and  Zach- 
man’3 are an  appropriate  test to  ensure  that this 
new column adheres  to  the  construct of the orig- 
inal framework: 

Rule 1. 

Rule 2. 

Rule 3. 

The columns  have no order.  The  place- 
ment  or  priority of the “Verification” 
column is irrelevant to  the  other col- 
umns. A full and complete  test plan could 
be  developed  either  before or after  the 
work on the  other  columns  has  been 
completed. 
Each column has  a simple, basic model. 
The simple, basic model for the “Verifi- 
cation” column could be: performance- 
verification-feedback; therefore, this rule 
is also met. 
The basic model of each column must be 
unique. Again, the entity and connector in 
the basic, columnar model for this new col- 
umn, performance and verification, are not 
repeated from another column. And the ba- 
sic model  itself (performance-verification- 
feedback) is unique as well. Due to  the lim- 

ited scope of the extensions suggested here 
for the RTSA framework, the following re- 
maining rules continue to  be true. 

Rule 4. Each row represents a distinct, unique per- 
spective. 

Rule 5. Each cell is unique. 
Rule 6. The composite or integration of all  cell 

models in one row constitutes a complete 
model from the perspective of that row. 

Rule 7. The logic  is recursive. 

A real-time systems context for the 
framework for information systems 
architecture 

In his paper,  Zachman  points  out  that  since his 
“descriptions  for  the  same  product”  answer  the 
three  questions  “what,”  “how,”  and  “where,” it 
is only logical that  there must be  at  least  “who,” 
“when,” and “why”  descriptions  also. It is  the 
“when” dimension that is critical to  the architec- 
tural framework of real-time systems-and in fact 
more  important  than  the  “where,” at least with 
respect to real-time systems. In the realm of real- 
time systems,  any geographically distant commu- 
nication is generally handled at  a higher level 
within the  operating  system  and is probably  trans- 
parent  to  the real-time system application soft- 
ware. As noted  above, Zachman’s “Network” 
column relates  to  the  question of “where” in the 
sense of a geographic dimension, not with respect 
to intertask  communications  inherent in  all real- 
time systems.  This  intertask communication is 
more  concerned  with  event timings and  task  syn- 
chronization  than  with  communications  proto- 
cols and  session management. In simpler terms, 
real-time systems  are  focused on brief, time- 
bound “handshakes”  rather  than  with prolonged 
“conversations”  which  must  take  place  irrespec- 
tive of geographic proximity. Of course, as it 
relates to  the geographic and certainly  the geo- 
metric  description of the  hardware used in the 
real-time system,  this dimension remains impor- 
tant;  however,  this discussion is left for future 
work. 

One fundamental modification to  the ISA frame- 
work in the  development of the RTSA framework 
became  necessary,  that is, the addition of a new 
column. Because of the  extreme  criticality  at  ev- 
ery point in the development of the real-time sys- 
tem, “Verification” is introduced as an additional 
column in the RTSA framework and as an addi- 
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Figure 2 A framework  for  real-time  systems  architecture 
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tional description of the real-time system.  These 
concepts lead us  to propose  a  reinterpretation to 
Zachman’s  framework resulting in a  “framework 
for real-time systems architecture.’’ After  pre- 
senting  these  changes,  a brief examination of a 
few recent  products  and  trends follows to  show 
how they fit into and support  this  framework  con- 
cept  as it applies  to real-time systems.  This will 
serve  to  illustrate  the applicability of the RTSA 
framework. 

2), the following key points  summarize  the rein- 
terpretation of Zachman’s work: 

The  “Network”  description column has  been 
replaced by “Time.” As noted  earlier,  because 
of the critical nature of the  temporal behavior of 
real-time systems,  the  “Time”  description of 
every  participant’s  view  must  be  described. 
Since common local and wide area networking 
and remote  communications would probably  be 
handled at  the higher, operating  system level, 
we feel justified in relabeling the  “Network” 
column. 
“Machine  Representation”  has  been  inserted 

Key  points for a  real-time  systems  architectural 
framework. In order  to develop  a  framework for 
real-time systems  architecture  (shown in Figure 
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Table 3 Different types of  descriptions  for the same  product-as  defined in RTSA framework 
~~~~~ 

Orientation 
Focus 
Description 

Example 

Descriptive 
model 

RT/S analog 
RTIS descriptive 

model 

Description I 

Material 
Structure 
WHAT the item is 

Bill-of-materials 

Part-relationship-part 

Data model 
Entity-relationship- 

entity 

made of 

Description Ii 

Function 
Transform 
HOW the item works 

Functional 

Input-process-output 

Process model 
Input-process-output 

specifications 

Description 111 

Time 
Dynamics 
WHEN the events 

Production schedule 

Event-cycle-event 

Response time 
Event-cycle-event 

take place 

Description IV 

Verification 
Testing/assurance 
Are we building the 

product RIGHT? 
Inspector’s checklist 

Construction- 
inspection-report 

Verification test plan 
Perfomance- 

verification-feedback 

as another  perspective, or view, of the  system. 
Since  the  interrupt  scheme, machine language 
implementation (to  ensure  test-and-set  instruc- 
tion availability, for example), performance 
predictability, and  execution  time  are  important 
to  a real-time system,  the  “Machine  Represen- 
tation”  row was added to  the framework. 
Another column has  been  added  to  the RTSA 
framework to explicitly address  the  description 
of the real-time system in the  context of system 
verification through testing. This column is  re- 
ferred to  as “Verification.” 
Various minor rewordings have  been made to 
translate  the information systems language to  a 
real-time systems analog. Also, row  numbers 
were added to facilitate references to  the frame- 
work in this  paper.  Since  the  rows of the ISA 
framework mirror the system life cycle  and  re- 
main virtually  unchanged in the RTSA frame- 
work,  no  further discussion is warranted.  How- 
ever,  since  the  columns  have  been significantly 
altered,  Table 3 repeats  Table 2 to  further ex- 
plain and  support the four  descriptions of the 
real-time system. 

Implications to real-time systems development. 
The following subsections  discuss how Zach- 
man’s framework,  interpreted  for real-time sys- 
tems,  can  have significant benefits during the sys- 
tem definition and  development  process. 

Provide solutions to critical real-time systems 
concerns. The rigorous structure and extensive 
integration that  the RTSA framework brings to  the 
design and  development of real-time systems  can 
help find solutions to problems of particular  con- 
cern,  such  as timing, predictability, and  dead- 
lock. These  types of problems are frequently 
caused by the  complexity of the  system. The 
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RTSA framework  provides  a  means  to  better plan 
and  integrate  the  numerous design and implemen- 
tation considerations. 

This  framework  can help to  develop  an organi- 
zation-specific architectural model to  segregate 
and define the various  areas  that make up  the 
overall  architecture of a real-time system.  Once 
an  overall  architectural model has  been defined, 
it  will contribute to a  better  understanding of de- 
sign issues  and  the  reasons for developing (or  not 
developing) the  various  representations, and it 
will ensure  that  no  aspect of the  system is over- 
looked. For example, most well-known commer- 
cial operating  systems are  too  bulky  and all-pur- 
pose  to be useful in real-time applications with 
stringent  response time requirements.  In addi- 
tion, for custom  computers,  such as  those  used in 
many  embedded applications, no commercial op- 
erating  systems  may be available. Hence,  the 
real-time systems designer often  must design a 
bare  bones  operating  system or use  one of the 
specialized real-time operating  systems  that  are 
commercially available. Working with this frame- 
work  for  the  architecture could provide  a  better 
design. 

Categorize  tools and techniques. A study of the 
various specifications and design techniques  used 
in real-time systems  makes it obvious  that  each 
technique  has  strengths  and  weaknesses  that  can 
often  be confusing. This  framework  can classi@ 
the different methods of depicting the time and 
other dimensions of the real-time system,  and 
therefore  who in the  development  cycle would 
best utilize the tool or methodology. A detailed 
discussion of this  topic  can  be found later in this 
paper. 
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Guide selection of tools and techniques. When 
the  work  is  categorized  into  the cells of the frame- 
work,  a  system  development group can  use  this 
understanding to select specific tools or tech- 
niques, or  both, that  best fit into  the organiza- 
tional structure of the  group. For example, once 
a  particular programming language is  chosen,  the 
tools  that  best  support  quick and accurate  soft- 
ware  construction using that language can  be  se- 
lected  for  the  requirements  analysis and design 
phases. When the roles, deliverables,  and  “hand- 
offs” of the group  are defined, an implementation 
of CASE (computer-aided  software engineering) 
tools  may be possible as well. 

Define deliverables and hand-offs for all partici- 
pants. Once  each cell in the  framework  is  under- 
stood and the  work  that  takes  place within the cell 
is defined, all deliverables for  that  piece of the 
development  process will be identified. When 
these  deliverables  are  documented,  the hand-offs 
between  the cells are identified as well. This iden- 
tification is critical to  the project management of 
the  development effort and provides  measurable 
outputs for each  participant. 

Improve communications within  individual proj- 
ect teams. The common understanding of the 
entire  architectural  framework by  the “soup- 
to-nuts”  project team will provide  a  common lan- 
guage for  the  architecture and improve dialog 
among team members. When given a firm base- 
line that  can  act as a  reference point for  the  team, 
they  cannot help but  talk the same language and 
communicate  better. 

Facilitate communications within the real-time 
systems development community. Hopefully this 
framework will contribute to “establishing  a 
stake in the  ground”  for real-time systems archi- 
tecture-including requirements definition and 
the  development structure-that can  be  referred 
to  by members of the real-time systems commu- 
nity. 

Analysis of current trends and products 

This  section offers a brief analysis of some meth- 
odologies and  tools  that  support  the  architectural 
structure of the real-time systems  environment. 
This  cursory  survey gives some significant exam- 
ples from recent  literature  that fit into  and help 
explain and  support  the real-time systems frame- 
work. 
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The  Core  method for real-time  requirements. A 
1992 paper by Faulk  et al. l4 on  the Core  method 
addressed  the  issue of gathering requirements  for 
real-time systems.  The member companies of 
the  Software  Productivity  Consortium  develop 
large,  mission-critical, real-time applications. They 
have identified requirements as the  top  priority 
problem in systems development. The board of 
directors of this  group  stated  that  “Requirements 
are incomplete,  misunderstood,  poorly defined, 
and change in ways  that are difficult to manage.” 
The  Core (Consortium Requirements  Engineer- 
ing) method was developed  to  address  this  prob- 
lem and is a single, coherent  method  for specify- 
ing real-time requirements. 

Major features. This  method  uses  the following 
techniques in its design: 

Integrates  object-oriented  and formal models 
Integrates graphical and formal specifications 
Permits nonalgorithmic specifications 
Provides  a machine-like model 

This  method is focused solely on developing re- 
quirements  for  a real-time system  with  the fol- 
lowing as some of its high-priority characteristics: 

Precise  and  testable  system specifications 
Specifications that are  easy  to alter,  and  easily 
indicate ripple effects 
Comprehensible and practical presentation to 
all audiences 
Support for the  representation of system 
bounds,  interface,  and  context 
Definition of specifications allowed as a  group 
of distinct and relatively  independent  parts 
Requirement that guidelines and  examples of 
required input are included 
Definition of what  makes  a  set of specifications 
congruous 

Where it fits into the real-time systems  ffame- 
work. The  Core  method  uses  Stephen Mellor’s 
real-time structured  analysis  approach”  as  one of 
the existing methods used in the meld of existing 
methods to form Core.  Interestingly,  this  ap- 
proach  represents  a  system  as  a  structure  that  can 
be  viewed in three  ways: 

Information-What information does  the  sys- 
tem use, and  what  are  the  relationships among 
pieces of information? 
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Process-What are  the  functions of the  the  sys- 
tem,  and  what  data  and  control information are 
exchanged among functions? 
Behavior pattern-What are  the states of the 
system,  and  what  events  cause  transitions 
among states? 

To point out  the  obvious,  these  map  directly to 
the  “Data,”  “Function,” and “Time”  columns of 
the real-time framework  shown in Figure 2. The 
Core  method  appears  to  be designed primarily to 
address  the  development of the owner’s view 
(rows 1,2, and  possibly  even 3 of the  framework) 
of the  requirements  with much more  structure 
than  natural language. Without delving into  its 
details,  the  Core methodology uses  relatively 
nontechnical  methods to  capture  the owner’s and 
possibly the designer’s perspectives.  It  provides 
the ability to  capture requirements in a  rigorous 
fashion,  thereby enabling the  designer, the 
builder, or  both  to directly  transform  these  re- 
quirements to  the next  representation of the  sys- 
tem and ultimately to  the system itself. 

Ready  Systems’  VRTXdesigner. In order  to give 
programmers the ability to verify timing require- 
ments,  Ready  Systems’ VRTXdesigner provides 
for  the verification of the underlying model by 
simulating the application, which  must be running 
with  the company’s VRTX operating  system’s 
real-time scheduling mechanisms. l6 This  product 
also  provides  programmers with the ability to 
monitor  system  response  to stimulus, as well as 
concurrency, for the application skeleton. 

Major  features. VRTxdesigner is a  top-down de- 
sign tool, enabling users  to graphically lay  out 
their application modules  with  icons. Its simu- 
lated real-time operation gives the  user  the ability 
to  check for conflicts, deadlocks,  lockouts,  star- 
vations,  processing  bottlenecks,  and timing re- 
quirements  violations, including verification of 
critical timing deadlines,  task  preemption, and 
even CPU utilization. The application modules  can 
utilize the capabilities of the VRTX operating  sys- 
tem in the  areas of scheduling and  processing (in- 
cluding queues, mailboxes, semaphores,  and 
event flags). The  behavior of the  external world 
can also be included in this simulation, either as 
a  periodic  function  or  statistically as a time dis- 
tribution function. The simulation is  a  batch  run 
and all results  are  saved. Users can  then  produce 
graphical time lines that  show individual task  ex- 
ecution.  In  later simulations, users  can specify 
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individual paths  that  they wish to monitor and 
subsequently see  where  the  execution time is 
spent  and how well the defined scheduling actu- 
ally performs  under real-time conditions with the 
VRTX os kernel and the underlying hardware. 

Where it fits into the real-time systems pame- 
work. This product fits primarily into the “Time” 
column, beginning in the design phase (rows 3 and 
4). Although  it does not actually assist in the initial 
design of the system, it certainly can be used to 
validate and improve the design. Its usefulness in 
verifymg  all  timing aspects of the program code is 
invaluable and extends into an analysis of the  ex- 
ecution time  using machine language  timings. It re- 
mains, however, a simulation tool, and in reality it 
does not fit into the architectural cells relating to  the 
actual software construction (although depending 
on  the development environment, it  may). Fitting 
perfectly into the “Time” cell that relates to  the 
design of the system, this product offers two ex- 
tremely robust capabilities: 

Simulation of every  aspect of the  system  de- 
sign, even  down to execution timings of indi- 
vidual  tasks,  thus allowing the designer to val- 
idate  and  improve  the design 
Ability to inherently  turn itself over  to  the  ac- 
tual programmer after  the design is completed, 
before implementation and installation of the 
code begins 

Unlike any popular programming language used 
in the  development of information systems,  this 
product  clearly  has  a  home in the  framework  for 
real-time systems  architecture  above  the  pro- 
gramming cells (row 5).  

Dynamo: A time-based  object-oriented  model. Dy- 
namo is another modeling process  to include in a 
real-time software engineering architecture. l7 An 
object-oriented  data model for real-time systems, 
Dynamo  integrates time into  the  object-oriented 
model. The  concept of time remains uniform 
across all aspects of the model, from object  struc- 
ture and behavior, to  the execution model, to  syn- 
chronization and concurrency  control. 

Majorfeatures. In Dynamo, a  notion of quasi-real 
time is defined, which  its  authors claim keeps 
enough synchrony with real time to  be meaning- 
ful, yet allows enough slack  for  the  computer to 
do its work efficiently and reliably. Without prob- 
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Table 4 Real-time  language  requirements  and  where they fit into the real-time  framework 

Language  Requirement  Framework  Rows in Addition  to  Detailed 
Column  Representation  View 

Predictable  execution  time Time, Verification 
Schedulability  analysis Time, Verification Technology Model 
Strong typing Data 
Structured  constructs Data 
Modularity All Technology  Model 
Error handling Function Technology Model 
Multiprogramming Time  Technology Model 
Process synchronization  mechanisms Time  Technology Model and  Machine 

Ability to  access  hardware locations All Machine  Representation 
Direct  interrupt handling Function Machine  Representation 
Language  readability to allow for All 

Small,  simple, and well-defined All Technology  Model 

Representation 

long-term maintenance 

ing the  details of “quasi-real time” nor evaluating 
its  validity,  the  authors give the following expla- 
nation of this  view of time: l7 “If ‘real-time’ is the 
notion of everyday, human-oriented time, one 
may say  that  the  computer-time is, by  contrast, 
artificial, or ‘virtual’ time which abstracts  some 
essential temporal relationships  such as sequen- 
tiality of events. On the  other  hand, in a human- 
oriented  interactive  environment, real-time has 
the  advantage of being more intuitive. Our effort 
to  take  advantage of the  abstraction  properties of 
virtual time while retaining a notion of real-time 
led to  the notion of quasi-real time (qrt) . . . qrt is 
real-time with a built-in slack for accommodating 
events inside the  computer  that  occur in unpre- 
dictable order and take up an  unpredictable length 
of time. Since  qrt is synchronized with the real- 
time clock at  event  boundaries, it is guaranteed to 
be ‘close enough’ to real-time.” The  authors  ex- 
plain that  this  concept of quasi-real time is one of 
the  properties  that  their  objects  contain;  the full 
list of properties follows: 

A unique object identifier 
A  set of attributes 
A  set of constraints 
A time stamp 
A quasi-real-time clock 

In the  object  space,  there  can be several  tuples 
with  the  same  object identifier as long as they 
have different time stamps (containing different 
versions of the  object in time). The  quasi-real- 
time clock is used to link quasi-real time with real 
world time. 

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995 

Where  it fits into  the  real-time systems frame- 
work. Although Dynamo itself was not a full- 
fledged programming language at  the time the pa- 
per by Bapa Rao et  al.” was written, it clearly 
offers an object-oriented programming technique 
to be implemented in the software  construction 
phase of the  project.  It  therefore belongs in the 
“Technology Model” and “Detailed Representa- 
tion” views  (rows 4 and 5 )  of the framework. 
Since  its  purpose  is  to  directly guide and contrib- 
ute  to  the  actual programming of the  system,  the 
user and logical designer would find little use  for 
the model. The  technique  is  object-oriented, so it 
already  addresses  both  the  “Data”  and  “Func- 
tion”  descriptions of the  product. When the time 
dimension is added  into Dynamo’s object-ori- 
ented model, it begins to  address all of the tem- 
poral behavior  aspects of the  system as well, and 
also covers  the  “Time” column. 

Requirements of real-time programming lan- 
guages. The impact of programming language 
constructs in the design and implementation of 
real-time systems is often  overlooked.  A  thor- 
ough discussion of programming languages that 
were specifically designed for real-time use is be- 
yond  the  scope of this  paper.  Some discussion of 
these  topics  can  be found in Reference 18; the 
interested  reader  is also referred to  References 
19, 20, 21, and 22. 

In Reference 23 Stoyenko  sets  forth  requirements 
for a real-time programming language. In  Table 4 
each of these is related to the  appropriate col- 
umns in the RTSA framework for real-time sys- 
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tems  architecture;  where  appropriate, affected 
rows  other  than  “Detailed  Representation” (row 
5-actual programming) are  noted. As shown in 
this  table,  much of his programming language re- 
quirements  relate to  the temporal  aspects of the 
programming construction. As also shown in Ta- 
ble 4, a significant majority of the  requirements 
set forth by Stoyenko deal with  the  temporal  be- 
havior of the real-time systems  architecture. 
Again, this  framework  helps to identify and  cat- 
egorize  needs in this  direction. A detailed case 
study using the  Flex language (one of the lan- 
guages included in Reference 22) presented the 
ability of the language to  ensure temporal  cor- 
rectness  as well as functional  validity.2 Its au- 
thors  summarize their requirements of a real-time 
language as follows: 

Capacity to  express different types of timing 

Mechanism for  run-time  systems  to  enforce 

Provision for ensuring the  temporal  correctness 

requirements 

timing constraints 

of the  program 

All three of the  above language requirements  re- 
late  to  the temporal  behavior of the real-time sys- 
tem, again supporting  the  “Time”  aspect of the 
architecture of the real-time system. It also reaf- 
firms this  needed modification of the  Zachman 
framework to make it applicable to  the  work of 
building real-time systems. 

Specification  and  design  techniques-where  they fit 
into  the  framework. Many specification and  de- 
sign techniques  are  popular  today,  and  each  tech- 
nique has  strengths  and  weaknesses.  The RTSA 
framework  can help classify these  methods of de- 
picting the  various  dimensions of the real-time 
system,  and  therefore  who in the  development 
cycle would best utilize it and  possibly which 
tools  should  be used for  the  development of that 
area of the  architecture. Common methods in- 
clude  Petri  nets, finite state automata (FSA), data 
flow diagrams, Warnier-Orr  notation,  structured 
English, and .temporal logic. We cannot  possibly 
survey  these  adequately  here  but  the  interested 
reader  can  consult  the  references. For example, 
References 25 and 26 provide  a  broad-based  dis- 
cussion of software specification, References 27 
and 28 discuss  the  use of FSA, References 29 and 
30 discuss  Petri  nets,  References 31 and 32 dis- 
cuss  Warnier-Orr  notation,  References 12,  15, 
and 33 discuss  data flow diagrams, References 24 
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and 27 discuss temporal logic, and Harel’s state 
charts  are  described in References 34 and 35. Ta- 
ble 5  summarizes  some of the  more popular tech- 
niques, the  advantages  and  disadvantages  for 
each,  and  where  they fit into  the RTSA framework. 
For example, usually natural language descrip- 
tion is  the  best  way for the  “owner”  to rep- 
resent  requirements  for  the physical system. 
Pseudocode and programming design languages 
are  slotted for the designer’s view. Of course, one 
would not  expect  a programmer to utilize these 
tools as  the sole  method to implement the  system. 
Rather, the deliverable from each of these  tools 
would guide what  is  referred to here as  the “logic 
builder”  (possibly  the programmer, possibly 
someone else) to next  represent  the  requirements 
using techniques like finite state  automata and 
Petri  nets. Finally, these  deliverables would be 
used by  the programmer to  actually  “build” the 
program from this  representation. 

As shown,  some of the  techniques include the 
“Time” column. This would imply that in any 
requirements  document  for real-time systems, 
certain of these  techniques  must  be utilized in 
order  to include the time-related  description of 
the system.  These  tools  and  techniques would be 
used to  address  system  aspects  such  as timing, 
deadlock  avoidance,  and  response time predict- 
ability. It should also  be  noted  that  some of the 
tools  are applicable to rows 1 and  2 of the frame- 
work  but  only at higher levels of description.  This 
is understandable  but  certainly  not  the  purpose of 
the  framework.  That is, if the  same tool or meth- 
odology can be used by  the different participants 
in the  development  process (again: how the 
“owner”  sees  the  product, how the  “designer” 
designs it,  and how the  “builder”  constructs  it), 
all well and good. But according to  the frame- 
work,  these  transitions  are  transformations from 
one  representation to another,  not simply the 
same  representation with increased detail. Table 
5  also  points  out  the  need of tools and method- 
ologies at  rows 1 and  2 of the  framework  to  de- 
scribe  the  “Time”  aspects of the  system.  Human 
language and mathematical specifications can  be 
used,  but  no  other  techniques  apply  to  these  early 
descriptions of the  system.  This ability to  cate- 
gorize and  even assign tools  and  techniques to 
each  area of the  architecture is perhaps  one of the 
most useful aspects of the framework. It  can help 
guide choices of tools and methodologies, define 
deliverables  and hand-offs, and serve  as a model 
for  the  requirements  and design efforts. 
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Table 5 Specification and design techniques 

Technique Advantages Disadvantages Framework 
RowlColumn 

Human language 

Mathematical 
specification 

Flow  chart 

Structure  chart 

Pseudocode & 
programming 
design language 

Finite state 
automaton 

Data flow 
diagram 

Well known 
Can  clarify descriptions 

Precise  and unambiguous 
Promotes formal 

Rigorous code optimization 
program-proving techniques 

can  be done 

Widely  used and  understood 
Describes individual tasks well 

Widely  used and understood 
Best  for small/simple systems 
Clearly identifies function 

execution sequence 
Identifies  recursion  and 

repeated modules 
Encourages top-down design 

Better than using high-order 
language  for  specifications 

Close  to a  programming 
language 

Adaptable  to formal 
program-proving techniques 

Some  can handle concurrency 

Widely  used  for  state-driven 

Easy  to  develop 
Easy  to  generate  code  to 

implement 
Since based on mathematics, 

can  be formally  optimized 
Unambiguous 
Can depict  concurrency 

Widely  used and  understood 
Emphasizes flow of data 
De-emphasizes flow of control 
Useful in identifying 

Structure  chart  can  be 

Can help  partition system  into 

systems 

concurrency 

derived 

hardware  and  software 
components 

Ambiguous 
No code generation 

Can be  cryptic 
Difficult to  do 
Training in mathematical 

modeling not  common 
Formal proofs error-prone 

Cannot depict  multitasking 
Temporal  behavior cannot  be 

Encourages  GOTOs 

Provides for no conditional 
branching 

Cannot describe concurrency 
or  process interaction 

No way  to  show temporal 
behavior 

described 

Still  programming language in 
which user must be fluent 

Cost and maintenance of design 
tools can  be high 

Errors  can still be  made in 
high-level abstractions 

“Insideness” of modules 

No intertask communications 
Number of states  can  grow 

cannot  be  shown 

very large 

Difficult to  show 
synchronization in flow 

All/AlI 

AlVData, Time, 
Verification 

Rows  1-4/Function, 
Verification 

Rows 1-4/Function 

Rows  3-4/Data, Function, 
Time  (depending on the 
tool), Verification 

Rows  3-4/Data (states 
only),  Time, 
Verification 

Rows 3-4Data 

System verification and testing. The  crucial  area of umn in the RTSA framework is designed to  ensure 
testing is  part of most  software  development that  this need is met and that  this  test plan is 
methodology and,  therefore, must be included in robust  and thorough enough to test  the  output of 
an architectural  framework as well. The  behavior each  stage,  as well as  the final product.  Tradi- 
of the  system must constantly  be  checked against tional testing methods  can  be generally applied to 
the  system  requirements.  The “Verification” col- a real-time system, including black box  and  white 
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box testing. These  techniques  can  be used by the 
unit author and by  the  independent  test  team to 
exercise  each module and  the  overall  system.  The 
goal of these  tests is to  ensure that all system 
requirements, especially those  concerning sys- 
tem  response  times,  have  been met. These  tech- 
niques can also be applied at  the  subsystems  and 
system level. For a  more  complete discussion of 
testing  techniques  see  References 36, 37, or 38. 

Summary and conclusions 

This  framework  for real-time systems  architec- 
ture can have  the following uses in the world of 
real-time systems specification, design, develop- 
ment, implementation, and testing: 

Categorize and assign tools and techniques  to 

Guide tool and methodology choices used by 

Define deliverables for each  contributor. 
Clarify hand-offs between  participants. 
Assist in addressing problem areas of particular 
concern to real-time systems. 
Provide  a  structure in which a model can  be 
developed  for  the  entire  software life cycle. 
Propose  a  baseline  for discussion of systems 
architecture among the real-time systems com- 
munity. 
Improve  communications  between  participants 
and  understanding of each  other’s individual ar- 
chitecture. 

each  area of the  architecture. 

the  various disciplines. 

It is impossible to determine  exactly  what is miss- 
ing; that is, which cells within the  framework  ap- 
pear  to  be without popular tools,  etc., in the real- 
time systems world. A  thorough  survey and 
analysis of existing tools, methodologies, simu- 
lation and performance  evaluation  environments, 
and programming languages with the  purpose of 
“slotting”  them  into one of the cells of the  frame- 
work would appear  to  contribute  to  the applica- 
bility of the real-time framework as presented. 
Undoubtedly  this  task would be exhausting. Un- 
fortunately,  the  usefulness of the  results would be 
questionable.  Many would argue about  the  cate- 
gorizations, and  others would not be  interested 
since so many of the  products would be  irrelevant 
to their  environment.  However, it would behoove 
any development  organization  to  evaluate  their 
own tools, etc., within the  context of the RTSA 
framework  for the purpose of identifying which 
areas of the  framework  are being addressed and 
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which  areas are not being addressed.  In  order  to 
build a  complex real-time system,  an  architec- 
tural framework  such  as  that  presented in this 
paper  can  serve to ensure  accuracy and depend- 
ability. This  work would also help the organiza- 
tion realize some of the benefits noted in the  pre- 
vious  section,  such  as definition of deliverables, 
clarification of hand-offs and  interfaces, and im- 
proved communications. 

Once  the “missing pieces”  are identified (i.e., 
cells in the  framework not included in the  devel- 
opment methodology of an  organization), how 
this  impacts  the  systems  architecture and ulti- 
mately  the  development of real-time systems 
must be decided on a  case-by-case  basis. One or- 
ganization may  consciously  decide  to omit or 
combine individual architectures, or  work toward 
implementing a single methodology or mecha- 
nized tool, or both, to support  the  entire  systems 
life-cycle architecture.  Any  approach  is  valid, 
and any  approach  can be successful. But the 
framework  can  support  these  conscious  decisions 
and guide the individual model that is used for any 
real-time systems  architecture. 

During the  development of this  paper,  three  areas 
for future  work  became  apparent: 

1. Include  the  hardware  architecture in the RTSA 
framework  where  needed in order  to  more 
fully support  the tight integration of the  soft- 
ware and hardware  systems. 

2. Develop  an  entire  framework  for  the  area of 
system testing. According to  the  seventh rule 
of the ISA framework,  since the logic of the 
framework is recursive, it may  be  an  extraor- 
dinary benefit to  the testing and  quality  control 
communities  to  develop  test  plans for each of 
the  perspectives  (rows) and descriptions (col- 
umns) of the  system  architecture. In order  to 
preserve  most of the ISA framework  when de- 
veloping the RTSA framework,  this  concept 
was  not  pursued. 

3. Integrate  the “Verification” column into  the 
JSA framework. Although the testing of real- 
time systems  requires more rigor and detail 
than  necessary for an information system,  the 
architecture of the information system would 
benefit as well. It could even  be argued that 
business  rules  or policies exist  that should be 
captured in this column, rather  than residing in 
one of the  others. 
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As technology continues  to climb the  price-per- 
formance  curve, real-time systems-along with 
information systems-will continue  to grow in 
scope and complexity. The method of construc- 
tion of these  systems will continue  to gain in 
importance.  This  issue of architecture  must  be 
addressed in order  to build these  complex engi- 
neering products called “real-time  systems.”  The 
framework for real-time systems  architecture as 
presented in this paper can provide this  structure. 
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