Architecture and
applications of the Hy~
visualization system

The Hy* system is a generic visualization tool
that supports a novel visual query language
called GraphLog. In Hy*, visualizations are
based on a graphical formalism that allows
comprehensible representations of databases,
queries, and query answers to be interactively
manipulated. This paper describes the design,
architecture, and features of Hy* with a number
of applications in software engineering and
network management.

‘ 7 isual presentations are widely considered an

effective tool to help manage large and com-
plex collections of data. Researchers in scientific
visualization (see, for example, McCormick et
al.') were the first to exploit computer graphics
technology to achieve dramatic improvements in
the ability of people to understand the data with
which they work. The motivation for this exploi-
tation is summarized in the following words from
the “Panel Report on Visualization in Scientific
Computing,” which appeared in the November
1987 issue of Computer Graphics:

The gigabit bandwidth of the eye/visual cortex
system permits much faster perception of geo-
metric and spatial relationships than any other
mode, making the power of supercomputers
more accessible. Users from industry, univer-
sities, medicine and government are largely un-
able to comprehend or influence the “fire
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hoses” of data produced by contemporary
sources such as supercomputers and satellites.

In other diverse domains, such as software engi-
neering, computer network management, and
parallel program monitoring, researchers, devel-
opers, and users increasingly consider the impor-
tance of visual presentation of data. A related
idea is to provide data manipulation tools that are
themselves visually oriented. The iconic user in-
terfaces common in today’s workstations are ex-
amples of these tools. Visual query languages for
databases’ are more ambitious tools for visual
data manipulation.

In this paper, we give an overview of the ap-
proach to visual display and manipulation of da-
tabases that we have been investigating at the
University of Toronto for the past few years. We
present the design and architecture of the Hy*
visualization system and its associated visual
query language, GraphlLog. Moreover, we de-
scribe the use of Hy* and GraphLog in two dif-
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ferent application areas: software engineering
and network management. In both areas the data
have a graph-like structure that can be visualized.
Visual queries explore that structure and help the
user of Hy* better understand it.

The next section gives a tour of the Hy * system,
using a software engineering application as the
example. The succeeding section describes the
architecture and implementation of the system,

Hy* provides a user interface
with extensive support for visualizing
structural (or relational) data
as hygraphs.

particularly of the query processing and graph
layout components. Following that section, there
is a discussion of further applications to software
engineering and, subsequently, a discussion of
further applications to network management. We
conclude with a discussion for further work.

A tour of Hy*

Hy " provides a user interface with extensive sup-
port for visualizing structural (or relational) data
as hygraphs,® an extension of graphs inspired by
Harel’s higraphs.* The Hy* system supports vi-
sualization of the actual database instances, not
just diagrammatic representations of the database
schema. Given the large volume of data that the
system must present to the user, it is fundamental
to provide the user with two capabilities.

First is the capability to define new relationships
by using queries. This capability is the traditional
way of using database queries: the newly defined
relationship either gives a direct answer to a user
question, or it provides a new view of the existing
data. The derived data can later be presented vi-
sually by the system.

The second capability is a way of using queries to
decide what data to show. The user can selec-
tively restrict the amount of information to be
displayed. This filtering of relevant information’®
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is fundamental for conveying manageable vol-
umes of visual information to the user. Selective
data visualization can be used to locate relevant
data, to restrict visualization to interesting por-
tions of the data (that is, deciding what data to
present), and to control the level of detail at which
the data are presented (that is, choosing Aow to
see the data).

To describe queries, Hy* relies on a visual pat-
tern-based notation. The patterns are expressions
of the GraphLog query language.>® Overall, the
system supports query visualization (that is, pre-
senting the description of the query using a visual
notation), visualization of data constituting the
input to the query, and visual presentation of the
result.?

We present an example of using GraphLog and its
environment Hy * for visualizing the structure of
the National Institutes of Health (NIH) public do-
main C++ class library. The I1BM XL C++ com-
piler was used to extract 13000 facts from the
35000 lines of code in the library. In the generated
hygraph, the nodes represent classes, functions,
and variables. The edges represent relations
among them, such as the subclass and friend rela-
tionships between classes, the mem relationship
between a class and its member functions or var-
iables, the ref relationship between a function and
all variables referenced by it, and a calls relation-
ship between functions.

CASE (computer-aided software engineering) tools
usually provide a static visualization of the archi-
tecture of a software system. Hy * permits a more
dynamic approach to the visualization process,
allowing different visualizations of the same com-
ponent to be obtained through different Graphlog
queries. In that respect, Hy* cannot only visu-
alize the structure of the class library, but can also
explore and better understand that structure.

Any visualization can be queried. Figure 1 con-
tains two examples of queries. The first query is
what in GraphLog is called a filter query: a
Graphlog expression enclosed in a showGraphLog
box. It describes a pattern to be matched in the
hygraph designated as the database. As can be
seen, one of the edges in this pattern is thick, that
is, distinguished. This pattern is a visual way of
distinguishing edges that the user actually wants
to see after the match is found. This particular
filter query searches the database for subclasses
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Figure 1 Examples of a filter and a define query
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Figure 2 Definition and filtering of members
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@function(F,L)

showGraphLog

ﬁ] class(C)
F1

members c1
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@ tunction(F L) F2

C of class class{'Object’) that redefine some func-
tion F defined in class(‘Object). From all objects
that match this pattern, only the relation mem be-
tween the subclass C and the inherited function F
is displayed to the user. Throughout the paper we
use the convention that words beginning with an
uppercase letter denote variables, whereas words
beginning with a lowercase letter denote con-
stants.

The other query in Figure 1 is a define query: a
GraphLog expression in a defineGraphLog box. A
thick edge here has a different meaning. It rep-
resents a relation that is defined every time the
pattern is found in the hygraph designated as the
database. The define query in Figure 1 defines the
relation uses between a class C1 and another class
C2, whenever C1 contains a function F1 that di-
rectly or indirectly calls a function F2, which is
defined in C2.
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Hygraphs extend graphs by using blobs in addi-
tion to edges to represent relationships among
nodes. A blob in a hygraph represents a relation
between a node, called the container node, and a
set of other nodes, called the contained nodes.
Blobs are hence generalizations of edges and can
be used to cluster related nodes together. Visually
they are represented as a rectangular area asso-
ciated with the container node. The define query
of Figure 2 demonstrates how we can change the
representation of a relationship from edges to
blobs. The blob called members clusters the mem-
ber functions of a class together: a function
F defined at line L is enclosed in the blob asso-
ciated with class(C), whenever mem(class(C), func-
tion(F,L)). A blob relation can be treated similarly
to an edge relation. The second hygraph in Figure
2 is a filter query that generates a hygraph con-
taining all the members blobs and all the subclass,
calls, and uses edges that exist in the database.
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Figure 3 Hy* architecture overview
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System architecture and implementation

Hy™* has evolved from the G* Visual Query Sys-
tem presented in Reference 7. The new system is
implemented as a frontend, written in Smalltalk,
that communicates with other programs to carry
on its tasks, including multiple database backends
for the actual evaluation of the queries. An over-
view of the Hy* system architecture is given in
the diagram in Figure 3.
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Hygraph browsers. Hy * browsers allow users to
interact with the hygraph-based visualizations
that the system manipulates. They have extensive
facilities for interactively editing hygraphs, in-
cluding copy, cut and paste, panning and zoom-
ing, and textual editing of node and edge labels.
Icons are automatically selected for nodes ac-
cording to the functor of the node label (that is,
the type of data object represented by the node).
Similarly, the colors for edges and blobs are au-
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tomatically selected based on the predicate in the
label (that is, the relationship represented by the
edge or blob).

Within Hy ™", all blobs associated with one con-
tainer node are represented by rectangles con-
tained within a rectangular region that has the
container node in the topmost left corner. Blob
labels are drawn in the interior of the topmost left
corner of the rectangle representing the blob.
Control over the level of detail displayed is
achieved by interactively hiding and showing
blob contents. When blob contents are hidden,
the incoming and outgoing edges are also hidden
(but there are options to present summaries of the
information carried by the hidden edges).

Query processing. Query processing in Hy™ is
performed by translating queries (and data, if nec-
essary) into logic programs suitable for execution
by one of two backends: the logic programming
language LDL of Microelectronics and Computer
Technology Corporation (McC)® and the experi-
mental deductive language CORAL of the Univer-
sity of Wisconsin.® In this subsection, we give a
more precise definition of GraphlLog, and we de-
scribe how the query processing proceeds within
the Hy* system.

In GraphLog, a term is one of the following: a
constant, a variable, an anonymous variable (as in
Prolog), an aggregate function f € {MAX, MIN,
COUNT, SUM, AVG} applied to a variable, or a
functor f applied to a number of terms. An edge
(blob) label is a path regular expression E gen-
erated by the following grammar, where T is a
sequence of terms and p is a predicate:

E < E|E;E.E; —E; (E); E+; Ex; E?; p(T); —p(T)

Database instances are hygraphs whose nodes
are labeled with ground terms and whose edges
and blobs are labeled with predicates. Database
instances of the object-oriented or relational
model can easily be visualized as hygraphs. For
example, an edge (blob) labeled p(X) from a node
labeled T, to a node (containing a node) labeled
T, corresponds to tuple (T,,T,,X) of relation
p in the relational model. No key is associated
with the relation p.

Queries are sets of hygraphs whose nodes are la-
beled by terms, and each edge (blob) is labeled by

462 CONSENS ET AL.

an edge (blob) label. As explained in the previous
section, there are two types of queries: define and
filter. In both, the query hygraph represents a pat-
tern; the query evaluator searches the hygraph
designated as the database for all occurrences of
that pattern. The difference between the two
types of queries stems from their interpretation of
distinguished elements, explained below.

A hygraph pattern in a define query (which is en-
closed in a defineGraphLog box) must have only
one distinguished edge or blob labeled by a pos-
itive literal. The meaning of the define query hy-
graph is to define the predicate in this distin-
guished literal in terms of the rest of the pattern.
The semantics of define queries is given by a
translation to stratified Datalog.’ Each define hy-
graph translates to a rule with the label of the
distinguished edge or blob in the head and as
many literals in the body as there are nondistin-
guished edges and blobs in the hygraph. Addi-
tional rules may be necessary to define the pred-
icates of nondistinguished edges or blobs that are
labeled by regular expressions. The generation of
these additional rules is based on the structure of
the regular expression. An alternative translation
is described in Reference 10.

A hygraph pattern in a filter query (which is en-
closed in a showGraphLog box) may have several
distinguished nodes, edges, and blobs. The mean-
ing of a filter query hygraph is: for each instance
of the pattern found in the database, retain the
database objects that match the distinguished
objects in the query. Given a hygraph in a
showGraphLog box, for each distinguished edge
(blob), we generate a set of define queries that
match the distinguished object; that is, when they
are evaluated, they determine all instances of the
edge (blob) that exist in the portions of the data-
base that match the hygraph pattern. The query
evaluator evaluates each of the define queries in
turn. The results are combined, and the answer to
the filter query is found.

From a logic programming point of view, a define
query corresponds to a conventional set of Horn
clauses defining a certain predicate, whereas a
filter query can be viewed as a set of Horn clause
bodies in which certain literals are retained after
each match and the rest are discarded. In a way,
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Figure 4 Examples with aggregate functions
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Adapted from M. P. Consens and M. Z. Hasan, "Supporting Network Management Through Declaratively Specified Data Visualizations,"
Proceedings of the IEEE/IFIP Third International Symposium on Integrated Network Management, 111

define queries generate theorems, while filter que-
ries generate proofs. A formal definition of filter
queries and filtering logic programs can be found
in Reference 3.

Graphl.og has the ability to collect multisets of
tuples and to compute aggregate functions on
them. The aggregate functions supported in
GraphLog are the unary operators MAX, MIN,
COUNT, SUM, and AVG. They are allowed to ap-
pear in the arguments of the distinguished relation
of a define query as well as in its incident nodes.
As an example of the use of aggregation in
GraphLog, consider the two defineGraphlLog
blobs of Figure 4. The first one defines the rela-
tion quant_uses between two classes. Relation
quant_uses is different from relation uses of Figure
1; the additional attribute in quant_uses defines
the degree of coupling between the two classes.
Thus, quant_uses(C1, C2, COUNT(F2)) is defined
between C1 and C2, whenever C1 contains a func-
tion F1 such that F1 calls COUNT(F2) functions F2
in class C2. The second pattern defines the rela-
tion avg_usage to measure the average usage of
each class as follows: avg_usage is defined be-
tween a class C1 and a number AVG(N), where
AVG(N) is the average of all numbers N that count
the number of calls from functions of class C1 to
functions of some other class C2. Note that there
is no explicit GROUP-BY list (as in SQL—Struc-
tured Query Language). Instead, grouping is done
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implicitly over all variables appearing in the dis-
tinguished edge or its end points.

GraphL.og has higher expressive power than SQL;
in particular, it can express, with no need for an
explicit recursion construct, queries that involve
computing transitive closures or similar graph tra-
versal operations. The language is also capable of
expressing first-order aggregation queries, as well
as aggregation along path traversals (for example,
shortest path queries). !

Data acquisition. The Hy* system relies on other
programs (which are part of the Data Acquisition
subsystem) to supply the raw data to be visually
manipulated within the system. The File Manager
subsystem can directly import files containing
logical facts (like the ones produced by the XL
C++ compiler for the NIH database of the pre-
vious section). These files can also be obtained
from relational and deductive databases.

External hygraph representation. Graph Ex-
change Format (GXF) is a specification for a por-
table external representation for directed graphs
and hygraphs. ' Hy* can read and write graphs in
GXF format from and to UNIX** files, and uses
optional records or “extensions” of GXF to store
all layout and display-related information. Pro-
cessor programs may use these Hy " -specific ex-
tensions to manipulate the visual representation
of a hygraph, for example, for layout tasks.
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Figure 5 Synchronized graphical and textual browsing of source code
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Adapted from M. P. Consens and A. O. Mendelzon, "Hy": A Hygraph-based Query and Visualization System,"
Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data

GXF files encode hygraphs in a recursive list struc- s Hygraph fileout (a comment) .
ture with a syntax very similar to that of the LISP (GRAPH (ID " fche@rock.db: Fri Jul 31 12:07:44 EDT 1992" )
u yn ry ! ! (BOUNDS (RECTANGLE (XY 0 0 ) (XY 11)))
language. A GXF file is structured into lists that (NODES (NODE (ID "1" )

contain one keyword and multiple atoms (num- g:g?ﬁ# "Cliisé'?bgegt;;" )

bers and strings), and may also contain nested (BOUNDS (RECTANGLE (XY 0.1 0.8 )
sublists. Unparsed comments can also be in- (XY 0.11 0.81})))

cluded. A GXF file consists of one or more top- (B’I’_’gg‘; '('g‘l_’g;)

level GXF lists, at least one of which has the key- (FROM “4" ) ; container node

word Graph, and it contains the encoding of a (TO "1 ) ; contained nodes
hygraph. This top-level Graph list is decomposed gg 2 ;

into subli§ts that represent various parts of the (LABEL " showGraphLog" )

hygraph: its edges, nodes, blobs, etc. These sub- (BOUNDS (RECTANGLE (XY 0.1 0.1)
lists are decomposed further to describe individ-  more blobs ) (XY 0.9.0.5))))

ual edges, nodes, and blobs, and further yet to (EDGES (EDGE

describe some individual data, such as label, po- (Fgolr.'lz"'ll" b fror;-node

sition, and shape. Part of the GXF representation HABEL ..%er;\..t‘)’;m ¢

of the graph in Figure 1 follows: z more edges ))
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Tool integration. The system has the ability to
invoke external programs that, for instance,
browse an object being represented by a node in
one of the graphs displayed by the system. The
Hy* visualizations can be used as overviews to
locate information and then invoke third-party
browsers to display the contents associated with
the relevant objects. An obvious advantage of this
approach over a purely navigational one is the
ability to use the convenience and expressive
power of GraphLog patterns to retrieve the ob-
jects of interest, instead of attempting an often
impractical brute force search. Of course, this
approach is in addition to the use of Hy* to gen-
erate as many specifically tailored overviews as
needed. Figure 5 has an example of such an in-
tegration. ™ To the right of a specialized hygraph
browser there is a Lector**'* window that dis-
plays the source code associated with the object
selected in the browser (the code for class(‘ldent-
Dict')). The display synchronization works both
ways: when the user changes the page of source
code displayed by Lector, the object selected in
the Hy* browser adjusts correspondingly. Fur-
thermore, the query evaluation component has
been extended to handle a mixture of traditional
and textual queries. The latter kind of queries are
handled by the PAT** Text Searching Engine."

Hygraph layout. When data are imported into
Hy* from nongraphical sources, or when an-
swers to queries are computed, it is necessary to
compute a layout for the resulting hygraphs, that
is, to determine how the abstract topology of the
hygraph will be embedded into a two-dimensional
picture. Unlike many tools that offer a fixed set of
predetermined layouts or visualizations, Hy™*
provides a flexible and interactive layout mech-
anism that is essential to allow domain experts to
easily experiment with a variety of (possibly un-
anticipated) visual representations and layouts.

To compute hygraph layouts, Hy* uses the
graphite utilities developed within our project. '
The current implementation of graphite consists of
several UNIX filters. The graph layout filter reads
a GXF description of a hygraph from stdin, inter-
nally modifies the position and size information of
various hygraph elements in accordance with par-
ticular layout criteria, and writes the description
of the modified hygraph to stdout. The graphite
graph layout filter has also been used to generate
three-dimensional graph layouts for a prototype
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Figure 6 Mapping the hygraph formalism onto the
generic container model
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graph browser incorporated into 4Thought,” a
software development environment.

Layout architecture. To provide more flexible
and powerful drawing facilities, we designed ev-
ery graphite layout algorithm with respect to a ge-
neric container model: a container may recur-
sively contain (sub)containers; containers may
optionally be linked by directed arcs. The hy-
graph formalism is mapped onto this model as
shown in Figure 6. The figure essentially says that
a graph container may contain one or more node
containers, each of which contains a label region,
icon region, and blobs region containers. Simi-
larly, a blobs region may contain one or more blob
containers, each of which contains a nodes region
and a label region container. Finally, a nodes re-
gion may contain one or more node containers.
All containers are treated uniformly by layout al-
gorithms, thereby allowing the same layout algo-
rithm to be used to position the subcontainers of
container types.

Basic layout algorithms. The current version of
layout filter is capable of producing a drawing us-
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ing arbitrary combinations of the following simple
parametric layout algorithms (each algorithm
supports both two-dimensional and three-dimen-
sional layouts):

1. Cluster: size-based clustering layout—Con-
tainers are divided into clusters according to
size and shape similarity. Each cluster is laid
out independently, and then resulting draw-
ings are combined to form a composite, sim-
ilar to the technique described in Reference
18.

2. Circle: elliptical layout—Containers are po-
sitioned along the perimeter of an ellipse;
containers are ordered to reduce (but not nec-
essarily minimize) the number of arc cross-
ings.

3. Grid: grid layout—Containers are positioned
at the intersections of an m X n grid. Con-
tainers are placed, one connected component
at a time, in top-to-bottom left-to-right order,
and are ordered to reduce (but not necessarily
to minimize) the number of arc crossings.

4. Hier: hierarchical layout—The algorithm
computes a depth-first spanning forest™ F of
the input graph, and places containers by fol-
lowing tree arcs with respect to F, and is sim-
ilar to several approaches found in the liter-
ature. 2!

5. Nop: no layout—The positions of containers
are not altered. This method can be used to
provide a form of incremental layout capa-
bility.

6. Overlap: overlap elimination—Containers
are repositioned to eliminate overlaps in a
manner similar to the horizontal shuffle algo-
rithm,* except that containers are shuffled
along both the x and y axes (and z for three-
dimensional layouts).

7. Pack: quadtree-based two-dimensional bin
packing—Containers are placed into a small
enclosing region by an incremental (and heu-
ristic) quadtree-growing approach.

8. Random: random layout—Containers are po-
sitioned randomly without overlaps.

9. Spring: force-based layout—Containers are
positioned according to the following analogy
to a physical system: containers are treated
as charged bodies that repel one another; arcs
are treated as springs attached to pairs of con-
tainers that pull each member of the pair
toward the other. The simulation continues
until a low-energy state is reached, resulting
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in the final layout; similar approaches have
been described in References 23, 24, and 25.
10. Stack: stack layout—Containers are posi-
tioned along the axis that results in the most
square (cubical) or compact drawing.
11. 1d: one-dimensional layout—Containers are
positioned along one of the specified axes.

Each layout algorithm can be controlled by
manipulating a number of generic and algorithm-
specific parameters. Furthermore, the graphite
layout filter can also be used to generate nongeo-
metric fish-eye views of nested graphs®? that
can be used to balance local detail and global con-
text by automatically emphasizing some regions
of the layout while simultaneously de-emphasiz-
ing others.

Composite hygraph layout. Composite layout is a
graph layout technique in which the input graph
is partitioned into several subgraphs that are laid
out independently (by different layout algorithms)
and then composed to produce the final draw-
ing.18,28

The graphite layout filter is capable of performing
a composite layout of general graphs at a much
finer level of granularity than previous efforts.
The filter allows a (possibly unique) algorithm to
be associated with each container in the container
hierarchy (see Figure 6) induced by a hygraph. If
a container is not assigned a layout algorithm, it
inherits the algorithm of the parent container. In
a composite layout scenario, in addition to the
top-level container, a (possibly) unique layout al-
gorithm can be associated with each node, blob,
nodes region, and blobs region container by in-
serting appropriate layout directives into the GXF
le.

Software engineering applications

Earlier in this paper, we introduced Hy* and the
Graphlog query language by visualizing the
structure of a C++ class library and querying that
structure during software development to facili-
tate program understanding. Hy* has been ap-
plied to software structures in References 29 and
30 and to debugging distributed applications in
Reference 31.

In this section, we give additional examples using

the same database as given earlier in the tour of
Hy*, that is, the NIH C++ library. Once again,
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Figure 7 Defining synonyms for functions and displaying some of them
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the objects of interest include classes, functions,
and variables. Relations between these objects
include the subclass relation between two classes,
the mem relation between a class and its member
functions, the friend relation between two classes
or between a class and a function, the relation
virtual between a class and its virtual member
functions, and the relation pure-virtual between a
class and its pure virtual functions (that is, func-
tions that are defined as virtual but with no im-
plementation given for them).

In a language with inheritance, it is not always
obvious which version of a function will be in-
voked by a function call. It is useful for a C++
programmer to know where in the inheritance hi-
erarchy a function is defined. Hy* can group to-
gether all “synonyms” of a function and associate
the resulting set with the name of the function
using blobs. The upper part of Figure 7 demon-
strates how. First, the relation fmem is defined to
relate a class C with a triple fcl(F,C,L), if class C
defines function F at source code line number L
(ignoring for simplicity the fact that code comes
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from multiple files). Then, if class C2 is a subclass
of class C1 (or equal to C1) and both classes define
the same function F at some line of their code, the
triple fcl{F,C2,L2) is placed inside the blob for the
function F. The triple fcl(F,C1,L1) is placed when
C1=C2 (note the use of the Kleene closure). Part
of the answer to requesting these synonyms ap-
pears at the bottom of Figure 7. Note that,
for the function at, both implementations are pro-
vided inside the class Set, whereas the function
deepenVBase is defined once in classes Set and
Dictionary and twice in class IdentDict.

Another point of interest for C++ programmers
is whether a class contains functions that are pure
virtual; that is, their interface is available to sub-
classes of the class, but no implementation is pro-
vided by the class. We call such a class incomplete.
Figure 8 contains the definition of incomplete
classes: a class C is incomplete if it contains at least
one pure virtual function. Also, a class C2 that is
a subclass of an incomplete class C1 and does not
provide the implementation of the inherited pure
virtual function is also an incomplete class.
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Figure 8 ldentifying classes with incomplete implementation
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The following two examples use Hy * for finding
possible design flaws in the C++ program. Both
are taken from Meyers, ¥ who discusses a number
of specific ways to improve C++ programs and
designs. The first example involves classes that
do not have any virtual functions. This means that
none of its member functions can be overridden;
all subclasses can add new functionality but can-
not modify existing behavior because nonvirtual
functions impose a mandatory implementation.
This restriction can be considered a form of lim-
ited inheritance and, according to Meyers, may
be an indication of a design problem. The query
in Figure 9 finds such designs: the relation
numOfVirtualFunctions is defined between every
class C and the number of virtual functions that
are defined in C. If that number is zero, the
class is complete; hence, subclasses may not
modify any of the behavior of the class. The filter
query in Figure 9 requests to see the part of the
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class hierarchy that inherits from complete
classes.

In the same spirit is the second example from
Meyers. A nonvirtual function has both its inter-
face and its implementation specified by the class
in which it appears. According to Meyers,” re-
defining such a function in a public subclass is not
a good design practice. The query in Figure 10
searches for all classes C1 such that C1 redefines
a nonvirtual function defined in some superclass
C2 of C1.

The above queries can be seen as constraints im-
posed upon the structure of the database. A soft-
ware system satisfies these constraints if and only
if the answers to the associated queries are
empty. More interestingly, when the system fails
to satisfy a constraint, Hy * can be used to display
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the violation in a meaningful context so that a
person can decide whether the violation is harm-
ful or not.

Technology transfer: The use of GraphLog in
4Thought. The 4Thought prototype "’ is a tool that
aims to explore applications of database visual-
ization technology to software engineering. The
visual query language Graphlog is a suitable no-
tation for expressing the type of software engi-
neering queries that 4Thought needs to support.

4Thought was initially targeted at programming-
in-the-large tasks such as architecture, design,
and performance tuning®~* in which the database
being visualized contains structural information
about the program. Here GraphLog is used as a
visual query language to specify graphical views,
such as call graphs and inheritance hierarchies, of
the program database. We believe that GraphLog
is a very intuitive way to define program views
since software engineers are used to thinking
graphically and commonly employ a wide variety
of structural diagrams.

Later, 4Thought was applied to programming-in-
the-small tasks such as specification®** in which
the database being visualized contains the appli-
cation data. Here GraphLog is used as a visual
specification language to define the computation
being performed by the application. We feel that
specifications written in GraphLog are much eas-
ier to understand than equivalent specifications
written in purely textual notations, such as
pseudocode or predicate logic.

An exciting recent development has been the ev-
olution of databases to support new versions of
SQL that allow recursive queries. This means that
commercial databases will soon be able to effi-
ciently execute Graphl.og queries, making tools
like 4Thought and Hy* useful in application do-
mains such as bills-of-material and airline routes.
We believe that writing queries for these recur-
sive domains is much easier in GraphLog than in
SQL, and we are investigating customer require-
ments for new database application development
tools that exploit graphical visualization.

Network management applications

Managing a large heterogeneous computer net-
work is a complex task. The proposed network
management standards for Internet networks
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Figure 10 Redefining an inherited nonvirtual function
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based on Transmission Control Protocol/Internet
Protocol (TCp/1P) and the International Organiza-
tion for Standardization (1S0) Open Systems In-
terconnection (0SI) network management stan-
dards are attempts by standards organizations to
reduce the complexity involved. They propose a
manager-agent paradigm, where a management
station receives status data from network devices
and assembles them into a global picture of the
network, that is used to monitor and control net-
work operation. Appropriately visualizing this
global picture as well as others can be a very
effective aid in managing the network. In general,
three techniques are useful for network manage-
ment: abstraction, filtering, and visualization.

Abstraction: The complexity of managing net-
works is reduced by systematically imposing dif-
ferent levels of abstraction onto the network. Do-
ing so allows the functional management to be
performed in a structured way. Network objects
can be abstracted into higher-level entities based
on different criteria set by the network manager,
for example, geographical sites broken down into
buildings, or administrative responsibilities within
the network, e.g., domains. Network objects can
also be abstracted according to the ISO OSI pro-
tocol layering by distinguishing between two dif-
ferent views of the topology map of the network:
the logical map, which corresponds to the net-
work layer, and the physical map, which corre-
sponds to the data-link and physical layers.

Filtering: The limitation in the size of the presen-

tation media makes it difficult to visualize the sta-
tus of the entire network. When a problem occurs
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Figure 11 Defining and displaying the logical network
layer map (part1)
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in the network, it would be helpful to see only the
relevant areas of the network. It would be nice to
be able to specify what we want in a simple and
declarative way, filter out the problem area, and
visualize it in terms of the topology of the network
and at different levels of abstraction.
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Visualization: In presenting the data to the human
manager, it is widely believed that graphical dis-
plays are essential; all commercial network man-
agement tools make an attempt to communicate
information visually. These visualizations tend to
be hardwired into the software, with limited con-
trol available to the manager. A flexible system
where the what and how of visualization is under
user control has significant potential for advanc-
ing the state of the art in network management
software.

Network management in Hy*. In this subsection,
we show how we can obtain different views of the
network using the querying capabilities provided
by the Hy " system. The example network man-
agement database contains information about the
topology of the network and about its constitu-
ents. This information is obtained from MIBs
(management information bases*). By executing
the queries shown in Figure 11, we obtain the
logical network layer map shown in Figure 12.
Similar queries can produce the physical topology
map.

To handle performance bottlenecks and faults, a
network must be monitored continuously. The re-
sult of monitoring is reflected in alerts. Defining
alerts and correlating them requires sophisticated
and flexible alert definition facilities. By consid-
ering the network as a distributed database and
the MIB as the schema of the database, alerts can
be defined as declarative GraphLog queries.

Suppose that we monitor the utilization of a
server called samba. For this purpose, we poll the
tepInSegs and tcpOutSegs TCP MIB objects of the
server. These two variables store the total num-
ber of TCP segments flowing in and out of the
polled server, as calculated from a defined epoch.
The values returned are kept in the database as
history traces.

An alert can be generated if the server utilization
falls below a certain threshold in a particular pe-
riod of time, for example, during an expected
high-traffic period. If the alert goes off, it indicates
a possible problem symptom. The queries in
Figure 13 define the alert alert-servi-util. Query
define81 finds out the time (pointed out by the
distinguished edge previous_time) when the previ-
ous poll of samba was taken. Query define82 com-
putes the rate of tcpinSegs and tcpOutSegs traffic in
the latest poll interval during high-traffic time.
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Figure 12 Defining and displaying the logical network layer map (part2)
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Figure 13 Defining an alert for possible problem symptoms
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Query define83 checks whether the rate computed
in the previous query falls 80 percent below the
expected traffic kept on the traffic_high_server edge
of samba. If the condition is satisfied, an edge
called problem_area is created from the node la-
beled samba to the node labeled with the name of
the alert.

Assume that the above alert has gone off, and
the problem area is the server samba. The alert
may fire for various reasons, among them con-
gestion in gateways between the server and
the clients or a hardware fault. Assume that we
first hypothesized that the cause of the alert
was congestion, but the investigation (see Refer-
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ence 36) showed no congestion, although it
found that the clients of samba are not generat-
ing the expected traffic to the server. Our second
hypothesis is that the cause of the alert is a hard-
ware problem. In this case, the map showing
physical details like repeaters, bridges, data-link
layer protocols, and so on is brought up. Before
looking for the physical causes of the problem,
we superimpose the currently active TCP links
on the portion of the physical map that depends
on the alert.

Query define101 of Figure 14 can be interpreted as

follows: create an edge called tcp_link between the
hosts H that depend on the alert alert-servi-utit and
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Figure 14 Defining and showing TCP links
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the server samba, if the 1P address found in the
tcpConnRemAddress of the TCP connection table of
H matches the address of samba (which is stored
in the attribute attr(address) of the configuration
database). Query show101 produces, as a result,
the visualization in Figure 15 showing the portion
of the physical topology map that depends on the
alert, together with the previously defined tcp_link
edges superimposed on the map.

The visualization of TCP links allows us to pin-
point the problem area at the portion of the net-
work beyond ether4. The problem could be at the
repeater repeateri or at the Ethernet segments
ether1 and ether2. This belief follows from noticing
that no TCP connection originates at ether1 or
ether2. The SNMP manager could not access the
current TCP objects from that part of the network.

The example shows how, when isolating faults in
a network, it is advantageous to view network
maps at different abstract levels while proceeding
in a structured manner to pinpoint the problem
area.

Conclusion

We have described the architecture and some as-
pects of the implementation of the Hy* visual-
ization system and its related software. We are
encouraged by the ease with which we were able
to apply these ideas to a wide variety of applica-
tions, including various aspects of software en-
gineering, network management, and distributed
and parallel debugging. Traditional data manage-
ment tools have not been very successful in tack-
ling these kinds of domains; we believe the unique
combination of visualization and deductive data-
base features of Hy* and GraphLog give us the
edge here.

Work is proceeding to extend Hy ™ in several di-
rections, including dynamic visualizations, tem-
poral queries, three-dimensional diagrams, incre-
mental query and layout, and new emphasis
techniques for large visualizations. We hope this
work is contributing to achieving David Harel’s
vision:*

We are entirely convinced the future is “visu-
al.” We believe that in the next few years many
more of our daily technical and scientific chores
will be carried out visually, and graphical fa-
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cilities will be far better than today’s. The lan-
guages and approaches we shall be using in do-
ing so will not be merely iconic in nature [...]
but inherently diagrammatic in a conceptual
way [...]. They will be designed to encourage
visual modes of thinking when tackling systems
of ever-increasing complexity, and will exploit
and extend the use of our own wonderful visual
system in many of our intellectual activities.
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