
Evaluation of a 
predicate-based 
software  testing  strategy 

In  this  paper, we  report the  results of  four 
empirical  studies  for  evaluating  a  predicate- 
based  software  testing  strategy,  called BOR 
(Boolean  operator)  testing,  The BOR testing 
strategy  focuses  on  the  detection of  Boolean 
operator  faults in a  predicate,  including  incorrect 
AND/OR  operators  and  missing or extra NOT 
operators. Our empirical  studies  involved 
comparisons of  BOR testing  with  several  other 
predicate-based  testing  strategies,  using  Boolean 
expressions, a real-time  control  system,  and  a 
set  of N-version  programs.  For  program-based 
test  generation, BOR testing was applied to 
predicates in a  program. For  specification-based 
test  generation, BOR testing was applied to 
cause-effect  graphs  representing soft ware 
specification.  The  results of  our studies  indicate 
that BOR testing is practical  and  effective  for 
both  specification-  and  program-based  test 
generation. 

T he testing activities of a  software  project  usu- 
ally take  about half of the  total  cost. 'r2 A ma- 

jor problem in testing a program is how to reduce 
the effort of generating a  test  set  that is effective 
for detecting  faults in the program. One approach 
to software testing, referred to  as predicate  test- 
ing, is to require  certain  types of tests  for  each 
predicate (or condition) in a program or software 
specification. One commonly used predicate  test- 
ing strategy is branch testing, which requires  that 
the  true  and  false  branches of a  predicate  be  ex- 
ecuted at least  once. 

As the  complexity of software  increases, so does 
the number of compound predicates, which are 
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predicates  with  one  or  more AND/OR operators, in 
software specification and implementation. Re- 
cently  a  predicate testing strategy, called BOR 
(from Boolean operator) testing, was proposed 
for testing compound predicates. BOR testing fo- 
cuses on the  detection of Boolean operator  faults 
in a  predicate, including incorrect AND/OR oper- 
ators and missing or  extra NOT operators; it can 
be applied to  either specification- or program- 
based  test generation. In this  paper, we report  the 
results of four empirical studies  for evaluating the 
BOR testing strategy. 

The remainder of this  section  contains  basic def- 
initions. The  next  section  discusses  several  pred- 
icate testing strategies and illustrates the difficulty 
of testing compound predicates.  The  section 
thereafter  introduces  the BOR testing strategy. 
The remaining sections of the  paper  show  the  re- 
sults of four empirical studies,  two of them  based 
on the  use of Boolean expressions, one based on 
a real-time boiler control and monitoring system, 
and one  based on a  set of N-version programs. 

A predicate is either  a simple or compound pred- 
icate. A simple predicate is  a Boolean variable or 
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Figure 1 A cause-effect graph 

a relational expression, possibly with one  or more 
NOT (“-”) operators. A relational expression is 
of the form 

E, <rap> E, 

where E, and E, are  arithmetic  expressions  and 
<rap> is one of six possible relational operators: 
6 6  < 7,) ‘< < = 77 “ - 77 

7 - “f”, “>”, and “> =”. (Nan- 
arithmetic  expressions,  such  as  character  strings 
and  sets,  are  not  considered in this paper.) Acom- 
pound  predicate consists of at  least one binary 
Boolean operator, two or  more  operands, and 
possibly NOT operators and parentheses.  The bi- 
nary Boolean operators  considered in this  paper 
include OR (‘‘I”) and AND (“&”). A Boolean 
expression is a  predicate  without relational ex- 
pressions. In this  paper, Bi, i>O, denotes  a Bool- 
ean  variable,  and Ei denotes  an  arithmetic 
expression. 

If a  predicate is incorrect,  then  one or more of the 
following types of faults  exist: 

1. Boolean operator fault (incorrect AND/OR op- 

2. Incorrect relational operator 
3. Incorrect  parentheses 
4. Incorrect  arithmetic  expression 

erator  or missing or  extra NOT operator) 
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5. Incorrect Boolean variable 
6. Extra  binary  operator and its  operands 
7. Missing binary  operator and its operands 

An incorrect  predicate  contains  either  a single 
fault or multiple faults of the  same or different 
types.  A  test set for a  predicate C is said to detect 
the  existence of faults in C, if an  execution of C 
on at least  one element of this  test  set  produces  an 
incorrect  outcome of C. A test  set  T for C is said 
to guarantee  the  detection of certain  types of 
faults in C, if T  can  detect  the  existence of such 
faults in C, provided that C does  not  contain  faults 
of other  types.  Assume  that  predicate C’ has  the 
same  set of variables as C and is not equivalent to 
C. A test  set  T is said to distinguish C from C’ if 
C and C’ produce different outcomes on at least 
one element of T. As an example, the  test  set 
{(t,t),  (t,f), (f,t)}, where “t” and “f” denote “true” 
and “false,”  respectively, distinguishes (B,&B,) 
from other Boolean expressions  that differ from 
(B,&B,) in Boolean operators only. The  set  {(t,t), 
(t,f), (f,t)} is said to  guarantee  the  detection of 
Boolean operation  faults in (B,&B,). 

A test  set T for a  predicate C is said to satisfy a 
predicate testing criterion (or strategy), for Cy if 
the  executions of C using T  satisfy  the  require- 
ments of this  criterion. A predicate testing crite- 
rion (or  strategy) is said to guarantee  the  detec- 
tion of certain  types of faults in predicate C, if any 
test  set satisfying this  criterion for C can detect 
the  existence of such  faults in C. For two predi- 
cate testing criteria  (or  strategies) S and S’ , S is 
said to  be stronger  than S’, if any  test  set  satis- 
fying S for  a  predicate  also satisfies S‘ for the 
same  predicate,  but  not  vice  versa. 

A cause-effect graph (CEG) is a graphical notation 
for describing logical relationships among causes 
and effects. A cause is an input condition,  an ef- 
fect is an  output  condition, and logical operators 
include AND (“A”), OR (“V”), NOT (“-”), and 
others.  The notion of CEGS was developed for sys- 
tem specification and  test generation. 1,6 A test set 
for  a cause-effect graph  can  be  used to verify  this 
graph as well as  any program that implements this 
graph. Figure 1 shows  a CEG, with  nodes N, 
through N, denoting causes,  nodes N, and N6 
intermediate  nodes,  and  nodes N, and N8 effects. 
The CEG in Figure 1 can  be viewed as  a collection 
of two predicates: ((N, IN,)&(N,&N,)) for N, and 
( (NllN2)IN4))  for N8* 
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Predicate testing strategies 

This  section  discusses  several  predicate testing 
strategies  and  illustrates  the difficulty of testing 
compound  predicates. More details of predicate 
testing  strategies  can  be found elsewhere. 1,7 The 
following predicate 

where E, through E, denote  arithmetic  expres- 
sions, is denoted  as C# and used later  for illus- 
tration. 

Branch  testing. This  strategy  requires  that  the  true 
and false branches of a  predicate  be  executed (or 
covered)  at  least  once.  The  number of tests  re- 
quired for  a  predicate is two and does not depend 
upon  the  complexity of this  predicate. 

Complete  branch  testing. This  strategy  requires 
that, for a compound predicate C, the  true and 
false  branches of every simple or compound pred- 
icate in C (including C itself) be  executed  at least 
once. Although complete  branch  testing  is  stron- 
ger  than  branch testing, the  former usually can  be 
satisfied for any compound predicate  by using 
two tests.’  Thus,  complete  branch testing is not 
necessarily  more effective than  branch testing for 
fault detection. 

The  test  set  {t,, t2} shown in Table 1 satisfies com- 
plete branch testing for C#. In the  table,  the  val- 
ues o f t ,  and t2 are  not given. Instead,  each o f t ,  
and t2 is specified in terms of the  outcome (‘9’’ or 
“f”) of each relational expression in C#. Test 
t, makes (E, <E2) true, (E3>=E4) true,  and 
(E5=E6) true. Similarly, test t2 makes (E,<E2) 
false, (E,>=E4) false, and (E5=E6) false. t, and 
tz  are said to satisfy  or  cover  constraints  (t,t,t) and 
(f,f,f), respectively, for C#. The  constraint  set 
{(t,t,t), (f,f,f)} is said to  satisfy  complete  branch 
testing for C#. Note  that  {tl,tz}  does  not distin- 
guish C# from the following predicates, which 
differ from C# in Boolean operators only: 

Table 1 Test  set {t,, t2} 

((E,cE,) 8( (EJ>=EI)) I (ES=E6) outcome of C# 
t l  t t t t 
t2 f f f f 

Table 2 Test  set {t3, t,, t5} ~1 ((E,<E,) & (Es>=Eh)) I (e5-E~) OUtCOmeOf C# 

> - - > 

(Each of the  above  predicates  produces  the  same 
results on t, and t2  as C#.) 

Relational  operator  testing. For  a relational expres- 
sion,  say (E <rap> E’), this testing strategy  re- 
quires  three  tests satisfying the following require- 
m e n t ~ : ~ , ’ ~  (1) one  test  makes E > E’, (2) one  test 
makes E < E’, and (3) one  test  makes E = E’. If 
<rap> is incorrect and E and E’ are  correct,  this 
strategy  guarantees  the  detection of the  incorrect 
<rap>. (For a relational expression, relational 
operator testing is stronger  than  branch testing.) 
For  a compound predicate C containing multiple 
relational expressions, one intuitive approach is to 
require relational operator testing for each rela- 
tional expression in C. However, this requirement 
does not guarantee the detection of incorrect rela- 
tional operators in C. 

The  test  set {t,, t4,  t,} shown in Table 2 for C# 
satisfies relational operator testing for  each rela- 
tional expression in C#. In Table 2, each of t,, t,, 
and t, is specified in terms of “<”, “=”, or “>” 
for  a relational expression, indicating that  the left 
side of the  expression is less  than, equal to,  or 
greater  than,  respectively,  the right side of the 
expression.  For  example, t, makes E,=E,, 
E,>E,, and E,=E,, and is denoted by  the  con- 
straint (=,>,=). The  constraint  set {(=,>,=), 
(<, <, <), (>, = , >)} is said to satisfy relational op- 
erator  testing  for relational expressions in C#. 
{t3, t4, t,} does not distinguish C# from the fol- 
lowing predicates, which differ from C# in rela- 
tional operators only: 

((E,<=E,) & (E3>=E4)) I (&=E6) 

((El = E2) & (E3>=E4)) I 

((El< E2) & I (E5=E6) 

((E,= E2) & (E,> E4)) I (Es=Es) 
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Figure 2 Syntax tree for ((E, c E2) & ( E3>=  Ed)) I ( E5= E6) 

Table 3 Constraint set {ts, . . . , t,2} 
I I 

((E,<E,) &k &>=EO)) I (E5=E6) outcome of C# 
t f t 

t f t t 
t t t 
f t t I i I  r 

Exhaustive  testing. The  examples  shown  above 
illustrate the following two problems in testing 
compound predicates: (i) detection of (single or 
multiple) Boolean operator  faults, (ii) detection of 
(single or multiple) relational operator faults. For  a 
compound predicate C, if we require that all com- 
binations of “t” and “f” for each simple predicate 
in C be executed at  least-once, then problem i is 
solved. If we require that all combinations of “ < ”, 
- , and “>” for each relational expression in C 

be executed at least once, then problem ii is solved. 
Assume  that C consists of IZ > O  AND/OR operators. 
The  exhaustive  testing  solution to problem i re- 
quires 2**(n + 1) tests  and  to problem ii 3**(n + 1) 
tests.  Thus,  exhaustive testing is not  practical. 

Elmendorf‘s  strategy. Elmendorf developed  a  test 
generation algorithm for cause-effect graphs. 1,6 

( 6  - 7 9  
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Since  a cause-effect graph is a collection of com- 
pound predicates, Elmendorf’s strategy  can  be 
applied to generate  tests  for  a compound predi- 
cate. Below we show  the application of this  strat- 
egy to generate  tests for C#. Figure 2 shows  the 
syntax  tree” for C#, which contains 

9 Three leaf nodes N,, N,, and N,, which corre- 
spond to  (E,  <E,), (E, > =E4), and (E,=&), re- 
spectively 
Node N,, which corresponds  to  the “&” oper- 
ator 
Node N,, which corresponds  to  the “ I ”  oper- 
ator 

The  nodes in the  syntax  tree  for C# are  visited 
from the  root  node to leaf nodes. For node N,, 
inputs (t,f), (f,t),  and (f,f) are  selected, with the 
first element of each input being the  output of  N, 
and  the  second element of each input being the 
output of E,=E6. For node N, with output  value 
“t”, input  (t,t) is selected, and for node N, with 
output  value “f”, inputs (t,f), (f,t), and (f,f) are 
selected,  with  the first element of each input being 
the  output of (E, <E,) and  the  second element of 
each input being the  output of (E, > =E4). Thus, 
Elmendorf’s strategy  generates  the  constraint set 
{t6, . . . , t12} for C# shown in Table 3. 

Equivalence  partitioning  testing. Yokoi and Ohba 
developed a tool, called TCG, that  generates  tests 
for  a cause-effect graph. l2 Based on a  selected  set 
of nodes in a cause-effect graph G, the  set of all 
possible combinations of input conditions of G is 
divided into  equivalence  classes,  one for  each 
possible combination of the  outcomes of  the  se- 
lected nodes. For  example, if only an effect node 
E of G is selected, two combinations of input con- 
ditions  are  chosen,  one making node E true and 
the  other making node E false. In contrast, if all 
nodes of G are  chosen, all combinations of input 
conditions  are  chosen.  Now we  show  the appli- 
cation of this  strategy  to  generate  tests  for C#, 
according  to  the  syntax  tree in Figure 2. Assume 
that  we  select  nodes N, and N, for equivalence 
partitioning. N, and N, have  three  combinations 
of outcomes  since it is impossible to make N, true 
and  N, false at  the  same time. TCG chooses  the 
constraint  set {ti,, t14, ti,} for C# shown in Table 
4. t,, makes  both N, and N, true, t14 makes N, 
false and N, true,  and ti5 makes  both N, and N, 
false. The constraint  set {(t,t,f), (f,f,t), (f,f,f)} does 
not distinguish C# from ((El<E,) I (E3>=E4)) I 
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(E, = E6), which differs from C# in one  binary 
operator only. 

The BOR testing  strategy 

As shown  earlier, one problem in testing com- 
pound predicates is the  detection of Boolean op- 
erator  faults. The Boolean operator  (or BOR) test- 
ing criterion  for  a compound predicate is to 
guarantee  the  detection of (single or multiple) 
Boolean operator  faults, including incorrect 
AND/OR operators and missing or  extra NOT op- 
erators. A test  set T for a  predicate C is said to  be 
a BOR test set for C if T satisfies the BOR testing 
criterion  for C. A set S of constraints  for  predicate 
C is said to  be a BOR constraint  set for C provided 
that if a  test  set  T for C satisfies S, T  is  a BOR test 
set for C. An algorithm that  generates  a minimum 
BOR constraint set for a compound predicate was 
given3  and is referred to  as algorithm BoR-min in 
this  paper. 

Here  we now show the application of algorithm 
BOR-min to C#. We first transform C# into  its 
syntax  tree,  as  shown in Figure 2. Then we visit 
the  nodes in the  syntax  tree for C# from leaf 
nodes  to  the  root  node.  (Note  that Elmendorf’s 
strategy  does  the  opposite.)  Each  node  N,, i>O, 
in the  syntax  tree for C#, corresponds  to a  pred- 
icate  P(N,) in C# and is  associated  with  true  and 
false  constraint  sets,  denoted  as T(N,) and F(N,) 
respectively,  such  that: 

T(N,) is a  set of constraints producing the  true 

F(N,)  is a  set of constraints producing the  false 
value for P(N,). 

value for P(N,). 

When we visit each of nodes  N1, N,, and N,, we 
define its  true  constraint  set as {(t)} and its false 
constraint set  as {(f)}. For node N,, we define 
T(N4)  as {(t,t)} and F(N,)  as {(t,f), (f,t)}. For node 
N,, we  construct its constraint sets according to 
the following rules: 

F(N,) = F(N4) % F(N,)  and 

T(N5) = (T(N4) x {fd) u (-841  x T(N,)), 

where “%” denotes  the  onto  operation, “ X ”  de- 
notes  the  concatenation  operation, f, is in F(N,), 
f4 is in F(N,),  and (f4,f3) is in F(N,). 
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Table 4 Constraint  set {t13, t,,, t15} 

f 1 : i :  f 
f 
f 

t 
f 

t 

F(N,)%F(N,) returns a minimum subset of the 
product of F(N,)  and F(N,) such that each element 
in F(N4)  or  F(N,) is chosen at least once.I3 Since 

returns {(t,f,f), (f,t,f)}. f, must be {(f)},  and f4  

has two choices: {(t,f)} and {( f,t)}. By letting f4 be 
{(t,f)}, T(N,) = {(t,t,f), (t,f,t)}. Therefore, algorithm 
BOR-min generates the constraint Set {t16, tI7, t18, 
t19} for C# given  in Table 5. 

F(N,)={(t,f), (f,t)) and  F(N,)={(f)}, F(N,)%F(N,) 

The  constraint  set {(t,t,f), (t,f,t), (t,f,f), (f,t,f)} is a 
minimum BOR constraint set for C#. The  sizes of 
the  constraint sets generated for C# by Elmen- 
dorf’s strategy,  equivalence partitioning testing, 
and algorithm BOR-min are 7, 3, and 4, respec- 
tively. 

Earlier we showed two rules for the  construction 
of true and false  constraint sets for node N,  in 
Figure 2. These two rules  are used for an OR node. 
Similar rules are used for an AND node. The idea 
behind algorithm BOR-min is to  derive  a minimum 
constraint  set to solve  the problem of fault prop- 
agation, which is the propagation of an  incorrect 
outcome of a portion of a compound predicate to 
an  incorrect  outcome of the compound predicate. 
For a  predicate with n > O  AND/OR operators, al- 
gorithm BOR-min generates  a minimum BOR con- 
straint  set, which contains at most n+2 con- 
straints. Elmendorf’s strategy also generates  a 
BOR constraint set for  a  compound  predicate,  but 
the  size of the  generated  constraint set  is (n +2) or 
more, up to O(2**n).’ In  the following discussion, 
BOR testing  (or  the BOR testing strategy)  refers to 
the  use of algorithm BOR-min to  generate  a  con- 
straint  set for a  compound  predicate. 

A constraint for a  predicate is said to  be infeasible 
for the  predicate if it can  never  be  covered by any 
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Table 6 Average fault detection rates 

53 s4 s5 

BOR testing 99.3% 99.7% 99.9% 
Branch testing 72.2% 72.5% 72.9% 

test  for  this  predicate.  For example, the  con- 
straint  (t,t)  is infeasible for  predicate ((E,>E,) I 
(E, =E2)), since  the  value of E, can  never  be  both 
greater  than  and  equal  to  that of E, at  the  same 
time. For  ((E,<E,) & (E3> =E4)) I (E,<E,),  the 
constraint  (t,t,f)  is infeasible since it has two dis- 
tinct  values for (E, <E,). If the  constraint set pro- 
duced by BOR testing for a  predicate  contains 
some infeasible constraints,  then 100 percent  cov- 
erage of the  constraint  set is impossible. The 
problem of infeasible constraints  also  exists in 
Elmendorf’s strategy. 

A comparison  between BOR and  branch 
testing 

For a  predicate with n > O  AND/OR operators, 
branch testing requires two tests,  and BOR testing 
at  most (n+2) tests. We conducted  an empirical 
study  to compare  the effectiveness of these two 
predicate testing strategies. Let a singular Bool- 
ean  expression (SBE) be  a Boolean expression in 
which  each Boolean variable  occurs  only  once. 
The  reason for using SBES is  that  we  want  to  focus 
on the  detection of Boolean operator  faults  and 
incorrect  parentheses.  (Note  that  a BOR con- 
straint  set for a  predicate  guarantees  the  detection 
of Boolean operator  faults  only if no other  types 
of faults  exist.) A constraint  set for a Boolean 
expression is called a  test  set  since  each  con- 
straint  is  actually  a  test. 

We constructed  the following sets of SBEs: 

S3-A set of 48 mutually nonequivalent SBEs with 

S4-A set of 366 mutually nonequivalent SBEs with 

S5-A set of 2624 mutually nonequivalent SBEs 

three  variables 

four  variables 

with five variables 

In each of S3, S4, and S5, these SBES differ from 
one  another in Boolean operators  or  parentheses 
or both. For  each Boolean expression  B in S3, we 
applied algorithm BOR-min to generate  a  test set 
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T(B) and  determined  the fault detection  rate of 
T(B), which  is defined as 

D(B) / (the  number of tests in S3) 

where D(B) is  the  number of Boolean expressions 
in S3 that  can  be distinguished from B by T(B). 

Then we computed  the  average of these fault de- 
tection  rates.  This  average  value is referred  to as 
the  average fault detection  rate of S3 using BOR 
testing. We  also  computed  the  average fault de- 
tection  rates of S4 and S5 using BOR testing, as 
well as  the  average  fault  detection  rates of S3, S4, 
and S5 using branch testing. (For branch  testing 
of a Boolean expression, we  chose two tests  to 
satisfy  complete  branch testing.) Table 6 shows 
these  average fault detection  rates. 

Our results  show  that BOR testing is more effec- 
tive than  branch  testing  for fault detection  and 
that BOR testing  almost  guarantees  the  detection 
of Boolean operator  faults and incorrect  paren- 
theses in a  compound  predicate. 

A comparison of BOR testing,  Elmendorf’s 
strategy,  and  equivalence  partitioning 
testing 

We  carried  out  an  experiment to compare BOR 
testing with Elmendorf’s strategy  and equiva- 
lence partitioning testing. For a  predicate C with 
n>O AND/OR operators, BOR testing  generates  a 
minimum BOR constraint  set  with (n +2) or fewer 
constraints, and Elmendorf’s strategy  generates  a 
BOR constraint  set  with (n+2)  or more,  up to 
0(2**n), constraints.  The  number of constraints 
required  for  equivalence partitioning testing of C 
depends  upon  the  selection of nodes in the  syntax 
tree for C. In our empirical study, we selected all 
nodes in the  syntax  tree of C that  denote Boolean 
operators.  By doing so, equivalence partitioning 
testing generates (n + 1) or more,  up to 0(2**n), 
constraints. 

We  constructed  a  set, called SBE-4, of 51 non- 
equivalent SBES with four Boolean variables. The 
SBES in SBE-4 differ from one  another in Boolean 
operators,  parentheses, and/or the  positions of 
Boolean variables. For  each Boolean expression 
B in SBE-4, we (1) applied algorithm BOR-min  to. 
generate  a  test  set  T(B),  and (2) determined the 
size of T(B)  and  the fault detection  rate of T(B). 
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Then  we  computed the average  size  and fault de- 
tection  rate for SBE-4. We also applied Elmen- 
dorf’s strategy and equivalence partitioning test- 
ing to SBE-4 in a similar way.  The  average  sizes 

strategies are given in Table 7. The  results  show 
that 

1. Elmendorf’s strategy  is very effective for de- 
tecting Boolean operator faults, incorrect pa- 
rentheses,  and  interchanges of Boolean vari- 
ables. (Note  that  the fault detection  rate of a 
test  set  generated by Elmendorf’s  strategy  for 
a compound predicate  is not always 100 per- 
cent.) 

2. BOR testing is almost as effective as Elmen- 
dorf’s strategy and is slightly more effective 
than  equivalence partitioning testing. 

3. BOR testing  requires  about  the  same number of 
tests  as  equivalence partitioning testing and 
about half the number of tests  as Elmendorf’s 
strategy. 

1 and fault detection  rates  based on these  three 

1 

Statement 3 above  is no longer true  when  the 
number of AND/OR operators in a  compound  pred- 
icate  is larger than  three. As mentioned earlier, 
for  a  predicate with n>O AND/OR operators,  the 
number of constraints  generated by Elmendorf’s 
strategy  or equivalence partitioning testing is an 
exponentialfunction of n,  whereas  the  number of 

function of n. Thus, as  the number of AND/OR 
operators  increases, BOR testing generates fewer 
constraints  than  equivalence partitioning testing. 
Another problem with equivalence partitioning 
testing is  that it first generates all combinations of 
input conditions and then divides them  into equiv- 
alence  classes. BOR testing and Elmendorf’s strat- 
egy  do  not  have  this problem, but  they  may gen- 
erate infeasible constraints. In our opinion, BOR 
testing is more practical than  the  other  two  strat- 
egies. 

b constraints  generated  by BOR testing is a linear 

B Applying BOR testing  to  a  boiler  control  and 
monitoring  system 

This  section  describes  an application of BOR test- 
ing to  the  software for a simplified real-time boiler 
control and monitoring system.  The specifica- 
tions for the  system  were  developed  as  part of the 
generic problem exercise  conducted for the 1993 
International  Workshop on the Design and Re- 
view of Software controlled Safety-Related  Sys- 
tems. A version of the boiler control  and moni- 
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Table 7 Average  slzes  and  fault  defection  rates 

~~~ 

Avg. Slze Avg. Fault 
Detection  Rate 

BOR testing 99.73% 
Elmendorf‘s strategy 100.00% 
Equivalence partitioning 4.5 96.88% 

toring system  was developed at  North Carolina 
State University.14 This  software  system, which 
contains  about 4500 lines of C  code, was used in 
our empirical study. A brief description of the 
boiler system  is given below. The  objective and 
the  details of this  study  are  provided in the  re- 
mainder of this  section. 

Figure  3  shows  the  context diagram for the sim- 
plified boiler control and monitoring system.  This 
boiler system  consists of a natural-gas-fired wa- 
ter-tube boiler producing saturated  steam. The 
steam flow may vary rapidly and irregularly be- 
tween zero and maximum, following a  varying 
external  demand.  The  water level in the boiler is 
regulated by the  control of the inflow of feedwa- 
ter.  The  water level must  be  kept  between  an up- 
per and lower limit. If the  water level is  above  the 
upper limit, water will be carried over  into  the 
steam flow and cause damage. If the  water level 
is below the lower limit, boiler tubes will dry  out 
and may  overheat and burst. If the  control of wa- 
ter level is  lost,  the boiler is shut  down. 

The  water level and  the  steam flow are  measured 
by an instrumentation  system  that  reports  sensor 
values.  The readings from sensors  are  transmitted 
over an intrinsically unreliable communication 
link to  the control program. This  control program 
is expected  to perform the following tasks: 

1. To regulate the  water level by controlling the 
inflow of feedwater by appropriately turning 
pumps on or off at required instances 

2. To diagnose and isolate all potential  errors  and 
issue  a  correction or repair request  when  er- 
rors  are  discovered 

3. To display at all times “best  estimates” of var- 
ious readings for  the boiler operator 

4. To accept  appropriate  operator  commands 

Objective  and  procedures of the boiler  system 
study. During the development of the boiler sys- 
tem at North Carolina State  University,  the orig- 
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Figure 3 Context diagram for the boiler  control and monitoring  system 
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mal, informal specification of the  system  was  re- 
written in terms of a number of extended finite- 
state  machines (EFSMs).” According to  the 
boiler’s EFSM specification, test  suites for the 
unit, integration, and  system testing of the boiler 
system  were  constructed  to  ensure thorough test- 
ing.16 In addition to  the  coverage of every  state 
and branch of individual EFSMS for the boiler sys- 
tem, great effort was  made  to  construct additional 
test  cases  to  cover  special-event  situations.  How- 
ever, no well-defined strategies  were used for 
testing  combinations of EFSMs according to  the 
predicates in these EFSMs. 

The  objective  of  our  study  was  to  evaluate  the 
EFSM specification-based test  suites  for  the boiler 
system against the BOR testing criterion.  We  per- 

formed both specification- and program-based 
BOR testing of the boiler system  as follows: 

For specification-based BOR testing of the boiler 
system, we  chose  the  most critical effect, the 
“boiler  shutdown” effect, in the boiler system 
and derived a cause-effect graph (CEG) for the 
shutdown effect (next  subsection).  From  the 
EFSM-based test cases developed  previously  for 
the boiler system, we selected  those related to 
the  shutdown effect. The  selected  test  set,  re- 
ferred to  as  the shutdown  test  set,  contains 372 
test  cases. We used the  shutdown  test  set to 
measure  the BOR coverage of the CEG for the 
shutdown effect (shown later in this  paper). 
For program-based BOR testing of the boiler 
system, we chose  a module dealing with the 
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shutdown effect.I7 We measured  the BOR cov- 
erage of this module by  the  shutdown  test  set 
(discussed  later). 

Derivation of a cause-effect graph for the shutdown 
effect. The CEG for the  shutdown effect, referred 
to  as  the shutdown CEG, is organized in five lev- 
els.  The level 1 (the highest level) CEG for boiler 
shutdown is shown in Figure 4. The  annotations 
for  nodes in the level 1 CEG follow: 

E - Boiler shutdown 
C221 - Externally initiated 
C220 - Internally initiated 
C202 - Operator initiated 
C203 - Instrumentation  system initiated 
C201 - Bad startup 
C200 - Operational failure 
C197 - Confirmed keystroke  entry 
C198 - Confirmed “shutnow” message 
C196 - Multiple pumps failure (more  than  one) 
C195 - Water level meter failure during startup 
C194 - Steam  rate  meter failure during startup 
C193 - Communication link failure 
C192 - Instrumentation  system failure 
C191 - C180  and  C181 
C190 - Water level out of range 
C180 - Water level meter failure during oper- 

C181 - Steam  rate  meter failure during opera- 
ation 

tion 

The  cause  nodes of the level 1 CEG, including 
C180,  C181,  C190, and C192 through C198, are 
effect nodes of level 2 CEGs. Similarly, some of the 
cause  nodes of level 2 CEGs are effect nodes of 
level 3 CEGs, and so on. CEGs of level 2 through 5 
are not shown in this paper. 

Measurement of BOR coverage of the shutdown 
cause-effect graph. When we  attempted to mea- 
sure  the BOR coverage of the  shutdown CEG by  the 
shutdown  test  set, we encountered  a problem. 
Although algorithm BoR-min generates  a mini- 
mum BOR constraint  set for a compound predi- 
cate,  such  a minimum BOR constraint  set is not 
unique. As a  result,  the  selection of a minimum 
BOR constraint set for  a compound predicate  may 
affect the BOR coverage of the  predicate by a 
given test  set. To solve  this problem, an algorithm 
called BOR-cov was developed. For a given test 
set T for  a  predicate C, algorithm BOR-cov 
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1. Identifies the  set  T’ of redundant  tests in T, 
which do not improve  the  capability of detec- 
tion of Boolean operator  faults in C 

2. Produces  a minimum set T” of additional con- 
straints  that  are  needed for BOR testing of C 

3. Computes  the BOR coverage of C by T, which 
is defined as (IT1 - IT’I) / (IT1 - IT’I + IT”I), 
where IS1 denotes  the size of a  set S. 

We used algorithm BOR-cov to measure  the BOR 
coverage of the  shutdown CEG by  the  shutdown 
test  set. Of the 372 tests in the  shutdown  test  set, 
59 tests  (about 1/6 of the total) were found to  be 
redundant. Also, 24 more  constraints  are  needed 
for BOR testing. So the BOR coverage of the 
shutdown CEG by  the  shutdown  test  set is 
(372-59)+(372-59+24) = 0.928. Most of the  re- 
dundant  tests deal with pump and flow monitor 
combinations.  However, most of the additional 
tests  needed for BOR testing also deal with pump 
and flow monitor combinations. The reason is 
that  the  tests in the  shutdown  test set for combi- 
nations of pumps and flow monitors were selected 
without applying any effective predicate-based 
testing strategy. 

The shutdown test  set  was constructed earlier by 
three persons totaling approximately 100 person- 
hours. In our study, the shutdown CEG was con- 
structed by  one person in about 20 hours. CEG- 
based test generation can be automated. Also, CEGs 
can be analyzed for the detection of ambiguities  and 
inconsistencies in system specification. Thus, the 
use of CEGs for software specification  and test gen- 
eration has significant advantages. 

Measurement of BOR coverage of a module in  the 
implementation of the boiler. As mentioned ear- 
lier, we  chose  one module in the implementation 
of the boiler to  measure  its BOR coverage.  The 
selected module deals with the  shutdown effect. 
It contains 360 statements in C and 34 predicates, 
of which 21 are simple predicates  (that is, pred- 
icates  without AND/OR operators)  and  the remain- 
der  are  compound  predicates with one AND/OR 
operator. We manually transformed  this module 
for the  measurement of BOR coverage and gener- 
ated  81 BOR constraints for the  predicates in this 
module. (Two  constraints  are  generated for each 
simple predicate  and  three  constraints for each 
compound predicate with one AND/OR operator.) 

The  shutdown  test  set  was used to  execute  the 
implementation of the boiler. l8 Based on  the BOR 
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coverage information collected from the  selected set is 79/81 = 0.975. When we investigated the 
module, two of the  81  constraints  were not cov- two uncovered  constraints, we discovered  a 
ered  by  the  shutdown  test  set. So the BOR cov- “bug” in the  selected module. This bug would 
erage of the  selected module by  the  shutdown  test have  been  discovered if the  selected module had 
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been  tested  with 100 percent BOR coverage. Also, 
the  two  discovered  constraints  correspond to 
some of the additional tests  needed  for BOR test- 
ing of the  shutdown CEG. Therefore, had these 
additional tests been used  to  execute  the imple- 
mentation of the boiler, the two uncovered  con- 
straints would have  been  covered  and  the  bug 
discovered. 

Applying BOR testing to a set of Kversion 
programs 

This  section  reports  an empirical study of apply- 
ing BOR testing  to  a set of N-version  programs 
written in Pascal.”  Our  reason  for using N-ver- 
sion  programs is that multiple functionally equiv- 
alent  programs  provide  more  objective  results 
than  just  one program. We chose five functionally 
equivalent Pascal programs, which were  pro- 
duced as part of another  study.  These five pro- 
grams were written  independently by graduate 
students  to solve  a navigational problem that was 
an  extension of the  earth  satellite problem. ’O The 
sizes of these five programs range from 400 to 800 
Pascal  statements. 

Acceptance testing of these five programs in- 
volved  both  random  and functional testing and 
used a tool called BGG, which was developed at 
North Carolina State  University to measure  the 
test  coverage of statements,  branches, and vari- 
ous  types of data flow metrics  for Pascal pro- 
grams.” A  set of 1000 random  tests was gener- 
ated by using a uniform distribution of all input 
values.  A  set of 103 functional tests”  was  gener- 
ated by considering extreme and special values 
such  as singularities and boundaries. The  results 
of acceptance testing of these  programs  were  re- 
ported.23,24 BGG was recently  extended to gener- 
ate BOR constraint sets for  predicates in a  Pascal 
program and to  measure  the  coverage of these 
BOR constraints  according  to  a given test  set  for 
the program. 

The objective of this empirical study  was  to  use 
the five-version Pascal  programs  to  compare BOR 
testing with random and functional testing. Ac- 
cording to  the specification for  the navigational 
problem, we derived a CEG for the specification 
and applied algorithm BoR-min to  generate  a  set 
of 43 test  cases, referred to as the CEG-BOR test set 
for the five-version programs. We applied the 
CEG-BOR test  set, using the BGG tool, to execute 
each of the five-version programs, and computed 
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Table 8 Average  coverages  for  test  sets 8 1  Statement  Coverage  Branch  Coverage 

Random 0.848 0.634 
Functional 0.896 
CEG-BOR 0.963  0.896 

the average coverages of statements and branches, 
respectively, of the five-version programs. We 
applied the  random and functional test sets for  the 
five-version programs in a similar way.  Table 8 
shows  these  average  coverages. 

From  Table 8, the CEG-BOR test  set  provides 
about  the  same  statement  or  branch  coverage as 
the functional test  set.  However,  the  size of the 
CEG-BOR test  set  is  about 40 percent of that of the 
functional test  set. 

Since  the five-version programs  contain  faults, 
we also  compared the CEG-BOR, random,  and 
functional test  sets for their effectiveness of fault 
detection.  The combination of random  and  func- 
tional test  sets  detected all faults in one of the 
five-version programs  and  detected all but  one 
fault in each of the  other  four programs. The CEG- 
BOR test  set  detected all faults in each of the five- 
version programs. Thus, in this  experiment,  the 
CEG-BOR test set is more effective than  the  com- 
bination of random  and functional test  sets. As an 
example, for one of the five-version programs,  the 
random  test  set  detected  three  faults,  the  func- 
tional test  set five faults, and the CEG-BOR test  set 
all nine faults in the program. 

Summary 

In this  paper we have  presented  the  results of four 
empirical studies of the BOR testing  strategy.  Two 
of these  studies involved the use of Boolean ex- 
pressions and the  other two the use of actual  pro- 
grams. The major findings are  the following: 

BOR testing is effective for detecting  faults in a 
compound  predicate. 
BOR testing is more  cost-effective  than  several 
other  predicate  testing  strategies. 
BOR testing based on a cause-effect graph  rep- 
resenting  software specification is practical  and 
effective for  detecting  faults in the  correspond- 
ing implementation. 



The  use of cause-effect  graphs in software  spec- 
ification and design is  not  yet popular. One  pos- 
sible  reason is the  lack of user-friendly tools for 
expressing  software specification and design in 
cause-effect graphs.  Since CASE (computer-aided 
software engineering) tools  supporting  cause- 
effect graphs are becoming available,’2,25 the use 
of cause-effect graphs will increase. 

Two variations of the algorithm BoRmin  were 
studied.26  Two  extensions of the BOR testing cri- 
terion  were p r ~ p o s e d , ~ , ~ ~  one  to include the de- 
tection of incorrect relational operators  and  the 
other  to include the  detection of incorrect  rela- 
tional operators  and  arithmetic  expressions. We 
will investigate other extensions of BOR testing such 
as nonarithmetic operations (for example, compar- 
ison between two pointers or character strings) and 
additional Boolean operators (for example, exclu- 
sive-OR and short-circuit AND/OR). Also, we plan to 
carry out empirical studies of BOR testing by using 
larger software systems, and we plan to investigate 
the implementation of tools to support specifica- 
tion- and program-based BOR testing. 
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