
Investigating 
reverse engineering 
technologies 
for the CAS program 
understanding  project 

Corporations face  mounting  maintenance  and 
re-engineering  costs  for  large  legacy  systems. 
Evolving over  several  years,  these  systems 
embody substantial  corporate knowledge, 
including  requirements,  design  decisions,  and 
business  rules. Such  knowledge is difficult to 
recover  after  many  years  of  operation,  evolution, 
and  personnel  change. To address  the  problem 
of  program  understanding,  software  engineers 
are  spending  an  ever-growing  amount  of  effort  on 
reverse  engineering  technologies.  This  paper 
describes  the  scope  and  results  of  an  ongoing 
research  project  on  program  understanding 
undertaken  by  the IBM Toronto  Software 
Solutions  Laboratory  Centre  for  Advanced 
Studies (CAS).  The project  involves  a team 
from CAS  and five research groups  working 
cooperatively  on  complementary reverse 
engineering  approaches. All the  groups are using 
the  source  code of SQUDS" (a multimillion-line 
relational database  system)  as  the  reference 
legacy  system.  Also  discussed is an  approach 
adopted to integrate  the  various tools under a 
single reverse  engineering  environment. 
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D evelopers today inherit  a  huge legacy of ex- 
isting software. These systems are  inher- 

ently difficult to understand  and  maintain because 
of their size and complexity as well as their evo- 
lution history. The  average  Fortune 100 company 
maintains 35 million lines of code and adds  an 
additional 10 percent each year just in enhance- 
ments, updates, and  normal maintenance. As a 
result of maintenance alone, software inventories 
will double in size  every  seven  years. Since these 
systems cannot easily be replaced  without  re- 
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viewing their entire  history, managing long-term 
software  evolution is critical. It  has  been  esti- 
mated  that 50 to 90 percent of work  each  year  is 
devoted  to program understanding;  hence, facil- 
itating the  understanding  process  can  have sig- 
nificant economic savings. 

One of the  most promising approaches to  the 
problem of program understanding for software 
evolution is reverse engineering, which  has  been 
proposed  to help refurbish and maintain software 
systems.  The  importance of reverse engineering’ 
will grow accordingly as maintenance  and  re- 
engineering costs for large legacy software  sys- 
tems  increase. To facilitate the  understanding 
process,  the  subject  software  system is repre- 
sented in a form where  many of its  structural and 
functional characteristics  can  be analyzed. 

This  paper  describes  the  use of several comple- 
mentary  reverse engineering technologies applied 
to a real-world software  system:  Structured 
Query Language/Data System (SQL/DS*). The 
goal was  to aid the  maintainers of SQLDS to im- 
prove  product  quality by enhancing their under- 
standing of the  three million lines of source  code. 
The background on the genesis of the program 
understanding  project  and  its  focus on the SQLIDS 
product is described  and  subsequent  sections  de- 
tail the individual research programs. Defect fil- 
tering  is  discussed as a way of improving quality 
by minimizing design errors.  The  abundance of 
defect filtering information needs to  be summa- 
rized by effective visualization and documenta- 
tion tools; thus  the  section on structural  redocu- 
mentation  discusses  a  system  to  reconstruct  and 
present high-level documentation  for  software 
understanding. A  comprehensive  approach to re- 
verse engineering requires  many different tech- 
niques, and  three  techniques are outlined that  an- 
alyze  source  code  at  textual,  syntactic, and 
semantic levels. Finally the  convergence of the 
separate  research  prototypes  into  an integrated 
reverse engineering environment is reported.  The 
paper  concludes with the  important  lessons 
learned in this  endeavor. 

Background 

Faced with demanding and ambitious quality- 
related  objectives,  the SQLDS product  group at 
IBM offered the  opportunity  to use their  product 
as a  candidate  system  for analysis. Faced with 
this challenge, the program understanding  project 
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was established in 1990 with goals to  investigate 
the use of reverse engineering technologies on 
real-world (SQLIDS) systems, and to utilize pro- 
gram understanding  analysis to improve  the  qual- 
ity of the SQLIDS product and to improve  the pro- 
ductivity of the  software organization. 

The philosophy of the IBM Centre  for  Advanced 
Studies (CAS) in Toronto  encourages complemen- 
tary  research  teams to  work on the  same problem, 
using a common base  product  for analysis. There 
is little work in program understanding  that in- 
volves large, real-world systems with multiple 
teams of researchers experimenting on a common 
target.3 Networking opportunities  ease  the  ex- 
change of research  ideas;  moreover, colleagues 
can  explore  related  solutions in different disci- 
plines. This  strategy  introduces  new  techniques 
to help tackle  the  problems in industry  and 
strengthens  academic  systems to deal with com- 
plex, industrial software  systems. In addition, 
universities  can  move their research from aca- 
demia into  industry at an  accelerated  rate. 

Six different research  groups  participated in and 
contributed to  the CAS program understanding 
project: the IBM Toronto  Software  Solutions  Lab- 
oratory  Centre for Advanced  Studies,  the  Na- 
tional Research Council of Canada (NRC), McGill 
University,  the  University of Michigan, the Uni- 
versity of Toronto,  and  the  University of Victo- 
ria. All groups  focused on the  source  code of 
SQWDS as  the  reference legacy software  system. 

The  reference  system: SQWDS. SQLDS is  a large 
relational database management system  that  has 
evolved since 1976. It was based on a  research 
prototype  and  has  undergone  numerous  revisions 
since  its first release by IBM in  1982. Originally 
written in PWI to run on the Virtual Machine Sys- 
tem (vM), SQLIDS now consists of over  3 000 000 
lines of PLIAS code. PL/AS (as PWI) is a  proprietary 
IBM systems programming language that is PWI- 
like and allows embedded System/370* assembler 
language code  to  be  part of the  instruction  stream. 
Because PLIAS is a  proprietary language, commer- 
cial off-the-shelf analysis  tools are unsuitable. 

SQLIDS consists of about 1300 compilation units, 
roughly split into  three large systems  and  several 
smaller ones.  Because of its  complex evolution 
and large size, no individual alone  can  compre- 
hend the  entire program. Developers  are  forced to 
specialize in a  particular  component,  even though 
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the various  components  interact.  Existing  pro- 
gram documentation is also a problem: there is 
too  much to maintain and to keep  current with the 
source  code,  too much to  read and digest, and  not 

typical legacy software  system:  successful, ma- 
ture, and supporting  a large customer  base while 
adapting to new  environments  and growing in 
functionality. 

The top-level goals of the CAS program under- 
standing  project  were guided by  the  maintenance 
concerns of the SQLDS developers.  Two of the 
most  important  were  code  correctness  and  per- 
formance  enhancement. Specific concerns  in- 
cluded: (1) detecting uninitialized data, pointer 

mismatches, (3) finding incomplete uses of record 
fields, (4) finding similar code  fragments, (5 )  lo- 
calizing algorithmic plans, (6) recognizing ineffi- 
cient  or high-complexity code,  and (7) predicting 
the impact of change. 

Program  understanding  through  reverse  engineer- 
ing. Programmers  use programming knowledge, 
domain knowledge, and comprehension strategies 
when trying to understand a program. For example, 
one might extract syntactic knowledge  from the 
source code and rely on programming  knowledge to 

theory of domain bridging4 describes the program- 
ming process as one of constructing mappings from 
a problem domain to an implementation domain, 
possibly through multiple  levels. Program under- 
standing then involves reconstructing part or all  of 
these mappings. Moreover, the programming pro- 
cess is a cognitive one involving the assembly of 
programming plans-implementation techniques 
that realize goals  in another domain. Thus, program 
understanding also tries to match patterns between 
a  set of known plans (or “mental” models) and the 
source code of the subject software. 

For large legacy systems,  the manual matching of 
such  plans is laborious and difficult. One way of 
augmenting the program understanding  process is 
through computer-aided  reverse engineering. Al- 
though there  are  many  forms of reverse  engineer- 
ing, the common goal is to  extract information 
from existing software  systems.  This knowledge 
can  then  be  used to improve  subsequent  devel- 
opment,  ease  maintenance  and re-engineering, 
and aid project management.’ 

1 enough that is current  and  accurate. SQUDS is a 

1 errors,  and  memory  leaks, (2) detecting  data  type 

1 form semantic abstractions. Brooks’s work on the 

b 
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The reverse  engineering process involves two 
distinct  phases:6 (1) the identification of the 
current  components of the  system and their 
dependencies, and (2) the  discovery of system 

The focus was on the 
source code of the 
SQUDS product. 

abstractions and  design  information.’  During this 
process, the source code is not altered, although 
additional information about the system is gener- 
ated. In contrast, the entire re-engineeringprocess 
typically consists of a reverse engineering phase, 
followed by a forward engineering or reimplemen- 
tation phase that alters the source code of the sub- 
ject system. Definitions of related concepts may be 
found in Reference 8. 

The  discovery  phase of reverse engineering is a 
highly interactive and cognitive activity.  The an- 
alyst may build up hierarchical subsystem com- 
ponents  that  embody  software engineering prin- 
ciples such  as low coupling and high cohesion.’ 
Discovery may also include the  reconstruction of 
design and requirements specifications (often re- 
ferred  to as  the domain model) and  the  correlation 
of this model to  the  code. 

Program  understanding  research. Many  research 
groups  have  focused their efforts on the develop- 
ment of tools  and  techniques  for program under- 
standing. The major research  issues involve the 
need for formalisms to represent program behav- 
ior and  visualize program execution,  and  the need 
for the focus on features  such  as  control flows, 
global variables,  data  structures,  and  resource  ex- 
changes.  At  a higher semantic level, research may 
focus on behavioral  features  such as memory us- 
age, uninitialized variables,  value ranges, and al- 
gorithmic plans. Each of these  points of investi- 
gation must  be  addressed differently. 

There  are  many commercial reverse engineering 
and re-engineering tools available; catalogs  de- 
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scribe  several  hundred  such packages. l o ~ l l  Most 
commercial systems  focus on source  code anal- 
ysis and simple code  restructuring,  and  use in- 
formation  abstraction  via program analysis, the 

Defect  filtering, 
structural documentation, 

and  pattern-matching 
analyses are used. 

~~ ~~~ ~ ~ ~~~~~~~~~ ~~ 

most  common form of reverse engineering. Re- 
search in reverse engineering consists of many 
diverse  approaches, including formal transforma- 
tions, l2  meaning-preserving restructuring, l3 plan 
recognition, l4 function abstraction, information 
abstraction, l6 maverick identification, l7 graph 
queries, l8 and reuse-oriented  methods. l9 

The CAS program understanding  project  is guided, 
in part, by  the need to  produce  results  directly 
applicable to  the SQL/DS product team. Hence, 
the  work of most  research  groups is oriented 
toward analysis. However, no single analysis 
approach is sufficient by itself. Specifically, the 
IBM group is concerned  with  defect filtering: im- 
proving the  quality of the SQWDS base  code and 
maintenance  process through application-specific 
analysis. The  University of Victoria team is fo- 
cused on structural  redocumentation:  the  produc- 
tion of “in-the-large”  documents describing high- 
level subsystem  architecture.  Three  other  groups 
(NRC,  the  University of Michigan, and McGill 
University ) are working on pattern-matching ap- 
proaches  at  various levels: textual,  syntactic,  and 
semantic. 

One goal of this  overall CAS project is to  integrate 
the  results of the  complementary  (but  sometimes 
overlapping) research efforts to  produce  a  more 
comprehensive  reverse engineering set of tools. 
This integration process  is  described  more fully in 
the  section  “Steps  toward  integration.”  The  sec- 
tions  that now follow describe  the program un- 
derstanding  research  results on defect filtering, 
structural  redocumentation, and pattern  match- 
ing. 
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Defect filtering 

The IBM teamz0 performed defect filteringz1 using 
the commercial product  Software Refinery* * 
(REFINE**)” to  parse  the  source  code of SQWDS 
into  a form suitable  for analysis. This  work  ap- 
plied the  experience of domain experts  to  create 
REFINE “rules”  to find certain families of defects 
in the  subject  software.  These  defects included 
programming language violations  (overloaded 
keywords, poor data typing), implementation do- 
main errors  (data coupling, addressability), and 
application domain errors (coding standards,  bus- 
iness  rules). 

Their initial work  resulted in several  prototype 
toolkits, each of which focused on detecting  spe- 
cific errors in the  reference  system. 

A design-quali metrics analysis (D-QMA) was 
also performed’ on SQL/DS.24 This analysis in- 
cluded measurements  that guided the  creation of 
a  more flexible defect filtering approach, in which 
the  reverse engineering toolkit automatically ap- 
plies defect filters against the SQLIDS source  code. 
Filtering for quality proved to  be a fruitful ap- 
proach  to improve the  quality of the  reference 
system.” We next  describe  the evolution of the 
defect filtering process  that  consists of the inves- 
tigation and construction of a  reverse engineering 
toolkit for PL/AS, the  construction of prototype 
analysis systems,  the  measurement of specific de- 
sign-quality metrics of SQUDS, and filtering for 
quality. 

Building a reverse  engineering toolkit. Most ap- 
plication problem domains have unique and spe- 
cialized characteristics;  therefore,  the  expecta- 
tions and requirements  for  reverse engineering 
tools vary, and the  tools must be  extensible and 
versatile.  It is unlikely that  a  turnkey  reverse  en- 
gineering package will  suffice for most  users.  This 
is especially true for analyzing systems of a  pro- 
prietary  nature  such as SQWDS. Unless it is known 
exactly  what is to  be accomplished, a  priority 
should be placed on toolkit flexibility. Because of 
these  considerations,  the  Software Refinery prod- 
uct was chosen as  the  basis  upon which to build 
a PL/AS reverse engineering toolkit for  the  defect 
filtering process. 

The  Software Refinery product is composed of 
three  parts: DIALECT (the parsing system), 
REFINE (the  object-oriented  database and pro- 
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gramming language), and INTERVISTA (the  user 
interface).  The  core of Software Refinery is the 
REFINE specification and  query language, a mul- 
tiparadigm high-level programming language. Its 
syntax  is reminiscent of LISP, but it also includes 
Prolog-like rules and support for set manipula- 
tion. A critical feature of the Software Refinery 
product  is  its extensibility; it can  be  integrated 
into  various commercial application domains. 

The foundation  for  software  analysis is a  tractable 
representation of the  subject  system  that facili- 
tates its analysis. The DIALECT language model 
consists of a grammar used for parsing and a  do- 
main model used to  store and reference  parsed 
programs as  abstract  syntax  trees (AST). The  do- 
main model defines a  hierarchy of objects  repre- 
senting  the  structure of a program. When parsed, 
programs are represented as an  unannotated AST 
and  stored using the  object  hierarchy of the  do- 
main model. The objects  are  then  annotated with 
the  rules of the implementation language (such as 
linking each  use of a  variable  to  its  declaration) 
and  are  then  ready for analysis. 

The PL/AS reverse engineering toolkit was used to 
aid qualitative and quantitative  improvement of 
the SQLDS base  code  and  maintenance  process. 
The  key  to  this improvement is analysis. The 
Software Refinery product  was  used  to  convert 
the SQUDS source  code  into  a  more  tractable 
form,  or  a form more easily analyzed. Consider- 
able time was  spent  creating  a  parser and a  do- 
main model for PL/AS. This was a difficult process: 
there  was no formal grammar available, the  con- 
text-sensitive  nature of the language made pars- 
ing a challenge, and the  embedded System/370 
assembler  code  further complicated matters. A 
lexical analyzer  was first built to recognize mul- 
tiple symbols for the  same  keyword,  to  skip the 
embedded  assembler  and PWAS listing format di- 
rectives,  and to produce  input  acceptable  to  the 
parsing engine. 

Initial experiments  produced  numerous parsing 
errors,  due  to incorrect  (or  inappropriate)  use of 
some of the PL/AS functions. Although it is never 
easy  to change legacy source  code, it was  some- 
times  easier  to repair the  source  code  than  to aug- 
ment the  parser to handle  the offending syntax. 
This  process  uncovered  several  errors in the 
source  code  for  the  reference  system.  Such  errors 
were usually incorrect  uses of language con- 
structs  not identified by  the PL/AS compiler. 
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This  early  experience with the PL/AS reverse  en- 
gineering toolkit confirmed that large-scale legacy 
software  systems  written in a  proprietary  con- 
text-sensitive language can  be  put  into  a form 
suitable for sophisticated analysis and  transfor- 
mation. The toolkit can  be  (and  has  been)  adapted 
by  other IBM developers  to apply to similar pro- 
gramming languages, and can  be evolved as im- 
plementation rules change. 

Once  the SQLDS source  code  was  put in this  trac- 
table  form,  the  customers  (the SQWDS maintain- 
ers)  were  consulted  to  determine how best  to uti- 
lize this technology for them. The  answer was  to 
help remove  defects from the  code.  The challenge 
was how to  do it effectively. The solution was  to 
apply the power of the  prototype  environment to 
analyze  the  reference  system.  Since rules can be 
written to identify places in the  software  where 
violations of coding standards,  performance 
guidelines, and implementation or product  re- 
quirements  exist,  the  environment  can  be used to 
detect  defects semiautomatically. 

Experiences with the PL/AS reverse engineering 
toolkit prototypes. The  construction of the  proto- 
type  reverse engineering toolkit, and  the  trans- 
formation of the  base  code  into  a  more  tractable 
form, made analysis of the  reference  system  pos- 
sible. The  analysis was strongly biased toward 
defect detection,  due in part  to  the quality-related 
objectives of the SQWDS product group. The anal- 
ysis  focused on implementation language irregu- 
larities  and  weaknesses, functional defects,  soft- 
ware  metrics,  and  unused  code. A specific 
instance of the  prototype toolkit was  constructed 
for each  analysis realm. 

The  areas of interest  were classified into  two  or- 
thogonal pairs of analysis domains: analysis-in- 
the-small versus analysis-in-the-large, and imple- 
mentation domain versus problem domain. The 
analysis-in-the-small is  concerned  with analysis 
of code  fragments (usually procedures) as a 
closed domain, while analysis-in-the-large is con- 
cerned with system-wide impact. Analysis-in- 
the-large tends  to  be  more difficult to perform 
with manual methods,  and  therefore  more  bene- 
fits may  be realized through  selective  automation. 

Implementation domain analysis  is  concerned 
with environmental  issues  such as language, com- 
piler, operating  system, and hardware.  This anal- 
ysis  can usually be  readily  shared with others  who 
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Table 1 Module-level  measurements of SQUDS 

The following module-level measures of SQWDS were 
performed as part of the D-QMA process: 

Number of lines of code (LOC) per module excluding 

Number of lines of comments per module 
Number of changed lines of code for a particular 
release 
Number of lines of code in each module including 
%INCLUDE structures 
Software maturity index 

comments 

SMZ(i) = 
LOC(i) - CSZ(i) 

L O W )  
where LOC(i) is the number of lines of code 

for module i 

in module i 
CSZ(1’) is the number of changed lines of code 

Number of declared variables used in module 
Number of declared variables in structures that are 

Number of executable statements 
McCabe’s cyclomatic complexity 

superfluous 

V ( G ) = e - n + 2 p  
where V ( G )  is the cyclomatic number of graph G 

e is the number of edges 
n is the number of nodes 
p is the number of unconnected parts 

have  a similar environment.  Conversely,  the 
problem domain analysis is concerned with arti- 
facts of the problem such as business  rules, al- 
gorithms, or coding standards.  They  cannot  be 
easily shared. 

The  prototypes  for SQLDS were specifically built 
to demonstrate  the  capability  for  analysis in  all  of 
these domains. Some of the  prototypes  are  doc- 
umented in Reference 26. The  results from these 
prototype  toolkits  were encouraging. The  exper- 
iments  demonstrated  the feasibility of defect de- 
tection in legacy software  systems. The next  step 
in the use of such  reverse engineering technolo- 
gies was formalizing and generalizing the  process 
of using defect filters on the  reference  system. 

Design-quality  metrics  analyses. While mainte- 
nance goals continue  to  focus on improved per- 
formance  and functionality objectives,  an emerg- 
ing emphasis  has been placed on IBM’S product 
quality. With developers mounting quality im- 
provement goals, a paradigm shift beyond simply 
“being  more  careful” is needed.  Judicious  use of 
software  quality  metrics  is  one  way of obtaining 
insight into  the  development  process to improve 
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it. To confirm the applicability of such  metrics to 
IBM products,  the design-quality metrics  analysis 
(D-QMA) project was initiated. 

The  purpose of assessing design-quality metriaz7 
is to  examine  the design process by examining the 
end  product  (source  code) to predict the quality of 
a  product  and  to  improve  the design process  by 
either  continuous  increments or quantum  leaps. 
To justify  the use of D-QMA for IBM products,  the 
experiment had to: 

Relate software  defects to design metrics 
Identify  error-prone and high-risk modules 
Predict the  defect  density of a  product  at  vari- 

Improve  the  cost  estimation of changes to ex- 

Provide guidelines and insights for software de- 

ous stages 

isting products 

signers 

The  experiment  assessed  the high-level and mod- 
ule-level metrics of SQLDS and  related  them to  the 
defect  history of the  product. 

Intermodule metrics for module-level  design mea- 
sure intermodule coupling  and cohesion, data flow 
between modules, and so on. These “black-box” 
measures require no knowledge of the inner work- 
ings of the module. Intramodule design metrics in- 
clude measures of control flow, data flow,  and  logic 
within a module. These “clear-box” measures do 
require knowledge of the inner working of the mod- 
ule. Both the intermodule and intramodule versions 
of structural com lexity, data complexity, and sys- 
tem complexity were measured. Other module- 
level measurements are shown in Table 1. 

The  experiment applied the  reverse engineering 
toolkit (previously discussed)  to  extract  the  met- 
rics from the  reference  system. Defect data  were 
gathered from the  defect  database (which existed 
on the  fast  system)  and  were  then  correlated using 
the SAS** statistical package running on the Op- 
erating System/2* (OS/2*) workstation. For SQUDS 
Version 3, Release 3, about nine hours of machine 
time (on a RISC System/6000* Model 550) were 
required to  analyze all 1303 PLIAS modules. This 
time does  not include the  previous 40-50 person- 
hours required to  prepare  a  persistent  database 
for  the SQLDS source  code. 

The unique characteristics of the SQWDS refer- 
ence  system lead to several problems in assessing 
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the metrics.  One of the  most  important is the non- 
homogeneity of the  product. SQLDS consists  of 
functional components  that  are  quite different. 
There  are  preprocessors,  communications  soft- 
ware,  a relational database engine, utilities, and 
so on. Each  component  displays different metric 
characteristics. 

Upon analyzing the  results, it was found that  de- 
fects  caused by design errors  accounted for 43 
percent of the  total  product  defects.  The  next 
largest class of defects was coding errors.  The 
probability of injecting a  defect  when maintaining 
a module increased as  the  percentage of changes 
to  the module decreased.  The  greatest  probability 
of introducing a defect occurred  when  the small- 
est change was made. This  counterintuitive result 
makes  more  sense  when it is realized that,  when 
small changes are made,  maintainers typically do 
not  take  the time to fully understand  the  entire 
module. 

Another result is that  maintainers  have  an in- 
creased probability of injecting a  defect as  the 
complexity of the module increases-up to  a 
threshold. As the module complexity  increases 
beyond  this  threshold,  the  probability of injecting 
an  error  dramatically  decreases.  This  suggests 
that  the  maintainer  recognizes  the module is com- 
plex and “tries  harder,”  or  that as modules  be- 
come  more complex, maintainers avoid changing 
them altogether. 

The  past  three  releases of SQLDS have  shown  new 
modules to have low complexity, with older  ones 
growing in complexity. As this  complexity in- 
creases,  merely  “working  harder”  to  ensure  code 
quality will not be enough. It is becoming increas- 
ingly difficult to make small changes to  the more 
mature modules: a  classic  example of the  “brit- 
tleness” suffered by aging software  systems.  The 
D-QMA analysis  work  is continuing using other 
IBM products  written in PLIAS, PLIMI, c, and 
C + + .  

Applying  defect  filters to improve quality. An in- 
creased  focus on quality  has  forced  many orga- 
nizations to re-evaluate  their  software  develop- 
ment processes.  Software  process  improvement 
is  concerned with improved methods for manag- 
ing risk, increased  productivity,  and  reduced 
cost: all key  factors in increased  software quality. 
The meaning of the  term quality, however, is of- 
ten  subject to  debate and may depend on one’s 
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perspective.  The definition of quality  we  use  is 
quality  is  the  absence of defects. This  somewhat 
traditional definition relates  quality to fitness-for- 
use and ties  software  quality to conformance with 
respect to function, implementation environ- 
ment,  and so on.  The traditional quality  measure- 
ment, measuring defects, is one  that  measures  the 
artifacts  created by  the  software  development 
process. 

By  extending  the meaning of what  constitutes  a 
defect,  one  can  expand  the definition of quality. 
For example,  the recognition of defects  caused by 
coding standard  violations  means  that  quality is 
no longer bound to  purely functional character- 
istics;  quality  attributes can be  extended to in- 
clude indirect features of the  software  develop- 
ment process. 

Further  extension to  the quality  framework  may 
include assertions that must be adhered to; asser- 
tion nonconformance can be treated as a defect. 
Like functional defects, these assertions can ad- 
dress issues at a variety of levels of abstraction. Our 
definition of software quality is then extended to 
include robustness, portability, improved mainte- 
nance, hidden defect removal, design objectives, 
and so on; fitness-for-use is superseded by “fitness- 
for-use and maintenance.” Figure 1 illustrates a 
conformance hierarchy. This hierarchy begins at 
the base with immediate implementation consider- 
ations and climbs upward to deal with broader con- 
ceptual characteristics. Beginning with  “what  is 
wrong”  (defects), it moves  up to  “what is right” 
(assertions). By limiting the definition of correct- 
ness, one  can build higher quality  software. 

Functional defects are  function  errors in a  prod- 
uct. Usually  detected in product  test or code  re- 
view  stages,  they  are  often  caused by  the mis- 
taken  translation of a functional specification to 
implemented software. An example of a  func- 
tional defect is a program expression  that  at- 
tempts  to divide by zero. 

When errors in software  do  not  cause  erroneous 
function  but  are  internally  incorrect, we refer to 
these as nonfunctional defects. These  cases  of 
“working incorrect  code”  often  become  func- 
tional defects  when  maintainers are making 
changes in the region of the nonfunctional defect. 
An example is a  variable  that  contains  an  unde- 
termined value and is referenced,  but  does  not 
cause  the program to fail. 



Figure 1 Maintenance  quality  conformance  hierarchy 

Nonportable  defects are  characteristics  that limit 
the  software developer’s ability to migrate soft- 
ware from one  software  environment  to  another. 
These  environments  may  be new compilers, new 
hardware,  operating  systems,  and so on. A famil- 
iar example of nonportable  software  is one that 
depends on the  byte  ordering used by  the  hard- 
ware or compiler. 

Antimaintenance defects are program character- 
istics  that  make use of unclear,  undesirable,  or 
side-effect features in the implementation lan- 
guage. Less experienced  maintainers  who  change 
the  software in regions where  these  features  are 
present  are  more likely to inject further  defects. 
Examples of this  type  are  common,  such  as in- 
consistent  use of variable naming conventions, 
use of keywords  as  variable  names, and excessive 
use of GOTO instructions. 

Minimizing nonportable and antimaintenance  de- 
fects  means  that  the  risks  associated with soft- 

ware  maintenance  are lowered and that  software 
produced is more “fit for change.” When asser- 
tions  that  describe  desirable  software  character- 
istics  are  then  introduced and enforced,  the qual- 
ity of the  software is further  improved. 

Pro-maintenance  assertions state  desirable  at- 
tributes of the  software  that help prevent defects. 
Many of these  assertions  are  the  opposite of 
antimaintenance  defects,  such as the  assertion 
“avoid  the  use of GOTO.” Another  example is the 
inclusion of pseudocode as part of the internal 
documentation. 

Design assertions capture  the positive aspects of 
the  software  structure  that maintain the de- 
sign quality of the  code.  For example, a design 
assertion  may  be  “access  to  data  structure 
COMMON-DATA is controlled by  the  access  vari- 
able COMMON-DATA-LATCH, which must  be  set 
to 1 before accessing COMMON-DATA and set  to 
0 at all other times.” 
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Architectural  assertions are  broad  concepts  that 
apply  at  a higher level of abstraction  than design 
assertions. They  seek  to maintain the  architec- 
tural integrity of a  software  system. An example 
is “all  access  to shared  data  structures must be 
controlled by a  latch  variable for the  data  struc- 
ture.” Often, architectural  assertions  are  gener- 
alizations of design assertions. 

In order  to  ensure that  a  software  product is fit for 
use,  developers carefully review the  software, 
checking  for possible defects and verifying that all 
known  product-related  assertions  are  met.  This is 
commonly  known  as  the  software  inspection  pro- 
cess. An approach  to  automating  the  inspection 
process  incorporates  the  reverse engineering 
technologies discussed in the earlier section 
“Building a  reverse engineering toolkit.” This fil- 
tering  process,  termed filtering for  quality, in- 
volves  the formalization of corrective  actions us- 
ing a language model and  database of rules to 
inspect  source  code for defects. The rules codify 
defects in previous  releases of the  product.  This 
is a  context-driven  approach  that  extends  the 
more  traditional language-syntax-driven methods 
used in some tools. 

There  are  many benefits of automation  to  the fil- 
tering  for  quality  process.  A  greater number of 
defects  can  be  searched simultaneously. More- 
over,  the codified rules  can  be generalized and 
restated to eliminate entire  classes of errors. Ac- 
tions are expressed in a  canonical  rule-based 
form; therefore,  they are more  precise,  less  sub- 
ject  to  misinterpretations,  and  more amenable to 
automation.  Because  the knowledge required to 
prevent  defects  is maintained as a rule base,  the 
knowledge instilled in each  action  remains  even 
after original development  team  members  have 
left. This recording of informal “corporate knowl- 
edge”  is very important to long-term success.  Fi- 
nally, actions  can  be  more easily exchanged with 
other  groups using the  same or similar action rule 
bases.  This  sharing of such  defect filters means 
that  development  groups  can  directly profit from 
each other’s experience. 

Application domain knowledge can  be very ben- 
eficial  in the  development of defect filters, largely 
because  the  capability  to  enforce application do- 
main-specific rules  has  been unavailable to  date. 
Whether  one  wants to enforce design assertions 
about  a  software  product  or  to identify exceptions 
to  the generally held principles around which a 
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software  product  has  evolved,  one should pay  at- 
tention to  the domain of the filter. The problem 
domain consists of business  rules  and  other  as- 
pects of the problem or application-independent 
of the  way  they  are implemented. The implemen- 
tation domain consists of the implementation pro- 
gramming language and support  environment. 

Summary of  defect  filtering. Meeting ambitious 
quality improvement goals such as “100 times 
quality  improvement”  requires  an improved def- 
inition of defects  and  an improved software de- 
velopment  process. Defect filtering by automat- 
ing portions of the  inspection  process  can 
potentially reap  great  rewards.  A  tractable  soft- 
ware  representation  is  key  to  this analysis. 

It is easier  to  use  defect filtering than it is to build 
the tool that implements it. Nevertheless, it is 
critical that  the  analysis  results be accessible to 
developers in a timely fashion  to  make  an  iden- 
tifiable impact on their work.  The  success of mov- 
ing new technology into  the  workplace  depends 
crucially on the  acceptance of the  system  by  its 
users. Its introduction  must  have minimal nega- 
tive impact on existing software  processes if it is 
to  be  accepted by developers.  Issues  such as plat- 
form conflict should not  be  underestimated.  The 
prototype  tools  discussed in the earlier sections 
have  been partially integrated into  the main- 
stream SQWDS maintenance  process. 

Measurable  results  come from measurable  prob- 
lems. Defect filtering can  produce  directly  quan- 
tifiable benefits in software  quality and can  be 
used as a  stepping  stone to  other program under- 
standing technology. For example, presentation 
and  documentation  tools  are  needed  to  make 
sense of the monumental amount of information 
generated by defect filtering. This critical need is 
one focus of the  environment  described in the 
following section. 

Structural redocumentation 

Reconstructing  the design of existing software  is 
especially important for legacy systems  such  as 
SQLDS. Program documentation has always played 
an important role in program understanding. There 
are, however, great differences in documentation 
needs for software systems of loo0 lines of code 
versus  those of 1000000 lines. Typical software 
documentation  describes  the program in terms of 
isolated algorithms and data  structures. More- 
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over,  the  documentation is often  scattered and on 
different media. The  maintainers  have to resort to 
browsing the  source  code and piecing disparate 
information together to form higher-level struc- 

There  are trade-offs 
between what can be and 

should be automated. 

tural models. This  process is always  arduous;  cre- 
ating the  necessary  documents from multiple per- 
spectives is often impossible. Yet it is  exactly  this 
process  that is needed to  expose  the overall  ar- 
chitecture of large software  systems. 

Software  structure is the collection of artifacts 
used  by  software engineers when forming mental 
models of software  systems.  These  artifacts in- 
clude  software  components  (such as procedures, 
modules, and interfaces),  dependencies among 
components  (such as client-supplier, inheritance, 
and  control flow), and attributes  (such as com- 
ponent  type,  interface  size,  and  interconnection 
strength). The  structure of a  system is the orga- 
nization and  interaction of these  artifacts.29  One 
class of techniques of reconstructing  structural 
models is reverse engineering. 

Using reverse engineering approaches to recon- 
struct  the  architecture  aspects of software  can  be 
termed structural redocumentation. The  work  at 
the University of Victoria is centered  around 
RigiY3' an environment  for  understanding evolv- 
ing software  systems.  Output from this  environ- 
ment can  also  serve as input to conceptual mod- 
eling, design recovery,  and  project management 
processes. Rigi consists of three major compo- 
nents: a tailorable parsing system  that  supports 
procedural programming languages such as  Cy 
COBOL, and PL/AS; a  distributed,  multiuser  repos- 
itory to  store  the extracted information; and an 
interactive,  window-oriented  graph  editor  to ma- 
nipulate structural  representations. 

Scalability. Effective approaches to program under- 
standing must be applicable to huge,  multimillion- 
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line software systems. Such scale and complexity 
necessitates fundamentally different approaches to 
repository technology than is used in other  do- 
mains. For example, not all software  artifacts 
need to  be  stored in the  repository; it may be 
perfectly  acceptable to ignore certain  details  for 
program understanding  tasks.  Coarser-grained 
artifacts  can  be  extracted, partial systems  can  be 
incrementally  investigated, and irrelevant  parts 
can  be ignored to obtain manageable repositories. 
Program representation,  search  strategies,  and 
human-computer  interfaces  that  work on systems 
in-the-small often  do not scale  upward  to large 
systems.  For very large systems,  the information 
accumulated during program understanding is 
staggering. To gain useful knowledge, one  must 
effectively summarize  and  abstract  the informa- 
tion. In a  sense,  a  key  to program understanding 
is deciding what information is material and what 
is immaterial: knowing what  to  look for-and 
what  to ignore.31 

Redocumentation strategy. There  are trade-offs in 
program understanding environments  between 
what  can  be  automated  and  what should (or must) 
be left for processing  by humans. Structural  re- 
documentation in  Rigi is initially automatic  and 
involves parsing the  source  code of the  subject 
system and storing the  extracted  artifacts in the 
repository.  This  produces  a flat resource-flow 
graph of the  software.  This  phase is followed by 
a  semiautomatic  one  that exploits human pattern 
recognition skills and features language-indepen- 
dent  subsystem composition techniques to man- 
age the complexity. This  approach relies very 
much on the  experience of the  software engineer 
using the  system.  This  partnership is synergistic 
as  the  analyst  also  learns  and  discovers  interest- 
ing relationships by interactively exploring soft- 
ware  systems using Rigi. 

Subsystem composition is a  recursive  process 
whereby building blocks  such as  data  types,  pro- 
cedures, and subsystems  are grouped into com- 
posite  subsystems.  This builds multiple, layered 
hierarchies  for higher-level abstractions. 32 The 
criteria for composition depend on the  purpose, 
audience, and domain. For program understand- 
ing purposes,  the  process is guided by dividing the 
resource-flow graph using established modularity 
principles such as low coupling and strong  cohe- 
sion.  Exact  interfaces  and modularity and encap- 
sulation  quality  measures  can  be  used to evaluate 
the  generated  software hierarchies. 
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Subsystem composition is supported by a  pro- 
gram representation  known as  the  (k,2)-partite 
graph.32  These  graphs are layered or stratified 
into  strict  levels so that  arcs  do  not  skip levels. 
The levels  represent  the composition of sub- 
systems.  This  structuring mechanism was orig- 
inally devised  for managing the  complexity of 
hypertext  webs and multiple hierarchies. 

Multiple dynamic views. Visual representations 
enhance  the human ability to recognize patterns. 
Using the  graph  editor of Rigi, diagrams of soft- 
ware  structures  such  as call graphs, module in- 
terconnection  graphs,  and inclusion dependen- 
cies  can  be  automatically  produced.  The effective 
capability to analyze  these  structures is necessary 
for program understanding.  Responsiveness  is 
very important.  For  presenting  the large graphs 
that  arise from a  complex  system like SQLDS, the 
response time may degrade  even on powerful 
workstations.  The Rigi user  interface is designed 
to allow users, if necessary, to batch  sequences of 
operations  and to specify  when  windows  are  up- 
dated.  Thus,  for small graphs,  updates  are imme- 
diate for visually pleasing feedback;  for large 
graphs,  the  user  has full control of the redrawing. 

Rigi presents  structural  documentation using a 
collection of views. Aview is a  group of visual  and 
textual  frames  that  contain, for example,  re- 
source flow graphs,  overviews,  projections,  exact 
interfaces,  and  annotations.  Because  views  are 
dynamic  and ultimately based on the underlying 
source  code,  they remain up-to-date. Collected 
views  can  be used to retrieve  previous  reverse 
engineering states. 

Dramatic  improvements in program understand- 
ing are  possible using semiautomatic  techniques 
that exploit application-specific domain knowl- 
edge. Since  the  user  is in control, the subsystem 
composition  process  can  depend on diverse  cri- 
teria,  such as  tax laws, business policies, person- 
nel assignments,  requirements,  or  other  semantic 
information. These  alternate  and  orthogonal  de- 
compositions  may  coexist  under the  structural 
representation  supported by Rigi. These  decom- 
positions  provide  many possible perspectives  for 
later review. In effect, multiple, logical represen- 
tations of the  software  architecture  can be  cre- 
ated, manipulated, and saved. 

Multiple domains. Because program understand- 
ing involves  many  diverse  aspects,  applications, 

and  domains, it is  necessary  that  the  approach  be 
very flexible. Many reverse engineering tools  pro- 
vide  only  a fixed palette of extraction,  selection, 
filtering, arrangement,  and  documentation  tech- 
niques.  The Rigi approach  uses  a  scripting lan- 
guage that allows analysts to customize, com- 
bine, and  automate  these  activities in unforeseen 
ways.  Efforts  are proceeding to also allow the 
user to fully customize  the  user  interface.  This 
approach  permits  analysts  to tailor the environ- 
ment to  better suit  their  needs, providing a 
smooth  transition  between  automatic and semi- 
automatic  reverse engineering. The goal to have 
a single environment sufficiently flexible so as  to 
be applicable and equally effective in multiple do- 
mains, is achieved through  this  customization. 

To make  the Rigi system  easier to program and  to 
enhance, the user  interface and editor engine 
were  decoupled  to  make room for  an  intermediate 
scripting layer  based on embedded  Tcl  and  Tk 
libraries.33 This  layer allows each  event of im- 
portance to  the user (for example, key stroke, 
mouse motion, button click, menu selection) to  be 
tied to  a  scripted, user-defined command. Many 
previously  tedious and repetitive  activities  can 
now be  automated.  Moreover,  this  layer allows 
an  analyst to complement  the built-in operations 
with external, possibly application-specific, algo- 
rithms  for  graph  layout,  complexity  measures, 
pattern matching, slicing, and clustering. For ex- 
ample, the Rigi system  has  been applied to  vari- 
ous selected domains: project  management,34 
personalized hypertext, 35 and redocumenting leg- 
acy  software  systems. 

Redocumenting SQWDS. The  analysis of SQLDS 
using Rigi has  shown  that  the  subsystem  compo- 
sition method and graph visualizing editor  scale 
up to  the multimillion-lines-of-code range. The 
results of the  analysis were prepared as a set of 
structural  views  and  presented to  the develop- 
ment  teams. Informal information and knowledge 
provided by existing documentation  and  expert 
developers are rich sources of data  that should be 
leveraged whenever possible. By considering 
SQL/DS-SpeCifiC knowledge such  as naming con- 
ventions  and existing physical modularizations, 
team members  easily recognized the  constructed 
views.  Domain-dependent  scripts were devised 
to help automate  the  decomposition of SQLDS 
into  its  constituent  components. 
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For example, the relation data  subsystem of 
SQLDS was analyzed in some  depth.  The devel- 
oper in charge of the  path-selection optimizer had 
a  mental model of its  structure,  based  on  devel- 
opment  logbooks and experience.  This model was 
recreated using the Rigi structural  redocumenta- 
tion facilities. An alternate  view was also  created, 
based  on  the  actual  structure as reflected by  the 
source  code.  This  second  view  constitutes  an- 
other reverse-engineering perspective and was a 
valuable  reference against which the first view 
was compared. 

Summary of structural  redocumentation. The Rigi 
environment  focuses on  the architectural  aspects 
of the  subject  system  under analysis. The envi- 
ronment supports  a  method  for identifying, build- 
ing, and  documenting  layered  subsystem  hierar- 
chies. Critical to its usability is the ability to  store 
and  retrieve views-snapshots of reverse engi- 
neering states.  The  views  are used to transfer  per- 
tinent information about  the  abstractions  to  the 
software engineers. 

Rigi supports  human-  and script-guided structural 
pattern recognition, but  does not provide built-in 
operations to perform analysis  such as textual, 
syntactic,  and  semantic  pattern matching. Such 
operations  are  necessary for complete program 
understanding.  However,  the  scripting  layer  does 
support  access  to  external  tools  that  cover  these 
areas of analysis, allowing Rigi to  function as  the 
cornerstone of a  comprehensive  reverse engi- 
neering environment.  These  required  areas  are 
addressed by  the  prototypes  described in the fol- 
lowing section. 

Pattern matching 

One of the  most  important  reverse engineering 
processes is the  analysis of a  subject  system  to 
identify components  and  relations. Recognizing 
such  relations  is  a  complex problem-solving ac- 
tivity  that begins with the  detection of cues in the 
source  and  continues  by building hypotheses 
from these  cues.  One  approach to detecting  these 
cues is to  start  by looking at program segments 
that are similar to  each other. 

Program understanding  techniques  may  use 
source  code in increasingly abstract forms, in- 
cluding: raw text,  preprocessed  text, lexical to- 
kens,  syntax  trees,  annotated  abstract  syntax 
trees with symbol  tables, and control or  data flow 
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graphs. The more  abstract  forms entail additional 
syntactic and semantic  analysis  that  corresponds 
more to  the meaning and behavior of the  code and 
less  to  its form and structure. Different levels of 
analysis are  necessary for different users and dif- 
ferent program understanding  purposes. For  ex- 
ample, preprocessed  text  loses  a  considerable 
amount of information about manifest constants, 
in-line functions,  and file inclusions. Three  re- 
search  groups affiliated with the program under- 
standing  project  focused  on  textual,  syntactic, 
and semantic  pattern-matching  approaches. 

Textual  analysis. Anything that  is big and  worth 
understanding  has  some internal structure; find- 
ing and  understanding  that internal structure is 
the  key  to understanding  the whole. In particular, 
large amounts of source  code  have  a large internal 
structure  as  a result of their evolution. The NRC 
(one member group of the programming under- 
standing  project)  research  focuses on techniques 
that  consider  the  source  code in raw or prepro- 
cessed  textual forms, dealing with  more of the 
incidental implementation artifacts  than  other 
methods.  The  work at NRC36 identifies the  exact 
repetitions of text in huge source  codes. One goal 
is to  relax  the  constraint of exact  matches  to ap- 
proximate  matches, while preserving the ability 
to handle huge source  texts.  The general ap- 
proach is to automatically analyze  the  code and 
produce information that  can  be queried and  re- 
ported. 

For  some  understanding  purposes,  less analysis is 
better;  syntactic  and  semantic  analysis  can  actu- 
ally destroy information content in the  code,  such 
as formatting, identifier choices,  white  space,  and 
commentary.  Evidence  to identify instances of 
textual  cut-and-paste  is  lost  as  a result of syntac- 
tic analysis. Tools for syntactic and semantic 
analysis  are  often  more language-dependent and 
environmentally  dependent; slight changes in 
these  aspects  can make the  tools inapplicable. 
For example, C language versions of such  tools 
may  be  useless on PL/AS code. 

More specifically, these  techniques  discover  the 
location and  structure of long matching substrings 
in the  source  text.  Such  redundancies  arise  out of 
typical editing operations during maintenance. 
Measures of repetition  are  a useful basis for build- 
ing practical program understanding tools. There 
are  several possibilities for  redundancy-based 
analysis, including the  determination of the ef- 
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fects of cut-and-paste,  discovery of the effects of 
preprocessing,  measurement of the  changes  be- 
tween  versions, and the  understanding  where  fac- 
toring and  abstraction  mechanisms might be  lack- 
ing. 

The NRC approach  works by fingerprinting an ap- 
propriate  subset of substrings in the  source  text. 
A fingerprint is  a  shorter form of the original sub- 
string  and  leads to more efficient comparisons  and 
faster  redundancy  searches.  Identical  substrings 
will have identical fingerprints. However,  the 
converse is not  necessarily  true. Differing sub- 
strings  may  also have the  same fingerprint, but 
the  chance of this  occurring  can  be  made  ex- 
tremely unlikely. A file of substring fingerprints 
and  locations  provides  the information needed  to 
extract  source-code  redundancies. 

The  several  issues to  be addressed  are  the dis- 
covery of efficient algorithms for computing fin- 
gerprints,  determination of the  appropriate  set of 
substrings, and the devising of postprocessing 
techniques to make the  generated fingerprint file 
more useful. Karp and  Rabin37  have  proposed  an 
algorithm based  on  the  properties of residue  arith- 
metic by which fingerprints can  be  incrementally 
computed during a single scan. A modified ver- 
sion of this algorithm is used.  Appropriate  sub- 
strings, called snips, are  selected  to exploit line 
boundary information; the  selection  parameters 
are generally based on the desired number of lines 
and maximum and minimum numbers of charac- 
ters. Even then, an adjustable culling strategy is 
used  to  reduce  the  sheer number of snips  that 
would still be fingerprinted. Since  snips  can  over- 
lap and contain  the  same  substring  many times, 
this culling strategy  represents  substrings  by  only 
certain  snips.  Particularly  important  postprocess- 
ing includes merging consecutive  snips  that 
match in  all occurrences,  thus producing longest 
matching substrings. Extensions of this  can iden- 
tify long substrings  that match except for short 
insertions  or  deletions. 

An experimental  prototype  has  been built and  ap- 
plied to  the  source  code of the SQLDS reference 
legacy system. This led to  a number of observa- 
tions. The expansion of inclusions via preprocess- 
ing introduces textual redundancy. These redun- 
dancies were easily detected by  the prototype. 
When the  prototype  was applied to a small part of 
the  source  code (60 files, 51 655 lines, 2 983  573 
characters),  and considering matches of at least 
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20 lines, there  appeared to  be numerous  cut-and- 
paste occurrences-about 727 copied lines in 13 
files. Processing of the  entire 300 megabyte 
source  text ran successfully in under  two  hours on 

Measures of repetition  are 
a  useful  basis for building 

program understanding tools. 

an IBM RISC System/6000 Model 550. To perform 
a  more  complete  and useful analysis of SQLDS, 
research  is now focused on approximate  match- 
ing techniques  and  better  postprocessing and pre- 
sentation tools. Textual analysis complements 
other analysis tools by providing information that 
these  tools miss. 

Syntactic analysis. The effort at the  University of 
Michigan3’ focuses on the design and develop- 
ment of powerful source  code  search  systems  that 
software engineers (or tools designed by them) 
can  use to specify and  detect  “interesting”  code 
fragments. Searching for code  is  a common ac- 
tivity in reverse engineering because  maintainers 
must first find the  relevant  code  before  they  can 
correct,  enhance, or re-engineer it. Software  en- 
gineers usually look for code  that fits certain  pat- 
terns.  Those  patterns  that  are  somehow common 
and  stereotypical  are known as clichts. Patterns 
can  be  structural or behavioral, depending on 
whether one is searching for code  that  has  a  spec- 
ified syntactic  structure,  or looking for  code com- 
ponents  that  share specific data-flow, control- 
flow, or  dynamic (program execution-related) 
relationships. 

Deficiencies  with current approaches. Despite 
the critical nature of the  task, good source  code 
search  systems  do  not exist. General string- 
searching  tools  can handle only trivial queries in 
the  context of source  code. Based on regular ex- 
pressions,  these  tools  do not exploit the rich syn- 
tactic  structure of the programming language. 
Source  code also contains  numerous  syntactic, 
structural, and spatial  relationships  that are not 



fully captured by  the entity-relation-attribute 
model of a relational database. 

For example, systems  such as the  C Information 
Abstraction  system   CIA)^^ and PUNS4’ only han- 
dle simple statistical  and  cross-reference  queries. 
Graph-based models represent  source  code in a 

Syntactic, structural, and 
spatial relationships are 
not captured by models. 

graph  where  nodes  are  software  components 
(such as procedures,  data  types,  and modules), 
and  arcs  capture  dependencies  (such as resource 
flows). The SCAN system41 uses  a  graph-based 
model that is an  attributed  abstract  syntax  rep- 
resentation.  This model does  capture  the  struc- 
tural information necessary;  however, it does  not 
capture  the  strong typing associated  with  pro- 
gramming-language objects.  Moreover, it fails to 
support  type  lattices,  an  essential  requirement  to 
ensure  substitutability  between  constructs  that 
share  a  supertype-subtype relationship. Object- 
based models, such  as  the  one used by REFINE 
(previously discussed in the  section  “Defect fil- 
tering”),  adequately  capture  the  structural  and 
relational information in source  code.  However, 
the  focus in REFINE has  not  been  on  the design of 
efficient source  code  search primitives. 

SCRUPLE. The  University of Michigan group 
has developed the SCRUPLE source  code  search 
system  (Source  Code Retrieval Using Pattern 
LanguagE~).~’ SCRUPLE is based on a  pattern- 
based  query language that  can  be  used to specify 
complex  structural  patterns of code  not  express- 
ible using other existing systems. The pattern lan- 
guage allows users flexibility regarding the degree 
of precision to which a  code  structure  is specified. 
For example, maintainers trying to  locate  a ma- 
trix multiplication routine may specify only  a  con- 
trol  structure containing three  nested loops, omit- 
ting details of contents of the loops, whereas 
those trying to  locate all the  exact  copies of a 

490 BUSS ET AL. 

certain piece of code  may  use  the  code piece itself 
as their specification. 

The SCRUPLE pattern language is an  extension of 
the  source  code programming language. The  ex- 
tensions include a  set of symbols  that  can  be used 
as  substitutes for syntactic  entities in the  pro- 
gramming language, such as statements,  declara- 
tions, expressions,  functions, loops, and  varia- 
bles. When a  pattern is written using one or more 
of these  symbols, it plays the role of an  abstract 
template  that  can  potentially match different code 
fragments. 

The SCRUPLE pattern-matching engine searches 
the  source  code for code  fragments  that match the 
specified patterns.  It  proceeds by converting  the 
program source  code  into  an  abstract  syntax  tree 
(AST), converting  the  pattern  into  a  special finite 
state machine called the  code  pattern  automaton 
(CPA), and  then simulating the  behavior of the CPA 
on the AST using a CPA interpreter. A matching 
code fragment is detected  when  the CPA enters  a 
final state.  Experience with the SCRUPLE system 
shows  that  a  code  pattern  automaton is an effi- 
cient mechanism for  structural  pattern matching 
on source  code. 

Source code  algebra. SCRUPLE is  an effective pat- 
tern-based  query  system.  However,  current 
source  code  query  systems, including SCRUPLE, 
succeed in handling only  subsets of the wide 
range of queries possible on  source  code, trading 
generality and expressive power for ease of im- 
plementation and practicality. To  address  the 
problem, a  source  code algebra (SCA)43 was de- 
signed as  the formal framework on top of which 
a  variety of high-level query languages can  be im- 
plemented. In principle, these  query languages 
can  be graphical, pattern-based, relational, or 
flow-oriented. 

The modeling of program source  code  as  an al- 
gebra has four important  consequences for re- 
verse engineering. First,  the algebraic data model 
provides  a unified framework for modeling struc- 
tural as well as flow information. Second,  query 
languages built using the algebra will have formal 
semantics.  Third,  the algebra itself serves  as low- 
level applicative query language. Fourth,  the 
source  code  queries  expressed  as algebra expres- 
sions  can  be optimized using algebraic transfor- 
mation rules and heuristics. 
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Source  code is modeled as a generalized order- 
sorted  algebra44  where  the  sorts  are  the program 
objects  with  operators defined on them. The 
choice of sorts and operators  directly affects the 
modeling and querying power of the SCA. Essen- 
tially, SCA is an algebra of objects,  sets,  and  se- 
quences. It  can  be  thought of as an analogue of 
relational algebra, which serves  as  an elegant and 
useful theoretical  basis  for relational query lan- 
guages. A prototype implementation of the SCA 
query  processor is underway.  The  next step  is  to 
test it using suites of representative  queries  that 
arise in reverse engineering. The final goal is to 
automatically  generate  source  code  query sys- 
tems  for specific programming languages from 
high-level specifications of the languages (that  is, 
their  syntax  and  data model). The  core of the 
query  system will be language-independent. This 
tool generation  technique is similar to a  parser 
generator. 

Semantic analysis. The McGill research45 involves 
four subgoals. First, program representations  are 
needed to  capture both  the  structural  and  seman- 
tic  aspects of software.  Second,  comparison al- 
gorithms are needed to find similar code frag- 
ments.  Third,  pattern-matching algorithms are 
needed to find instances of programming plans (or 
intents) in the  source  code.  Fourth,  a  software 
process definition is needed  to  direct program un- 
derstanding  and design recovery  analyses. 

Program representation. A suitable program rep- 
resentation  is critical for plan recognition because 
the  representation  must  encapsulate  relevant  pro- 
gram features  that identify plan instances, while 
simultaneously discarding implementation varia- 
tions.  There are several  representation  methods 
discussed in the  literature, including data  and 
control flow graphs, Prolog rules, and lambda cal- 
culus. The McGill representation  scheme is an 
object-oriented  annotated AST. 

A grammar and a domain  model for the language of 
the subject system is constructed using REFINE. 
The domain model defines an object hierarchy for 
the AST nodes and the grammar is used to construct 
a parser that builds the AST. Some tree annotations 
are produced by the parser; others  are produced by 
running analysis routines on the tree. Annotations 
produced by the parser include source code line 
numbers, file names, and links between identifier 
references and corresponding variable and data 
type definitions. Annotations produced by analysis 
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routines include variables used and updated, func- 
tions called, variable scope information, input/out- 
put operations, and complexity and quality metrics. 
Annotations stored in the AST may be used by other 
analysis routines. 

Programmingplans. More generally, comparison 
methods are needed  to help recognize instances 
of programming plans  (abstracted  code frag- 
ments). There  are  several  other  pattern-matching 
techniques  besides similarity measures. GRASP46 
compares  the  attributed  data flow subgraphs of 
code  fragments  and algorithmic plans,  and  uses 
control  dependencies as additional constraints. 
PROUST47548 compares  the  syntax  tree of a  pro- 
gram with suites of tree  templates  representing 
the plans. A plan-instance match is recognized if 
a  code fragment conforms  to  a  template, and cer- 
tain constraints and subgoals are satisfied. In 
C P U ~ ~  comparisons  are performed by applying a 
unification algorithm on code  fragments and pro- 
gramming plans represented by lambda calculus 
expressions. 

Textual- and lexical-matching techniques encoun- 
ter  problems  when  code  fragments  contain irrel- 
evant  statements  or  when plans are delocalized. 
Moreover, program behavior is not considered. 
Graph-based formalisms capture  data  and  control 
flow, but  transformations on these  graphs  are of- 
ten  expensive  and  pattern-matching algorithms 
can  have high time complexity. This  poses  a ma- 
jor problem when analyzing huge source  codes. 

In addition, plan instance recognition must  con- 
tend with problems  such as  syntactic  variations, 
interleaved plans, and implementation differ- 
ences.  One major problem is  the  failure of certain 
methods to produce  any  results if precise recog- 
nition is not  achieved. The McGill group  focuses 
on plan localization algorithms that  can  handle 
partial plans. Human  assistance is favored  over  a 
completely  automatic  approach  based on a fixed 
plan library. 

Plans should stand for application-level concepts 
and not simply be  abstracted  code fragments. 
Concepts might be high-level descriptions of oc- 
currences  or based on more familiar properties 
such  as  assertions,  data  dependencies,  or  control 
dependencies. Within the McGill approach,  plans 
are user-defined portions of the  annotated AST. A 
pattern-matching  and localization algorithm is 
used to find  all code  fragments  that  are similar to 



the plan. The plan, together with the similar 
fragments,  forms  a  “similarity” class. The  object- 
oriented  environment gives flexibility in the 
matching process  because  some implementation 
variations are encoded in the  class  hierarchy. For 
example, WHILE,  FOR, and REPEAT-UNTIL state- 
ments  are  subclasses of the  loop-statement  class. 
The  object  hierarchy  that classifies program 
structure  and  data  types is defined within a lan- 
guage-specific domain model. 

Similarity analysis. One  focus in pattern  match- 
ing is  on identifying similar code  fragments.  Ex- 
isting source  code is often  reused within a  system 
via  “cut-and-paste”  text  operations  previously 
discussed in the  section  “Textual  analysis.”  This 
practice  saves development time, but  leads to 
problems during maintenance  because of the in- 
creased  code  size  and  the need to propagate 
changes  to  every modified copy. Detection of 
cloned  code  fragments must be done using heu- 
ristics  since  the decision whether  two  arbitrary 
programs perform the  same function cannot  be 
made. These  heuristics  are  based on the  obser- 
vation  that  the  clones  are  not  arbitrary  and will 
often  carry identifiable characteristics  (features) 
of the original fragment. 

The McGill approach to identifying clones  uses 
various  complexity metrics. Each  code fragment 
is tagged by a  signature tuple of its  complexity 
values.  This  transformational  technique simpli- 
fies software  structures  by  converting  them  to 
simpler canonical forms. In this  framework,  the 
basic  assumption is that, if code  fragments c l  and 
c2 are similar under  a set of features  measured by 
metric M ,  then their metric  values M (cl) and M 
(c2) for these  features will also be close. Five 
metrics  have  been  chosen  that exhibit a relatively 
low correlation coefficient, and  are  sensitive to a 
number of different program features  that may 
characterize  a  code  fragment.  They  are: 

1. The number of functions called from a soft- 

2. The  ratio of input/output  variables  to  the fan- 

3. McCabe’s cyclomatic complexity5’ 
4. Albrecht’s Function Point quality  metric5’ 
5 .  Henry-Kafura’s information flow quality  met- 

ware  component (i.e., fan-out) 

out 

ric52 

Similarity is gauged by a  distance  measure  on  the 
tuples. The  distances  currently used are  based  on 
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two  measures: (1) on  the  Euclidean  distance  de- 
fined in the five-dimensional space of the  above 
measures;  and (2) on clustering thresholds  de- 
fined on  each individual measure  axis (and on in- 
tersections  between  clusters in different measure 
axes). 

Another  analysis  is  to  determine closely related 
software  components, according to criteria  such 
as shared  references  to  data,  data bindings, and 
complexity metrics. Grouping software  compo- 
nents by such  varied  criteria  provides  the analyst 
with different views of the program. The  data 
binding criteria  track  uses of variables in one 
component  that  are defined within another (a kind 
of interprocedural  resource flow). The implemen- 
tation of these  analyses  uses  the REFINE product. 

Goal-driven program understanding. Another 
design recovery  strategy  that  has  been explored 
by the McGill group is a  variation of the GQMS3 
model, which is a goal, question, analysis, and 
action model. 54 A number of available options  are 
compared, and the  one  that  best  matches  a given 
objective is selected.  The  choice  is  based on 
experience  and formal knowledge. 

This  process  can  be used to find instances of pro- 
gramming plans. The  comparison  process is iter- 
ative, goal-driven, and affected by the  purpose of 
the  analysis and the  results of previous  work. A 
moving frontier55  divides recognized plans and 
original program material. Subgoals are  set 
around  fragments  that  have  been recognized with 
high confidence. The  analysis  continues  outward 
seeking the existence of other  parts of the plan in 
the  code.  Interleaved plans can  be handled by 
allowing gaps and partial plan recognition. 

Summary of pattern  matching. Research  proto- 
types  have  been built for performing textual, syn- 
tactic,  and  semantic  analysis of the SQLDS sys- 
tem. Both  the McGill and Michigan tools  can 
process PL/AS code,  but  have also been applied to 
C  code.  The NRC tool found numerous  cut-and- 
paste  redundancies in the SQLDS code and re- 
search is continuing on improving these tools. 
The NRC group is also focusing on better  visual- 
ization techniques. Michigan is investigating bet- 
ter program representations  and  pattern-match- 
ing engines, and McGill is exploring techniques 
for plan recognition and similarity distances  be- 
tween  source  code  features. 
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The  common  themes  that  have emerged from this 
research are: (1) domain-specific knowledge is 
critical in easing  the  interpretation of large soft- 
ware  systems, (2) program representations for ef- 
ficient queries  are  essential, (3) many  kinds of 
analyses are needed in a  comprehensive  reverse 
engineering approach,  and (4) an  extensible envi- 
ronment  is needed to consolidate  these  diverse 
approaches  into  a unified framework. An archi- 
tecture  for  a multifaceted reverse engineering 
environment to  address  these requirements  is 
presented in the  next  section. 

Steps  toward  integration 

The first phase of the program understanding 
project  produced practical results  and  usable  pro- 
totypes  for program understanding.  In  particular, 
the  defect filtering system  developed  by  the 
IBM team is used daily by several  development 
groups, including SQUDS and DB2. The  second 
phase of the program understanding  project fo- 
cuses  on  the integration of selected  prototype 
tools  into  a  comprehensive  environment  for  pro- 
gram Understanding. 

The  prototype  tools individually developed by 
each  research group offer complementary  func- 
tionalities and differ in the  methods  they use to 
represent  software  descriptions, in the implemen- 
tation of such  descriptions in terms of physical 
data  structures, and in the  mechanisms deployed 
to interact  with  other tools. Ideally, the  output of 
one  prototype tool should  be  usable as input by 
another. For example, some of the many  depen- 
dencies  generated by  the  defect filtering system 
might be explored  and  summarized using the Rigi 
graph  editor.  However,  the  defect  detection  sys- 
tem uses  the REFINE object-oriented  repository, 
and  the Rigi system  uses  the GRAS graph-based 
repository. 56 Integrating the  representations  em- 
ployed by REFINE and Rigi is a nontrivial prob- 
lem. 

With such integration in mind, a  new  phase of the 
project was launched  early in 1993. Some of the 
key requirements  for  the integration were: 

Smooth  data,  control,  and  presentation integra- 
tion among components of the  environment 
Extensible  data model and  interfaces to  support 
new tools  and user-defined objects,  dependen- 
cies,  and  functions 
Domain-specific, semantic  pattern matching to 
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complement  the facilities developed during the 
first phase of the  project 
The  representation  and  support of processes 
and methodologies for reverse engineering 
Robust program representations,  user  inter- 
faces,  and algorithms, capable of handling large 
collections of software  artifacts 

The  rest of this  section  describes  the steps  that 
have  been  taken to provide  data integration 
through  a common repository for a  variety of 
tools  for program understanding.  In  addition,  the 
section  describes  the  subsystem of the environ- 
ment responsible  for  control integration. 

Repository schema. The University of Toronto 
contribution  focuses  on  the  development of an 
information schema  and  the implementation of a 
repository to support program understanding. A 
set of requirements  was  created  for  the  reposi- 
tory.  The  repository  needs  to  store  both  the  ex- 
tracted information gathered during the  discovery 
phase as well as  the  abstractions  generated during 
the identification phase of reverse engineering. 
The information stored  must  be readily under- 
standable,  persistent,  shareable,  and reusable. 
Moreover,  the  repository  must  have  a common 
and consistent  conceptual  schema  that is a  su- 
perset of the  subschemas used by  the program 
understanding  tools, including those  for REFINE 
and Rigi. The  repository should also  provide sim- 
ple repository  operations  to  select  and  update in- 
formation pertinent  to  a specific tool. The  schema 
is  expected to change,  and  therefore it must  sup- 
port  dynamic  evolution. 

The  schema  is  under  development  and is being 
implemented in three  phases.  The first phase, 
which has  already been implemented, captures 
the information currently required by REFINE and 
Rigi. This information consists of programming 
language constructs  from C, which  are  discov- 
ered through parsing, as well as user-defined and 
tool-generated objects. For example, the  concept 
of a Rigi subsystem is captured in a  class named 
Module. By  contrast,  since  this  concept  is not 
supported  by REFINE, the programming language 
construct of an  arithmetic  expression is cap- 
tured in the REFINE subschema using the  class 
Expression. As an  example of a  shared  concept, 
the  notation of a  function is common to  both  tools 
and is  captured in the  shared  class Function. Each 
tool has  a different view of this  class,  where  only 
the  common  portions  and  the information perti- 
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Figure 2 The repository schema 
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nent to that tool are  accessible.  The  second  phase 
classifies the  patterns used and  captures  the anal- 
ysis  results  generated from each tool. The third 
phase will record  other information relevant to 
reverse engineering, such as designs, system  re- 
quirements, domain modeling, and  process infor- 
mation. The remainder of this  section  describes 
the  schema  developed for  the first phase. 

The information model adopted  for  the  repository 
schema is Telos, originally developed at  the Uni- 
versity of Toronto.57  Features of Telos include: 
an object-oriented  framework  that  supports gen- 
eralization, classification and  attribution,  a  meta- 
modeling  facility,  and a novel treatment of at- 
tributes including  multiple inheritance of attributes 
and attribute classes. Telos was selected over  other 
data models (for example, REFINE, Objectstore**, 
or  C+ +-based models) because it is more expres- 
sive with respect to attributes and is extensible 

through its treatment of metaclasses. To support 
persistent storage for the repository, however, we 
adopted the commercial object-oriented database 
Objectstore. 

As illustrated in Figure 2, the  schema  consists of 
three  tiers.  The  top level (Metaclass  Level)  ex- 
ploits meta modeling facilities to define the  types 
of attribute  values  that  the  repository  supports, 
and useful groupings of attributes  to distinguish 
information that  is  pertinent  to  each of the indi- 
vidual tools. For example, RigiClass is used to 
capture all data  that  pertain  to Rigi at  the level 
below, and  thus it defines the  kinds of attribute 
classes  that  the lower level Rigi classes  can  have. 
The use of this level eases schema evolution and 
provides an important filtering and factoring mech- 
anism. The middle level (Class Level) defines the 
repository schema, using the metaclasses and at- 
tributes defined  in the  top level. For instance, 
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Figure 3 System  architecture 
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RigiObject,  RigiElement,  RigiProgrammingObject, and 
Function (grouped in the shaded area in Figure 2), all 
use the attribute metaclasses defined  in RigiClass 
above  to  capture information about  particular 
Rigi concepts. As the  example suggests, a  repos- 
itory  object is categorized  based on the  pertinent 
tool and whether it is  automatically  extracted or 
produced  through analysis. The  bottom level (To- 
ken  Level)  stores  the  software  artifacts  needed  by 
the individual tools. Figure 2 shows  three  func- 
tion objects: listinit,  mylistprint, and listfirst corre- 
sponding to  the actual  function definitions. These 
are created  when Rigi parses  the  target  source 
code. 

Environment  architecture. A generic  architecture 
is one  important step toward  the goal of creating 
an integrated reverse engineering environment. 
The main integration requirements of this envi- 
ronment involve data,  control,  and  presentation. 
Data integration is essential to  ensure that  the 

individual tools  can  communicate  with  each  oth- 
er; this is accomplished through  a common 
schema.  Control integration enhances  interoper- 
ability and  data integrity among the tools. This is 
realized through  a  data  server built using a  cus- 
tomizable and extensible message server named 
the  Telos Message Bus (TMB), as  shown in Figure 
3. This message server allows all tools to com- 
municate  both with the  repository  and with each 
other, using the  common  schema.  These  mes- 
sages form the  basis  for all communication in the 
system.  The  server  has  been implemented on top 
of existing public domain software  bus  technol- 
0gy58 using a  layered  approach  that  provides both 
mechanisms and policies specifically tailored to a 
reverse engineering environment. For example, 
the  bottom  layer  provides  mechanisms  by which 
a  particular tool can  receive  messages of interest 
to it. The policy layer is built on top of the  mech- 
anism layer to determine if and how a  particular 
tool responds to those messages. 
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This  architecture  has  been implemented. The mo- 
tivation for  the  layered  and modular approach to 
the schema  and  architecture  came  from  an earlier 
experience by  the  University of Toronto  group in 
another project. This earlier project  faced similar 
requirements,  such as  the  need for a common  re- 
pository to help integrate  disparate tools. Addi- 
tional experience with this  architecture  for  re- 
verse engineering purposes is currently ongoing. 

Summary 

There will always be old software  that  needs to  be 
understood. It is critical for the information tech- 
nology sector in general, and software  industry in 
particular,  to deal effectively with the  problems of 
software evolution and the  understanding of leg- 
acy  software  systems.  Tools  and methodologies 
that effectively aid software  engineers in under- 
standing large and  complex  software  systems  can 
have  a significant impact. 

The IBM team built several  prototype  toolkits in 
REFINE, each focusing on detecting specific errors 
in SQWDS. A flexible approach  was also devel- 
oped  that  applies  defect filters to  the  source  code 
to improve  the quality. Defect filtering produces 
measurable  results in software quality. 

The University of Victoria group developed  the 
Rigi system, which focuses on the high-level ar- 
chitecture of the  subject  system  under analysis. 
Views of multiple, layered  hierarchies  are  used to 
present  structural  abstractions  to  the maintain- 
ers. A scripting  layer allows Rigi to  access addi- 
tional external tools. 

The National  Research Council studied  redun- 
dancy at the  textual level. A  number of uses  are 
relevant to  the SQLIDS product: looking for code 
reused  by  cut-and-paste, building a simplified 
model for macro  processing  based on actual use, 
and providing overviews of information content 
in absolute or relative (version or variant)  terms. 

The  University of Michigan group matched  pro- 
gramming language constructs in the SCRUPLE 
system.  Instead of looking for low-level textual 
patterns  or  very high-level semantic  constructs, 
SCRUPLE looks  for user-defined code clichCs. This 
approach is a logical progression from simple tex- 
tual scanning techniques. 

The McGill University  group  studied  semantic or 
behavioral pattern matching. A  transformational 
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approach  based  on  complexity  metrics  is used to 
simplify syntactic programming structures  and 
expressions by translating  them to tuples. The use 
of a  distance  measure on these  tuples  forms  the 
basis of a  method to find similar code fragments. 

Defect filtering generates  an overwhelming 
amount of information that  needs to  be summa- 
rized effectively to  be meaningful. Extensible  vi- 
sualization and documentation  tools  such as Rigi 
are  needed to manage these  complex details. 
However, Rigi by itself does not offer the  textual, 
syntactic,  and  semantic  analysis  operations 
needed for  a  comprehensive  reverse engineering 
approach.  Early  results  indicate  that  an  extensi- 
ble but  integrated toolkit is  required to  support 
the multifaceted analysis  necessary  to  understand 
legacy software  systems.  Such  a unified environ- 
ment is under development based on the  schema 
and  architecture implemented by  the  group at the 
University of Toronto.  This integration brings the 
strengths of the  diverse  research  prototypes  to- 
gether. 
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