
Evaluation of a
predicate-based
software testing strategy

In this paper, we report the results of four
empirical studies for evaluating a predicate-
based software testing strategy, called BOR
(Boolean operator) testing, The BOR testing
strategy focuses on the detection of Boolean
operator faults in a predicate, including incorrect
AND/OR operators and missing or extra NOT
operators. Our empirical studies involved
comparisons of BOR testing with several other
predicate-based testing strategies, using Boolean
expressions, a real-time control system, and a
set of N-version programs. For program-based
test generation, BOR testing was applied to
predicates in a program. For specification-based
test generation, BOR testing was applied to
cause-effect graphs representing soft ware
specification. The results of our studies indicate
that BOR testing is practical and effective for
both specification- and program-based test
generation.

T he testing activities of a software project usu-
ally take about half of the total cost. 'r2 A ma-

jor problem in testing a program is how to reduce
the effort of generating a test set that is effective
for detecting faults in the program. One approach
to software testing, referred to as predicate test-
ing, is to require certain types of tests for each
predicate (or condition) in a program or software
specification. One commonly used predicate test-
ing strategy is branch testing, which requires that
the true and false branches of a predicate be ex-
ecuted at least once.

As the complexity of software increases, so does
the number of compound predicates, which are

by K.-C. Tai
M. A. Vouk
A. M. Paradkar
P. Lu

predicates with one or more AND/OR operators, in
software specification and implementation. Re-
cently a predicate testing strategy, called BOR
(from Boolean operator) testing, was proposed
for testing compound predicates. BOR testing fo-
cuses on the detection of Boolean operator faults
in a predicate, including incorrect AND/OR oper-
ators and missing or extra NOT operators; it can
be applied to either specification- or program-
based test generation. In this paper, we report the
results of four empirical studies for evaluating the
BOR testing strategy.

The remainder of this section contains basic def-
initions. The next section discusses several pred-
icate testing strategies and illustrates the difficulty
of testing compound predicates. The section
thereafter introduces the BOR testing strategy.
The remaining sections of the paper show the re-
sults of four empirical studies, two of them based
on the use of Boolean expressions, one based on
a real-time boiler control and monitoring system,
and one based on a set of N-version programs.

A predicate is either a simple or compound pred-
icate. A simple predicate is a Boolean variable or

Wopyright 1994 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

Figure 1 A cause-effect graph

a relational expression, possibly with one or more
NOT (“-”) operators. A relational expression is
of the form

E, <rap> E,

where E, and E, are arithmetic expressions and
<rap> is one of six possible relational operators:
6 6 < 7,) ‘< < = 77 “ - 77

7 - “f”, “>”, and “> =”. (Nan-
arithmetic expressions, such as character strings
and sets, are not considered in this paper.) Acom-
pound predicate consists of at least one binary
Boolean operator, two or more operands, and
possibly NOT operators and parentheses. The bi-
nary Boolean operators considered in this paper
include OR (‘‘I”) and AND (“&”). A Boolean
expression is a predicate without relational ex-
pressions. In this paper, Bi, i>O, denotes a Bool-
ean variable, and Ei denotes an arithmetic
expression.

If a predicate is incorrect, then one or more of the
following types of faults exist:

1. Boolean operator fault (incorrect AND/OR op-

2. Incorrect relational operator
3. Incorrect parentheses
4. Incorrect arithmetic expression

erator or missing or extra NOT operator)

446 TAI ET AL.

5. Incorrect Boolean variable
6. Extra binary operator and its operands
7. Missing binary operator and its operands

An incorrect predicate contains either a single
fault or multiple faults of the same or different
types. A test set for a predicate C is said to detect
the existence of faults in C, if an execution of C
on at least one element of this test set produces an
incorrect outcome of C. A test set T for C is said
to guarantee the detection of certain types of
faults in C, if T can detect the existence of such
faults in C, provided that C does not contain faults
of other types. Assume that predicate C’ has the
same set of variables as C and is not equivalent to
C. A test set T is said to distinguish C from C’ if
C and C’ produce different outcomes on at least
one element of T. As an example, the test set
{(t,t), (t,f), (f,t)}, where “t” and “f” denote “true”
and “false,” respectively, distinguishes (B,&B,)
from other Boolean expressions that differ from
(B,&B,) in Boolean operators only. The set {(t,t),
(t,f), (f,t)} is said to guarantee the detection of
Boolean operation faults in (B,&B,).

A test set T for a predicate C is said to satisfy a
predicate testing criterion (or strategy), for Cy if
the executions of C using T satisfy the require-
ments of this criterion. A predicate testing crite-
rion (or strategy) is said to guarantee the detec-
tion of certain types of faults in predicate C, if any
test set satisfying this criterion for C can detect
the existence of such faults in C. For two predi-
cate testing criteria (or strategies) S and S’ , S is
said to be stronger than S’, if any test set satis-
fying S for a predicate also satisfies S‘ for the
same predicate, but not vice versa.

A cause-effect graph (CEG) is a graphical notation
for describing logical relationships among causes
and effects. A cause is an input condition, an ef-
fect is an output condition, and logical operators
include AND (“A”), OR (“V”), NOT (“-”), and
others. The notion of CEGS was developed for sys-
tem specification and test generation. 1,6 A test set
for a cause-effect graph can be used to verify this
graph as well as any program that implements this
graph. Figure 1 shows a CEG, with nodes N,
through N, denoting causes, nodes N, and N6
intermediate nodes, and nodes N, and N8 effects.
The CEG in Figure 1 can be viewed as a collection
of two predicates: ((N, IN,)&(N,&N,)) for N, and
((NllN2)IN4)) for N8*

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

Predicate testing strategies

This section discusses several predicate testing
strategies and illustrates the difficulty of testing
compound predicates. More details of predicate
testing strategies can be found elsewhere. 1,7 The
following predicate

where E, through E, denote arithmetic expres-
sions, is denoted as C# and used later for illus-
tration.

Branch testing. This strategy requires that the true
and false branches of a predicate be executed (or
covered) at least once. The number of tests re-
quired for a predicate is two and does not depend
upon the complexity of this predicate.

Complete branch testing. This strategy requires
that, for a compound predicate C, the true and
false branches of every simple or compound pred-
icate in C (including C itself) be executed at least
once. Although complete branch testing is stron-
ger than branch testing, the former usually can be
satisfied for any compound predicate by using
two tests.’ Thus, complete branch testing is not
necessarily more effective than branch testing for
fault detection.

The test set {t,, t2} shown in Table 1 satisfies com-
plete branch testing for C#. In the table, the val-
ues o f t , and t2 are not given. Instead, each o f t ,
and t2 is specified in terms of the outcome (‘9’’ or
“f”) of each relational expression in C#. Test
t, makes (E, <E2) true, (E3>=E4) true, and
(E5=E6) true. Similarly, test t2 makes (E,<E2)
false, (E,>=E4) false, and (E5=E6) false. t, and
tz are said to satisfy or cover constraints (t,t,t) and
(f,f,f), respectively, for C#. The constraint set
{(t,t,t), (f,f,f)} is said to satisfy complete branch
testing for C#. Note that {tl,tz} does not distin-
guish C# from the following predicates, which
differ from C# in Boolean operators only:

Table 1 Test set {t,, t2}

((E,cE,) 8((EJ>=EI)) I (ES=E6) outcome of C#
t l t t t t
t2 f f f f

Table 2 Test set {t3, t,, t5} ~1 ((E,<E,) & (Es>=Eh)) I (e5-E~) OUtCOmeOf C#

> - - >

(Each of the above predicates produces the same
results on t, and t2 as C#.)

Relational operator testing. For a relational expres-
sion, say (E <rap> E’), this testing strategy re-
quires three tests satisfying the following require-
m e n t ~ : ~ , ’ ~ (1) one test makes E > E’, (2) one test
makes E < E’, and (3) one test makes E = E’. If
<rap> is incorrect and E and E’ are correct, this
strategy guarantees the detection of the incorrect
<rap>. (For a relational expression, relational
operator testing is stronger than branch testing.)
For a compound predicate C containing multiple
relational expressions, one intuitive approach is to
require relational operator testing for each rela-
tional expression in C. However, this requirement
does not guarantee the detection of incorrect rela-
tional operators in C.

The test set {t,, t4, t,} shown in Table 2 for C#
satisfies relational operator testing for each rela-
tional expression in C#. In Table 2, each of t,, t,,
and t, is specified in terms of “<”, “=”, or “>”
for a relational expression, indicating that the left
side of the expression is less than, equal to, or
greater than, respectively, the right side of the
expression. For example, t, makes E,=E,,
E,>E,, and E,=E,, and is denoted by the con-
straint (=,>,=). The constraint set {(=,>,=),
(<, <, <), (>, = , >)} is said to satisfy relational op-
erator testing for relational expressions in C#.
{t3, t4, t,} does not distinguish C# from the fol-
lowing predicates, which differ from C# in rela-
tional operators only:

((E,<=E,) & (E3>=E4)) I (&=E6)

((El = E2) & (E3>=E4)) I

((El< E2) & I (E5=E6)

((E,= E2) & (E,> E4)) I (Es=Es)

TAI ET AL. 447 IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

Figure 2 Syntax tree for ((E, c E2) & (E3>= Ed)) I (E5= E6)

Table 3 Constraint set {ts, . . . , t,2}
I I

((E,<E,) &k &>=EO)) I (E5=E6) outcome of C#
t f t

t f t t
t t t
f t t I i I r

Exhaustive testing. The examples shown above
illustrate the following two problems in testing
compound predicates: (i) detection of (single or
multiple) Boolean operator faults, (ii) detection of
(single or multiple) relational operator faults. For a
compound predicate C, if we require that all com-
binations of “t” and “f” for each simple predicate
in C be executed at least-once, then problem i is
solved. If we require that all combinations of “ < ”,
- , and “>” for each relational expression in C

be executed at least once, then problem ii is solved.
Assume that C consists of IZ > O AND/OR operators.
The exhaustive testing solution to problem i re-
quires 2**(n + 1) tests and to problem ii 3**(n + 1)
tests. Thus, exhaustive testing is not practical.

Elmendorf‘s strategy. Elmendorf developed a test
generation algorithm for cause-effect graphs. 1,6

(6 - 7 9

448 TAI ET AL

Since a cause-effect graph is a collection of com-
pound predicates, Elmendorf’s strategy can be
applied to generate tests for a compound predi-
cate. Below we show the application of this strat-
egy to generate tests for C#. Figure 2 shows the
syntax tree” for C#, which contains

9 Three leaf nodes N,, N,, and N,, which corre-
spond to (E, <E,), (E, > =E4), and (E,=&), re-
spectively
Node N,, which corresponds to the “&” oper-
ator
Node N,, which corresponds to the “ I ” oper-
ator

The nodes in the syntax tree for C# are visited
from the root node to leaf nodes. For node N,,
inputs (t,f), (f,t), and (f,f) are selected, with the
first element of each input being the output of N,
and the second element of each input being the
output of E,=E6. For node N, with output value
“t”, input (t,t) is selected, and for node N, with
output value “f”, inputs (t,f), (f,t), and (f,f) are
selected, with the first element of each input being
the output of (E, <E,) and the second element of
each input being the output of (E, > =E4). Thus,
Elmendorf’s strategy generates the constraint set
{t6, . . . , t12} for C# shown in Table 3.

Equivalence partitioning testing. Yokoi and Ohba
developed a tool, called TCG, that generates tests
for a cause-effect graph. l2 Based on a selected set
of nodes in a cause-effect graph G, the set of all
possible combinations of input conditions of G is
divided into equivalence classes, one for each
possible combination of the outcomes of the se-
lected nodes. For example, if only an effect node
E of G is selected, two combinations of input con-
ditions are chosen, one making node E true and
the other making node E false. In contrast, if all
nodes of G are chosen, all combinations of input
conditions are chosen. Now we show the appli-
cation of this strategy to generate tests for C#,
according to the syntax tree in Figure 2. Assume
that we select nodes N, and N, for equivalence
partitioning. N, and N, have three combinations
of outcomes since it is impossible to make N, true
and N, false at the same time. TCG chooses the
constraint set {ti,, t14, ti,} for C# shown in Table
4. t,, makes both N, and N, true, t14 makes N,
false and N, true, and ti5 makes both N, and N,
false. The constraint set {(t,t,f), (f,f,t), (f,f,f)} does
not distinguish C# from ((El<E,) I (E3>=E4)) I

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

(E, = E6), which differs from C# in one binary
operator only.

The BOR testing strategy

As shown earlier, one problem in testing com-
pound predicates is the detection of Boolean op-
erator faults. The Boolean operator (or BOR) test-
ing criterion for a compound predicate is to
guarantee the detection of (single or multiple)
Boolean operator faults, including incorrect
AND/OR operators and missing or extra NOT op-
erators. A test set T for a predicate C is said to be
a BOR test set for C if T satisfies the BOR testing
criterion for C. A set S of constraints for predicate
C is said to be a BOR constraint set for C provided
that if a test set T for C satisfies S, T is a BOR test
set for C. An algorithm that generates a minimum
BOR constraint set for a compound predicate was
given3 and is referred to as algorithm BoR-min in
this paper.

Here we now show the application of algorithm
BOR-min to C#. We first transform C# into its
syntax tree, as shown in Figure 2. Then we visit
the nodes in the syntax tree for C# from leaf
nodes to the root node. (Note that Elmendorf’s
strategy does the opposite.) Each node N,, i>O,
in the syntax tree for C#, corresponds to a pred-
icate P(N,) in C# and is associated with true and
false constraint sets, denoted as T(N,) and F(N,)
respectively, such that:

T(N,) is a set of constraints producing the true

F(N,) is a set of constraints producing the false
value for P(N,).

value for P(N,).

When we visit each of nodes N1, N,, and N,, we
define its true constraint set as {(t)} and its false
constraint set as {(f)}. For node N,, we define
T(N4) as {(t,t)} and F(N,) as {(t,f), (f,t)}. For node
N,, we construct its constraint sets according to
the following rules:

F(N,) = F(N4) % F(N,) and

T(N5) = (T(N4) x {fd) u (-841 x T(N,)),

where “%” denotes the onto operation, “ X ” de-
notes the concatenation operation, f, is in F(N,),
f4 is in F(N,), and (f4,f3) is in F(N,).

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

Table 4 Constraint set {t13, t,,, t15}

f 1 : i : f
f
f

t
f

t

F(N,)%F(N,) returns a minimum subset of the
product of F(N,) and F(N,) such that each element
in F(N4) or F(N,) is chosen at least once.I3 Since

returns {(t,f,f), (f,t,f)}. f, must be {(f)}, and f4

has two choices: {(t,f)} and {(f,t)}. By letting f4 be
{(t,f)}, T(N,) = {(t,t,f), (t,f,t)}. Therefore, algorithm
BOR-min generates the constraint Set {t16, tI7, t18,
t19} for C# given in Table 5.

F(N,)={(t,f), (f,t)) and F(N,)={(f)}, F(N,)%F(N,)

The constraint set {(t,t,f), (t,f,t), (t,f,f), (f,t,f)} is a
minimum BOR constraint set for C#. The sizes of
the constraint sets generated for C# by Elmen-
dorf’s strategy, equivalence partitioning testing,
and algorithm BOR-min are 7, 3, and 4, respec-
tively.

Earlier we showed two rules for the construction
of true and false constraint sets for node N, in
Figure 2. These two rules are used for an OR node.
Similar rules are used for an AND node. The idea
behind algorithm BOR-min is to derive a minimum
constraint set to solve the problem of fault prop-
agation, which is the propagation of an incorrect
outcome of a portion of a compound predicate to
an incorrect outcome of the compound predicate.
For a predicate with n > O AND/OR operators, al-
gorithm BOR-min generates a minimum BOR con-
straint set, which contains at most n+2 con-
straints. Elmendorf’s strategy also generates a
BOR constraint set for a compound predicate, but
the size of the generated constraint set is (n +2) or
more, up to O(2**n).’ In the following discussion,
BOR testing (or the BOR testing strategy) refers to
the use of algorithm BOR-min to generate a con-
straint set for a compound predicate.

A constraint for a predicate is said to be infeasible
for the predicate if it can never be covered by any

TAI ET AL. 449

Table 6 Average fault detection rates

53 s4 s5

BOR testing 99.3% 99.7% 99.9%
Branch testing 72.2% 72.5% 72.9%

test for this predicate. For example, the con-
straint (t,t) is infeasible for predicate ((E,>E,) I
(E, =E2)), since the value of E, can never be both
greater than and equal to that of E, at the same
time. For ((E,<E,) & (E3> =E4)) I (E,<E,), the
constraint (t,t,f) is infeasible since it has two dis-
tinct values for (E, <E,). If the constraint set pro-
duced by BOR testing for a predicate contains
some infeasible constraints, then 100 percent cov-
erage of the constraint set is impossible. The
problem of infeasible constraints also exists in
Elmendorf’s strategy.

A comparison between BOR and branch
testing

For a predicate with n > O AND/OR operators,
branch testing requires two tests, and BOR testing
at most (n+2) tests. We conducted an empirical
study to compare the effectiveness of these two
predicate testing strategies. Let a singular Bool-
ean expression (SBE) be a Boolean expression in
which each Boolean variable occurs only once.
The reason for using SBES is that we want to focus
on the detection of Boolean operator faults and
incorrect parentheses. (Note that a BOR con-
straint set for a predicate guarantees the detection
of Boolean operator faults only if no other types
of faults exist.) A constraint set for a Boolean
expression is called a test set since each con-
straint is actually a test.

We constructed the following sets of SBEs:

S3-A set of 48 mutually nonequivalent SBEs with

S4-A set of 366 mutually nonequivalent SBEs with

S5-A set of 2624 mutually nonequivalent SBEs

three variables

four variables

with five variables

In each of S3, S4, and S5, these SBES differ from
one another in Boolean operators or parentheses
or both. For each Boolean expression B in S3, we
applied algorithm BOR-min to generate a test set

450 TAI ET AL.

T(B) and determined the fault detection rate of
T(B), which is defined as

D(B) / (the number of tests in S3)

where D(B) is the number of Boolean expressions
in S3 that can be distinguished from B by T(B).

Then we computed the average of these fault de-
tection rates. This average value is referred to as
the average fault detection rate of S3 using BOR
testing. We also computed the average fault de-
tection rates of S4 and S5 using BOR testing, as
well as the average fault detection rates of S3, S4,
and S5 using branch testing. (For branch testing
of a Boolean expression, we chose two tests to
satisfy complete branch testing.) Table 6 shows
these average fault detection rates.

Our results show that BOR testing is more effec-
tive than branch testing for fault detection and
that BOR testing almost guarantees the detection
of Boolean operator faults and incorrect paren-
theses in a compound predicate.

A comparison of BOR testing, Elmendorf’s
strategy, and equivalence partitioning
testing

We carried out an experiment to compare BOR
testing with Elmendorf’s strategy and equiva-
lence partitioning testing. For a predicate C with
n>O AND/OR operators, BOR testing generates a
minimum BOR constraint set with (n +2) or fewer
constraints, and Elmendorf’s strategy generates a
BOR constraint set with (n+2) or more, up to
0(2**n), constraints. The number of constraints
required for equivalence partitioning testing of C
depends upon the selection of nodes in the syntax
tree for C. In our empirical study, we selected all
nodes in the syntax tree of C that denote Boolean
operators. By doing so, equivalence partitioning
testing generates (n + 1) or more, up to 0(2**n),
constraints.

We constructed a set, called SBE-4, of 51 non-
equivalent SBES with four Boolean variables. The
SBES in SBE-4 differ from one another in Boolean
operators, parentheses, and/or the positions of
Boolean variables. For each Boolean expression
B in SBE-4, we (1) applied algorithm BOR-min to.
generate a test set T(B), and (2) determined the
size of T(B) and the fault detection rate of T(B).

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

Then we computed the average size and fault de-
tection rate for SBE-4. We also applied Elmen-
dorf’s strategy and equivalence partitioning test-
ing to SBE-4 in a similar way. The average sizes

strategies are given in Table 7. The results show
that

1. Elmendorf’s strategy is very effective for de-
tecting Boolean operator faults, incorrect pa-
rentheses, and interchanges of Boolean vari-
ables. (Note that the fault detection rate of a
test set generated by Elmendorf’s strategy for
a compound predicate is not always 100 per-
cent.)

2. BOR testing is almost as effective as Elmen-
dorf’s strategy and is slightly more effective
than equivalence partitioning testing.

3. BOR testing requires about the same number of
tests as equivalence partitioning testing and
about half the number of tests as Elmendorf’s
strategy.

1 and fault detection rates based on these three

1

Statement 3 above is no longer true when the
number of AND/OR operators in a compound pred-
icate is larger than three. As mentioned earlier,
for a predicate with n>O AND/OR operators, the
number of constraints generated by Elmendorf’s
strategy or equivalence partitioning testing is an
exponentialfunction of n, whereas the number of

function of n. Thus, as the number of AND/OR
operators increases, BOR testing generates fewer
constraints than equivalence partitioning testing.
Another problem with equivalence partitioning
testing is that it first generates all combinations of
input conditions and then divides them into equiv-
alence classes. BOR testing and Elmendorf’s strat-
egy do not have this problem, but they may gen-
erate infeasible constraints. In our opinion, BOR
testing is more practical than the other two strat-
egies.

b constraints generated by BOR testing is a linear

B Applying BOR testing to a boiler control and
monitoring system

This section describes an application of BOR test-
ing to the software for a simplified real-time boiler
control and monitoring system. The specifica-
tions for the system were developed as part of the
generic problem exercise conducted for the 1993
International Workshop on the Design and Re-
view of Software controlled Safety-Related Sys-
tems. A version of the boiler control and moni-

1 IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

Table 7 Average slzes and fault defection rates

~~~ 

Avg. Slze Avg. Fault 
Detection  Rate 

BOR testing 99.73% 
Elmendorf‘s strategy 100.00% 
Equivalence partitioning 4.5 96.88% 

toring system  was developed at  North Carolina 
State University.14 This  software  system, which 
contains  about 4500 lines of C  code, was used in 
our empirical study. A brief description of the 
boiler system  is given below. The  objective and 
the  details of this  study  are  provided in the  re- 
mainder of this  section. 

Figure  3  shows  the  context diagram for the sim- 
plified boiler control and monitoring system.  This 
boiler system  consists of a natural-gas-fired wa- 
ter-tube boiler producing saturated  steam. The 
steam flow may vary rapidly and irregularly be- 
tween zero and maximum, following a  varying 
external  demand.  The  water level in the boiler is 
regulated by the  control of the inflow of feedwa- 
ter.  The  water level must  be  kept  between  an up- 
per and lower limit. If the  water level is  above  the 
upper limit, water will be carried over  into  the 
steam flow and cause damage. If the  water level 
is below the lower limit, boiler tubes will dry  out 
and may  overheat and burst. If the  control of wa- 
ter level is  lost,  the boiler is shut  down. 

The  water level and  the  steam flow are  measured 
by an instrumentation  system  that  reports  sensor 
values.  The readings from sensors  are  transmitted 
over an intrinsically unreliable communication 
link to  the control program. This  control program 
is expected  to perform the following tasks: 

1. To regulate the  water level by controlling the 
inflow of feedwater by appropriately turning 
pumps on or off at required instances 

2. To diagnose and isolate all potential  errors  and 
issue  a  correction or repair request  when  er- 
rors  are  discovered 

3. To display at all times “best  estimates” of var- 
ious readings for  the boiler operator 

4. To accept  appropriate  operator  commands 

Objective  and  procedures of the boiler  system 
study. During the development of the boiler sys- 
tem at North Carolina State  University,  the orig- 

TAI ET AL. 451 



Figure 3 Context diagram for the boiler  control and monitoring  system 

r I 

/ I  

MEASURING 
CONTENT 

DEVICE 

RATE  MEASURING 
STEAMING 

DEVICE 

MONITOR 
PUMP 

-”r PUMP 

I ’‘; FEED 
1 WATER 

mal, informal specification of the  system  was  re- 
written in terms of a number of extended finite- 
state  machines (EFSMs).” According to  the 
boiler’s EFSM specification, test  suites for the 
unit, integration, and  system testing of the boiler 
system  were  constructed  to  ensure thorough test- 
ing.16 In addition to  the  coverage of every  state 
and branch of individual EFSMS for the boiler sys- 
tem, great effort was  made  to  construct additional 
test  cases  to  cover  special-event  situations.  How- 
ever, no well-defined strategies  were used for 
testing  combinations of EFSMs according to  the 
predicates in these EFSMs. 

The  objective  of  our  study  was  to  evaluate  the 
EFSM specification-based test  suites  for  the boiler 
system against the BOR testing criterion.  We  per- 

formed both specification- and program-based 
BOR testing of the boiler system  as follows: 

For specification-based BOR testing of the boiler 
system, we  chose  the  most critical effect, the 
“boiler  shutdown” effect, in the boiler system 
and derived a cause-effect graph (CEG) for the 
shutdown effect (next  subsection).  From  the 
EFSM-based test cases developed  previously  for 
the boiler system, we selected  those related to 
the  shutdown effect. The  selected  test  set,  re- 
ferred to  as  the shutdown  test  set,  contains 372 
test  cases. We used the  shutdown  test  set to 
measure  the BOR coverage of the CEG for the 
shutdown effect (shown later in this  paper). 
For program-based BOR testing of the boiler 
system, we chose  a module dealing with the 

452 TAI ET AL. IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994 



shutdown effect.I7 We measured  the BOR cov- 
erage of this module by  the  shutdown  test  set 
(discussed  later). 

Derivation of a cause-effect graph for the shutdown 
effect. The CEG for the  shutdown effect, referred 
to  as  the shutdown CEG, is organized in five lev- 
els.  The level 1 (the highest level) CEG for boiler 
shutdown is shown in Figure 4. The  annotations 
for  nodes in the level 1 CEG follow: 

E - Boiler shutdown 
C221 - Externally initiated 
C220 - Internally initiated 
C202 - Operator initiated 
C203 - Instrumentation  system initiated 
C201 - Bad startup 
C200 - Operational failure 
C197 - Confirmed keystroke  entry 
C198 - Confirmed “shutnow” message 
C196 - Multiple pumps failure (more  than  one) 
C195 - Water level meter failure during startup 
C194 - Steam  rate  meter failure during startup 
C193 - Communication link failure 
C192 - Instrumentation  system failure 
C191 - C180  and  C181 
C190 - Water level out of range 
C180 - Water level meter failure during oper- 

C181 - Steam  rate  meter failure during opera- 
ation 

tion 

The  cause  nodes of the level 1 CEG, including 
C180,  C181,  C190, and C192 through C198, are 
effect nodes of level 2 CEGs. Similarly, some of the 
cause  nodes of level 2 CEGs are effect nodes of 
level 3 CEGs, and so on. CEGs of level 2 through 5 
are not shown in this paper. 

Measurement of BOR coverage of the shutdown 
cause-effect graph. When we  attempted to mea- 
sure  the BOR coverage of the  shutdown CEG by  the 
shutdown  test  set, we encountered  a problem. 
Although algorithm BoR-min generates  a mini- 
mum BOR constraint  set for a compound predi- 
cate,  such  a minimum BOR constraint  set is not 
unique. As a  result,  the  selection of a minimum 
BOR constraint set for  a compound predicate  may 
affect the BOR coverage of the  predicate by a 
given test  set. To solve  this problem, an algorithm 
called BOR-cov was developed. For a given test 
set T for  a  predicate C, algorithm BOR-cov 

IBM SYSTEMS JOURNAL,  VOL 33, NO 3, 1994 

1. Identifies the  set  T’ of redundant  tests in T, 
which do not improve  the  capability of detec- 
tion of Boolean operator  faults in C 

2. Produces  a minimum set T” of additional con- 
straints  that  are  needed for BOR testing of C 

3. Computes  the BOR coverage of C by T, which 
is defined as (IT1 - IT’I) / (IT1 - IT’I + IT”I), 
where IS1 denotes  the size of a  set S. 

We used algorithm BOR-cov to measure  the BOR 
coverage of the  shutdown CEG by  the  shutdown 
test  set. Of the 372 tests in the  shutdown  test  set, 
59 tests  (about 1/6 of the total) were found to  be 
redundant. Also, 24 more  constraints  are  needed 
for BOR testing. So the BOR coverage of the 
shutdown CEG by  the  shutdown  test  set is 
(372-59)+(372-59+24) = 0.928. Most of the  re- 
dundant  tests deal with pump and flow monitor 
combinations.  However, most of the additional 
tests  needed for BOR testing also deal with pump 
and flow monitor combinations. The reason is 
that  the  tests in the  shutdown  test set for combi- 
nations of pumps and flow monitors were selected 
without applying any effective predicate-based 
testing strategy. 

The shutdown test  set  was constructed earlier by 
three persons totaling approximately 100 person- 
hours. In our study, the shutdown CEG was con- 
structed by  one person in about 20 hours. CEG- 
based test generation can be automated. Also, CEGs 
can be analyzed for the detection of ambiguities  and 
inconsistencies in system specification. Thus, the 
use of CEGs for software specification  and test gen- 
eration has significant advantages. 

Measurement of BOR coverage of a module in  the 
implementation of the boiler. As mentioned ear- 
lier, we  chose  one module in the implementation 
of the boiler to  measure  its BOR coverage.  The 
selected module deals with the  shutdown effect. 
It contains 360 statements in C and 34 predicates, 
of which 21 are simple predicates  (that is, pred- 
icates  without AND/OR operators)  and  the remain- 
der  are  compound  predicates with one AND/OR 
operator. We manually transformed  this module 
for the  measurement of BOR coverage and gener- 
ated  81 BOR constraints for the  predicates in this 
module. (Two  constraints  are  generated for each 
simple predicate  and  three  constraints for each 
compound predicate with one AND/OR operator.) 

The  shutdown  test  set  was used to  execute  the 
implementation of the boiler. l8 Based on  the BOR 

TAI ET AL. 453 



coverage information collected from the  selected set is 79/81 = 0.975. When we investigated the 
module, two of the  81  constraints  were not cov- two uncovered  constraints, we discovered  a 
ered  by  the  shutdown  test  set. So the BOR cov- “bug” in the  selected module. This bug would 
erage of the  selected module by  the  shutdown  test have  been  discovered if the  selected module had 

454 TAI ET AL. IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994 



been  tested  with 100 percent BOR coverage. Also, 
the  two  discovered  constraints  correspond to 
some of the additional tests  needed  for BOR test- 
ing of the  shutdown CEG. Therefore, had these 
additional tests been used  to  execute  the imple- 
mentation of the boiler, the two uncovered  con- 
straints would have  been  covered  and  the  bug 
discovered. 

Applying BOR testing to a set of Kversion 
programs 

This  section  reports  an empirical study of apply- 
ing BOR testing  to  a set of N-version  programs 
written in Pascal.”  Our  reason  for using N-ver- 
sion  programs is that multiple functionally equiv- 
alent  programs  provide  more  objective  results 
than  just  one program. We chose five functionally 
equivalent Pascal programs, which were  pro- 
duced as part of another  study.  These five pro- 
grams were written  independently by graduate 
students  to solve  a navigational problem that was 
an  extension of the  earth  satellite problem. ’O The 
sizes of these five programs range from 400 to 800 
Pascal  statements. 

Acceptance testing of these five programs in- 
volved  both  random  and functional testing and 
used a tool called BGG, which was developed at 
North Carolina State  University to measure  the 
test  coverage of statements,  branches, and vari- 
ous  types of data flow metrics  for Pascal pro- 
grams.” A  set of 1000 random  tests was gener- 
ated by using a uniform distribution of all input 
values.  A  set of 103 functional tests”  was  gener- 
ated by considering extreme and special values 
such  as singularities and boundaries. The  results 
of acceptance testing of these  programs  were  re- 
ported.23,24 BGG was recently  extended to gener- 
ate BOR constraint sets for  predicates in a  Pascal 
program and to  measure  the  coverage of these 
BOR constraints  according  to  a given test  set  for 
the program. 

The objective of this empirical study  was  to  use 
the five-version Pascal  programs  to  compare BOR 
testing with random and functional testing. Ac- 
cording to  the specification for  the navigational 
problem, we derived a CEG for the specification 
and applied algorithm BoR-min to  generate  a  set 
of 43 test  cases, referred to as the CEG-BOR test set 
for the five-version programs. We applied the 
CEG-BOR test  set, using the BGG tool, to execute 
each of the five-version programs, and computed 

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994 

Table 8 Average  coverages  for  test  sets 8 1  Statement  Coverage  Branch  Coverage 

Random 0.848 0.634 
Functional 0.896 
CEG-BOR 0.963  0.896 

the average coverages of statements and branches, 
respectively, of the five-version programs. We 
applied the  random and functional test sets for  the 
five-version programs in a similar way.  Table 8 
shows  these  average  coverages. 

From  Table 8, the CEG-BOR test  set  provides 
about  the  same  statement  or  branch  coverage as 
the functional test  set.  However,  the  size of the 
CEG-BOR test  set  is  about 40 percent of that of the 
functional test  set. 

Since  the five-version programs  contain  faults, 
we also  compared the CEG-BOR, random,  and 
functional test  sets for their effectiveness of fault 
detection.  The combination of random  and  func- 
tional test  sets  detected all faults in one of the 
five-version programs  and  detected all but  one 
fault in each of the  other  four programs. The CEG- 
BOR test  set  detected all faults in each of the five- 
version programs. Thus, in this  experiment,  the 
CEG-BOR test set is more effective than  the  com- 
bination of random  and functional test  sets. As an 
example, for one of the five-version programs,  the 
random  test  set  detected  three  faults,  the  func- 
tional test  set five faults, and the CEG-BOR test  set 
all nine faults in the program. 

Summary 

In this  paper we have  presented  the  results of four 
empirical studies of the BOR testing  strategy.  Two 
of these  studies involved the use of Boolean ex- 
pressions and the  other two the use of actual  pro- 
grams. The major findings are  the following: 

BOR testing is effective for detecting  faults in a 
compound  predicate. 
BOR testing is more  cost-effective  than  several 
other  predicate  testing  strategies. 
BOR testing based on a cause-effect graph  rep- 
resenting  software specification is practical  and 
effective for  detecting  faults in the  correspond- 
ing implementation. 



The  use of cause-effect  graphs in software  spec- 
ification and design is  not  yet popular. One  pos- 
sible  reason is the  lack of user-friendly tools for 
expressing  software specification and design in 
cause-effect graphs.  Since CASE (computer-aided 
software engineering) tools  supporting  cause- 
effect graphs are becoming available,’2,25 the use 
of cause-effect graphs will increase. 

Two variations of the algorithm BoRmin  were 
studied.26  Two  extensions of the BOR testing cri- 
terion  were p r ~ p o s e d , ~ , ~ ~  one  to include the de- 
tection of incorrect relational operators  and  the 
other  to include the  detection of incorrect  rela- 
tional operators  and  arithmetic  expressions. We 
will investigate other extensions of BOR testing such 
as nonarithmetic operations (for example, compar- 
ison between two pointers or character strings) and 
additional Boolean operators (for example, exclu- 
sive-OR and short-circuit AND/OR). Also, we plan to 
carry out empirical studies of BOR testing by using 
larger software systems, and we plan to investigate 
the implementation of tools to support specifica- 
tion- and program-based BOR testing. 

Acknowledgment 

The  authors would like to  thank H. K. Su for his 
earlier work on the  comparison  between BOR test- 
ing and Elmendorf’s strategy. 

Cited references and notes 

1. G.  J. Myers, The Art of Software Testing, John Wiley & 
Sons,  Inc.,  New  York (1979). 

2. B. Beizer, Software Testing Techniques, 2nd edition, Van 
Nostrand Reinhold Co., Inc., New  York (1990). 

3. K. C. Tai, “Predicate-Based  Test Generation for Com- 
puter Programs,” Proceedings of the International Con- 
ference on Software Engineering (May 1993), pp. 267- 
276. 

4. This research  was  supported in part  by  the IBM Centre for 
Advanced  Studies, NASA  Grant NAG-1-983 and NSF 
Grant CCR-8907807. 

5. “Testing criterion”  and  “testing  strategy”  are  often used 
as  synonyms.  In  this paper, we distinguish the  two only 
when a  testing  criterion can  be satisfied by using different 
testing  strategies. 

6 .  W.  R. Elmendorf, Cause-EfSect Graphs on Functional 
Testing, TR-00.2487, IBM Systems Development Divi- 
sion,  Poughkeepsie, NY (1973). 

7. K. C. Tai, Structure- and Fault-Based Testing Strategies 
for Compound Predicates, TR-94-05, Department of 
Computer  Science,  North Carolina State  University, Ra- 
leigh, NC (1994). 

8. For languages like C that  use  short-circuit evaluation of 
AND/OR operators,  more  than  two  tests  are  needed. 

9. K. A. Foster,  “Error  Sensitive  Test  Cases Analysis 

456 TAI  ET AL. 

(ESTCA),” IEEE Transactions on Software Engineering 
SE-6, No. 3, 258-264 (May 1980). 

10. W. E. Howden,  “Weak Mutation  Testing  and  Complete- 
ness of Test Cases,” IEEE Transactions on Software En- 
gineering SE-8, No. 4,  371-379 (July 1982). 

11. The  syntax  tree of a predicate  can  be  viewed  as a cause- 
effect graph with exactly  one effect node  and with  a cause 
node  being  a  relational  expression or Boolean  variable. 

12. S. Yokoi  and M. Ohba, “TCG: CEG-Based  Tool  and  Its 
Experiments,” Proceedings of the 13th Software Reli- 
ability Symposium, Nara, Japan (November 1992), 
pp. 41-49. 

13. If the “%” operation has  two  or  more possible  values, it 
returns  just  one of them. 

14. M. A.  Vouk  and A. Paradkar, “Design and Review of 
Software Controlled  Safety-Related Systems:  The  NCSU 
Experience with the  Generic Problem Exercise,” Pro- 
ceedings of the International Invitational Workshop on 
the Design and Review of Software Controlled Safety- 
Related Systems, Ottawa  (June 1993). 

15. An extended finite-state  machine is an FSM with the  use 
of variables and  predicates. 

16. A.  Paradkar, I. Shields, and  J.  Waters, The NCSU So- 
lution to the Generic Problem Exercise: Boiler Control 
and Monitoring System, Department of Computer Sci- 
ence, North Carolina State University, Raleigh, NC (May 
1993). 

17. The  selected module is not the  only module dealing with 
the shutdown effect. We  chose only one module since,no 
automatic tool was available  for  measuring the BOR cov- 
erage of C  programs. 

18. Since  the  selected module is one of several modules  deal- 
ing with the  shutdown effect, only  a  portion of the  shut- 
down test  set invokes the selected  module. 

19. N-version programming is a  technique  for  increasing  soft- 
ware reliability; it requires  independent  development of 
multiple versions of a software  system for  a  given spec- 
ification and then  execution of these  versions  at the same 

20. P. M. Nagel and  J. A. Skrivan, Software Reliability: Re- 
time to  compare their  results. 

petitive Run Experimentation and Modelling, BSC-40336, 
Boeing  Corporation, Seattle,  WA (1982). 

21. M. A. Vouk  and R. E. Coyle,  “BGG:  A  Testing  Coverage 
Too1,”Proceeedings of the 7th Northwest Software Qual- 
ity Conference (1989), pp. 212-233. 

22. W. E. Howden, Functional Program Testing and Anal- 
ysis, McGraw-Hill Book Co., Inc., New  York (1987). 

23. M. A. Vouk, D. F. McAllister,  and K. C. Tai, “An Ex- 
perimental  Evaluation of the Effectiveness of Random 
Testing of Fault-Tolerant Software,” Proceedings of the 
Workshop on Software Testing (July 1986), pp. 74-81. 

24.  M. A. Vouk, M. L. Helsabeck, D. F. McAllister,  and 
K. C. Tai, “On Testing of Functionally  Equivalent  Com- 
ponents of Fault-Tolerant Software,” Proceedings of 
COMPSAC (Computer Software and Applications) ’86 
(October 1986), pp. 414-419. 

25. Software Through Pictures, Interactive Development En- 
vironments, Inc., San  Francisco, CA. 

26. K. C.  Tai  and H. K. Su, “Test Generation  for  Boolean 
Expressions,” Proceedings of COMPSAC (Computer 
Software and Applications) ’87 (1987), pp. 278-283. 

27. K. C. Tai, A Theory of Fault-Based Predicate Testing for 
ComputerPrograms, TR-94-04, Department of Computer 
Science,  North Carolina State University, Raleigh, N C  
(1994). 

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994 



Accepted for publication April 12, 1994. 

Kuo-Chung Tai Computer Science Department, North  Caro- 
lina State University, Raleigh, North Carolina 27695-8206 
(electronic mail: kct@csc.ncsu.edu). Dr.  Tai is a  professor of 
computer  science  at  North Carolina State University. He  has 
published papers in the areas of software engineering,  distrib- 
uted  systems, programming  languages, and compiler con- 
struction.  His  current  research  interests include software  test- 
ing, concurrent programming  languages, and analysis,  testing, 
and debugging of concurrent  software  and communication 
protocols.  Dr. Tai received  his Ph.D. degree in computer sci- 
ence from  Cornell  University. From 1989 to 1991, he  was the 
director of the  Software Engineering  Program at  the National 
Science  Foundation.  He  is an associate  editor of Computer 
Languages, International Journal of Software Engineering 
and Knowledge Engineering, and International Journal of 
Computer hnd Software Engineering. He  is a  co-program 
chair of the 1994 International Conference  on Parallel Pro- 
cessing. 

Mladen A. Vouk Computer Science Department, North  Caro- 
lina State University, Raleigh, North Carolina 27695-8206 
(electronic mail: mav@csc.ncsu.edu). Dr. Vouk received  his 
Ph.D. degree from the University of London (UK). He  has 
extensive  experience in both  commercial software production 
and academic  computing  environments. He is the  author, or 
coauthor, of over 80 publications. He is currently an associate 
professor of computer  science  at  North Carolina State Uni- 
versity.  His  research and  development interests include:  soft- 
ware  process modeling and risk management; software  test- 
ing, reliability, and  fault-tolerance; development of large- 
scale scientific software-based  systems; and high-speed 
networking  issues. He is  the chairman-elect of the  IFIP  Work- 
ing Group 2.5 on Numerical  Software, and the  cochairman of 
the  Software Quality Interest  Sub-committee of the North 
Carolina  Quality Assurance Discussion  Group. He is an as- 
sociate  editor of IEEE Transactions on Reliability. 

Amit M. Paradkar Computer Science Department, North 
Carolina State University, Raleigh, North Carolina 27695- 
8206 (electronic mail: amit@bvcd.ncsu.edu). Mr. Paradkar 
received  his M.S. degree in computer  studies from North 
Carolina State  University and is  currently a Ph.D. student in 
the Computer  Science  Department  at  NCSU.  He  was a system 
analyst with  Citicorp Overseas  Software Limited in Bombay, 
India. His  research interest  includes software fault-tolerance, 
software testing, software reliability, and software  process 
modeling. 

Peng LU IBM Software Solutions Division, Toronto Labora- 
tory, 844 Don Mills Road, North York, Ontario M3C lv7, 
Canada. Dr. Lu is a research staff member at  the IBM Centre 
for  Advanced Studies (CAS) of the  Toronto laboratory. He is 
currently a  principal  investigator  for the  Software Reliability 
and Testing  project  under CAS. Dr. Lu received  his  Ph.D. in 
engineering from McMaster University in 1989 and joined  the 
IBM Toronto  Laboratory in 1990. He  has  worked  on  several 
development projects and on new  technology  transfer,  includ- 

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994 

ing CASE,  process modeling, reverse engineering, and soft- 
ware reliability engineering. His  research  interests include 
software reliability and testing, software engineering, artificial 
intelligence, and  expert  systems. 

Reprint Order  No. G321-5550. 

TAI ET AL. 457 


