Emerging technologies
that support a software
process life cycle

The goal of developing quality software can be
achieved by focusing on the improvement of
both product quality and process quality. While
the traditional focus has been on product quality,
there is an increased awareness of the benefits
of improving the quality of the processes used to
develop and support those products. These
processes are key elements in understanding
and improving the practice of software
engineering. In this paper, existing objectives for
the development and application of models of
software processes are restated, and current
research sponsored by the IBM Centre for
Advanced Studies (CAS) is discussed as it
applies to furthering each of the objectives. A
framework is also presented that relates the
research work to the various sectors of a
software process life cycle. The on-going
research involves four universities, CAS, and
collaboration with IBM Toronto Laboratory
developers.

he primary concern of the software engineer-

ing community is the development and sup-
port of quality software. The two basic ap-
proaches toward this goal (see Reference 1, for
example) are improving product quality and im-
proving process quality. Product quality focuses
on end deliverables and is associated with such
concepts as rate of fault occurrence, mean time to
failure, and other measurable quantities. Known
methods exist to improve product quality, such as
code reviews. Process quality focuses on the pro-

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

by G. T. Heineman
J. E. Botsford
G. Caldiera
G. E. Kaiser
M. I. Kellner
N. H. Madbaviji

cesses used to produce end deliverables, and is
concerned with such topics as accuracy (the de-
gree to which the product produced by the pro-
cesses matches the intended result) and fitness
(the degree to which the people involved in the
processes can faithfully follow specified actions).
If we consider code reviews within a particular
process, we see that the process is greatly af-
fected by such things as: when the code reviews
should be performed, how they will be done, who
should participate, and how the results should be
applied.

While the traditional focus has been on product
quality, there is an increased awareness of the
benefits of improving the quality of processes.
The International Organization for Standardiza-
tion (1S0) has created an 150 9000-3 standard? spe-
cifically for the software industry. This standard
defines a life-cycle quality system governing the
development and maintenance of software. The
Malcolm Baldrige National Quality Award® has
“Management of Process Quality”” as one of its
seven assessment categories. Finally, the Capa-

©Copyright 1994 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

HEINEMAN ET AL. 501

bility Maturity Model (CMM), “¢ produced by the
Software Engineering Institute (SEI) at Carnegie
Mellon University, defines increasing maturity
levels of an organization based on the quality of
the processes employed. This trend of heightened
process awareness can be viewed as the maturing
of software engineering as a discipline.

In recent years, the software engineering com-
munity has come to recognize the importance of
the processes that are employed to develop, sup-
port, and maintain software. The following ob-
jectives’ are cited as the motivation for develop-
ing and applying models of software processes:

¢ Facilitate human understanding and communi-
cation

* Support process improvement

* Automate process guidance

* Automate process execution support

* Support process management

Each objective has an associated list of subgoals
called a goal cluster. As these objectives are re-
stated throughout the paper, we discuss current
research at the 1BM Centre for Advanced Studies
(cAs) against these goal clusters. These goals are
not an exhaustive list, but they do provide dis-
crete markers in software development processes
by which one can measure the progress and im-
pact of current studies.

Before discussing the process study, we define
some terms that might not be clear to readers
unfamiliar with software processes; most of these
are taken from Reference 8 where Feiler and
Humphrey define a set of essential terms and con-
cepts about software processes.

* A process is a set of partially ordered steps in-
tended to reach a goal. The goals for software
development processes include the production,
or enhancement, of quality software products.
Other software processes include maintenance.

* A process model abstracts and captures those
aspects of a process relevant to the modeling
formalism used. Any abstraction of a process
can, in fact, be a process model, but process
models are most useful when they can be ana-
lyzed, simulated, and validated. They can also
be used to aid process understanding.

* Agents are the entities that execute a process
model by carrying out individual process steps.

502 HEINEMAN ET AL.

* Automation is the use of machine agents to per-
form individual steps.

* An environment enacts a process by providing
automation and guidance to the agents carrying
out the process while enforcing any process
constraints. An enacted process is an active
process.

* Anenactable process is instantiated from a pro-
cess model and contains all the information nec-
essary for an environment to enact the process.

* Organizational structure is the configuration of
people and other resources that perform activ-
ities within an environment and the relation-
ships between them.

* Process management involves all activities that
plan, control, and manage processes.

This paper describes the joint work of five groups,
a consortium of faculty and students from three
universities (Columbia University, the Univer-
sity of Maryland, and McGill University), the
Software Engineering Institute (SEI) at Carnegie
Mellon University, and CAS. Although the work
was originally named the Process Reuse Study
(PRS), the application of the techniques and ideas
produce a holistic vision of software processes by
defining a life cycle and a method for designing,
improving, and performing software process
models. Product improvements can be achieved
by constructing models from the actual pro-
cesses, improving the models, and then imple-
menting the improved processes in practice.

We first describe the PRS framework and in sep-
arate sections discuss how PRS addresses each of
the five objectives. We conclude with a discus-
sion of the contributions of PRS to-date and plans
for future work.

Process study

Effective software processes are one of the most
significant assets of a large software development
organization; unfortunately, they are often under-
valued. The basic premise of PRS is that the qual-
ity of a software product is largely determined by
the quality of the processes used to develop and
maintain it.° Describing, studying, and improving
software processes can improve the quality of the
software and the way the software is developed.
Software processes must be as meticulously
maintained as the software that they have pro-
duced, since they might need to change over time.

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

Figure 1 The process cycle

" PROCESS .
" FEEDBACK

REPRODUCED WITH PERMISSION FROM
SOFTWARE ENGINEERING JOURNAL,
VOLUME 6, NO. 5, P. 240 (SEPT. 1991).

What is needed is nothing less than a life-cycle
view for software processes.

A life-cycle view has been developed’ contain-
ing four parts: description and definition, custom-
ization and instantiation, enactment, and im-
provement. From these steps, a process cycle is
created that defines the key roles played by hu-
mans, categories of tools used, goals and policies
governing the process, and interrelationships and
feedback among the different roles. The process
cycle shown in Figure 1 defines the scope of all
process steps necessary for the development and
evolution of software processes. To realize this
process cycle, PRS has developed a framework,
illustrated in Figure 2, that is an implementation
of the process cycle. We next describe in more
detail the process cycle and the framework.

Process cycle. The process cycle is divided into
three sectors (as seen in Figure 1) that represent

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

the engineering, managing, and performing of
software processes. In sector A, process engi-
neers design, construct, and improve generic pro-
cess models (or models when the context is
clear). These models are generic in the sense that
they have not yet been tailored for a particular
software project. The models are customized by
process managers in sector B and are instantiated
for use; process performers in sector C carry out
the processes.

Two essential concepts to the process cycle are
the tools used by each sector (see Table 1) and the
feedback among sectors. The success of the pro-
cess cycle depends heavily upon the success of
these tools. It is expected that no single tool can
be used in all sectors. Some tools are very adept
at modeling and simulating processes, but have
no means of enactment, while other tools created
to enact processes might be weak in modeling
capabilities. The ability to integrate a heteroge-

HEINEMAN ET AL 503

Figure 2 The process study (PRS) framework

TRANSLATOR FEEDBACK
3

N

MARVEL SERVER

A

)
I

PROCESS INSTANCE ——— | —
REPOSITORY PROCESS MODELING
LANGUAGE (MSL) v
SPECIFICATION
|
' B
FEEDBACK
STATEMATE MODELING APPROACH |
|
f |
ANALYSIS p ' -
EXPERIENCE BASE |
3 |
|
-'-—) Q PROCESS-1 PROCESS-2k—
v
SYNTHESIS <F—|—
¥ L L L]
A
ELICIT DMP
3 X
PROJECTS
INTERVIEWS -
DOCUMENTS SECTOR
Table 1 Process cycle tools
Sector Tools used Example
A Tools 1y create, and operate or, fragments of processes within Elicit, DMP
o nulated enivironments . .
B Tools to operate on specific descriptions within simulated and Statemate,
actual environments MARVEL
[Tools that operate on the software parts being constructed in CC, VI
actual environments

504 HEINEMAN ET AL IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

neous set of approaches and tools is essential to
an effective implementation of the process cycle.

The second important aspect of the process cycle
is the feedback among sectors that can be used in
each sector to improve processes. Feedback from
process performers in sector C might reflect the
smoothness with which assigned tasks are carried
out, bottlenecks in the development process, neg-
ative effects caused by certain timing constraints,
and the need for additional process steps or re-
moval of superfluous ones. Both qualitative and
quantitative data about processes are useful. Pro-
cess managers can use feedback in several im-
portant ways. First, project-specific processes can
be improved through modifications in response to
the feedback. Second, generalizations and im-
provements in models can be suggested to the pro-
cess engineers in sector A. Third, an iterative ap-
proach (see a later section, “OPT approach,” for
example) can be used to identify the appropriate
changes to be made to organizational structures and
development processes to satisfy project goals.
This cycle of building models, tailoring them, and
improving them through feedback is continuous. !!

PRS framework. The PRS framework, illustrated
in Figure 2, is our proposed implementation of the
process cycle. The approaches (on the left side of
the figure) are matched with an appropriate sector
of the process cycle on the right. For example, the
Elicit approach occurs within Sector A. We next
outline the PRS approach to software processes by
describing each of the entities of the framework.

Process engineers first model a process by ob-
serving existing processes within an organization.
The Elicit and DMP (Descriptive Modeling Pro-
cess) projects (discussed in a later section) ad-
dress the aspects of understanding an organiza-
tional structure and its processes by extracting
the appropriate information from documents and
interviews. As models are created and tailored,
they are stored in an experience base. This re-
pository contains the models and their histories—
all modifications to models, lessons learned, and
decisions and alternatives.

The experience base is derived from the compo-
nent factory concept proposed by Basili et al.'?
This repository has three levels of representation
that contain descriptions of the agents in the or-
ganization, the activities they perform, and the
processes used. The three-tiered structure of the

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

repository suggests that the modeling formalism
used should have some mechanism for supporting
multiple levels of abstraction.

The sEl-developed Statemate***-based modeling
approach*"* models software processes through
formal visual languages based on hi-graphs,' a
form of diagram using boxes, directed lines, and
hierarchical nesting. When a process is modeled,
three forms of charts are produced, each provid-
ing a separate yet interrelated view of the process.
Activity charts capture the functional perspective
of the process and focus on the activities being
performed while hiding the actual details of how
they are carried out. State charts provide the be-
havioral perspective and focus on the timing and
ordering of the individual process steps. Finally,
module charts describe the organizational units
involved and the physical communication chan-
nels used to transfer information between the ac-
tivities. These three charts provide an integrated
vision for process models and correspond directly
to the three levels of the experience base.

Statemate'® provides the analytic and simulation
capabilities required by process engineers. With
this tool, engineers can step through a modeled
process, run batch simulations, generate events,
and observe the reactions of models. Recent
work'? shows how Statemate can be used to pro-
vide quantitative estimates of process time and
resource allocation. Process managers can cor-
relate these estimates with statistics derived from
the actual performance of processes. Because
Statemate offers little help in performing pro-
cesses, PRS incorporates the MARVEL process-
centered environment. 8

In MARVEL , a process model is defined by a pro-
cess modeling language (MSL), with each process
step encapsulated by a rule. Each rule is com-
posed of a condition, an optional activity, and a
set of effects. The condition is a prerequisite that
determines when the process step can be carried
out. The effects are the immediate implications of
the process step. Each process model contains an
object-oriented data schema that defines the pro-
cess state and the organization of the particular
product data. MARVEL provides process automa-
tion through backward chains that attempt to sat-
isfy the prerequisites of a process step, and for-
ward chains that carry out all implications of a
process step. Recent work has shown how
Statemate charts can be automatically translated

HEINEMAN ET AL 505

Table 2 Goals for human understanding and communication

1 Represent processes in a form understandable by humans

2 Enable communication about and agreement on software processes

3 Formalize processes so that people can work together more effectively

4 Provide sufficient information to allow an individual or team to perform the intended processes
5 Form a basis for training the intended processes

into MARVEL rules,* thus producing a multiuser
environment that can enact a given process
model. Sector C tools can be incorporated into
the MARVEL environment, and measurements can
be taken as processes are performed, providing
useful feedback to process managers.

In the remainder of the paper, we discuss PRS
research within the context of our original objec-
tives. At the end of each section we assess how
well PRS research addresses the goal clusters for
the objectives.

Human understanding and communication

The first step toward our goal of improving soft-
ware processes is understanding them. Table 2
presents five motivating goals for employing mod-
els to understand software processes. Industrial
software processes often require more than a year
to carry out a development or support cycle,?
making it inconvenient to acquire understanding
through direct observation. Because software
processes are extremely complex, managers and
participants frequently lack a broad sense of in-
tellectual control over them. Even simple pro-
cesses quickly become complicated because
there can be many processes performed simulta-
neously by different people, so that often no one
person understands the entire set of processes.
Consequently, gaining understanding is a valu-
able goal in its own right.

The goal cluster in Table 2 focuses on effectively
communicating the description of a process to

506 HEINEMAN ET AL

others, such as workers, managers, and custom-
ers.? Process developers and researchers must
always remember that their goal is to help
people understand processes. Models and defini-
tions are simply vehicles for this purpose and
are useless if they themselves cannot be under-
stood. A complicating factor in facilitating
understanding is that so many diverse groups ac-
cess models, including software process engi-
neers, project managers, software engineers,
system engineers, software executives, and
customers. These different groups may place
widely differing demands on a modeling approach
because of their different information needs and
expertise. Visual approaches, good use of ab-
straction, and multiple perspectives offer prom-
ising techniques for coping with these challenges.
We next describe the two PRS techniques used to
construct models from existing processes: Elicit
and DMP.

Elicit. It is our belief that valid models are
most easily derived from existing processes.
Reference 22 describes a methodical approach,
named Elicit, that elicits models from active
processes. Elicit is actually a meta-process for
eliciting software process models with the follow-
ing steps:

1. Understand an organizational environment
Define elicitation objectives

Plan the elicitation strategy

Extract process information

Synthesize and translate models

. Perform the analysis

SR W

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

Elicit progresses from an implicit state (unde-
scribed, enacted processes) to an explicit state
(described, analyzed models). The derived mod-
els are collected and made part of the experience
base for the organization, ready to be used for
further understanding and improvement. Elicit-
ing software process models from enacted pro-
cesses involves all the activities that are neces-
sary in extracting process information from
various sources and synthesizing it into appro-
priate models. This elicitation is similar to bot-
tom-up process re-engineering; they both identify
the work that an organization should perform and
define efficient and effective processes for that
organization. Elicit is an evolutionary method
that produces feedback that might lead to the it-
erative repetition of previous steps.

Elicit has been applied and documented in several
laboratory and industrial environments. The ba-
sic concept of Elicit is discussed in detail in Ref-
erence 22. At the IBM Toronto Software Solutions
Laboratory, Elicit has been applied to the lab-
wide recommended requirements process.” Based
on this experiment, Elicit was then analyzed and
improved.* Formalizing, applying, measuring, an-
alyzing, and improving Elicit was the subject of a
master’s thesis research project® and studies in a
laboratory environment to elicit a literature assim-
ilation process.?

In an early application of the process cycle, a
semiformal process notation was designed? to be
used as a vehicle for understanding and commu-
nicating process information. Process notations
were developed in each sector of the process cy-
cle using a specification-implementation para-
digm. Further work on the infrastructure needed
to support the communication of processes is out-
lined in Reference 28. These human understand-
ing and communication goals were in fact at the
center of an earlier joint IBM-McGill project on
software processes? that led to the recommen-
dation of a process modeling method and of a
supporting tool. We next describe in detail the six
steps that Elicit encompasses.

Understand an organizational environment. The
first step of the meta-process is to understand the
environment from which models need to be elic-
ited. This step is of fundamental importance since
it defines realistic objectives upon which the rest
of the elicitation process is based. The following

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

partial list illustrates some of the questions that
can be answered by this step:

* Projects of concern: Is the process to be exam-
ined project-specific, multiproject, or organiza-
tion-wide?

Team structure: Are the teams organized hier-
archically or democratically? Are they autono-
mous or authoritarian?

Degree of process awareness: How strong is
process awareness among the various groups
and individuals in their respective roles? What
purposes would models serve? Are the expec-
tations from described processes unreasonably
high? How soon are the process descriptions
required? What quality of process descriptions
is required?

The input to this step is organization knowledge;
its outputs are documented contexts considered
useful for the elicitation tasks that we next de-
scribe.

Define objectives. In this step, the specific objec-
tives of the elicitation task are defined. These ob-
jectives are used to measure the quality of the
elicited models. Without such objectives, it
would be difficult to control the elicitation proj-
ect. Some objectives to be considered are soft-
ware process domain, granularity, consistency,
completeness, cost, urgency, and resource con-
straints.

The software process domain is especially impor-
tant because it provides a setting within which
particular elicitation objectives achieve the great-
est impact. The appropriate domain should be
chosen based on many factors. Some of the areas
addressed by this step are:

s Known process problems: Which parts of the
process are ill-defined or not well understood?
Which parts of the software process contribute
to software quality problems? These weak pro-
cess areas are revealed by process assessments.

s Expected process changes: For example, if a
new set of tools is to be added to the design
process, this process may need to change to
accommodate the new tools.

Granularity and consistency determine the
amount of effort to be undertaken by setting the
level of details of the elicited models. The more
fine-grained a process model needs to be, the

HEINEMAN ET AL. 507

more effort will be required to produce it. Com-
pleteness also has an impact on the cost, since it
determines the scope of the elicitation. Urgency
and resource constraints determine how soon the
elicited model needs to be produced, and whether
a given set of human resources will be available
to complete the desired elicitation.

Plan elicitation strategy. This step builds an elic-
itation plan and allocates appropriate resources
so that when the plan is executed, the desired
quality of the elicited process model is developed
within budget and on time. This activity involves
identifying the scope of the elicitation task in de-
tail, scheduling interviews and document-under-
standing sessions, identifying the deliverables,
selecting elicitation tools, and allocating comput-
ing and human resources. This planning step can
be as complex as the management of software
projects.

The elicitation strategy is affected by both the
objectives and the contexts from the previous two
steps. For example, the objectives may determine
a budget and time schedule that limits the number
(and type) of people to be interviewed and doc-
uments to be examined. In addition, the docu-
mented contexts contain knowledge about par-
ticular documents and specific people that can
help plan and schedule elicitation activities. The
role of the persons planning the elicitation strat-
egy is important and should be carried out by
highly skilled and influential process experts. An
ineffective plan is likely to result in low-quality
descriptive models and wasted time and effort.
Also, if such low-quality models are used in a
software project for training practitioners, or as a
basis for process improvement, then a great deal
of damage can occur.

Since Elicit is iterative, the elicitation plan might
require either the objectives to be redefined or the
contexts to be described more clearly. This step
produces a plan to be used for elicitation of mod-
els from the identified processes.

Extract software process information. The plan
created by the previous step is carried out, in-
cluding reading process documentation, holding
interviews, analyzing question responses, ana-
lyzing the elicited model, and demonstrating the
elicited process descriptions to management. A
tool that supports the meta-process (the Elicit
tool) prompts the user at each step for process

508 HEINEMAN ET AL

information that it represents as process models.
In essence, Elicit takes care of the mechanical
aspects of eliciting, leaving the user with the cre-
ative tasks of providing appropriate information.
This can save considerable elicitation time and
effort and reduces the chance of missing infor-
mation or having erroneous information.

Once the information has been elicited, a model
is created from the structured process descrip-
tions. At this point, static semantic checks can
validate the elicited model against the objectives
defined previously. In iterative fashion, the pre-
vious steps might need to be re-executed to fur-
ther refine the contexts, objectives, and elicita-
tion plans. This step produces a descriptive
process model.

Synthesize and translate. Once the elicited pro-
cess model has been statically reviewed, its dy-
namic behavior needs to be examined for correct-
ness. This could be done as part of the previous
step if the eliciting tool has behavioral analysis
capabilities. Instead of building dynamic analysis
and simulation capabilities into our elicitation
tool, however, we simply translate the elicited
model into a representation suitable for dynamic
analysis by a commercial tool. Given this ap-
proach, the two key issues for translation are: (1)
the compatibility of the modeling formalisms sup-
ported by the elicitation tool and the simulator;
and (2) the method of translation (that is, hand or
automatic translation) of the elicited process
model.

The first issue requires the representation scheme
supported by the simulator to be at least equiv-
alent to, or a superset of, the one supported by the
elicitation tool, otherwise information will be lost
during translation. The second issue implies that
either an automatic translator is constructed, or
careful hand-translation of process components is
carried out, followed by reviews. To avoid the
complications of translations, Elicit allows the
process engineers to hand-translate the elicited
information into Statemate charts that can then be
analyzed using Statemate.

Analyze. The final step of Elicit is the analysis of
the behavioral aspects of the translated process
model. If necessary, the model is corrected to
reflect the dynamics of the enacted software pro-
cess. For this purpose, there is a need for appro-
priate process analysis and simulation tools. The

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

process models should be checked for deadlocks
or race conditions, starvation among subpro-
cesses, reachability problems, idle time and de-
lays in the process, and behavioral ambigu-
ities. 1%

The process engineer should also observe the de-
gree of parallelism in process subcomponents,
obtain animated traces of simulated paths, exper-
iment with “what-if” scenarios, and calculate quan-
titative predictions. Researchers have shown
how software process models can be analyzed to
make prescriptive improvements. I’ Here, the
objective is to make descriptive improvements to
the elicited model that reflect the behavior of the
enacted process. Prescriptive and descriptive im-
provements can be made at the same time.

In iterative fashion, all previous Elicit steps might
need to be re-executed if flaws are found in the
process model. Once this step has terminated,
Elicit is complete.

Package. The fulfillment of Elicit occurs during
its packaging phase. Once the information has
been elicited, the constructed model must be
stored in a meaningful manner. Packaged infor-
mation related to the elicitation task can be re-
used in other tasks (such as new elicitation tasks
or process improvement efforts) and can be help-
ful for educating process users. Packaging is par-
ticularly worthwhile if there are on-going or nu-
merous elicitation (or process improvement)
efforts in the organization. There are several key
perspectives to consider when packaging the elic-
ited information: objects of interest to package,
users of the packaged information, and reusabil-
ity of the packaged information.

The objects of interest can be categorized into
either products of Elicit or experience gained in
eliciting software processes. Clearly, we want to
store the models created by Elicit; we also store
the experience gained, including the contexts, ob-
jectives, and elicitation plans constructed by
Elicit. This ability to store all pertinent informa-
tion increases the integrity and cohesion of all
elicited models. The users of the packaged infor-
mation are varied; they include process educa-
tors, process improvers, managers, and elicita-
tion-task performers. For example, process
educators can use elicited models for software
process-understanding tutorials, while process
improvers can use the elicited process model and

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

organizational environment as a basis for process
improvements. Project managers can obtain re-
ports to create cost benefit analyses while elici-
tation-task performers can use the packaged
strategies in other elicitation tasks. The number
of users and the ease with which they access the
packaged information increases its reusability.
For example, organizational environment details
would be extremely useful in eliciting other soft-
ware process models within the same software
project.

The process modeling formalism needs to be flex-
ible enough to satisfy the different needs of the
users who will be accessing the packaged infor-
mation. Two features we have found useful in
modeling formalisms are multiple levels of ab-
straction and multiple perspectives. The users
should be able to start understanding the process
models from the top working down, from the bot-
tom working up, or even from the middle working
either way.'** Furthermore, representing multi-
ple perspectives on a process can be quite bene-
ficial; these may include functional, behavioral,
organizational, and informational perspectives.’
Capabilities, such as levels of abstraction, preci-
sion, and multiple perspectives, offer distinct ad-
vantages over representations based upon narra-
tive text or a single type of diagram. PRS envisions
that all elicited models will be stored in an expe-
rience base, whose structure we next describe.

Experience base. The experience base is derived
from the component factory!? that attempts to in-
crease the quality and productivity of software by
targeting three goals: improving the effectiveness
of the software processes, reducing the amount of
rework, and reusing life-cycle products. The pro-
duction of software using reusable components is
a significant step forward for all three of these
goals, but there are still problems in achieving
higher levels of reuse. The current inability to
package experience in a readily available way
prevents the transfer of experience from one proj-
ect to another. Another problem is the difficulty
in recognizing experience that is appropriate for
reuse. Finally, reuse needs to be an integral part
of software development processes before it can
be truly effective. The experience base addresses
these concerns by applying the concept of the
component factory to the domain of software pro-
cesses.

HEINEMAN ET AL 509

Like the component factory, the experience base
has three levels of abstraction representing the
different aspects of a process. The highest and
most abstract level, Reference, describes the

Development of models
increases the
understanding of
processes.

agents in the organization. The Conceptual level
represents the interface of the agents and the
flows of data and control among them. The lowest
level, Implementation, defines the actual imple-
mentation, both technical and organizational, of
the agents and of their connections specified at
the Conceptual level. These three levels corre-
spond exactly to the three perspectives modeled
by the Statemate-modeling approach described in
the earlier section “PRS framework.”

The experience base is also similar to the Process
Asset Library (PAL)* prototype developed in
1992 by SEI in collaboration with the STARS (Soft-
ware Technology for Adaptable, Reliable Sys-
tems) program of the U.S. Department of Defense.
The PAL prototype includes nine processes, each
represented by a model, and seven represented
by a process guide as well. These nine assets were
primarily based on pre-existing process docu-
mentation that included an IEEE (the Institute of
Electrical and Electronics Engineers, Inc.) stan-
dard, process guidebooks, and a journal article.
The PAL prototype contains over twelve hundred
pages of process documentation (models and
guides) and was the first publicly available col-
lection of industrial-strength models.

Descriptive modeling process (DMP). Since 1987,
the group at SEI has developed more than a dozen
models of industrial-scale software processes.
Several of these are descriptive models of pro-
cesses as they are actually performed in a specific
real organization.'>'** This experience has been
coalesced into a Descriptive Modeling Process
(DMP) that has been taught in detail to over 200

510 HEINEMAN ET AL

software professionals for use in their organiza-
tions. This three-day workshop offered by SEI will
be documented in a forthcoming paper. DMP pro-
duces (semi-) formal models of current processes
as practiced in a specific organization. Consider-
able effort and care are necessary to accurately
reflect organizational practice, as opposed to the
process documentation that records what process
is desired. Developing such models involves ex-
tensive interviews with process performers to
elicit the information and verify the models. The
primary inputs to DMP are existing process doc-
umentation and knowledge of the as-practiced
processes from those who perform and manage
them. DMP creates a descriptive model of the as-
practiced processes in a variety of representation
languages, including Statemate, ETVX (Entry-
Task-Validation-eXit), and IDEF0. Most descrip-
tive process models are developed in an iterative,
top-down fashion. As an example, one compre-
hensive model developed at SEI involved inter-
views of approximately 25 individuals and 5 iter-
ative rounds of construction activity.*

Both DMP and Elicit create process models that
clearly describe the processes and can be used to
aid the performers of the processes (Goal 4 in
Table 2) to train new members in the processes
(Goal 5 in Table 2).

Achievements in understanding. Formalizing ex-
isting processes increases the understanding of
the processes. We have found that modelers al-
ways increased their understanding of processes
through the experience of developing models.
More importantly, when process participants,
managers, and other personnel viewed a model,
they almost invariably reported increased under-
standing (Goal 1 in Table 2). The impact that mod-
els have on process understanding shows their
communicative power. Personnel ranging from
software engineers to senior managers have
found these models to be understandable and use-
ful. The models have allowed them to clearly vi-
sualize how the various process components are
interrelated. Their comments, questions, and in-
sights arising during presentations of these mod-
els demonstrate that models are valuable com-
munication vehicles. Process participants have
gained a deeper understanding of portions of the
processes in which they do not directly partici-
pate, and management personnel have gained
substantial understanding as well.14%%

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

Table 3 Goals for process improvement

1 Identify all the necessary components of high-yield software development or maintenance processes

2 Reuse well-defined and effective software processes on future projects

3 Compare alternative software processes

4 Estimate the impacts of potential changes to a software process without first putting them into actual practice
5 Assist in the selection and incorporation of technology (for example, tools) into a process

6 Facilitate organizational learning regarding effective software processes

7 Support managed evolution of a process

The following analysis of the understanding and
communication benefits taken from a specific SEI
modeling effort’* shows how Goals 2 and 3 in Ta-
ble 2 are addressed. In this study, the focus was
on the process of identifying and making changes
to Technical Orders® (TOs) in response to changes
in the software—in particular, changes to the Op-
erational Flight Program for the F-16A/B multi-
role fighter. A typical new release of the Opera-
tional Flight Program required changes to 3000
pages of TOs spread over as many as 100 separate
documents.

Our efforts at modeling the TO Modification
Process led to a number of very important re-
sults. The first of these is a notable increase in
understanding of the process by those involved
in executing and managing it. . . .

Several different organizational subunits are in-
volved in various stages of the TO Modification
Process. Not surprisingly, the view of most of
these subunits was somewhat parochial, focus-
ing on their specific subtask with little aware-
ness of overall implications. . ..

In the course of our interviews, we gained an
increased appreciation of the overall goals of
the process, as well as a recognition of the ef-
fect of regulations and standards on the pro-

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

cess. Communication of this information to
relevant personnel can result in significant ben-
efits. A common understanding of the overall
process and the role each group’s work plays in
its successful completion, may lead to in-
creased goal congruence among those in-
volved. . ..

We also found that graphical representations of
the process were far more effective communi-
cation vehicles than narrative presentations.
Rapidly building a common base of understand-
ing seems crucial in arriving at a point where
fruitful discussions can occur regarding the im-
pact of new technology, process streamlining,
effects of regulations, and so forth.*

Once a model has been constructed, its useful-
ness can extend to other domains. For example,
a model created to describe the factors that im-
pact the success of the requirements engineering
process® was subsequently applied to process
design, customization, and reuse.®

Process improvement

The second goal cluster (Table 3) is concerned
with evolutionary improvements to a process. A
variety of reasons why an existing process might
need to be changed include potential gains in pro-

HEINEMAN ET AL. 511

ductivity, potential gains in product quality, ex-
ternal factors (such as schedule pressures or po-
litical factors) that require the process to be
modified or steps to be removed, process refine-
ment by the development team, and invalid as-
sumptions under which the process was designed.

Software process models support the identifica-
tion and analysis of potential improvements. This
is a primary objective of software process mod-
eling because of its connection with the improve-
ment of software quality, cost, and scheduling.
The models help highlight areas of opportunity for
process improvements and can be used to eval-
uate potential improvements before they are put
into practice. Models serve as storehouses for
modifications, lessons learned, and tailoring deci-
sions, thus recording the evolution of a process
along with the outcomes of all changes made.
This retrospection provides a basis for evaluating
the relative success of such changes. In addition,
tailoring decisions may be formalized and stored
as part of the models, so that this knowledge can
be consistently applied again in the future.

There are many different approaches to software
process improvement. A brief list includes the
Quality Improvement Paradigm (QIP),* Total
Quality Management (TQM),* and the SEPG ap-
plication*' from the SEI Capability Maturity Mod-
el.* Tool insertion in the software process is an-
other approach that shows great promise. *? In the
next few sections, we describe the various re-
search of PRS dedicated to process improvement.

Tool insertion method. Bruckhaus* describes the
tool insertion method (TIM) as a comprehensive
method that plans, executes, and controls the tool
insertion into a software process. Currently, the
method is mostly ad hoc. Tools are sometimes
purchased based on informal recommendations
and are put immediately into practice; often a tool
does not live up to its expectations. Little or no
planning is done for the use of a new tool in a
particular process. It is often not clear what ben-
efits can be expected when a specific tool is in-
serted into a specific process, nor how the impact
of inserting the tool can be measured. Huff* de-
scribes some additional complexities of tool in-
sertion:

¢ The actual cost of tool insertion may run five to
eight times greater than the initial cost of the
tool.

512 HEINEMAN ET AL.

¢ It may take one to two years of preparation by
a dedicated team of six to nine people to reach
the pilot stage.

* Unanticipated costs may lead management to
terminate a promising tool project or may in-
crease resistance to future tool acquisitions.

Bruckhaus is currently developing TIM as part of
a study to measure and analyze the impact of in-
serting a specific tool into an on-going, real-world
software development process at the IBM Toronto
Software Solutions Laboratory. As steps of TIM
are executed, feedback is used to deliver im-
proved versions of TIM. Software process mod-
eling is the primary vehicle for quantifying ex-
pected benefits of, and measuring the impact of
tool insertion.* TIM has eight steps:

1. Model the development activity of interest (if
the model does not already exist)

2. Identify a set of key improvement areas

3. Measure current process context, data es-
sence, and process performance

4. Quantify the goal of inserting a tool in terms of
process performance

5. Select a tool and perform a pilot study

6. Customize the tool (if possible) to best suit the
insertion goals

7. Insert the tool and monitor process perfor-
mance

8. Take corrective actions (iterate)

TIM uses its own measurement method, TIM/M, to
quantify the expected impact of tool insertion,
and then monitors the actual tool usage to verify
the forecasts. TIM/M is a refinement of Basili’s
goal-quality metric (GQM) paradigm,*® with a spe-
cific focus on tool insertion. Like GQM, TIM/M de-
fines a hierarchical structure of process aspects of
interest. Measurement programs defined with the
help of TIM/M cover the process aspects of pro-
cess context, data essence, and process perfor-
mance. Each of these aspects is then repeatedly
broken down into subaspects. Finally, each as-
pect is coupled to one or more metrics that help
describe the aspect. Since this structure is not
l[imited to a particular process, TIM/M can help one
design measurements in any given process con-
text (for example, requirements planning, design,
or testing). TIM will have its greatest impact on
Goal 5 in Table 3.

The Organization and Process Together (OPT) ap-
proach. Seaman’ describes Organization and

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

Process Together (OPT) as an approach to im-
prove an organizational structure and a software
development process when considered together
as a single system. This method is patterned after
QIP* and models the relationships between an or-
ganizational structure and a development process
so that these relationships can be quantitatively
measured and specific improvements can be
planned in the system.

Relationships between the organizational struc-
ture and a development process are modeled us-
ing the Organizational and Architecture Specifi-
cation Languages (OSL and ASL)*" languages. An
OSL specification describes the nonprocess rela-
tionships, called links, between different ele-
ments of the organization. Examples of such links
are REPORTS-TO and MANAGES. An ASL speci-
fication describes the agents that execute the pro-
cess in terms of the specific activities that they
perform and the interactions between them. Since
a process model often contains extreme detail, it
is often difficult to model an organizational struc-
ture because the important information must be
abstracted to be clearly identified. An ASL spec-
ification provides this abstraction and is more
useful than a process model for analyzing the
structure of an organization. It also provides the
bridge between a development process and an or-
ganizational structure, allowing the two to be con-
sidered together as a system.

The goal of OPT is to measure how well suited a
development process and an organizational struc-
ture are for each other. OPT targets two comple-
mentary factors that characterize the relation-
ships between an organizational structure and a
process. The insight OPT provides is that these
factors can be measured. The first factor is the
distribution of responsibility for process activities
among the members of the organization. This cap-
tures the effect that the process has on the orga-
nization. The second factor is the process com-
munication (which can either facilitate or hinder
the efficient flow of information) within the orga-
nization. This captures the effect that the organi-
zation has on the process.

OPT is part of the planning phase (third step) of a
QIP improvement cycle. The first QIP step results
in the characterization of the environment by the
creation of an organizational structure and a cor-
responding process model. After the initial orga-
nizational model is complete, the second QIP step

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

is issued to create quantifiable goals using the
GQM* approach. These goals define the means by
which improvements will be validated. Reason-
able expectations are calculated from the baseline

Software process models
are used to predict
the impact of changes.

provided by the first step. The third QIP step helps
to decide the actions to take to satisfy the goals;
the OPT approach is used for this purpose. As the
actions are executed, the metrics chosen earlier
are evaluated and analyzed to provide real-time
feedback. Once all actions are completed, a post-
mortem analysis is conducted to determine if the
original project goals have been satisfied. Any
changes are integrated into the organizational
model, and the cycle is prepared for the next QIP
iteration. OPT addresses Goals 1 and 6, in Table 3,
by validating a particular software process for a
particular organizational structure. The key in-
sight of OPT is that a process is not conducted in
a vacuum,; it affects, and is affected by, the or-
ganization that implements the process.

Quantitative approaches. Raffo* describes a quan-
titative approach to process improvement. In a
process change study, Raffo used software pro-
cess models to predict the impact of potential pro-
cess changes before a substantial commitment of
time and resources was made. Such analysis al-
lows process improvements to be prioritized
based on their potential performance impact. This
approach forecasts the impact, in quantitative
terms, of a proposed process change before it is
put into place in the actual organization. Using
this method, management can ask what the value
(impact) will be in the organization of making a
(proposed) change to the process. This impact is
measured in quantitative terms, such as effort (ag-
gregate or time-profile) and schedule (total dura-
tion or intermediate milestones). This notion of
impact focuses on the results of the change after
it has been stabilized in the organization.

HEINEMAN ET AL. 513

This investigation targets a real issue facing mod-
erately mature organizations. As an example, one
product team at the 1BM Toronto Software Solu-
tions Laboratory collected in a database about
200 proposals for improving processes employed
in supporting a particular large product. The proj-
ect manager then asked the process analyst on the
project to prioritize these proposals on a cost and
benefit basis. The process analyst felt reasonably
able to estimate the implementation costs (such as
documentation, training, and so forth), but had a
need for a method of estimating the impact of a
change in quantitative terms. The process change
study directly addresses that need and helps de-
velop a business case to obtain managerial sup-
port for specific process improvement proposals.

Raffo’s approach uses simulation models of the
affected portions of process with and without the
proposed change. Stochastic modeling with
Monte Carlo simulations is used, although deter-
ministic modeling can also be performed (simpler,
but less realistic). This approach explicitly mod-
els the complex interdependencies among pro-
cess components and employs a new technique,
called Task Element Decomposition, for handling
interdependent operation times in large-scale sys-
tems; this is a contribution to the operations man-
agement field. A multi-attribute decision-making
framework is used for comparing process alter-
natives, allowing management to ask questions
about whether source code inspections would still
be beneficial if the starting code had more errors,
or would process performance be affected if slack
time in the process were reduced.

The actual modeling techniques are built upon
the SEI-developed Statemate-based modeling
approach; this work most directly builds upon
the modeling extensions to support quantitative
management planning and control. "7 These soft-
ware process modeling techniques also support
sensitivity analyses of the models, helping the
modeler:

* Assess confidence in the results

* Fine-tune the proposed process

» Explore learning curve effects

* Suggest viable alternative processes

The results to date are fully documented in a uni-
versity working paper® totaling over one hundred
pages. The first major phase of the work devel-
oped an approach to the quantitative comparison

514 HEINEMAN ET AL.

of alternative processes, together with supporting
techniques—thus directly supporting Goal 3 in
Table 3. A comprehensive representative case
has been explored in detail, namely adding a code
inspection process to an existing process that em-
ployed design reviews and unit tests, but not code
inspections. The primary performance measures
of interest were aggregate effort, duration, and
defects remaining at the conclusion of the pro-
cess. In this investigation, the process change re-
sulted in somewhat more total effort, more total
duration, but substantially fewer remaining
errors.

The long-term goal of this work is to develop a
method and supporting techniques for forecasting
the impact of potential process changes, thus di-
rectly supporting Goal 4 in Table 3. This work
provides a vital foundation by developing an ap-
proach and technique for comparing alternative
processes based on estimated quantitative per-
formance from predictive software process mod-
els. A very preliminary method for the larger
problem of process change has also been docu-
mented, but it requires further exploration. Ad-
ditional example process changes will be consid-
ered, from which a method will be refined and
documented and then tested on a full-scale real-
world situation. This work is expected to be ap-
plicable to process changes at the scale of a Ca-
pability Maturity Model Key Process Area>® or
smaller, but may not be well suited to larger scale
questions, such as comparing entire maturity
levels.

Process generalization. Within a large organiza-
tion, process improvement issues span multiple
projects. There is a need, therefore, to improve
not only individual processes in various projects
(see sector B in Figure 1) but also generic process
capabilities across a set of projects (sector A).
The advantages of generic models include corpo-
rate-wide improvement and standardization of
process components, development of an organi-
zation-specific culture (Goal 6 in Table 3), and a
base model that may be tailored to meet the needs
of specific projects.

Experience shows that while many organizations
do indeed perform changes to prescriptive ge-
neric process models, they often have little or no
information about the aspects of project-specific
process models that need to be considered when
changing the generic model. What is needed is a

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

mechanism that builds descriptive generic pro-
cess models to provide a coherent vision of com-
monality and variability among project-specific
processes. These descriptive generic models are
useful for driving the desired changes to prescrip-
tive generic models. At McGill, researchers have
developed a method, called Generalizer, for
building descriptive generic process models from
a set of project-specific ones.™ The key steps to
this method are:

¢ Elicit project-specific process models

* Decompose and categorize project-specific
models

* Match process components from different
projects

e Obtain goal-oriented views from categorized
components

e Make cross-project comparisons based on pro-
cess views (Goal 3 in Table 3)

* Identify commonality among these views

» Synthesize common components into descrip-
tive generic models

In its simplest form, a generalization method
leads to a pure generic descriptive model. In prac-
tice, however, while making organization-wide
change decisions, it is often desirable to examine
various degrees of generic descriptive models as
possible starting points for the changes. A suitable
starting point is selected based on change-related,
cultural, cost, technological, quality, standardiza-
tion, or other factors. Using threshold values, pro-
cess engineers can specify degrees of generality
when building generic descriptive models. For ex-
ample, a process engineer can set the threshold to
70 percent, implying that the descriptive generic
model will contain all process components that are
common to at least 7 out of 10 projects.

The output of this generalization method is de-
scriptive generic models that show how project-
specific models can be created from the organi-
zation’s generic process models. A tool (named
the Generalizer) is being developed to aid the
building of generic prescriptive process models.
It allows process engineers to experiment with
threshold values to create the most suitable ge-
neric descriptive models. The Generalizer works
in conjunction with the Elicit method and tool in
that Elicit helps build descriptive process models
and Generalizer helps generalize project-specific
models.

1BM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

Evolving processes. The approaches outlined so
far can target specific improvements to a process
model, but we need an additional mechanism that
aids the evolution of an enacted process (Goal 7

There is a need to
improve generic process
capabilities.

in Table 3); the MARVEL project has such a tool,
called the Evolver.5! MARVEL® is a process-cen-
tered environment that defines a process model
by a set of production system-style rules. Each
process model is augmented by an object-ori-
ented data schema that defines the process state
and the composition of an object base that main-
tains all the data used by the process. As MARVEL
enacts the process, it updates the process state
stored in the data schema of the objects to accu-
rately reflect its real-world state. Changes to a
process model may directly affect existing ob-
jects. The process state, in particular, is main-
tained by attributes associated with each object
that may need to be updated to be consistent with
the new process model. Even some of the most
trivial process changes might require the entire
object base to be updated. For example, since
each object inherits from a generic ENTITY class,
adding an attribute to this class will update all
objects.

The Evolver operates on an existing MARVEL
environment (with a particular process model)
and the evolution consists of two steps. First, the
new data schema is compared against the original
one, and a detailed analysis of their differences is
reported. This allows the process engineer to
view the consequences of a particular schema
change. The second step involves the process
model. MARVEL allows a process engineer to con-
struct a sequence of rules whose forward chain
must be atomically carried out; that is, if a con-
currency conflict occurs at any point during the
rule chain, the entire rule chain is rolled back.
During this second step, the Evolver constructs a

HEINEMAN ET AL. 515

graph from the original process model with rules
as nodes and chains between rules as edges in the
graph. A similar graph is constructed from the
new process model and the two are compared to
detect when these atomic rule sequences are
shortened or extended. In the latter case, the
Evolver automatically generates a batch script of
MARVEL commands that executes the necessary
rules in the new process model to make the object
base consistent with respect to the new graph. In
both cases, the process engineer is notified of all
changes. The reports generated by the Evolver
can be used to view the effects a particular pro-
cess change will have (Goal 4 in Table 3); if the
process engineer determines the change to be too
costly, the evolution process can be terminated,
restoring the MARVEL environment. This process
evolution operates in an off-line fashion. Thus,
the process itself can be in progress when evolu-
tion occurs but must be quiescent; that is, all
atomic rule chains have terminated and the envi-
ronment is waiting for the next request to con-
tinue the process. Since the main goal of the
Evolver is its ability to resume long-lived pro-
cesses after changes, this off-line approach is ac-
ceptable.

Achievements in improvement. A prerequisite to
improving software processes is the need to un-
derstand them; such an understanding can be ex-
pressed in the form of models, as we have seen in
the section “Human understanding and commu-
nication.” Another important prerequisite is mea-
surement. To facilitate measurement, valid and
reliable instruments to measure various attributes
of the process, and the software products, must
be constructed. Recent work*? has led to a method
for the development of such instruments. This
method uses software process models to define rel-
evant metrics. ¥

Armed with a suitable set of metrics, and an un-
derstanding of processes, the improvement task
has a higher likelihood of succeeding. Such an
empirical perspective has been advocated as a
basis for improvement.>® A major benefit result-
ing from formalizing existing processes has been
a substantial number of recommendations for
process improvement. Many of the SEI-devel-
oped Statemate models have been subjected to
analysis (manual and some automated) and rec-
ommendations were made for process improve-
ment as well as for technology insertion. Some of
the procedural issues observed from analyzing

516 HEINEMAN ET AL

these models include bottlenecks, insufficient par-
allelism, and management control versus produc-
tivity. The opportunities for beneficial technology
insertion include the use of advanced document
production technology, configuration management
tools, and project management and planning
tools.*

Two examples, both from SEI, show the success
of using process modeling techniques to guide
process improvement. The first is the case of
the process used by the U.S. Navy to support the
operational software for the F-14A aircraft. The
corresponding model depicted the full software
support process, from receipt of a software trou-
ble report, change request, or enhancement re-
quest, through release of the corresponding soft-
ware change to the field. An extensive analysis of
the model identified a total of 13 major issues for
possible process improvements, resulting in over
30 recommendations for modifications to meth-
ods, procedures, and technology usage.® The
second example is provided by the case of the
military handbook (MIL-HDBK-347) on software
support for mission-critical systems.* The SEI
modeling and analysis identified 35 issues that
could improve the handbook process or its expo-
sition. These improvements were revealed after
the completion of an extensive public review pro-
cess that had solicited written comments from
over two hundred people.*

The issue of change management, which is at the
heart of Goal 7 in Table 3, has been investigated,
where a model of changes, together with its in-
frastructure support, are presented in Reference
55. In addition to the provision of a framework for
changes, a primary contribution of this work is
the identification of the items of change and of
their properties. Another look at the process evo-
lution issue is provided in Reference 56, where
the process cycle is used as a basis for process
maintenance.

The experience base previously discussed is the
centerpiece for any strategy to reuse software
processes (Goal 2 in Table 3). Some results
toward this direction can be found in the
P/MARVEL environment.*’ This MARVEL environ-
ment is really a meta-process that allows a pro-
cess engineer to design a process and verify its
behavior in an isolated test environment. Multiple
processes can be developed simultaneously, al-
lowing process fragments to be transferred and

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

Table 4 Goals for automation (a combination of the original automated execution support and automated guidance)

1 Define an effective software development environment

2 Provide guidance, suggestions, and reference material to facilitate human performance of intended processes
3 Retain reusable process representations in a repository

4 ‘Automate portions of processes

5 Support cooperative work among individuals and teams by automating process details

6 Automatically collect measurement data reflecting actual experience with a process

7 Enforce rules to ensure process integrity

reused. PPMARVEL is further discussed in the next
section.

Automation

The objectives of automated development sup-
port and automated guidance, shown in Table 4,
have captured the interest of a large number of
researchers. Early research on automation fo-
cused on providing a collection of independent
file-based tools such as MAKE, VI, RCS, and SCCS.
The invocation of these tools was, however, left
up to the user. Software development environ-
ments (SDEs) then appeared that were considered
“intelligent™ since they automated some of the
tool invocations and provided a means for storing
information, such as the current state of a project,
in databases. This intelligence was limited, how-
ever, because it was mostly fixed for each envi-
ronment. SDEs were then created that could tailor
their behavior based upon the specification of a
desired process. These process-centered envi-
ronments (PCEs) have process engines that enact
process models, a term used to encompass en-
forcement, automation, and guidance of the users
in carrying out the process.

Many existing process-centered environments
use some form of rules to define software pro-
cesses, because declarative rules are believed by

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

many researchers to be the most natural way to
express at least the local constraints on process
steps. Major exceptions include Arcadia,>® which
uses an imperative notation called APPL/A*® based
on Ada; HFSP (hierarchical and functional soft-
ware process),® which uses an extension of at-
tribute grammars; and MELMAGC, %' SLANG,® and
PROCESS WEAVER**,% which use a form of Petri
nets. As previously described, MARVEL plays a
central role in the PRS framework through its abil-
ity to enact processes. Before presenting MARVEL
in more detail, we briefly describe some related
PCEs.

Important examples of rule-based PCEs include
GRAPPLE,% which applies a planning system to
rules similar in form to those of MARVEL, and
Darwin,® which employs backward chaining in
the style of Prolog to enforce a set of “laws” that
govern development activities and software
changes. Most of the rule-based PCE projects are
currently working toward support for multiple
users, notably the Common Lisp Framework
(CLF),% Oikos,®” and Merlin.® CLF supports a
checkout and merging model but has no central
object base or process engine. Oikos uses a black-
board to communicate among separate work-
spaces, so there is somewhat more coordination
required than with CLF. The approach Merlin
uses is similar to that of MARVEL. To determine

HEINEMAN ET AL. 517

whether a PCE is effective (Goal 1 in Table 4), we
measure it against the set of requirements defined
in Reference 18 which must be fulfilled by any
general PCE. As described in that paper, MARVEL
addresses each of the requirements.

MARVEL. The goal of the MARVEL'®® project is
to develop a PCE kernel that guides and assists a
team of users working on a medium-scale soft-
ware development effort. The behavior of the ge-
neric kernel is tailored by an administrator who
provides the schema, process model, tool enve-
lopes, and coordination model for a specific proj-
ect. The user, in contrast, generally sees only the
resulting environment instance.

A process administrator writes a specification of
the project data schema and process model using
MSL, the process modeling language of MARVEL.
The administrator then loads these specifications
into the kernel, creating a MARVEL environment
instance that supports both the data and process
management requirements of the project. The
data schema is specified in terms of classes, each
of which consists of a set of typed attributes. Ex-
isting source code can be immigrated from the file
system into a MARVEL object base using the
“Marvelizer” utility.”™

The administrator defines the process (or work-
flow) by creating process steps corresponding to
individual software development tasks. Each step
is encapsulated by a rule with a name and typed
parameters. The body of a rule consists of a query
to bind local variables, a complex logical condi-
tion on the actual parameters and bound variables
that must be satisfied prior to initiating the activ-
ity of the step, an optional activity in which a
software development tool may be invoked, and
a set of effects, each of which asserts one of the
activity’s possible results (if there is no activity,
there can be only one effect). Forward and back-
ward chaining over the rules enforce consistency
in the object base and automate tool invocations.
Enforcement and automation are the two forms of
enaction in MARVEL. This consistency enforce-
ment is exactly the mechanism needed to satisfy
Goal 7 in Table 4. The chains between rules form
a rule network, with rules as nodes, and chains
between rules as edges.

Process enaction is mainly user-driven, as op-
posed to system-driven. The user decides when to
request a particular process step and enters a

518 HEINEMAN ET AL

command with the name and actual parameters of
the step. MARVEL then selects the “closest”
matching rules (there may be more than one) and
evaluates each of these rules in turn until it finds
one whose condition is already satisfied or can be
satisfied through backward chaining. The activ-
ity, if any, of this rule is then executed. After-
wards, one of the effects is selected according to
a status code returned by the activity, and MAR-
VEL forward chains to any other rules that are
implications of this effect. If none of the condi-
tions of the matching rules can be satisfied, how-
ever, then the user is informed that it is not pos-
sible to undertake that process step. Note that
since rules have multiple effects, it may be pos-
sible that an attempted backward chain results in
an undesired effect, but the chain is not then “un-
done” because that would be counter-productive
(consider a backward chain to generate correct
object code by compiling source code that pro-
duces syntax error messages instead). Additional
details about the rule formalism and its chaining
engine are given in Reference 69.

Multiple users of the same environment instance
are supported by a client/server architecture.’® A
client provides the user interface, checks the ar-
guments of commands, and executes tool enve-
lopes; the process engine, synchronization man-
agement, and object base reside in the central
MARVEL server. Scheduling is first-come, first-
served, with rule chains interleaved at the natural
breaks provided when clients execute activities.
Clients may run on the same or different hosts as
the server, but the enveloping facility assumes a
shared network file system where the software
components under development reside. The ex-
ternal view is illustrated in Figure 3. Additional
details about multiuser issues, primarily concur-
rency control policies specified by the adminis-
trator in the coordination model, are found in Ref-
erences 71 and 72. The support for schema and
process evolution, previously discussed, is de-
scribed in Reference 51.

Synchronization among multiple users has three
layers. Conventional locking is augmented by a
lock compatibility matrix, part of the coordina-
tion model provided by the process administra-
tor. This matrix provides support for composite
objects by an ancestor lock table—a generaliza-
tion of intention locks. Lock modes for kernel
operations (for example, ADD, DELETE), as well
as defaults for rule subparts and tool invocations,

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

Figure 3 Generic MARVEL environment

COOR-
DINATION
MODEL

L]

PROCESS
& DATA
MODEL

ADMINISTRATOR

TN
R
OBJECTBASE
MARVEL
SERVER
FILE
SYSTEM
ENVIRONMENT

Y

h

I‘l

cuent T cLent 4 cuent 1
N 1
P ENVELOPE ENVELOPE ENVELOPE
v
BATCH
CONVENTIONAL TOOLS CLIENT

are also specified. The default concurrency con-
trol policy distinguishes between chaining for
consistency versus automation purposes.” Chains
for the purpose of maintaining consistency are
mandatory and are treated as atomic, serializable
transactions; if a consistency chain encounters an
unresolvable lock conflict, the entire chain is
aborted (rolled back). In contrast, chains for au-
tomation purposes are optional and are treated as
sequences of distinct transactions, one for each
rule; they can be terminated (and not rolled back)
at rule boundaries. A preliminary coordination
modeling language specifies scenarios where this
default policy can be relaxed to increase concur-
rency and enhance collaboration.” The adminis-
trator defines the conflict resolution using primi-
tive operations to NOTIFY a user, ABORT a rule
chain, SUSPEND a rule chain until another has
completed, or IGNORE the conflict.

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

Conventional file-oriented tools are integrated
into a MARVEL process without source modifica-
tions, or even recompilation, through an envel-
oping language.”™ The rule activity indicates the
tool and envelope name, with input literals and
attributes to be supplied as arguments as well as
output variables for binding to any returned re-
sults; an implicit status code selects the actual
effect from among those given in the rule. The
body of an envelope is a shell script, written in
one of the conventional UNIX** shell languages:
SH, KSH, or CSH.

Achievements in automation. Computer-assisted
software engineering (CASE) tools were heralded
as the solution to the software crisis when they
were first developed; in retrospect, we have not
seen this to be true. They have, however, proved
to be extremely useful. The MARVEL PCE de-

HEINEMAN ET AL. 510

Figure 4 Sample MARVEL rule network

el EDIT

: (CFILE)

{
ANALYZE OUTDATE_STATUS
(CFILE) (CFILE)
COMPILE OUTDATE_ARCHIVE
(CFILE) (LIBRARY]}

QUTDATE_BUILD
(EXECUTABLE)

w—— CONSISTENCY CHAIN
mmemmms - AUTOMATION CHAIN
() FILE CREATED OR UPDATED

scribed here shows that processes can be, to
some degree, automated to provide assistance to
the users. MARVEL has been used to enact a va-
riety of processes. The MARVEL code production
environments (Oz/MARVEL®" and C/MARVEL')
support the development of software using C.
These environments manage code bases of
200000 and 150000 lines of code, respectively,
and support teams of programmers. The
Oz/MARVEL process was designed within our pro-
cess development environment, PPMARVEL,”’ by
taking the C/MARVEL process and reusing process
fragments, tailoring, and adding new features.
P/MARVEL allows multiple processes to be devel-
oped simultaneously and is a limited attempt at
constructing a process repository (Goal 3 in Table
4). Doc/MARVEL is a document preparation envi-
ronment using LATEX, which the MARVEL group
used to produce a four-volume set of manuals to-
taling over four hundred pages. In this environ-
ment, as many as five technical writers were
working concurrently.

520 HEINEMAN ET AL.

To provide guidance and reference material to the
user (Goal 2 in Table 4), the MARVEL client allows
the user to graphically browse the rule network to
see the process flow. For example, Figure 4 con-
tains a fragment of a rule network that shows
what could happen if the user activates the edit
rule on an object from the CFILE class. There is an
atomic consistency chain of three rules that will
be created if the user makes a change to the CFILE
object. Once this chain has completed, an auto-
mation chain of two rules occurs, to analyze and
compile the CFILE object.

The primary goal of MARVEL is to enact a process
model (Goal 4 in Table 4); it does so in a user-
driven fashion. That is, when the user completes
a step of the process (by activating a rule), MAR-
VEL uses forward chaining to carry out other pro-
cess steps where prerequisites have become sat-
isfied. MARVEL also executes backward chaining
when a user initiates a process step where the
prerequisite is not satisfied. In this case, the goal-
directed backward chain attempts to satisfy the
prerequisite by finding other process steps that, if
executed, would make the original prerequisite
satisfied.

MARVEL has no built-in mechanism to collect sta-
tistics on the actual experience of a process, but
the administrator can design tool envelopes that
record information about the process (Rule 6 in
Table 4). For example, the Oz/MARVEL process
has been written so that information is recorded
every time the edit rule is activated on an object
or a new version of an object is released by the
configuration management system. Using this in-
formation, for example, the administrator can de-
termine “hot spots™ in the code where frequent
changes are made. The enacted process can
record as many statistics about itself as the ad-
ministrator requires.

Cooperative work among small- to medium-sized
groups of individuals is supported by MARVEL
since it automates process-specific concurrency
control policies while still supporting conven-
tional transactions (that is, isolation while pro-
cess fragments are in progress) as the default.
MARVEL does not address collaboration among
autonomous teams (Goal 5 in Table 4), but a new
architecture for MARVEL is being created to sup-
port such collaboration among geographically
dispersed teams across a wide area network such
as the Internet.”

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

Table 5 Goals for process management

1 Develop a project-specific software process to accommodate the attributes of a particular project, such as its
product, or organizational environment

2 Reason about attributes of software creation or evolution

3 Support development of plans for the project (forecasting)

4 Monitor, manage, and coordinate the process

5 Provide a basis for process measurement, such as definition of measurement points within the context of a
specific process

Process management

The final goal cluster (Table 5) addresses the plan-
ning, control, and operational management of
software processes. Process management is a
specific discipline that supports Total Quality
Management (TQM)* and is needed to support
continuous improvement of defined processes.
Process management relies on feedback from
measurements, assessments, and other analyses
to guide improvement activities. Process manage-
ment must also nurture an organizational culture
that subscribes to a process-driven approach to
software engineering and a continuous, on-going
improvement.

The first step to process management is the se-
lection of software processes most appropriate
for the individual needs of a project and its orga-
nizational structure. In an earlier section we
showed how OPT helps to determine the match
between a particular process and the company’s
organization. Boehm’™"" describes a “software
process model generator™ to aid in selecting the
type of process for a given software effort based
on a decision table and various life-cycle pro-
cesses. Another important element of planning
involves the development of a suitable process
from a repertoire of components. The artificial in-
telligence planning paradigm used by GRAPPLE®
provides an automated goal-driven approach to
this problem. In GRAPPLE, process components
are selected from an existing set and organized

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

automatically to satisfy stated goals. The SFINX
software process model library ™ offers a hierar-
chical organization of processes into layers,
allowing components to be “plugged” into
“frames” provided by the next higher layer of the
architecture. Other works, such as those in Ref-
erences 34 and 79, explore reuse-based mecha-
nisms for developing project-specific software
processes.

Once a generic process model is selected it needs
to be tailored to fit individual projects. Evolution-
ary approaches to process design have been char-
acterized*® and the two major categories are
derivative and constructive. Further character-
izations are based upon the source of the primary
starting process and of the changes being inte-
grated (as improvements, for tailoring or custom-
ization).

Process models can be useful in suggesting mea-
surement points and metrics that can be used as
status criteria (Goal 5 in Table 5). Indeed, it is
valuable for a model to include definitions of pre-
cisely what is to be measured and when, to whom
it is to be reported, how it is to be used, and so
forth.*®! Such data should be collected and re-
tained over time to reflect past experience and be
used as a foundation for future planning.* One
problem with measurements in a process model is
that the actual performance of a process might
differ from its model. Consequently, it is impor-
tant to record the performance of the process (for

HEINEMAN ET AL.

521

example, using a process trace), and consider all
measurements against that trace. The history of
past processes and results can be stored in a pro-
cess database.®

Software process models can be used for planning
schedules and analysis. References 15 and 17 de-
scribe modeling support for management plan-
ning and control (including monitoring, recording

Statemate-based modeling
highlights importance
of feedback loops.

progress, and replanning), examining both gen-
eral needs and specific capabilities available with
Statemate-based modeling. Support for both
planning and replanning during process perfor-
mance was found to be an essential capability for
managerial support. This support should enable
planning schedules, costs, and resource needs
with and without resource constraints, and ac-
commodate deterministic or stochastic informa-
tion.

The Statemate-based modeling approach is ex-
tended?’ to incorporate automated, quantitative
simulations that are used to derive schedules, re-
quired work effort, and required staffing profiles.
Cases of both point estimates (deterministic mod-
eling) and uncertain estimates (stochastic model-
ing) are discussed, and resource constraints are
also considered. This modeling approach offers
the distinct advantage of smooth integration of
representation, analysis, and forecasting capabil-
ities; the quantitative simulations can be run by
adding relatively straightforward information to
an existing model, with no need to otherwise
modify the existing model and with no changes to
the visual representation. This integration is im-
portant, since this approach has been success-
fully used to model and analyze various large-
scale real-world software processes.

522 HEINEMAN ET AL.

The Statemate-based modeling approach also of-
fers distinct advantages over traditional project
management approaches such as the critical path
method and PERT. The process models are more
general, provide enhanced visibility into behav-
ior, and highlight the importance of feedback
loops in software processes. Moreover, they are
amenable to resource constraints and full Monte
Carlo simulation analysis.!” Akhavi and Wilson
have reported practical applications of these tech-
niques at Rockwell International.®

Other work has also addressed some of these
needs: SPMS, a software process modeling sys-
tem,® contains a project management tool using
the critical path method for project planning; sys-
tem dynamics have been productively employed
to forecast project level plans and the impact of
changes.®8 Articulator® uses artificial intelli-
gence scheduling techniques from production
systems. Prism!' incorporates process simula-
tions.

Key process areas. A major component of SEI re-
search at CAS is a study that examines the rela-
tionships and trade-offs among major dimensions
of software total quality: life-cycle cost, field de-
fects, and customer satisfaction. Various man-
agement-level questions are addressed, such as
how the cost and satisfaction vary with defects,
and how the defects and cost vary with front-end
investment during development. Moreover, the
research explores the factors underlying the dif-
ferences and interrelationships seen. This work
attempts to determine the key drivers of software
total quality and find how they impact these major
dimensions. For example, the value and impact of
the following are determined:

* CASE design tools, automated testing tools, peer
reviews, configuration management, and meth-
odology training

* Each of the key process areas (KPAs) defined in
the SEI Capability Maturity Model>*

In terms very specific to software processes,
practical questions regarding the value and im-
pact of software process differences are ad-
dressed, such as the value typically obtained in
practice from implementing a given KPA or, based
on the actual experiences of others, the value an
organization can expect to achieve from imple-
menting a given KPA. Answers can be very useful
in enabling management to obtain rough esti-

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

mates of the types and magnitudes of the values
they might achieve from putting selected KPAs
into practice. KPAs can be prioritized by these
estimates for strategic attention, based on antic-
ipated value. This would be quite appropriate for
an organization that does not yet possess deep
insight and understanding into its current pro-
cesses, and is therefore not in a position to use the
detailed quantitative process modeling tech-
niques earlier discussed.

It would be useful to determine typical values
achieved from individual KPAs, even at a broad
average level. However, such a broad average
would be a relatively crude estimate to apply to
any single, specific case. For the purposes of a
single organization or project, a model that takes
other important factors (for example, type of ap-
plication, personnel capability, or size of product)
into account would provide a more refined esti-
mate of likely value to that specific organization.

Krishnan®* is conducting a field study based on
data collected from the IBM Toronto Software So-
lutions Laboratory. It is important to recognize
that this is an empirical investigation of actual
results achieved in an actual organization. This
directly addresses a vital real-world concern of
reporting typical actual experience, not just the-
oretical possibility or best-case performance.
Econometric statistical techniques (such as mul-
tiple regression and ordered probit analyses) are
being used to analyze the data and test hypothe-
ses.

The underlying conceptual model is relatively
straightforward. Instead of considering software
quality as being limited solely to conventional er-
ror or defect counts, software total quality is
based on ““delighting the customers.”% Second,
this research hypothesizes that software total
quality is determined by the interactions of prod-
uct, people, technology, process, and environ-
mental factors. These factor groupings comprise
a “system” of drivers that determine total qual-
ity.® Finally, the quality resulting from the driver
interactions is measured along certain selected
dimensions, which in this work include life-cycle
cost, field quality (based on defects), and cus-
tomer satisfaction.

In Phase I of this effort, the focus has been on
understanding the interrelationships and trade-

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

offs among the measured result dimensions.
Some specific research questions addressed are:

s Is quality “free” in the context of software?
(Crosby® claims that it is.)

» Does higher deployment of resources in the
early phases of systems development pay off in
terms of quality?

s How does product type affect the relationship
between cost and quality?

Early Phase I results are as follows. The empir-
ically observed relationship between cost and
quality indicates that as quality increases (lower
shipped defect density), long-run unit cost (life-
cycle cost per thousand lines of code) decreases,
but at a decreasing rate. This confirms Crosby’s
assertion, at least over the range of quality ob-
served in the data set. The relationships among
resource deployment strategy (higher or lower in-
vestment early in the life cycle), quality, and
product size have also been examined. The re-
sults indicate that (1) higher front-end investment
pays off in terms of higher quality, and (2) the
payoff in quality due to higher front-end invest-
ment is more pronounced for larger products.
These results suggest the investment (by mana-
gerial action) in the early stages of the life cycle,
especially for larger products, which appears to
lead to higher quality and correspondingly lower
costs.

Phase II will broaden the analysis to include key
drivers of software quality and their impact on the
measured dimensions of software quality. The
measured result dimensions will be the same as in
Phase 1. The drivers will be specific factors re-
flecting the important characteristics of process,
people, technology, product, and environment.
The process factors will indicate degree of con-
formance with each of the identified KPAs. The
other factors will measure specific characteristics
of the other four driver groupings; the COCOMO
cost drivers? provide examples of the factors to
be examined. Phase II will identify key driver fac-
tors, the empirical relationships among them, and
the major dimensions of software quality.

From a managerial perspective, the Phase II
model will allow a manager to examine the result
dimensions and a proposed change (for example,
to emphasize increasing field quality), and then
gain insight into what changes in the driver factors
would yield the desired results. Those factors that

HEINEMAN ET AL 523

Figure 5 Hierarchy of objectives

& MANAGEMENT

1

IMPROVEMENT AUTOMATION

y ﬂk

UNDERSTANDING

the manager can control (such as the process fac-
tors) can then be manipulated to obtain the de-
sired results in practice. This illustrates how the
work will yield managerial implications that can
be acted upon.

The Phase II work will also yield broad estimates
of value. The model itself will reveal the value of
process (and people, technology, etc.) factors in
terms of life-cycle cost, user quality, and cus-
tomer satisfaction. Using average values for the
nonprocess factors will yield the average value
seen in the data set for each KPA (on an individual,
incremental basis). For a specific project, one
would estimate the values to be seen for the non-
process factors, and the model could then be used
to predict the value to be obtained for that project
from each KrA.

Achievements in management. Software process
models can enhance process management in a
number of valuable ways, as discussed in this sec-
tion. The feedback provided to management by
measurements helps characterize current prob-
lems and areas of opportunity, and may also lead
to further process improvements (Goal 3 in Table
5); thus this process management goal cluster also
relates to the process improvement cluster. Bet-
ter process management will also be greatly aided
by accomplishing some of the other goals, such as
increased understanding, better training, confor-
mity to process definitions, and evaluation of po-

B24 HEINEMAN ET AL

tential improvements. The process cycle!® and
OPT¥ can be used together to create project-spe-
cific software processes (Goal 1 in Table 5) that
are best suited for a particular product. MARVEL '
addresses Goal 4 in Table 5 by allowing the pro-
cess manager to observe the behavior of the pro-
cess and define coordination policies for the mul-
tiple users.” MARVEL provides mechanisms that
allow the administrator to improve and evolve the
process as feedback from the performers is ac-
quired.

Conclusion

The consortium study to improve the quality of
software processes was initiated at a time when
process awareness was very low. The awareness
has matured as the research on software pro-
cesses has increased. By providing a holistic vi-
sion of software processes, the results of the
study can affect many aspects of processes, as we
have seen in this paper. Table 6 summarizes the
research results corresponding to the 24 subgoals.
This table concisely shows the breadth of process
research performed by the study participants.

After some reflection on the nature of these ob-
jectives, we can create a hierarchy as shown in
Figure 5. The base objective, understanding, is a
precursor to all other objectives. Improvement
and automation are independent of each other,
and reside at the same level in the hierarchy,
while management, at the highest level, is depen-
dent upon all other objectives. This hierarchy
portrays the dependencies between the objec-
tives and reflects the depth of our research. The
presentation of the understanding objective in the
section “Human understanding and communica-
tion,” for example, is much more comprehensive
than the discussion on management in the section
“Process management.” We plan to continue re-
search addressing each of these four objectives,
ultimately providing real-world solutions to real-
world problems.

Finally, there are tangible benefits to IBM in the
continuation of these studies.

1. There is interest within IBM in the application
of the process technology. We are currently
working with several development groups at
IBM that are interested in applying process
technology.

2. The 1BM staff will learn about new process

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

Table 6 Summary of research results

Understanding (Table 2) 1-5 Elicit (22, 23, 25), DMP
SEI Statemate approach (7, 13, 14, 30, 34, 35)

Improvement (Table 3) 1 OPT (47)

2 P/MARVEL, (34)

3 (15,17, 48, 49)

4 (48, 49), Evolver (51)

5 TIM (43), (13, 14, 35)

6 OPT, (34, 86)

7 Evolver, Prism (11), (7, 80)
Automation (Table 4) 17 MARVEL (18), OZ (75), PMARVEL, (34)
Management (Table 5) 1 (34, 80), OPT

2 Process Cycle (10), (7, 15, 35, 86, 87)

3 (15,17, 86, 87)

4 MARVEL, (17)

5 (45)

methods and techniques, new tools, and novel
process models.

3. The 1BM staff will increase its contact with the
academic world, and thus be exposed to real-
world problems and assist in the solutions to
those problems.

Acknowledgments

The authors would like to thank the current PRS
students for their continuing hard work and re-
search: Tilmann Bruckhaus, M. S. Krishnan,

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

David Raffo, and Carolyn B. Seaman. Previous
CAS students involved with PRS include Dirk
Holtje, Steven Popovich, and Andrew Z. Tong.
Sincere thanks are also due to research students
in projects other than PRS who have contributed
greatly to our process work in general: Israel Z.
Ben-Shaul, Khaled El Emam, Won-Kook Hong,
Graciela Perez, Khalid Sherdil, Peter D. Skopp,
Kamel Toubache, and Josee Turgeon. We would
like to thank the CAS staff—in particular Jacob
Slonim—for providing an open and challenging
research environment.

HEINEMAN ET AL §25§

**Trademark or registered trademark of i-Logix, Inc., Cap
Gemini Innovation, or X/Open Co. Ltd.

Cited references and notes

1.

10.
11.

12.

13.

14.

15.

16.

K. D. Saracelli and K. F. Bandat, “Process Automation
in Software Application Development,” IBM Systems
Journal 32, No. 3, 376-396 (1993).

. ISO 9000-3, Guidelines for the Application of ISO 9001 to

the Development, Supply and Maintenance of Software,
International Organization for Standardization, Geneva
(1991).

. D. A. Garvin, “How the Baldrige Award Really Works,”

Harvard Business Review 69, No. 6, 80-93 (November—
December 1991).

. M. Paulk, B. Curtis, M. Chrissis, and C. Weber, “Capa-

bility Maturity Model, Version 1.1,”” IEEE Software (July
1993), pp. 18-27.

. M. C. Paulk, B. Curtis, M. B. Chrissis, and C. V. Weber,

Capability Maturity Model for Software, Version 1.1,
Technical Report CMU/SEI-93-TR-24; Software Engi-
neering Institute, Carnegie Mellon University, Pitts-
burgh, PA 15213 (February 1993).

. M. C. Paulk, C. V. Weber, S. M. Garcia, M. B. Chrissis,

and M. Bush, Key Practices of the Capability Maturity
Model, Version 1.1, Technical Report CMU/SEI-93-TR-
25; Software Engineering Institute, Carnegie Mellon Uni-
versity, Pittsburgh, PA 15213 (February 1993).

. B. Curtis, M. 1. Kellner, and J. W. Over, “Process Mod-

eling,” Communications of the ACM 35, No. 9, 75-90
(September 1992).

. P. H. Feiler and W. S. Humphrey, Software Process De-

velopment and Enactment: Concepts and Definitions,
Technical Report SEI-92-TR-4, Software Engineering In-
stitute, Carnegie Mellon University, Pittsburgh, PA 15213
(September 1992).

. W. S. Humphrey, Managing the Software Process, Ad-

dison-Wesley Publishing Co., Reading, MA (1989).

N. H. Madhaviji, “The Process Cycle,” Software Engi-
neering Journal 6, No. 5, 234-242 (September 1991).

N. H. Madhavji, “The Prism Model of Changes,” Pro-
ceedings of the 13th International Conference on Soft-
ware Engineering, Austin, TX, May 1991; IEEE Com-
puter Society Press, pp. 93-96.

V. R. Basili, G. Caldiera, and G. Cantone, “A Reference
Architecture for the Component Factory,” ACM Trans-
actions on Software Engineering and Methodology 1, No.
1, 53-80 (January 1992).

M. I. Kellner and G. A. Hansen, Software Process Mod-
eling, Technical Report CMU/SEI-88-TR-9, DTIC:
ADA197137, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, PA 15213 (May 1988).
M. I. Kellner and G. A. Hansen, “Software Process Mod-
eling: A Case Study,” Proceedings of the 22nd Annual
Hawaii International Conference on System Sciences,
Volume II, Kona, HI, January 1989; IEEE Computer So-
ciety Press, pp. 175-188.

W. S. Humphrey and M. 1. Kellner, “Software Process
Modeling: Principles of Entity Process Models,” Pro-
ceedings of the 11th International Conference on Soft-
ware Engineering, Pittsburgh, PA, May 1989; IEEE Com-
puter Society Press, pp. 331-342.

D. Harel et al., “Statemate: A Working Environment for
the Development of Complex Reactive Systems,” IEEE

B526 HEINEMAN ET AL.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Transactions on Software Engineering 16, No. 4, 403-414
(April 1990).

M. 1. Kellner, “Software Process Modeling Support for
Management Planning and Control,” Proceedings of the
1st International Conference on the Software Process:
Manufacturing Complex Systems, Redondo Beach, CA,
October 1991, M. Dowson, Editor; IEEE Computer So-
ciety Press, pp. 8-28.

1. Z. Ben-Shaul, G. E. Kaiser, and G. T. Heineman, “An
Architecture for Multi-User Software Development En-
vironments,” Computing Systems 6, No. 2, 65-103
(Spring 1993).

G. T. Heineman, Automatic Translation of Process Mod-
eling Formalisms, Technical Report CUCS-036-93, De-
partment of Computer Science, Columbia University,
New York (November 1993).

B. W. Boehm, Software Engineering Economics, Pren-
tice-Hall, Inc., Englewood Cliffs, NJ (1981).

L. Osterweil, “Software Processes Are Software Too,”
Proceedings of the 9th International Conference on Soft-
ware Engineering, IEEE Computer Society Press (March
1987), pp. 2-12.

N. H. Madhavji, W. K. Hong, T. Bruckhaus, and J. E.
Botsford, Elicit: A Meta Process and Supporting Tool for
Eliciting Software Process Models, Technical Report
SE-92.4, McGill University, Montreal (September 1992).
N. H. Madhaviji, D. Holtje, W. Hong, and T. Bruckhaus,
Eliciting a Formal Model of a Requirements Engineering
Process, Technical Report SE-93.1, School of Computer
Science, McGill University, Montreal (August 1993).
N. H. Madhavji, D. Héltje, W. Hong, and T. Bruckhaus,
An Empirically Improved Process for Modelling Software
Processes, Technical Report SE-93.3, School of Com-
puter Science, McGill University, Montreal (August
1993).

D. Holtje, Building Software Process Models Using the
Elicit Meta Process: A Case Study, master’s thesis, Fern
Universitat at Hagen, Germany. This research was car-
ried out at McGill University, Montreai, and IBM Canada
Ltd. Laboratory, Toronto (June 1993).

R. K. Keller and N. H. Madhavji, “A Comprehensive
Process Model for Studying Software Process Papers,”
Proceedings of the 15th International Conference on Soft-
ware Engineering, Baltimore, MD, May 1993; IEEE
Computer Society Press, pp. 78-88.

N. H. Madhavji, K. Toubache, and W. Hong, “Towards
Engineering Reliable Software Processes,” International
Software Quality Exchange (ISQE92), San Francisco,
CA, March 1992; Juran Institute, Inc., and the Rocky
Mountain Institute of Software Engineering, pp. 4B-1-30.
N. H. Madhaviji, K. Toubache, and W. Hong, ‘“Commu-
nications and Iterations in the Process Cycle,” Proceed-
ings of the 7th International Software Process Workshop,
Yountville, CA, October 1991; IEEE Computer Society
Press, pp. 91-93.

N. H. Madhaviji, K. Toubache, and E. Lynch, “The IBM-
McGill Project on Software Process,” Proceedings of the
1991 CASCON Conference, Toronto, October 1991; IBM
Canada Ltd. Laboratory, Toronto, pp. 95-109.

M. I. Kellner, “Representation Formalisms for Software
Process Modeling,” Proceedings of the 4th International
Software Process Workshop: Representing and Enacting
the Software Process, C. Tully, Editor; ACM Software
Engineering Notes (June 1989), pp. 93-96. Also special
issue of ACM Software Engineering Notes 14, No. 4.

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

31

32.

33.

34,

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

. N. H. Madhavji and W. Schifer, “Prism—Methodology
and Process-Oriented Environment,” IEEE Transactions
on Software Engineering 17, No. 12, 1270-1283 (Decem-
ber 1991).

P. Mi and W. Scacchi, “A Knowledge-Based Environ-
ment for Modeling and Simulating Software Engineering
Processes,” IEEE Transactions on Knowledge and Data
Engineering 2, No. 3, 283-294 (September 1990).

P. Mi and W. Scacchi, “Modeling Articulation Work in
Software Engineering Processes,” Proceedings of the 1st
International Conference on the Software Process, Re-
dondo Beach, CA, October, 1991; IEEE Computer So-
ciety Press, pp. 188-201.

M. I. Kellner and R. W. Phillips, “Practical Technology
for Process Assets,” Proceedings of the 8th International
Software Process Workshop, Wadern, Germany, March
1993, W. Schifer, Editor, pp. 107-112.

M. L. Kellner, “Software Process Modeling: Value and
Experience,” SEI Technical Review, pp. 23-54; Software
Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA 15213 (1989).

A United States Air Force term referring to technical doc-
umentation for end users.

K. El Emam and N. H. Madhaviji, A4 Study of the Factors
That Affect the Success of the Requirements Engineering
Process, Technical Report SE-94.2, School of Computer
Science, McGill University, Montreal (1994).

G. Perez, K. El Emam, and N. H. Madhavji, A Method
for the Evaluation of Congruence and Its Application to
Software Process Design and Customization, Technical
Report SE-93.4; School of Computer Science, McGill
University, Montreal (1993).

V. R. Basili and H. D. Rombach, “Tailoring the Software
Process to Project Goals and Environments,” Proceed-
ings of the 9th International Conference on Software En-
gineering, Monterey, CA, April 1987; IEEE Computer
Society Press, pp. 345-357.

J. Hauser and D. Clausing, “The House of Quality,”
Harvard Business Review 66, No. 3, 63-73 (May-June
1988).

P. Fowler and S. Rifkin, Software Engineering Process
Group Guide, Technical Report CMU/SEI-90-TR-24,
Software Engineering Institute, Carnegie Mellon Univer-
sity, Pittsburgh, PA 15213 (September 1990).
Conference on Transferring Software Engineering Tool
Technology, Cat # 88TH0218-8 (November 1987); avail-
able from IEEE Service Center, Piscataway, NJ.

T. Bruckhaus, “The Impact of Inserting a Tool into a
Software Process,” Proceedings of the 1993 CASCON
Conference, Toronto, October 1993, A. Gawman, W. M.
Gentleman, E. Kidd, P.-A. Larson, and J. Slonim, Edi-
tors; IBM Canada Ltd. Laboratory, Toronto, and Na-
tional Research Council, Canada, pp. 250-264.

C. C. Huff, “Elements of a Realistic Case Tool Adoption
Budget,” Communications of the ACM 35, No. 4, 45-54
(April 1992).

N. H. Madhavji, J. Botsford, T. Bruckhaus, and K.
El Emam, “Measurements Based on Process and Context
Models,” Proceedings of the International Workshop on
Experimental Software Engineering Issues, Dagstuhl,
Warden, Germany, September 1992, V. R. Basili, D. H.
Rombach, and R. Selby, Editors; Springer-Verlag, pp.
67-72.

V. R. Basili and H. D. Rombach, “The TAME Project:
Towards Improvement-Oriented Software Environments,”

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

47.

48.

49.

50.

51,

52.

53.

54.

55.

56.

57.

58.

59.

IEEE Transactions on Software Engineering 14, No. 6, 758—
773 (June 1988).

C. B. Seaman, “OPT: Organization and Process Togeth-
er,” Proceedings of the 1993 CASCON Conference, To-
ronto, October 1993, A. Gawman, W. M. Gentleman,
E. Kidd, P.-A. Larson, and J. Slonim, Editors; IBM Can-
ada Ltd. Laboratory, Toronto, and National Research
Council, Canada, pp. 314-324

D. M. Raffo, “Evaluating the Impact of Process Improve-
ments Quantitatively Using Process Modeling,” Proceed-
ings of the 1993 CASCON Conference, Toronto, October
1993, A. Gawman, W. M. Gentleman, E. Kidd, P.-A.
Larson, and J. Slonim, Editors; IBM Canada Ltd. Lab-
oratory, Toronto, and National Research Council, Can-
ada, pp. 290-313.

D. M. Raffo, Assessing the Impact of Potential Process
Changes for Large Scale Software Development Using
Process Modeling, Working Paper WP#1993-14, Gradu-
ate School of Industrial Administration, Carnegie Mellon
University, Pittsburgh, PA 15213 (April 30, 1993).

W. Hong and N. H. Madhavji, A Method for Building
Generic Process Models, Technical Report SE-94.1,
School of Computer Science, McGill University, Mon-
treal (January 1994).

G. E. Kaiser, I. Z. Ben-Shaul, G. T. Heineman, and
W. Marrero, Process Evolution for the Marvel Environ-
ment, Technical Report CUCS-047-92, Department of
Computer Science, Columbia University, New York
(April 1993).

K. El Emam, N. Moukheiber, and N. H. Madhaviji, “An
Empirical Evaluation of the G/Q/M Method,” Proceed-
ings of the 1993 CASCON Conference, Toronto, October
1993, A. Gawman, W. M. Gentleman, E. Kidd, P.-A.
Larson, and J. Slonim, Editors; IBM Canada Ltd. Lab-
oratory, Toronto, and National Research Council,
Canada, pp. 265-289.

K. El Emam, N. H. Madhaviji, and K. Toubache, “Em-
pirically Driven Improvements of Generic Process Mod-
els,” Proceedings of the 8th International Software
Process Workshop, Wadern, Germany, March 1993,
W. Schifer, Editor, pp. 61-65.

Military Handbook: Mission-Critical Computer Re-
sources Software Support, MIL-HDBK-347, U.S. De-
partment of Defense (May 1990).

N. H. Madhavji, “Environment Evolution: The Prism
Model of Changes,” IEEE Transactions on Software En-
gineering 18, No. 5, 380-392 (May 1992).

N. H. Madhavji, K. Toubache, and W. Hong, “A Frame-
work for Process Maintenance,” Proceedings of the IEEE
1992 Conference on Software Maintenance, Orlando, FL,
November 1992; IEEE Computer Society Press, pp. 245-
254.

“Programming Systems Laboratory,” Marvel 3.1 Admin-
istrator’s Manual, Technical Report CUCS-009-93, De-
partment of Computer Science, Columbia University,
New York (March 1993).

R. Kadia, “Issues Encountered in Building a Flexible
Software Development Environment,” Proceedings of
the 5th ACM SIGSOFT Symposium on Software Devel-
opment Environments, Tyson’s Corner, VA, December
1992, H. Weber, Editor, pp. 169-180. Also special issue
of ACM Software Engineering Notes 17, No. 5.

S. M. Sutton, Jr., APPL/A: A Prototype Language for
Software-Process Programming, Ph.D. thesis, Univer-
sity of Colorado (August 1990).

HEINEMAN ET AL.

527

60

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

528 HEe

. T. Katayama, “A Hierarchical and Functional Software
Process Description and Its Enaction,” Proceedings of
the 11th International Conference on Software Engineer-
ing, Pittsburgh, PA, May 1989; IEEE Computer Society
Press, pp. 343-352.

W. Deiters and V. Gruhn, “Managing Software Processes
in the Environment Melmac,” Proceedings of the 4th
ACM SIGSOFT Symposium on Software Development
Environments, Irvine, CA, December 1990, R. N. Taylor,
Editor, pp. 193-205. Also special issue of ACM Software
Engineering Notes 15, No. 6.

S. Bandinelli and A. Fuggetta, ““‘Computational Reflection
in Software Process Modeling: The SLANG Approach,”
Proceedings of the 15th International Conference on Soft-
ware Engineering; IEEE Computer Society Press (May
1993), pp. 144-154.

C. Fernstrom, “PROCESS WEAVER: Adding Process
Support to UNIX,” Proceedings of the 2nd International
Conference on the Software Process: Continuous Soft-
ware Process Improvement, Berlin, February 1993; IEEE
Computer Society Press, pp. 12-26.

K. E. Huff and V. R. Lesser, “A Plan-Based Intelligent
Assistant That Supports the Software Development Pro-
cess,” Proceedings of the ACM SIGSOFT/SIGPLAN
Software Engineering Symposium on Practical Software
Development Environments, Boston, MA, November
1988, P. Henderson, Editor; ACM Press, New York, pp.
97-106. Also special issue of ACM Software Engineering
Notes 13, No. 5.

N. H. Minsky, “Law-Governed Systems,” Software En-
gineering Journal 6, No. 5, 285-302 (September 1991).
R. Balzer, “Tolerating Inconsistency,” Proceedings of
the 13th International Conference on Software Engineer-
ing, Austin, TX, May 1991; IEEE Computer Society
Press, pp. 158-165.

V. Ambriola, P. Ciancarini, and C. Montangero, “Soft-
ware Process Enactment in Oikos,” Proceedings of the
4th ACM SIGSOFT Symposium on Software Develop-
ment Environments, Irvine, CA, December 1990, R. N.
Taylor, Editor, pp. 183-192. Also special issue of ACM
Software Engineering Notes 15, No. 6.

W. Schifer, B. Peuschel, and S. Wolf, “A Knowledge-
Based Software Development Environment Supporting
Cooperative Work,” International Journal on Software
Engineering & Knowledge Engineering 2, No. 1, 79-106
(March 1992).

G. T. Heineman, G. E. Kaiser, N. S. Barghouti, and I. Z.
Ben-Shaul, “Rule Chaining in Marvel: Dynamic Binding
of Parameters,” IEEE Expert 7, No. 6, 26-32 (December
1992).

M. H. Sokolsky and G. E. Kaiser, “A Framework for
Immigrating Existing Software into New Software De-
velopment Environments,” Software Engineering Jour-
nal 6, No. 6, 435-453 (November 1991).

N. S. Barghouti, Concurrency Control in Rule-Based
Software Development Environments, Ph.D. thesis,
CUCS-001-92, Columbia University, New York (Febru-
ary 1992).

G. T. Heineman, A Transaction Manager Component for
Cooperative Transaction Models, Ph.D. thesis proposal,
CUCS-017-93, Department of Computer Science, Colum-
bia University, New York (July 1993).

N. S. Barghouti, “Supporting Cooperation in the Marvel
Process-Centered SDE,” Proceedings of the 5th ACM
SIGSOFT Symposium on Software Development Envi-

INEMAN ET AL.

74.

75.

76.

71.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87

ronments, Tyson’s Corner, VA, December 1992,
H. Weber, Editor, pp. 21-31. Also special issue of ACM
Software Engineering Notes 17, No. 5 (December 1992).
M. A. Gisi and G. E. Kaiser, “Extending a Tool Integra-
tion Language,” Proceedings of the Ist International
Conference on the Software Process: Manufacturing
Complex Systems, Redondo Beach, CA, October 1991,
M. Dowson, Editor; IEEE Computer Society Press, pp.
218-227.

I. Z. Ben-Shaul and G. E. Kaiser, “A Paradigm for De-
centralized Process Modeling and Its Realization in the
OZ Environment,” Proceedings of the 16th International
Conference on Software Engineering, Sorrento, Italy,
May 1994; IEEE Computer Society Press, pp. 179-188.
B. Boehm and F. Belz, “Experience with the Spiral
Model As a Process Model Generator,” Proceedings of
the 5th International Software Process Workshop: Expe-
rience with Software Process Models, Kennebunkport,
ME, October 1989, D. Perry, Editor; IEEE Computer
Society Press, pp. 43-45.

B. Boehm, “What We Really Need Are Process Model
Generators,” Proceedings of the 11th International Con-
ference on Software Engineering, Pittsburgh, PA, May
1989; IEEE Computer Society Press, p. 397.

G. Bux and G. Marzano, “Library of Predefined Software
Process Models As Support for Software Factory Design:
The SFINX Proposal,” Proceedings of the 5th Interna-
tional Workshop on Computer-Aided Saoftware Engineer-
ing, Montreal, July 1992; IEEE Computer Society Press,
pp. 176-178.

V. R. Basili and H. D. Rombach, “Support for Compre-
hensive Reuse,” Software Engineering Journal 6, No. 5,
303-316 (September 1991).

M. 1. Kellner and L. P. Gates, “Evolution of Software
Processes,” Proceedings of the International Workshop
on the Evolution of Software Processes, Mt. St. Hilaire,
Quebec, January 1993.

H. D. Rombach and L. Mark, “Software Process & Prod-
uct Specifications: A Basis for Generating Customized
Software Engineering Information Bases,” Proceedings
of the 22nd Annual Hawaii International Conference on
System Sciences, Volume II, Kona, HI, January 1989;
IEEE Computer Society Press, pp. 165-174.

M. Akhavi and W. Wilson, “Dynamic Simulation of Soft-
ware Process,” Proceedings of the 5th Software Engi-
neering Process Group National Meeting, Costa Mesa,
CA, April 1993; Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, PA 15213 (1993). Presen-
tation in Session Three, Advanced Track.

H. Krasner et al., “Lessons Learned from a Software
Process Modeling System,” Communications of the ACM
35, No. 9, 91-100 (September 1992).

T. K. Abdel-Hamid and S. E. Madnick, Software Project
Dynamics: An Integrated Approach, Prentice-Hall, Inc.,
Englewood Cliffs, NJ (1991).

C.Y. Lin and R. R. Levary, “Computer-Aided Software
Development Process Design,” IEEE Transactions on
Software Engineering 15, No. 9, 1025-1037 (September
1989).

M. S. Krishnan et al., “Cost, Quality, and User Satis-
faction of Software Products: A Field Study,” Proceed-
ings of the Field Studies in Quality Management Confer-
ence, Simon School, University of Rochester, Rochester,
NY, March 26-27, 1993.

. M. S. Krishnan, “Cost, Quality, and User Satisfaction of

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

Software Products: An Empirical Analysis,” Proceedings
of the 1993 CASCON Conference, Toronto, October
1993, A. Gawman, W. M. Gentleman, E. Kidd, P.-A.
Larson, and J. Slonim, Editors; IBM Canada Ltd. Lab-
oratory, Toronto, and National Research Council,
Canada, pp. 400—411.

88. The authors believe that this should be attributed to John
Schwarz, IBM Toronto Software Solutions Laboratory.

89. M. I. Kellner and J. W. Over, “A Software Quality Im-
provement Framework,” Proceedings of the Software
Engineering Symposium—1992, Milan, June 10-11, 1992;
Advanced Software Technology, Olivetti Information
Services.

90. P. B. Crosby, Quality Is Free, McGraw-Hill, Inc., New
York (1979).

Accepted for publication April 28, 1994.

George T. Heineman Department of Computer Science, 450
CS Building, Columbia University, New York, New York
10027 (electronic mail: heineman@cs.columbia.edu). Mr.
Heineman is a Ph.D. candidate in the Computer Science De-
partment at Columbia University. His research interests in-
clude cooperative transactions, software technology, and the
intersection of process-centered environments with database
technology. He received his B.A. degree in computer science
from Dartmouth College and his M.S. degree from Columbia
University. He is a member of the IEEE and the ACM.

John E. Botsford IBM Canada Ltd., 844 Don Mills Road,
North York, Ontario, Canada M3C 1V7 (electronic mail:
bottsford@vnet.ibm.com). Mr. Botsford is a research staff
member at IBM Canada Ltd.’s Centre for Advanced Studies
in the Toronto laboratory. He joined IBM in 1964 and worked
in two branch offices before moving to the Toronto laboratory
in late 1967. Since then he has worked on a large number of
development projects and was an instructor in the education
department for three years.

Gianluigi Caldiera Institute for Advanced Computer Studies,
Department of Computer Science, University of Mary-
land, College Park, Maryland 20742 (electronic mail:
gealdiera@cs.umd.edu). Mr. Caldiera is on the faculty of the
University of Maryland Institute for Advanced Computer
Studies, where he coordinates projects on software quality
and reuse. He is also associated with the Software Engineer-
ing Laboratory of NASA Goddard Space Flight Center,
Greenbelt, Maryland. He has participated, as both project
leader and project reviewer, with the European Strategic Pro-
gram for Information Technology (ESPRIT). His research and
professional activities are in software engineering, with spe-
cial focus on software quality assurance and management,
software metrics, software reuse, and software factories. He
has worked on these topics with industry and government in
both the U.S.A. and Europe. He has authored and coauthored
many papers in international journals and conferences.

Gall E. Kaiser Department of Computer Science, 450 CS
Building, Columbia University, New York, New York 10027
(electronic mail: kaiser@cs.columbia.edu). Dr. Kaiser is an
Associate Professor of Computer Science and Director of the
Programming Systems Laboratory at Columbia University.
She was selected for an IBM Research Initiation Grant in
Complex Information Systems in 1988. Dr. Kaiser has pub-

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

lished over 80 papers in a range of areas, including software
development environments, software processes, extended
transaction models, object-oriented languages and databases,
and parallel and distributed systems. Dr. Kaiser is an asso-
ciate editor of the journal ACM Transactions on Software
Engineering and Methodology and serves on numerous pro-
gram committees for conferences. In addition she reviews
papers for conferences, journals, NSF, and NSERC. She re-
ceived her Ph.D. and M. S. from Carnegie Mellon University
and her Sc.B. from the Massachusetts Institute of Technol-
ogy. She is a member of AAAI and the ACM and a senior
member of the IEEE.

Marc |. Keliner Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213-3890
(electronic mail: mik@sei.cmu.edu). Dr. Kellner is employed
as a senior scientist at the Software Engineering Institute
(SEI) at Carnegie Mellon University in Pittsburgh, Pennsyl-
vania. He has pioneered and led much of the research on
software process modeling conducted at the SEI, and has
published several papers on software process issues. Prior to
joining the SEI, Dr. Kellner was a professor at Carnegie Mel-
lon University, where he established and directed a degree
program in information systems. He received his Ph.D. in
systems sciences (specializing in MIS) from the Graduate
School of Industrial Administration at Carnegie Mellon Uni-
versity. His research interests include software processes,
software process modeling, software maintenance, and qual-
ity management for software. He is a member of the ACM, the
IEEE Computer Society, and The Institute of Management
Sciences.

Nazim H. Madhaviji School of Computer Science, McGill Uni-
versity, McConnell Engineering Building, 3480 University
Street, Montreal, Quebec, Canada H3A 2A7 (electronic mail:
madhavji@opus.cs.mcgill.ca). Dr. Madhavji obtained his
Ph.D. degree in 1980 from the University of Manchester
(U.K.). He joined McGill University, Montreal, Quebec, Can-
adain 1983, where he is a professor at the School of Computer
Science. In 1993, he was appointed as Research Director of
the Software Process Programme at Centre de recherche in-
formatique de Montréal (CRIM). His research interests are in
software engineering, software processes, project manage-
ment, software environments, and programming languages.
He leads ProM Canada, the Canadian component of a Canada-
Germany joint research project in software processes involv-
ing McGill/CRIM, GMD (German National Research Centre
in Computer Science) and Fern Universitdt, Hagen. He is a
principal investigator in a reverse engineering project, involv-
ing McGill University, the University of Toronto, the Uni-
versity of Victoria, and IBM Canada. He has chaired, and
cochaired, numerous program committees, workshops, and
conference sessions. He is on the Advisory Editorial Board of
the Journal of Software Maintenance. He has led Quebec and
Canadian missions to foreign countries on the subject of soft-
ware engineering, software processes, and CASE technolo-
gies. He is a consultant to several organizations in the field of
software engineering and process technology.

Reprint Order No. G321-5553.

HEINEMAN ET AL.

529

