06 HAYNE AND PENDERGAST

Experiences with object-
oriented group support
software development

This paper describes practical design and
implementation experiences gained when
creating Group Support Systems (GSS) in a
networked personal computer environment.
Examples of GSS based on the shared context
model and implemented using C, C++, and
Actor languages are presented. Graphical user
interfaces and multitasking extend traditional
methods for supporting group work. An object-
oriented communication system is introduced
comprised of objects that provide support for
all inter- and intraprocessor communications
between the GSS applications. Multiple levels of
data service are provided to maintain shared
data, coordinate user views, and transmit cursor
positions in a convenient and efficient manner.
The applications presented not only demonstrate
the viability of implementing GSS on personal
computer-based systems, but also show the
ability to develop complex applications in
different programming environments that make
use of common routines. The unique properties
of the object-oriented paradigm greatly facilitate
the creation and use of Group Support Systems.

Over the past ten years academic and industry
researchers have developed computer sys-
tems that increase the productivity of work
groups. This research has progressed somewhat
independently along two parallel tracks: Group
Decision Support Systems (GDSS) and computer-
supported cooperative work (CSCW). DeSanctis
and Gallupe defined a Group Decision Support
System in 1987 as ““an interactive computer-
based system that facilitates the solution of un-
structured problems by a set of decision-makers
working together as a group.”! Tasks commonly

0018-8670/95/$3.00 © 1995 IBM

by S. C. Hayne
M. Pendergast

supported by GDSS include brainstorming, idea
organization, voting, strategic planning, policy
formation, total quality management, and com-
munication. These systems are typically imple-
mented for personal computers running the disk
operating system (DOS) on low-cost machines that
have allowed corporations to adopt and experi-
ment with this new method of group work. Sev-
eral research prototypes have been developed to
prove feasibility; the most notable of these has
evolved into the commercial product Group-
Systems V**. Computer-supported cooperative
work was defined by Ellis, Gibbs, and Rein in
1991 as “computer-based systems that support
two or more users engaged in a common task (or
goal) and that provide an interface to a shared
environment.”? CSCW applications include systems
design, collaborative writing, project manage-
ment, and process control. The research proto-
types available have been implemented in UNIX**
platforms?”’ and, although these systems support
different tasks, they are very similar from an ar-
chitectural standpoint.

For example, consider five individuals working
on a proposal. Each wishes to work on a section
of the document at the same time. The group re-
quires real-time access to the shared data, com-

©Copyright 1995 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995

Figure 1 A common Group Support System environment

FILE SERVER AND

SHARED DATA REPOSITORY
-

FACILITATOR OR

GROUP LEAD
=)

puter applications that provide structure to group
work, and advanced user interface concepts.
Hardware requirements include a processor fast
enough so that all inputs (from everyone in the
group) can be processed in real time, a reliable
and fast network so that all participants feel that
they are working together, and enough storage for
both individual and group work. Rather than be
rigorous about which label should be used, we use
the more generic term Group Support Systems
(Gss), defined by Jessup and Valacich in 1993,%
throughout this paper.

The keys to making groups more productive is to
allow a high degree of parallel activity and unre-
stricted access to shared data. If concurrent ac-
cess to data is controlled via locks, then locking
must be performed with a fine level of granularity
such that one person’s work activity will not be
restricted by another’s.

The most common platform for the development
of GSS is a set of workstations that communicate
over a local area network and employ a file server
as a shared data repository (see Figure 1). Until
recently, GSS applications were confined to run-
ning under a single tasking operating system (like
DOS) and employed a mixture of text and primi-
tive graphical user interfaces. This environment
seriously limited the complexity of the tasks and
the degree of interaction that could be supported.
For example, while the group is brainstorming a
solution by using the computer applications, an in-
dividual cannot access any external information in

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1985

order to support ideas. Nor can individuals work on
something else if they are finished contributing.

With the maturity of multitasking operating sys-
tems that support the 1IBM Common User Access*
(CUA*) protocols for graphical user interfaces,
limitations such as those just illustrated have been
removed. IBM’s Operating System/2* (0s/2*) with
Presentation Manager* and Microsoft Corpora-
tion’s Windows** (hereafter called Windows) are
examples of such environments®® without the
limitations. With these advanced environments
and the proper software, users should be able to
migrate (usually with few changes) from single-
user software to multiuser software. In the mul-
tiuser environment, users would develop ideas or
designs in a private work space, then move the
data, or paste the work space into the shared area.

Most programmers use C or Pascal run-time li-
braries of applications to perform standard input,
output, memory management, and other activi-
ties. These applications assume a standard oper-
ating environment using character-based termi-
nals for user input and output, and exclusive
access to system memory and the input/output
devices of the personal computer. Under 0S/2 and
Windows, these assumptions are no longer valid
because all applications share the resources of the
computer. These operating environments have
many features that extend the capabilities of the
basic DOS environment and are mandatory for de-
velopment of functionally advanced GSS.

HAYNE AND PENDERGAST Q7

These features are:

» A graphical user interface—Applications share
the display by using a window for interaction
with users. This window is a combination of
useful visual devices, i.e., menus, controls, and
scroll bars, that the user manipulates to direct
the actions of the application. Those GSS that
follow user access standards help to ensure that
users can learn applications quickly and that the
applications behave in a predictable manner.
Currently, all GSS behave differently.

s Device-independent graphics—Device-indepen-
dent graphics are supported by inserting a de-
vice context between the specific graphic oper-
ation performed and the specific device. This
device context is comprised of the device
driver, the output device, and the output port.
Various size screen displays and printers are
thus supported with the same drawing func-
tions. GSS can easily be used on a variety of
available platforms.

¢ Multitasking—Multitasking is performed and
applications are protected from the difficulties
of memory management. Most virtual memory
systems page unused code and data segments to
disk using a combination of the least recently
used and demand paging algorithms. GSS can
coexist with a melange of other support tools to
further enhance interaction.

s Threaded message queues for device input—
Input from supported devices (i.e., keyboard,
mouse) is provided automatically to every win-
dow created in a uniform format called an input
message. For example, every time a key is
pressed, two messages are sent (e.g., for Win-
dows, WM_KEYDOWN and WM_KEYUP). System
level message dispatchers collect all hardware
device and application messages, queue them,
and redirect them to the destination application.
These types of messages allow easy coordina-
tion of group applications because the message
can be sent from another machine on the net-
work. Using the above message queue, appli-
cations can send messages to each other to
share information dynamically or to trigger ac-
tions.

These features have some useful strengths. De-
vice-independent graphical support makes it very
easy to develop graphical applications that will
operate on a multitude of delivery platforms. Vir-
tual memory frees the developer from memory
management and allows initial development of

08 HAYNE AND PENDERGAST

memory-inefficient prototypes. The messaging
capability of 0S2 and Windows is a unique
strength for GSS software. Most GSS applications
need to send and receive messages from other
applications that are taking part in the group ses-
sion. 0s/2 and Windows allow this to be done in
a trivial way at a single workstation. One only
needs to provide the appropriate network support
to allow those same messages to travel to other
stations. This communications layer has been im-
plemented and will be described later.

In this paper we first discuss the data sharing
models and peer-to-peer communications that are
fundamental to supporting group work. Next we
report on the lessons learned from developing
group software using the object-oriented para-
digm in both traditional (C) and nontraditional
(C++, Actor) environments, respectively. Fi-
nally, we outline the conclusions and directions
for future research.

Alternative GSS process models

In order to understand the problems presented to
GSS developers, it is first necessary to describe
some basic interactions between users, and be-
tween users and programs. We briefly look at two
existing group work paradigms: group decision-
making and coauthoring.

The group decision-making model. The group-de-
cision making model employs an automated form
of the three-phase model of intelligence, design,
and choice.!' Systems that follow this model are
predicated on assumptions that the best decisions
are reached only if an adequate amount of time is
spent in the discussion and generation of alterna-
tives, and that the more alternatives generated
and evaluated the better the outcome will be. The
principal drawback to this technique is the diffi-
cult task of consolidating similar alternatives and
reaching a group consensus.

Figure 2 represents the data flow and propagation
of the group decision-making process model com-
mon in commercial Group Decision Support Sys-
tems. Under this model a session begins with a
problem or focus item. The problem is replicated
in N+1 discussion files (where N is the number
of users). Users may comment upon the problem
and others’ responses during brainstorming.
Users make one entry into a file and are then
randomly switched to another file. This allows

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995

Figure 2 Traditional Group Decision Support Systems data flow

PROBLEM
STATEMENT

BRAINSTORM: i ’ : N PARAL

EL, GENERATE. N+1 BHAlN
(NaNUMBER OF USERS)

(N=NUMBER OF USERS) ..

IDENTIFY ISSUES AND SOLUTI !ONS _IN PARALLEL; GENEEATE N USTS 0 }SSUE$ E 350 0, BRA!N&TORM!NG FiLES.

. CONSOLIDATE ISSUE LISTS

(NaNUMBER OF USER&

TDGETHER CONSOLIDATE THE N

RANK ORDER: VOTE:

_IN'PARALLEL, VOTE OM THE ISSUES ORDEREL:BY. RANK. "

N+1 different discussion streams to develop and
encourages all viewpoints to be considered. Fol-
lowing brainstorming, users work individually to
generate lists of issues or solutions to the prob-
lem. The group then merges and consolidates the
lists. The lists are distributed to each workstation
and voted upon by each user. Several methods of
voting exist such as sorting from most acceptable
to least acceptable, or sorting by a predefined cri-
teria using a Likert scale (1 being best and 7 being
worst). When the users have finished voting, the
ranked lists are collected, aggregated, and the re-
sults displayed. The lists are voted upon with this
process repeating as necessary. In general, we
found that participants enjoyed the brainstorming
and voting phases, but found the consolidation
phase to be tedious. The longer participants were
allowed to work on parallel tasks (increasing pro-
ductivity and satisfaction), the greater the amount
of time needed in the integration tasks.

This approach has been shown to be successful, 2
but can be improved by addressing several prob-
lems that are inherent in the data sharing proto-
cols. The brainstorming of N+1 files is a tech-
nique derived from a manual (paper) method. "
While it does promote many contributions and

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995

can provide a high degree of parallel activity, it
does not allow a user to address fully a question
in a particular file or respond to all comments in
a file. In very large groups (IV>16) it is possible
that a user might only obtain a given file once or
not at all. Having a separate issue and solution
generation phase is good for focusing the user’s
attention on that task, but it does not provide the
capability for users to discuss proposals electron-
ically and revise proposals before a vote is taken.
This technique generates copious alternative so-
lutions, but leads to the creation of many dupli-
cate issues, which in turn requires a separate and
lengthy serial consolidation phase. Also, iterating
the process is difficult due to the number of
phases and overhead of starting and stopping a
tool.

The coauthoring model. The coauthoring model,
or the merging or integrating of work, has also
been a very difficult problem in the areas of mul-
tiperson authoring and conceptual modeling and
design.'*" It involves providing the group with
access to a single document or design that enables
a single group view to evolve over time from
inputs of the group members.? The coauthoring
paradigm allows access to the document, but en-

HAYNE AND PENDERGAST @9

Figure 3 Group coauthoring process model

| DESIGN 1.0
XNt
A2 xN2]
MERGE
P B23 XNs .
MERGE B4
A4 3 XNa
v S |
A1S
o
MERGE
BASELINE [T} WORK IS ASSIGNED WORKIS MERGED] FINAL DESIGN USERS A, 2, C,.X
DESIGN -} INDIVIDUALLY AS APPROPRIATE VERSIONS 11-15, 21-24, 31-32,..N1-N4
AND IN PARALLEL

forces very little structure on the group. How-
ever, each author’s inputs must continually be
merged with those of the other authors. Posner et
al.* studied writing strategies and found four pre-
dominant ones:

* Single, where one person writes the document
based on inputs from the group

» Scribe, where one person transcribes the
thoughts of the group during a meeting

* Separate, where the document is separated into
sections with each member of the group respon-
sible for a part

¢ Joint, where the entire group writes the docu-
ment together, jointly deciding the phrasing of
every sentence

The results of the study indicated that the use of
the separate strategy, with independent document
control, dominated all forms of collaborative writ-
ing. An implication is that current technology, in the
form of single-user word processors, can dictate the
group’s writing strategy. The increased availability
of local and wide area networks facilitates the re-
laying of documents between authors, but the data

100 HAYNE AND PENDERGAST

access model employed by single-user tools re-
stricts the choices of writing strategies.

Figure 3 represents the work flow for users em-
ploying the separate strategy. It begins with a
baseline revision level or starting point. Each user
is assigned a portion of the work and individually
works through the details of that piece. As seg-
ments of the work are completed, they are merged
with the portions being completed by other users
or with the original baseline. Thus for any single
revision level there are a minimum of N-1
(N=number of users) integration operations.
Each operation could require moderate to exten-
sive changes to the segments being merged, de-
pending on the level of communications sup-
ported during the independent work phase. These
changes can be necessitated by inconsistent and
varying work methodologies (or writing styles),
duplication of work, omission of components,
and incompatibility.

The Shared Context Model. The problems of the
group decision-making and coauthoring models
addressed in the previous section led to the adop-

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995

Figure 4 Shared Context Model for group decision support systems applications

’7 PROBLEM
STATEMENT

DIsCUsS:

IN PARALLEL, GENERATE IDEAS IN ONE BRAINSTORMING FILE.

)

L

IDENTIFY JSSUES AND: SOLUTIONS:

IN PARALLEL, GENERATE ONE LIST OF ISSUES BASED ON ELEGTRONIC DISCUSSION.

RANK ORDER VOTE:

iN PARALLEL, VOTE:ON THE ISSUES ORDERED BY. RANK,

tion of an alternative approach: the Shared Con-
text Model. 8 Shared contexts are by no means a
new concept. Variants of the Shared Context
Model have been embodied in many, if not most,
computer-supported cooperative work applica-
tions. Establishing and maintaining a joint under-
standing of the information is what differentiates
GSS applications that support the Shared Context
Model from those that provide “what you see is
what I see” (WYSIWIS) views of information. For
our purposes, shared contexts are defined as a
common work environment consisting of infor-
mation, representations of the information (text
or graphics), and most importantly, a joint un-
derstanding of the information.

Figure 4 illustrates the Shared Context Model for
GDsS applications. Like Figure 2, the model starts
with a problem or group focus item. Users are
free to make comments on the problem and raise
subissues or related focus items. When the dis-
cussion has reached a mature state, users will be-
gin to propose solutions. The discussion proceeds
with users commenting on each other’s solutions
and submitting alternate proposals. When a vote
is taken the solution list is condensed and the
process continues.

The Shared Context Model improves on the tra-
ditional methods using several techniques. Data

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995

redundancy, which occurs in classical brain-
storming implementations, is reduced by giving
users concurrent access to all information in the
decision process. Users are allowed to categorize
inputs as general comments, issues, or solutions,
giving more direction and focus to electronic con-
versations. Finally, the ability to cycle quickly
through the discussion, alternative analysis, and
voting phases provides a better environment for
creating compromise solutions and reaching a
consensus. The important differences are that
users are given more freedom to progress from
one stage of the decision process to the next, have
greater access to data, and are free to respond to
any issue or proposal at any time.

The Shared Context Model developed for GDSS
applications can be extended to encompass co-
authoring applications as well {(see Figure 5). In
the coauthoring perspective each user has access
to shared data and may manipulate the data using
an individual view. Work is coordinated via
shared views of the data. Private data, i.c., data
used in the work but derived from external
sources, are also available. The key point is that
all users have concurrent read and write access to
all the shared data. They work in parallel, using
individual views of the data, and may coordinate
their work using shared views. Individual views
may overlap; when this is the case, a change

HAYNE AND PENDERGAST 101

Figure 5 Shared Context Model with a coauthoring perspective

USER N ,
PRIVATE VIEWS
AND DATA

USER 1 ,
PRIVATE VIEWS ~ "
CAND DATA.

..

USERB -~-
PRIVATE VIEWS.
\AND DATA- .

.GROUP'S. ‘
SHARED VIEWS
. AND DATA

USER §
PRIVATE VIEWS
AND DATA

 USER 4 o
- PRIVATE VIEWS
‘i " AND DATA

) PRNATET VIEWS.

causes all views to be updated in real time. The
only merging or integration steps necessary are
those that are required when adding data or work
from sources external to the shared context. Be-
cause shared data are maintained in one context,
standards can be enforced consistently. Compat-
ibility of work segments is enhanced, since they
are created and joined concurrently. Having a sin-
gle context also prevents work duplication and
decreases the possibility of omissions. The
shared views provide a common focus and aug-
ment group communications. Several examples
of multiuser text editors exist that employ shared
workspaces. >1"18

Maintaining a joint understanding of the informa-
tion in coauthoring applications is much more dif-
ficult than in GDSS applications. In GDSS applica-
tions, the bulk of the shared information is in the
form of ideas and comments generated by partic-
ipants as they work toward the solution to the
problem. This allows each participant to form a
mental picture of the group’s understanding of the
problem. On the other hand, the shared informa-
tion in coauthoring systems is restricted to the
work product (i.e., the diagram or document).
The mental processes that participants go through
during the creation of the document are generally
not captured. Instead, this communication is re-
stricted to verbal interaction. This verbal com-

102 HAYNE AND PENDERGAST

munication is suspended when participants are
working in parallel on different segments of the
document™ and when participants work on the
document at different times.

Data sharing techniques

Group interfaces differ from single-user inter-
faces in that they depict group activity and are
controlled by multiple users rather than a single
user. This introduces problems not associated
with single-user interfaces, i.e., concurrency con-
trol, view management, and work space manage-
ment. Multiple users can produce a higher level of
activity with a greater degree of concurrency in a
shorter amount of time compared to a single user.
Therefore, multiuser interfaces must support this
behavior.

We have chosen to manage this complexity
through the implementation of a relaxed WYSI-
WIS.® WYSIWIS alone implies that the shared con-
text is guaranteed to appear the same to all par-
ticipants.? WYSIWIS can be relaxed, or slightly
different, along four dimensions: display space,
time of display, subgroup population, and con-
gruence of view. The systems described herein
are in the relaxed subgroup population. The co-
ordinator of the meeting can create subgroups and
change their access security dynamically. The

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995

systems are also relaxed along congruence of
view in that individual users can change their per-
spective on the shared context, e.g., zoom in on
parts of the context. This has been done to reduce
distraction. If individuals are allowed to maintain
their own view of group data, these data have to be
shared in some rationally robust manner. Thus, we
have implemented the Shared Context Model using
peer-to-peer communications, shared files, and a
hybrid file- and message-based system.

Program-to-program communications. This sec-
tion describes an object-based communications
system that was specifically designed to support
group work through the use of channel objects.
Channel objects are different from network ob-
jects in that they are created dynamically, de-
pending on the requirements of the group appli-
cation. Our channel objects are defined as
dynamic multicast connections that allow sta-
tions to enter and exit a session at will, i.e., mul-
ticast nonpermanent sessions. The ability to
maintain shared data and views requires capabil-
ities not present in most data communications
systems, such as the ability to perform secure
broadcast communications and the ability to
maintain dynamic multicast connections.*® Imple-
menting distributed applications with the charac-
teristics and requirements previously specified
with standard peer-to-peer connections is possi-
ble, but would present several major complica-
tions. The communication system described in
the following paragraphs is designed to relieve the
task of low-level, data communication session
management from the applications and make ef-
ficient use of transport layer resources. This is
accomplished via a set of network and channel
objects that act as an interface between applica-
tions and the network.

The communication system is comprised of three
specialized communication objects (see Figure
6): a network base object (NBO), a network inter-
face object (N10), and a name server object (NSO)
for object names.” They provide support for all
inter- and intraprocessor communications be-
tween the GSS applications presented later. The
base object (NBO) provides transport services to
the interface object (NIO), which in turn queries
the name server (NSO). These three objects work
together in order to create and maintain GSS chan-
nel objects. The object-oriented nature of their
design has the benefit of separating (hiding) the
transport level communications calls from appli-

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995

cations, allowing these protocols to be modified
without affecting the applications. For example,
the NIO object was recently updated to support
Novell, Inc.’s IPX** transport protocol in addi-
tion to IBM’s NetBIOS (TCP/IP will be added in the
near future). If the N10O did not exist, then all ap-
plications making network calls would have had
to be modified to support 1PX. This design has
been implemented in both a C+ + object-oriented
programming environment and in a Microsoft
Windows environment using standard C.

Network base object. This is an abstract object
designed to be inherited by all Gss applications
and provides the interface between GSS applica-
tions and the network interface object. The NBO
provides functions for connecting with remote
objects, transmitting messages to objects, regis-
tering and deregistering objects, and requesting
object connection lists (lists where the object is
active). In a single program environment the NBO
takes the form of a C+ + abstract object. In mul-
tiprogramming environments such as Microsoft
Windows, the NBO takes the form of a dynamic
link library!® (DLL).

In order for an application to transmit data on a
GSS channel, the application must register with
the NBO and request the data to be transmitted.
The system performs the actual session calls, net-
work addresses, and transmits and receives.

Depending upon the implementation, the pro-
cessing of incoming data is performed in one of
two ways. In the C++ implementation, the NBO
directly initiates an applications message pro-
cessing method when the message arrives,
whereas in the Windows environment, a Win-
dows event message is generated for each incom-
ing message.

Network interface object. Communications be-
tween different workstations are handled by the
NIO (see Figure 7). As seen from Figure 6, the
base object (NBO) provides a wrapper around the
NIO. The NIO resides on each workstation and is
responsible for controlling the interface between
GSS channel objects and the transport layer drivers
served by the base object (NBO), e.g., NetBIOS, IPX,
TCP/IP. This includes maintaining service access
points for each channel that needs to perform net-
work communications, grouping of outgoing mes-
sages, and reassembly and queuing of incoming
messages. Transport services are multiplexed by

HAYNE AND PENDERGAST 103

Figure 6 Network aobjects in a typical communication system

WORKSTATION 1 ¢ 7 CH1

;—"—,,’:, %

NE
L4

CH2
CH1

WORKSTATION 2

CH1

CH2

{WOHKSTATION 3 M CHi

m% CH2 1
CH2
L APP1 SgeCHI

NBO = NETWORK BASE OBJECT
NIO = NETWORK INTERFACE OBJECT
NSO = NAME SERVER OBJECT

el TASK-TO-TASK COMMUNICATION
4= = == =P PROCESSOR-TO-PROCESSOR COMMUNICATION

the base object (NBO), therefore, the NIO main-
tains logical session numbers (LSN in Figure 7).

The NIO uses two types of data transmissions:
broadcast datagrams and reliable session connec-
tions. Broadcast datagrams are used for mes-
sages where speed is more important than reli-
ability. For example, telepointer positions (X,Y)
are transmitted more than 20 times a second in
order to generate smooth movement of a pointer
across a screen, but the loss of a message creates
no dire consequences. Reliable session connec-
tions are used to transmit data that must not be
lost, e.g., voting results, text document updates.
The application can select the mode of transmis-
sion (secure or unsecured) when transmitting a
message.

When an application registers a channel object,
the base object (NBO) informs the interface object
(N10) of its presence. Then the NIO registers the

104 HAYNE AND PENDERGAST

application with the name server object (NSO),
described below, and enters the application’s ad-
dress in a local address table. Transport level con-
nections are then established with the N10 on each
workstation in the broadcast list of the GSS chan-
nel, if one does not already exist.

When an application is ready to send a message
on a GSS channel, it invokes a base object (NBO)
transmit function. The base object (NBO) transmit
function formats the data and passes the data to
the interface object (NIO) for transmission. The
NIO transmits the message to each workstation in
the broadcast list (reliable) or broadcasts a data-
gram (unreliable). When a message is received
from a remote workstation, the NIO on that work-
station passes it along to all applications that have
registered with the channel.

The NIO maintains only one transport level con-
nection with each workstation, regardless of the

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995

Figure 7 Network interface object (NIO) internals

NETWORK INTERFACE OBJECT

MMO—<ITMWY —AVOTVZPT-

GROUP SUPPORT
SYSTEMS <
A -
P
P
L
1 <
c
A
T
(l) <
N
)
<
<
-

CHANNEL
OBJECTS

TRANSPORT
CONNECTIONS

number of channel objects on the workstations
that are exchanging information. This is done by
multiplexing many session level (channel) con-
nections over a single transport level connection,
thereby reducing the overhead of creating and
maintaining multiple transport connections be-
tween stations and making better use of local area
network (LAN) adapter resources.

The design of the NIO has been derived from a
reliable broadcast communication system previ-
ously developed in a conventional C environ-
ment. This communication system was success-
fully used to develop electronic market programs
for experimental economics research and for im-
plementing multiuser GSs tools.?> The design
relied on a central workstation to sequence and
broadcast messages to other user workstations.
The central workstation scheme was dropped be-
cause of loading problems created by large
groups, delays due to the extra transmissions re-

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995

quired, and delays due to the complexity of the
take-over protocol that was required when the
central workstation failed. For some applica-
tions, such as text editors, sequencing of updates
is mandatory for maintaining consistency on all
workstations. For these tasks, a sequencing ap-
plication could be developed that used a separate
channel to receive messages and then rebroadcast
them (a many-to-one in combination with a one-
to-many channel).

Name server object. The NSO maintains multicast
connections for network objects. To do this, each
object must know which workstations on the local
area network (LAN) have active shared objects.
The NSO is designed to maintain a system-wide
list of shared objects and the workstations that
have active instances of these objects. These ob-
jects are formed on a user group basis and are
implemented as shared files under a server direc-
tory accessible to the user group. Each channel

HAYNE AND PENDERGAST 105

object is represented by a record in the file. Each
object record stores the mode and type of the object
as well as a list of active stations.

Whenever a new instance of a shared object is
created on a user workstation, it is added to the
list of active workstations by the interface object
(NI0). That NIO then broadcasts this change to all
NIOs in the active list. The user workstation NIO
then uses the workstation list to establish con-
nections with other workstations currently using
the object. Once connections have been estab-
lished, the current state of the object can be so-
licited from one of the other user workstations.
When an object becomes inactive on a user work-
station it is responsible for communicating this to
facilitate deletion from the active list. The NIO will
then relay this information to user workstation
NIOs that remain active so they may update their
object connection tables. Objects may also query
the NSO to determine the station address of a sin-
gular object or to receive an updated list of station
addresses for duplicated objects.

Shared file access. DOS currently provides low
level protection for files through the use of file
access and sharing modes. Access modes are
Read, Write, and ReadWrite. To support the shared
context paradigm, either files must be shared or
a database management system must be used.
We have chosen to use shared files because they
have the advantage of easy implementation, fast
execution, and a small memory overhead. The
file-sharing modes implemented are DenyRead,
DenyWrite, DenyNone, DenyReadWrite. Access and
sharing modes are specified by the application
when the file is opened. These modes can be used
in combination in order to ensure consistency
while providing dual access. For example, an
application updating a shared file should open
it with ReadWrite/DenyWrite, while an applica-
tion simply reading the file would open it with
Read/DenyNone.

A common practice for single-user Windows ap-
plications is to keep a disk file open only while
processing the current Windows message. For
multiuser applications, a Windows message that
requires a file update should cause the file to be
opened (ReadWrite/DenyWrite), updated, and then
closed to allow other users access to the file. An
error on opening the file would indicate that the
file is currently being updated by another user; the
application should delay a few tenths of a second,

106 HAYNE AND PENDERGAST

then try again, i.e., binary backoff. A Windows
message that does not require changing the
file, e.g., WM_PAINT, could open the file (Read/
DenyNone) and read the data. This simple protocol
provides concurrent data access to many user ap-
plications.

Hybrid shared data implementation. In order to
maintain both shared data and shared views, it
is necessary to combine the functions of shared
files and program-to-program communications. A
shared files dynamic link library (SFILES.DLL) was
created to perform both functions for a GSS ap-
plication. Input and output functions within
SFILES look like standard C input/output func-
tions and are:

sfopen(HWnd,File_Name,Sharing_Mode)
sfclose(HWnd,File_Handle)
sfread(HWnd,File_Handle,Offset,Addr,Count)
sfwrite(HWnd,File_Handle,Offset,Addr,Count)
sfappend(HWnd,File_Handle,Addr,Count)

Sfopen creates a special file handle and registers
the file as a shared object with the interface object
(NIO). Sfclose releases the handle and unregisters
the file object. Each time the file is modified using
sfwrite or sfappend, routines update the disk image
and broadcast a message via the NIO to all active
users. Each application then receives a special
Windows message containing the type of update
operation and the data written. Since this mes-
sage is related to a particular object, applications
can use this information to update their views of
the data (screen or internal). SFILES also provides
local buffering of file data in order to enhance per-
formance of read operations. The same NIO mes-
sages that inform applications of view changes are
automatically applied to the local buffer, ensuring
that it always reflects the image stored on the server
disk. SFILES adheres to the protocol for accessing
shared files described in the previous section. The
server file is kept open for write access only during
actual updates. Reads and writes are performed on
a record basis.

During the update sequence, the object is not
locked, since some researchers suggest that small
groups will develop a social protocol for concur-
rency control.>? Other stations can change the
object, but must wait their turn to write in the
shared file. In our experience with groups of less
than six people, a 16 megabyte (MB) token ring
network and file server is fast enough so that up-

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995

dates often occur before other users even attempt
to change the same data. However, we believe
that as group size increases and as groups are
dispersed in space, a locking model will become
more critical.

All a developer must do in order to create a

WYSIWIS environment is to include the SFILES k-
brary and provide a routine that processes SFILES

The reasons for choosing
the 00 paradigm are code
reuse, messaging, and
polymorphism.

Windows messages. The file access coordination,
local buffering of data, and network session man-
agement are handled automatically.

C++ development environment

The three reasons for choosing the object ori-
ented (00) paradigm are ease of code reuse (il-
lustrated below), messaging, and polymorphism.
Messaging is extremely important for GSS be-
cause, as mentioned earlier, group applications
must inform each other about their actions. The
best way to inform is by sending each other mes-
sages. When using the 00 approach, the applica-
tion and the application developer are already
heavily involved in exchanging messages. There-
fore the transition to handling group messages is
elementary. Polymorphism allows the same mes-
sage to be sent to different objects, which then in
turn can decide how to handle each one. This is
very useful when GSS users are viewing the same
basic data in different ways, i.e., a new object can
be displayed differently for one user in a graphical
window versus another in a text window. C++
has become the industry standard for commercial
applications working with the 00 paradigm.

This section describes our experiences develop-
ing Group Support Systems for Windows in C and
C++. However, the techniques described here
are equally applicable to the 0S/2 Presentation

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995

Manager environment.? The C and C++ devel-
opment environment for Windows consists pri-
marily of a C compiler and the Microsoft Win-
dows Software Development Kit. Compilers are
generally available from companies such as
Microsoft, Borland, Zortech, and IBM. In addi-
tion, there are many libraries and toolkits avail-
able that aid designers in constructing dialog
boxes, icons, menus, and windows. Products
such as Protogen*®*, WindowsMaker**, Visual
C++** with AppStudio**/AppWizard**, and
Microsoft QuickC** with CASE:w** allow design-
ers to interactively construct the primary window
constructs, menus, submenus, and dialog boxes,
then produce a skeleton program in C that serves
as a starting point for application coding. It is only
a matter of time before full-scale computer-aided
software engineering (CASE) tools will provide
Windows support. The two most important cri-
teria for selecting a compiler is whether or not
it supports object-oriented programming and
whether it provides a general user interface (e.g.,
Windows or Presentation Manager) interactive
development environment.

Capabilities. The concept of classes, objects, and
inheritance in C++ is similar to that in Lisp/
SCOOPS, Smalltalk and other 0O programming
languages. C++ classes are an extension of the C
language STRUCT (record structure definition).
C+ + classes allow the definition of data members
(class variables) and member functions (meth-
ods). Hierarchies of classes are implemented in
C+ + through the creation of derived classes. De-
rived classes (or subclasses) are classes that in-
herit the member data and functions of its parent
or base class and can have multiple base classes.

An interesting and useful capability of C+ + is the
virtual function. A virtual function is a method of
a base class that can be redefined in a derived
class, therefore the actual function that is refer-
enced is determined at run time. Virtual functions
are invoked through a pointer or a reference. This
dynamic binding feature of C+ + provides a com-
mon means for referencing methods in any class
without having to compile in the derived class
definitions. This is especially useful when devel-
oping libraries of system objects. Virtual func-
tions can be called by system routines in order to
allow asynchronous processing of error condi-
tions and incoming messages. Another useful ex-
tension to the C language provided by C++ is
function overloading. A function name is said to

HAYNE AND PENDERGAST 107

be overloaded if two or more distinct C++ func-
tions are defined with the same name. Calls to
overloaded functions are resolved by the C++
compiler through a process of parameter and ar-
gument matching. This enables the designer to
relax C-type checking and makes coding more
flexible. Refer to Reference 24 for more informa-
tion on object-oriented programming conven-
tions.

There are two paradigms for interobject commu-
nication in the object-oriented programming are-
na: sending messages and executing methods.
C++ is structured such that objects communi-
cate with one another by directly executing their
methods. Windows, on the other hand, has
built-in user interface objects (buttons, edit
boxes, list boxes, etc.) that must be communi-
cated with via messages (i.e., SendMessage,
PostMessage). In order to write programs in this
environment, the programmer must be familiar
with both paradigms.

For our purposes, the strengths of C and C+ + lie
in their ease of code reuse, performance, flexi-
bility, and compatibility with other development
environments. DLLs developed in C can be ac-
cessed by high-level Actor programs (see a later
section) and are also capable of performing low-
level DOS BIOS and NetBIOS functions. Memory
requirements of programs are often one-quarter
to one-half that of high-level environments, with
the size of executable programs under 100KB. This
allows for an extensive amount of multitasking
without the performance penalties imposed by
disk swapping.

The two most popular C++ Windows develop-
ment environments are Borland’s C++ and Mi-
crosoft Visual C++. Both provide rich class li-
braries (Object Windows Library and Foundation
Classes), which serve to ease development of
Windows programs and hide some of the details.
For example, an Edit Box class is provided to
create and manipulate an editing window. The
constructor of this class creates the window, sizes
it, and initializes it with text; the destructor de-
stroys the window. Member functions provide
the ability to get and put text, cut, copy, paste,
select, etc. If this class did not exist, then the
programmer would have to code the procedure
calls to create a child window and send or receive
messages to perform operations on it. This is an
example of a wraparound class, a class that pro-

108 HAYNE AND PENDERGAST

vides a C+ + interface to a system level object. In
addition to edit boxes and other user interface
elements, wraparound classes exist for files,
streams, and relational database tables (e.g., the
Paradox Database Engine).

One major benefit to these classes is that they

hide some of the details of manipulating system
objects (e.g., the CreateWindow function in Win-

The strengths of C and
C++ are code reuse,
performance, flexibility,
and compatibility.

dows has 11 different parameters, and there are 36
different message types exchanged between an
edit box and its parent window). By making use
of these classes the programmer is relieved of the
burden of writing redundant message processing
code and eliminates the need to debug and main-
tain this code. Thus code reuse comes in the form
of using existing class library code. Class libraries
generally provide standard interfaces. Often a
programmer will need to deviate from the class
standard to change the appearance of a user in-
terface, add error checking, or extend function-
ality. The best way to do this is to create a class
that inherits properties from the class library.
Thus, code is reused from the class library and is
already debugged, providing a double benefit.

Shared graphic objects. Within TeamGraphics**,
a Windows-based GSS tool by Ventura, graphical
objects are shared between multiple users. The
following class hierarchy exists:

TObject
TGraphicObj
TLine
TSquare
TCircle
TPolyLine

TTrapezoid

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995

TObject is an object Windows class library object
that provides the methods for working with col-
lections of objects (arrays, sorted arrays, etc.).
TGraphicObj is an abstract or virtual base class that
inherits TObject and extends it to add virtual meth-
ods such as Draw, Erase, Store, Lock, Unlock.
TLine, TSquare, and TCircle are some of the actual
objects created by the user. They fill in virtual
functions and override functions that are peculiar
to their operation. For example, there exists a
function to determine if a mouse click occurs
within the bounds of an object. Most objects use
the OverObject function defined by TGraphicObj.
TPolyLines overrides this with a function that com-
putes the distance between each line segment and
the mouse click. Store, Lock, and Unlock meth-
ods are added to enable the objects for a shared
group. Store saves the object in a database and
transmits the object to other stations (reference
the earlier SFILES discussion). Lock and Unlock
extend the single user Select operation to lock the
objects in the database and transmit a message to
other stations, which causes the object to change
appearance on screens in the multiuser environ-
ment.

The use of Gesturing (often referred to as tele-
pointers) enables one person to use a mouse to
point at objects on the other users’ screens. Ges-
turing is described more fully later in this paper.
The TGesture object was developed for Team-
Graphics and broadcasts the cursor locations
among users. It has methods for sending, receiv-
ing, showing, and hiding gestures. Our analysis of
using TeamGraphics determined that gesturing
capabilities should be part of other GSS projects.
The gesture object was modified to make it more
general and easier to integrate, and it became part
of a GSS class library. To date it has been used in
five or six other applications.

In order to take advantage of the potential in
C+ + for code reuse, it is mandatory to include a
review of existing objects (class libraries or home-
grown objects) as part of the initial functional de-
sign of a program and to perform a postproject
review of new objects identifying those that
should be generalized, documented, and added to
class libraries for future reuse.

Issues, experiences, and pitfalls. A major issue
concerning development in C and C+ + is the se-
lection of a memory mode. For all but the largest
applications the small-memory model is sug-

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995

gested because current large models require too
much overhead. Perhaps with the advent of 32-bit
operating environments, this limitation will dis-
appear. The small model is adequate, due to
global memory and Windows providing most of
the user input/output routines within its DLLs.
Several applications can share code and data
space, thus reducing the size of the executable
modules and dynamic memory required for each
active instance. Developers creating their own li-
braries should make as many of them into DLLs as
practical.

There are several implementation pitfalls devel-
opers should keep in mind. First, developers
should beware of implementation differences
between network file servers. A particularly
unfavorable feature of the Novell file server soft-
ware is that the file access and sharing modes are
not maintained for each file handle. Rather it
seems that they are maintained on a workstation
basis. For example, if an application opens a file
with Read/DenyNone, and then opens the file
ReadWrite/DenyWrite without closing the first file
handle, the access mode of the first handle will
be magically changed from Read/DenyNone to
ReadWrite/DenyWrite. This will unintentionally
prevent write access to the file. For single-user
applications this would not often occur because a
file is normally opened for exclusive write access.
However, GSS applications must be written such
that the elapsed time a file is opened for write
access is minimized. A function that requires the
scanning of a large data file to change certain rec-
ords would ideally perform the scan in a read-only
mode, opening the file for write access only when
a record is located that requires an update.

In order to avoid this problem on a Novell net-
work, the application should scan the file (read-
only), find the record that needs updating, and
close the file. Then, the file should be reopened
for write access, updated, and then closed. Fi-
nally, the file should be opened again for read
access, seeking the position where the previous
scan left off.”> We acknowledge that this imple-
mentation work-around could lead to update
anomalies.

Second, the use of shared modes on files pre-
cludes local buffering of file data, thereby reduc-
ing file access performance. Applications should
read and write data in large blocks or on a record
basis to avoid this problem. A byte-by-byte input

HAYNE AND PENDERGAST 109

of a text file should be avoided at all costs. The
SFILES.DLL described earlier solves this problem
by providing local buffering of shared file data.

Group features include:
pointers, gesturing, view
synchronization, and
file access modes.

SFILES routines keep the contents of local buffers
consistent by broadcasting updates (via the net-
work interface object) and by making temporary
use of exclusive write access (DenyWrite) to the
server in order to synchronize updates.

When writing Windows routines that serve as
drivers to direct memory access devices, it is nec-
essary to ensure that the input/output buffers of
the driver are locked in memory. With Windows
running in real mode this can be done by declaring
the appropriate data segment as Fixed. In 386 en-
hanced mode, the Fixed definition of data seg-
ments does not preclude them from being moved.
To ensure that the data block is not physically
relocated by Windows during input/output oper-
ations, use the GlobalPagelock function.

Finally, message queues for Windows are limited
in size. If two applications on the same station are
communicating via the PostMessage function, it is
necessary to control the exchange such that a
queue overflow does not occur. This can be done
by having each application acknowledge the re-
ceipt and processing of each message or by hav-
ing a sending application allow the receiver to
execute between message transmissions. The
context switch necessary for the latter method
can be generated using the PeekMessage function
in Windows. PeekMessage examines the caller’s
message queues for a range of messages, return-
ing control to the caller only if there is a message
present or if all messages for all programs have
been processed. In order to guarantee that the
context switch occurs, the PeekMessage should
be invoked for a message that is not likely to be
in the queue of the caller.

110 HAYNE AND PENDERGAST

Other incompatibilities between network systems
and bugs in the Windows software will not be
discussed here. Suffice it to say that GSS debug-
ging is a challenge. Currently, we have built only
one application to assist in debugging; we use a
network ‘spy’ program to show which messages
are being sent and when.

Group work with TeamGraphics. TeamGraphics
(formerly named MUGE) supports logical design
methods such as data flow diagrams and entity-
relationship diagrams, as well as unstructured
drawing and annotation. It also provides standard
editing features such as cut, paste, copy, delete,
multiple fonts, pen styles, colors, and drill down.
Drill down is a technique used in computer-aided
design/computer-aided manufacturing (CAD/CAM)
tools and graphics tools where one diagram is
linked to another. The second diagram usually
presents a closer view of the item, e.g., a struc-
ture chart or tree format might be used to repre-
sent a program. “Drilling down” through any
node on the tree might result in the retrieval of a
second diagram that represents the data flow for
that program. In the editor window (see Figure 8)
a variety of graphical objects are available, i.e.,
rectangles, diamonds, lines, circles, ellipses, and
round rectangles. TeamGraphics has incorpo-
rated both synchronous and asynchronous work
group coordination features. Synchronous work
requires features to aid in the coordination of
group efforts, while asynchronous work necessi-
tates features that encourage the continuity of the
work. Group features include: stationary point-
ers, gesturing, view coordination, view synchro-
nization, and multiple file access modes.

The original prototype development of Team-
Graphics took eight person-months. With Team-
Graphics, each user is free to work on any part of
a diagram, with any zoom factor, independent of
other users. Each user may be editing multiple
documents as well as multiple views of the same
document. Editing may be performed in a private
mode that provides exclusive access to a shared
design, a shared mode that allows access by any
number of users, or a local mode. Local mode is
used for documents residing on the user’s indi-
vidual workstation, which are not known or not
available to the group (i.e., private scratch pads,
or past designs being imported into current work).
Design repositories are stored on a shared disk.
Changes to a shared context are broadcast to all
stations concurrently accessing the design to al-

iBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995

Figure 8 TeamGraphics editor window; an example of a windows-based Group Support Systems tool

kitransfeAmarkpldemoldemovml
" File Edit View NGO Text Options Images Shapes QQM—

Participant List
Enable Group Pointer
v Show Group Pointers
Enable Gesturing
v Fellow Group
Lead Group
Send A Screen Sync

I’} MARK PENDERGAST

F} DOUG VOGEL

low for real-time¢ view updates. TeamGraphics
employs the shared file system (SFILES) previ-
ously described for data storage, and object-ori-
ented communications (NIO) for synchronous
control functions such as group pointers and view
coordination.

TeamGraphics supports specialized access to
drawings via a configurable menu mechanism.
For example, if read-only access is desired, then
the menus could be configured to remove editing
and object creation features. If append or add-
only access is desired, then editing functions
could be removed, but object creation features
could be left in place. This configurable menu
mechanism also provides a means for limiting the
different objects that could be added, e.g., allow
only rounded rectangles, boxes, lines for data

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995

flow diagrams, or for changing the names of ob-
jects on the menus (Diamond could be changed to
Decision for flow charting, Rounded Rectangle
could be changed to Process for data flow dia-
grams). This allows TeamGraphics to support
many diagramming methodologies, while hiding
unwanted or unneeded features from the users.

Locking performed by TeamGraphics has evolved
with use. Initially, no locking of objects was done;
thus if two people modified an object at the same
time, the second modification was applied. This
presented the problem of losing work without giv-
ing proper notification. A second method, dupli-
cation, was then tried. Under this method, if two
users change an object at the same time, the orig-
inal object is deleted and both of the revised ob-
jects are added. This provides a good mechanism

HAYNE AND PENDERGAST 111

for side-by-side comparison of changes, but re-
quires additional steps to integrate work and re-
solve changes (defeating the Shared Context
Model). Finally, an object-level locking mecha-
nism was implemented. When a user selects an
object, black “handles” appear around the object
on the selection screen, and red ““handles™ appear
on all other screens. The user with the black han-
dles is then allowed to change the attributes of the
object. Once the object is unselected all handles
are erased, the updated object is drawn on all
stations, and other users are then allowed to mod-
ify the object.

Common views. There are times when all users
must coordinate their respective views of the data
set to discuss design alternatives. TeamGraphics
uses three mechanisms for establishing common
views of a shared design: (1) screen synchroni-
zation, (2) view coordination (or view slaving),
and (3) diagram labeling. Screen synchronization
gives users the ability to broadcast their view pa-
rameters (origin and scale factors) to all users ed-
iting a design. Upon reception the user is given
the option of accepting or rejecting the screen
synchronization. View coordination or slaving al-
lows users to follow automatically all view
changes of a leader. Each time the leader changes
a view via zooming or scrolling mechanisms, the
new view parameters are broadcast and applied to
those users who have “slaved” their view win-
dow to the leader. Diagram labeling allows users
to add diagram marker objects to a drawing.
Users can then perform a Go-to-marker operation
to move their view to a given work space. Addi-
tionally, user markers exist for each participant.
User markers serve a dual purpose. First, they let
a user know which other users are currently
working in a given region of the diagram, and
second, they can be used in the Go-to-marker op-
eration if a user wishes to synchronize with some-
one else. Since users are allowed to have multiple
views of a design at one time, they may choose to
work in one window and monitor the work of
someone else in another.

Stationary pointers. An essential aid in conduct-
ing group discussions in both the local and dis-
tributed modes is the ability to point at something
on another user’s screen. This ability is some-
times called “telepointing.”? Stationary pointers
in TeamGraphics are implemented using a mouse
button to initiate a broadcast of the cursor loca-
tion. Those users that have the stationary pointer

112 HAYNE AND PENDERGAST

enabled and are actively working in the corre-
sponding window will have a special pointer
drawn at the appropriate location. A variation of

There are times when all
users must coordinate
their views of the data
to discuss alternatives.

the stationary pointer is a point and jitter opera-
tion. Under point and jitter the pointer is drawn
and erased multiple times around the desired lo-
cation. This simulates movement of the cursor,
which draws attention to the pointer. This is par-
ticularly useful with large groups using multiple
stationary pointers or for distributed groups.

Gesturing. Gesturing is essentially full motion
telepointing. In order to use gesturing, the user
must select the appropriate menu option to turn it
on. TeamGraphics will then automatically broad-
cast the cursor location whenever the mouse is
moved. Depending on network bandwidth, the
gesture broadcast routine can limit the number of
messages transmitted each second. That is, Win-
dows may generate 30 or 40 mouse movement
(WM_MOUSEMOVE) messages a second, but Team-
Graphics will only broadcast five sets of cursor
coordinates a second. If too many gesture mes-
sages per second are broadcast, then the local
area network will get bogged down, creating flow
control and congestion control problems. If too
few gesture messages are transmitted each
second, then gesturing will appear jerky at the
receiving end. Gesture movements can be
smoothed at the receiving end by drawing and
erasing the cursor multiple times while varying
the X, Y position from the previous location to
the new location.

Stationary pointers and gesturing, when used
with screen coordination, provide a powerful
method for maintaining a group focus during the
presentation and discussion of designs.* Team-
Graphics also enhances group work by allowing
for increased parallel activity on a project without

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995

the penalty of design integration experienced by
single user editing tools. The synergistic effects
created by a shared workspace and greater com-
munications bandwidth could result in an in-
crease in design quality. The key for achieving
these gains is to minimize process losses using the
special group control and coordination features
incorporated into TeamGraphics.

Change tours. Change tours are automated pre-
sentations of specific areas of a design that have
been modified. As users create a diagram they
have the ability to add diagram marker objects.
These objects are represented as a small flag and
are given a name at the time of creation. Change
tours consist of an ordered set of these flags.
When users execute a tour, their screen is moved
from one flag to another. Annotation objects can
be added to explain and question a portion of the
diagram.

Summary. TeamGraphics enhances group work
by allowing for increased parallel activity on a
project without the penalty of design integration
experienced by single-user editing tools. The syn-
ergistic effects created by a shared work space
and greater communications bandwidth could
result in an increase in design quality. The key
for achieving these gains is to minimize pro-
cess losses using the special group control
and coordination features incorporated into
TeamGraphics.

Actor development environment

Actor is a complete object-oriented development
environment and programming language for Win-
dows.? Actor allows the creation and modifica-
tion of windows, menus, and dialog boxes, as well
as the running of applications and interactively
debugging them within the development shell.
The object-oriented programming language® for
Actor consistently takes advantage of the benefits
of inheritance and messaging. Its hierarchy
closely mimics that of Smalltalk, but does not
have the drawbacks of the model-view-controller
paradigm? in that only a window that responds to
messages needs to be developed. Applications
are incrementally compiled and can be sealed,
which means removing an application from the
development environment so that it can run as an
independent Windows program.

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995

Capabilities. In a completely object-oriented
environment like Actor, everything is an object:
numbers, arrays, files, even windows. All objects
have their own data (attributes, class attributes)
and behavior (methods, class methods). Strong
data typing is not enforced. Polymorphism, the
sending of the same message to different types of
objects, is supported. Polymorphism of the Draw
message into each class of objects that must be
displayed in the window is extremely powerful.
An application merely maintains a set of objects
to draw, and when Windows paints the user’s
view, each object may or may not be made
visible.

Actor also supports all calls to Windows func-
tions (automatically translating arguments from
Actor representation to the required format), di-
rect calls to C or Assembler primitives, and calls
to dynamic link libraries (DLLs). Applications of
up to 2 megabytes (MB) in size can be built (1IMB
code, 1MB data). Actor has an object-oriented in-
terface to global memory management, Windows
message translation, Windows procedure calls,
and Windows callbacks. Using a profiler func-
tion, performance bottlenecks can be identified
and rewritten in C or assembler. Actor provides
an optimized, dynamic, incremental garbage col-
lector that automatically removes unreferenced
objects from memory. It also has an object
change notification system that allows an object
to be alerted when any attempt is made to change
its associated data. The resource compiler for
Windows is supplied and allows custom bit maps,
icons, dialogs, cursors, menus, and defined con-
stants to be changed in the executable module
without changing the image.

Data that are sent back and forth between Actor
and C are straightforward for simple data types,
(i.e., integer, character, and string objects) be-
cause Actor handles conversions automatically.
However, for more complex objects such as a
data package that will be sent between stations,
data must be converted to a C STRUCT data struc-
ture. Actor provides flexible support for C data
structures by providing a CStruct class that sup-
ports STRUCT definition and manipulation.

There are also classes that facilitate calling a DLL.
Interacting with DLLs can present a few problems
if the argument lists for the procedures in the DLL
are not specified correctly (e.g., an unrecoverable
application error message). However, once the

HAYNE AND PENDERGAST 113

mapping from Actor objects to C STRUCTS is
made, a DLL becomes part of the application.
Thus, the previously developed DLLs can be
seamlessly reused.

Issues, experiences, and pitfalls. There are two
major advantages to prototyping research soft-
ware in Actor. The first is the object-oriented par-
adigm and the second (to be discussed later) is the
development environment itself. In the object-
oriented paradigm, generic classes can be devel-
oped, each with a certain level of functionality
(see Figure 9). These classes can then be com-
pletely reused when new prototypes are built. In
addition to the TObject classes described earlier in
TeamGraphics, the first classes to be developed
were:

Object

GroupObject

Issue

Comment
Network
WindowsObject

Window
GroupWindow
GraphicWindow

Object, WindowsObject, and Window classes are
provided as part of Actor. The Network class
shields the system from the network base object
(NBO) dynamic link library and thus the messages
that the class responds to are:

* New—A new network object is created and
global memory reserved for buffers. The NBO
DLL is loaded.

* Open—A session for the object passed is cre-
ated. All stations can now see this object.

* Send—The passed data block to the object cur-
rently open is sent. All stations with a session
“opened” on that object will receive the data
block.

* Receive—The data block is pulled out of the
network buffer and converted to an Actor ob-
ject. This object is then parsed and acted upon
depending on type. If it is a message, the mes-
sage is sent to the local object.

* Close—A session on the object is shut down.

* Destroy—A session is closed, the network ob-
ject removed, buffers are deallocated, and the
DLL is discarded.

114 HAYNE AND PENDERGAST

The GraphicWindow class handles all tasks related

- to graphic diagrams, i.e., mouse clicks and drags,

and zooming. It performs “world coordinate sys-
tem to viewport” translations and manages scroll-
ing functions. Transformation of cursor coordi-
nates between the sending and receiving views
must be performed. Different computer screens
have differing resolutions and if a windowing
environment is used, windows can be placed on
different parts of the screen. This transformation
is easily done by mapping the cursor location to
a world coordinate system at the sender and, (1)
if that location is outside the receiver’s view, dis-
card the message, or (2) map the world coordinate
to the receiver’s viewpoint coordinates. It is ex-
tremely important that when one user points at a
place in a local window or screen, the same log-
ical place is “gestured at” on the remote stations.
This class was reused, unchanged for every new
graphical prototype built. The graphical issue an-
alyzer (GIAWindow) class, described later, inherits
all of the functionality of the GraphicWindow class.

Other classes include GroupObject, Issue, and
Comment. The Issue and Comment classes support
the Graphical Issue Analyzer; a Comment differs
from an Issue in the amount of text, the color and
size drawn on the screen, and the links maintained
with Issues. Instead of making a Comment a subclass
of Issue and adding functionality, a generalization
class (GroupObject) was created. GroupObject han-
dles the commonality that exists in the two classes,
i.e., draw, drawlLabel, getSurrogateKey. GroupObject
was reused and extended for other applications.
Once group functionality was embedded, imple-
mentation details could be forgotten and the object
merely used. Concepts such as surrogate keys are
extremely important in GSS, and apply when a mes-
sage is sent from one station to the others requiring
the label of an object to be updated and the other
stations must have a way of uniquely identifying the
object.

Our experience with building several applications
has shown that building the first application
(Brainstorming) required three months. The sec-
ond application (Graphical Issue Analyzer) re-
quired less than two months, and a third appli-
cation (Group ScratchPad) was built in 10 days.
The class reusability and debugging facilities con-
tributed entirely to this successive reduction in
development time.

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995

The second major advantage to prototyping re-
search software in Actor is the development envi-
ronment itself. Class browsers aid in the creation
and editing of new and existing classes. Applica-
tions are shielded from the basic Windows envi-
ronment and, if they terminate abnormally, they
fail gracefully through interactive debugger dia-
logs. Code can be altered while the application is
executing, which allows actively fixing the error.
Objects can also be inspected during execution to
further aid in the debugging process. High-level
errors are easily handled in this manner. Low-
level errors are more difficult to detect, e.g., Win-
dows has a classic error where available memory
will decline (and the session crash) if handles to
the display context are not released in the proper
sequence. This error was almost impossible to
detect using the Actor debugging facilities, but
was eventually discovered by observing the de-
cline of system resources.

One issue with using Actor is the size of the ex-
ecutable module and its related image. For a sim-
ple application this can typically be 300 kilobytes
(kB) and, when loaded, this reduces working
memory by more than this amount due to alloca-
tions for local heap space. Two mitigating factors
exist: (1) the cost of extra memory is quite low—a
large GSs lab with 34 stations could be upgraded
to make this problem disappear; (2) a complex
and large application is typically only 400KB—an
indication that a certain set of resources is re-
quired, but additional code is well optimized.

Another issue with Actor is that performance is
less than that of an environment using C. Through
our network testing we have found that an Actor
application performing the same task as a C ap-
plication will take approximately 20 percent
longer. We used the gesturing capabilities of
TeamGraphics and the graphical issue analyzer,
both merely pass point messages to the NBO and
bitblt new cursors on the window. Bitblt is a
graphic term for when one image is drawn over
another. This performance penalty is due to Ac-
tor’s constant searching for object lists for actual
data addresses in contrast to direct addressing by
C. For prototype development or delivery to high
performance platforms, this penalty is minimal
compared to the ease of development advantage.
Once the object-oriented paradigm has been
learned, Actor provides an excellent platform for
prototyping and testing GSS research software.

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995

Graphical issue analyzer. The second of four GSS
applications prototyped in Actor was the graph-
ical issue analyzer (GIA).? For a description of
others see Reference 16. The process of issue
analysis is one of revealing the assumptions that
a group is operating under. Once the core issues
are uncovered, the group can begin the work of
prioritizing the activities needed to deal with the
issues (if they are to be dealt with at all). Research
has shown the efficiency and effectiveness gains
that exist when groups share text electronically.
Further effectiveness can be realized by groups
sharing graphical symbols (and text) such as Is-
sues and related Comments. Also, the output may
more accurately reflect the group’s thoughts by
having the group follow a process model consist-
ing of three steps: (1) create your own issues and
comments, (2) share them with others, and (3)
resolve simple naming conflicts. We believe that
computer-mediated groups can share and repre-
sent their views with less redundancy and more
effectiveness using a graphical representation,
than groups merely sharing text or individuals
working in isolation.

GIA supports simultaneous, multiuser, anony-
mous entry of Issue and Comment objects. GIA
presents the user with what appears to be a blank
sheet of paper. The mouse is used to select ob-
jects, to place the various objects on the screen,
and to perform diagram management, €.g., zoom-
ing and suppression of displayed objects. Com-
mon views and gesturing (as previously dis-
cussed) are supported. A user can be either a
leader, a follower, or both.

The following communication primitives are used
by GIA to control the group operation:

* Register—Each workstation running GIA is reg-
istered with all other workstations using the
same shared context.

¢ SendObject—Objects are broadcast to all
nodes.

* ReceiveObject—Objects are received and
queued for insertion into the graphic. This se-
rializes the process and avoids contention.
Naming conflicts are resolved as described
later.

* Gesture—A special cursor is drawn for use by
the originator of the message to draw other
users’ attention. This cursor is labeled with the
user’s abbreviated name (if provided).

HAYNE AND PENDERGAST 115

Figure 9 The graphical issue analyzer (GIA) issue analysis window

Group issue Analysis d:\actot&éealeﬁsémanws.gia
{ Eile New Diagram Zoom Group Help

StopGesture—The cursor is erased from all par-
ticipants’ work surfaces.
RequestVote—Affected users can be asked to
vote on proposed changes to the issue diagram.
Voting is anonymous.

ResolveConflict—If the vote is not unanimous,
an electronic discussion system is invoked
among affected users.
UnRegister—OQOutstanding work is finished and
the connection is closed.

ViewHere—The world coordinates of a lead-
er’s window is sent to all connected windows.
Those windows following a leader will be set to
the passed coordinates.

AddlIssue, Updatelssue—Issue information to
all stations connected to the shared context is
sent. ‘

AddComment, UpdateComment—Comment in-

116 HAYNE AND PENDERGAST

formation to all stations connected to the shared
context is sent.

When the GIA is invoked, the main issue analysis
window appears and users may proceed to create
issues and comments that represent their
thoughts (see Figure 9). Common views, gestur-
ing, and version control (as described above) are
embedded. Issues must be created before they
can be commented on, but any issue can be com-
mented on no matter who created it. When a new
issue is to be entered, the user types in the name
of the issue in a small pop-up dialog box. This
issue is drawn on the screen as a blue square. If
the diagram has been zoomed large enough so
that text can be read, it is labeled. Users can type
comments in a larger pop-up edit dialog box.
When finished typing their comment, the user

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995

must choose which issue or issues this comment
is related to from a dialog box containing a list of
issues created. As each issue is selected, the user
must designate whether the Comment is for,
against, or indifferent to the issue. Lines are
drawn from the comment to the related issues in
green, red, and black, respectively. The comment
is placed beside the issue. As more comments are
added, they are made to overlap each other like
fanned playing cards, clustered around the issue
first chosen.

Comments and the linking information are simply
broadcast to all nodes, but when a new issue is
created, its label is compared with all other issues
currently available locally, and if there is a con-
flict, the user is not allowed to use that name. If
no conflict exists, the issue is broadcast to all
other nodes. When a node receives an incoming
issue, it immediately compares the name of the
issue with all other issues in its outbound queue.
Again, if a conflict does not exist, the issue is
added to the local object base and appears on the
screen for use. If there is a conflict, the local ob-
ject in the outbound queue is discarded (after in-
forming the user). If the broadcast of objects is
assumed to be atomic, this algorithm has been
shown to avoid duplicate objects. Changes to the
discussion occur in real time. New or updated
objects are also written to the shared file.

When a label of an issue is altered, a dialog is
carried out with all nodes to see if the proposed
changes are acceptable. This dialog interrupts
users with a window displaying the initial and
changed object. Users must vote on the change
before proceeding. If a majority of the nodes ac-
cept, the changed object is accepted. If the pro-
posed changes are not acceptable, an electronic
(or verbal) discussion between users can be ini-
tiated to discuss the proposed changes. A similar
process is followed when deleting objects, al-
though the object in the shared file is merely
flagged as deleted to preserve a history of the
meeting.

The GIA allows both divergent and convergent
processes to coexist simultaneously. Some users
can be merging issues and their related com-
ments, while others can be creating new issues or
comments. GIA discussions can also be arranged
in a network by creating new diagrams. In this
way, issues can be consolidated or exploded.
Users can participate in multiple discussions as

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995

well as participate in multiple views of the same
discussion. The final output of GIA is a text file
with the comments following each issue.

Conclusions and future directions

In this paper we have addressed some of the prac-
tical considerations for Group Support Systems
application developers. Two development envi-
ronments, C++ and Actor, were discussed along
with sample applications. Actor provides a pow-
erful object-oriented environment that enables
rapid prototyping and development of GSS tools.
C and C++ provide the flexibility and perfor-
mance necessary to support low-level communi-
cations protocols and file handling. Neither de-
velopment environment taken by itself is the
complete solution.

Maintaining a shared context and coordinating
the actions of the users are the two most difficult
challenges to Group Support Systems develop-
ers. This paper has presented how two applica-
tions, TeamGraphics and Graphical Issue Anal-
ysis, have made use of a specialized object-
oriented communications system (NIO) and a
distributed shared file system (SFILES) to deal
with these challenges. The reliable broadcast ca-
pability of NIO is employed to maintain shared
data, coordinate views, and transmit group point-
ers. SFILES provides a convenient and efficient
mechanism for coordinating access to shared files
and the maintenance of what-you-see-is-what-I-
see (WYSIWIS) views. In addition to demonstrat-
ing the viability of GSS on PC-based systems, these
programs also demonstrate the ability to develop
complex applications in different programming
environments that make use of common routines
and share a common network object architecture.

The future direction of personal computer sys-
tems includes a major role for Group Support Sys-
tems. Products such as Lotus Notes**, Group-
Systems V, and a multitude of database systems
that have been enhanced to support group work
(FlexBase, Paradox, DBase IV) on personal com-
puters provides evidence for this prediction.
More research into communications architec-
tures and user interaction with shared contexts is
required before more traditional single-user PC
programs, e.g., spread sheets, can be adapted for
Group Support Systems. In addition, standards
and certification processes must be created and
enforced for network file systems and peer-to-

HAYNE AND PENDERGAST 117

peer communications. Only preliminary evidence
exists as to whether the shared context model as
described in this paper will allow Group Support
Systems groups to outperform manual groups or
groups supported by other software. ! More re-
search into how groups interact using graphical
systems is required. Defining the maximum group
size for graphical interaction, and how dispersed
groups can be supported given multitasking,
graphical platforms, are unanswered issues. 0S/2
and Windows have opened a new door for Group
Support Systems.

Acknowledgments

This research was sponsored in part by iBM Re-
search Grant #436800 (United States), and by
IBM Canada.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Ventana Corpora-
tion, X/Open Co. Ltd., Microsoft Corporation, ProtoView
Inc., MegaSoft Inc., Paradox, or Lotus Corporation.

Cited references and note

1. G. DeSanctis and B. Gallupe, “A Foundation for the
Study of Group Decision Support Systems,” Manage-
ment Science 33, No. 5, 589-609 (May, 1987).

2. S.Ellis, J. Gibbs, and G. Rein, “GroupWare: Some Issues
and Experiences,” Communications of the ACM 34, No.
1, 38-58 (1991).

3. S. Ellis and J. Gibbs, “Concurrency Control in Group-
ware Systems,” SIGMOD Record 18, No. 2, 38-59 (June,
1989).

4. J. Goodman and M. Abel, ‘“Communication and Collab-
oration: Facilitating Cooperative Work Through Commu-
nication,” Office: Technology and People 3, No. 2, 129-
145 (1987).

5. S. Greenberg, M. Roseman, D. Webster, and R. Bohnet,
“Issues and Experiences Designing and Implementing
Two Group Drawing Tools,” Proceedings of Hawaii In-
ternational Conference on System Sciences 4, (1991), pp.
139-148.

6. D. Stefik, G. Bobrow, G. Foster, S. Lanning, and D.
Tartar, “WYSIWIS Revised: Early Experiences with
Multi-User Interfaces,” ACM Transactions on Office In-
formation Systems 5, No. 2, 147-186 (April, 1987).

7. G. Stefik, D. Foster, G. Bobrow, K. Kahn, S. Lanning,
and L. Suchman, “Beyond the Chalkboard: Computer
Support for Collaboration and Problem Solving in Meet-
ings,” Communications of the ACM 30, No. 1, 3248 (Jan-
vary, 1987).

8. Group Support Systems: A New Frontier, L. Jessup and
J. Valacich, Editors, Macmillan Publishing Co., New
York (1993).

9. S. Franklin and A. Peters, ‘‘Effective Application Devel-
opment for Presentation Manager Programs,” IBM Sys-
tems Journal 29, No. 1, 44-58 (1990).

118 HAYNE AND PENDERGAST

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.
27.
28.

29.

“Microsoft Windows 3.0,” Software Development Kit
Manual, No. 050051052-102-1087, Microsoft Corporation
(1991).

H. Simon, Administrative Behavior: A Study of Decision
Making Processes in Administrative Organizations, The
Free Press, New York (1976).

A. Dennis, J. George, L. Jessup, J. Nunamaker, and D.
Vogel, “Information Technology to Support Electronic
Meetings,” MIS Quarterly 12, No. 4, 591-694 (1988).
A. Osborn, Applied Imagination: Principles and Proce-
dures of Creative Thinking, Charles Schribner’s and
Sons, New York (1953).

I. Posner, R. Baecker, and M. Mantei, “How People
Write Together,” Proceedings of the Hawaii Interna-
tional Conference on System Sciences (1992), pp. 127-
138.

S. Navathe, R. Elmasri, and J. Larson, “Integrating User
Views in Database Design,” IEEE Computer, 50-62 (Jan-
vary, 1986).

M. Pendergast and S. Hayne, ““A Collaborative Systems
Approach for Alleviating Group Convergence Problems
in CSCW Processes,” Journal of Computer-Supported
Cooperative Work, forthcoming.

M. Pendergast and D. Vogel, “Design and Implementa-
tion of a PC/LAN-based Multi-User Text Editor,” Pro-
ceedings of the IFIP 1990 Conference on Multi-User In-
terfaces (1990).

L. Killey, “ShrEdit 1.0: A Shared Editor for the Apple
Macintosh User’s Guide and Technical Description,”
ShrEdit Development Team, Cognitive Science and Ma-
chine Intelligence Laboratory, University of Michigan,
Ann Arbor, MI (1990).

K. Aytes, “An Empirical Investigation of Collaborative
Drawing Tools,” unpublished doctoral dissertation, MIS
Dept., University of Arizona, Tucson, AZ (1993).

M. Pendergast, *‘Multicast Channels for Collaborative
Applications: Design and Performance Evaluation,”
ACM Computer Communications Review 23, No. 2,
25-39 (April, 1993).

S. Hayne and S. Ram, “Group Database Design: Ad-
dressing the View Modeling Problem,” Journal of Sys-
tems and Software, forthcoming.

S. Hayne, M. Pendergast, and S. Greenberg, ‘“‘Imple-
menting Gesturing with Cursors in Group Support Sys-
tems,” Journal of Management Information Systems 10,
No. 3, 43-62 (1994).

M. Pendergast, “Distributed Object-Oriented Environ-
ment for EMS Application Development,” Proceedings
of the Hawaii International Conference on System Sci-
ences 1 (1991), pp. 59-66.

R. Ten Dyke and J. Kunz, “Object-Oriented Program-
ming,” IBM Systems Journal 28, No. 3, 465478 (1989).
This unfavorable situation only appears in Novell ver-
sions after 2.0 (up to the time this paper was written) and
does not occur in IBM local area network software.
WhiteWater Group, ‘‘Actor 2.0, User and Reference
Manual (1991).

C. Duff, “Designing an Efficient Language,” BYTE 12,
No. 8, 211-224 (August, 1987).

S. Goldberg, “Introducing the SmallTalk-80 System,”
Byte Magazine 6, No. 8, 14-26 (August, 1981).

S. Hayne and T. Purdin, A Distributed Tool for Issue
Analysis,” Proceedings of the Symposium on Applied
Computing (April 1990), pp. 325-329.

. J. Conklin and M. L. Begeman, “gIBIS: A Hypertext

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995

Tool for Exploratory Policy Discussion,” ACM Transac-
tions on Office Information Systems 6, No. 4, 303-331
{(October, 1988).

31. G. Easton, J. George, J. Nunamaker, and M. Pendergast,
“Using Two Different Electronic Meeting System Tools
for the Same Task: An Experimental Comparison,” Jour-
nal of Management Information Systems 7, No. 1, 85-100
(1990).

Accepted for publication August 24, 1994.

Stephen C. Hayne Business Programs, Arizona State Uni-
versity West, 4701 W. Thunderbird Road, Phoenix, Arizona
85069-7100 (electronic mail: hayne@asu.edu). D1. Hayne re-
cently joined Arizona State University West as an assistant
professor in management information systems. He received
his Ph.D. from the University of Arizona in 1990; his dissertation
addressed the distributed database design process as conducted
by groups. While teaching courses at the University of Calgary
on software engineering, telecommunications, and database sys-
tems management, his teaching was recognized with awards for
excellence. Dr. Hayne’s research interests lie mainly in distrib-
uted database design, software engineering, knowledge-based
technology, and group support systems. His papers have been
published in major conferences as well as the Journal of Infor-
mation and Management, the Journal of Computer Supported
Collaborative Work, the Journal of Systems and Software, the
Journal of Management Information Systems, and others.
Much of his research is rooted in the desire to use innovative
technology to solve real business problems. His current work
involves Group Support Systems, and as such he has imple-
mented tools in graphical environments to assist groups in com-
munication and decision-making, i.e., shared drawing, group
brainstorming, concurrent issue surfacing, and consolidation.
He is applying this technology to support decision-making dur-
ing time pressure situations.

Mark Pendergast MIS Department, McClelland Hall 430,
College of Business and Public Administration, University
of Arizona, Tucson, Arizona 85721 (electronic mail:
pendergast@mis.arizona.edu). Mr. Pendergast is a research
director in the Center for Information Management, Manage-
ment Information Systems Department, at the University of
Arizona. He received his Ph.D. in MIS in 1989. His research
interests include computer-supported cooperative work, data
communications, software engineering, process re-engineer-
ing, and group support systems human computer interaction.
He has worked as an analyst and engineer for Control Data
Corporation, Harris Controls, Ventana Corporation, and as
an assistant professor at the University of Florida. His work
has appeared in several books and journals, and he has pre-
sented his work at numerous conferences.

Reprint Order No. G321-5560.

IBM SYSTEMS JOURNAL, VOL 34, NO 1, 1995

HAYNE AND PENDERGAST 119

