
A real-time
systems context
for the framework
for information systems
architecture

-

by D. J. Schoch
P. A. Laplante

In this paper we review the framework for
information systems archkecture first introduced
by Zachman' and show how it can be applied in
the context of real-time systems. Discussions are
included throughout the paper to convey some of
the characteristics unique to real-time systems
and to point out areas of special architectural
concern.

I n the past, when the depth and breadth of com-
puter applications were dramatically limited by

hardware technology, system architecture was
simple and straightforward. Today, business in-
formation systems are driven increasingly by
high-level business strategies, instead of smaller-
scale functional processes. Rather than just
mechanizing a manual procedure, company-wide
systems are moving and managing information
that is rapidly becoming the actual infrastructure
of the business. Furthermore, new technologies
and increasing information demands by managers
have taken business systems from batch process-
ing and time sharing to the domain of high-per-
formance, real-time systems.

An overall framework to better link systems to
businesses and at the same time guide the devel-
opment of these systems has been recognized by
many. In other words, a strict discipline of con-

struction-or architecture-must be known and
followed. In 1987 John Zachman proposed a
framework for information systems architec-
ture, within which all aspects of information sys-
tems architecture (ISA) are depicted, from high-
level business strategies to system coding. The
ISA logical construct serves to define the inter-
faces and integration of the various system com-
ponents.

In this paper we:

Review and examine the Zachman framework
within the context of real-time systems, which
are increasingly characterizing today's busi-
ness decision systems
Interpret this ISA framework so as to apply it
specifically to real-time systems architecture
(RTSA)
Present critical areas of architectural concern
unique to real-time systems by using several

Wopyright 1995 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

20 SCHOCH AND IAPLANTE 0018-8670/95/$3.00 0 1995 IBM IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995

Table 1 Architectural representations produced over the process of building a complex engineering project
~~

Representation Nature/Purpose Generic Representation Nature/Purpose
in Architecture “View” in Information

Systems

Bubble charts

Architect’s
drawings

Architect’s plans

Contractor’s plans

Shop plans

Building

Basic concepts for building
Gross sizing, shape, spatial

relationships
Architect/owner mutual

understanding
Initiation of project

Final building as seen by the

Floor plans, cutaways,

Architect/owner agreement

Establishment of contract

Final building as seen by the
designer

Translation of owner’s view
into a product

Detailed drawings
Basis for negotiation with

owner

pictures

on building

general contractor

Architect’s plans constrained
by laws of nature and
available technology

“How to build” description
Direction of construction

activities

Subcontractor’s design of a

Detailed stand-alone model
Specification of what is to be

Pattern

(Not used in architecture,
but used frequently in
manufacturing where
computer-controlled
equipment uses this to
produce some part of the
product)

parthection

constructed

Physical building

Ballpark

Owner’s
view

Designer’s
view

Builder’s
view

Out-of-context
representation

Machine
language
representation

Scope/objectives

Model of the
business

Model of the
information
system

Technology
model

Detailed
description

Machine
language
description

Strategic direction/focus of

Product/service focus
System concepthvhite paper
Initiation of project

the business

Organizational or functional
structure

Policies, methods, and
procedures for the
business processes

Requirements document
Specifications agreement

Translation of business
manager’s view into an
information system design

Logical design document
Logical representation of

system to be built

Logical system design
constrained by physical
technology

modules to be written

programming activities

Individual program design
Program code, database

description, networking
details

programmer activities

Depiction of program

Direction of overall

Direction of individual

Object code
Used by computer itself

Actual
product

Information
system

Physical system I

discussions about important aspects of real- future needs within the real-time systems de-
time systems velopment process

products and trends that fit into the RTSA frame- Throughout this paper the term information sys-
work terns refers to those computerized systems de-

* Draw some conclusions regarding current and signed primarily to support a business or business

Provide a cursory analysis of several current

I IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995 SCHOCH AND LAPLANTE 21

Table 2 Dlfferent types of descrlptlons for the same product

Descriptlon I Description II Description 111

Orientation Material Function Location
Focus Structure Transform Flow/connection
Description WHAT the item is made of HOW the item works WHERE the connections exist
Example Bill-of-materials Functional specifications Engineering drawings
Descriptive model Part-relationship-part Input-process-output Site-link-site
I/S analog Data model Process model Network model
I/S descriptive model Entity-relationship-entity Input-process-output Node-line-node

Adapted from J. A. Zachman, “A Framework for Information Systems Architecture”’

process. The most commonly understood of these
is the management information system (MIS),
which is “a computer-based system that makes
information available to managers with similar
needs.”’ Usually these systems collect and pro-
cess data in order to support management deci-
sions. The term real-time systems is used herein
when referring to computerized systems whose
correctness depends not only on logical correct-
ness but on the timeliness of output. Real-time
systems appear in virtually every computer ap-
plication, but especially in avionics, robotics,
process control, and simulation, and increasingly
in management information systems. In practical
situations, the main difference between real-time
and non-real-time systems is an emphasis on re-
sponse time prediction and its reduction.

A framework for information systems architec-
ture. In defining an “information systems archi-
tecture,” Zachman used the field of classical ar-
chitecture itself as an objective, independent
basis upon which to develop a framework for
discussion. Using the definition of deliverables
within that field led him to the specification of
analogous information systems architectural
products and, in so doing, helped him to classify
concepts that produced this “framework” in
which to represent information systems architec-
ture.

The framework he developed in this process ad-
dresses the different views of the various partic-
ipants involved in each stage (e.g., owner’s view,
architect’s or designer’s view, builder’s view),
along with the discovery that the same product
can-and must-be described in different ways
(e.g., material: what tbe item is made of; function:
how the item works; and location: where the
flows or connections exist). The resulting frame-

22 SCHOCH AND LAPIANTE

work is a two-dimensional matrix that presents
different architectural representations of the
product.

In Zachman’s architectural framework, the rows
represent the perspectives of the different partic-
ipants in the architectural representations, as de-
picted in Table l. These views and representa-
tions of the same product by the various players
in the process are different (in nature, content,
semantics, and so forth), not merely a set of rep-
resentations varying in detail. Each of these rep-
resentations is perfectly valid and necessary for
the development of the product, with the key be-
ing the transformations from one representation
to the next. The fourth column of Table 1, which
we have added to Zachman’s earlier work for
comparison, presents the analogous architectural
representations for information systems.

A second idea needs to be presented for the col-
umns of the framework matrix-different types of
descriptions exist for the same product. For ex-
ample, in manufacturing, a bill-of-materials de-
scribes what a product is made of, the functional
specifications describe how the product works,
and engineering drawings show where the con-
nections exist. Each description is required: look-
ing at a list of parts tells nothing about what the
part does or how it relates to other parts. Simi-
larly, functional specifications say nothing ex-
plicit about the parts that make up the product or
how it is constructed. Table 2 shows how different
descriptions can be used for different things, in-
cluding the analogs for information systems. No-
tice how each description has been prepared for
a different reason and purpose. Each one stands
alone and is distinct from the others, even though
all the descriptions pertain to the same object and
therefore are directly related to one another.

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995

Figure 1 Zachman’s framework for information systems architecture

OBJECTIVES/SCOPE
LIST OF
PROCESSES
THE BUSINESS
PERFORMS

LIST OF LOCATIONS IN WHICH
THE BUSINESS OPERATES

LIST OF THINGS
IMPORTANT TO
THE BUSINESS

PROCESS = CLASS
OF BUSINESS ENTITY = CLASS OF

BUSINESS THING
NODE =BUSINESS \
LOCATION PROCESS u I

MODEL OF
THE BUSINESS

EXAMPLE:
ENTITY/ RELATIONSHIP
DIAGRAM

EXAMPLE: EXAMPLE:
FUNCTION FLOW
DIAGRAM

LOGISTICS
NETWORK

MODEL OF
THE INFORMATION
SYSTEM

EXAMPLE:
DISTRIBUTED SYSTEMS
ARCHITECTURE

EXAMPLE:
DATA FLOW
DIAGRAM

EXAMPLE:
DATA MODEL

TECHNOLOGY
MODEL

EXAMPLE:
DATA DESIGN

EXAMPLE:
STRUCTURE CHART

EXAMPLE:

ARCHITECTURE
PHYSICAL SYSTEM

/ n
-I-

DETAILED
REPRESENTATION

EXAMPLE:
PROGRAM

EXAMPLE: EXAMPLE:
DATA DESIGN

EXAMPLE:
COMMUNICATIONS

FUNCTIONING
SYSTEM

EXAMPLE:
FUNCTION

EXAMPLE:
DATA

Based on Figure 1 in Sowa and Zachman, IBM Systems Journal 31, No. 3, 1992.

The information systems architecture. By combin- systems, Zachman formed the information sys-
ing the notions of different descriptions and dif- tems architecture framework, shown in Figure 1.
ferent participants from the architectural frame- Notice how this figure is essentially Table 1 but
work and applying the method to information drawn using information systems analogs, and

I IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995 SCHOCH AND LAPLANTE 23

that the columns “Data,” “Function,” and “Net-
work” represent different descriptions of the sys-
tem.

Interpreting the Zachman framework
in the context of real-time systems

Like information systems, real-time systems are
increasingly complex and difficult to build and
maintain. Zachman’s framework for information
systems architecture offers an opportunity to
structure the development of real-time systems.
Before proceeding to this development, we need
to discuss a few unique aspects of real-time sys-
tems.

An overview of real-time systems. Consider a soft-
ware system in which inputs represent digital data
from hardware devices or other software sys-
tems, and outputs are digital data that control ex-
ternal hardware. The time between the presenta-
tion of a set of inputs and the appearance of all the
associated outputs is called the response time. In
hard real-time systems, response times must be
explicitly bounded, or the system is considered to
have failed. Notice that response times of, for
example, microseconds are not needed to char-
acterize a real-time system; it simply must have
response times that are constrained and thus pre-
dictable. Most of the literature also mentions soft
real-time systems-those in which performance
is degraded but not destroyed when response time
constraints are not met-and even firm real-time
systems in which a few missed deadlines can be
tolerated. (In real-time systems, one type of fault
tolerance includes design choices that transform
hard real-time deadlines into firm or soft ones.)
Throughout this paper, however, we use the term
“real time” to mean “hard real time.”

Real-time systems are often reactive or embedded
systems, or both. Reactive systems are those that
have ongoing interaction with their environment,
such as a fire-control system that reacts to a pi-
lot’s commands. Embedded systems are those
used to control specialized hardware, which com-
pletely encapsulate the software. For example, an
automatic teller machine is embedded and reactive.

An important concept in real-time systems is the
notion of an event, that is, any occurrence that
results in a change in the sequential flow of pro-
gram execution. Events can be divided into two
categories: synchronous and asynchronous. Syn-

24 SCHOCH AND WPWNTE

chronous events occur at predictable times such
as execution of a branch instruction or hardware
trap. Asynchronous events occur at unpredict-
able points in the flow-of-control and are usually
caused by external sources such as a clock signal.
Both types of events can be signaled to the CPU by
hardware interrupts.

There is an inherent delay between when an in-
terrupt occurs and when the CPU begins reacting
to it, called the interrupt latency. Interrupt la-
tency is caused by both hardware and software
factors. Interrupts may occur periodically (at
fixed rates), aperiodically, or both. Tasks driven
by interrupts that occur aperiodically are called
sporadic tusks. Systems in which interrupts occur
only at fixed frequencies are called@ed-rute sys-
tems and those with interrupts occurring sporad-
ically are called sporadic systems. In round-robin
systems, each task is assigned a fixed-time quan-
tum in which to execute. A clock is used to initiate
an interrupt at a rate corresponding to the time
quantum. Each task executes until it completes or
its time quantum expires as indicated by the clock
interrupt. When the time quantum of a task ex-
pires, a snapshot of the machine must be saved so
that the task can be resumed later. A higher-pri-
ority task is said to preempt a lower-priority task
if it interrupts the lower-priority task; that is, a
lower-priority task is running when the higher-
priority task signals that it is about to begin. As
with the round-robin system, a snapshot of the
machine must be saved so that the lower-priority
task can be resumed when the higher-priority
task has finished. Systems that use preemption
schemes instead of round-robin or first-come-
first-served scheduling are called preemptivepri-
ority systems. The priorities assigned to each in-
terrupt are based on the urgency of the task
associated with that interrupt. Preemptive prior-
ity schemes have the associated problem of hog-
ging of resources by higher-priority tasks. In this
case, the lower-priority tasks are said to be facing
starvation. There are other, nonpreemptive, pri-
ority scheduling schemes, but these are of less
interest to us.

Prioritized interrupts can be either “fixed priori-
ty” or “dynamic priority.” Fixed priority sys-
tems are less flexible in that the task priorities
cannot be changed once the system is imple-
mented. Dynamic priority systems can allow the
priorities of tasks to change during program ex-
ecution-a feature that is particularly important

IBM SYSTEMS JOURNAL, VOL 34, NO I , 1995

in threat management systems. In a special class
of fixed-rate, preemptive priority, interrupt-
driven systems called rate-monotonic vstems,
priorities are assigned so that the higher the ex-

scheme is common in embedded applications,
particularly avionics systems.

A term often used as a measurement of real-time
system performance is time-loading, or CPU uti-
lization, and is a measure of the percentage of
nonidle processing. A system is said to be “time-
overloaded” if it is 100 percent or more time-
loaded.

1 ecution frequency, the higher the priority. This

Special difficulties in real-time systems develop-
ment. At least five considerations are crucial in

examine them. They are:

Temporal behavior
Multitasking
Intertask communication and synchronization
Object code efficiency and performance
System verification

Each of these considerations relates to cell(s) in
the ISA framework. We need to reinterpret the
framework, then, in order to accommodate these
considerations.

Temporal behavior. In real-time systems, bound-
ing response times, and thus predicting them, are
the most important considerations. Although re-
sponse times are not often perceived as a major
issue in information systems, modern applica-
tions such as program trading are highly time-
critical because they support devices such as net-
work interfaces, Quotron boxes, or high-speed
modems. Moreover, most managers would argue
that there is an intangible valuation function as-
sociated with the temporal “freshness” of any
piece of information involved in a business deci-
sion.

1 the development of real-time systems. We now

1

1

Since all hard real-time systems have scheduling,
timing, response time, and deadline concerns, the
design, depiction, and implementation of this be-
havior is mandatory in any architectural structure
guiding the life cycle of the real-time system. In-
deed, the ability to predict timing behaviors for
systems under development is considered by
many to be one of the most critical issues facing
real-time systems today. 4,5 Such prediction and

1 IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995

verification is known as “schedulability analy-
sis. ”

The basic idea presented by Zachman regarding
time (a “when” description column) was that it
need not be included because the processes could
be described via “snapshots” in time and because
of the lack of formalisms needed to depict the
cells in such a column. Although it is even more
difficult for real-time systems to specify temporal
behavior (and there is no agreement on how to do
it anyway), this “Time” (when) column cannot be
omitted since the correctness of the real-time sys-
tem is based on its satisfaction of explicit tempo-
ral behavior.

Multitasking. Although multitasking is implicitly
supported in mainframe computers, minicomput-
ers, and even personal computers, for many em-
bedded and reactive real-time applications, tem-
poral performance prediction is impossible or
unacceptably imprecise. Hence, in many time-
critical information systems applications, stream-
lined and predictable multitasking systems need
to be constructed. There are three types of mul-
titasking:

1. Cooperative schemes that do not require in-
terrupts (such as polled loops, cooperative
multitasking, and state-driven code)

2. Preemptive priority multitasking
3. Round-robin multitasking

There are also hybrids of these three. We talk
only about the second type, since the others can
be modeled as special cases of it. Typically, pre-
emptive priority multitasking allows higher-pri-
ority tasks to preempt lower-priority tasks and
permits low-priority or background tasks to easily
“slip in between” regularly scheduled or inter-
rupt-driven high-priority tasks and execute.
These foreground-background systems are the
most common solution for embedded applica-
tions. They are an improvement over the inter-
rupt-only systems in that the jump-to-self is re-
placed by non-time-critical code, called the
background. The interrupt-driven processes are
called the foreground. The background task is
fully preemptable by any foreground task and, in
a sense, represents the lowest-priority task in the
system.

It is common to increment a counter in the back-
ground to provide a measure of time-loading or

SCHOCH AND LAPLANTE 25

to detect whether any foreground process has
locked. For example, a counter is provided for
each of the foreground processes and is reset by
its respective process. If the background detects
one of the counters as not being reset, the cor-
responding task is assumed to be locked, and a
failure can be indicated. Certain types of low-
priority self-testing can also be performed in the
background. Other potential background tasks in-
clude low-priority display updates, logging to
printers, and other actions that interface to slow
devices.

Basically, preemptive priority multitasking pro-
vides for interrupt-driven systems to be written
and numerous tasks to be run concurrently. A
“Time” column is needed to depict this multi-
tasking facet of real-time systems. In addition,
“Data” cells play a major role in managing these
data structures so that the necessary bookkeeping
can be performed by the dispatcher of the oper-
ating system. At the same time, the various func-
tions of the dispatcher would be identified from a
“Function” column. A conceptual view (Objec-
tives/Scope) will probably address some of these
needs, but as development moves into the design
and construction of the system, depiction of this
view becomes crucial, further justifying the use-
fulness of all three columns (“Data,” “Func-
tion,” “Time”). Also, since the actual machine
language representation is necessary for the suc-
cessful implementation of a reliable and predict-
able interrupt scheme, a “Machine Representa-
tion” view is inserted into the RTSA framework.
Indeed, recent work with compiler optimization
stresses the need to rearrange the object code in
order to improve and monitor timing behavior.7

Intertask communication and synchronization.
The communication of data between processes
and the synchronization of tasks are two more
areas critical to real-time systems. Several tech-
niques can help implement reliable methods to
handle these issues, such as ring buffers, sema-
phores, test-and-set instructions, mailboxes, and
event flags. Some of these techniques (e.g., test-
and-set instructions) may relate to the machine
language and hardware architecture of the target
computer, again supporting the need to include
“Machine Representation’’ in the RTSA frame-
work.

Intertask communication can be implemented us-
ing a variety of methods. A more detailed discus-

26 SCHOCH AND LAPLANTE

sion of these approaches will be helpful in order
to address these critical real-time systems archi-
tectural concerns. For polled-loop systems, where

-

The communication of data between
processes and the synchronization

of tasks are critical to real-time
systems.

the polling and event processing code run in mu-
tual exclusion, intertask communication and syn-
chronization services are not obligatoly. With
coroutines, synchronization and communication
are built into the code, although protection of
shared resources is not. But for foreground-back-
ground systems and operating systems based on
the task control block model, these services are
essential. Intertask communication and synchro-
nization concerns generally arise during the log-
ical d sign and coding implementation of the sys-
tem. J he “Time” cells residing in the “designer’s”
view and especially in the “builder’s” view should
address these issues. The “owner’s” specifica-
tions may address some of these issues, but as the
system is broken down into program modules and
the intertask relationships are defined, these com-
munication and synchronization aspects become
more apparent. (Note that these communications
are between software modules and usually unre-
lated to geographic or geometric configuration,
which are more of a concern with geographically
dispersed information systems and the physical
manufacturing of products.)

Another method of handling synchronization
constraints is via an off-line pre-run-time sched-
uling algorithm, an approach that can significantly
reduce the resources needed for run-time sched-
uling and context switching. This approach also
fits into the “Time” cells, but at the “builder’s”
or “ ~ u b ~ ~ n t r a ~ t o r ~ ~ ” view. Interestingly, recent
work utilizing an extended entity relationship da-
tabase to support an object-oriented program-
ming and execution system addresses the related
issue of concurrency at a higher level.’ This ap-

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995

proach quite unexpectedly tends to bring the is-
sues of synchronization and concurrency into the
“Data” column in the RTSA framework as well.

Object code eficiency andperformance. Because
of the critical time-related demands of real-time
systems, the quality of the object code generated
by the compiler is a concern from at least two
perspectives:

Efficiency, with respect to size, speed, and

Ability to predict and monitor execution time

Although there are formal methods for the deter-
mination of such performance factors as response
time and time-loading, these methods generally
are applicable in extremely restricted situations
or in theoretical studies only. In most settings,
performance analysis is done using logic analyz-
ers, simulators, or “back-of-the-envelope7’ cal-
culations.

The best method for measuring the execution
time of any piece of code is to use a logic analyzer.
One advantage of its use is that hardware laten-
cies and other delays not due simply to instruction
execution times are taken into account. The
drawback of the logic analyzer is that the system
must be completely (or partially) coded and the
target hardware available. Hence, the logic ana-
lyzer is usually only employed in the late stages
of the coding phase, in the testing phase, and es-
pecially during system integration. When a logic
analyzer is not available, the code execution time
can be estimated by examining the compiler out-
put and counting macroinstructions. This tech-
nique also requires that the code be written, that
an approximation of the final code exists, or that
similar systems are available for analysis. The ap-
proach simply involves tracing the worst case
path through the code, counting the macroin-
structions along the way, and adding their exe-
cution times. These times can be found in the
manufacturer’s specifications or through mea-
surement with a logic analyzer.

Another accurate method of code execution tim-
ing uses the system clock, which is read before
and after executing code. The time difference can
then be measured to determine the actual time of
execution. This technique, however, is only via-
ble when the code to be timed is large relative to
the code that reads the clock.

overall performance

IBM SYSTEMS JOURNAL, VOL 34, NO 1. 1995

Time-loading requirements are specific design
goals because they affect hardware selection and
overall system performance. Several methods
can be used to predict or measure the code exe-
cution times that are needed in the calculation of
time-loading. These techniques can also be used
to calculate the context switch or software sched-
uling time for any interrupt handler.

Time-loading estimates are measures that are
meaningful primarily in cyclic real-time systems.
In polled loops, the figure is the relative percent-
age of time spent processing an event compared
to the time spent checking the flag. In state-driven
or cooperative multitasking systems, the measure
is the time spent in the dispatcher when no pro-
cesses need to run. In interrupt-driven systems,
calculation of time-loading from measured data
cannot be accurately computed for any type of
system.

Reducing execution times. Identifying wasteful
computation is crucial in reducing response times
and time-loading. Many approaches used in com-
piler optimization can be used (see Reference 10
for a summary of these), but other methods have
evolved that are specifically oriented toward real-
time systems, and we discuss those methods
here. For example, in most computers, integer
operations are faster than floating point opera-
tions. We can exploit this fact by converting float-
ing point algorithms into scaled integer algo-
rithms. In such a scheme, the least significant bit
(LSB) of an integer variable is assigned a real num-
ber scale factor. Scaled numbers can be added
and subtracted together and multiplied and di-
vided by a constant (but not another scaled num-
ber). The results are converted to floating point
output only at the last step-a process that can
save considerable time.

These concerns relating to object code efficiency
and performance analysis resulted in the insertion
of a “Machine Representation” view into the
RTSA framework-how the computer hardware
architecture “views7’ the product. In other words,
what the real-time system looks like when the
computer is actually executing the code. The
needs for this view were noted above with respect
to the other function-specific “difficulties” dis-
cussed, but the quality of the object code-from
both the efficiency and measurability perspec-
tives-must be included as a unique area of the
architecture.

SCHOCH AND LAPIANTE 27

System verification. In order to increase system
reliability, rigorous testing of the real-time system
is required. Since testing can only detect the pres-
ence of errors and not the absence of them, the
goal of testing must be to ensure that the software
meets its requirements. To this end, systemver-
ification answers the question, “Are we building
the system right?” Because of the importance of
system verification in connection with the devel-
opment of real-time systems, a new column, titled
“Verifi~ation,~’ has been added to the RTSA
framework. Interestingly, system validation (see
DeMarco”) answers the question, “Are we build-
ing the right system?” This validation falls into a
“why” column, addressing the concept of moti-
vation as presented in Zachman’s second paper
on his framework13 (with Sowa). Using the build-
ing construction analog, system verification and
testing is equivalent to the building codes estab-
lished to ensure the safety and reliability of the
building. Also equivalent are quality assurance
inspections, designed to verify that the manner
in which the building is being built adheres to
established methodologies and techniques. The
building inspector checks to see whether the
building is “up to code” at various stages during
the construction, meeting all applicable require-
ments. Similarly, a comprehensive system test
plan verifies that the deliverable by each partic-
ipant meets the original requirement. The “rules
of the framework” presented by Sowa and Zach-
man’3 are an appropriate test to ensure that this
new column adheres to the construct of the orig-
inal framework:

Rule 1.

Rule 2.

Rule 3.

The columns have no order. The place-
ment or priority of the “Verification”
column is irrelevant to the other col-
umns. A full and complete test plan could
be developed either before or after the
work on the other columns has been
completed.
Each column has a simple, basic model.
The simple, basic model for the “Verifi-
cation” column could be: performance-
verification-feedback; therefore, this rule
is also met.
The basic model of each column must be
unique. Again, the entity and connector in
the basic, columnar model for this new col-
umn, performance and verification, are not
repeated from another column. And the ba-
sic model itself (performance-verification-
feedback) is unique as well. Due to the lim-

ited scope of the extensions suggested here
for the RTSA framework, the following re-
maining rules continue to be true.

Rule 4. Each row represents a distinct, unique per-
spective.

Rule 5. Each cell is unique.
Rule 6. The composite or integration of all cell

models in one row constitutes a complete
model from the perspective of that row.

Rule 7. The logic is recursive.

A real-time systems context for the
framework for information systems
architecture

In his paper, Zachman points out that since his
“descriptions for the same product” answer the
three questions “what,” “how,” and “where,” it
is only logical that there must be at least “who,”
“when,” and “why” descriptions also. It is the
“when” dimension that is critical to the architec-
tural framework of real-time systems-and in fact
more important than the “where,” at least with
respect to real-time systems. In the realm of real-
time systems, any geographically distant commu-
nication is generally handled at a higher level
within the operating system and is probably trans-
parent to the real-time system application soft-
ware. As noted above, Zachman’s “Network”
column relates to the question of “where” in the
sense of a geographic dimension, not with respect
to intertask communications inherent in all real-
time systems. This intertask communication is
more concerned with event timings and task syn-
chronization than with communications proto-
cols and session management. In simpler terms,
real-time systems are focused on brief, time-
bound “handshakes” rather than with prolonged
“conversations” which must take place irrespec-
tive of geographic proximity. Of course, as it
relates to the geographic and certainly the geo-
metric description of the hardware used in the
real-time system, this dimension remains impor-
tant; however, this discussion is left for future
work.

One fundamental modification to the ISA frame-
work in the development of the RTSA framework
became necessary, that is, the addition of a new
column. Because of the extreme criticality at ev-
ery point in the development of the real-time sys-
tem, “Verification” is introduced as an additional
column in the RTSA framework and as an addi-

28 SCHOCH AND LAPLANTE IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995

Figure 2 A framework for real-time systems architecture

FUNCTION

THE PHYSICAL SYSTEM
LIST OF PROCESSES

PERFORMS

* P E R F O W C E
* VERIFlCATlON

LIST OF KEY TESTS TO
DETERMINE IF WE ARE
BUILDING THE SYSTEM
RIGHT

EXAMPLE:

DEFINITIONS
RESPONSE TIME

OI?JECTIVES/
SCOPE LIST OF THINGS

IMPORTANT TO THE
PHYSICAL SYSTEM

LIST OF TIME-CRITICAL
BEHAVIORS IN THE
PHYSICAL SYSTEM

EXAMPLE:
ENTITY/ RELATIONSHIP
DIAGRAM

EXAMPLE:

DIAGRAM
FUNCTION FLOW

EXAMPLE:

OF THE TIMING AND
ENGLISH DESCRIPTION

SYNCHRONIZATION
ASPECTS OF THE
PHYSICAL PROCESS

EXAMPLE:
HIGH-LEVEL STATE TRANSITIONS,
TIME-DEPENDENCY DIAGRAMS,
PSEUDOCODE, PROGRAMMING
DESIGN LANGUAGES

EXAMPLE:
DATA MODEL

EXAMPLE:

DIAGRAM
DATA FLOW

EXAMPLE:
FORMAL VERIFICATION
OF METHODSITOOLS,
PROTOTYPING,
BLACK BOX TEST PLAN

MODEL OF
THE REAL-TIME
SYSTEM

EXAMPLE:
DATA DESIGN

EXAMPLE:
TECHNICAL TEST
PLAN, WHITE BOX
TEST PLAN

EXAMPLE:

STATE CHARTS,
FINITE STATES AUTOMATA,

PETRI NETS

TECHNOLOGY
MODEL

EXAMPLE:
STRUCTURECHART

EXAMPLE:
DATA DESIGN
DESCRIPTION

EXAMPLE:
PROGRAM CODE

EXAMPLE:

LANGUAGES CAPABLE OF
PROGRAM CODE USING

SYNCHRONIZATION, AND
REPRESENTING TIMING,

CONCURRENCY
(SUCH AS ADA AND MODULA-2)

WALK-THROUGHS,
EXAMPLE:

CODE INSPECTIONS

DETAILED
REPRESENTATION

(5 5 REPRESENTATION
EXAMPLE:
RAW DATA

EXAMPLE:
MACHINE CODE

EXAMPLE:
SYSTEM
PERFORMANCE

EXAMPLE:
MAILBOXES.
SEMAPHORES,
INTERRUPT HANDLERS

EXAMPLE:
TEMPORAL BEHAVIOR

I

SYSTEM BEHAVIOR VIS-A-VIS
EXAMPLE:

SPECIFICATIONS

EXAMPLE:
AVAILABLE DATA

EXAMPLE:
SYSTEM
FUNCTIONALITY

tional description of the real-time system. These
concepts lead us to propose a reinterpretation to
Zachman’s framework resulting in a “framework
for real-time systems architecture.’’ After pre-
senting these changes, a brief examination of a
few recent products and trends follows to show
how they fit into and support this framework con-
cept as it applies to real-time systems. This will
serve to illustrate the applicability of the RTSA
framework.

2), the following key points summarize the rein-
terpretation of Zachman’s work:

The “Network” description column has been
replaced by “Time.” As noted earlier, because
of the critical nature of the temporal behavior of
real-time systems, the “Time” description of
every participant’s view must be described.
Since common local and wide area networking
and remote communications would probably be
handled at the higher, operating system level,
we feel justified in relabeling the “Network”
column.
“Machine Representation” has been inserted

Key points for a real-time systems architectural
framework. In order to develop a framework for
real-time systems architecture (shown in Figure

SCHOCH AND LAPIANTE 29 IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995

Table 3 Different types of descriptions for the same product-as defined in RTSA framework
~~~~~ 

Orientation 
Focus 
Description 

Example 

Descriptive 
model 

RT/S analog 
RTIS descriptive 

model 

Description I 

Material 
Structure 
WHAT the item is 

Bill-of-materials 

Part-relationship-part 

Data model 
Entity-relationship- 

entity 

made of 

Description Ii 

Function 
Transform 
HOW the item works 

Functional 

Input-process-output 

Process model 
Input-process-output 

specifications 

Description 111 

Time 
Dynamics 
WHEN the events 

Production schedule 

Event-cycle-event 

Response time 
Event-cycle-event 

take place 

Description IV 

Verification 
Testing/assurance 
Are we building the 

product RIGHT? 
Inspector’s checklist 

Construction- 
inspection-report 

Verification test plan 
Perfomance- 

verification-feedback 

as another  perspective, or view, of the  system. 
Since  the  interrupt  scheme, machine language 
implementation (to  ensure  test-and-set  instruc- 
tion availability, for example), performance 
predictability, and  execution  time  are  important 
to  a real-time system,  the  “Machine  Represen- 
tation”  row was added to  the framework. 
Another column has  been  added  to  the RTSA 
framework to explicitly address  the  description 
of the real-time system in the  context of system 
verification through testing. This column is  re- 
ferred to  as “Verification.” 
Various minor rewordings have  been made to 
translate  the information systems language to  a 
real-time systems analog. Also, row  numbers 
were added to facilitate references to  the frame- 
work in this  paper.  Since  the  rows of the ISA 
framework mirror the system life cycle  and  re- 
main virtually  unchanged in the RTSA frame- 
work,  no  further discussion is warranted.  How- 
ever,  since  the  columns  have  been significantly 
altered,  Table 3 repeats  Table 2 to  further ex- 
plain and  support the four  descriptions of the 
real-time system. 

Implications to real-time systems development. 
The following subsections  discuss how Zach- 
man’s framework,  interpreted  for real-time sys- 
tems,  can  have significant benefits during the sys- 
tem definition and  development  process. 

Provide solutions to critical real-time systems 
concerns. The rigorous structure and extensive 
integration that  the RTSA framework brings to  the 
design and  development of real-time systems  can 
help find solutions to problems of particular  con- 
cern,  such  as timing, predictability, and  dead- 
lock. These  types of problems are frequently 
caused by the  complexity of the  system. The 

30 SCHOCH AND LAPLANTE 

RTSA framework  provides  a  means  to  better plan 
and  integrate  the  numerous design and implemen- 
tation considerations. 

This  framework  can help to  develop  an organi- 
zation-specific architectural model to  segregate 
and define the various  areas  that make up  the 
overall  architecture of a real-time system.  Once 
an  overall  architectural model has  been defined, 
it  will contribute to a  better  understanding of de- 
sign issues  and  the  reasons for developing (or  not 
developing) the  various  representations, and it 
will ensure  that  no  aspect of the  system is over- 
looked. For example, most well-known commer- 
cial operating  systems are  too  bulky  and all-pur- 
pose  to be useful in real-time applications with 
stringent  response time requirements.  In addi- 
tion, for custom  computers,  such as  those  used in 
many  embedded applications, no commercial op- 
erating  systems  may be available. Hence,  the 
real-time systems designer often  must design a 
bare  bones  operating  system or use  one of the 
specialized real-time operating  systems  that  are 
commercially available. Working with this frame- 
work  for  the  architecture could provide  a  better 
design. 

Categorize  tools and techniques. A study of the 
various specifications and design techniques  used 
in real-time systems  makes it obvious  that  each 
technique  has  strengths  and  weaknesses  that  can 
often  be confusing. This  framework  can classi@ 
the different methods of depicting the time and 
other dimensions of the real-time system,  and 
therefore  who in the  development  cycle would 
best utilize the tool or methodology. A detailed 
discussion of this  topic  can  be found later in this 
paper. 

IBM SYSTEMS JOURNAL,  VOL 34, NO 1, 1995 



Guide selection of tools and techniques. When 
the  work  is  categorized  into  the cells of the frame- 
work,  a  system  development group can  use  this 
understanding to select specific tools or tech- 
niques, or  both, that  best fit into  the organiza- 
tional structure of the  group. For example, once 
a  particular programming language is  chosen,  the 
tools  that  best  support  quick and accurate  soft- 
ware  construction using that language can  be  se- 
lected  for  the  requirements  analysis and design 
phases. When the roles, deliverables,  and  “hand- 
offs” of the group  are defined, an implementation 
of CASE (computer-aided  software engineering) 
tools  may be possible as well. 

Define deliverables and hand-offs for all partici- 
pants. Once  each cell in the  framework  is  under- 
stood and the  work  that  takes  place within the cell 
is defined, all deliverables for  that  piece of the 
development  process will be identified. When 
these  deliverables  are  documented,  the hand-offs 
between  the cells are identified as well. This iden- 
tification is critical to  the project management of 
the  development effort and provides  measurable 
outputs for each  participant. 

Improve communications within  individual proj- 
ect teams. The common understanding of the 
entire  architectural  framework by  the “soup- 
to-nuts”  project team will provide  a  common lan- 
guage for  the  architecture and improve dialog 
among team members. When given a firm base- 
line that  can  act as a  reference point for  the  team, 
they  cannot help but  talk the same language and 
communicate  better. 

Facilitate communications within the real-time 
systems development community. Hopefully this 
framework will contribute to “establishing  a 
stake in the  ground”  for real-time systems archi- 
tecture-including requirements definition and 
the  development structure-that can  be  referred 
to  by members of the real-time systems commu- 
nity. 

Analysis of current trends and products 

This  section offers a brief analysis of some meth- 
odologies and  tools  that  support  the  architectural 
structure of the real-time systems  environment. 
This  cursory  survey gives some significant exam- 
ples from recent  literature  that fit into  and help 
explain and  support  the real-time systems frame- 
work. 

IBM SYSTEMS  JOURNAL, VOL 34, NO 1, 1995 

The  Core  method for real-time  requirements. A 
1992 paper by Faulk  et al. l4 on  the Core  method 
addressed  the  issue of gathering requirements  for 
real-time systems.  The member companies of 
the  Software  Productivity  Consortium  develop 
large,  mission-critical, real-time applications. They 
have identified requirements as the  top  priority 
problem in systems development. The board of 
directors of this  group  stated  that  “Requirements 
are incomplete,  misunderstood,  poorly defined, 
and change in ways  that are difficult to manage.” 
The  Core (Consortium Requirements  Engineer- 
ing) method was developed  to  address  this  prob- 
lem and is a single, coherent  method  for specify- 
ing real-time requirements. 

Major features. This  method  uses  the following 
techniques in its design: 

Integrates  object-oriented  and formal models 
Integrates graphical and formal specifications 
Permits nonalgorithmic specifications 
Provides  a machine-like model 

This  method is focused solely on developing re- 
quirements  for  a real-time system  with  the fol- 
lowing as some of its high-priority characteristics: 

Precise  and  testable  system specifications 
Specifications that are  easy  to alter,  and  easily 
indicate ripple effects 
Comprehensible and practical presentation to 
all audiences 
Support for the  representation of system 
bounds,  interface,  and  context 
Definition of specifications allowed as a  group 
of distinct and relatively  independent  parts 
Requirement that guidelines and  examples of 
required input are included 
Definition of what  makes  a  set of specifications 
congruous 

Where it fits into the real-time systems  ffame- 
work. The  Core  method  uses  Stephen Mellor’s 
real-time structured  analysis  approach”  as  one of 
the existing methods used in the meld of existing 
methods to form Core.  Interestingly,  this  ap- 
proach  represents  a  system  as  a  structure  that  can 
be  viewed in three  ways: 

Information-What information does  the  sys- 
tem use, and  what  are  the  relationships among 
pieces of information? 

SCHOCH AND LAPLANTE 31 



Process-What are  the  functions of the  the  sys- 
tem,  and  what  data  and  control information are 
exchanged among functions? 
Behavior pattern-What are  the states of the 
system,  and  what  events  cause  transitions 
among states? 

To point out  the  obvious,  these  map  directly to 
the  “Data,”  “Function,” and “Time”  columns of 
the real-time framework  shown in Figure 2. The 
Core  method  appears  to  be designed primarily to 
address  the  development of the owner’s view 
(rows 1,2, and  possibly  even 3 of the  framework) 
of the  requirements  with much more  structure 
than  natural language. Without delving into  its 
details,  the  Core methodology uses  relatively 
nontechnical  methods to  capture  the owner’s and 
possibly the designer’s perspectives.  It  provides 
the ability to  capture requirements in a  rigorous 
fashion,  thereby enabling the  designer, the 
builder, or  both  to directly  transform  these  re- 
quirements to  the next  representation of the  sys- 
tem and ultimately to  the system itself. 

Ready  Systems’  VRTXdesigner. In order  to give 
programmers the ability to verify timing require- 
ments,  Ready  Systems’ VRTXdesigner provides 
for  the verification of the underlying model by 
simulating the application, which  must be running 
with  the company’s VRTX operating  system’s 
real-time scheduling mechanisms. l6 This  product 
also  provides  programmers with the ability to 
monitor  system  response  to stimulus, as well as 
concurrency, for the application skeleton. 

Major  features. VRTxdesigner is a  top-down de- 
sign tool, enabling users  to graphically lay  out 
their application modules  with  icons. Its simu- 
lated real-time operation gives the  user  the ability 
to  check for conflicts, deadlocks,  lockouts,  star- 
vations,  processing  bottlenecks,  and timing re- 
quirements  violations, including verification of 
critical timing deadlines,  task  preemption, and 
even CPU utilization. The application modules  can 
utilize the capabilities of the VRTX operating  sys- 
tem in the  areas of scheduling and  processing (in- 
cluding queues, mailboxes, semaphores,  and 
event flags). The  behavior of the  external world 
can also be included in this simulation, either as 
a  periodic  function  or  statistically as a time dis- 
tribution function. The simulation is  a  batch  run 
and all results  are  saved. Users can  then  produce 
graphical time lines that  show individual task  ex- 
ecution.  In  later simulations, users  can specify 

32 SCHOW AND LAPLANTE 

individual paths  that  they wish to monitor and 
subsequently see  where  the  execution time is 
spent  and how well the defined scheduling actu- 
ally performs  under real-time conditions with the 
VRTX os kernel and the underlying hardware. 

Where it fits into the real-time systems pame- 
work. This product fits primarily into the “Time” 
column, beginning in the design phase (rows 3 and 
4). Although  it does not actually assist in the initial 
design of the system, it certainly can be used to 
validate and improve the design. Its usefulness in 
verifymg  all  timing aspects of the program code is 
invaluable and extends into an analysis of the  ex- 
ecution time  using machine language  timings. It re- 
mains, however, a simulation tool, and in reality it 
does not fit into the architectural cells relating to  the 
actual software construction (although depending 
on  the development environment, it  may). Fitting 
perfectly into the “Time” cell that relates to  the 
design of the system, this product offers two ex- 
tremely robust capabilities: 

Simulation of every  aspect of the  system  de- 
sign, even  down to execution timings of indi- 
vidual  tasks,  thus allowing the designer to val- 
idate  and  improve  the design 
Ability to inherently  turn itself over  to  the  ac- 
tual programmer after  the design is completed, 
before implementation and installation of the 
code begins 

Unlike any popular programming language used 
in the  development of information systems,  this 
product  clearly  has  a  home in the  framework  for 
real-time systems  architecture  above  the  pro- 
gramming cells (row 5).  

Dynamo: A time-based  object-oriented  model. Dy- 
namo is another modeling process  to include in a 
real-time software engineering architecture. l7 An 
object-oriented  data model for real-time systems, 
Dynamo  integrates time into  the  object-oriented 
model. The  concept of time remains uniform 
across all aspects of the model, from object  struc- 
ture and behavior, to  the execution model, to  syn- 
chronization and concurrency  control. 

Majorfeatures. In Dynamo, a  notion of quasi-real 
time is defined, which  its  authors claim keeps 
enough synchrony with real time to  be meaning- 
ful, yet allows enough slack  for  the  computer to 
do its work efficiently and reliably. Without prob- 

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995 



Table 4 Real-time  language  requirements  and  where they fit into the real-time  framework 

Language  Requirement  Framework  Rows in Addition  to  Detailed 
Column  Representation  View 

Predictable  execution  time Time, Verification 
Schedulability  analysis Time, Verification Technology Model 
Strong typing Data 
Structured  constructs Data 
Modularity All Technology  Model 
Error handling Function Technology Model 
Multiprogramming Time  Technology Model 
Process synchronization  mechanisms Time  Technology Model and  Machine 

Ability to  access  hardware locations All Machine  Representation 
Direct  interrupt handling Function Machine  Representation 
Language  readability to allow for All 

Small,  simple, and well-defined All Technology  Model 

Representation 

long-term maintenance 

ing the  details of “quasi-real time” nor evaluating 
its  validity,  the  authors give the following expla- 
nation of this  view of time: l7 “If ‘real-time’ is the 
notion of everyday, human-oriented time, one 
may say  that  the  computer-time is, by  contrast, 
artificial, or ‘virtual’ time which abstracts  some 
essential temporal relationships  such as sequen- 
tiality of events. On the  other  hand, in a human- 
oriented  interactive  environment, real-time has 
the  advantage of being more intuitive. Our effort 
to  take  advantage of the  abstraction  properties of 
virtual time while retaining a notion of real-time 
led to  the notion of quasi-real time (qrt) . . . qrt is 
real-time with a built-in slack for accommodating 
events inside the  computer  that  occur in unpre- 
dictable order and take up an  unpredictable length 
of time. Since  qrt is synchronized with the real- 
time clock at  event  boundaries, it is guaranteed to 
be ‘close enough’ to real-time.” The  authors  ex- 
plain that  this  concept of quasi-real time is one of 
the  properties  that  their  objects  contain;  the full 
list of properties follows: 

A unique object identifier 
A  set of attributes 
A  set of constraints 
A time stamp 
A quasi-real-time clock 

In the  object  space,  there  can be several  tuples 
with  the  same  object identifier as long as they 
have different time stamps (containing different 
versions of the  object in time). The  quasi-real- 
time clock is used to link quasi-real time with real 
world time. 

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995 

Where  it fits into  the  real-time systems frame- 
work. Although Dynamo itself was not a full- 
fledged programming language at  the time the pa- 
per by Bapa Rao et  al.” was written, it clearly 
offers an object-oriented programming technique 
to be implemented in the software  construction 
phase of the  project.  It  therefore belongs in the 
“Technology Model” and “Detailed Representa- 
tion” views  (rows 4 and 5 )  of the framework. 
Since  its  purpose  is  to  directly guide and contrib- 
ute  to  the  actual programming of the  system,  the 
user and logical designer would find little use  for 
the model. The  technique  is  object-oriented, so it 
already  addresses  both  the  “Data”  and  “Func- 
tion”  descriptions of the  product. When the time 
dimension is added  into Dynamo’s object-ori- 
ented model, it begins to  address all of the tem- 
poral behavior  aspects of the  system as well, and 
also covers  the  “Time” column. 

Requirements of real-time programming lan- 
guages. The impact of programming language 
constructs in the design and implementation of 
real-time systems is often  overlooked.  A  thor- 
ough discussion of programming languages that 
were specifically designed for real-time use is be- 
yond  the  scope of this  paper.  Some discussion of 
these  topics  can  be found in Reference 18; the 
interested  reader  is also referred to  References 
19, 20, 21, and 22. 

In Reference 23 Stoyenko  sets  forth  requirements 
for a real-time programming language. In  Table 4 
each of these is related to the  appropriate col- 
umns in the RTSA framework for real-time sys- 

SCHOCH AND LAPLANTE 33 



tems  architecture;  where  appropriate, affected 
rows  other  than  “Detailed  Representation” (row 
5-actual programming) are  noted. As shown in 
this  table,  much of his programming language re- 
quirements  relate to  the temporal  aspects of the 
programming construction. As also shown in Ta- 
ble 4, a significant majority of the  requirements 
set forth by Stoyenko deal with  the  temporal  be- 
havior of the real-time systems  architecture. 
Again, this  framework  helps to identify and  cat- 
egorize  needs in this  direction. A detailed case 
study using the  Flex language (one of the lan- 
guages included in Reference 22) presented the 
ability of the language to  ensure temporal  cor- 
rectness  as well as functional  validity.2 Its au- 
thors  summarize their requirements of a real-time 
language as follows: 

Capacity to  express different types of timing 

Mechanism for  run-time  systems  to  enforce 

Provision for ensuring the  temporal  correctness 

requirements 

timing constraints 

of the  program 

All three of the  above language requirements  re- 
late  to  the temporal  behavior of the real-time sys- 
tem, again supporting  the  “Time”  aspect of the 
architecture of the real-time system. It also reaf- 
firms this  needed modification of the  Zachman 
framework to make it applicable to  the  work of 
building real-time systems. 

Specification  and  design  techniques-where  they fit 
into  the  framework. Many specification and  de- 
sign techniques  are  popular  today,  and  each  tech- 
nique has  strengths  and  weaknesses.  The RTSA 
framework  can help classify these  methods of de- 
picting the  various  dimensions of the real-time 
system,  and  therefore  who in the  development 
cycle would best utilize it and  possibly which 
tools  should  be used for  the  development of that 
area of the  architecture. Common methods in- 
clude  Petri  nets, finite state automata (FSA), data 
flow diagrams, Warnier-Orr  notation,  structured 
English, and .temporal logic. We cannot  possibly 
survey  these  adequately  here  but  the  interested 
reader  can  consult  the  references. For example, 
References 25 and 26 provide  a  broad-based  dis- 
cussion of software specification, References 27 
and 28 discuss  the  use of FSA, References 29 and 
30 discuss  Petri  nets,  References 31 and 32 dis- 
cuss  Warnier-Orr  notation,  References 12,  15, 
and 33 discuss  data flow diagrams, References 24 

34 SCHOCH AND LAPLANTE 

and 27 discuss temporal logic, and Harel’s state 
charts  are  described in References 34 and 35. Ta- 
ble 5  summarizes  some of the  more popular tech- 
niques, the  advantages  and  disadvantages  for 
each,  and  where  they fit into  the RTSA framework. 
For example, usually natural language descrip- 
tion is  the  best  way for the  “owner”  to rep- 
resent  requirements  for  the physical system. 
Pseudocode and programming design languages 
are  slotted for the designer’s view. Of course, one 
would not  expect  a programmer to utilize these 
tools as  the sole  method to implement the  system. 
Rather, the deliverable from each of these  tools 
would guide what  is  referred to here as  the “logic 
builder”  (possibly  the programmer, possibly 
someone else) to next  represent  the  requirements 
using techniques like finite state  automata and 
Petri  nets. Finally, these  deliverables would be 
used by  the programmer to  actually  “build” the 
program from this  representation. 

As shown,  some of the  techniques include the 
“Time” column. This would imply that in any 
requirements  document  for real-time systems, 
certain of these  techniques  must  be utilized in 
order  to include the time-related  description of 
the system.  These  tools  and  techniques would be 
used to  address  system  aspects  such  as timing, 
deadlock  avoidance,  and  response time predict- 
ability. It should also  be  noted  that  some of the 
tools  are applicable to rows 1 and  2 of the frame- 
work  but  only at higher levels of description.  This 
is understandable  but  certainly  not  the  purpose of 
the  framework.  That is, if the  same tool or meth- 
odology can be used by  the different participants 
in the  development  process (again: how the 
“owner”  sees  the  product, how the  “designer” 
designs it,  and how the  “builder”  constructs  it), 
all well and good. But according to  the frame- 
work,  these  transitions  are  transformations from 
one  representation to another,  not simply the 
same  representation with increased detail. Table 
5  also  points  out  the  need of tools and method- 
ologies at  rows 1 and  2 of the  framework  to  de- 
scribe  the  “Time”  aspects of the  system.  Human 
language and mathematical specifications can  be 
used,  but  no  other  techniques  apply  to  these  early 
descriptions of the  system.  This ability to  cate- 
gorize and  even assign tools  and  techniques to 
each  area of the  architecture is perhaps  one of the 
most useful aspects of the framework. It  can help 
guide choices of tools and methodologies, define 
deliverables  and hand-offs, and serve  as a model 
for  the  requirements  and design efforts. 

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995 



Table 5 Specification and design techniques 

Technique Advantages Disadvantages Framework 
RowlColumn 

Human language 

Mathematical 
specification 

Flow  chart 

Structure  chart 

Pseudocode & 
programming 
design language 

Finite state 
automaton 

Data flow 
diagram 

Well known 
Can  clarify descriptions 

Precise  and unambiguous 
Promotes formal 

Rigorous code optimization 
program-proving techniques 

can  be done 

Widely  used and  understood 
Describes individual tasks well 

Widely  used and understood 
Best  for small/simple systems 
Clearly identifies function 

execution sequence 
Identifies  recursion  and 

repeated modules 
Encourages top-down design 

Better than using high-order 
language  for  specifications 

Close  to a  programming 
language 

Adaptable  to formal 
program-proving techniques 

Some  can handle concurrency 

Widely  used  for  state-driven 

Easy  to  develop 
Easy  to  generate  code  to 

implement 
Since based on mathematics, 

can  be formally  optimized 
Unambiguous 
Can depict  concurrency 

Widely  used and  understood 
Emphasizes flow of data 
De-emphasizes flow of control 
Useful in identifying 

Structure  chart  can  be 

Can help  partition system  into 

systems 

concurrency 

derived 

hardware  and  software 
components 

Ambiguous 
No code generation 

Can be  cryptic 
Difficult to  do 
Training in mathematical 

modeling not  common 
Formal proofs error-prone 

Cannot depict  multitasking 
Temporal  behavior cannot  be 

Encourages  GOTOs 

Provides for no conditional 
branching 

Cannot describe concurrency 
or  process interaction 

No way  to  show temporal 
behavior 

described 

Still  programming language in 
which user must be fluent 

Cost and maintenance of design 
tools can  be high 

Errors  can still be  made in 
high-level abstractions 

“Insideness” of modules 

No intertask communications 
Number of states  can  grow 

cannot  be  shown 

very large 

Difficult to  show 
synchronization in flow 

All/AlI 

AlVData, Time, 
Verification 

Rows  1-4/Function, 
Verification 

Rows 1-4/Function 

Rows  3-4/Data, Function, 
Time  (depending on the 
tool), Verification 

Rows  3-4/Data (states 
only),  Time, 
Verification 

Rows 3-4Data 

System verification and testing. The  crucial  area of umn in the RTSA framework is designed to  ensure 
testing is  part of most  software  development that  this need is met and that  this  test plan is 
methodology and,  therefore, must be included in robust  and thorough enough to test  the  output of 
an architectural  framework as well. The  behavior each  stage,  as well as  the final product.  Tradi- 
of the  system must constantly  be  checked against tional testing methods  can  be generally applied to 
the  system  requirements.  The “Verification” col- a real-time system, including black box  and  white 

IBM SYSTEMS JOURNAL, VOL 34, NO 1 ,  1995 SCHOCH AND LAPLANTE 35 



box testing. These  techniques  can  be used by the 
unit author and by  the  independent  test  team to 
exercise  each module and  the  overall  system.  The 
goal of these  tests is to  ensure that all system 
requirements, especially those  concerning sys- 
tem  response  times,  have  been met. These  tech- 
niques can also be applied at  the  subsystems  and 
system level. For a  more  complete discussion of 
testing  techniques  see  References 36, 37, or 38. 

Summary and conclusions 

This  framework  for real-time systems  architec- 
ture can have  the following uses in the world of 
real-time systems specification, design, develop- 
ment, implementation, and testing: 

Categorize and assign tools and techniques  to 

Guide tool and methodology choices used by 

Define deliverables for each  contributor. 
Clarify hand-offs between  participants. 
Assist in addressing problem areas of particular 
concern to real-time systems. 
Provide  a  structure in which a model can  be 
developed  for  the  entire  software life cycle. 
Propose  a  baseline  for discussion of systems 
architecture among the real-time systems com- 
munity. 
Improve  communications  between  participants 
and  understanding of each  other’s individual ar- 
chitecture. 

each  area of the  architecture. 

the  various disciplines. 

It is impossible to determine  exactly  what is miss- 
ing; that is, which cells within the  framework  ap- 
pear  to  be without popular tools,  etc., in the real- 
time systems world. A  thorough  survey and 
analysis of existing tools, methodologies, simu- 
lation and performance  evaluation  environments, 
and programming languages with the  purpose of 
“slotting”  them  into one of the cells of the  frame- 
work would appear  to  contribute  to  the applica- 
bility of the real-time framework as presented. 
Undoubtedly  this  task would be exhausting. Un- 
fortunately,  the  usefulness of the  results would be 
questionable.  Many would argue about  the  cate- 
gorizations, and  others would not be  interested 
since so many of the  products would be  irrelevant 
to their  environment.  However, it would behoove 
any development  organization  to  evaluate  their 
own tools, etc., within the  context of the RTSA 
framework  for the purpose of identifying which 
areas of the  framework  are being addressed and 

36 SCHOCH AND LAPLANTE 

which  areas are not being addressed.  In  order  to 
build a  complex real-time system,  an  architec- 
tural framework  such  as  that  presented in this 
paper  can  serve to ensure  accuracy and depend- 
ability. This  work would also help the organiza- 
tion realize some of the benefits noted in the  pre- 
vious  section,  such  as definition of deliverables, 
clarification of hand-offs and  interfaces, and im- 
proved communications. 

Once  the “missing pieces”  are identified (i.e., 
cells in the  framework not included in the  devel- 
opment methodology of an  organization), how 
this  impacts  the  systems  architecture and ulti- 
mately  the  development of real-time systems 
must be decided on a  case-by-case  basis. One or- 
ganization may  consciously  decide  to omit or 
combine individual architectures, or  work toward 
implementing a single methodology or mecha- 
nized tool, or both, to support  the  entire  systems 
life-cycle architecture.  Any  approach  is  valid, 
and any  approach  can be successful. But the 
framework  can  support  these  conscious  decisions 
and guide the individual model that is used for any 
real-time systems  architecture. 

During the  development of this  paper,  three  areas 
for future  work  became  apparent: 

1. Include  the  hardware  architecture in the RTSA 
framework  where  needed in order  to  more 
fully support  the tight integration of the  soft- 
ware and hardware  systems. 

2. Develop  an  entire  framework  for  the  area of 
system testing. According to  the  seventh rule 
of the ISA framework,  since the logic of the 
framework is recursive, it may  be  an  extraor- 
dinary benefit to  the testing and  quality  control 
communities  to  develop  test  plans for each of 
the  perspectives  (rows) and descriptions (col- 
umns) of the  system  architecture. In order  to 
preserve  most of the ISA framework  when de- 
veloping the RTSA framework,  this  concept 
was  not  pursued. 

3. Integrate  the “Verification” column into  the 
JSA framework. Although the testing of real- 
time systems  requires more rigor and detail 
than  necessary for an information system,  the 
architecture of the information system would 
benefit as well. It could even  be argued that 
business  rules  or policies exist  that should be 
captured in this column, rather  than residing in 
one of the  others. 

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995 



As technology continues  to climb the  price-per- 
formance  curve, real-time systems-along with 
information systems-will continue  to grow in 
scope and complexity. The method of construc- 
tion of these  systems will continue  to gain in 
importance.  This  issue of architecture  must  be 
addressed in order  to build these  complex engi- 
neering products called “real-time  systems.”  The 
framework for real-time systems  architecture as 
presented in this paper can provide this  structure. 

Cited references 

I 

1. J. A. Zachman, “A Framework for  Information Systems 
Architecture,” IBM Systems Journal 26, No. 3, 276-292 
(1987). 

2. R. McLeod, Jr., Management Information Systems: A 
Study of Computer-Based Information Systems, Mac- 
millan Publishing Company, New  York (1990). 

3. D. Connor, Information Systems Specification and De- 
sign RoadMap, Prentice-Hall,  Inc.,  Englewood Cliffs, NJ 
(1985). 

4.  G. Pospischil, P. Puschner, A. Vrchoticky, and R. Zain- 
linger, “Developing Real-Time Tasks with  Predictable 
Timing,” ZEEE Software 9, No. 5, 3 5 4 5  (September 
1992). 

5. C.  J. Paul, A. Acharya, B. Black,  and  J. K. Strosnider, 
“Reducing  Problem-solving  Variance to Improve Predict- 
ability,” Communications of the ACM 34, No. 8, 81-93 
(August 1991). 

6.  A. D. Stoyenko, V. C.  Hamacher,  and R. C. Holt,  “An- 
alyzing  Hard-Real-Time  Programs  for Guaranteed  Sched- 
ulability,” ZEEE Transactions on Software Engineering 
17, No. 8, 737-750 (August 1991). 

for  Object-Oriented  Real-Time Software,” ZEEE Soft- 
ware 9, No. 5, 45-51 (September 1992). 

8. T.  Shephard  and  J. A. M. Gagne, “A Pre-Run-Time 
Scheduling  Algorithm  for Hard Real-Time Systems,” 
ZEEE Transactions on Software Engineering 17, No. 7, 
669-677 (July 1991). 

9. P. Gopinath, R. Ramnath, and K. Schwan,  “Data  Base 
Design for  Real-Time Adaptations,” The  Journal  of Sys- 
tems Software 17, No. 2,  155-168 (February 1992). 

10. A. V. Aho, R. Sethi,  and  J. D. Ullman, Compilers: Prin- 
ciples, Techniques  and Tools, Addison-Wesley  Publish- 
ing Co., Reading, MA (1986). 

11. P. A. Laplante, Real-Time Systems Design andAnalysis, 
IEEE  Press, Piscataway, NJ ( 1992). 

12. T.  DeMarco, Structured Analysis and System Specifica- 
tion, Prentice-Halflourdon, Englewood Cliffs, NJ (1978). 

13. J. F. Sowa and J. A. Zachman, “Extending and  Formal- 
izing the  Framework for  Information Systems Architec- 
ture,” IBM Systems Journal 31, No. 3, 590-616 (1992). 

14. S. Faulk,  J. Brackett, P. Ward, and J. Kirby, Jr., “The 
Core Method  for Real-Time Requirements,” IEEE Soft- 
ware 9, No. 5, 22-34 (September 1992). 

15. P. T.  Ward  and S. J. Mellor, Structured Development for 
Real-Time Systems, Vol. I, 11, 111, Prentice-HalliYour- 
don,  Englewood Cliffs, NJ (1986). 

16. R. Weiss,  “Real-Time System Simulator,” Electronic En- 
gineering Times (September 10, 1990). 

17. K. V. Bapa  Rao, A. Gafni, and G. Raeder, “Dynamo:  A 

1 

1 7. P. Gopinath, T. Bihari, and R. Gupta,  “Compiler Support 

1 

1 IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995 

Time-based  Object-oriented  Model to  Support Distrib- 
uted Collaborative  Development,” Proceedings of the 
1990 ZEEE International Conference on Computer Sys- 
tems and Software Engineering (May 1990), pp. 61-69. 

18. A.  Burns  and A. Wellings, Real-Time Systems and  Their 
Programming Languages, Addison-Wesley Publishing 
Co., Reading, MA (1990). 

19. J. R. Allard  and L. B. Hawkinson, “Real-Time  Program- 
ming in Common LISP,” Communications of the ACM, 
35, No. 9,  64-69 (September 1991). 

20. A. D. Stoyenko and E. Kligerman,  “Real-Time  Euclid:  A 
Language  for Reliable Real-Time Systems,” IEEE Trans- 
actions on Software Engineering SE-12, No. 9,  940-949 
(September 1986). 

21. F. Boussinot and R. DeSimmi, “The  ESTEREL  Lan- 
guage,” Proceedings of the ZEEE 79, No. 9, 1293-1304 
(September 1991). 

22. Proceedings of the IEEE 79, No. 9 (September 1991). 
23. A. D. Stoyenko,  “The Evolution  and  State-of-the-Art of 

Real-Time Languages,” The Journal  of Systems and Soff- 
ware 18, 61-84 (April 1992). 

24. K. B. Kenny and  K.-J. Lin, “Building Flexible Real-Time 
Systems Using  the Flex Language,” Computer 24, No. 5, 
70-78 (May 1991). 

25. I.  Sommerville, Software Engineering,  4th Edition, Ad- 
dison-Wesley Publishing Co., Reading, MA (1992). 

26. C. Ghezzi, J. Mehdi, and D. Mandrioli, Fundamentals of 
Software Engineering, Prentice-Hall,  Inc.,  Englewood 
Cliffs, NJ (1991). 

27. Y. S. Ramakrishna, P. M.  Melliar-Smith, L. E. Moser, 
L.  K. Dillon, G. Kutty, “Really  Visual Temporal Rea- 
soning,” Proceedings of the Real-time Systems Sympo- 
sium (1993), pp. 262-273. 

28. E. M. Clark,  Jr., D. E. Long, and K. McMillen, “A  Lan- 
guage  for  Computational Specification and Verification of 
Finite State  Hardware Controllers,” Proceedings of the 
IEEE 79, No. 9, 1283-1292 (September 1991). 

29.  W. B. Joerg, “A Subclass of Petri Nets  as a Design Ab- 
straction for  Parallel Architectures,”ACMComputerAr- 
chitecture News 18, No. 4, 67-75 (December 1990). 

30. N. G. Leveson and  J. L. Stolzy, “Safety Analysis  Using 
Petri  Nets,” ZEEE Transactions on Software Engineering 
13, No. 3,  386-397 (March 1987). 

31. K. Orr, Structured System Development, Yourdon  Press, 
Englewood Cliffs, NJ (1977). 

32. J. D. Warnier, Logical Construction of Programs, Van 
Nostrand Reinhold, New  York (1974). 

33.  D. J.  Hatley  and I.  A. Pribhai, Strategies for Real-Time 
System Specification, Dorset  House,  New York (1987). 

34. D. Harel, “On Visual  Formalisms,” Communications of 
the ACM 31, No. 5, 514-530 (May 1988). 

35. D. Harel  et al., “STATEMATE: A  Working Environment 
for the Development of Complex Reactive  Systems,” 
IEEE Transactions on Software Engineering 16, No. 4, 
403414 (April 1990). 

36.  B. Hetzel, The Complete Guide to Software Testing, 2nd 
Edition, QED Information Sciences Inc.,  Wellesley,  MA 
(1988). 

37. W. E. Howden, “Life-Cycle Software Validation,” Soft- 
ware Life-Cycle Management, Infotech,  Maidenhead, 
England (1980), pp. 101-116. 

38. G. J.  Myers, Reliable Software Through Composite De- 
sign, Van Nostrand Reinhold, New  York (1975). 

Accepted for publication July 11, 1994. 

SCHOCH AND LAPLANTE 37 



Daniel J.  Schoch AT&T Corporation, 1 Speedwell Avenue 
East, Morristown, New Jersey 07962 (electronic mail: 
dschoch@attmaiZ.att.com). Mr. Schoch  is manager of infor- 
mation  technology in the  corporate human resources division 
of ATBrT. He holds B.S. and M.S. degrees in computer 
science  and  has 20 years  experience in applying  technical so- 
lutions to a variety of business and technical  needs, using 
mainframe-,  minicomputer-, and  personal  computer-based 
configurations. Prior  to joining AT&T, Mr. Schoch  worked 
with  real-time systems for Control  Data  Corporation  and  was 
responsible for  both  systems  and applications  programming. 
He later joined  Citibank, NA  as a  technical  specialist over- 
seeing  a  regional data  center and  related new applications 
development.  In addition to  several nontechnical staff assign- 
ments, his AT&T  career  covers a variety of technical areas: 
applications  analysis  and  programming, corporate  data  stan- 
dards development,  local area  network installation and man- 
agement, end-user technical support,  and  clientherver soft- 
ware development. 

Phillip A. Laplante Department of Mathematics and Com- 
puter Science, Fairleigh Dickinson University, Madison, New 
Jersey 07940 (electronic mail: laplante@sun490. fdu.  edu). 
Dr. Laplante  is  Associate  Professor  and Chair in the  Depart- 
ment of Mathematics  and Computer  Science and  a  visiting 
research  scientist  at the Real-Time Computing Laboratory of 
the New  Jersey  Institute of Technology. He holds  a Ph.D. in 
computer  science  and a  Professional  Engineering  license in 
the  state of New  Jersey.  He  has  over 10 years  experience 
designing real-time systems  and  was the  lead software engi- 
neer in the design and implementation of a  new  generation of 
inertial measurement  systems for the  space  shuttle.  He  has 
taught courses in real-time  design  throughout the  world and 
has published  widely on real-time systems, computer-aided 
design, image processing, and  software engineering. 

Reprint Order  No. G321-5556. 

38 SCHOCH AND IAPLANTE IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995 


