
Architecture  and 
applications of the Hy + 

visualization  system 

The Hy+ system is a  generic  visualization tool 
that  supports  a  novel  visual  query  language 
called  GraphLog.  In Hy+, visualizations  are 
based on a  graphical  formalism  that  allows 
comprehensible  representations of databases, 
queries,  and  query  answers to be  interactively 
manipulated.  This  paper  describes  the  design, 
architecture,  and  features of Hy+ with a number 
of applications in software  engineering  and 
network  management. 

V isual presentations  are widely considered  an 
effective tool to help manage large and com- 

plex  collections of data.  Researchers in scientific 
visualization  (see, for example, McCormick et 
a1.l) were  the first to exploit computer  graphics 
technology to achieve  dramatic  improvements in 
the ability of people  to  understand  the  data with 
which they  work.  The  motivation  for  this exploi- 
tation is summarized in the following words from 
the  “Panel  Report on Visualization in Scientific 
Computing,’’ which appeared in the  November 
1987 issue of Computer Graphics: 

The gigabit bandwidth of the  eyekisual  cortex 
system  permits  much  faster  perception of geo- 
metric  and  spatial  relationships  than  any  other 
mode, making the  power of supercomputers 
more  accessible. Users from industry, univer- 
sities, medicine and  government are largely un- 
able to comprehend  or influence the “fire 
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hoses” of data  produced by contemporary 
sources  such  as  supercomputers and satellites. 

In other  diverse  domains,  such as software engi- 
neering, computer  network management, and 
parallel program monitoring, researchers,  devel- 
opers,  and  users increasingly consider  the impor- 
tance of visual  presentation of data. A related 
idea is to provide  data manipulation tools  that  are 
themselves  visually  oriented.  The  iconic  user in- 
terfaces common in today’s workstations  are  ex- 
amples of these tools. Visual query languages for 
databases2  are  more ambitious tools for visual 
data manipulation. 

In this  paper, we give an  overview of the  ap- 
proach  to  visual  display  and manipulation of da- 
tabases  that  we  have  been investigating at  the 
University of Toronto for the  past few years. We 
present  the design and  architecture of the Hy’ 
visualization system and its  associated  visual 
query language, GraphLog.  Moreover, we de- 
scribe  the  use of Hy+ and  GraphLog in two dif- 
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ferent application areas:  software engineering 
and  network management. In both  areas  the  data 
have  a graph-like structure  that  can  be visualized. 
Visual queries  explore  that  structure  and help the 
user of Hy+ better  understand it. 

The next section gives a  tour of the Hy+ system, 
using a  software engineering application as  the 
example. The  succeeding  section  describes  the 
architecture and implementation of the  system, 

Hy+ provides a user interface 
with extensive support for visualizing 

structural (or relational)  data 
as hygraphs. 

particularly of the query  processing and graph 
layout  components. Following that  section,  there 
is  a discussion of further applications to  software 
engineering and,  subsequently,  a discussion of 
further applications to  network management. We 
conclude with a discussion for further  work. 

A tour of Hy+ 

Hy+ provides  a  user  interface with extensive  sup- 
port for visualizing structural  (or relational) data 
as h y g r ~ p h s , ~  an  extension of graphs inspired by 
Harel's  higraphs.4  The Hy+ system  supports  vi- 
sualization of the  actual database  instances, not 
just diagrammatic representations of the  database 
schema. Given the large volume of data  that  the 
system  must  present to  the user, it is fundamental 
to provide the  user  with  two capabilities. 

First is the  capability to define new  relationships 
by using queries.  This  capability is the traditional 
way of using database  queries:  the newly defined 
relationship either gives a  direct  answer  to  a  user 
question, or it provides  a new view of the existing 
data.  The derived data  can  later  be  presented  vi- 
sually by  the  system. 

The second  capability is a way of using queries  to 
decide  what  data to show.  The  user  can  selec- 
tively restrict  the  amount of information to  be 
displayed. This  filtering of relevant  information3 
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is fundamental  for  conveying manageable vol- 
umes of visual information to  the  user.  Selective 
data  visualization  can be used to locate  relevant 
data, to restrict visualization to  interesting  por- 
tions of the  data  (that is, deciding what  data  to 
present),  and  to  control  the level of detail at which 
the  data  are  presented  (that is, choosing how to 
see  the  data). 

To  describe  queries, Hy+ relies on  a visual pat- 
tern-based  notation.  The  patterns  are  expressions 
of the  GraphLog  query Overall, the 
system  supports  query visualization (that  is,  pre- 
senting  the  description of the  query using a  visual 
notation), visualization of data  constituting  the 
input to  the query,  and  visual  presentation of the 
result. 

We present  an example of using GraphLog and its 
environment Hy+ for visualizing the  structure of 
the  National  Institutes of Health (NIH) public do- 
main c+ + class  library.  The IBM XL C+ + com- 
piler was used to  extract 13 000 facts from the 
35 000 lines of code in the library. In  the  generated 
hygraph, the  nodes  represent  classes,  functions, 
and  variables.  The edges represent  relations 
among them,  such as  the subclass and friend rela- 
tionships  between  classes,  the mem relationship 
between  a  class and its member functions or  var- 
iables, the ref relationship between  a function and 
all variables  referenced by it, and a calls relation- 
ship between functions. 

CASE (computer-aided  software engineering) tools 
usually provide  a  static visualization of the  archi- 
tecture of a  software  system. Hy+ permits  a  more 
dynamic approach to  the visualization  process, 
allowing different visualizations of the  same com- 
ponent to be obtained through different GraphLog 
queries.  In  that  respect,  Hy'  cannot  only  visu- 
alize the  structure of the  class library, but  can also 
explore  and  better  understand  that  structure. 

Any visualization can  be  queried.  Figure 1 con- 
tains  two  examples of queries.  The first query is 
what in GraphLog is called a  filter query: a 
GraphLog  expression  enclosed in a showGraphLog 
box.  It  describes  a  pattern to  be matched in the 
hygraph designated as  the  database. As can  be 
seen,  one of the edges in this  pattern is thick, that 
is, distinguished. This  pattern is a  visual  way of 
distinguishing edges that  the  user  actually  wants 
to  see  after  the  match is found. This  particular 
filter query  searches  the  database  for  subclasses 
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Figure 1 Examples  of a  filter  and  a  define  query 

Figure 2 Definition  and  filtering of  members 

C of class class('0bject') that redefine some  func- 
tion F defined in class('0bject'). From all objects 
that  match  this  pattern,  only  the relation mem be- 
tween  the  subclass C and  the  inherited  function F 
is displayed to the  user.  Throughout  the  paper  we 
use  the  convention  that  words beginning with  an 
uppercase  letter  denote  variables,  whereas  words 
beginning with  a  lowercase  letter  denote  con- 
stants. 

The  other  query in Figure 1 is  a define query:  a 
GraphLog  expression in a defineGraphLog box. A 
thick edge here  has  a different meaning. It rep- 
resents  a relation that  is defined every time the 
pattern is found in the hygraph designated as  the 
database.  The define query in Figure 1 defines the 
relation uses between  a  class C1 and  another  class 
C2, whenever C1 contains  a  function F1 that di- 
rectly  or  indirectly  calls  a function F2, which  is 
defined in C2. 

0 
I 

showGraphLog 

Dl 

L @function(F,L) 

F1 

I' 

Hygraphs  extend  graphs by using blobs in addi- 
tion to edges to represent relationships among 
nodes. A blob in a hygraph represents  a relation 
between  a  node, called the container node, and a 
set of other  nodes, called the contained nodes. 
Blobs are  hence generalizations of edges and can 
be used to  cluster  related  nodes  together. Visually 
they  are  represented as a  rectangular  area  asso- 
ciated  with  the  container  node. The define query 
of Figure 2 demonstrates how we can  change  the 
representation of a relationship from edges to 
blobs. The blob called members clusters  the mem- 
ber  functions of a  class  together:  a function 
F defined at line L is enclosed in the blob asso- 
ciated with class(C), whenever mem(class(C),  func- 
tion(F,L)). A blob relation can  be  treated similarly 
to an edge relation. The  second hygraph in Figure 
2 is a filter query  that  generates  a hygraph con- 
taining all the members blobs  and all the subclass, 
calls, and uses edges that exist in the  database. 
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Figure 3 Hy+ architecture  overview 
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1 
System  architecture and implementation 

Hy+ has evolved from the G +  Visual Query  Sys- 
tem presented in Reference 7. The new system is 
implemented as a  frontend,  written in Smalltalk, 
that  communicates  with  other  programs  to carry 
on  its  tasks, including multiple database  backends 
for the  actual  evaluation of the  queries. An over- 
view of the Hy+ system  architecture  is given in 
the diagram in Figure 3. 

1 IBM SYSTEMS  JOURNAL,  VOL 33, NO 3, 1994 

Hygraph  browsers. Hy+ browsers allow users  to 
interact with the hygraph-based visualizations 
that  the  system  manipulates.  They  have  extensive 
facilities for interactively editing hygraphs, in- 
cluding copy,  cut  and  paste, panning and zoom- 
ing, and textual editing of node  and edge labels. 
Icons  are  automatically  selected  for  nodes  ac- 
cording to  the functor of the  node label (that  is, 
the  type of data  object  represented by the  node). 
Similarly, the  colors for edges  and  blobs are au- 
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tomatically selected  based on the  predicate in the 
label (that  is,  the  relationship  represented  by  the 
edge or blob). 

Within Hy+, all blobs  associated with one  con- 
tainer  node are represented by rectangles  con- 
tained within a  rectangular region that  has  the 
container  node in the  topmost left corner. Blob 
labels  are  drawn in the  interior of the  topmost left 
corner of the rectangle representing  the  blob. 
Control  over  the level of detail displayed is 
achieved by interactively hiding and showing 
blob contents. When blob contents  are hidden, 
the incoming and outgoing edges  are also hidden 
(but  there  are  options  to  present  summaries of the 
information carried by  the hidden edges). 

Query processing. Query  processing in Hy+ is 
performed by translating  queries  (and  data, if nee- 
essary)  into logic programs  suitable  for  execution 
by  one of two backends:  the logic programming 
language LDL of Microelectronics  and  Computer 
Technology  Corporation (MCC)' and  the  experi- 
mental deductive language CORAL of the  Univer- 
sity of Wisconsin.9 In this  subsection, we give a 
more  precise definition of GraphLog, and we de- 
scribe how the  query  processing  proceeds within 
the Hy+ system. 

In Graphhg,  a term is one of the following: a 
constant,  avariable,  an  anonymousvariable  (as in 
Prolog), an aggregate function f E {MAX, MIN, 
COUNT, SUM, AVG} applied to a  variable,  or  a 
functorf applied to  a number of terms. An edge 
(blob) label  is  a path regular expression E gen- 
erated  by  the following grammar, where is a 
sequence of terms andp  is a  predicate: 

E + EIE; E.E; -E; (E); E+; E+; E?;p(T); Tp(T) 

Database  instances are hygraphs  whose  nodes 
are labeled with ground terms and whose  edges 
and  blobs  are labeled with  predicates.  Database 
instances of the object-oriented  or relational 
model can  easily  be visualized as hygraphs. For 
example,  an edge (blob) labeledp(x) from a  node 
labeled T I  to a  node (containing a  node) labeled 
T ,  corresponds  to tuple ( T 1 , T Z , z )  of relation 
p in the relational model. No key is associated 
with the relation p. 

Queries  are sets of hygraphs  whose  nodes  are la- 
beled by terms,  and  each edge (blob) is labeled by 
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an edge (blob) label. As explained in the  previous 
section,  there  are two types of queries: define and 
filter. In both,  the  query hygraph represents  a  pat- 
tern;  the  query  evaluator  searches  the hygraph 
designated as  the  database for all occurrences of 
that  pattern.  The difference between  the two 
types of queries  stems from their interpretation of 
distinguished  elements, explained below. 

A hygraph pattern in a define query (which is en- 
closed in a defineGraphLog box)  must  have only 
one distinguished edge or blob labeled by a  pos- 
itive literal. The meaning of the define query hy- 
graph is to define the  predicate in this  distin- 
guished literal in terms of the  rest of the  pattern. 
The  semantics of define queries is given by a 
translation to stratified Datalog.' Each define hy- 
graph  translates  to  a rule with the label of the 
distinguished edge or blob in the head and as 
many  literals in the  body  as  there  are nondistin- 
guished edges and blobs in the hygraph. Addi- 
tional rules  may  be  necessary  to define the  pred- 
icates of nondistinguished edges or blobs  that  are 
labeled by regular expressions.  The  generation of 
these additional rules is  based on the  structure of 
the regular expression. An alternative  translation 
is described in Reference 10. 

A hygraph pattern in a filter query (which is en- 
closed in a showGraphLog box) may have  several 
distinguished nodes, edges, and blobs. The  mean- 
ing of a filter query hygraph is: for  each  instance 
of the  pattern found in the  database,  retain  the 
database  objects  that match the distinguished 
objects in the  query. Given a hygraph in a 
showGraphLog box, for each distinguished edge 
(blob), we generate  a  set of define queries  that 
match  the distinguished object;  that is, when  they 
are  evaluated,  they  determine all instances of the 
edge (blob)  that  exist in the  portions of the  data- 
base  that  match  the hygraph pattern.  The  query 
evaluator  evaluates  each of the define queries in 
turn.  The  results  are combined, and  the  answer to 
the filter query is found. 

From a logic programming point of view,  a define 
query  corresponds  to  a  conventional  set of Horn 
clauses defining a  certain  predicate,  whereas  a 
filter query  can  be  viewed  as  a  set of Horn  clause 
bodies in which certain literals are retained  after 
each  match and the  rest  are  discarded. In a  way, 
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Figure 4 Examples  with  aggregate  functions 

0 

defineGraphLog 

class(C1) 

afunction(F1,Ll) class(C2) "._ ". -. - $ails+ 
rnern . 

2. 

0 

defineGraphLog 

Adapted from M. P. Consens and  M. 2. Hasan, "Supporting Network Management Through Declaratively Specified Data Visualizations," 
Proceedings of the IEEE/IFIP Third  International Symposium on  Integrated Network Management, III 

define queries  generate  theorems, while filter que- 
ries  generate proofs. A formal definition of filter 
queries  and filtering logic programs can be found 
in Reference 3. 

GraphLog  has  the ability to collect multisets of 
tuples  and to compute aggregate functions on 
them.  The aggregate functions  supported in 
GraphLog  are  the  unary  operators MAX, MIN, 
COUNT, SUM, and AVG. They  are allowed to ap- 
pear in the  arguments of the distinguished relation 
of a define query  as well as in its incident nodes. 
As an example of the  use of aggregation in 
GraphLog,  consider  the  two defineGraphLog 
blobs of Figure 4. The first one defines the rela- 
tion quant-uses between  two  classes. Relation 
quant-uses is different from relation uses of Figure 
1; the additional attribute in quant-uses defines 
the  degree of coupling between  the  two  classes. 
Thus, quant-uses(C1,  C2,  COUNT(F2)) is defined 
between C1 and C2, whenever C1 contains  a  func- 
tion F1 such  that F1 calls COUNT(F2) functions F2 
in class C2. The  second  pattern defines the rela- 
tion avg-usage to measure  the  average usage of 
each  class as follows: avg-usage is defined be- 
tween  a  class C1 and a number AVG(N), where 
AVG(N) is the  average of all numbers N that  count 
the number of calls from  functions of class C1 to 
functions of some  other  class C2. Note  that  there 
is no explicit GROUP-BY list (as in SQL-StrUC- 
tured  Query Language). Instead, grouping is done 
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implicitly over all variables  appearing in the dis- 
tinguished edge or its  end points. 

GraphLog  has higher expressive  power  than SQL; 
in particular, it can  express,  with  no need for  an 
explicit recursion  construct,  queries  that involve 
computing transitive  closures or similar graph  tra- 
versal  operations. The language is also  capable of 
expressing  first-order aggregation queries, as well 
as aggregation along path  traversals (for example, 
shortest  path queries). l1 

Data acquisition. The Hy+ system relies on other 
programs (which are  part of the Data  Acquisition 
subsystem)  to  supply the raw data  to  be visually 
manipulated within the system.  The File Manager 
subsystem  can  directly import files containing 
logical facts (like the  ones  produced  by  the XL 
C + +  compiler for the NIH database of the  pre- 
vious  section).  These files can  also be obtained 
from relational and  deductive  databases. 

External  hygraph  representation. Graph Ex- 
change Format (GXF) is  a specification for  a  por- 
table external  representation  for  directed  graphs 
and hygraphs. l2 Hy+ can  read  and  write  graphs in 
GXF format from and to UNIX** files, and uses 
optional  records or "extensions" of GXF to store 
all layout and  display-related information. Pro- 
cessor  programs  may  use  these  Hy+-specific  ex- 
tensions to manipulate the visual representation 
of a hygraph, for example, for layout tasks. 
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Figure 5 Synchronized  graphical  and  textual  browsing of source  code 

<I 
Press left button to add  color,  middle button for  menu. 

?le Formats 

class  IdentDict:  public  Dictionary 
( DECLARE"EMBERS(1dentDict); 

#ifndef BUG-38 
virtual int  findlndexOf(const  Object&)  const; 

// internalccAT&TC++ Translator 2.00 06/30/89>> error: bus error 
protected: //starer() functions  for  object 110 
virtual void storer(OlOofd& fd)  const ( Dictionary::storer(fd);}; 
virtual void storer(OlOout& strrn)  const ( Dictionary::storer(strrn);}; 

#endif 
public 

#ifndef  BUG-TOOBIG 
IdentDict(unsigned size =DEFAULT-CAPACITY); 

//yacc  stack  overflow 
IndentDict( const  IdentDict&); 

#endif 
void operator=(const  IdentDict&); 
virtualLookupKey'  assocAt(constObject& key) const; 
virtual Object'  atKey(constObject& key) const; 
virtual Object'  atKey(const  Object&  key,  Object& newvalue); 

Adapted  from M. P. Consens and A. 0. Mendelzon, "Hy': A  Hygraph-based  Query  and Visualization System," 
Proceedings of  the 1993 ACM SIGMOD  International  Conference  on  Management of Data 

GXF files encode  hygraphs in a  recursive list struc- 
ture  with  a  syntax very similar to that of the LISP 
language. A GXF file is  structured  into lists that 
contain one keyword and multiple atoms (num- 
bers and strings), and may also contain  nested 
sublists.  Unparsed  comments  can  also  be in- 
cluded. A GXF file consists of one  or  more  top- 
level GXF lists,  at  least  one of which has  the key- 
word Graph, and it contains  the encoding of a 
hygraph. This top-level Graph list is  decomposed 
into  sublists  that  represent  various  parts of the 
hygraph: its  edges,  nodes,  blobs,  etc.  These  sub- 
lists  are  decomposed  further to describe individ- 
ual edges,  nodes,  and  blobs, and further  yet to 
describe  some individual data,  such as label, po- 
sition,  and  shape.  Part of the GXF representation 
of the  graph in Figure 1 follows: 

; Hygraph f i l e o u t  (a comment) 
(GRAPH (ID " fche@rock.db:   Fr i  Jul 3 1   1 2 : 0 7 : 4 4  EDT 1 9 9 2 "  ) 

(BOUNDS (RECTANGLE  (XY 0 0 ) (XY 1  1 ) ) )  
(NODES (NODE (ID "1" ) 

(LABEL " c l a s s ( ' 0 b j e c t ' ) "  ) 
(POINT  (XY 0.1 0.8 ) )  
(BOUNDS (RECTANGLE  (XY 0.1 0.8 ) 

(XY 0.11 0.81)))) 
i more  nodes) 
(BLOBS  (BLOB 

(FROM "4" ) ; con ta ine r  node 
(TO "1" ) ; contained nodes 
(TO "2" ) 
(TO " 3 "  ) 
(LABEL "showGraphLog" ) 
(BOUNDS (RECTANGLE  (XY 0.1  0.1 ) 

(XY 0 . 9  0.5 ) ) ) )  
i more blobs ) 
(EDGES  (EDGE 

(FROM " 1" ) ; from-node 
(TO " 2 "  ) ; to-node 
(LABEL "mem" ) )  

i more edges ) ) 
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Tool integration. The  system  has  the ability to 
invoke external  programs  that, for instance, 
browse  an  object being represented by a  node in 
one of the  graphs displayed by  the  system. The 
Hy+ visualizations  can  be used as  overviews to 
locate information and  then invoke third-party 
browsers  to  display  the  contents  associated with 
the  relevant  objects. An obvious  advantage of this 
approach  over  a  purely navigational one is the 
ability to  use  the  convenience and expressive 
power of GraphLog  patterns  to  retrieve  the  ob- 
jects of interest,  instead of attempting  an  often 
impractical  brute  force  search. Of course,  this 
approach is in addition to  the use of Hy’ to gen- 
erate as many specifically tailored overviews as 
needed.  Figure 5 has  an  example of such  an in- 
tegration. l3 To  the right of a specialized hygraph 
browser  there  is  a  Lector**14 window that dis- 
plays  the  source  code  associated  with  the  object 
selected in the  browser  (the  code for class(‘1dent- 
Dict’)). The display synchronization  works  both 
ways:  when  the  user  changes  the page of source 
code displayed by  Lector,  the  object  selected in 
the Hy’ browser  adjusts correspondingly. Fur- 
thermore,  the  query  evaluation  component  has 
been  extended to handle a  mixture of traditional 
and  textual  queries.  The  latter kind of queries  are 
handled by  the PAT** Text  Searching Engine.” 

Hygraph  layout. When data  are  imported  into 
Hy+ from nongraphical sources,  or  when  an- 
swers  to  queries  are computed, it is  necessary  to 
compute  a layout for  the resulting hygraphs,  that 
is, to determine how the  abstract topology of the 
hygraph will be  embedded  into  a two-dimensional 
picture. Unlike many  tools  that offer a fixed set of 
predetermined  layouts  or  visualizations, Hy+ 
provides  a flexible and interactive  layout  mech- 
anism that is essential  to allow domain experts  to 
easily experiment with a  variety of (possibly un- 
anticipated)  visual  representations  and  layouts. 

To compute hygraph layouts, Hy’ uses  the 
graphite utilities developed within our project. l6 

The current implementation of graphite consists of 
several UNIX filters. The graph  layout filter reads 
a GXF description of a hygraph from stdin, inter- 
nally modifies the position and  size information of 
various hygraph elements in accordance with par- 
ticular layout  criteria,  and  writes  the  description 
of the modified hygraph to stdout. The graphite 
graph  layout filter has  also  been  used  to  generate 
three-dimensional  graph  layouts for a  prototype 
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Figure 6 Mapping  the  hygraph  formalism  onto  the 
generic  container  model 

71 
V 

[nodeC]+ 

A 

IabelRegionC IconRegionC  blobsRegionC 

graph browser  incorporated  into  4Thought,”  a 
software  development  environment. 

Layout architecture. To provide  more flexible 
and powerful drawing facilities, we designed ev- 
ery graphite layout algorithm with  respect to a ge- 
neric  container model: a  container may recur- 
sively contain  (sub)containers;  containers  may 
optionally be linked by directed  arcs.  The  hy- 
graph formalism is mapped onto this model as 
shown in Figure 6 .  The figure essentially  says  that 
a  graph  container may contain one  or more  node 
containers,  each of which contains  a label region, 
icon region, and  blobs region containers. Simi- 
larly, a  blobs region may  contain  one or more blob 
containers,  each of which contains  a  nodes region 
and a label region container. Finally, a  nodes  re- 
gion may  contain  one  or more node  containers. 
All containers  are  treated uniformly by layout al- 
gorithms, thereby allowing the  same  layout algo- 
rithm to  be used to position the  subcontainers of 
container  types. 

Basic layout algorithms. The  current  version of 
layout filter is  capable of producing a drawing us- 
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ing arbitrary combinations of the following simple 
parametric  layout algorithms (each algorithm 
supports  both two-dimensional and three-dimen- 
sional layouts): 

1. Cluster: size-based clustering layout-Con- 
tainers  are divided into  clusters according to 
size and shape similarity. Each  cluster is laid 
out independently, and then resulting draw- 
ings are combined to form a composite, sim- 
ilar to the technique described in Reference 
18. 

2. Circle: elliptical layout-Containers are po- 
sitioned along the perimeter of an ellipse; 
containers  are  ordered to reduce  (but not nec- 
essarily minimize) the number of arc cross- 
ings. 

3. Grid: grid layout-Containers are positioned 
at the  intersections of an m x n grid. Con- 
tainers  are placed, one  connected  component 
at a time, in top-to-bottom left-to-right order, 
and are  ordered to reduce  (but  not necessarily 
to minimize) the number of arc crossings. 

4. Hier: hierarchical layout-The algorithm 
computes  a depth-first spanning forest l9 F of 
the input graph, and places containers  by fol- 
lowing tree  arcs  with  respect  to F,  and is sim- 
ilar to  several  approaches found in the liter- 
ature.’’y2l 

5. Nop: no layout-The positions of containers 
are not altered.  This method can be used to 
provide a form of incremental layout capa- 
bility. 

6. Overlap: overlap elimination-Containers 
are repositioned to eliminate overlaps in a 
manner similar to  the horizontal shufle algo- 
rithm,”  except  that  containers  are shuffled 
along both  the x and y axes  (and z for three- 
dimensional layouts). 

7. Pack: quadtree-based two-dimensional bin 
packing-Containers are placed into  a small 
enclosing region by an incremental (and heu- 
ristic) quadtree-growing approach. 

8. Random: random layout-Containers are po- 
sitioned randomly without overlaps. 

9. Spring: force-based layout-Containers are 
positioned according to  the following analogy 
to a physical system: containers  are  treated 
as charged bodies  that repel one  another;  arcs 
are  treated as springs attached to pairs of con- 
tainers  that pull each member of the pair 
toward the  other.  The simulation continues 
until a low-energy state is reached, resulting 
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in the final layout; similar approaches have 
been described in References  23,24, and 25. 

10. Stack:  stack layout-Containers are posi- 
tioned along the axis that  results in the most 
square (cubical) or compact drawing. 

11. Id: one-dimensional layout-Containers are 
positioned along one of the specified axes. 

Each  layout algorithm can  be controlled by 
manipulating a number of generic and algorithm- 
specific parameters.  Furthermore,  the graphite 
layout filter can  also  be used to generate nongeo- 
metric fish-eye views of nested  graph^^^,'^ that 
can  be used to balance local detail and global con- 
text  by automatically emphasizing some regions 
of the layout while simultaneously de-emphasiz- 
ing others. 

Composite hygraph layout. Composite layout is a 
graph layout technique in which the input graph 
is partitioned into  several  subgraphs  that  are laid 
out independently (by different layout algorithms) 
and then composed to produce  the final draw- 
ing. 1828 

The graphite layout filter is capable of performing 
a composite layout of general graphs  at  a much 
finer level of granularity than previous efforts. 
The filter allows a (possibly unique) algorithm to 
be  associated with each  container in the  container 
hierarchy  (see Figure 6) induced by  a hygraph. If 
a  container is not assigned a layout algorithm, it 
inherits the algorithm of the parent container. In 
a composite layout scenario, in addition to  the 
top-level container,  a (possibly) unique layout al- 
gorithm can  be  associated with each node, blob, 
nodes region, and blobs region container  by in- 
serting appropriate layout directives into  the GXF 
file. 

Software engineering applications 

Earlier in this paper, we introduced Hy’ and the 
GraphLog  query language by visualizing the 
structure of a C+ + class library and querying that 
structure during software development to facili- 
tate program understanding. Hy+ has been ap- 
plied to software  structures in References 29 and 
30 and to debugging distributed applications in 
Reference 31. 

In this section,  we give additional examples using 
the  same  database as given earlier in the  tour of 
Hy’, that is, the NIH C + +  library. Once again, 
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Figure 7 Defining  synonyms for functions  and  displaying  some  of  them 
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the  objects of interest include classes,  functions, 
and  variables.  Relations  between  these  objects 
include the subclass relation between two classes, 
the mem relation  between a class and its member 
functions,  the friend relation  between  two  classes 
or between a class  and a function, the relation 
virtual between a class  and  its  virtual  member 
functions,  and  the  relation pure-virtual between a 
class  and  its  pure  virtual  functions  (that  is,  func- 
tions  that are defined as virtual  but with no im- 
plementation given for  them). 

In a language with inheritance, it is  not  always 
obvious  which  version of a function will be in- 
voked  by a function call. It  is useful for a C+ + 
programmer to know  where in the  inheritance hi- 
erarchy a function  is defined. Hy+ can group to- 
gether all "synonyms" of a function  and  associate 
the resulting set with the name of the  function 
using blobs. The upper  part of Figure 7 demon- 
strates how. First,  the relation fmem is defined to 
relate a class C with a triple fcl(F,C,L), if class C 
defines function F at  source  code line number L 
(ignoring for simplicity the  fact  that  code  comes 

from multiple files). Then, if class C2 is a subclass 
of class C1 (or  equal  to C1) and both  classes define 
the  same  function F at  some line of their  code,  the 
triple fcl(F,C2,L2) is placed inside the blob for the 
function F. The triple fcl(F,Cl ,L1) is placed when 
C1 =C2 (note  the  use of the  Kleene  closure).  Part 
of the answer  to  requesting  these  synonyms  ap- 
pears at the  bottom of Figure 7. Note  that, 
for the  function at, both  implementations  are  pro- 
vided inside the  class Set, whereas  the  function 
deepenVBase is defined once in classes Set and 
Dictionary and twice in class IdentDict. 

Another point of interest  for C++ programmers 
is  whether a class  contains  functions  that are  pure 
virtual;  that is, their interface  is available to sub- 
classes of the  class,  but  no implementation is  pro- 
vided by  the class.  We call such a class incomplete. 
Figure 8 contains  the definition of incomplete 
classes: a class C is incomplete if it contains  at  least 
one  pure  virtual function. Also, a class C2 that  is 
a subclass of an incomplete class C1 and  does  not 
provide  the implementation of the inherited pure 
virtual  function  is  also  an incomplete class. 
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Figure 8 Identifying  classes  with  incomplete  implementation . defineGraphLog 
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Figure 9 Inheriting  from  complete  classes 
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The following two examples  use Hy' for finding 
possible design flaws in the C+ + program. Both 
are  taken  from  Meyers, 32 who  discusses  a  number 
of specific ways  to improve C++ programs and 
designs. The first example  involves  classes  that 
do  not  have  any  virtual functions. This  means  that 
none of its member functions  can be overridden; 
all subclasses  can add new  functionality  but  can- 
not modify existing behavior  because nonvirtual 
functions impose a  mandatory implementation. 
This  restriction  can  be  considered  a form of lim- 
ited inheritance  and,  according to Meyers,  may 
be  an indication of a design problem. The  query 
in Figure 9 finds such designs: the relation 
numONirtualFunctions is defined between  every 
class C and  the  number of virtual  functions  that 
are defined in C. If that  number  is  zero,  the 
class is complete;  hence,  subclasses  may not 
modify any of the  behavior of the  class.  The filter 
query in Figure 9 requests  to  see  the part of the 

class  hierarchy  that  inherits from complete 
classes. 

In the  same spirit is  the  second  example from 
Meyers.  A nonvirtual function  has  both  its  inter- 
face and its implementation specified by the  class 
in which it appears. According to   Meyer~,~ '  re- 
defining such  a function in a public subclass is not 
a good design practice.  The  query in Figure 10 
searches  for all classes C1 such  that C1 redefines 
a nonvirtual function defined in some  superclass 
c 2  of c1. 

The  above  queries  can  be  seen  as  constraints im- 
posed upon  the  structure of the  database.  A  soft- 
ware  system satisfies these  constraints if and  only 
if the  answers  to the associated  queries  are 
empty.  More interestingly, when  the  system fails 
to satisfy  a  constraint, Hy + can  be used to  display 
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the violation in a meaningful context so that  a 
person  can  decide  whether  the violation is harm- 
ful or not. 

Technology  transfer:  The  use  of  GraphLog  in 
4Thought. The 4Thought prototype l7 is a tool that 
aims to explore applications of database  visual- 
ization technology to software engineering. The 
visual  query language GraphLog is a  suitable no- 
tation for expressing  the  type of software engi- 
neering queries  that 4Thought needs  to  support. 

4Thought was initially targeted at programming- 
in-the-large tasks  such as architecture, design, 
and  performance t ~ n i n g ~ ~ , ~ ~  in which the  database 
being visualized contains  structural information 
about  the program. Here GraphLog  is used as a 
visual  query language to specify graphical views, 
such  as call graphs and inheritance  hierarchies, of 
the program database. We believe that  GraphLog 
is a very intuitive way  to define program views 
since  software engineers are  used  to thinking 
graphically and commonly employ a  wide  variety 
of structural diagrams. 

Later, 4Thought was applied to programming-in- 
the-small tasks  such  as spe~ification~~ in which 
the database being visualized contains  the appli- 
cation  data. Here GraphLog is used as a  visual 
specification language to define the  computation 
being performed by  the application. We feel that 
specifications written in GraphLog  are much eas- 
ier to understand  than equivalent specifications 
written in purely  textual  notations,  such as 
pseudocode or predicate logic. 

An exciting recent  development  has  been  the  ev- 
olution of databases  to support new versions of 
SQL that allow recursive  queries.  This  means  that 
commercial databases will soon be able to effi- 
ciently  execute  GraphLog  queries, making tools 
like 4Thought and Hy+ useful in application do- 
mains such as bills-of-material and airline routes. 
We believe that writing queries for these  recur- 
sive  domains  is much easier in GraphLog  than in 
SQL, and we  are investigating customer  require- 
ments  for new database application development 
tools  that exploit graphical visualization. 

Network management applications 

Managing a large heterogeneous  computer  net- 
work is a  complex  task.  The  proposed  network 
management standards for Internet  networks 
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Figure 10 Redefining an inherited nonvirtual function 
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based on Transmission  Control  Protocol/Internet 
Protocol (TCP/IP) and the  International Organiza- 
tion for Standardization (ISO) Open Systems  In- 
terconnection (OSI) network management stan- 
dards  are  attempts  by  standards  organizations  to 
reduce  the  complexity involved. They  propose  a 
manager-agent paradigm, where  a management 
station  receives  status  data from network  devices 
and assembles  them  into  a global picture of the 
network,  that is used to monitor and control  net- 
work  operation.  Appropriately visualizing this 
global picture as well as  others  can  be  a  very 
effective aid  in managing the  network.  In general, 
three  techniques are useful for network manage- 
ment: abstraction, filtering, and  visualization. 

Abstraction: The  complexity of managing net- 
works is reduced by systematically imposing dif- 
ferent  levels of abstraction  onto  the  network. Do- 
ing so allows the functional management to  be 
performed in a  structured way. Network  objects 
can  be  abstracted  into higher-level entities  based 
on different criteria  set by  the  network manager, 
for example, geographical sites  broken down into 
buildings, or administrative responsibilities within 
the  network, e.g., domains. Network  objects  can 
also be  abstracted according to  the ISO OS1 pro- 
tocol layering by distinguishing between  two dif- 
ferent  views of the topology map of the  network: 
the logical map, which corresponds  to  the net- 
work  layer,  and  the physical map, which corre- 
sponds  to  the data-link and physical layers. 

Filtering: The limitation in the  size of the  presen- 
tation media makes it  difficult to visualize the  sta- 
tus of the  entire  network. When a problem occurs 
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Figure 11 Defining  and  displaying  the  logical  network 
layer  map (partl) 
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in the  network, it would be helpful to  see only  the 
relevant  areas of the  network. It would be nice to 
be able  to  specify  what we  want in a simple and 
declarative  way, filter out  the problem area, and 
visualize it  in terms of the topology of the  network 
and  at different levels of abstraction. 
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Visualization: In presenting  the  data  to  the human 
manager, it is widely believed that graphical dis- 
plays are essential; all commercial network man- 
agement tools make an  attempt to communicate 
information visually. These  visualizations  tend  to 
be hardwired into  the  software,  with limited con- 
trol available to  the manager. A flexible system 
where  the  what and how of visualization  is  under 
user  control  has significant potential for  advanc- 
ing the  state of the  art in network management 
software. 

Network management in Hy'. In this  subsection, 
we show how we  can  obtain different views of the 
network using the  querying capabilities provided 
by  the Hy+ system.  The  example  network  man- 
agement database  contains information about  the 
topology of the  network  and  about  its  constitu- 
ents.  This information is obtained from MIBS 
(management information bases35).  By  executing 
the  queries  shown in Figure 11, we obtain  the 
logical network  layer  map  shown in Figure 12. 
Similar queries  can  produce  the physical topology 
map. 

To handle  performance  bottlenecks  and faults, a 
network  must  be  monitored  continuously.  The  re- 
sult of monitoring is reflected in alerts. Defining 
alerts  and  correlating  them  requires  sophisticated 
and flexible alert definition facilities. By  consid- 
ering the  network as a  distributed  database  and 
the MIB as the  schema of the  database,  alerts  can 
be defined as declarative  GraphLog  queries. 

Suppose  that  we  monitor  the utilization of a 
server called samba. For this  purpose, we poll the 
tcplnSegs and tcpOutSegs TCP MIB objects of the 
server.  These  two  variables  store  the  total num- 
ber of TCP segments flowing in and  out of the 
polled server,  as  calculated from a defined epoch. 
The  values  returned  are  kept in the  database as 
history  traces. 

An alert  can  be  generated if the  server utilization 
falls below  a  certain  threshold in a  particular  pe- 
riod of time, for  example, during an  expected 
high-traffic period. If the  alert  goes off,  it indicates 
a possible problem symptom.  The  queries in 
Figure 13 define the  alert alert-servl-util. Query 
define81 finds out  the time (pointed  out by  the 
distinguished edge previoustime) when  the previ- 
ous poll of samba was taken.  Query define82 com- 
putes  the  rate of tcplnSegs and tcpOutSegs traffic  in 
the  latest poll interval during high-traffic time. 
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Figure 12 Defining  and  displaying  the  logical  network  layer  map  (part2) 
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Figure 13 Defining an alert  for  possible  problem  symptoms 
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Query define83 checks  whether  the  rate  computed 
in the previous  query falls 80 percent below the 
expected traffic kept  on  the traffic-high-server edge 
of samba. If the  condition is satisfied, an edge 
called problem-area is created from the  node la- 
beled samba to  the node labeled with the  name of 
the  alert. 

Assume  that  the  above  alert  has  gone off, and 
the problem area  is  the  server samba. The  alert 
may fire for  various  reasons, among them  con- 
gestion in gateways  between  the  server and 
the clients or a  hardware fault. Assume  that we 
first hypothesized  that  the  cause of the  alert 
was congestion,  but  the investigation (see Refer- 

ence 36) showed  no  congestion, although it 
found that  the  clients of samba are  not  generat- 
ing the  expected traffic to  the  server.  Our  second 
hypothesis  is  that  the  cause of the  alert is a  hard- 
ware problem. In this  case,  the  map showing 
physical details like repeaters, bridges, data-link 
layer  protocols,  and so on is brought up. Before 
looking for  the physical causes of the problem, 
we  superimpose  the  currently  active TCP links 
on  the  portion of the physical map  that  depends 
on  the  alert. 

Query define1 01 of Figure 14 can  be  interpreted as 
follows: create  an edge called tcp-link between the 
hosts H that  depend on  the alert alert-sew1 -uti1 and 
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Figure 14 Defining  and  showing  TCP  links 
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the  server samba, if the IP address found in the 
tcpConnRemAddress of the TCP connection  table of 
H matches  the  address of samba (which is stored 
in the attribute attr(address) of the configuration 
database).  Query show101 produces, as a  result, 
the visualization in Figure 15 showing the  portion 
of the physical topology map  that  depends on the 
alert,  together with the  previously defined tcp-link 
edges  superimposed on the map. 

The visualization of TCP links allows us  to pin- 
point the problem area  at  the  portion of the net- 
work  beyond ether4. The problem could be  at  the 
repeater repeater1 or  at  the  Ethernet segments 
etherl and ether2. This belief follows from noticing 
that no TCP connection  originates at etherl or 
ether2. The SNMP manager could not  access  the 
current TCP objects  from  that  part of the  network. 

The  example  shows how, when isolating faults in 
a  network, it is advantageous  to  view  network 
maps  at different abstract  levels while proceeding 
in a  structured  manner  to pinpoint the problem 
area. 

Conclusion 

We  have  described  the  architecture  and  some  as- 
pects of the implementation of the Hy+ visual- 
ization system  and  its  related  software. We are 
encouraged by the  ease  with  which  we  were  able 
to apply these  ideas to a  wide  variety of applica- 
tions, including various  aspects of software  en- 
gineering, network  management,  and  distributed 
and parallel debugging. Traditional  data manage- 
ment  tools  have  not  been very successful in tack- 
ling these  kinds of domains; we believe the unique 
combination of visualization  and  deductive  data- 
base  features of Hy+ and  GraphLog give us  the 
edge  here. 

Work  is  proceeding to extend Hy+ in several di- 
rections, including dynamic  visualizations,  tem- 
poral  queries, three-dimensional diagrams, incre- 
mental  query  and  layout,  and  new  emphasis 
techniques for large visualizations.  We  hope  this 
work  is  contributing to achieving David Harel’s 
vision: 

We are  entirely  convinced  the  future is “visu- 
al.” We believe that in the  next  few  years  many 
more of our daily technical and scientific chores 
will be  carried out visually,  and graphical fa- 
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cilities will be  far  better  than today’s. The lan- 
guages and approaches we shall be using in do- 
ing so will not  be  merely  iconic in nature [...] 
but  inherently diagrammatic in a  conceptual 
way [...I. They will be designed to  encourage 
visual  modes of thinking when tackling systems 
of ever-increasing complexity, and will exploit 
and extend  the  use of our own wonderful  visual 
system in many of our intellectual activities. 
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