
Investigating
reverse engineering
technologies
for the CAS program
understanding project

Corporations face mounting maintenance and
re-engineering costs for large legacy systems.
Evolving over several years, these systems
embody substantial corporate knowledge,
including requirements, design decisions, and
business rules. Such knowledge is difficult to
recover after many years of operation, evolution,
and personnel change. To address the problem
of program understanding, software engineers
are spending an ever-growing amount of effort on
reverse engineering technologies. This paper
describes the scope and results of an ongoing
research project on program understanding
undertaken by the IBM Toronto Software
Solutions Laboratory Centre for Advanced
Studies (CAS). The project involves a team
from CAS and five research groups working
cooperatively on complementary reverse
engineering approaches. All the groups are using
the source code of SQUDS" (a multimillion-line
relational database system) as the reference
legacy system. Also discussed is an approach
adopted to integrate the various tools under a
single reverse engineering environment.

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

by E. Buss
R. De Mori
W. M. Gentleman
J. Henshaw
H. Johnson
K. Kontogiannis
E. Merlo
H. A. Muller
J. Mylopoulos
S. Paul
A. Prakash
M. Stanley
S. R. Tilley
J. Troster
K. Wong

D evelopers today inherit a huge legacy of ex-
isting software. These systems are inher-

ently difficult to understand and maintain because
of their size and complexity as well as their evo-
lution history. The average Fortune 100 company
maintains 35 million lines of code and adds an
additional 10 percent each year just in enhance-
ments, updates, and normal maintenance. As a
result of maintenance alone, software inventories
will double in size every seven years. Since these
systems cannot easily be replaced without re-
"Copyright 1994 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

BUSS ET AL. 477

viewing their entire history, managing long-term
software evolution is critical. It has been esti-
mated that 50 to 90 percent of work each year is
devoted to program understanding; hence, facil-
itating the understanding process can have sig-
nificant economic savings.

One of the most promising approaches to the
problem of program understanding for software
evolution is reverse engineering, which has been
proposed to help refurbish and maintain software
systems. The importance of reverse engineering’
will grow accordingly as maintenance and re-
engineering costs for large legacy software sys-
tems increase. To facilitate the understanding
process, the subject software system is repre-
sented in a form where many of its structural and
functional characteristics can be analyzed.

This paper describes the use of several comple-
mentary reverse engineering technologies applied
to a real-world software system: Structured
Query Language/Data System (SQL/DS*). The
goal was to aid the maintainers of SQLDS to im-
prove product quality by enhancing their under-
standing of the three million lines of source code.
The background on the genesis of the program
understanding project and its focus on the SQLIDS
product is described and subsequent sections de-
tail the individual research programs. Defect fil-
tering is discussed as a way of improving quality
by minimizing design errors. The abundance of
defect filtering information needs to be summa-
rized by effective visualization and documenta-
tion tools; thus the section on structural redocu-
mentation discusses a system to reconstruct and
present high-level documentation for software
understanding. A comprehensive approach to re-
verse engineering requires many different tech-
niques, and three techniques are outlined that an-
alyze source code at textual, syntactic, and
semantic levels. Finally the convergence of the
separate research prototypes into an integrated
reverse engineering environment is reported. The
paper concludes with the important lessons
learned in this endeavor.

Background

Faced with demanding and ambitious quality-
related objectives, the SQLDS product group at
IBM offered the opportunity to use their product
as a candidate system for analysis. Faced with
this challenge, the program understanding project

478 BUSS ET AL.

was established in 1990 with goals to investigate
the use of reverse engineering technologies on
real-world (SQLIDS) systems, and to utilize pro-
gram understanding analysis to improve the qual-
ity of the SQLIDS product and to improve the pro-
ductivity of the software organization.

The philosophy of the IBM Centre for Advanced
Studies (CAS) in Toronto encourages complemen-
tary research teams to work on the same problem,
using a common base product for analysis. There
is little work in program understanding that in-
volves large, real-world systems with multiple
teams of researchers experimenting on a common
target.3 Networking opportunities ease the ex-
change of research ideas; moreover, colleagues
can explore related solutions in different disci-
plines. This strategy introduces new techniques
to help tackle the problems in industry and
strengthens academic systems to deal with com-
plex, industrial software systems. In addition,
universities can move their research from aca-
demia into industry at an accelerated rate.

Six different research groups participated in and
contributed to the CAS program understanding
project: the IBM Toronto Software Solutions Lab-
oratory Centre for Advanced Studies, the Na-
tional Research Council of Canada (NRC), McGill
University, the University of Michigan, the Uni-
versity of Toronto, and the University of Victo-
ria. All groups focused on the source code of
SQWDS as the reference legacy software system.

The reference system: SQWDS. SQLDS is a large
relational database management system that has
evolved since 1976. It was based on a research
prototype and has undergone numerous revisions
since its first release by IBM in 1982. Originally
written in PWI to run on the Virtual Machine Sys-
tem (vM), SQLIDS now consists of over 3 000 000
lines of PLIAS code. PL/AS (as PWI) is a proprietary
IBM systems programming language that is PWI-
like and allows embedded System/370* assembler
language code to be part of the instruction stream.
Because PLIAS is a proprietary language, commer-
cial off-the-shelf analysis tools are unsuitable.

SQLIDS consists of about 1300 compilation units,
roughly split into three large systems and several
smaller ones. Because of its complex evolution
and large size, no individual alone can compre-
hend the entire program. Developers are forced to
specialize in a particular component, even though

IBM SYSTEMS JOURNAL, VOL 33. NO 3, 1994

the various components interact. Existing pro-
gram documentation is also a problem: there is
too much to maintain and to keep current with the
source code, too much to read and digest, and not

typical legacy software system: successful, ma-
ture, and supporting a large customer base while
adapting to new environments and growing in
functionality.

The top-level goals of the CAS program under-
standing project were guided by the maintenance
concerns of the SQLDS developers. Two of the
most important were code correctness and per-
formance enhancement. Specific concerns in-
cluded: (1) detecting uninitialized data, pointer

mismatches, (3) finding incomplete uses of record
fields, (4) finding similar code fragments, (5) lo-
calizing algorithmic plans, (6) recognizing ineffi-
cient or high-complexity code, and (7) predicting
the impact of change.

Program understanding through reverse engineer-
ing. Programmers use programming knowledge,
domain knowledge, and comprehension strategies
when trying to understand a program. For example,
one might extract syntactic knowledge from the
source code and rely on programming knowledge to

theory of domain bridging4 describes the program-
ming process as one of constructing mappings from
a problem domain to an implementation domain,
possibly through multiple levels. Program under-
standing then involves reconstructing part or all of
these mappings. Moreover, the programming pro-
cess is a cognitive one involving the assembly of
programming plans-implementation techniques
that realize goals in another domain. Thus, program
understanding also tries to match patterns between
a set of known plans (or “mental” models) and the
source code of the subject software.

For large legacy systems, the manual matching of
such plans is laborious and difficult. One way of
augmenting the program understanding process is
through computer-aided reverse engineering. Al-
though there are many forms of reverse engineer-
ing, the common goal is to extract information
from existing software systems. This knowledge
can then be used to improve subsequent devel-
opment, ease maintenance and re-engineering,
and aid project management.’

1 enough that is current and accurate. SQUDS is a

1 errors, and memory leaks, (2) detecting data type

1 form semantic abstractions. Brooks’s work on the

b

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

The reverse engineering process involves two
distinct phases:6 (1) the identification of the
current components of the system and their
dependencies, and (2) the discovery of system

The focus was on the
source code of the
SQUDS product.

abstractions and design information.’ During this
process, the source code is not altered, although
additional information about the system is gener-
ated. In contrast, the entire re-engineeringprocess
typically consists of a reverse engineering phase,
followed by a forward engineering or reimplemen-
tation phase that alters the source code of the sub-
ject system. Definitions of related concepts may be
found in Reference 8.

The discovery phase of reverse engineering is a
highly interactive and cognitive activity. The an-
alyst may build up hierarchical subsystem com-
ponents that embody software engineering prin-
ciples such as low coupling and high cohesion.’
Discovery may also include the reconstruction of
design and requirements specifications (often re-
ferred to as the domain model) and the correlation
of this model to the code.

Program understanding research. Many research
groups have focused their efforts on the develop-
ment of tools and techniques for program under-
standing. The major research issues involve the
need for formalisms to represent program behav-
ior and visualize program execution, and the need
for the focus on features such as control flows,
global variables, data structures, and resource ex-
changes. At a higher semantic level, research may
focus on behavioral features such as memory us-
age, uninitialized variables, value ranges, and al-
gorithmic plans. Each of these points of investi-
gation must be addressed differently.

There are many commercial reverse engineering
and re-engineering tools available; catalogs de-

BUSS ET AL. 479

scribe several hundred such packages. l o ~ l l Most
commercial systems focus on source code anal-
ysis and simple code restructuring, and use in-
formation abstraction via program analysis, the

Defect filtering,
structural documentation,

and pattern-matching
analyses are used.

~~ ~~~ ~ ~ ~~~~~~~~~ ~~

most common form of reverse engineering. Re-
search in reverse engineering consists of many
diverse approaches, including formal transforma-
tions, l2 meaning-preserving restructuring, l3 plan
recognition, l4 function abstraction, information
abstraction, l6 maverick identification, l7 graph
queries, l8 and reuse-oriented methods. l9

The CAS program understanding project is guided,
in part, by the need to produce results directly
applicable to the SQL/DS product team. Hence,
the work of most research groups is oriented
toward analysis. However, no single analysis
approach is sufficient by itself. Specifically, the
IBM group is concerned with defect filtering: im-
proving the quality of the SQWDS base code and
maintenance process through application-specific
analysis. The University of Victoria team is fo-
cused on structural redocumentation: the produc-
tion of “in-the-large” documents describing high-
level subsystem architecture. Three other groups
(NRC, the University of Michigan, and McGill
University) are working on pattern-matching ap-
proaches at various levels: textual, syntactic, and
semantic.

One goal of this overall CAS project is to integrate
the results of the complementary (but sometimes
overlapping) research efforts to produce a more
comprehensive reverse engineering set of tools.
This integration process is described more fully in
the section “Steps toward integration.” The sec-
tions that now follow describe the program un-
derstanding research results on defect filtering,
structural redocumentation, and pattern match-
ing.

480 BUSS ET AL.

Defect filtering

The IBM teamz0 performed defect filteringz1 using
the commercial product Software Refinery* *
(REFINE**)” to parse the source code of SQWDS
into a form suitable for analysis. This work ap-
plied the experience of domain experts to create
REFINE “rules” to find certain families of defects
in the subject software. These defects included
programming language violations (overloaded
keywords, poor data typing), implementation do-
main errors (data coupling, addressability), and
application domain errors (coding standards, bus-
iness rules).

Their initial work resulted in several prototype
toolkits, each of which focused on detecting spe-
cific errors in the reference system.

A design-quali metrics analysis (D-QMA) was
also performed’ on SQL/DS.24 This analysis in-
cluded measurements that guided the creation of
a more flexible defect filtering approach, in which
the reverse engineering toolkit automatically ap-
plies defect filters against the SQLIDS source code.
Filtering for quality proved to be a fruitful ap-
proach to improve the quality of the reference
system.” We next describe the evolution of the
defect filtering process that consists of the inves-
tigation and construction of a reverse engineering
toolkit for PL/AS, the construction of prototype
analysis systems, the measurement of specific de-
sign-quality metrics of SQUDS, and filtering for
quality.

Building a reverse engineering toolkit. Most ap-
plication problem domains have unique and spe-
cialized characteristics; therefore, the expecta-
tions and requirements for reverse engineering
tools vary, and the tools must be extensible and
versatile. It is unlikely that a turnkey reverse en-
gineering package will suffice for most users. This
is especially true for analyzing systems of a pro-
prietary nature such as SQWDS. Unless it is known
exactly what is to be accomplished, a priority
should be placed on toolkit flexibility. Because of
these considerations, the Software Refinery prod-
uct was chosen as the basis upon which to build
a PL/AS reverse engineering toolkit for the defect
filtering process.

The Software Refinery product is composed of
three parts: DIALECT (the parsing system),
REFINE (the object-oriented database and pro-

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

gramming language), and INTERVISTA (the user
interface). The core of Software Refinery is the
REFINE specification and query language, a mul-
tiparadigm high-level programming language. Its
syntax is reminiscent of LISP, but it also includes
Prolog-like rules and support for set manipula-
tion. A critical feature of the Software Refinery
product is its extensibility; it can be integrated
into various commercial application domains.

The foundation for software analysis is a tractable
representation of the subject system that facili-
tates its analysis. The DIALECT language model
consists of a grammar used for parsing and a do-
main model used to store and reference parsed
programs as abstract syntax trees (AST). The do-
main model defines a hierarchy of objects repre-
senting the structure of a program. When parsed,
programs are represented as an unannotated AST
and stored using the object hierarchy of the do-
main model. The objects are then annotated with
the rules of the implementation language (such as
linking each use of a variable to its declaration)
and are then ready for analysis.

The PL/AS reverse engineering toolkit was used to
aid qualitative and quantitative improvement of
the SQLDS base code and maintenance process.
The key to this improvement is analysis. The
Software Refinery product was used to convert
the SQUDS source code into a more tractable
form, or a form more easily analyzed. Consider-
able time was spent creating a parser and a do-
main model for PL/AS. This was a difficult process:
there was no formal grammar available, the con-
text-sensitive nature of the language made pars-
ing a challenge, and the embedded System/370
assembler code further complicated matters. A
lexical analyzer was first built to recognize mul-
tiple symbols for the same keyword, to skip the
embedded assembler and PWAS listing format di-
rectives, and to produce input acceptable to the
parsing engine.

Initial experiments produced numerous parsing
errors, due to incorrect (or inappropriate) use of
some of the PL/AS functions. Although it is never
easy to change legacy source code, it was some-
times easier to repair the source code than to aug-
ment the parser to handle the offending syntax.
This process uncovered several errors in the
source code for the reference system. Such errors
were usually incorrect uses of language con-
structs not identified by the PL/AS compiler.

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

This early experience with the PL/AS reverse en-
gineering toolkit confirmed that large-scale legacy
software systems written in a proprietary con-
text-sensitive language can be put into a form
suitable for sophisticated analysis and transfor-
mation. The toolkit can be (and has been) adapted
by other IBM developers to apply to similar pro-
gramming languages, and can be evolved as im-
plementation rules change.

Once the SQLDS source code was put in this trac-
table form, the customers (the SQWDS maintain-
ers) were consulted to determine how best to uti-
lize this technology for them. The answer was to
help remove defects from the code. The challenge
was how to do it effectively. The solution was to
apply the power of the prototype environment to
analyze the reference system. Since rules can be
written to identify places in the software where
violations of coding standards, performance
guidelines, and implementation or product re-
quirements exist, the environment can be used to
detect defects semiautomatically.

Experiences with the PL/AS reverse engineering
toolkit prototypes. The construction of the proto-
type reverse engineering toolkit, and the trans-
formation of the base code into a more tractable
form, made analysis of the reference system pos-
sible. The analysis was strongly biased toward
defect detection, due in part to the quality-related
objectives of the SQWDS product group. The anal-
ysis focused on implementation language irregu-
larities and weaknesses, functional defects, soft-
ware metrics, and unused code. A specific
instance of the prototype toolkit was constructed
for each analysis realm.

The areas of interest were classified into two or-
thogonal pairs of analysis domains: analysis-in-
the-small versus analysis-in-the-large, and imple-
mentation domain versus problem domain. The
analysis-in-the-small is concerned with analysis
of code fragments (usually procedures) as a
closed domain, while analysis-in-the-large is con-
cerned with system-wide impact. Analysis-in-
the-large tends to be more difficult to perform
with manual methods, and therefore more bene-
fits may be realized through selective automation.

Implementation domain analysis is concerned
with environmental issues such as language, com-
piler, operating system, and hardware. This anal-
ysis can usually be readily shared with others who

BUSS ET AL. 481

Table 1 Module-level measurements of SQUDS

The following module-level measures of SQWDS were
performed as part of the D-QMA process:

Number of lines of code (LOC) per module excluding

Number of lines of comments per module
Number of changed lines of code for a particular
release
Number of lines of code in each module including
%INCLUDE structures
Software maturity index

comments

SMZ(i) =
LOC(i) - CSZ(i)

L O W)
where LOC(i) is the number of lines of code

for module i

in module i
CSZ(1’) is the number of changed lines of code

Number of declared variables used in module
Number of declared variables in structures that are

Number of executable statements
McCabe’s cyclomatic complexity

superfluous

V (G) = e - n + 2 p
where V (G) is the cyclomatic number of graph G

e is the number of edges
n is the number of nodes
p is the number of unconnected parts

have a similar environment. Conversely, the
problem domain analysis is concerned with arti-
facts of the problem such as business rules, al-
gorithms, or coding standards. They cannot be
easily shared.

The prototypes for SQLDS were specifically built
to demonstrate the capability for analysis in all of
these domains. Some of the prototypes are doc-
umented in Reference 26. The results from these
prototype toolkits were encouraging. The exper-
iments demonstrated the feasibility of defect de-
tection in legacy software systems. The next step
in the use of such reverse engineering technolo-
gies was formalizing and generalizing the process
of using defect filters on the reference system.

Design-quality metrics analyses. While mainte-
nance goals continue to focus on improved per-
formance and functionality objectives, an emerg-
ing emphasis has been placed on IBM’S product
quality. With developers mounting quality im-
provement goals, a paradigm shift beyond simply
“being more careful” is needed. Judicious use of
software quality metrics is one way of obtaining
insight into the development process to improve

482 BUSS ET AL.

it. To confirm the applicability of such metrics to
IBM products, the design-quality metrics analysis
(D-QMA) project was initiated.

The purpose of assessing design-quality metriaz7
is to examine the design process by examining the
end product (source code) to predict the quality of
a product and to improve the design process by
either continuous increments or quantum leaps.
To justify the use of D-QMA for IBM products, the
experiment had to:

Relate software defects to design metrics
Identify error-prone and high-risk modules
Predict the defect density of a product at vari-

Improve the cost estimation of changes to ex-

Provide guidelines and insights for software de-

ous stages

isting products

signers

The experiment assessed the high-level and mod-
ule-level metrics of SQLDS and related them to the
defect history of the product.

Intermodule metrics for module-level design mea-
sure intermodule coupling and cohesion, data flow
between modules, and so on. These “black-box”
measures require no knowledge of the inner work-
ings of the module. Intramodule design metrics in-
clude measures of control flow, data flow, and logic
within a module. These “clear-box” measures do
require knowledge of the inner working of the mod-
ule. Both the intermodule and intramodule versions
of structural com lexity, data complexity, and sys-
tem complexity were measured. Other module-
level measurements are shown in Table 1.

The experiment applied the reverse engineering
toolkit (previously discussed) to extract the met-
rics from the reference system. Defect data were
gathered from the defect database (which existed
on the fast system) and were then correlated using
the SAS** statistical package running on the Op-
erating System/2* (OS/2*) workstation. For SQUDS
Version 3, Release 3, about nine hours of machine
time (on a RISC System/6000* Model 550) were
required to analyze all 1303 PLIAS modules. This
time does not include the previous 40-50 person-
hours required to prepare a persistent database
for the SQLDS source code.

The unique characteristics of the SQWDS refer-
ence system lead to several problems in assessing

Z P

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

the metrics. One of the most important is the non-
homogeneity of the product. SQLDS consists of
functional components that are quite different.
There are preprocessors, communications soft-
ware, a relational database engine, utilities, and
so on. Each component displays different metric
characteristics.

Upon analyzing the results, it was found that de-
fects caused by design errors accounted for 43
percent of the total product defects. The next
largest class of defects was coding errors. The
probability of injecting a defect when maintaining
a module increased as the percentage of changes
to the module decreased. The greatest probability
of introducing a defect occurred when the small-
est change was made. This counterintuitive result
makes more sense when it is realized that, when
small changes are made, maintainers typically do
not take the time to fully understand the entire
module.

Another result is that maintainers have an in-
creased probability of injecting a defect as the
complexity of the module increases-up to a
threshold. As the module complexity increases
beyond this threshold, the probability of injecting
an error dramatically decreases. This suggests
that the maintainer recognizes the module is com-
plex and “tries harder,” or that as modules be-
come more complex, maintainers avoid changing
them altogether.

The past three releases of SQLDS have shown new
modules to have low complexity, with older ones
growing in complexity. As this complexity in-
creases, merely “working harder” to ensure code
quality will not be enough. It is becoming increas-
ingly difficult to make small changes to the more
mature modules: a classic example of the “brit-
tleness” suffered by aging software systems. The
D-QMA analysis work is continuing using other
IBM products written in PLIAS, PLIMI, c, and
C + + .

Applying defect filters to improve quality. An in-
creased focus on quality has forced many orga-
nizations to re-evaluate their software develop-
ment processes. Software process improvement
is concerned with improved methods for manag-
ing risk, increased productivity, and reduced
cost: all key factors in increased software quality.
The meaning of the term quality, however, is of-
ten subject to debate and may depend on one’s

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

perspective. The definition of quality we use is
quality is the absence of defects. This somewhat
traditional definition relates quality to fitness-for-
use and ties software quality to conformance with
respect to function, implementation environ-
ment, and so on. The traditional quality measure-
ment, measuring defects, is one that measures the
artifacts created by the software development
process.

By extending the meaning of what constitutes a
defect, one can expand the definition of quality.
For example, the recognition of defects caused by
coding standard violations means that quality is
no longer bound to purely functional character-
istics; quality attributes can be extended to in-
clude indirect features of the software develop-
ment process.

Further extension to the quality framework may
include assertions that must be adhered to; asser-
tion nonconformance can be treated as a defect.
Like functional defects, these assertions can ad-
dress issues at a variety of levels of abstraction. Our
definition of software quality is then extended to
include robustness, portability, improved mainte-
nance, hidden defect removal, design objectives,
and so on; fitness-for-use is superseded by “fitness-
for-use and maintenance.” Figure 1 illustrates a
conformance hierarchy. This hierarchy begins at
the base with immediate implementation consider-
ations and climbs upward to deal with broader con-
ceptual characteristics. Beginning with “what is
wrong” (defects), it moves up to “what is right”
(assertions). By limiting the definition of correct-
ness, one can build higher quality software.

Functional defects are function errors in a prod-
uct. Usually detected in product test or code re-
view stages, they are often caused by the mis-
taken translation of a functional specification to
implemented software. An example of a func-
tional defect is a program expression that at-
tempts to divide by zero.

When errors in software do not cause erroneous
function but are internally incorrect, we refer to
these as nonfunctional defects. These cases of
“working incorrect code” often become func-
tional defects when maintainers are making
changes in the region of the nonfunctional defect.
An example is a variable that contains an unde-
termined value and is referenced, but does not
cause the program to fail.

Figure 1 Maintenance quality conformance hierarchy

Nonportable defects are characteristics that limit
the software developer’s ability to migrate soft-
ware from one software environment to another.
These environments may be new compilers, new
hardware, operating systems, and so on. A famil-
iar example of nonportable software is one that
depends on the byte ordering used by the hard-
ware or compiler.

Antimaintenance defects are program character-
istics that make use of unclear, undesirable, or
side-effect features in the implementation lan-
guage. Less experienced maintainers who change
the software in regions where these features are
present are more likely to inject further defects.
Examples of this type are common, such as in-
consistent use of variable naming conventions,
use of keywords as variable names, and excessive
use of GOTO instructions.

Minimizing nonportable and antimaintenance de-
fects means that the risks associated with soft-

ware maintenance are lowered and that software
produced is more “fit for change.” When asser-
tions that describe desirable software character-
istics are then introduced and enforced, the qual-
ity of the software is further improved.

Pro-maintenance assertions state desirable at-
tributes of the software that help prevent defects.
Many of these assertions are the opposite of
antimaintenance defects, such as the assertion
“avoid the use of GOTO.” Another example is the
inclusion of pseudocode as part of the internal
documentation.

Design assertions capture the positive aspects of
the software structure that maintain the de-
sign quality of the code. For example, a design
assertion may be “access to data structure
COMMON-DATA is controlled by the access vari-
able COMMON-DATA-LATCH, which must be set
to 1 before accessing COMMON-DATA and set to
0 at all other times.”

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

Architectural assertions are broad concepts that
apply at a higher level of abstraction than design
assertions. They seek to maintain the architec-
tural integrity of a software system. An example
is “all access to shared data structures must be
controlled by a latch variable for the data struc-
ture.” Often, architectural assertions are gener-
alizations of design assertions.

In order to ensure that a software product is fit for
use, developers carefully review the software,
checking for possible defects and verifying that all
known product-related assertions are met. This is
commonly known as the software inspection pro-
cess. An approach to automating the inspection
process incorporates the reverse engineering
technologies discussed in the earlier section
“Building a reverse engineering toolkit.” This fil-
tering process, termed filtering for quality, in-
volves the formalization of corrective actions us-
ing a language model and database of rules to
inspect source code for defects. The rules codify
defects in previous releases of the product. This
is a context-driven approach that extends the
more traditional language-syntax-driven methods
used in some tools.

There are many benefits of automation to the fil-
tering for quality process. A greater number of
defects can be searched simultaneously. More-
over, the codified rules can be generalized and
restated to eliminate entire classes of errors. Ac-
tions are expressed in a canonical rule-based
form; therefore, they are more precise, less sub-
ject to misinterpretations, and more amenable to
automation. Because the knowledge required to
prevent defects is maintained as a rule base, the
knowledge instilled in each action remains even
after original development team members have
left. This recording of informal “corporate knowl-
edge” is very important to long-term success. Fi-
nally, actions can be more easily exchanged with
other groups using the same or similar action rule
bases. This sharing of such defect filters means
that development groups can directly profit from
each other’s experience.

Application domain knowledge can be very ben-
eficial in the development of defect filters, largely
because the capability to enforce application do-
main-specific rules has been unavailable to date.
Whether one wants to enforce design assertions
about a software product or to identify exceptions
to the generally held principles around which a

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

software product has evolved, one should pay at-
tention to the domain of the filter. The problem
domain consists of business rules and other as-
pects of the problem or application-independent
of the way they are implemented. The implemen-
tation domain consists of the implementation pro-
gramming language and support environment.

Summary of defect filtering. Meeting ambitious
quality improvement goals such as “100 times
quality improvement” requires an improved def-
inition of defects and an improved software de-
velopment process. Defect filtering by automat-
ing portions of the inspection process can
potentially reap great rewards. A tractable soft-
ware representation is key to this analysis.

It is easier to use defect filtering than it is to build
the tool that implements it. Nevertheless, it is
critical that the analysis results be accessible to
developers in a timely fashion to make an iden-
tifiable impact on their work. The success of mov-
ing new technology into the workplace depends
crucially on the acceptance of the system by its
users. Its introduction must have minimal nega-
tive impact on existing software processes if it is
to be accepted by developers. Issues such as plat-
form conflict should not be underestimated. The
prototype tools discussed in the earlier sections
have been partially integrated into the main-
stream SQWDS maintenance process.

Measurable results come from measurable prob-
lems. Defect filtering can produce directly quan-
tifiable benefits in software quality and can be
used as a stepping stone to other program under-
standing technology. For example, presentation
and documentation tools are needed to make
sense of the monumental amount of information
generated by defect filtering. This critical need is
one focus of the environment described in the
following section.

Structural redocumentation

Reconstructing the design of existing software is
especially important for legacy systems such as
SQLDS. Program documentation has always played
an important role in program understanding. There
are, however, great differences in documentation
needs for software systems of loo0 lines of code
versus those of 1000000 lines. Typical software
documentation describes the program in terms of
isolated algorithms and data structures. More-

BUSS ET AL. 485

over, the documentation is often scattered and on
different media. The maintainers have to resort to
browsing the source code and piecing disparate
information together to form higher-level struc-

There are trade-offs
between what can be and

should be automated.

tural models. This process is always arduous; cre-
ating the necessary documents from multiple per-
spectives is often impossible. Yet it is exactly this
process that is needed to expose the overall ar-
chitecture of large software systems.

Software structure is the collection of artifacts
used by software engineers when forming mental
models of software systems. These artifacts in-
clude software components (such as procedures,
modules, and interfaces), dependencies among
components (such as client-supplier, inheritance,
and control flow), and attributes (such as com-
ponent type, interface size, and interconnection
strength). The structure of a system is the orga-
nization and interaction of these artifacts.29 One
class of techniques of reconstructing structural
models is reverse engineering.

Using reverse engineering approaches to recon-
struct the architecture aspects of software can be
termed structural redocumentation. The work at
the University of Victoria is centered around
RigiY3' an environment for understanding evolv-
ing software systems. Output from this environ-
ment can also serve as input to conceptual mod-
eling, design recovery, and project management
processes. Rigi consists of three major compo-
nents: a tailorable parsing system that supports
procedural programming languages such as Cy
COBOL, and PL/AS; a distributed, multiuser repos-
itory to store the extracted information; and an
interactive, window-oriented graph editor to ma-
nipulate structural representations.

Scalability. Effective approaches to program under-
standing must be applicable to huge, multimillion-

486 BUSS ET AL.

line software systems. Such scale and complexity
necessitates fundamentally different approaches to
repository technology than is used in other do-
mains. For example, not all software artifacts
need to be stored in the repository; it may be
perfectly acceptable to ignore certain details for
program understanding tasks. Coarser-grained
artifacts can be extracted, partial systems can be
incrementally investigated, and irrelevant parts
can be ignored to obtain manageable repositories.
Program representation, search strategies, and
human-computer interfaces that work on systems
in-the-small often do not scale upward to large
systems. For very large systems, the information
accumulated during program understanding is
staggering. To gain useful knowledge, one must
effectively summarize and abstract the informa-
tion. In a sense, a key to program understanding
is deciding what information is material and what
is immaterial: knowing what to look for-and
what to ignore.31

Redocumentation strategy. There are trade-offs in
program understanding environments between
what can be automated and what should (or must)
be left for processing by humans. Structural re-
documentation in Rigi is initially automatic and
involves parsing the source code of the subject
system and storing the extracted artifacts in the
repository. This produces a flat resource-flow
graph of the software. This phase is followed by
a semiautomatic one that exploits human pattern
recognition skills and features language-indepen-
dent subsystem composition techniques to man-
age the complexity. This approach relies very
much on the experience of the software engineer
using the system. This partnership is synergistic
as the analyst also learns and discovers interest-
ing relationships by interactively exploring soft-
ware systems using Rigi.

Subsystem composition is a recursive process
whereby building blocks such as data types, pro-
cedures, and subsystems are grouped into com-
posite subsystems. This builds multiple, layered
hierarchies for higher-level abstractions. 32 The
criteria for composition depend on the purpose,
audience, and domain. For program understand-
ing purposes, the process is guided by dividing the
resource-flow graph using established modularity
principles such as low coupling and strong cohe-
sion. Exact interfaces and modularity and encap-
sulation quality measures can be used to evaluate
the generated software hierarchies.

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

Subsystem composition is supported by a pro-
gram representation known as the (k,2)-partite
graph.32 These graphs are layered or stratified
into strict levels so that arcs do not skip levels.
The levels represent the composition of sub-
systems. This structuring mechanism was orig-
inally devised for managing the complexity of
hypertext webs and multiple hierarchies.

Multiple dynamic views. Visual representations
enhance the human ability to recognize patterns.
Using the graph editor of Rigi, diagrams of soft-
ware structures such as call graphs, module in-
terconnection graphs, and inclusion dependen-
cies can be automatically produced. The effective
capability to analyze these structures is necessary
for program understanding. Responsiveness is
very important. For presenting the large graphs
that arise from a complex system like SQLDS, the
response time may degrade even on powerful
workstations. The Rigi user interface is designed
to allow users, if necessary, to batch sequences of
operations and to specify when windows are up-
dated. Thus, for small graphs, updates are imme-
diate for visually pleasing feedback; for large
graphs, the user has full control of the redrawing.

Rigi presents structural documentation using a
collection of views. Aview is a group of visual and
textual frames that contain, for example, re-
source flow graphs, overviews, projections, exact
interfaces, and annotations. Because views are
dynamic and ultimately based on the underlying
source code, they remain up-to-date. Collected
views can be used to retrieve previous reverse
engineering states.

Dramatic improvements in program understand-
ing are possible using semiautomatic techniques
that exploit application-specific domain knowl-
edge. Since the user is in control, the subsystem
composition process can depend on diverse cri-
teria, such as tax laws, business policies, person-
nel assignments, requirements, or other semantic
information. These alternate and orthogonal de-
compositions may coexist under the structural
representation supported by Rigi. These decom-
positions provide many possible perspectives for
later review. In effect, multiple, logical represen-
tations of the software architecture can be cre-
ated, manipulated, and saved.

Multiple domains. Because program understand-
ing involves many diverse aspects, applications,

and domains, it is necessary that the approach be
very flexible. Many reverse engineering tools pro-
vide only a fixed palette of extraction, selection,
filtering, arrangement, and documentation tech-
niques. The Rigi approach uses a scripting lan-
guage that allows analysts to customize, com-
bine, and automate these activities in unforeseen
ways. Efforts are proceeding to also allow the
user to fully customize the user interface. This
approach permits analysts to tailor the environ-
ment to better suit their needs, providing a
smooth transition between automatic and semi-
automatic reverse engineering. The goal to have
a single environment sufficiently flexible so as to
be applicable and equally effective in multiple do-
mains, is achieved through this customization.

To make the Rigi system easier to program and to
enhance, the user interface and editor engine
were decoupled to make room for an intermediate
scripting layer based on embedded Tcl and Tk
libraries.33 This layer allows each event of im-
portance to the user (for example, key stroke,
mouse motion, button click, menu selection) to be
tied to a scripted, user-defined command. Many
previously tedious and repetitive activities can
now be automated. Moreover, this layer allows
an analyst to complement the built-in operations
with external, possibly application-specific, algo-
rithms for graph layout, complexity measures,
pattern matching, slicing, and clustering. For ex-
ample, the Rigi system has been applied to vari-
ous selected domains: project management,34
personalized hypertext, 35 and redocumenting leg-
acy software systems.

Redocumenting SQWDS. The analysis of SQLDS
using Rigi has shown that the subsystem compo-
sition method and graph visualizing editor scale
up to the multimillion-lines-of-code range. The
results of the analysis were prepared as a set of
structural views and presented to the develop-
ment teams. Informal information and knowledge
provided by existing documentation and expert
developers are rich sources of data that should be
leveraged whenever possible. By considering
SQL/DS-SpeCifiC knowledge such as naming con-
ventions and existing physical modularizations,
team members easily recognized the constructed
views. Domain-dependent scripts were devised
to help automate the decomposition of SQLDS
into its constituent components.

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

For example, the relation data subsystem of
SQLDS was analyzed in some depth. The devel-
oper in charge of the path-selection optimizer had
a mental model of its structure, based on devel-
opment logbooks and experience. This model was
recreated using the Rigi structural redocumenta-
tion facilities. An alternate view was also created,
based on the actual structure as reflected by the
source code. This second view constitutes an-
other reverse-engineering perspective and was a
valuable reference against which the first view
was compared.

Summary of structural redocumentation. The Rigi
environment focuses on the architectural aspects
of the subject system under analysis. The envi-
ronment supports a method for identifying, build-
ing, and documenting layered subsystem hierar-
chies. Critical to its usability is the ability to store
and retrieve views-snapshots of reverse engi-
neering states. The views are used to transfer per-
tinent information about the abstractions to the
software engineers.

Rigi supports human- and script-guided structural
pattern recognition, but does not provide built-in
operations to perform analysis such as textual,
syntactic, and semantic pattern matching. Such
operations are necessary for complete program
understanding. However, the scripting layer does
support access to external tools that cover these
areas of analysis, allowing Rigi to function as the
cornerstone of a comprehensive reverse engi-
neering environment. These required areas are
addressed by the prototypes described in the fol-
lowing section.

Pattern matching

One of the most important reverse engineering
processes is the analysis of a subject system to
identify components and relations. Recognizing
such relations is a complex problem-solving ac-
tivity that begins with the detection of cues in the
source and continues by building hypotheses
from these cues. One approach to detecting these
cues is to start by looking at program segments
that are similar to each other.

Program understanding techniques may use
source code in increasingly abstract forms, in-
cluding: raw text, preprocessed text, lexical to-
kens, syntax trees, annotated abstract syntax
trees with symbol tables, and control or data flow

488 BUSS ET AL.

graphs. The more abstract forms entail additional
syntactic and semantic analysis that corresponds
more to the meaning and behavior of the code and
less to its form and structure. Different levels of
analysis are necessary for different users and dif-
ferent program understanding purposes. For ex-
ample, preprocessed text loses a considerable
amount of information about manifest constants,
in-line functions, and file inclusions. Three re-
search groups affiliated with the program under-
standing project focused on textual, syntactic,
and semantic pattern-matching approaches.

Textual analysis. Anything that is big and worth
understanding has some internal structure; find-
ing and understanding that internal structure is
the key to understanding the whole. In particular,
large amounts of source code have a large internal
structure as a result of their evolution. The NRC
(one member group of the programming under-
standing project) research focuses on techniques
that consider the source code in raw or prepro-
cessed textual forms, dealing with more of the
incidental implementation artifacts than other
methods. The work at NRC36 identifies the exact
repetitions of text in huge source codes. One goal
is to relax the constraint of exact matches to ap-
proximate matches, while preserving the ability
to handle huge source texts. The general ap-
proach is to automatically analyze the code and
produce information that can be queried and re-
ported.

For some understanding purposes, less analysis is
better; syntactic and semantic analysis can actu-
ally destroy information content in the code, such
as formatting, identifier choices, white space, and
commentary. Evidence to identify instances of
textual cut-and-paste is lost as a result of syntac-
tic analysis. Tools for syntactic and semantic
analysis are often more language-dependent and
environmentally dependent; slight changes in
these aspects can make the tools inapplicable.
For example, C language versions of such tools
may be useless on PL/AS code.

More specifically, these techniques discover the
location and structure of long matching substrings
in the source text. Such redundancies arise out of
typical editing operations during maintenance.
Measures of repetition are a useful basis for build-
ing practical program understanding tools. There
are several possibilities for redundancy-based
analysis, including the determination of the ef-

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

fects of cut-and-paste, discovery of the effects of
preprocessing, measurement of the changes be-
tween versions, and the understanding where fac-
toring and abstraction mechanisms might be lack-
ing.

The NRC approach works by fingerprinting an ap-
propriate subset of substrings in the source text.
A fingerprint is a shorter form of the original sub-
string and leads to more efficient comparisons and
faster redundancy searches. Identical substrings
will have identical fingerprints. However, the
converse is not necessarily true. Differing sub-
strings may also have the same fingerprint, but
the chance of this occurring can be made ex-
tremely unlikely. A file of substring fingerprints
and locations provides the information needed to
extract source-code redundancies.

The several issues to be addressed are the dis-
covery of efficient algorithms for computing fin-
gerprints, determination of the appropriate set of
substrings, and the devising of postprocessing
techniques to make the generated fingerprint file
more useful. Karp and Rabin37 have proposed an
algorithm based on the properties of residue arith-
metic by which fingerprints can be incrementally
computed during a single scan. A modified ver-
sion of this algorithm is used. Appropriate sub-
strings, called snips, are selected to exploit line
boundary information; the selection parameters
are generally based on the desired number of lines
and maximum and minimum numbers of charac-
ters. Even then, an adjustable culling strategy is
used to reduce the sheer number of snips that
would still be fingerprinted. Since snips can over-
lap and contain the same substring many times,
this culling strategy represents substrings by only
certain snips. Particularly important postprocess-
ing includes merging consecutive snips that
match in all occurrences, thus producing longest
matching substrings. Extensions of this can iden-
tify long substrings that match except for short
insertions or deletions.

An experimental prototype has been built and ap-
plied to the source code of the SQLDS reference
legacy system. This led to a number of observa-
tions. The expansion of inclusions via preprocess-
ing introduces textual redundancy. These redun-
dancies were easily detected by the prototype.
When the prototype was applied to a small part of
the source code (60 files, 51 655 lines, 2 983 573
characters), and considering matches of at least

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

20 lines, there appeared to be numerous cut-and-
paste occurrences-about 727 copied lines in 13
files. Processing of the entire 300 megabyte
source text ran successfully in under two hours on

Measures of repetition are
a useful basis for building

program understanding tools.

an IBM RISC System/6000 Model 550. To perform
a more complete and useful analysis of SQLDS,
research is now focused on approximate match-
ing techniques and better postprocessing and pre-
sentation tools. Textual analysis complements
other analysis tools by providing information that
these tools miss.

Syntactic analysis. The effort at the University of
Michigan3’ focuses on the design and develop-
ment of powerful source code search systems that
software engineers (or tools designed by them)
can use to specify and detect “interesting” code
fragments. Searching for code is a common ac-
tivity in reverse engineering because maintainers
must first find the relevant code before they can
correct, enhance, or re-engineer it. Software en-
gineers usually look for code that fits certain pat-
terns. Those patterns that are somehow common
and stereotypical are known as clichts. Patterns
can be structural or behavioral, depending on
whether one is searching for code that has a spec-
ified syntactic structure, or looking for code com-
ponents that share specific data-flow, control-
flow, or dynamic (program execution-related)
relationships.

Deficiencies with current approaches. Despite
the critical nature of the task, good source code
search systems do not exist. General string-
searching tools can handle only trivial queries in
the context of source code. Based on regular ex-
pressions, these tools do not exploit the rich syn-
tactic structure of the programming language.
Source code also contains numerous syntactic,
structural, and spatial relationships that are not

fully captured by the entity-relation-attribute
model of a relational database.

For example, systems such as the C Information
Abstraction system CIA)^^ and PUNS4’ only han-
dle simple statistical and cross-reference queries.
Graph-based models represent source code in a

Syntactic, structural, and
spatial relationships are
not captured by models.

graph where nodes are software components
(such as procedures, data types, and modules),
and arcs capture dependencies (such as resource
flows). The SCAN system41 uses a graph-based
model that is an attributed abstract syntax rep-
resentation. This model does capture the struc-
tural information necessary; however, it does not
capture the strong typing associated with pro-
gramming-language objects. Moreover, it fails to
support type lattices, an essential requirement to
ensure substitutability between constructs that
share a supertype-subtype relationship. Object-
based models, such as the one used by REFINE
(previously discussed in the section “Defect fil-
tering”), adequately capture the structural and
relational information in source code. However,
the focus in REFINE has not been on the design of
efficient source code search primitives.

SCRUPLE. The University of Michigan group
has developed the SCRUPLE source code search
system (Source Code Retrieval Using Pattern
LanguagE~).~’ SCRUPLE is based on a pattern-
based query language that can be used to specify
complex structural patterns of code not express-
ible using other existing systems. The pattern lan-
guage allows users flexibility regarding the degree
of precision to which a code structure is specified.
For example, maintainers trying to locate a ma-
trix multiplication routine may specify only a con-
trol structure containing three nested loops, omit-
ting details of contents of the loops, whereas
those trying to locate all the exact copies of a

490 BUSS ET AL.

certain piece of code may use the code piece itself
as their specification.

The SCRUPLE pattern language is an extension of
the source code programming language. The ex-
tensions include a set of symbols that can be used
as substitutes for syntactic entities in the pro-
gramming language, such as statements, declara-
tions, expressions, functions, loops, and varia-
bles. When a pattern is written using one or more
of these symbols, it plays the role of an abstract
template that can potentially match different code
fragments.

The SCRUPLE pattern-matching engine searches
the source code for code fragments that match the
specified patterns. It proceeds by converting the
program source code into an abstract syntax tree
(AST), converting the pattern into a special finite
state machine called the code pattern automaton
(CPA), and then simulating the behavior of the CPA
on the AST using a CPA interpreter. A matching
code fragment is detected when the CPA enters a
final state. Experience with the SCRUPLE system
shows that a code pattern automaton is an effi-
cient mechanism for structural pattern matching
on source code.

Source code algebra. SCRUPLE is an effective pat-
tern-based query system. However, current
source code query systems, including SCRUPLE,
succeed in handling only subsets of the wide
range of queries possible on source code, trading
generality and expressive power for ease of im-
plementation and practicality. To address the
problem, a source code algebra (SCA)43 was de-
signed as the formal framework on top of which
a variety of high-level query languages can be im-
plemented. In principle, these query languages
can be graphical, pattern-based, relational, or
flow-oriented.

The modeling of program source code as an al-
gebra has four important consequences for re-
verse engineering. First, the algebraic data model
provides a unified framework for modeling struc-
tural as well as flow information. Second, query
languages built using the algebra will have formal
semantics. Third, the algebra itself serves as low-
level applicative query language. Fourth, the
source code queries expressed as algebra expres-
sions can be optimized using algebraic transfor-
mation rules and heuristics.

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

Source code is modeled as a generalized order-
sorted algebra44 where the sorts are the program
objects with operators defined on them. The
choice of sorts and operators directly affects the
modeling and querying power of the SCA. Essen-
tially, SCA is an algebra of objects, sets, and se-
quences. It can be thought of as an analogue of
relational algebra, which serves as an elegant and
useful theoretical basis for relational query lan-
guages. A prototype implementation of the SCA
query processor is underway. The next step is to
test it using suites of representative queries that
arise in reverse engineering. The final goal is to
automatically generate source code query sys-
tems for specific programming languages from
high-level specifications of the languages (that is,
their syntax and data model). The core of the
query system will be language-independent. This
tool generation technique is similar to a parser
generator.

Semantic analysis. The McGill research45 involves
four subgoals. First, program representations are
needed to capture both the structural and seman-
tic aspects of software. Second, comparison al-
gorithms are needed to find similar code frag-
ments. Third, pattern-matching algorithms are
needed to find instances of programming plans (or
intents) in the source code. Fourth, a software
process definition is needed to direct program un-
derstanding and design recovery analyses.

Program representation. A suitable program rep-
resentation is critical for plan recognition because
the representation must encapsulate relevant pro-
gram features that identify plan instances, while
simultaneously discarding implementation varia-
tions. There are several representation methods
discussed in the literature, including data and
control flow graphs, Prolog rules, and lambda cal-
culus. The McGill representation scheme is an
object-oriented annotated AST.

A grammar and a domain model for the language of
the subject system is constructed using REFINE.
The domain model defines an object hierarchy for
the AST nodes and the grammar is used to construct
a parser that builds the AST. Some tree annotations
are produced by the parser; others are produced by
running analysis routines on the tree. Annotations
produced by the parser include source code line
numbers, file names, and links between identifier
references and corresponding variable and data
type definitions. Annotations produced by analysis

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

routines include variables used and updated, func-
tions called, variable scope information, input/out-
put operations, and complexity and quality metrics.
Annotations stored in the AST may be used by other
analysis routines.

Programmingplans. More generally, comparison
methods are needed to help recognize instances
of programming plans (abstracted code frag-
ments). There are several other pattern-matching
techniques besides similarity measures. GRASP46
compares the attributed data flow subgraphs of
code fragments and algorithmic plans, and uses
control dependencies as additional constraints.
PROUST47548 compares the syntax tree of a pro-
gram with suites of tree templates representing
the plans. A plan-instance match is recognized if
a code fragment conforms to a template, and cer-
tain constraints and subgoals are satisfied. In
C P U ~ ~ comparisons are performed by applying a
unification algorithm on code fragments and pro-
gramming plans represented by lambda calculus
expressions.

Textual- and lexical-matching techniques encoun-
ter problems when code fragments contain irrel-
evant statements or when plans are delocalized.
Moreover, program behavior is not considered.
Graph-based formalisms capture data and control
flow, but transformations on these graphs are of-
ten expensive and pattern-matching algorithms
can have high time complexity. This poses a ma-
jor problem when analyzing huge source codes.

In addition, plan instance recognition must con-
tend with problems such as syntactic variations,
interleaved plans, and implementation differ-
ences. One major problem is the failure of certain
methods to produce any results if precise recog-
nition is not achieved. The McGill group focuses
on plan localization algorithms that can handle
partial plans. Human assistance is favored over a
completely automatic approach based on a fixed
plan library.

Plans should stand for application-level concepts
and not simply be abstracted code fragments.
Concepts might be high-level descriptions of oc-
currences or based on more familiar properties
such as assertions, data dependencies, or control
dependencies. Within the McGill approach, plans
are user-defined portions of the annotated AST. A
pattern-matching and localization algorithm is
used to find all code fragments that are similar to

the plan. The plan, together with the similar
fragments, forms a “similarity” class. The object-
oriented environment gives flexibility in the
matching process because some implementation
variations are encoded in the class hierarchy. For
example, WHILE, FOR, and REPEAT-UNTIL state-
ments are subclasses of the loop-statement class.
The object hierarchy that classifies program
structure and data types is defined within a lan-
guage-specific domain model.

Similarity analysis. One focus in pattern match-
ing is on identifying similar code fragments. Ex-
isting source code is often reused within a system
via “cut-and-paste” text operations previously
discussed in the section “Textual analysis.” This
practice saves development time, but leads to
problems during maintenance because of the in-
creased code size and the need to propagate
changes to every modified copy. Detection of
cloned code fragments must be done using heu-
ristics since the decision whether two arbitrary
programs perform the same function cannot be
made. These heuristics are based on the obser-
vation that the clones are not arbitrary and will
often carry identifiable characteristics (features)
of the original fragment.

The McGill approach to identifying clones uses
various complexity metrics. Each code fragment
is tagged by a signature tuple of its complexity
values. This transformational technique simpli-
fies software structures by converting them to
simpler canonical forms. In this framework, the
basic assumption is that, if code fragments c l and
c2 are similar under a set of features measured by
metric M , then their metric values M (cl) and M
(c2) for these features will also be close. Five
metrics have been chosen that exhibit a relatively
low correlation coefficient, and are sensitive to a
number of different program features that may
characterize a code fragment. They are:

1. The number of functions called from a soft-

2. The ratio of input/output variables to the fan-

3. McCabe’s cyclomatic complexity5’
4. Albrecht’s Function Point quality metric5’
5 . Henry-Kafura’s information flow quality met-

ware component (i.e., fan-out)

out

ric52

Similarity is gauged by a distance measure on the
tuples. The distances currently used are based on

492 BUSS ET AL.

two measures: (1) on the Euclidean distance de-
fined in the five-dimensional space of the above
measures; and (2) on clustering thresholds de-
fined on each individual measure axis (and on in-
tersections between clusters in different measure
axes).

Another analysis is to determine closely related
software components, according to criteria such
as shared references to data, data bindings, and
complexity metrics. Grouping software compo-
nents by such varied criteria provides the analyst
with different views of the program. The data
binding criteria track uses of variables in one
component that are defined within another (a kind
of interprocedural resource flow). The implemen-
tation of these analyses uses the REFINE product.

Goal-driven program understanding. Another
design recovery strategy that has been explored
by the McGill group is a variation of the GQMS3
model, which is a goal, question, analysis, and
action model. 54 A number of available options are
compared, and the one that best matches a given
objective is selected. The choice is based on
experience and formal knowledge.

This process can be used to find instances of pro-
gramming plans. The comparison process is iter-
ative, goal-driven, and affected by the purpose of
the analysis and the results of previous work. A
moving frontier55 divides recognized plans and
original program material. Subgoals are set
around fragments that have been recognized with
high confidence. The analysis continues outward
seeking the existence of other parts of the plan in
the code. Interleaved plans can be handled by
allowing gaps and partial plan recognition.

Summary of pattern matching. Research proto-
types have been built for performing textual, syn-
tactic, and semantic analysis of the SQLDS sys-
tem. Both the McGill and Michigan tools can
process PL/AS code, but have also been applied to
C code. The NRC tool found numerous cut-and-
paste redundancies in the SQLDS code and re-
search is continuing on improving these tools.
The NRC group is also focusing on better visual-
ization techniques. Michigan is investigating bet-
ter program representations and pattern-match-
ing engines, and McGill is exploring techniques
for plan recognition and similarity distances be-
tween source code features.

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

The common themes that have emerged from this
research are: (1) domain-specific knowledge is
critical in easing the interpretation of large soft-
ware systems, (2) program representations for ef-
ficient queries are essential, (3) many kinds of
analyses are needed in a comprehensive reverse
engineering approach, and (4) an extensible envi-
ronment is needed to consolidate these diverse
approaches into a unified framework. An archi-
tecture for a multifaceted reverse engineering
environment to address these requirements is
presented in the next section.

Steps toward integration

The first phase of the program understanding
project produced practical results and usable pro-
totypes for program understanding. In particular,
the defect filtering system developed by the
IBM team is used daily by several development
groups, including SQUDS and DB2. The second
phase of the program understanding project fo-
cuses on the integration of selected prototype
tools into a comprehensive environment for pro-
gram Understanding.

The prototype tools individually developed by
each research group offer complementary func-
tionalities and differ in the methods they use to
represent software descriptions, in the implemen-
tation of such descriptions in terms of physical
data structures, and in the mechanisms deployed
to interact with other tools. Ideally, the output of
one prototype tool should be usable as input by
another. For example, some of the many depen-
dencies generated by the defect filtering system
might be explored and summarized using the Rigi
graph editor. However, the defect detection sys-
tem uses the REFINE object-oriented repository,
and the Rigi system uses the GRAS graph-based
repository. 56 Integrating the representations em-
ployed by REFINE and Rigi is a nontrivial prob-
lem.

With such integration in mind, a new phase of the
project was launched early in 1993. Some of the
key requirements for the integration were:

Smooth data, control, and presentation integra-
tion among components of the environment
Extensible data model and interfaces to support
new tools and user-defined objects, dependen-
cies, and functions
Domain-specific, semantic pattern matching to

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

complement the facilities developed during the
first phase of the project
The representation and support of processes
and methodologies for reverse engineering
Robust program representations, user inter-
faces, and algorithms, capable of handling large
collections of software artifacts

The rest of this section describes the steps that
have been taken to provide data integration
through a common repository for a variety of
tools for program understanding. In addition, the
section describes the subsystem of the environ-
ment responsible for control integration.

Repository schema. The University of Toronto
contribution focuses on the development of an
information schema and the implementation of a
repository to support program understanding. A
set of requirements was created for the reposi-
tory. The repository needs to store both the ex-
tracted information gathered during the discovery
phase as well as the abstractions generated during
the identification phase of reverse engineering.
The information stored must be readily under-
standable, persistent, shareable, and reusable.
Moreover, the repository must have a common
and consistent conceptual schema that is a su-
perset of the subschemas used by the program
understanding tools, including those for REFINE
and Rigi. The repository should also provide sim-
ple repository operations to select and update in-
formation pertinent to a specific tool. The schema
is expected to change, and therefore it must sup-
port dynamic evolution.

The schema is under development and is being
implemented in three phases. The first phase,
which has already been implemented, captures
the information currently required by REFINE and
Rigi. This information consists of programming
language constructs from C, which are discov-
ered through parsing, as well as user-defined and
tool-generated objects. For example, the concept
of a Rigi subsystem is captured in a class named
Module. By contrast, since this concept is not
supported by REFINE, the programming language
construct of an arithmetic expression is cap-
tured in the REFINE subschema using the class
Expression. As an example of a shared concept,
the notation of a function is common to both tools
and is captured in the shared class Function. Each
tool has a different view of this class, where only
the common portions and the information perti-

BUSS ET AL. 493

Figure 2 The repository schema

IS ANf-b INSTANCE OF - - - - +

nent to that tool are accessible. The second phase
classifies the patterns used and captures the anal-
ysis results generated from each tool. The third
phase will record other information relevant to
reverse engineering, such as designs, system re-
quirements, domain modeling, and process infor-
mation. The remainder of this section describes
the schema developed for the first phase.

The information model adopted for the repository
schema is Telos, originally developed at the Uni-
versity of Toronto.57 Features of Telos include:
an object-oriented framework that supports gen-
eralization, classification and attribution, a meta-
modeling facility, and a novel treatment of at-
tributes including multiple inheritance of attributes
and attribute classes. Telos was selected over other
data models (for example, REFINE, Objectstore**,
or C+ +-based models) because it is more expres-
sive with respect to attributes and is extensible

through its treatment of metaclasses. To support
persistent storage for the repository, however, we
adopted the commercial object-oriented database
Objectstore.

As illustrated in Figure 2, the schema consists of
three tiers. The top level (Metaclass Level) ex-
ploits meta modeling facilities to define the types
of attribute values that the repository supports,
and useful groupings of attributes to distinguish
information that is pertinent to each of the indi-
vidual tools. For example, RigiClass is used to
capture all data that pertain to Rigi at the level
below, and thus it defines the kinds of attribute
classes that the lower level Rigi classes can have.
The use of this level eases schema evolution and
provides an important filtering and factoring mech-
anism. The middle level (Class Level) defines the
repository schema, using the metaclasses and at-
tributes defined in the top level. For instance,

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994 494 BUSS ET AL.

Figure 3 System architecture

n - n
L/ Rigi I I Riai I

~~~ ~ 

/ I \ \ 
Rigi 3 Rigi REFINE 

MACHINE  A I \ \ \  \ 

WORK SPACE 
+ LOCAL 

WORK SPACE 
3 LOCAL 

WORK SPACE 
LOCAL 

I \ 

MACHINE  A 

/ 

/"---- MACHINE 8 

/ 

Y I I 
4 

I - 
I r)i Rigi I 

\ 
LOCAL 
WORK SPACE 

4 

DATA  SERVER 
Telos Message Bus 
( T W  

CONTROL  INTEGRATION DATA INTEGRATION 

RigiObject,  RigiElement,  RigiProgrammingObject, and 
Function (grouped in the shaded area in Figure 2), all 
use the attribute metaclasses defined  in RigiClass 
above  to  capture information about  particular 
Rigi concepts. As the  example suggests, a  repos- 
itory  object is categorized  based on the  pertinent 
tool and whether it is  automatically  extracted or 
produced  through analysis. The  bottom level (To- 
ken  Level)  stores  the  software  artifacts  needed  by 
the individual tools. Figure 2 shows  three  func- 
tion objects: listinit,  mylistprint, and listfirst corre- 
sponding to  the actual  function definitions. These 
are created  when Rigi parses  the  target  source 
code. 

Environment  architecture. A generic  architecture 
is one  important step toward  the goal of creating 
an integrated reverse engineering environment. 
The main integration requirements of this envi- 
ronment involve data,  control,  and  presentation. 
Data integration is essential to  ensure that  the 

individual tools  can  communicate  with  each  oth- 
er; this is accomplished through  a common 
schema.  Control integration enhances  interoper- 
ability and  data integrity among the tools. This is 
realized through  a  data  server built using a  cus- 
tomizable and extensible message server named 
the  Telos Message Bus (TMB), as  shown in Figure 
3. This message server allows all tools to com- 
municate  both with the  repository  and with each 
other, using the  common  schema.  These  mes- 
sages form the  basis  for all communication in the 
system.  The  server  has  been implemented on top 
of existing public domain software  bus  technol- 
0gy58 using a  layered  approach  that  provides both 
mechanisms and policies specifically tailored to a 
reverse engineering environment. For example, 
the  bottom  layer  provides  mechanisms  by which 
a  particular tool can  receive  messages of interest 
to it. The policy layer is built on top of the  mech- 
anism layer to determine if and how a  particular 
tool responds to those messages. 

IBM SYSTEMS  JOURNAL,  VOL 33, NO 3, 1994 BUSS  ET  AL. 495 



This  architecture  has  been implemented. The mo- 
tivation for  the  layered  and modular approach to 
the schema  and  architecture  came  from  an earlier 
experience by  the  University of Toronto  group in 
another project. This earlier project  faced similar 
requirements,  such as  the  need for a common  re- 
pository to help integrate  disparate tools. Addi- 
tional experience with this  architecture  for  re- 
verse engineering purposes is currently ongoing. 

Summary 

There will always be old software  that  needs to  be 
understood. It is critical for the information tech- 
nology sector in general, and software  industry in 
particular,  to deal effectively with the  problems of 
software evolution and the  understanding of leg- 
acy  software  systems.  Tools  and methodologies 
that effectively aid software  engineers in under- 
standing large and  complex  software  systems  can 
have  a significant impact. 

The IBM team built several  prototype  toolkits in 
REFINE, each focusing on detecting specific errors 
in SQWDS. A flexible approach  was also devel- 
oped  that  applies  defect filters to  the  source  code 
to improve  the quality. Defect filtering produces 
measurable  results in software quality. 

The University of Victoria group developed  the 
Rigi system, which focuses on the high-level ar- 
chitecture of the  subject  system  under analysis. 
Views of multiple, layered  hierarchies  are  used to 
present  structural  abstractions  to  the maintain- 
ers. A scripting  layer allows Rigi to  access addi- 
tional external tools. 

The National  Research Council studied  redun- 
dancy at the  textual level. A  number of uses  are 
relevant to  the SQLIDS product: looking for code 
reused  by  cut-and-paste, building a simplified 
model for macro  processing  based on actual use, 
and providing overviews of information content 
in absolute or relative (version or variant)  terms. 

The  University of Michigan group matched  pro- 
gramming language constructs in the SCRUPLE 
system.  Instead of looking for low-level textual 
patterns  or  very high-level semantic  constructs, 
SCRUPLE looks  for user-defined code clichCs. This 
approach is a logical progression from simple tex- 
tual scanning techniques. 

The McGill University  group  studied  semantic or 
behavioral pattern matching. A  transformational 

496 BUSS ET AL. 

approach  based  on  complexity  metrics  is used to 
simplify syntactic programming structures  and 
expressions by translating  them to tuples. The use 
of a  distance  measure on these  tuples  forms  the 
basis of a  method to find similar code fragments. 

Defect filtering generates  an overwhelming 
amount of information that  needs to  be summa- 
rized effectively to  be meaningful. Extensible  vi- 
sualization and documentation  tools  such as Rigi 
are  needed to manage these  complex details. 
However, Rigi by itself does not offer the  textual, 
syntactic,  and  semantic  analysis  operations 
needed for  a  comprehensive  reverse engineering 
approach.  Early  results  indicate  that  an  extensi- 
ble but  integrated toolkit is  required to  support 
the multifaceted analysis  necessary  to  understand 
legacy software  systems.  Such  a unified environ- 
ment is under development based on the  schema 
and  architecture implemented by  the  group at the 
University of Toronto.  This integration brings the 
strengths of the  diverse  research  prototypes  to- 
gether. 

Acknowledgments 

We are  very grateful for the efforts of the follow- 
ing people: Morris Bernstein, McGill University; 
David Lauzon,  University of Toronto;  and 
Margaret-Anne Storey, Michael Whitney, Brian 
Corrie, and Jacek Walkowicz  (now at Macdonald- 
Dettwiler & Associates),  University of Victoria. 
Their contributions  have  been critical to the  suc- 
cess of the  various  research  prototypes. We wish 
to  thank  the SQL/DS group  members  at IBM for 
their participation and  the staff at CAS for their 
support. Finally, we  are  deeply  indebted  to  Jacob 
Slonim for his continued guidance and  encour- 
agement in this  endeavor. 

*Trademark or registered trademark of International Business 
Machines Corporation. 

**Trademark or registered trademark of Reasoning Systems 
Inc., SAS Institute, Inc., or Object Design, Inc. 

Cited  references  and  notes 

1. T. A. Standish, “An Essay on Software Reuse,” IEEE 

494497 (September 1984). 
Transactions  on  Software Engineering SE-IO, NO. 5 ,  

2. In this paper, re-engineering means the authorized logical 
conversion of a customized architecture (implemented in 
SQL/DS) to a commercial architecture (implemented in a 
compiler source language). Re-engineering does not in- 
clude unauthorized reverse compilation of object code to 

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994 



form source  code  as  the  basis for the derivation of a sub- 
stitute  product, generally  referred to  as reverse engineer- 
ing. 

3. P. Selfridge, R. Waters,  and E. Chikofsky,  “Challenges to 
the  Field of Reverse Engineering-A Position  Paper,” 
WCRE ’93: Proceedings of  the  1993  Working Conference 
on Reverse Engineering, Baltimore,  MD; IEEE Com- 
puter  Society  Press,  Order  Number 3780-02 (May 1993), 
pp. 144-150. 

4. R. Brooks, “Towards a Theory of the Comprehension of 
Computer Programs,” International  Journal of Man-Ma- 
chine Studies 18, 543-554 (1983). 

5.  R. Arnold, Software Reengineering, IEEE  Computer So- 
ciety  Press (1993). 

6. R. Arnold,  “Tutorial on Software Reengineering,” 
CSM’90: Proceedings of  the  1990 Conference on Soft- 
ware Maintenance, San Diego, CA,  IEEE  Computer So- 
ciety  Press,  Order  Number 2091 (November 1990). 

7. E. J. Chikofsky  and J. H. Cross 11, “Reverse Engineering 
and Design Recovery:  A Taxonomy,” IEEE Software 7, 
No. 1, 13-17 (January 1990). 

8. A. B. O’Hare  and E. W. Troan,  “RE-Analyzer:  From 
Source  Code  to  Structured Analysis,” IBMSystemsJour- 
nul 33, No. 1, 110-130 (1994). 

9. G.  Myers, Reliable  Software Through Composite Design, 
Petrocelli/Charter (1975). 

10.  M. R. Olsem  and C. Sittenauer, Reengineering  Technol- 
ogy Report, Volume I, Technical Report,  Software  Tech- 
nology Support  Center (August 1993). 

11. Software  Management  Technology  Reference Guide, 
N.  Zvegintzov, Editor,  Software Management News Inc., 
4.2 Edition (1994). 

12. G. Arango, I.  Baxter, P. Freeman, and C. Pidgeon, 
“TMM: Software Maintenance by Transformation,” 
IEEE Software 3, No. 3, 27-39 (May 1986). 

13. W. G. Griswold, Program  Restructuring as an Aid to 
Software Maintenance, Ph.D. thesis, University of 
Washington, Seattle,  WA (1991). 

14. C. Rich and L. M. Wills, “Recognizing  a Program’s De- 
sign: A  Graph-Parsing  Approach,” IEEE Software 7, 
No. 1, 82-89 (January 1990). 

15. P. A. Hausler, M. G. Pleszkoch, R.  C. Linger, and  A. R. 
Hevner,  “Using  Function  Abstraction  to  Understand 
Program Behavior,” ZEEE Software 7, No. 1,55-63 (Jan- 

b 

b 

B 

u a 6  1990). 
16. J. E. Grass.  “Obiect-Oriented Design Archaeology  with 
~~ 

CIA++,” Computing Systems 5,  No. 1, 5-67 (Winter 
1992). 

17. R. Schwanke, R. Altucher, and M. Platoff, “Discovering, 
Visualizing, and Controlling Software  Structure,” ACM 
SIGSOFTSoftware EngineeringNotes 14, No. 3,147-150 
(May 1989). 

18. M. Consens,  A. Mendelzon, and A. Ryman,  “Visualizing 
and  Querying Software  Structures,” Proceedings of the 
14th International  Conference on Software  Engineering, 
Melbourne,  Australia,  May 11-15, 1992, pp. 138-156 
(May 1992). 

19. T. J. Biggerstaff, B. G. Mitbander, and D. Webster,  “The 
Concept Assignment  Problem in Program Understand- 
ing,” Proceedings of  the  1993  Working Conference on 
Reverse Engineering, Baltimore,  Maryland, May 21-23, 
1993, pp. 27-43; IEEE  Computer  Society  Press,  Order 
Number 3780-02 (May 1993). 

20. The IBM team  was led by  authors E. Buss and J. Hen- 
shaw. 

, I  

I 

21. E. Buss  and J. Henshaw,  “A  Software  Reverse Engineer- 
ing Experience,” Proceedings of CASCON ’91, Toronto, 
Ontario, October 28-30, 1991, pp. 55-73; IBM Canada 
Ltd.  (October 1991). 

22. S. Burson, G. B. Kotik,  and L. Z. Markosian, “A Pro- 
gram  Transformation  Approach to Automating Software 
Re-engineering,” Proceedings of  the  14th  Annual Inter- 
national Computer Software and Applications Confer- 
ence, Chicago, IL,  October, 1990, pp. 314-322 (1990). 

23. J. Troster, a  member of the  IBM team, performed the 
design-quality  metrics  analysis. 

24. J. Troster, “Assessing  Design-Quality  Metrics  on Legacy 
Software,” Proceedings of CASCON ’92, Toronto, On- 
tario, November 9-11, 1992), pp. 113-131 (November 
1992). 

25. J.  Troster,  J.  Henshaw, and E. Buss, “Filtering for Qual- 
ity,” Proceedings of CASCON ’93, Toronto, Ontario, OC- 
tober 25-28, 1993, pp. 429-449 (October 1993). 

26. E. Buss and J. Henshaw,  “Experiences in Program Un- 
derstanding,” Proceedings of  the  1992  CAS Conference, 
Toronto, Ontario, November 9-12, 1992, pp. 157-189; 
IBM Canada  Ltd.  (November 1992). 

27. D. N. Card and R. L. Glass, Measuring  Software  Design 
Quality, Prentice-Hall, Inc., Englewood Cliffs, NJ (1990). 

28. D. N.  Card, “Designing Software for Producibility,” 
Journal  of Systems and Software 17, No. 3, 219-225 
(March 1992). 

29. H. L. Ossher, “A Mechanism  for  Specifying  the Structure 
of Large,  Layered  Systems,” Research Directions in Ob- 
ject-Oriented Programming, B. D. Shriver and P. Weg- 
ner,  Editors,  The MIT Press (1987), pp. 219-252. 

30. H. A. Muller, Rigi-A  Model for Software System Con- 
struction,  Integration, and  Evolution  Based on Module 
Interface Specifications, Ph.D. thesis,  Rice University 
(August 1986). 

31. M. Shaw,  “Larger-Scale  Systems Require  Higher-Level 
Abstractions,” ACM SZGSOFT Software  Engineering 
Notes 14, No. 3, 143-146 (May 1989). 

32. H. A. Muller, M. A. Orgun, S. R. Tilley, and J. S. Uhl, 
“A Reverse Engineering  Approach to  Subsystem  Struc- 
ture Identification,” Journal  of Software  Maintenance: 
Research and Practice 5, No. 4,  181-204 (December 
1993). 

33. J. K. Ousterhout, Tcl  and Tk Toolkit, Addison-Wesley 
Publishing Co., Reading,  MA (1994). 

34. S. R. Tilley and H. A. Muller, “Using Virtual Subsystems 
in Project  Management,” The  Sixth International Con- 
ference on Computer-Aided Software  Engineering, Insti- 
tute of Systems  Science, National University of Singa- 
pore, Singapore, July 19-23, 1993; IEEE Computer 
Society  Press,  Order  Number 3480-02 (July 1993), 
pp. 144-153. 

35. S. R. Tilley, M. J. Whitney,  H. A. Muller,  and M.-A. D. 
Storey, “Personalized  Information Structures,” The  11th 
Annual  International  Conference on Systems Documen- 
tation, Waterloo, Ontario,  October 5-8, 1993; ACM Or- 
der  Number 6139330 (October 1993), pp. 325-337. 

36. J. H. Johnson, “Identifying Redundancy in Source  Code 
Using  Fingerprints,” Proceedings of  1992  CAS Confer- 
ence, Toronto, Ontario, November 9-12,  1992, pp. 171- 
183; IBM Canada  Ltd.  (November 1992). 

37. R. M. Karp and M. 0. Rabin, “Efficient Randomized Pat- 
tern-Matching  Algorithms,” 1BM Journal  of Research 
and Development 31, No. 2, 249-260 (March 1987). 

B IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994 BUSS ET AL. 497 



38. The  University of Michigan team  was lead by  authors 
S. Paul and A. Prakash. 

39. Y. Chen, M. Nishimoto, and C. Ramamoorthy, “The C 
Information  Abstraction System,” ZEEE Transactions on 
Software  Engineering 16, No. 3, 325-334 (March 1990). 

40. L. Cleveland, PUNS: AProgram Understanding  Support 
Environment, Technical Report  RC 14043, IBM T. J.  Wat- 
son Research  Center  (September 1988). 

41. R. Al-Zoubi  and A. Prakash, Software  Change Analysis 
via Attributed Dependency Graphs, Technical  Report 
CSE-TR-95-91, Department of EECS,  University of 
Michigan (May 1991). 

42. S. Paul  and A. Prakash, “Source  Code Retrieval Using 
Program Patterns,” Proceedings of  the  Fifth  Znterna- 
tional  Workshop on Computer-Aided Software  Engineer- 
ing, Montreal, Quebec,  July 6-10, 1992 (July 1992), 
pp. 95-105. 

43. S. Paul and A. Prakash,  “A  Framework  for  Source  Code 
Search  Using Program Patterns,” ZEEE Transactions on 
Software  Engineering 20, No. 6 (June 1994). 

44. K. Bruce  and P. Wegner, “An Algebraic  Model of Sub- 
type  and  Inheritance,” Advances in Database Program- 
ming Languages, ACM Press (1990). 

45. K. Kontogiannis, “Toward Program Representation  and 
Program  Understanding Using  Process Algebras,” Pro- 
ceedings of the 1992  CAS Conference, Toronto, Ontario, 
November 9-12, 1992; IBM Canada  Ltd.  (November 
1992), pp. 299-317. 

46. L. M. Wills, “Automated Program  Recognition:  A Fea- 
sibility  Demonstration,” Artijcial Intelligence 45, 1-2 
(September 1990). 

47. W. Johnson and E. Soloway, “PROUST,” Byte 10, 
No. 4, 179-190 (April 1985). 

48. W. Kozaczynski, J. Ning, and  A.  Engberts, “Program 
Concept Recognition and Transformation,” ZEEE Trans- 
actions on Software  Engineering 18, No. 12, 1065-1075 
(December 1992). 

49. S. Letovsky, Plan Analysis of Programs, Ph.D. thesis, 
Department of Computer  Science, Yale University (De- 
cember 1988). 

50. T. McCabe, “A Complexity  Measure,” ZEEE Transac- 
tions on Software  Engineering 7, No. 4, 308-320 (Sep- 
tember 1976). 

51. A.  J. Albrecht,  “Measuring  Application  Development 
Productivity,” Proceedings of ZBMApplications Devel- 
opment Symposium, Monterey, CA  (October, 1979), pp. 
83-92. 

52. S. Henry, D. Kafura, and  K. Harris, “On the  Relation- 
ships among the  Three  Software Metrics,” Proceedings 
of  1981 ACM WorkshoplSymposium on Measurement 
and  Evaluation  of  Software  Quality (March 1981). 

53. V. Basili and H. Rombach,  “Tailoring the  Software  Pro- 
cess  to Project  Goals and  Environments” The Ninth Zn- 
ternational  Conference on Software  Engineering (1987), 

54. K.  Kontogiannis, M. Bernstein, E. Merlo,  and R. D. 
Mori, “The Development of a  Partial Design Recovery 
Environment for Legacy  Systems,” Proceedings of CAS- 
CON ’93, Toronto, Ontario, October 25-28, 1993 (Octo- 
ber 1993), pp. 206-216. 

55. A. Corazza, R. De Mori, R.  Gretter, and G. Satta, “Com- 
putation of Probabilities  for  an  Island-Driven  Parser,” 
IEEE Transactions on Pattern Analysis and Machine Zn- 
telligence 13, No. 9, 36-50 (Sept. 1991). 

56. N. Kiesel, A.  Schiirr,  and B. Westfechtel,  “GRAS:  A 

pp. 345-359. 

Graph-Oriented Database  System for  (Software)  Engi- 
neering  Applications, The  Sixth  Znternational Conference 
on Computer-Aided Software  Engineering, Institute of 
Systems Science,  National University of Singapore,  Sin- 
gapore, July 19-23, 1993; IEEE Computer  Society  Press, 
Order  Number 3480-02 (July 1993), pp. 272-286. 

57. J. Mylopoulos, A. Borgida, M. Jarke,  and M. Koubarakis, 
“Telos:  Representing  Knowledge about Information Sys- 
tems,”ACM Transactions on Information Systems 8, No. 
4, 325-362 (October 1990). 

58. A. M. Carroll, ConversationBuilder: A Collaborative 
Erector Set, Ph.D. thesis, University of Illinois (1993). 

Accepted for publication  April 20, 1994. 

Erich Buss ZBM Software  Solutions  Division,  Toronto Lab- 
oratory, ZBM Canada Ltd., 895  Don Mills Road, North 
York,  Ontario M3C IW3,  Canada (electronic mail: 
buss@vnet.ihm.com). Mr. Buss  is an advisory  software  en- 
gineering process analyst in the  Software Engineering Process 
Group of the IBM Toronto  Software Solutions Laboratory. 
He graduated  with an M.Sc. in computer science  from the 
University of Western  Ontario in 1976. He joined IBM in the 
SQWDS data  group in 1988 and  subsequently moved to  the 
IBM Centre for  Advanced Studies (CAS) in 1990. In CAS he 
was the  principal  investigator for the  program  understanding 
project for  three  years,  where  he  worked on the  practical 
application of reverse engineering  technology to real devel- 
opment problems. His  current  interests  are in program  anal- 
ysis, defect filtering, and  object-oriented  development. 

Renato De  Mori McGill university, School  of Computer Sci- 
ence, 3480 University Street, Room 318, Montrial, Qutbec 
H3A 2A7, Canada (electronic mail:demori@cs.rncgill.ca). 
Dr. De Mori  received  a doctoral degree in electronic engi- 
neering  from  Politecnico di Torino,  Torino,  Italy, in 1967. He 
became full professor in Italy in 1975. Since 1986, he  has been 
a  professor  and the  Director of the  School of Computer Sci- 
ence at McGill University. In 1991, he  became an associate of 
the  Canadian Institute for  Advanced  Research and project 
leader of the Institute for  Robotics and Intelligent Systems, a 
Canadian Center of Excellence. He  is  the  author of many 
publications in the  areas of computer  systems,  pattern rec- 
ognition, artificial intelligence, and  connectionist models. His 
research  interests  are now stochastic parsing  techniques,  au- 
tomatic  speech understanding,  connectionist  models, and  re- 
verse engineering. He  is a fellow of the IEEE Computer So- 
ciety, has been  member of various  committees in Canada, 
Europe,  and  the United States,  and is on the  board of many 
international  journals. 

498 BUSS ET AL. IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994 



W. Morven Gentleman Institute for Information Technology, 
National  Research Council Canada, Montreal Road, Build- 
ing "50, Ottawa, Ontario KIA OR6, Canada (electronic 
mail:gentleman@iit.nrc.ca). Dr.  Gentleman is head of the 
Software Engineering Laboratory in the  Institute  for Infor- 
mation  Technology at  the National  Research  Council of Can- 
ada.  Before going to NRC, he  was a member of the technical 
staff at Bell Telephone  Laboratories,  Murray Hill, New  Jer- 
sey, and  for 15 years a  professor of computer  science  at  the 
University of Waterloo. His Ph.D. is in mathematics  from 
Princeton in  1966. His  research activities  include software 
engineering, computer  architecture, robotics, computer alge- 
bra,  and numerical  analysis. Dr. Gentleman has  extensive 
experience building, supporting, and applying computer  sys- 
tems in research  and industrial  environments. He  has built and 
supported  various commercial software  products. 

John Henshaw IBM Software Solutions Division, Toronto 
Laboratory, IBM Canada Ltd., 895 Don Mills Road, 
North York, Ontario M3C IW3, Canada (electronic mail: 
hemhaw@vnet. ibm. com). Mr. Henshaw is the  manager of the 
Software Engineering Process  Group in the IBM Toronto 
Software  Solutions  Laboratory.  Prior  to his current position, 
he  was a staff researcher  on  the program  understanding  proj- 
ect  at the  IBM Centre for Advanced  Studies for about  three 
years. Mr. Henshaw's  interests  are in the fields of software 
engineering, database performance  and modeling, and  pro- 
gramming languages  and  environments. 

Howard Johnson Institute for Information Technology, Na- 
tional Research Council Canada, Montreal Road, Building 
"50, Ottawa, Ontario KIA OR6, Canada (electronic mail: 
johnson@iit.nrc.ca). Dr. Johnson  is a  senior research officer 
with the Software Engineering Laboratory of the National 
Research Council. His  current  research  interest is software 
re-engineering and design recovery using full-text ap- 
proaches.  He received  his  B.Math. and M.Math. in statistics 
from  the  University of Waterloo in  1973 and 1974, respec- 
tively.  After  working as a survey methodologist at  Statistics 
Canada for four  years,  he  returned  to  the  University of Wa- 
terloo  and in 1983 completed  a Ph.D. in computer  science  on 
applications of finite state  transducers.  Since  then, he has 
been an assistant professor at  the  University of Waterloo  and 
later a  manager of a software development team  at  Statistics 
Canada,  before joining the National  Research  Council. 

Kostas Kontoglannis McGill University, School of 
Computer Science, 3480 University Street, Room 318, 
Montrtal, Qutbec H3A 2A7, Canada (electronic mail: 
kostas@binkley. cs.mcgil1. ca). Mr.  Kontogiannis  received  a 
B.Sc.  degree in mathematics from University of Patras, 
Greece,  and a M.Sc. degree in artificial intelligence  from 
Katholieke  Universiteit Leuven in Belgium. Currently,  he is 
a Ph.D. candidate  at McGill University,  School of Computer 
Science.  His  thesis  focuses  on developing  plan  localization 
algorithms and devising code similarity  metrics. He is  spon- 
sored  by  the IBM Centre for  Advanced Studies  and  the  Nat- 
ural Sciences  and Engineering  Research  Council of Canada. 
His  interests include  plan  localization  algorithms, software 
metrics, artificial intelligence, and  expert  systems. 

Ettore Merlo Departement de Genie Electrique, Ecole Poly- 
technique, C.P. 6079, Succ. Centre Ville, Montrkal, Qutbec 
H3C 3A7, Canada (electronic mail:merlo@rgl.po&mtl. ca). 

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994 

Dr. Merlo  graduated in computer science from  the  University 
of Turin  (Italy) in 1983 and  obtained  the Ph.D. degree in com- 
puter  science  from McGill University in  1989. From 1989 until 
1993 he  was the lead researcher of the  software engineering 
group  at  the  Computer Research Institute of Montreal 
(CRIM). He is currently an  assistant  professor of computer 
engineering at  Ecole Polytechnique de Montreal, where his 
research interests include software reengineering, software anal- 
ysis, and artificial intelligence. He is a  member of the IEEE 
Computer  Society. 

Hausl A. MiillerDepartment of Computer Science, University 
of Victoria, P. 0. Box 3055, Victoria, BC V8W 3P6, Canada 
(electronic mail:hausi@csr. uvic. ca). Dr. Muller is an  associ- 
ate professor of computer  science  at the University of Vic- 
toria, where  he  has been since 1986. From 1979 to 1982 he 
worked  as a software engineer  for  Brown Boveri & Cie in 
Baden,  Switzerland (now called ASEA Brown  Boveri). He 
received  his  Ph.D. in computer science from Rice University 
in  1986. In 1992 and 1993 he was  on sabbatical  leave at the  IBM 
Centre  for  Advanced  Studies in the Toronto laboratory, work- 
ing with  the  program  understanding  group. His  research in- 
terests include software engineering, software analysis,  re- 
verse engineering, re-engineering, programming-in-the-large, 
software metrics, and computational geometry. He  is currently 
a  p'ogram co-chair of the International Conference on Sofhvare 
Maintenance, ICSM '94, in Victoria; a program co-chair of the 
International Workshop on Computer-Aided Software Engi- 
neering, CASE '95, in Toronto; and a  member of the editorial 
board of IEEE Transactions on Software Engineering. He  was 
previously co-chair of the National Workshop on Soffware  En- 
gineering Education, NWSEE '93, in Toronto. 

John Mylopoulos Department of Computer Science, Uni- 
versity of Toronto, 6 King's College Road, Toronto, Ontario 
M5S IA4, Canada (electronic mail:jm@ai.  utoronto.ca). Dr. 
Mylopoulos is Professor of Computer  Science  at the  Univer- 
sity of Toronto.  His  research  interests include  knowledge  rep- 
resentation and  conceptual modeling, covering  languages, 
implementations,  and  applications. His  past  research  accom- 
plishments  include requirements  and design languages for in- 
formation systems,  the adoption of database implementation 
techniques for large knowledge  bases,  and the application of 
knowledge bases  to  software repositories. He is currently 
leading  a number of research projects and is principal  inves- 
tigator of both a  national and a  provincial Centre of Excellence 
for  Information  Technology. Dr. Mylopoulos  received  his 
Ph.D. degree  from  Princeton University in  1970. His publi- 
cation list includes more than 120 refereed journal and con- 
ference proceedings papers  and  three edited  books. He is the 
recipient of the first-ever  Outstanding Services Award given 
by the  Canadian AI  Society (1992), and is also  a  co-recipient 
of a best  paper award given by the 16th International Con- 
ference on Software Engineering. 

Santanu Paul Software Systems  Research  Laboratory, De- 
partment of EECS, University of Michigan, Ann  Arbor, Mich- 
igan 48109 (electronic mail:santanu@eecs.  umich.edu). Mr. 
Paul  received  his  B.Tech. degree in computer  science from 
the  Indian Institute of Technology,  Madras, in 1990 and an 
M.S. in computer  science  and engineering from  the  University 
of Michigan in 1992. At  present, he is a Ph.D. candidate  at  the 
University of Michigan, Ann Arbor.  His thesis focuses  on the 
design of algebraic  languages to  query  source  code.  His  re- 

BUSS ET AL. 499 



search  interests include databases,  reverse engineering, and 
multimedia systems.  He  was  the recipient of an IBM Canada 
Graduate  Research Fellowship  during 1991-93. He  is a stu- 
dent member of the  IEEE  Computer  Society. 

Atul Prakash Software Systems Research Laboratory, De- 
partment of EECS, University of Michigan, Ann Arbor, Mich- 
igan 48109 (electronic mail:aprakash@eecs.umich.edu). Dr. 
Prakash received  his  B.Tech.  degree in electrical  engineering 
from  the Indian Institute of Technology, New Delhi, in 1982, 
and M.S. and Ph.D. degrees in computer  science from the 
University of California at Berkeley in  1984 and 1989, respec- 
tively. Since 1989, he  has  been with  the Department of Elec- 
trical  Engineering and  Computer  Science  at the University of 
Michigan, Ann Arbor,  where he is currently an  assistant  pro- 
fessor.  His  research  interests include  toolkits and  architec- 
tures for supporting  computer-supported  cooperative  work, 
support for  re-engineering of software,  and parallel  simula- 
tion. His primary research  focus  at  present is on providing 
distributed systems  and multimedia support for  carrying out 
computer-supported  cooperative  work  over wide-area  net- 
works.  He is a  member of the ACM and  the  IEEE  Computer 
Society, 

Martin Stanley Department of Computer Science, University 
of Toronto, 6 King’s College Road, Toronto, Ontario M5S 
1A4, Canada (electronic mail:mts@ai. utoronto. ca). Mr. 
Stanley received  his M.S. degree in computer  science from 
the  University of Toronto in  1987. His  research  interests in- 
clude knowledge representation  and  conceptual modeling, 
with  particular  application to the building of software repos- 
itories. He is currently a research  associate in the Computer 
Science  Department  at  the  University of Toronto,  with pri- 
mary responsibility  for  the reverse engineering  project at  To- 
ronto. 

Scott R. Tilley Department of Computer Science, University 
of Victoria, P. 0. Box 3055, Vktoria, BC V8W 3P6, Canada 
(electronic mail:stillq@csr.uvic. ca). Mr.  Tilley is  currently 
on leave  from  the IBM Toronto  Software Solutions Labora- 
tory  and is a  Ph.D. candidate in the Department of Computer 
Science  at the University of Victoria. His first book on home 
computing was published in  1993. His  research  interests in- 
clude  end-user programming, hypertext, program understand- 
ing, reverse engineering,  and user interfaces. He is a  member 
of the  ACM and the IEEE. 

Joel Troster IBM Software Solutions Division, Toronto 
Laboratory, IBM Canada Ltd., 895 Don Mills Road, North 
York, Ontario M3C lW3, Canada (electronic mail: 
jtroster@vnet.ibm. com). Mr. Troster is a software engineer- 
ing process  analyst in the Software Engineering Process 
Group of the  IBM Toronto  Software Solutions Laboratory. 
Mr. Troster obtained  his  Bachelor of Applied Sciences degree 
in electrical  engineering in 1972 and his Master of Applied 
Sciences degree in biomedical  engineering in 1975, both from 
the  University of Toronto.  His  interests include software  com- 
plexity metrics, technology  propagation, software develop- 
ment process benchmarking,  enjoying family life, and growing 
orchids.  He is a member of the IEEE Computer Society. 

500 BUSS ET AL. 

Kenny Wong Department of Computer Science, University 
of Victoria, P. 0. Box 3055, Victoria, BC V8W 3P6, Canada 
(electronicmail:kenw@csr.uvic.ca). Mr.Wong is a Ph.D. can- 
didate in the Department of Computer  Science  at the  Univer- 
sity of Victoria. His  research  interests include  program un- 

member of the ACM, USENIX,  and the  Planetary  Society. 
derstanding, user interfaces,  and software design. He is a 

Reprint Order  No. G321-5552. 

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994 


