Reference architecture
for distributed systems
management

Management of computing systems Is needed to
ensure efficient use of resources and provide
reliable and timely service to users. Distributed
systems are much more difficult to manage
because of their size and complexity, and they
require a new approach. A reference architecture
for distributed systems management is proposed
that integrates system monitoring, information
management, and system modeling techniques.
Three classes of system managemeni—network
services and devices, operating system services
and resources, and user applications—are
defined within this framework, and a detailed
hospital application is presented to clarify the
requirements for managing applications. It is
argued that the performance management of
distributed applications must be considered from
all three perspectives. Several management
prototypes under study within the COnsortium
for Research on Distributed Systems (CORDS)
are described to illustrate how such an
architecture could be realized.

Distributed computing systems typically con-
sist of large numbers of heterogeneous com-
puting devices connected by communication net-
works, various operating system resources and
services, and user applications running on them.
These resources and applications are becoming
indispensable to many enterprises, but as distrib-
uted systems get larger and more complex, more
things can go wrong, potentially interrupting or
crippling critical operations. Thus, management
support is often cited by end users as the single

426 BAUER ET AL.

by A. Bauer
J. Finnigan
W. Hong
A. Rolia

J. Teorey
A

M.
P.
J.
J.
T.
G. A. Winters

most important aspect required in such a system.
Unavailability of services, incorrect services, or
inefficient operations of services and applications
could mean the loss of valuable customers and
revenues.

While some monitoring of systems is conducted
today for computing environments, an integrated
approach to system management is needed for
more sophisticated distributed computing envi-
ronments. As an example of such an approach, let
us hypothesize the actions of a distributed sys-
tems manager of the future who must maintain
acceptable performance of a complex system as
the set of active users and applications rapidly
change.

In our proposed scenario the distributed system is
running smoothly when suddenly user application
response times increase to unacceptable levels.
The manager initiates a control program to start
monitoring system resources and to store the data
in local information bases. The control program

©Copyright 1994 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journa! reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

collects packet (workload) data associated with
parts of a network, node resource utilizations,
and loads on specific processes. The information
bases are queried by the control program and ag-
gregate data are sent to a modeling tool that sim-
ulates the actual system configuration. The model
is then executed with the live workload data, and
bottlenecks detected by the model are validated
using the console information the systems man-
ager originally gathered.

At this point the manager is confident that the
model predicts performance accurately for the
current system load and uses the model to recon-
figure resources in various ways to test hypoth-
eses for improving system performance. The
model results show that some reconfigurations
cause further performance degradation, and
those options are discarded. Other configurations
do result in better performance, but the cost of
implementing them is excessive. Finally, a bal-
ance between cost and performance is reached
and the manager makes the changes dynamical-
ly. Typical changes involve redistributing work-
loads, processes, or devices, inserting more de-
vices in a particular part of the configuration, or
purchasing faster devices.

The advantage of this type of management system
is that reconfiguration can be done with extreme
confidence that the performance of the system
will improve significantly and service to the user
will return to normal quickly. Thus the integration
of network monitoring, system monitoring, ap-
plication monitoring, information management,
and modeling techniques can potentially lead to
improved distributed system reliability and per-
formance. This is the major theme of this paper.

The management of distributed systems needs to
involve not only managing network services and
devices, but also system services and resources
and user applications. Most of the research and
implemented systems to date have focused on
network management, but in order to provide true
manageability for users, all three classes of dis-
tributed systems management must eventually be
included. We examine the functional require-
ments of managing distributed systems and pro-
pose a reference management architecture that
satisfies those requirements.

The paper is organized as follows. A typical dis-
tributed application—a hospital information sys-

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

tem used to illustrate the requirements for many
applications—is first described. Major functional
requirements for managing distributed systems
are summarized, along with the proposal for an
integrated management architecture to satisfy
those requirements. The hospital example is re-
visited and it is shown how the management of
this environment fits into our proposed architec-
ture. Finally, several prototype management sub-
systems are discussed, along with how the func-
tional integration works in practice.

The prototypes under study are part of research
within the COnsortium for Research on Distrib-
uted Systems (CORDS). The CORDS project brings
together researchers from four 1BM research lab-
oratories, six Canadian universities, four United
States universities, and other international re-
search centres.

Distributed application example

In this section we introduce a simple distributed
application and discuss its performance require-
ments and deployment on a local area network.
Several issues are described that must be ad-
dressed by a systems manager when deploying or
managing the performance of distributed applica-
tions. These include the allocation of processes to
network nodes and, when necessary, the choos-
ing of an appropriate level of internal concurrency
for processes. The example helps to provide a
rationale for the management requirements dis-
cussed in the next section. Later we show how
the proposed management architecture interacts
with the application and how management tools
could be used to analyze the performance of the
application, host, and network.

Consider the example of a distributed application
used to support the real-time monitoring of crit-
ical care patients’ vital signs in a hospital.' Med-
ical sensors measure each patient’s temperature,
blood pressure, and skin tension. If any readings
fall outside of a safe range, an alarm is displayed
at the patient’s nurse station. Summaries of sen-
sor measurements are saved in a database and
nurses and doctors can later query the database
or append further patient status information.

The distributed system that supports the applica-
tion has the following performance requirements:

BAUER ET AL 427

Figure 1 Hospital application software process architecture

USER
INTERFACES

Fom T
COLLECTORS

PATIENT
SENSORS

> NETWORK
PROCESS CAN NODES
INITIATE
A COMMUNICATION

/ SOFTWARE PROCESS CAN PERFORM
/ PROCESSES SERVICES FOR MORE THAN
ONE CLIENT AT A TIME

The system must be capable of supporting up to
one hundred patients and summarize each pa-
tient’s sensor readings in the database every
minute.

If a sensor value falls outside its safe range, the
nurse station must display an alarm quickly.
Ninety percent of the alarms must be displayed
within three seconds, and 99 percent within five
seconds.

No more than 60 percent of the host database
processing power must be used by the applica-
tion.

The load on the network from the application
must not exceed 30 percent of the capacity of
the network.

428 BAUER ET AL.

In general, a distributed system can have many
performance requirements. Each requirement ap-
plies best within the application, host, or network
subsystem domain. Application requirements
span the network and are monitored at the appli-
cation level. Host requirements are most easily
monitored at the operating system level, whereas
network subsystem requirements pertain to the
actual network.

A software process architecture that can be used
to implement the system is shown in Figure 1. It
illustrates several performance features of dis-
tributed applications using a notation based on
Buhr’s machine charts.* Each parallelogram rep-

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

resents a software process. Overlapped parallel-
ograms indicate that the application may include
more than one instance of a process. The lines
with arrowheads show that a process can initiate
a communication with another process. The
shaded parallelograms indicate that the process
can perform services for more than one client at
a time. Ellipses are used to illustrate the presence
of network nodes. To deploy the application, we
must allocate each process to a specific network
node. We now describe the purpose of the pro-
cesses in the architecture and the network nodes
required to support them.

In this example, nurse station user-interface pro-
cesses are implemented on workstations with one
workstation per nurse station. Each workstation
is a network node. The processes provide oper-
ations, or services, that support the request and
update of (1) patient information, (2) requests to
allocate and deallocate medical sensors and their
collectors to patients, and (3) start and stop com-
mands to the collector processes that facilitate
patient monitoring. Each nursing workstation
also has an alarm process that manages a status
window used to indicate whether the sensor val-
ues for the patient are within an acceptable range.

The database is configured to reside on a specific
host in the network and the database process ac-
cepts requests to store and retrieve sensor data
and other patient information. The process per-
mits many requests for service to be active con-
currently. Controlling the number of clients that
can be served concurrently affects the load on the
resources for the process, and the delays for ser-
vice incurred by the clients of the process.

Patient sensor processes reside on special-pur-
pose processors close to their sensors. These pro-
cessors are connected to the network and are net-
work nodes. Each sensor process supports a
single sensor by obtaining data from the sensor at
regular intervals, converting the results into ap-
propriate measurement units, and maintaining a
buffer of recent measurements. If measurements
are outside of an acceptable range, the process
notifies the appropriate nurse workstation alarm
process.

Control processes start, stop, and poll a single
patient’s sensor processes, summarize the sensor
data, and periodically write a summary to the da-
tabase. Nurse station user-interface processes is-

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

sue commands to collector processes. They cause
the collector processes to be associated with sen-
sors, and to start and stop patient monitoring. The
collector processes are target-independent and
can execute on either nurse workstations or on
the database host.

Before the application can be deployed, the col-
lector processes must be assigned to nodes and
the level of concurrency within the database pro-
cess must be decided. For now, we associate the
collector processes with the database host and
show the allocation of processes for the deployed
application across network nodes in Figure 2. Al-
ternate placements are discussed in the later sec-
tion “prototype implementations.” The choices
affect contention for application resources, such
as processes and their internal elements of con-
currency, node operating system resources, such
as processors and input-output subsystems, and
network communication subsystems. The inter-
actions lead to complex performance behaviour
that often defies intuition. Management systems
and applications are needed to help improve our
ability to understand and control the behaviour of
distributed systems.

A distributed computing management system
must characterize the performance behaviour of
distributed system features separately and also
provide a means to correlate their interactions.
The features include distributed application com-
ponents such as processes, nodes, and network
subsystems. Since performance requirements
can be expressed for each of these features sep-
arately, the management system should help us
verify whether their respective requirements are
indeed satisfied. Performance managers may also
attempt to control or improve the system perfor-
mance. When this is the case, it can be helpful to
correlate management information. For example,
we may wish to correlate network load with ap-
plication processes so that it is possible to con-
sider the impact of alternative process place-
ments on network performance.

Reference architecture for distributed
systems management

As discussed in the previous section, it is our
view that the primary objective of distributed sys-
tems management is to ensure the required be-
haviour of distributed applications; since it is the

BAUER ET AL. 429

Figure 2 Hospital application software process architecture and network nodes

USER
INTERFACES

NURSE
WORKSTATION
NODES

LOCAL AREA NETWORK

L

DATABASE
NODE

SENSOR Y
NODES
[TT T T i
PATIENT COLLECTORS §
SENSORS /J
iy
1
NETWORK Il SOFTWARE PROCESS CAN PERFORM
NODES PROCESSES SERVICES FOR MORE THAN
ONE CLIENT AT A TIME

applications that are critical to the end users of
the organization. This is not to say that the man-
agement of networks and systems is not impor-
tant, rather it implies that their management is a
critical factor in the overall management objec-
tive. Clearly, a malfunctioning network, whether
providing poor performance or many faults, re-
sults in poor behaviour of distributed applications
operating over that network.

From the perspective of managing the perfor-
mance of a distributed application, it is evident
that information about the behaviour of the un-
derlying systems and networks is essential. It is
our premise that management of networks, sys-

430 BAUER ET AL.

tems, and applications in isolation is too narrow
a focus, and that an integrated approach is re-
quired. Our research has begun to explore this
idea and we present a reference architecture for
integrated management services. Before doing
so, however, we briefly review what we consider
are the key requirements for distributed systems
management.

Requirements for distributed systems manage-
ment. In order to provide an effective distributed
systems management environment, management
services that can satisfy the following require-
ments are needed.

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

¢ It must be possible to collect data about the
behaviour and performance of devices, net-
works, systems, and applications throughout
the distributed computing environment.

« It must be possible for a system administrator to
statically and dynamically specify which com-
ponents are to be monitored, what data should
be collected, and how those data are subse-
quently analyzed or stored.

* There must be facilities to enable an adminis-
trator to control the behaviour of components
based on the collected and analyzed informa-
tion; such facilities might involve direct inter-
vention by the administrator or may be pre-
defined management components specified by
the administrator to act in an automatic or semi-
automatic manner.

¢ The management tools and services must sup-
port multiple, perhaps independent, adminis-
trators and yet provide consistent information,
e.g., the definition of managed object attributes,
across the entire distributed computing envi-
ronment.

e The overhead of the management services
(such as storage of collected data, management
protocol traffic, processor load for monitoring)
should be kept as minimal as possible. Redun-
dant data collection, storage, processing, etc.,
should be avoided.

The above key requirements also suggest several
secondary ones:

e There should be support for the development
and operation of management applications. For
example, if it is necessary to access multiple
sources of information for analysis, the under-
lying management services should facilitate it.

* It will be necessary to maintain information on
the location, origin, interconnection, and de-
pendencies among various entities in the com-
puting environment. For example, it will be
necessary to know the processes constituting a
particular distributed application, the hosts on
which those processes execute, and perhaps the
communication dependencies among those pro-
cesses.

* Distributed support for the collection, storage,
and access of data will be required. Since data
collected could be distributed across numerous
sites, and may itself be dynamically allocated,
information about the sources of management
data must be maintained.

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

These requirements are key whether one is fo-
cusing specifically on network management or on
the management of distributed applications. In
either case, an integrated approach for providing
management services can be beneficial, resulting
in simpler interfaces, consistent data, elimination
of redundancy, and greater flexibility in accom-
modating new standards and tools. Of course,
these gains become more significant within the
context of distributed applications management
because of the increased complexity and numer-
ous potential sources of information.

Integrated management architecture. We propose
an integrated management architecture that ac-
commodates the requirements discussed above
and supports existing and emerging management
standards. The architecture (illustrated in Figure
3) decomposes the collection of necessary man-
agement services into a logical collection of sub-
systems and components. It assumes the inter-
action between the operation and management
tools (or management applications) used by sys-
tem administrators and the several management
subsystems that provide the needed management
services. The major components of the architec-
ture are briefly discussed next.

Management tools and services. Management
tools are used to perform various activities, such
as configuration management, analysis of perfor-
mance bottlenecks, report generation, visualiza-
tion of network or system activity, simulation,
and modeling. These activities would be initiated
either manually by systems administrators using
appropriate management tools, or automatically
via predefined setups that trigger management re-
quests to the underlying management services.
These services, in turn, may utilize various man-
agement agents to carry out the requests. Inter-
actions between management tools and services
may take the form of simple procedure calls, re-
mote procedure calls, or message passing, de-
pending on how the management tools and ser-
vices are implemented.

Examples of these management tools are cur-
rently available commercially.** However, most
of these packages currently do not provide man-
agement tools or capabilities to manage all three
classes of distributed systems management: net-
work, operating system, and applications.

BAUER ET AL 431

Figure 3 An integrated management architecture for distributed systems

OPERATION AND MANAGEMENT TOOLS

~ CONFIGURATION MANAGEMENT ~ FAULT MANAGEMENT - REPORT GENERATION
- PERFORMANCE MANAGEMENT ~ MODELING AND SIMULATION ~ VISUALIZATION
MANAGEMENT

SERVICE INTERFACE

MANAGEMENT SERVICES

A 4

MONITORING
SUBSYSTEM

»

CONFIGURATION ° | CONTROL
SUBSYSTEM < P! SUBSYSTEM
MANAGEMENT INFORMATION
REPOSITORY SUBSYSTEM
(X.500, DATABASES, FILES, ETC.)
SNMP, SNMPv2, CMIP, OR
PROPRIETARY PROTOCOL
MANAGEMENT AGENTS
MANAGED v v v v ¥
RESOURCES

INTERFACE TO ¢ > REQUESTS AND REQUESTS AND
THE SUBSYSTEM REPLIES @ REPLIES

The heart of our integrated management archi- management service interface used by manage-
tecture is a set of management services that are ment tools consists of the union of all the services
logically organized as four subsystems, namely, available through the individual service interfaces
configuration, monitoring, control, and manage- (illustrated by shaded portions of the boxes on top
ment information repository subsystems. The of individual subsystems in Figure 3). Interac-

432 BAUER ET AL IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

tions between the management subsystems (i.e.,
exchanging service requests and replies) may de-
pend on the implementation platform as well.
They may be done via local procedure calls if the
subsystems are implemented as a single unit of
management service, or remote procedure calls
or some type of message passing if the sub-
systems are implemented as independent servers
or available remotely. Each of these subsystem
services is briefly described next.

Monitoring service. The monitoring service is re-
sponsible for monitoring the behaviour of man-
aged objects in distributed systems. The moni-
toring activities are carried out by interacting with
management agents. Monitored management data
are collected by or from management agents
and stored in the management information repos-
itory. Subsequently, management data may be re-
trieved from the repository for analysis. Results
may be returned to the repository for other uses,
such as for subsequent display or for further anal-
ysis.

The monitoring subsystem must be able to deter-
mine appropriate agents or information in re-
sponse to current and anticipated requests for in-
formation. Such requests could originate from
management applications via administrators or
come from other management services. Accord-
ingly, the monitoring subsystem is responsible to
initiate the collection of information at appropri-
ate times, to delegate monitoring requests to re-
mote monitoring components or to subordinate
systems and devices, to coordinate the collection
of data from multiple agents, and to ensure the
ongoing monitoring activities even under failures.

The amount of potentially useful data about com-
ponents during execution can be very large. It
would be desirable for the monitoring service to
make decisions, perhaps with administrator in-
put, as to where particular collected data should
be stored based on the anticipated volume, im-
portance, anticipated access, or use. Such deci-
sions could also take into consideration multiple
storage mechanisms (such as X.500,”® databases,
or files). The monitoring service should allow a
means for selecting (or filtering) in advance what
data are to be collected. Furthermore, the mon-
itoring service should allow the user (or tools) to
define certain conditions on managed resources
so that when these conditions are met, an appro-
priate action can be triggered automatically. A

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

simple example of this is to monitor the size of a
queue in a server and generate an exception no-
tification when it exceeds a specified limit.

Control service. The monitoring service (previ-
ously discussed) enables data on the run-time ac-
tivities of the system components to be collected.
These data can be analyzed or filtered and turned
into useful information that can trigger some con-
trol actions to be taken by a control service. Such
control actions may be required to prevent disas-
ters on the network, device, service, or applica-
tion. They may also be required to fine-tune the
components to improve performance. For exam-
ple, when a server gets overloaded, the resulting
response time may be degraded considerably. If
more requests arrive and the arrival rate of re-
quests is greater than the service rate, the server
may eventually fail to work. Such a condition
may be detected by the monitoring service, and
the management application could instruct the
control service to carry out appropriate actions,
such as instructing the server to drop requests or
instructing the clients to submit fewer requests
until the size of the request queue in the server
goes below a threshold.

The control service encompasses the set of com-
ponents responsible for controlling the behaviour
of managed objects. Control activities may also
be carried out by interacting with management
agents. The control service requests may come
from various user management tools, from the
monitoring subsystem, or from the configuration
subsystem. For example, the monitoring sub-
system or user management tools may trigger ap-
propriate control actions to be taken when ex-
ceptions on managed objects arise. The man-
agement information repository may be used for
the storage and retrieval of control information.

Configuration service. Distributed applications
and services typically consist of a number of com-
ponents (such as clients and servers) running on
various computing nodes dispersed throughout a
distributed system. The configuration service
supports component (e.g., device, server, pro-
cess) tracking, component starting or termina-
tion, tracking of topological configurations and
version information (and facilitates changes to
them as required), and migrating of components
to other nodes for reasons such as load balancing
for increased performance. These activities are
essential for ensuring reliable and efficient ser-

BAUER ET AL 433

vices as well as for simplifying the tasks that sys-
tem administrators have to perform daily.

Configuration service requests may come from
user configuration management tools, from the
monitoring subsystem, or from the control sub-
system. This subsystem uses the management in-
formation repository for the storage and retrieval
of configuration information.

Information repository service. The information
repository provides a logically centralized view of
the management information and provides a sin-
gle interface to access the data and data sources.
The repository itself will consist of many different
collections of management data sources. For ex-
ample, some may be kept in the X.500 directory,
some in relational databases, some in files, and
other information in processors themselves (such
as routers or gateways). Such information would
be distributed across multiple sites of the distrib-
uted environment. A unified interface provides a
consistent way to access the data for management
tools and other management services and agents
and provides transparency of access to such in-
formation.

The repository must deal with both static and dy-
namic management information. Static manage-
ment information includes such information as
definitions of managed objects (as defined for
SNMP [Simple Network Management Proto-
col],*! cMip [International Organization for
Standardization standard for Common Manage-
ment Information Protocol,' or Open Software
Foundation Distributed Management Environ-
ment] '), descriptions of collection agents, and
information on applications and services (e.g.,
their configuration information). Dynamic man-
agement information includes such information
as performance information (e.g., CPU load, net-
work load, average response time), and faults in-
formation (e.g., status of servers, availability of
services).

The information repository service may be used
by the monitoring service to store data being col-
lected from management agents. It may also be
used by the configuration service to store the in-
formation pertaining to the initial network, de-
vice, system, or application configuration. The
configuration information can be subsequently re-
trieved for various uses, such as reconfiguration
or deployment of components. Further, analysis

434 BAUER ET AL.

tools may retrieve stored data from the reposi-
tory, process the data, and save the analyzed in-
formation in the repository. Such analyzed infor-
mation may be retrieved by visualization tools
and displayed to the user. Thus, the information
repository service provides critical support for
various management functions and other manage-
ment services. An analysis of the essential re-
quirements for management information and
some experiences with prototype repositories can
be found in Reference 13.

Management agents. Agents exist for carrying out
management activities on behalf of management
services and tools. For example, they may con-
figure the managed resources, monitor their be-
haviour, and perform control actions on these re-
sources. Such agents may vary from ones that
constitute a collection of management interface
routines (i.e., a library included as part of an ap-
plication that was connected to sensors at the de-
velopment stage), to ones that are active, inde-
pendent processes, such as SNMP'*"> or cMmiIp!6
agents. Management agents may reside in the sys-
tems and network layers to monitor and control
the managed resources in those layers. Some
agents may possess the capabilities of both mon-
itoring and controlling functions. Others may
even possess some analysis capabilities, which
may be quite helpful to management services.
Management services may communicate with
these agents using SNMP, CMIP, or proprietary
protocols.

Efforts such as OSF DME, ” NMF OMNIPoint**, % U1
Atlas-DM**,"® and 1BM SystemView*? represent
efforts at defining some of the details of manage-
ment services and, in particular, at defining how
management components are related to other
components of a distributed computing architec-
ture. The DME work on the definition of managed
objects, such as servers, is important and the re-
sults of the definitions represent the types of stan-
dardized managed object definitions to be cap-
tured in the information repository. In contrast to
the other efforts, our work on the architecture is
aimed at delineating the underlying management
services required to support the management of
distributed applications and the underlying net-
work and systems resources.

To date, the architecture has been used as a

framework to study the types of services, means
of integration, and tools that should exist within

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

a management environment defined by the archi-
tecture. These experiments are discussed in the
“Prototype implementations™ section. The fol-
lowing section revisits the hospital example using
the integrated approach suggested by the archi-
tecture.

A managed application

In this section, we revisit the hospital application
to show how it could be managed by the proposed
management architecture and tools. To effec-
tively manage the application, management infor-
mation is needed that can be used to verify that
performance requirements are being satisfied,
and to support management tools. In the exam-
ple, there are application, host, and network per-
formance requirements. Process operation re-
sponse times, processor utilization, and network
utilization are examples of management informa-
tion. Their values can be compared with values
determined by performance requirements to
show whether requirements are met.

The managed objects of the distributed system
include the processes for the hospital application,
host operating systems, and the local area net-
work. The distributed environment, operating
systems, and network subsystems that support
the application must make available management
information about the managed objects within
their domains. Management agents reside on each
host to acquire this information and make it avail-
able to the management information repository
and management tools.

The allocation of hospital processes and manage-
ment agent processes to network nodes is shown
in Figure 4. From the figure, we see how the man-
agement agents present in the distributed system
are part of the management architecture. Man-
agement tools such as the Method of Layers
(MoL)*" and XNetMod*** (see also the next sec-
tion) could use the proposed management archi-
tecture to acquire information needed to create
performance models. Next we show how the
tools can be used to deploy the hospital applica-
tion, verify that its performance requirements are
being satisfied, and perform a capacity planning
exercise.

To configure a distributed application, many al-
ternatives for process placement and selection of
concurrency levels should be considered. A con-

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

figuration that satisfies both performance and
nonperformance requirements must be selected.
Unfortunately, it is not always possible to deploy
and measure the performance of all configura-
tions of interest. Obtaining statistical significance
for measurements is time-consuming and limits
the number of configurations that can be consid-
ered. Analytical performance modeling tools can
be used to help narrow the set of alternatives that
should be measured. They can also be used for
capacity planning studies when it is not practical
to measure the performance of the system under
consideration.

The systems manager for the hospital application
has several degrees of freedom when deploying
the application. The collector processes can be
allocated to either the nurse workstations or the
database host and the level of concurrency within
the database process must be decided. With the
proposed management architecture and manage-
ment tools, a systems manager could undertake
the study that is next discussed.

Two sets of analytic performance models are cre-
ated that describe the distributed system required
to support a workload of one hundred patients.
The models are used to consider application and
system performance behaviour. Initially, the re-
source requirement values used to create perfor-
mance models are based on estimates provided by
application developers. In the first set of models,
the collector processes are allocated to the data-
base host. With this configuration, collector and
database processes do not require the use of the
communications network to communicate. This
keeps network communications to a minimum. In
the second set, the collector processes are allo-
cated to the associated nurse’s workstations. The
load of the application on the database host is
lower in the second set of models. In each set of
models, a range of levels for concurrency within
the database process is considered. Performance
estimates for the models are then obtained using
analytic performance modeling tools.

The performance estimates suggest that allocat-
ing the collector processes to the database host
will satisfy the performance requirements. The
database process can serve up to six clients con-
currently without the application exceeding its al-
located processor utilization of 60 percent, so the
level of concurrency for the database process is
set to six. Analytic models help guide the systems

BAUER ET AL. 435

Figure 4 Deployed application with management agents

[momTmm—m—— [TTmommo -
USER ALARMS
INTERFAGES
[T T T e e e -1
/ OPERATION AND
NETWORK, / MANAGEMENT TOOLS
OPERATING SYSTEM, J
A
AND / N
APPLICATION AGENTS [/
MANAGEMENT
y 'y SERVICE
INTERFACE
A
v
NURSE
WORKSTATION Q‘SQ‘QYGSET”S,.”ST
NODES OO
S A
LOCAL AREA NETWORK
DATABASE
NODE
SENSOR Y Y
NODES
____________] s
L / L !
NETWORK, / NETWORK, /
OPERATING SYSTEM, ,’ OPERATING SYSTEM, H
AND / AND /
APPLICATION AGENTS APPLICATION AGENTS [
T e e e e e e - P e e e e e -
r ? r ‘ ;
PATIENT / COLLECTORS !
SENSORS / /
/ !
/ /
NETWORK] SOFTWARE PROCESS CAN PERFORM
NODES | PROCESSES SERVICES FOR MORE THAN
ONE CLIENT AT A TIME

436 BAUER ET AL.

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

manager but only consider average behaviour.
The distributed system management architecture
must be applied to collect measurements and ver-
ify that the performance requirements are satis-
fied.

The application is deployed and subjected to a
workload of one hundred patients. The manage-
ment system helps to simplify the task of per-
forming the measurement study by collecting the
required management information and storing it
in the management information repository. Mea-
sured values of process operation response times
and host and network utilizations are compared
with values determined by the performance re-
quirements. In this example, the performance
requirements are satisfied. The measurement sys-
tem is also used to help undertake further perfor-
mance tuning and to collect actual resource con-
sumption metrics for future modeling exercises.
It is found that the performance requirements are
fulfilled and that the database process can support
up to seven clients concurrently without exceed-
ing the allocated capacity for the application on
the database host.

As a capacity planning exercise, the systems
manager considers the impact on system perfor-
mance of doubling the number of patients and
nurse stations. The system performance model is
altered to reflect the new workload. Performance
estimates for the models suggest the repository
machine does not have the capacity to support the
new work. The model is altered so that collector
processes are allocated to nurse workstations.
The load on the network, due to new sensor data
and to the new network communications traffic
between collector processes and the repository,
exceeds the desired load on the network. Plans
are put in place to investigate data compression
mechanisms that will reduce the load on the net-
work. The cost and impact on performance is
compared with an alternate option of upgrading
the network’s capacity. The least expensive op-
tion is chosen.

Prototype implementations

In this section we describe several prototype im-
plementations of management tools and sub-
systems and how they fit into the management
architecture presented earlier. The first two pro-
totypes describe management agents that have
been used to collect and store information in a

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

repository. The next two prototypes describe
management applications that can make use of
information in repositories to model the perfor-
mance behaviour of networks and distributed ap-
plications themselves. Lastly, a prototype that
integrates a management application with a re-
pository supported by management agents is de-
scribed. The prototypes demonstrate the viability
of the approach to distributed application mod-
eling.

Prototype I—Network load monitoring. The Uni-
versity of Western Ontario (UWO) has developed
two distributed systems monitoring prototypes,
one for monitoring network load® and one for
monitoring system load.” Both prototypes utilize
the supporting service of a management informa-
tion repository for storing and retrieving various
management data and information. For example,
the monitored systems and network loads are pe-
riodically collected and stored into the manage-
ment information repository. This information
can then be retrieved by other services or appli-
cations and used for other purposes, such as sta-
tistical analysis, load balancing, process migra-
tion, packet routing, and so on. Both prototypes
also make use of monitoring servers and moni-
toring agents for collecting the load information.

Here, we elaborate one of those two prototypes.
The network load monitoring prototype (Netload
Monitor or NM) is a simple system that monitors
the network loads of subnets in a heterogeneous
internetwork environment. The monitoring tool
consists of a graphical user interface, a monitor-
ing server and a number of network load moni-
toring agents throughout the internetwork envi-
ronment. Each network device runs agent
software (network load monitor agent in Figure 5)
for monitoring network traffic data from its inter-
face. The number of packets that have been sent
to the network by the device and the number of
packets that have been read from the network by
the device are examples of such traffic data. The
network load monitoring server periodically polls
these agents and collects the traffic data. The col-
lected traffic data are then averaged out per sub-
net (per second, for example) and then stored in
the management information repository.

The management information repository has been
implemented using the X.500 Directory Ser-
vice.”” For interacting with the Directory Ser-
vice, the prototypes used the Directory Access

BAUER ET AL. 437

Figure 5 The Netload monitoring system being managed by the Distributed Applications Manager

)

l-——--——--n‘

O g oy
C

L CE)

:

NETWORK LOAD
MONITOR AGENT
{Netioad Monitor)

NETWORK LOAD
MONITOR AGENT
{Netload Monitor)

i — |

PROTOTYPE | PROTOTYPE Il
NETLOAD MONITOR DISTRIBUTED APPLICATION
MANAGER
F F
O S G e S S MmN SR N S e A e *
i H
MANAGEMENT SERVICE INTERFACE
L |
H v
vy v MANAGEMENT INFORMATION
ONTOR SEPVER REPOSITORY SERVER

MANAGEMENT
INFORMATION

NETWORK LOAD
MONITOR AGENT
{Netload Monitor)

Hepeppeniertesppee s
:t..--..--------..-..---..

! LOCAL NETWORKS LOCAL NETWORKS

! LOCAL NETWORKS !

4 4 2PV

ey REQUESTS AND
REPLIES

4= == =p INTERACTIONS FOR
DISTRIBUTED
APPLICATION MANAGEMENT

Protocol (DAP) interface. The X.500 implementa-
tion used in the prototype is QUIPU Version 7.0.%

Prototype II—DA manager. UWO has also devel-
oped a prototype (Distributed Applications Man-
ager or DA Manager) for managing distributed
applications.” The DA Manager consists of con-
figuration, fault, and performance management
tools. The configuration management tool allows
the user to configure the components of a distrib-
uted application being managed. For example, it
allows the user to allocate resources (such as pro-
cesses) on appropriate hosts and to set their com-
munication relationships. The configuration tool
also allows the user to start up the component
processes on remote hosts and shut them down
when necessary. The fault management tool re-

438 BAUER ET AL

cords the status of component processes by
periodically checking the activity level of the pro-
cesses. The performance management tool mon-
itors the performance of the application by ex-
tracting appropriate performance data from the
component processes and analyzing them.

In order for an application to be managed by the
DA Manager, the application components must
be instrumented with a management interface,
which is a set of operations that can retrieve var-
ious information from managed processes and
perform various actions on them (such as getting
the resource usage of the process, setting the
values on some data, and so on). Distributed
applications come in various forms and sizes. Al-
though each application possesses its own ap-

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

Figure 6 A display of monitored data of managed processes

== DA Manager
Configuration Fault Performance Window Exit Help
Monitoring Managed Application: netmon
PName PID Hostname MPort SysTime UserTime Memory
netmon-agent 18309 ford 1790 0.580 0.090 4665
netmon-agent 13573 mccarthy 3436 0.280 0.140 2712
netmon-agent 4446 rubble 2375 0.610 0.100 4764
netmon-manager 4445 rubble 2383 0.950 1.160 46742
netmon-agent 149 herbrand 1052 0.720 0.260 1805
netmon-agent 2093 deer 1140 0.760 0.280 1889
netmon-agent 2258 theodore 1213 0.800 0.180 1692
netmon-agent 16991 grabel 1706 1.240 0.200 1453
netmon-agent 15705 gleep 1851 0.800 0.200 1725
netmon-agent 12985 berfert 1869 0.760 0.180 1685
netmon-agent 12328 nomis 1958 0.740 0.220 1637
netmon-agent 13829 det 1979 0.820 0.220 1911
netmon-agent 7423 nol2sun 1085 0.840 0.220 1847
" Exit I

plication-specific data, there is a set of data that
is common to most (if not all) distributed appli-
cations. Examples of such common data are pro-
cess name, communication port, CPU usage, and
memory usage. This common set of data and op-
erations required to get or set their values con-
stitute a generic management interface, which is
what needs to be instrumented into applications
so that they can be managed by the DA Manager.
That is, the DA Manager can manage any distrib-
uted application that is instrumented with the ge-
neric management interface.

To demonstrate the appropriateness of our man-
agement architecture, we have integrated the DA
Manager prototype with the Netload Monitor
prototype (described earlier). To be more precise,
the DA Manager is being used to manage the Net-
load Monitor prototype, which happens to be a
distributed application. This is also illustrated in
Figure 5. The dashed lines joining the DA Manager
and the managed components represent the in-
teractions for the purpose of distributed applica-
tion management. Each component process of
the network load monitoring system is instru-
mented with the generic management interface,
through which the DA Manager retrieves manage-

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

ment information or performs actions on the man-
aged process. Figure 6 shows a graphical display
of a set of process-related generic information be-
ing collected from the managed processes by the
DA Manager.

Prototype III—XNetMod. The University of
Michigan has developed a network analytical
modeling and performance analysis tool called
the Network Modeling Tool (NetMod**).% The
tool predicts the performance of new network
technologies in a large-scale local network envi-
ronment, possibly involving hundreds of local
area networks and hundreds of thousands of sites.
The principal application of the tool is to assist the
network designer in configuring proposed net-
work hardware and software components. The
tool consists of analytical (queuing) models and a
dynamic graphics user interface capability that
allows users to visually design a network config-
uration and then call the tool to predict its per-
formance. User workload is estimated from sev-
eral basic user types that are related to generic
applications such as CAD/CAM (computer-aided
design/computer-aided manufacturing), word pro-
cessing, database, etc. The workload can be cus-
tomized to any environment.

BAUER ET AL 439

Figure 7 A network management prototype example at
the University of Michigan

XNetMod
r 3
MANAGEMENT SERVICE INTERFACE
\ 4
MONITOR SERVER L REPOSITORY
P

NETWORK
LOAD MONITOR
AGENT

LOCAL NETWORK

The extended version of NetMod, XNetMod, has
been -developed for CORDS with extensions for
network management. The extension allows
XNetMod to use actual network traffic workload
(rather than estimated workload) for the predic-
tion of network performance. In the prototype
implementation, illustrated in Figure 7, the
Berkeley Packet Filter (BPF)?” was used as the
network monitoring agent. BPF strips off packet
headers on the local area network and forwards
them to the monitor server. The monitor server
gathers statistical information about the local area
network workload from the packet headers and
stores this information into a repository (which is
implemented using the Andrew File System**. %)
XNetMod issues requests to the monitor server
for workload information, which is satisfied by
the server through the Andrew File System.
Other requests by XNetMod to the monitor
server include changing the rate at which work-

440 BAUER ET AL

load information is written to the repository and
controlling the amount of information to be
saved.

Prototype IV—Method of Layers. The Method of
Layers (MOL) is an analytical performance mod-
eling tool developed at Carleton University and
the University of Toronto that is used to study the
performance behaviour of distributed applica-
tions.? It is based on approximate mean value
analysis techniques originally developed for ca-
pacity planning in mainframe environments,?"*
The techniques have been extended to reflect the
impact on performance of software interactions.
For example, client-server relationships as sup-
ported by the remote procedure call (RPC) and
servers that can serve up to n (where n >= 1)
clients concurrently are represented in the mod-
els.

A distributed application performance model
takes as its input parameters:

Process descriptions including a list of opera-
tions each process provides to other processes
The scheduling disciplines of processes and de-
vices

The number of instances of each process

The level of concurrency within each process
The average service demand of each operation
at its devices

The average number of requests for service
each operation makes to each other opera-
ti0n21,3]

The MOL estimates average process operation re-
sponse times and throughputs. It considers the
queuing delays that processes incur when re-
questing service at devices and other processes.
Parameters for the model can be altered to rep-
resent a change in system configuration. The tool
then predicts the impact of the change on average
operation response times and process through-
puts.

It is a challenge to support the efficient collection
of the above information for managed applica-
tions.*! Sources of information include instru-
mentation used by application developers (as in
the “Prototype II” section), distributed environ-
ment run-time systems,* and operating sys-
tems. " Once collected and stored in a repository,
much of the work needed to create and validate

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

performance models for distributed applications
can be automated.

Prototype V—Integration example. Another pro-
totype implementation demonstrates the interop-
erability between the management tools and sub-
systems that are geographically dispersed. As
presented in the sections on Prototype I and III,
network management tools (that monitor network
loads) were developed independently at UwWoO and
at the University of Michigan (UofM) respec-
tively. XNetMod analyzes the performance of
networks at the UofM through its monitor server,
which collects raw network traffic from its local
networks (see Figure 7). UwO’s Netload Monitor
also analyzes its local networks by collecting raw
network traffic from its local networks. The net-
work traffic collected by the Netload Monitor is
also stored into the management information re-
pository (see Figure 5).

In this integration example, XNetMod is used to
analyze the performance of networks located at
UWO (which is located approximately 300 km
from the UofM). This is achieved by the monitor
server retrieving the UWO’s network traffic data
that are stored in the management information
repository via a management information repos-
itory agent (MIR Agent in Figure 8). The dashed
lines in Figure 8 represent the monitored data flow
in the stand-alone Prototype 11l previously de-
scribed. As explained earlier, the X.500 Directory
Service has been used in the UwWo Netload Mon-
itor prototype to serve as a management infor-
mation repository. The MIR Agent is basically a
Lightweight Directory Access Protocol (LDAP)*
server running on one of the machines at UWO
accessing the repository on behalf of the monitor
server running at the UofM. The monitor server
at the UofM has been instrumented with the LDAP
interface so that it can communicate with the
LDAP server running at UWO using LDAP.

In this prototype we can label the key compo-
nents as they are listed in our proposed architec-
ture (Figure 3). Netload Monitor and XNetMod
(monitoring and modeling applications) rely on
the monitoring subsystem provided by Uwo and
the management information repository sub-
system implemented through X.500 and LDAP. As
illustrated by this prototype, the architecture can
be successfully used in the support of distributed
systems management. The key to the success of

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

the integration relies heavily on the management
information repository subsystem. The reposi-
tory must be distributed to allow access by geo-
graphically dispersed applications. It must also
have the data modeling capabilities to support
XNetMod. Finally, the repository must possess
reasonable performance and scalability charac-
teristics. X.500 was shown to be suitable for this
prototype integration,* although relational and
object-oriented databases are also under consid-
eration.

Concluding remarks

A sample application was described and used to
show that network, operating system, and appli-
cation performance behaviour are all dependent
on one another. Combined information is needed
for system managers to maintain efficient and re-
liable operations. As a result it is necessary to
support an integrated approach to distributed sys-
tems performance management.

A reference architecture was presented that
defines the components needed to support a
distributed management system. We describe
how the architecture supports the performance
management of application, operating system,
and network resources, and how the performance
management tools we envision fit into the archi-
tecture. The relationship between components
in the reference architecture and current tech-
nologies such as SNMP, CMIP, and DME is also
described.

Several prototypes were presented that illustrate
the integration of management agents and appli-
cations in distributed system management. The
agents collect information regarding process re-
source consumption and network usage and store
the information in repositories. Two management
applications that make use of stored information
are discussed along with a description of the man-
agement information on which they depend. The
first, XNetMod, is a network performance mod-
eling tool. The second, the Method of Layers,
models the impact of process placements and
software interactions on application perfor-
mance. XNetMod supports the automatic cre-
ation of a network performance model based on
the real load present on a network. Performance
measures for the network are then estimated.

BAUER ET AL. 441

Figure 8 Integration example using the CORDS management architecture

NETLOAD UNIVERSITY
MONITORING OF WESTERN
TOOL ONTARIO

MANAGEMENT SERVICE INTERFACE

MONITOR
SERVER

MANAGEMENT INFORMATION
REPOSITORY SERVICE

S

v

MANAGEMENT
INFORMATION

MANAGEMENT
INFORMATION
REPOSITORY

AGENT

NETWORK LOAD NETWORK LLOAD

MONITOR AGENT

NETWORK LOAD
MONITOR AGENT

MONITOR AGENT

1] L]
I

! ! LOCAL NETWORKS 1

i
LOCAL NETWORKS

LOCAL NETWORKS !

UNIVERSITY
OF MICHIGAN

XNetMod

MANAGEMENT SERVICE INTERFACE

y

MONITOR
SERVER

INTERNET
NETWORK

’
1
]
1
1
1
1
1
1
1
1
]
1
]
1
1
1
1
1
1
1
1
1
1
1
1
1

NETWORK LOAD
MONITOR AGENT

pvynr——

LOCAL NETWORKS

4= == =p MONITORED DATA FLOW

Much has been done to define the measure-
ment and control interfaces for application do-
mains,*** operating systems,'” and network
communication subsystems. *** More work needs
to be done to better understand the relationships
between them. Existing management protocols
provide the means to extract management infor-

442 BAUER ET AL

mation and to specify events. It is not yet clear
whether they provide sufficient expressiveness so
that events and conditions associated with the in-
teracting environments can be expressed. Also, it
is not clear whether the protocols can be used to
delegate more functions, both monitoring and
control, to more “intelligent” agents.” This is

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

necessary to support a scalable unified approach
to distributed application performance manage-
ment.

In the past few years much effort has been put into
the management of networks and network de-
vices. With the increase in the availability and use
of distributed systems and applications, more ef-
fort is being directed toward the management of
systems and applications. Efforts such as the
Open Software Foundation DME,'” the Network
Management Forum OMNIPoint,'® Ul Atlas-DM,
and the 1BM SystemView? are some examples
that provide management architectures for the
management of not only the networks and devices
but also for system resources and applications. In
general, most of these efforts are in early stages
and are constantly going through many changes.
We are well aware of these similar efforts and are
currently following their activities closely. We in-
tend to learn from their efforts, and we hope to
influence their work as well.

Acknowledgments

This research was supported by the 1BM Centre
for Advanced Studies and the Natural Sciences
and Engineering Research Council of Canada.
We would also like to thank the referees of this
paper for the excellent comments and suggestions
for improving the paper.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Network Manage-
ment Forum, Unix International, Regents of the University of
Michigan, or Carnegie Mellon University.

Cited references

1. M. Alford, “SREM at the Age of Eight: The Distributed
Computing Design System, JEEE Computer 18, No. 4,
36-46 (April 1985).

2. R. Buhr, Systems Design with Ada, Prentice-Hall, Inc.,
Englewood Cliffs, NJ (1983).

3. J. H. Chou, C. R. Buckman, T. Hemp, A. Himwich, and
F. Niemi, “AIX NetView/6000,” IBM Systems Journal
31, No. 2, 270-285 (1992).

4. H.S. Klemba, “Open View’s Architectural Models,” In-
tegrated Network Management, 1, Elsevier Science Pub-
lishers, New York (1989), pp. 565-572.

5. C. K. Law, “SunNet Manager,” SunWorld 4, No. 3,
60-68 (March 1991).

6. DualManager Programmer’s Reference Manual, 1st Edi-
tion, NetLabs, Inc., Los Altos, CA (July 1991).

7. “The Directory—Overview of Concepts, Models and
Services,” CCITT X.500 Series Recommendations,

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

10.

11.

12.

13.

14.

15,

16.

17.

18.
19.

20.

21.

22.

23.

24,

25

CCITT (International Telegraph and Telephone Consul-
tative Committee), (December 1988).

. “The Directory—Overview of Concepts, Models and
Services,” Draft CCITT X.500 Series Recommendations,
CCITT (International Telegraph and Telephone Consul-
tative Committee), (December 1991).

. K. McCloghrie and M. T. Rose, “Management Informa-

tion Base for Network Management of TCP/IP-Based In-

ternets: MIB-II, Internet Request for Comments 1213

{March 1991).

K. McCloghrie and M. T. Rose, “Management Informa-

tion Base for Network Management of TCP/IP-Based In-

ternets,” Internet Request for Comments 1156 (May

1990).

Information Processing Systems—Open Systems Inter-

connection, Structure of Management Information, Part

1: Management Information Model, International Orga-

nization for Standardization, International Standard

10165-1 (1991).

Catalog of OSF Managed Object Definitions, Volume

0.4, Open Software Foundation, OSF-SIG-MAN-SD-7,

Cambridge, MA (July 1992).

J. W.Hong, M. A. Bauer, and J. M. Bennett, “Integration

of the Directory Service in the Network Management

Framework,” Proceedings of the Third International

Symposium on Integrated Network Management, San

Francisco, CA (April 1993), pp. 149-160.

J. Case, K. McCloghrie, M. Rose, and S. Waldbusser,

“Introduction to Version 2 of the Internet-Standard Net-

work Management Framework,” Internet Request for

Comments 1441 (April 1993).

J. D. Case, M. S. Fedor, M. L. Schoffstall, and J. R.

Davin, “A Simple Network Management Protocol,” In-

ternet Request for Comments 1157 (1990).

Information Processing Systems—Open Systems Inter-

connection, Management Information Protocol Specifi-

cation, Part 2: Common Management Information Pro-
tocol, International Organization for Standardization,

International Standard 9596 (1991).

The OSF Distributed Management Environment (DME)

Architecture, Open Software Foundation, Cambridge,

MA (May 1992).

“Network Management Forum,” Discovering OMNI-

Point, Prentice-Hall, Inc., Englewood Cliffs, NJ (1993).

J. Herman, “Ul-Atlas Distributed Management,” Distrib-

uted Computing Monitor 7, No. 12, 3-19 (December

1992).

SystemView Structure, SC31-7038, IBM Corporation

(May 1993); available through IBM branch offices.

J. A. Rolia, Software Performance Modelling, CSRI

Technical Report 260, University of Toronto, Canada

(January 1992).

D. W. Bachmann, M. E. Segal, M. M. Srinivasan, and

T. J. Teorey, “NetMod: A Design Tool for Large-Scale

Heterogeneous Campus Networks,” IEEE Journal on Se-

lected Areas in Communications 9, No. 1, 15-24 (January

1991).

J. W.Hong, M. A. Bauer, and J. M. Bennett, “Integration

of the Directory Service in Distributed Systems Manage-

ment,” 1992 International Conference on Parallel and

Distributed Systems, Hsin Chu, Taiwan (December

1992), pp. 142-149.

C. J. Robbins and S. E. Kille, The ISO Development Envi-

ronment: User’s Manual, Volume 5:QUIPU (July 1991).

. J. W. Hong and M. A. Bauer, “Design and Implementa-

BAUER ET AL. 443

tion of a Generic Distributed Applications Management
System,” Proceedings of the GLOBECOM °93, Houston,
TX (November 1993), pp. 207-211.

26. J. W. Hong and M. A. Bauer, “A Generic Management
Framework for Distributed Applications,” Proceedings
of the IEEE First International Workshop on Systems
Management, Los Angeles, CA; IEEE Computer Society
Press (April 1993).

27. S. McCanne and V. Jacobson, “The BSD Packet Filter:
A New Architecture for User-Level Packet Capture,
“Proceedings of USENIX Conference, San Francisco,
CA (January 1993), pp. 259-269.

28. J. H. Howard, “An Overview of the Andrew File Sys-
tem,” Proceedings of USENIX Conference, Dallas, TX
(February 1988), pp. 23-26.

29. MAP User’s Guide, Quantitative System Performance,
Inc., Seattle, WA (1982).

30. BEST/1 User’s Guide, BGS Systems, Inc., Waltham, MA
(1982).

31. J. A. Rolia, “Distributed Application Performance, Met-
rics and Management,” Proceedings of the ICODP 93
(September 1993), pp. 205-216.

32. R. Friedrich, “The Requirements for the Performance In-
strumentation of the DCE RPC and CDS Services,” OSF
DCE RFC 32.0 (June 1993).

33. W. Yeong, T. Howes, and S. Hardcastle-Kille, Light-
weight Directory Access Protocol, Internet Engineering
Task Force OSI-DS Working Document 26 (August 1992).

34. G. Winters and T. Teorey, “Managing Heterogeneous
Distributed Computing Systems: An Analysis of Two
Data Repositories,” Proceedings of the 1993 CAS Con-
ference, Toronto, Canada (October 1993), pp. 691-706.

35. Information Processing Systems—Open Systems Inter-
connection, Structure of Management Information, Part
2: Definition of Management Information, International
Organization for Standardization, International Standard
10165-2 (1991).

36. G. Goldszmidt, S. Yemini, and Y. Yemini, “Network
Management by Delegation—the MAD Approach,” Pro-
ceedings of CASCON 91, IBM Centre for Advanced
Studies, Toronto (October 1991), pp. 347-361.

Accepted for publication April 5, 1994.

Michael A. Bauer Department of Computer Science, Univer-
sity of Western Ontario, London, Ontario N6A 5B7, Canada
(electronic mail: bauer@csd.uwo.ca). Dr. Bauer is chairman
of the Computer Science Department at the University of
Western Ontario. He holds a Ph.D. from the University of
Toronto in computer science. His research interests include
distributed computing, distributed directories, and software
engineering.

Patrick J. Finnigan IBM Software Solutions Division,
Toronto Laboratory, 1150 Eglinton Avenue E, Don Mills, On-
tario M3C 1H7, Canada (electronic mail: finnigan@vnet.ibm.
com). Mr. Finnigan is a staff member at the IBM Toronto
Software Solutions Laboratory. He received his M.Sc. in
computer science from the University of Waterloo in 1994.
His research interests include visualization for distributed ap-
plications and software engineering.

James W. Hong Department of Computer Science, Univer-
sity of Western Ontario, London, Ontario N6A4 5B7, Canada

444 BAUER ET AL.

(electronic mail: jwkhong@csd.uwo.ca). Dr. Hong is a re-
search associate and an adjunct professor in the Department
of Computer Science at the University of Western Ontario. He
received his Ph.D. from the University of Waterloo in 1991.
His research interests include distributed computing, operat-
ing systems, software engineering, and network management.

Jerome A. Rolia Department of Systems and Computer En-
gineering, Carleton University, Ottawa K1S 5B6, Canada
(electronic mail: jar@sce.carleton.ca). Dr. Rolia is an assis-
tant professor in the Systems and Computer Engineering De-
partment at Carleton University. He received a Ph.D. in com-
puter science from the University of Toronto in 1992. His
research interests include performance modeling, distributed
systems, and software design for performance.

Toby J. Teorey University of Michigan, Ann Arbor, Michigan
48103-4943 (electronic mail: teorey@umich.edu). Dr. Teorey
is Professor of Electrical Engineering and Computer Science
at the University of Michigan and is Associate Chair for Com-
puter Science. He holds a Ph.D. from the University of Wis-
consin in computer science. His research interests include
data modeling, distributed databases, and network perfor-
mance tools.

Gerald A. Winters Department of Electrical Engineering and
Computer Science, the University of Michigan, Ann Arbor,
Michigan 48109-2122 (electronic mail: gerald@citi.umich.
edu). Mr. Winters is a Ph.D. student in the Department of
Electrical Engineering and Computer Science at the Univer-
sity of Michigan. His research interests include databases,
networks, and system management.

Reprint Order No. G321-5549.

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

