Evaluation of a
predicate-based
software testing strategy

In this paper, we report the results of four
empirical studies for evaluating a predicate-
based software testing strategy, called BOR
(Boolean operator) testing. The BOR testing
strategy focuses on the detection of Boolean
operator faults in a predicate, including incorrect
AND/OR operators and missing or extra NOT
operators. Our empirical studies involved
comparisons of BOR testing with several other
predicate-based testing strategies, using Boolean
expressions, a real-time control system, and a
set of N-version programs. For program-based
test generation, BOR testing was applied to
predicates in a program. For specification-based
test generation, BOR testing was applied to
cause-effect graphs representing software
specification. The results of our studies indicate
that BOR testing is practical and effective for
both specification- and program-based test
generation.

The testing activities of a software project usu-
ally take about half of the total cost.’* A ma-
jor problem in testing a program is how to reduce
the effort of generating a test set that is effective
for detecting faults in the program. One approach
to software testing, referred to as predicate test-
ing, is to require certain types of tests for each
predicate (or condition) in a program or software
specification. One commonly used predicate test-
ing strategy is branch testing, which requires that
the true and false branches of a predicate be ex-
ecuted at least once.

As the complexity of software increases, so does
the number of compound predicates, which are

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

predicates with one or more AND/OR operators, in
software specification and implementation. Re-
cently a predicate testing strategy, called BOR
(from Boolean operator) testing, was proposed
for testing compound predicates.* BOR testing fo-
cuses on the detection of Boolean operator faults
in a predicate, including incorrect AND/OR oper-
ators and missing or extra NOT operators; it can
be applied to either specification- or program-
based test generation. In this paper, we report the
results of four empirical studies for evaluating the
BOR testing strategy.*

The remainder of this section contains basic def-
initions. The next section discusses several pred-
icate testing strategies and illustrates the difficulty
of testing compound predicates. The section
thereafter introduces the BOR testing strategy.
The remaining sections of the paper show the re-
sults of four empirical studies, two of them based
on the use of Boolean expressions, one based on
a real-time boiler control and monitoring system,
and one based on a set of N-version programs.

A predicate is either a simple or compound pred-
icate. A simple predicate is a Boolean variable or

©Copyright 1994 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

TAI ET AL. 445

Figure 1 A cause-effect graph

() (%

AND OR

()

OR AND

(o (9

a relational expression, possibly with one or more
NOT (“~7") operators. A relational expression is
of the form

E, <rop> E,

where E and E, are arithmetic expressions and
<rop> is one of six possible relational operators:
“? =" M= % “5 7 and “>="". (Non-
arithmetic expressions, such as character strings
and sets, are not considered in this paper.) A com-
pound predicate consists of at least one binary
Boolean operator, two or more operands, and
possibly NOT operators and parentheses. The bi-
nary Boolean operators considered in this paper
include OR (“I””) and AND (“&”). A Boolean
expression is a predicate without relational ex-
pressions. In this paper, B;, i>0, denotes a Bool-
ean variable, and E; denotes an arithmetic
expression.

If a predicate is incorrect, then one or more of the
following types of faults exist:

1. Boolean operator fault (incorrect AND/OR op-
erator or missing or extra NOT operator)

2. Incorrect relational operator

3. Incorrect parentheses

4. Incorrect arithmetic expression

446 TAI ET AL

5. Incorrect Boolean variable
6. Extra binary operator and its operands
7. Missing binary operator and its operands

An incorrect predicate contains either a single
fault or multiple faults of the same or different
types. A test set for a predicate C is said to detect
the existence of faults in C, if an execution of C
on at least one element of this test set produces an
incorrect outcome of C. A test set T for C is said
to guarantee the detection of certain types of
faults in C, if T can detect the existence of such
faults in C, provided that C does not contain faults
of other types. Assume that predicate C' has the
same set of variables as C and is not equivalent to
C. A test set T is said to distinguish C from C' if
C and C’ produce different outcomes on at least
one element of T. As an example, the test set
{(t,1), (t,1), (f,t)}, where “t” and “f”” denote “true”
and “false,” respectively, distinguishes (B, &B,)
from other Boolean expressions that differ from
(B,&B,) in Boolean operators only. The set {(t,t),
(1), (f,t)} is said to guarantee the detection of
Boolean operation faults in (B;&B,).

A test set T for a predicate C is said to satisfy a
predicate testing criterion (or strategy)® for C, if
the executions of C using T satisfy the require-
ments of this criterion. A predicate testing crite-
rion (or strategy) is said to guarantee the detec-
tion of certain types of faults in predicate C, if any
test set satisfying this criterion for C can detect
the existence of such faults in C. For two predi-
cate testing criteria (or strategies) S and S, S is
said to be stronger than S’, if any test set satis-
fying S for a predicate also satisfies S’ for the
same predicate, but not vice versa.

A cause-effect graph (CEG) is a graphical notation
for describing logical relationships among causes
and effects. A cause is an input condition, an ef-
fect is an output condition, and logical operators
include AND (“A”), OR (“V”), NOT (“~"), and
others. The notion of CEGs was developed for sys-
tem specification and test generation.™® A test set
for a cause-effect graph can be used to verify this
graph as well as any program that implements this
graph. Figure 1 shows a CEG, with nodes N,
through N, denoting causes, nodes Ng and N
intermediate nodes, and nodes N, and Nj effects.
The CEG in Figure 1 can be viewed as a collection
of two predicates: ((N;IN,)&(N;&N,)) for N, and
((N{IN,)IN,)) for Nj.

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

Predicate testing strategies

This section discusses several predicate testing
strategies and illustrates the difficulty of testing
compound predicates. More details of predicate
testing strategies can be found elsewhere.”’ The
following predicate

(E, < E;) & (E; >=E,)) | (Es = Ey)

where E, through E denote arithmetic expres-
sions, is denoted as C# and used later for illus-
tration.

Branch testing. This strategy requires that the true
and false branches of a predicate be executed (or
covered) at least once. The number of tests re-
quired for a predicate is two and does not depend
upon the complexity of this predicate.

Complete branch testing. This strategy requires
that, for a compound predicate C, the true and
false branches of every simple or compound pred-
icate in C (including C itself) be executed at least
once. Although complete branch testing is stron-
ger than branch testing, the former usually can be
satisfied for any compound predicate by using
two tests.® Thus, complete branch testing is not
necessarily more effective than branch testing for
fault detection.

The test set {t, t,} shown in Table 1 satisfies com-
plete branch testing for C#. In the table, the val-
ues of t; and t, are not given. Instead, each of t;
and t, is specified in terms of the outcome (“‘t” or
“f*) of each relational expression in C#. Test
t, makes (E,<E,) true, (E;>=E,) true, and
(Es=E) true. Similarly, test t, makes (E,;<E,)
false, (E,>=E,) false, and (E;=E,) false. t; and
t, are said to satisfy or cover constraints (t,t,t) and
(£,£,f), respectively, for C#. The constraint set
{(t,t,0), (f,£,0)} is said to satisfy complete branch
testing for C#. Note that {t,,t,} does not distin-
guish C# from the following predicates, which
differ from C# in Boolean operators only:

((E,<E,) | (E;>=E,)) | (Es=Ey)
((E,<E,) | (E;>=E,)) & (Es=E,)
(~(E,<E,) | (E;>=E,)) & (Es=Ey)
((E,<E,) | ~(E;>=E,)) & (Es=Ey)
((E;<E,) & (E;>=E,)) & (E;=Ey)

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

Table 1 Test set {t;, t,}

((E,<E,) & (E;>=E,)) | (Es=E;) outcome of C#
t, t t t t
t, f f f f

Table 2 Test set {t,, t,, t5}

((E,<Ey) & (E;>=E.)) | (E5=E6) outcome'df C#
- - -) -

t, < < < f '
> = > f

(Each of the above predicates produces the same
results on t; and t, as C#.)

Relational operator testing. For a relational expres-
sion, say (E <rop> E’), this testing strategy re-
quires three tests satisfying the following require-
ments:>!? (1) one test makes E > E’, (2) one test
makes E < E’, and (3) one test makes E = E'. If
<rop> is incorrect and E and E’ are correct, this
strategy guarantees the detection of the incorrect
<rop>. (For a relational expression, relational
operator testing is stronger than branch testing.)
For a compound predicate C containing multiple
relational expressions, one intuitive approach is to
require relational operator testing for each rela-
tional expression in C. However, this requirement
does not guarantee the detection of incorrect rela-
tional operators in C.

The test set {t;, t,, t;} shown in Table 2 for C#
satisfies relational operator testing for each rela-
tional expression in C#. In Table 2, each of t4, t,,
and t; is specified in terms of “<”, “=""_ or “>"
for a relational expression, indicating that the left
side of the expression is less than, equal to, or
greater than, respectively, the right side of the
expression. For example, t; makes E;=E,,
E.>E,, and Es=E, and is denoted by the con-
straint (=,>,=). The constraint set {(=,>,=),
(<,<,<), (>,=,>)}is said to satisfy relational op-
erator testing for relational expressions in C#.
{ts, ts4, ts} does not distinguish C# from the fol-
lowing predicates, which differ from C# in rela-
tional operators only:

((E,<=E,) & (E;>=E,)) | (Es=Ey)
((E,= E,) & (E;>=E,)) | (Es=Ey)
((Ei< E,) & (E;> E,)) ! (Es=Ey)
((E;= E,) & (E;> E,)) | (Es=Ey)

TAI ET AL 447

Figure 2 Syntax tree for ((E{<Ey) & (Ezg>=E,))|(E5=Eg)

Ey <Ep Ey>=E4 Es =Eg

Table 3 Constraint set {t;, ..., t,,}

((B,<E;) & (E;>=RE,)) | (Es=E,) outcome of C#
‘ ,,)

Sy b ey ey ety
-y b b Tt e by
by by iy e e

—
3
ety ey e

Exhaustive testing. The examples shown above
illustrate the following two problems in testing
compound predicates: (i) detection of (single or
multiple) Boolean operator faults, (ii) detection of
(single or multiple) relational operator faults. For a
compound predicate C, if we require that all com-
binations of “t” and “f”” for each simple predicate
in C be executed at least once, then problem i is
solved. If we require that all combinations of “<”,
“=>_and “>" for each relational expression in C
be executed at least once, then problem ii is solved.
Assume that C consists of n >0 AND/OR operators.
The exhaustive testing solution to problem i re-
quires 2#+(n+1) tests and to problem ii 3**(rn+1)
tests. Thus, exhaustive testing is not practical.

Elmendorf’s strategy. Elmendorf developed a test
generation algorithm for cause-effect graphs.™®

448 Al ET AL

Since a cause-effect graph is a collection of com-
pound predicates, Elmendorf’s strategy can be
applied to generate tests for a compound predi-
cate. Below we show the application of this strat-
egy to generate tests for C#. Figure 2 shows the
syntax tree' for C#, which contains

* Three leaf nodes N,, N,, and N;, which corre-
spond to (E; <E,), (E;>=E,), and (Es;=Eq), re-
spectively

* Node N,, which corresponds to the “&” oper-
ator

e Node N,, which corresponds to the
ator

“l”

oper-

The nodes in the syntax tree for C# are visited
from the root node to leaf nodes. For node Nj,
inputs (t,f), (f,t), and (f,f) are selected, with the
first element of each input being the output of N,
and the second element of each input being the
output of E;=E,. For node N, with output value
“t”, input (t,t) is selected, and for node N, with
output value “f”, inputs (t,f), (f,t), and (f,f) are
selected, with the first element of each input being
the output of (E, <E,) and the second element of
each input being the output of (E;>=E,). Thus,
Elmendorf’s strategy generates the constraint set
{t> . - . , tyo} for C# shown in Table 3.

Equivalence partitioning testing. Yokoi and Ohba
developed a tool, called TCG, that generates tests
for a cause-effect graph.'> Based on a selected set
of nodes in a cause-effect graph G, the set of all
possible combinations of input conditions of G is
divided into equivalence classes, one for each
possible combination of the outcomes of the se-
lected nodes. For example, if only an effect node
E of G is selected, two combinations of input con-
ditions are chosen, one making node E true and
the other making node E false. In contrast, if all
nodes of G are chosen, all combinations of input
conditions are chosen. Now we show the appli-
cation of this strategy to generate tests for C#,
according to the syntax tree in Figure 2. Assume
that we select nodes N, and N; for equivalence
partitioning. N, and N have three combinations
of outcomes since it is impossible to make N, true
and N false at the same time. TCG chooses the
constraint set {t;5, t4, t;s} for C# shown in Table
4. t;; makes both N, and N; true, t,, makes N,
false and Ny true, and t,; makes both N, and N
false. The constraint set {(t,t,f), (£,f,t), (f.£,f)} does
not distinguish C# from ((E,<E,) | (E;>=E,)) |

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

(Es = Eq), which differs from C# in one binary
operator only.

The BOR testing strategy

As shown earlier, one problem in testing com-
pound predicates is the detection of Boolean op-
erator faults. The Boolean operator (or BOR) test-
ing criterion for a compound predicate is to
guarantee the detection of (single or multiple)
Boolean operator faults, including incorrect
AND/OR operators and missing or extra NOT op-
erators. A test set T for a predicate C is said to be
a BOR test set for C if T satisfies the BOR testing
criterion for C. A set S of constraints for predicate
Cis said to be a BOR constraint set for C provided
that if a test set T for C satisfies S, T is a BOR test
set for C. An algorithm that generates a minimum
BOR constraint set for a compound predicate was
given® and is referred to as algorithm BOR_min in
this paper.

Here we now show the application of algorithm
BOR_min to C#. We first transform C# into its
syntax tree, as shown in Figure 2. Then we visit
the nodes in the syntax tree for C# from leaf
nodes to the root node. (Note that Elmendorf’s
strategy does the opposite.) Each node N;, i>0,
in the syntax tree for C#, corresponds to a pred-
icate P(N,) in C# and is associated with true and
false constraint sets, denoted as T(N;) and F(N,)
respectively, such that:

s T(N,) is a set of constraints producing the true
value for P(N;).

» F(N,) is a set of constraints producing the false
value for P(N,).

When we visit each of nodes N;, N,, and N;, we
define its true constraint set as {(t)} and its false
constraint set as {(f)}. For node N,, we define
T(N,) as {(t,t)} and F(N,) as {(t,f), (f,t)}. For node
N, we construct its constraint sets according to
the following rules:

F(N,) = F(N,) % F(N,) and
T(N;) = (T(N,) x {f:}) U ({f.} x T(N3)),

where “%” denotes the onto operation, “X” de-
notes the concatenation operation, f; is in F(N;),
f, is in F(N,), and (f,,f5) is in F(N;).

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

Table 4 Constraint set {t,;, t,,, t,;}

(Bi<E)) & (E;>=E,)) | (Es=E,) outcome of C#
o ot - f

t13 t
thy f . f t t

Table 5 Constraint set {t,q, t,;, t;s, t,o}

((B,<E,) & (E;>=E,)) | (Es=E,) outcome of C#
te Tt U :
ty t f ot t
te Ot £ £ £
ty f t f f

F(N,)%F(N;) returns a minimum subset of the
product of F(N,) and F(N,) such that each element
in F(N,) or F(N;) is chosen at least once.” Since
F(N)={(t,f), (£,0)} and F(N)={(f)}, F(N,)%F(N;)
returns {(t,f,f), (f,t,0)}. f; must be {(f)}, and f,
has two choices: {(t,f)} and {(f,t)}. By letting f, be
{(t,0)}, T(Ns) = {(t,t,1), (t,f,t)}. Therefore, algorithm
BOR_min generates the constraint set {ts, t;7, tig,
tyo} for C# given in Table 5.

The constraint set {(t,t,£), (t,f,t), (t.£,f), ({,t,f)} is a
minimum BOR constraint set for C#. The sizes of
the constraint sets generated for C# by Elmen-
dorf’s strategy, equivalence partitioning testing,
and algorithm BOR_min are 7, 3, and 4, respec-
tively.

Earlier we showed two rules for the construction
of true and false constraint sets for node N; in
Figure 2. These two rules are used for an OR node.
Similar rules are used for an AND node. The idea
behind algorithm BOR_min is to derive a minimum
constraint set to solve the problem of fault prop-
agation, which is the propagation of an incorrect
outcome of a portion of a compound predicate to
an incorrect outcome of the compound predicate.
For a predicate with n»>0 AND/OR operators, al-
gorithm BOR_min generates a minimum BOR con-
straint set, which contains at most n+2 con-
straints. Elmendorf’s strategy also generates a
BOR constraint set for a compound predicate, but
the size of the generated constraint set is (n +2) or
more, up to O(2+#n).” In the following discussion,
BOR testing (or the BOR testing strategy) refers to
the use of algorithm BOR_min to generate a con-
straint set for a compound predicate.

A constraint for a predicate is said to be infeasible
for the predicate if it can never be covered by any

TAI ET AL. 449

Table 6 Average fault detection rates

S3 S4 S5
BOR testing 99.3% 99.7% 99.9%
Branch testing 72.2% 72.5% 72.9%

test for this predicate. For example, the con-
straint (t,t) is infeasible for predicate ((E;>E,) |
(E,=E,)), since the value of E, can never be both
greater than and equal to that of E, at the same
time. For ((E,<E,) & (E;>=E,)) | (E;<E,), the
constraint (t,t,f) is infeasible since it has two dis-
tinct values for (E, <E,). If the constraint set pro-
duced by BOR testing for a predicate contains
some infeasible constraints, then 100 percent cov-
erage of the constraint set is impossible. The
problem of infeasible constraints also exists in
Elmendorf’s strategy.

A comparison between BOR and branch
testing

For a predicate with n>0 AND/OR operators,
branch testing requires two tests, and BOR testing
at most (n+2) tests. We conducted an empirical
study to compare the effectiveness of these two
predicate testing strategies. Let a singular Bool-
ean expression (SBE) be a Boolean expression in
which each Boolean variable occurs only once.
The reason for using SBEs is that we want to focus
on the detection of Boolean operator faults and
incorrect parentheses. (Note that a BOR con-
straint set for a predicate guarantees the detection
of Boolean operator faults only if no other types
of faults exist.) A constraint set for a Boolean
expression is called a test set since each con-
straint is actually a test.

We constructed the following sets of SBEs:

S3-A set of 48 mutually nonequivalent SBEs with
three variables

S4-A set of 366 mutually nonequivalent SBEs with
four variables

S5-A set of 2624 mutually nonequivalent SBEs
with five variables

In each of S3, S4, and S5, these SBEs differ from
one another in Boolean operators or parentheses
or both. For each Boolean expression B in S3, we
applied algorithm BOR_min to generate a test set

450 TAI ET AL

T(B) and determined the fault detection rate of
T(B), which is defined as

D(B) / (the number of tests in S3)

where D(B) is the number of Boolean expressions
in S3 that can be distinguished from B by T(B).

Then we computed the average of these fault de-
tection rates. This average value is referred to as
the average fault detection rate of S3 using BOR
testing. We also computed the average fault de-
tection rates of S4 and S5 using BOR testing, as
well as the average fault detection rates of S3, S4,
and S5 using branch testing. (For branch testing
of a Boolean expression, we chose two tests to
satisfy complete branch testing.) Table 6 shows
these average fault detection rates.

Our results show that BOR testing is more effec-
tive than branch testing for fault detection and
that BOR testing almost guarantees the detection
of Boolean operator faults and incorrect paren-
theses in a compound predicate.

A comparison of BOR testing, EiImendorf’s
strategy, and equivalence partitioning
testing

We carried out an experiment to compare BOR
testing with Elmendorf’s strategy and equiva-
lence partitioning testing. For a predicate C with
n>0 AND/OR operators, BOR testing generates a
minimum BOR constraint set with (rn+2) or fewer
constraints, and Elmendorf’s strategy generates a
BOR constraint set with (n+2) or more, up to
O(2+#n), constraints. The number of constraints
required for equivalence partitioning testing of C
depends upon the selection of nodes in the syntax
tree for C. In our empirical study, we selected all
nodes in the syntax tree of C that denote Boolean
operators. By doing so, equivalence partitioning
testing generates (n+1) or more, up to O(2%+n),
constraints.’

We constructed a set, called SBE_4, of 51 non-
equivalent SBEs with four Boolean variables. The
SBEs in SBE_4 differ from one another in Boolean
operators, parentheses, and/or the positions of
Boolean variables. For each Boolean expression
B in SBE_4, we (1) applied algorithm BOR_min toe
generate a test set T(B), and (2) determined the
size of T(B) and the fault detection rate of T(B).

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

Then we computed the average size and fault de-
tection rate for SBE_4. We also applied Elmen-
dorf’s strategy and equivalence partitioning test-
ing to SBE_4 in a similar way. The average sizes
and fault detection rates based on these three
strategies are given in Table 7. The results show
that

1. Elmendorf’s strategy is very effective for de-
tecting Boolean operator faults, incorrect pa-
rentheses, and interchanges of Boolean vari-
ables. (Note that the fault detection rate of a
test set generated by Elmendorf’s strategy for
a compound predicate is not always 100 per-
cent.)

2. BOR testing is almost as effective as Elmen-
dorf’s strategy and is slightly more effective
than equivalence partitioning testing.

3. BOR testing requires about the same number of
tests as equivalence partitioning testing and
about half the number of tests as Elmendorf’s
strategy.

Statement 3 above is no longer true when the
number of AND/OR operators in a compound pred-
icate is larger than three. As mentioned earlier,
for a predicate with n>0 AND/OR operators, the
number of constraints generated by Elmendorf’s
strategy or equivalence partitioning testing is an
exponential function of n, whereas the number of
constraints generated by BOR testing is a linear
function of n. Thus, as the number of AND/OR
operators increases, BOR testing generates fewer
constraints than equivalence partitioning testing.
Another problem with equivalence partitioning
testing is that it first generates all combinations of
input conditions and then divides them into equiv-
alence classes. BOR testing and Elmendorf’s strat-
egy do not have this problem, but they may gen-
erate infeasible constraints. In our opinion, BOR
testing is more practical than the other two strat-
egies.

Applying BOR testing to a boiler control and
monitoring system

This section describes an application of BOR test-
ing to the software for a simplified real-time boiler
control and monitoring system. The specifica-
tions for the system were developed as part of the
generic problem exercise conducted for the 1993
International Workshop on the Design and Re-
view of Software Controlled Safety-Related Sys-
tems. A version of the boiler control and moni-

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

Table 7 Average sizes and fauit defection rates

Avg. Size Avg. Fault
Detection Rate
BOR testing 4.9 99.73%
Elmendorf’s strategy 9.2 100.00%
Equivalence partitioning 4.5 96.88%

toring system was developed at North Carolina
State University.!* This software system, which
contains about 4500 lines of C code, was used in
our empirical study. A brief description of the
boiler system is given below. The objective and
the details of this study are provided in the re-
mainder of this section.

Figure 3 shows the context diagram for the sim-
plified boiler control and monitoring system. This
boiler system consists of a natural-gas-fired wa-
ter-tube boiler producing saturated steam. The
steam flow may vary rapidly and irregularly be-
tween zero and maximum, following a varying
external demand. The water level in the boiler is
regulated by the control of the inflow of feedwa-
ter. The water level must be kept between an up-
per and lower limit. If the water level is above the
upper limit, water will be carried over into the
steam flow and cause damage. If the water level
is below the lower limit, boiler tubes will dry out
and may overheat and burst. If the control of wa-
ter level is lost, the boiler is shut down.

The water level and the steam flow are measured
by an instrumentation system that reports sensor
values. The readings from sensors are transmitted
over an intrinsically unreliable communication
link to the control program. This control program
is expected to perform the following tasks:

1. To regulate the water level by controlling the
inflow of feedwater by appropriately turning
pumps on or off at required instances

2. To diagnose and isolate all potential errors and
issue a correction or repair request when er-
rors are discovered

3. To display at all times ““best estimates” of var-
ious readings for the boiler operator

4. To accept appropriate operator commands

Objective and procedures of the boiler system
study. During the development of the boiler sys-
tem at North Carolina State University, the orig-

TAI ET AL 451

Figure 3 Context diagram for the boiler control and monitoring system

s

CONTENT AT
MEASURING (X 7
DEVICE ¢

> A STEAMING
. N RATE MEASURING
L DEVICE

DUMP
VALVE

PUMP
MONITOR

PUMP

y FEED
3 WATER

inal, informal specification of the system was re-
written in terms of a number of extended finite-
state machines (EFSMs)."* According to the
boiler’s EFSM specification, test suites for the
unit, integration, and system testing of the boiler
system were constructed to ensure thorough test-
ing.'¢ In addition to the coverage of every state
and branch of individual EFSMs for the boiler sys-
tem, great effort was made to construct additional
test cases to cover special-event situations. How-
ever, no well-defined strategies were used for
testing combinations of EFSMs according to the
predicates in these EFSMs.

The objective of our study was to evaluate the
EFSM specification-based test suites for the boiler
system against the BOR testing criterion. We per-

452 TAl ET AL

formed both specification- and program-based
BOR testing of the boiler system as follows:

» For specification-based BOR testing of the boiler
system, we chose the most critical effect, the
“boiler shutdown™ effect, in the boiler system
and derived a cause-effect graph (CEG) for the
shutdown effect (next subsection). From the
EFSM-based test cases developed previously for
the boiler system, we selected those related to
the shutdown effect. The selected test set, re-
ferred to as the shutdown test set, contains 372
test cases. We used the shutdown test set to
measure the BOR coverage of the CEG for the
shutdown effect (shown later in this paper).

» For program-based BOR testing of the boiler
system, we chose a module dealing with the

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

shutdown effect.'” We measured the BOR cov-
erage of this module by the shutdown test set
(discussed later).

Derivation of a cause-effect graph for the shutdown
effect. The CEG for the shutdown effect, referred
to as the shutdown CEG, is organized in five lev-
els. The level 1 (the highest level) CEG for boiler
shutdown is shown in Figure 4. The annotations
for nodes in the level 1 CEG follow:

E — Boiler shutdown

C221 - Externally initiated

C220 - Internally initiated

C202 - Operator initiated

C203 - Instrumentation system initiated
C201 - Bad startup

C200 - Operational failure

C197 - Confirmed keystroke entry

C198 - Confirmed “shutnow” message

C196 — Multiple pumps failure (more than one)
C195 — Water level meter failure during startup
C194 - Steam rate meter failure during startup
C193 - Communication link failure

C192 - Instrumentation system failure

C191 - C180 and C181
C190 - Water level out of range

C180 - Water level meter failure during oper-
ation

C181 - Steam rate meter failure during opera-
tion

The cause nodes of the level 1 CEG, including
C180, C181, C190, and C192 through C198, are
effect nodes of level 2 CEGs. Similarly, some of the
cause nodes of level 2 CEGs are effect nodes of
level 3 CEGs, and so on. CEGs of level 2 through 5
are not shown in this paper.

Measurement of BOR coverage of the shutdown
cause-effect graph. When we attempted to mea-
sure the BOR coverage of the shutdown CEG by the
shutdown test set, we encountered a problem.
Although algorithm BOR_min generates a mini-
mum BOR constraint set for a compound predi-
cate, such a minimum BOR constraint set is not
unique. As a result, the selection of a minimum
BOR constraint set for a compound predicate may
affect the BOR coverage of the predicate by a
given test set. To solve this problem, an algorithm
called BOR_cov was developed. For a given test
set T for a predicate C, algorithm BOR_cov

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

1. Identifies the set T’ of redundant tests in T,
which do not improve the capability of detec-
tion of Boolean operator faults in C

2. Produces a minimum set T” of additional con-
straints that are needed for BOR testing of C

3. Computes the BOR coverage of C by T, which
is defined as (ITI — IT'l) / (ITI — IT'l + IT"),
where IS| denotes the size of a set S.

We used algorithm BOR_cov to measure the BOR
coverage of the shutdown CEG by the shutdown
test set. Of the 372 tests in the shutdown test set,
59 tests (about 1/6 of the total) were found to be
redundant. Also, 24 more constraints are needed
for BOR testing. So the BOR coverage of the
shutdown CEG by the shutdown test set is
(372—59)+(372—59+24) = 0.928. Most of the re-
dundant tests deal with pump and flow monitor
combinations. However, most of the additional
tests needed for BOR testing also deal with pump
and flow monitor combinations. The reason is
that the tests in the shutdown test set for combi-
nations of pumps and flow monitors were selected
without applying any effective predicate-based
testing strategy.

The shutdown test set was constructed earlier by
three persons totaling approximately 100 person-
hours. In our study, the shutdown CEG was con-
structed by one person in about 20 hours. CEG-
based test generation can be automated. Also, CEGs
can be analyzed for the detection of ambiguities and
inconsistencies in system specification.' Thus, the
use of CEGs for software specification and test gen-
eration has significant advantages.

Measurement of BOR coverage of a module in the
implementation of the boiler. As mentioned ear-
lier, we chose one module in the implementation
of the boiler to measure its BOR coverage. The
selected module deals with the shutdown effect.
It contains 360 statements in C and 34 predicates,
of which 21 are simple predicates (that is, pred-
icates without AND/OR operators) and the remain-
der are compound predicates with one AND/OR
operator. We manually transformed this module
for the measurement of BOR coverage and gener-
ated 81 BOR constraints for the predicates in this
module. (Two constraints are generated for each
simple predicate and three constraints for each
compound predicate with one AND/OR operator.)

The shutdown test set was used to execute the
implementation of the boiler.’® Based on the BOR

TAI ET AL. 453

Figure 4 Level 1 cause-effect graph for the boiler control and monitoring system

coverage information collected from the selected set is 79/81 = 0.975. When we investigated the
module, two of the 81 constraints were not cov- two uncovered constraints, we discovered a
ered by the shutdown test set. So the BOR cov- “bug” in the selected module. This bug would
erage of the selected module by the shutdown test have been discovered if the selected module had

454 TA ET AL IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

been tested with 100 percent BOR coverage. Also,
the two discovered constraints correspond to
some of the additional tests needed for BOR test-
ing of the shutdown CEG. Therefore, had these
additional tests been used to execute the imple-
mentation of the boiler, the two uncovered con-
straints would have been covered and the bug
discovered.

Applying BOR testing to a set of N-version
programs

This section reports an empirical study of apply-
ing BOR testing to a set of N-version programs
written in Pascal.'® Our reason for using N-ver-
sion programs is that multiple functionally equiv-
alent programs provide more objective results
than just one program. We chose five functionally
equivalent Pascal programs, which were pro-
duced as part of another study. These five pro-
grams were written independently by graduate
students to solve a navigational problem that was
an extension of the earth satellite problem.” The
sizes of these five programs range from 400 to 800
Pascal statements.

Acceptance testing of these five programs in-
volved both random and functional testing and
used a tool called BGG, which was developed at
North Carolina State University to measure the
test coverage of statements, branches, and vari-
ous types of data flow metrics for Pascal pro-
grams.”' A set of 1000 random tests was gener-
ated by using a uniform distribution of all input
values. A set of 103 functional tests® was gener-
ated by considering extreme and special values
such as singularities and boundaries. The results
of acceptance testing of these programs were re-
ported.?? BGG was recently extended to gener-
ate BOR constraint sets for predicates in a Pascal
program and to measure the coverage of these
BOR constraints according to a given test set for
the program.

The objective of this empirical study was to use
the five-version Pascal programs to compare BOR
testing with random and functional testing. Ac-
cording to the specification for the navigational
problem, we derived a CEG for the specification
and applied algorithm BOR_min to generate a set
of 43 test cases, referred to as the CEG-BOR test set
for the five-version programs. We applied the
CEG-BOR test set, using the BGG tool, to execute
each of the five-version programs, and computed

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

Table 8 Average coverages for test sets

Statement Coverage Branch Coverage

Random 0.848 0.634
Functional 0.960 0.896
CEG-BOR 0.963 0.896

the average coverages of statements and branches,
respectively, of the five-version programs. We
applied the random and functional test sets for the
five-version programs in a similar way. Table 8
shows these average coverages.

From Table 8, the CEG-BOR test set provides
about the same statement or branch coverage as
the functional test set. However, the size of the
CEG-BOR test set is about 40 percent of that of the
functional test set.

Since the five-version programs contain faults,
we also compared the CEG-BOR, random, and
functional test sets for their effectiveness of fault
detection. The combination of random and func-
tional test sets detected all faults in one of the
five-version programs and detected all but one
fault in each of the other four programs. The CEG-
BOR test set detected all faults in each of the five-
version programs. Thus, in this experiment, the
CEG-BOR test set is more effective than the com-
bination of random and functional test sets. As an
example, for one of the five-version programs, the
random test set detected three faults, the func-
tional test set five faults, and the CEG-BOR test set
all nine faults in the program.

Summary

In this paper we have presented the results of four
empirical studies of the BOR testing strategy. Two
of these studies involved the use of Boolean ex-
pressions and the other two the use of actual pro-
grams. The major findings are the following:

* BOR testing is effective for detecting faults in a
compound predicate.

* BOR testing is more cost-effective than several
other predicate testing strategies.

* BOR testing based on a cause-effect graph rep-
resenting software specification is practical and
effective for detecting faults in the correspond-
ing implementation.

TAl ET AL. 455

The use of cause-effect graphs in software spec-
ification and design is not yet popular. One pos-
sible reason is the lack of user-friendly tools for
expressing software specification and design in
cause-effect graphs. Since CASE (computer-aided
software engineering) tools supporting cause-
effect graphs are becoming available, > the use
of cause-effect graphs will increase.

Two variations of the algorithm BOR_min were
studied.” Two extensions of the BOR testing cri-
terion were proposed,>” one to include the de-
tection of incorrect relational operators and the
other to include the detection of incorrect rela-
tional operators and arithmetic expressions. We
will investigate other extensions of BOR testing such
as nonarithmetic operations (for example, compar-
ison between two pointers or character strings) and
additional Boolean operators (for example, exclu-
sive-OR and short-circuit AND/OR). Also, we plan to
carry out empirical studies of BOR testing by using
larger software systems, and we plan to investigate
the implementation of tools to support specifica-
tion- and program-based BOR testing.

Acknowledgment

The authors would like to thank H. K. Su for his
earlier work on the comparison between BOR test-
ing and Elmendorf’s strategy.

Cited references and notes

1. G. J. Myers, The Art of Software Testing, John Wiley &
Sons, Inc., New York (1979).

2. B.Beizer, Software Testing Technigues, 2nd edition, Van
Nostrand Reinhold Co., Inc., New York (1990).

3. K. C. Tai, “Predicate-Based Test Generation for Com-
puter Programs,” Proceedings of the International Con-
ference on Software Engineering (May 1993), pp. 267~
276.

4. This research was supported in part by the IBM Centre for
Advanced Studies, NASA Grant NAG-1-983 and NSF
Grant CCR-8907807.

5. “Testing criterion” and “testing strategy” are often used
as synonyms. In this paper, we distinguish the two only
when a testing criterion can be satisfied by using different
testing strategies.

6. W. R. Elmendorf, Cause-Effect Graphs on Functional
Testing, TR-00.2487, IBM Systems Development Divi-
sion, Poughkeepsie, NY (1973).

7. K. C. Tai, Structure- and Fault-Based Testing Strategies
for Compound Predicates, TR-94-05, Department of
Computer Science, North Carolina State University, Ra-
leigh, NC (1994).

8. For languages like C that use short-circuit evaluation of
AND/OR operators, more than two tests are needed.

9. K. A. Foster, “Error Sensitive Test Cases Analysis

456 TAI ET AL

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.
26.

27.

(ESTCA),” IEEE Transactions on Software Engineering
SE-6, No. 3, 258-264 (May 1980).

W. E. Howden, “Weak Mutation Testing and Complete-
ness of Test Cases,” IEEE Transactions on Software En-
gineering SE-8, No. 4, 371-379 (July 1982).

The syntax tree of a predicate can be viewed as a cause-
effect graph with exactly one effect node and with a cause
node being a relational expression or Boolean variable.
S. Yokoi and M. Ohba, “TCG: CEG-Based Tool and Its
Experiments,” Proceedings of the 13th Software Reli-
ability Symposium, Nara, Japan (November 1992),
pp- 41-49.

If the “%” operation has two or more possible values, it
returns just one of them.

M. A. Vouk and A. Paradkar, “Design and Review of
Software Controlled Safety-Related Systems: The NCSU
Experience with the Generic Problem Exercise,” Pro-
ceedings of the International Invitational Workshop on
the Design and Review of Software Controlled Safety-
Related Systems, Ottawa (June 1993).

An extended finite-state machine is an FSM with the use
of variables and predicates.

A. Paradkar, 1. Shields, and J. Waters, The NCSU So-
lution to the Generic Problem Exercise: Boiler Control
and Monitoring System, Department of Computer Sci-
ence, North Carolina State University, Raleigh, NC (May
1993).

The selected module is not the only module dealing with
the shutdown effect. We chose only one module since no
automatic tool was available for measuring the BOR cov-
erage of C programs.

Since the selected module is one of several modules deal-
ing with the shutdown effect, only a portion of the shut-
down test set invokes the selected module.

N-version programming is a technique for increasing soft-
ware reliability; it requires independent development of
multiple versions of a software system for a given spec-
ification and then execution of these versions at the same
time to compare their results.

P. M. Nagel and J. A. Skrivan, Software Reliability: Re-
petitive Run Experimentation and Modelling, BSC-40336,
Boeing Corporation, Seattle, WA (1982).

M. A. Vouk and R. E. Coyle, “BGG: A Testing Coverage
Tool,” Proceeedings of the 7th Northwest Software Qual-
ity Conference (1989), pp. 212-233.

W. E. Howden, Functional Program Testing and Anal-
ysis, McGraw-Hill Book Co., Inc., New York (1987).
M. A. Vouk, D. F. McAllister, and K. C. Tai, “An Ex-
perimental Evaluation of the Effectiveness of Random
Testing of Fault-Tolerant Software,” Proceedings of the
Workshop on Software Testing (July 1986), pp. 74-81.
M. A. Vouk, M. L. Helsabeck, D. F. McAllister, and
K. C. Tai, “On Testing of Functionally Equivalent Com-
ponents of Fault-Tolerant Software,” Proceedings of
COMPSAC (Computer Software and Applications) 86
(October 1986), pp. 414-419.

Software Through Pictures, Interactive Development En-
vironments, Inc., San Francisco, CA.

K. C. Tai and H. K. Su, “Test Generation for Boolean
Expressions,” Proceedings of COMPSAC (Computer
Software and Applications) °87 (1987), pp. 278-283.

K. C. Tai, A Theory of Fault-Based Predicate Testing for
Computer Programs, TR-94-04, Department of Computer
Science, North Carolina State University, Raleigh, NC
(1994).

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

Accepted for publication April 12, 1994.

Kuo-Chung Tai Computer Science Department, North Caro-
lina State University, Raleigh, North Carolina 27695-8206
(electronic mail: kct@csc.ncsu.edu). Dr. Tai is a professor of
computer science at North Carolina State University. He has
published papers in the areas of software engineering, distrib-
uted systems, programming languages, and compiler con-
struction. His current research interests include software test-
ing, concurrent programming languages, and analysis, testing,
and debugging of concurrent software and communication
protocols. Dr. Tai received his Ph.D. degree in computer sci-
ence from Cornell University. From 1989 to 1991, he was the
director of the Software Engineering Program at the National
Science Foundation. He is an associate editor of Computer
Languages, International Journal of Software Engineering
and Knowledge Engineering, and International Journal of
Computer and Software Engineering. He is a co-program
chair of the 1994 International Conference on Parallel Pro-
cessing.

Miaden A. Vouk Computer Science Department, North Caro-
lina State University, Raleigh, North Carolina 27695-8206
(electronic mail: mav@csc.ncsu.edu). Dr. Vouk received his
Ph.D. degree from the University of London (UK). He has
extensive experience in both commercial software production
and academic computing environments. He is the author, or
coauthor, of over 80 publications. He is currently an associate
professor of computer science at North Carolina State Uni-
versity. His research and development interests include: soft-
ware process modeling and risk management; software test-
ing, reliability, and fault-tolerance; development of large-
scale scientific software-based systems; and high-speed
networking issues. He is the chairman-elect of the IFIP Work-
ing Group 2.5 on Numerical Software, and the cochairman of
the Software Quality Interest Sub-Committee of the North
Carolina Quality Assurance Discussion Group. He is an as-
sociate editor of IEEE Transactions on Reliability.

Amit M. Paradkar Computer Science Department, North
Carolina State University, Raleigh, North Carolina 27695-
8206 (electronic mail: amit@bvcd.ncsu.edu). Mr. Paradkar
received his M.S. degree in computer studies from North
Carolina State University and is currently a Ph.D. student in
the Computer Science Department at NCSU. He was a system
analyst with Citicorp Overseas Software Limited in Bombay,
India. His research interest includes software fault-tolerance,
software testing, software reliability, and software process
modeling.

Peng Lu IBM Software Solutions Division, Toronto Labora-
tory, 844 Don Mills Road, North York, Ontario M3C 1V7,
Canada. Dr. Lu is a research staff member at the IBM Centre
for Advanced Studies (CAS) of the Toronto laboratory. He is
currently a principal investigator for the Software Reliability
and Testing project under CAS. Dr. Lu received his Ph.D. in
engineering from McMaster University in 1989 and joined the
IBM Toronto Laboratory in 1990. He has worked on several
development projects and on new technology transfer, includ-

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

ing CASE, process modeling, reverse engineering, and soft-
ware reliability engineering. His research interests include
software reliability and testing, software engineering, artificial
intelligence, and expert systems.

Reprint Order No. G321-5550.

TAl ET AL. 457

