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Advances in communications  technology, 
development of powerful desktop  workstations, 
and  increased  user  demands  for sophisticated 
applications are rapidly changing computing 
from a traditional centralized  model to a 
distributed one.  The tools and  services for 
supporting the design,  development,  deployment, 
and  management  of applications in such an 
environment must change  as  well. This paper is 
concerned with the architecture and  framework 
of  services  required to support distributed 
applications through this evolution to new 
environments.  In particular, the paper outlines 
our rationale for a  peer-to-peer  view  of 
distributed systems,  presents motivation for our 
research directions, describes  an  architecture, 
and reports on some preliminary experiences 
with a prototype system. 

C ontinuous  advances in communications 
technology coupled with the  development 

of powerful desktop  workstations  are fueling the 
growth of distributed computing. Users’  demands 
for  transparent  access to information and ap- 
plications, regardless of the  hosts on which 
they  reside,  require  interoperability among het- 
erogeneous  hosts,  operating  systems, and data 

sources.  The  development of distributed applica- 
tions in such  environments  presents  many chal- 
lenges to  the  developers of applications and to  the 
providers of computing and development envi- 
ronments. 

Developers of distributed applications must  often 
cope with details of protocols, differing data  rep- 
resentations, multiple communication standards, 
and more. Development tools  (such as languages, 
test  case  generators,  and debuggers) are  often 
limited in their support  for developing distributed 
applications. Even when  distributed  applications 
are made to work, their ongoing management and 
operation  become challenges requiring sophisti- 
cated  expertise  to  overcome  performance prob- 
lems, changing systems,  etc. 
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Figure 1 Evolution of the  computing  environment 
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Providers of distributed  computing  and  develop- 
ment environments,  therefore,  must  supply  ser- 
vices  that hide the myriad of details  from  the 
application developers and that  enable  the  devel- 
opment of distributed applications. There  are, 
however,  many  questions  about the nature of fu- 
ture  distributed  applications  and  their  supporting 
services:  What  are  the  services  required by dis- 
tributed applications? How should these  services 
be designed and implemented to  accommodate 
openness, scalability, and manageability? How 
should services  be  distributed?  How are different 
sets of services  related? What is a  suitable  archi- 
tecture for multiple services  that  can  accommo- 
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date  both existing systems  and  the  emergence of 
new technology? 

The CORDS research  project is an effort to  under- 
stand  the  problems  and challenges that  are  central 
to  the development of environments  for  the  de- 
sign, development,  and management of distrib- 
uted applications. It brings together  researchers 
from four IBM research  laboratories, six Canadian 
universities, four American universities,  and 
other  international  research  centres.  The  acro- 
nym “CORDS” stems from the original name for 
the  group:  “COnsortium for Research on Distrib- 
uted Systems.’’ Even though the official name of 
the  project, Le., the  name  on the original pro- 
posal, was “Alliance for Research in Distributed 
Systems,”  the  acronym  for  the  group  was  kept. 

The  scope of the  research  encompasses  both  new 
techniques for developing distributed applica- 
tions  and  for  understanding  the  services  required 
by distributed  applications  and  the  associated 
tools. Included in the  latter  category  are  the in- 
tegration and  distribution  requirements of both 
applications and  support tools. Other  research ef- 
forts  have  addressed  problems in these  areas 
as well; for example, Advanced  Networked 
Systems  Architecture (ANSA” *), ‘9’ Distributed 
Computing Architecture, Common Applica- 
tions  Environment (cAE),~ and Open Software 
Foundation Distributed Computing Environment 
(OSF DCE**).5 

CORDS is unique in two  fundamental  aspects. 
First, CORDS takes  a  basic  premise  that  distrib- 
uted environments  and  applications using these 
environments  are evolving from an  environment 
with clientlsewer interactions to  one with peer- 
to-peer interactions.  Second, it brings together 
researchers with different expertise in distributed 
computing in order  to understand  the trade-offs, 
boundaries,  and  interplay  between different sets 
of services  and applications. The  researchers 
have  expertise in a number of areas:  (distributed) 
databases, programming languages, (distributed) 
systems,  and visualization techniques. 

This  paper  is  concerned with the  architecture  and 
framework of services required in a  distributed 
application development  environment.  It  outlines 
the  rationale  for  our  peer-to-peer  view of distrib- 
uted systems,  presents motivation for the  re- 
search  directions,  and  describes  the  architecture. 
The  architecture emerging from the  research to 
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date  serves  as  a blueprint to guide researchers in 
developing prototypes  and investigating impor- 
tant integration problems. Its definition is  contin- 
uously being refined to reflect the ongoing re- 
search within CORDS addressing  more specific 
questions involving, for example, multidata- 
bases, 6,7 application distributed 
debugging, 12,13 and visualization. ‘&16 

The paper is organized as follows. First  we dis- 
cuss  the motivation for  the CORDS project  and 
describe  our long-term view of distributed appli- 
cation  development and management environ- 
ments. Following that is a brief overview of other 
efforts in defining distributed  architectures and 
associated  services.  Then  the CORDS architecture 
is introduced.  Afterward  a brief overview is given 
of a  “proof of concept”  prototype developed 
within the CORDS project, relating its  services  to 
components  with  the CORDS architecture. 

Motivation: shifting paradigms 

Distributed  systems with tens  or  even  hundreds 
of thousands of computing nodes  interacting  over 
vast  communication  channels  are  already possi- 
ble. As technology  continues to advance,  more 
and  more powerful computers will be available to 
individuals. In turn,  these  computers will have 
access  via high-speed communications  to  a vast 
array of computing resources. 

This  view of the computing  environment is not 
radical but  is  rather  a  natural evolution of the 
computing field  itself (see Figure 1). Initially, 
computing was done  on large, centralized  sys- 
tems  with limited access.  This  phase  gave  way to 
time-sharing environments and in turn  to  net- 
worked  environments  capable of supporting cli- 
entherver applications. In  each  phase of this 
evolution, computing power  has  been brought 
closer to  the individual user.  Intertwined with this 
evolution of computing technology is the  manner 
in which users  interact  with  the  computing  envi- 
ronment and  the applications available to  the 
user.  More powerful computers,  advances in in- 
terface technology, and  more  sophisticated  ap- 
plications have meant that  the  number of users 
capable of using computing and information re- 
sources is constantly increasing. 

Just  as  the computing environment  has  evolved, 
we  see human-computer  interaction evolving 
from one  that required computer-oriented hu- 
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Figure 2 Evolution of human-computer  interaction 
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mans,  to  one  best  described as human-oriented 
computing (see  Figure 2). Such  a  fundamental 
paradigm shift in the  way  computing is viewed 
has  two significant implications. First,  the end 
user will become increasingly more  important in 
developing applications. Second, domain spe- 
cialists will emerge and will be  responsible for 
developing domain-specific toolkits. These tool- 
kits will consist of domain-specific building 
blocks. As end users  become familiar with these 
building blocks,  they will be  able to easily com- 
bine them to obtain  the desired application func- 
tionality. Computing models will be required to 
permit users  to combine  components to form cus- 
tomized applications. More  importantly for our 
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research, underlying computation models, ser- 
vices, and tools must support  these  specialists 
and application composition. 

We believe that in the long term  the partitioning 
of components  into  clients  and  servers will be- 
come  constraining and that  a computing environ- 
ment based on peer-to-peer  interactions will be 

We  see the current environments 
with clientherver interactions 

as evolving naturally to 
peer-to-peer interactions. 

required. This is not to  say that  components will 
not take  on roles of clients  and  servers,  but  rather 
that  the role may  change with time and may differ 
among components;  our  rationale is further 
elaborated in the following subsection. More- 
over,  the shift in the  way applications are devel- 
oped, namely an  increased reliance on domain 
specialists and the composition and  customiza- 
tion of applications by  end  users, will exacerbate 
the  problems in defining, specifying, and  integrat- 
ing the  services of future  distributed computing 
systems.  Some of the  requirements of these  fu- 
ture  distributed computing systems  are  discussed 
in the  succeeding  subsection. 

Evolution  to a peer-to-peer  environment. Our  view 
of the evolution of the computing environment 
coupled with the evolution toward  a human- 
oriented computing environment  suggests  a 
distributed  environment  that  supports  greater 
human-oriented,  end-user computing. The com- 
putational model, therefore, should be  one that  is 
familiar to end  users;  the  peer-to-peer model sat- 
isfies this  requirement.  Our  premise  is  that  the 
composition of applications will be more  natural 
for end  users if the model is peer-to-peer in that 
this model is natural  for  many human interac- 
tions. It is a  more  general model of interaction 
than  clientlserver,  since  no (artificial) hierarchy 
of servers  and  clients  needs  to  be defined. 
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Moreover, we  see  the  current  environments with 
clientlserver  interactions as evolving naturally  to 
peer-to-peer  interactions.  In  peer-to-peer com- 
puting, relationships may  be many-to-many. Lay- 
ering and  clientlserver  relationships are not  re- 
quired. Furthermore,  each  process  or  component 
is independent. In some  circumstances involving 
distributed computing, it is  easy  to  see client/ 
server relationships. In  many  others,  however, 
entities  may  take  on  simultaneous  roles of both 
clients  and  servers.  Consider  the following ex- 
ample which arose in the  context of the CORDS 
project. The management of large distributed  en- 
vironments  requires  the collection of data from 
devices, hosts,  etc.  Some or all  of this information 
might be  stored for subsequent  analysis or for 
historical use, e.g., in modeling. The storage and 
management of these  data  can  be handled by 
available database  systems.  That is, the manage- 
ment components  use  the  services of the  database 
system.  Conversely,  the  database  system  re- 
quires  the collection of network  and  processor 
performance information in order  to effectively 
optimize the  distributed  queries; i.e., the  data- 
base  system  makes use of the management ser- 
vices. Which is  the client and which is  the  server? 
An artificial separation of roles  leads to either  a 
duplication of services  or  to  a  clumsy  architec- 
ture.  From  the  perspective of the end user  or  ap- 
plication designer, both  components of the  sys- 
tem offer services  that  can be used naturally by 
the  other. 

We also feel that  a  peer-to-peer model can  more 
easily accommodate existing applications. Mi- 
grating a  centralized application to a clienthewer 
model requires, at a minimum, that it be turned 
into  a  server  that  reacts to  requests from user 
clients. This  introduces  complexities arising with 
multiple clients  and  further  conversion  to accom- 
modate multithreading. In  a  peer-to-peer envi- 
ronment,  the application could be  essentially 
“wrapped”  as  an  entity  capable of (perhaps lim- 
ited)  interaction with other applications. The 
“wrapper” could handle the  peer-to-peer  com- 
munication with  other  components, leaving the 
existing application changed little or not at all. 

The  evolutionary  trends in computing and  modes 
of human-computer  interaction  have led us  to 
consider  distributed application development and 
operational  environments  based  on  peer-to-peer 
interaction. In particular, we have  considered  the 
services required of the underlying distributed 
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system.  The  nature of these  services,  the  under- 
lying problems in realizing them,  the accommo- 
dation of existing and emerging applications, and 
the  heterogeneity of computing  platforms  have 

Distributed  environments 
must be  able to accommodate 

emerging technologies. 

provided the motivation for  our  work.  The archi- 
tecture emerging from  this  work, though not com- 
plete,  represents  a  blueprint  for models and pro- 
totypes.  By  studying  these models and gaining 
experience in prototype  development and man- 
agement, we hope  to  answer  some of the  funda- 
mental  questions  surrounding  the  nature of ser- 
vices  required for distributed  applications  based 
on peer-to-peer  interactions. 

Requirements of future  distributed  systems. Any 
environment  supporting  the  development,  de- 
ployment, and management of distributed appli- 
cations will have  to  provide  services and be  based 
on an  architecture  that  addresses  a  number of key 
requirements of distributed computing systems. 
An environment  based on a  human-oriented, 
peer-to-peer  computing model will be no differ- 
ent, although we feel that it  will provide  a  more 
successful  approach in the long term. Following 
are  a  set of broad  requirements  that we feel are 
most  important.  These  requirements  have  shaped 
our  research  even if we have  not yet begun to 
address  some of them directly. 

Issues of performance  and  cost will continue to  be 
important,  but  other  issues,  such as reusability 
and transparency, will be  as  important. Many of 
the  requirements  discussed below are  not orthog- 
onal. Compromises and trade-offs among differ- 
ent  sets of services will be  necessary. Much work 
remains  to  understand fully the  nature of these 
compromises  and trade-offs as well as  to under- 
stand how the underlying services  are integrated 
and  distributed. 

Support peer-to-peer development. The  services 
provided by  the  distributed  environment will 
have to  support  the development  and  operation of 
distributed  applications as collections of peer 
components. Development tools and languages 
will be required to  support composition of com- 
ponents  to form complex applications customized 
for particular  users.  The  applications  and  tools 
will require  services to locate  components on re- 
mote  hosts, dynamically connect to and  terminate 
peer-to-peer  connections,  and migrate compo- 
nents, etc., across  heterogeneous  computing plat- 
forms. The underlying services  must provide a 
simple interface  to application developers  and  do- 
main specialists to reduce  the  complexity of de- 
veloping such applications. 

Accommodation of legacy applications. The mi- 
gration of legacy applications to a fully distributed 
environment will require  that existing applica- 
tions  and  services  evolve  rather  than be rewrit- 
ten.  The  interoperability of existing (centralized) 
applications and services with distributed appli- 
cations  and  services  must be addressed. Our view 
is that within a  peer-to-peer  environment,  such 
applications and services  can  be encapsulated,  at 
least logically as a  peer  process,  and integrated 
with new emerging distributed applications and 
services. 

Accommodation of  emerging applications. Con- 
versely,  distributed  environments  must  be able to 
accommodate emerging technologies such  as 
high-speed networks.  System  administrators 
should not  be  constrained to use the  “lowest- 
common-denominator,’ of technologies and ser- 
vices in their computing environment. In partic- 
ular, the  distributed  environment should allow 
systems  developers  and  administrators  to exploit 
the  features of emerging computing  environ- 
ments: high-speed networks  and high-perfor- 
mance  end-user  workstations  (with  enhanced 
processing  power, main memory, and secondary 
storage). In addition, it should allow heterogene- 
ity to percolate  up to  the application development 
level by supporting  distributed applications that 
are  developed by using more  than  one program- 
ming language. 

Support for security and privacy. In most orga- 
nizations, the  security of data  and  authenticated 
access  to their computing resources is para- 
mount. Security within centralized  environments 
is  supported by limiting access  through well- 

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994 



defined access  and  authorization  systems.  How- 
ever, within a  distributed computing environment 
security  remains  a challenging problem, in part 
because  the  security of each  resource  is  depen- 
dent on the  security  provided  by  the  other  com- 
ponents of the If one  component in 
the  distributed  system  does  not  provide  adequate 
security,  the  security of the  entire  system  may  be 
at risk. 

Manageabiliy. A  distributed computing system 
consists of heterogeneous  computing  devices, 
communication  networks,  operating  system  ser- 
vices,  and  applications.  The unavailability, incor- 
rect  operation, or inefficient operation of mission- 
critical devices,  services,  and applications could 
mean real losses to  the affected organization.19 
Thus, for effective operation and management, 
these  devices,  services,  and  applications must be 
monitored and  controlled. 

Data access. Access  to distributed,  heteroge- 
neous  data  sources  creates  a  set of commonly 
identified user  requirements.  The  requirements 
fall into  two  broad  categories:  connectivity  and 
integration. Connectivity implies the ability to ac- 
cess  data  either  at  a  remote  site  or  stored  by  a  data 
source  that  is different from the host source used 
by  the application. Data integration implies the 
ability to utilize heterogeneous  data in a  seamless 
fashion so that  the  data do not  intrude on the logic 
of the application. Integration should provide  the 
translation of the data’s schema,  data  types,  data 
format,  return  codes,  and  error  codes so that  any 
heterogeneity in the underlying data  sources is 
transparent to  the user. Accessing and updating 
data  at multiple heterogeneous  sources  must  be 
transparent. 

Support for role-specific transparency. It is gen- 
erally  accepted  that  some level of transparency  is 
desirable in a  distributed  environment.  It  is  also 
clear  that  the level of transparency desired may 
vary among the different users of the  system. 
Transparency allows the application developer  to 
view  the  system  as  a  set of logical resources, al- 
leviating the  need to deal with the  heterogeneous 
and  distributed  nature of the available resources. 
Thus,  transparency  is  important in hiding details 
of the underlying systems  and is instrumental in 
avoiding some  of  the  complexity  often  associated 
with the  development of distributed applications. 
The  detail  that  an application developer may have 
to cope  with may be  too  great for an  end  user 
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interested in composing or customizing compo- 
nent applications to form a new application. In 
contrast,  a  system  administrator may need access 
to much greater detail when trying to discover  a 
performance problem. The  environment  must 
provide a  vision of and  control of the  distributed 
system in some  circumstances and provide  trans- 
parency in others. 

Support for visualization. Whether  one is design- 
ing, developing, managing, or utilizing a distrib- 
uted system,  there is a large amount of informa- 
tion that  a human must  process. Visualization 
techniques  can  be used to verify, understand, and 
interpret  this  vast  amount of information. ’O Once 
again, given the need to support  a human-oriented 
computing environment, visualization techniques 
are required to facilitate a user’s understanding 
and manipulation of this information. 

Support for application development languages 
and tools. Programming distributed applications 
requires  the  use of third- or fourth-generation  pro- 
gramming languages with appropriate  extensions 
to allow effective use of underlying services.  Lan- 
guages such  as  Cor~cert/C’~-’~ have  concurrent 
programming primitives that exploit underlying 
services in a more abstract  way.  Tools  are emerg- 
ing that help application programmers partition 
existing applications into  the  peer-to-peer or cli- 
entherver paradigms. 24,25 Because new technol- 
ogy will continue to emerge,  there is a  clear need 
for a flexible “workbench” technology into which 
new tools  can  be  added and work  together with 
other  new  or existing tools.  This technology will 
become  particularly  important as  these  tools  be- 
come application- or domain-specific and are in 
turn combined by domain specialists to produce 
applications in other  areas.  This  workbench  must 
also  provide the configuration management and 
version  control  tools to help application develop- 
ers working in the new distributed  environment to 
build, tune,  and  deploy  these applications. Ide- 
ally, one could extend existing tools to accom- 
modate  distributed  applications and, thus,  assist 
in adaptation and reduce training costs. 

Support for distributed debugging and testing. 
Distributed applications may generate large num- 
bers of “messages”  between  the  components of 
an application and with other applications. Dis- 
tributed applications will not execute with any 
given total order of program events  due  to  con- 
currency and asynchrony. Debugging such appli- 
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cations  must enable a developer to  trace  events 
and faults, to capture  error conditions, to identify 
interacting components,  to replay events, and to 
map physical events  to logical ones.  Further- 
more, new testing techniques  must  be developed 
since familiar testing techniques, such as regres- 
sion testing, are impossible to use in the  presence 
of asynchrony. 

Accommodate evolving services. Underlying 
hardware and system  services will continue to 
evolve, including the  ones identified above. The 
computing environment must be able to accom- 
modate a  continuous  process of extension, refine- 
ment, and standardization of services without 
having a negative impact on  the applications de- 
veloped in and supported by the environment. 

Related work 

As noted in the  introduction, the focus of this 
paper  is  on  the  framework and architecture for 
services required of an environment for develop- 
ing, deploying, and managing distributed appli- 
cations. Agreat deal of research  has  been  done on 
various  aspects of distributed computing sys- 
tems, from protocols and communication primi- 
tives, to fault tolerance,  to distributed algorithms. 
A review of such  work is clearly beyond the  scope 
of this paper, though it is potentially relevant in 
the specification and definition of services dis- 
cussed  later in this paper. 

Several efforts have, however, been addressing 
problems arising out of questions related to the 
nature of services and their integration and dis- 
tribution in support of distributed applications. 
As previously noted, a primary difference be- 
tween  the CORDS project and other  projects is the 
unique focus of CORDS on the peer-to-peer envi- 
ronment. Notwithstanding these differences and 
given the  central  issues raised in the  previous  sec- 
tion, there  are many similarities in the goals of the 
projects  and,  therefore, in the  types of services 
provided. 

In  this  section,  we provide a brief survey of other 
research  projects  that  have  addressed distributed 
services in architectural  contexts. Within these 
projects,  various  terms  are used: architecture, 
framework, etc. In an effort to  relate  these efforts 
to  our own, we attempt to use  a single set of 
terms;  these  are defined in Table 1. 
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fable 1 Basic  terminology 

Model 

Reference model 

Computational model 

Framework 

Functional framework 

Architecture 

Environment 

An abstraction of real-world en- 
tities into a set of precisely de- 
fined concepts, and relation- 
ships. Examples include a 
computational model, data 
model, communication model, 
and a naming  model. 

A general model  defining terms, 
concepts, and relationships in a 
particular area that can be used 
by other, more specific models 
or used as a vehicle for compar- 
ison of models in that area. Ex- 
amples would include the OS1 
reference model  and the ODP 
reference model. 

An abstraction of real-world en- 
tities into a set of precisely de- 
fined computational concepts 
and relationships. Examples in- 
clude the process rela- 
tional model, ” and CSP. 

The definition  and organization 
of concepts to satisfy a set of re- 
quirements for a system. Exam- 
ples include the OS1 manage- 
ment framework and the Internet 
management framework. 

The definition  and organization 
of logical services and functions 
that satisfy a set of requirements 
for a system. An example would 
be the CORDS functional frame- 
work presented later. 

A refinement  and specification of 
a functional framework in terms 
of one or more models. 

Instantiation of one or more ar- 
chitectures and possibly other 
things such as tools or languages 
that do not have an architecture 
or have an  unspecified architec- 
ture. ANSAware and OSF DCE 
are examples of such an environ- 
ment. 

Specifically, we discuss: the  open distributed pro- 
cessing basic  reference model (oDP),’~ the Ad- 
vanced  Networked  Systems  Architecture 
(ANSA), 1,2730 UNIX International’s ATLAS Distrib- 
uted Computing Architecture, X/Open Common 
Applications En~ironment ,~ the RACE Open 
Services  Architecture (ROSA),31-33 and the Multi- 
vendor Integration Architecture (MIA). 34 



Open  distributed  processing. The  open  distributed 
processing (ODP) standardization effort is aimed 
at developing standards  to support  open distrib- 
uted  processing within an  enterprise  frame- 

ANSA is an architecture 
for distributed 

computing. 

work.29  The  eventual  standards  are  intended  to 
enable  enterprises  to  cope  with  heterogeneous 
systems and information sources.  Work on the 
standards  are  done  as Working Group 7 of the 
International Organization for  Standardization 
(ISO) IEC Subcommittee 21, which is responsible 
for  standards in information technology. Current 
work  is  focused on the  development of a  refer- 
ence model for  open  distributed  systems. 

The ODP standards  are  intended  to  support  a 
broad range of distributed  applications encom- 
passing such  areas  as home entertainment,  bank- 
ing systems, medical systems, and information 
services, as well as others. 

The  reference model for ODP defines the technical 
basis for the ODP standards  and specifies how ODP 
and its  component  standards  relate  to ISO refer- 
ence models and existing standards.  The  refer- 
ence model is composed of three  parts: 

1. A descriptive model that defines concepts  that 
could be applied to  any  distributed  processing 
system 

2. A prescriptive model that  presents  a generic 
architecture for ODP 

3. An architectural  semantics  that  provides  a for- 
malization of the  central  reference model con- 
cepts 

The  standardization effort to  date  has  focused pri- 
marily on the  descriptive model and the formal- 
ization  method(s) to be used to specify the archi- 
tectural  semantics. ODP has  adopted  the ANSA 
models  described below. 
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ANSA. ANSA is an  architecture  for  distributed 
computing. Its objectives include the integration 
of products from multiple vendors, scalability, 
and graceful evolution. The architecture  is  based 
on a  set of models, each offering domain-related 
concepts  and rules: the  enterprise model, infor- 
mation model, computational model, engineering 
model, and technology model. The  enterprise 
model allows the  construction of a model of an 
organization and its changes. The information 
model allows the designer to model the use of 
information. The  computational model defines 
the facilities required of a programming system 
for  the implementation of a  distributed applica- 
tion. The engineering model defines the function 
of the  infrastructure, and the technology model 
allows conformance  rules  for  its realization. The 
ANSA “models”  were used as the initial input to 
the definition of the ODP reference model and  be- 
came  the  “viewpoints” of ODP. 

In ANSA, all data  are  considered to  be remote. It 
is assumed  that  one  component  does  not  have 
direct  access  to  another. All data  are  accessed 
through remote  procedure call (RPC), and all ser- 
vices  are negotiated through trading  services. 
Trading is one of the  two  important  concepts in- 
troduced by ANSA. Trading is the  process em- 
ployed by clients  to utilize attributes of a  service, 
including locating appropriate  servers and ser- 
vices on the  network,  a  sort of “yellow pages” 
(telephone  directory)  access  to  services.  The  sec- 
ond  concept,  federation, allows interoperability 
between  systems while allowing systems  to main- 
tain control of their domain. The  emphasis of 
ANSA is on interfaces,  particularly  between  ser- 
vices,  and is based on the  clientherver model. 
ANSAware is a commercially available distributed 
computing environment  based on ANSA. 

UI-ATLAS distributed  computing  architecture. 
Unix International is a worldwide nonprofit con- 
sortium  based in Parsippany,  New  Jersey.  Their 
distributed computing environment is UI-ATLAS. 
This  project  has  three main objectives.  First,  to 
allow the  computer  industry  to  provide  technol- 
ogy encompassing the  widest range of interoper- 
ability of existing systems.  Second,  to see that  the 
technology is provided at the lowest possible re- 
source  cost.  Third,  to  have  both  the  user  and  ad- 
ministrator  see  the  entire  system as one, single 
system. 
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Figure 3 UI-ATLAS distributed  computing  architecture 
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UI-ATLAS is a fairly comprehensive object-ori- 
ented  architecture  for  distributed computing sys- 
tems  (see  Figure 3). The vision of UI-ATLAS is of 
open,  distributed  computing  made simple, con- 
sistent,  scalable,  robust,  and manageable. This 
vision  includes hiding system complexity. Over- 
all, the top-level requirements are: integration, 
scalability, flexibility, extensibility,  openness, in- 
formation integrity, and  security. UI-ATLAS will 
offer a  superset of OSF DCE. In particular, it  will 
extend  transaction processing, database  access, 
and integration with legacy systems. 

WOpen  Common  Applications  Environment. 
X/Open is  a  consortium of information system 
suppliers,  user  organizations,  and  software com- 
panies.  WOpen  has defined a  service  environ- 
ment,  the Common Applications Environment 
(CAE), (see  Figure 4) which it describes as a 
“comprehensive  and  integrated  system  environ- 
ment. ” 

/ 

/ 

9 

The goal of the CAE is  to provide  an  “open sys- 
tems”  environment. To accomplish this goal, it 
defines a  set of (implementation-independent) 
service  interfaces.  Thus,  users and developers 
can  develop  applications  that  are  portable and in- 
teroperable.  The  portability of applications is at 
the  source-code level. The  adoption of applica- 
tions  and  services  that  adhere  to  the CAE speci- 
fications allows a  heterogeneous mix of computer 
systems  and application software.  The specifica- 
tions are developed by extending  current  systems 
(e.g., the UNIX** operating  system) to provide  a 
comprehensive application interface. All mem- 
bers of the  consortium agree to  support  the de- 
fined service  interfaces collectively known as  the 
WOpen  System  Interface (XSI). In this way 
X/Open hopes  to  achieve  “openness.” 

One of the  primary  concerns of WOpen  is the 
selection  and adoption of standards: dejure stan- 
dards if they  exist, defacto standards  otherwise. 
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Figure 4 The  WOpen  Common  Applications  Environment 
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In  the latter  case, X/Open will try  to obtain formal 
standards  based  on  the  chosen de facto stan- 
dards. 

ROSA. The RACE Open  Services  Architecture 
(ROSA) is an  object-oriented  architecture  for in- 
tegrated  broadband  communications (IBC) ser- 
vices. 32,33 Its goal is to provide  a  set of concepts, 
rules, and recipes for the specification, design, 
and implementation of “open”  services.  These 
services should be able to accommodate  both  new 
services  and existing services and allow the in- 
teroperability of new  and existing services.  Fur- 
thermore,  the  architecture  is to  be independent of 
new and evolving network technologies. 

Two  basic  frameworks are in the architecture:  the 
Service Specification Framework (SSF) and the 
Resource Specification Framework (RSF). The 
concepts,  rules,  and  recipes of the  architecture 
are embodied by  the SSF in a  convenient form for 
a  service designer. In ODP terminology, the SSF 
covers  the  computational  viewpoint. The con- 

/ 

/ 

1 

cepts  for  the SSF can  best  be described by  the 
following object  types  that it defines: 

Service control allows a  user  to join,  leave,  sus- 
pend,  and  resume  activities in a  service,  and to 
negotiate service  parameters. 
Session allows the  service  control  object  to  add, 
as well as change and  delete  user  state infor- 
mation. 
Charge allows charges  incurred during a user’s 
session to  be recorded and manipulated. 
Transport  control maintains  status information 
with respect to  transport connections. 

The RSF is  oriented  more  toward  system design- 
ers. Its  purposes include defining abstractions  for 
telecommunication resources, defining compo- 
nents  required in target systems  to fulfill openness 
requirements, and defining rules  for  extensions of 
its  concepts. The SSF and the RSF are  somewhat 
related through  a  requirement-mechanism rela- 
tionship, the basis of the mapping between  the 
frameworks  (see  Figure 5) .  
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Implicit or explicit requirements of the SSF are put 
on the infrastructure through service specifications. 
New services are specified  using SSF components, 
which helps to provide technology independence. 
Likewise, new network infrastructures are speci- 
fied according to RSF rules, and thus do not impact 
the SSF. 

The following is  a list of some of the suggested 
RSF objects. 

Trail provides multipoint transfer of multi- 
media end-user information. In addition, there 
are  objects  such  as addMedia, removeMedia, 
suspendMedia, resumeMedia, and  syncMedia. 
X-connection provides multipoint transfer of a 
monomedia end-user  interface. 

jects. 
TypeManager allows one  to  add and delete 
types as well as to find a list of subtypes  that  are 
defined. 
Trader maintains  a  dynamic information repos- 
itory of services  currently available in the  sys- 
tem. 
Clock is  for  objects  that  require the current time 
or wish to  receive regular interval  “ticks.” 
Cluster can manipulate and  group  a collection 
of objects. 
Binder can  set  up or  destroy communication 

Storage provides  storage and retrieval for pas- 

1 

1 Creator allows the  creation and deletion of ob- 

1 channels  between  objects. 

sive  clusters. 

Multivendor  Integration  Architecture. The Multi- 
vendor  Integration  Architecture (MIA) is designed 
to allow the  interoperability of and  portability 
across  heterogeneous  systems  based on the cli- 
ent/server model. MIA specifies a  set of service 
interfaces  that reflect the  open  systems  architec- 
ture  concept. MIA was defined by the Nippon 
Telegraph  and  Telephone  Corporation (m). 

1 The main goal of MIA is multivendorization..on- 
structing  a  system  with  components from differ- 
ent  vendors.  The  potential  problems in multiven- 
dorization  can be placed broadly  into  three 
categories: portability, interoperability, and pro- 
cedures. To avoid these problems, it aims to  es- 
tablish a  framework of standard  interfaces  for 
those  services  that  most  directly affect the  user. 
MIA uses open  systems  technology: national and 
international  standards, de facto standards,  and 
specifications provided by open  systems  vendors. 

Figure 5 Relationship  between  the  SSF  and  RSF  in 
ROSA 
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It is primarily intended as a guideline for vendors 
making NTT bids. NTT is not promoting MIA as a 
standard, though they  are trying to incorporate 
relevant  standards  and  to  work with standards 
bodies on those  interfaces  that are not  yet  stan- 
dardized. 

The MIA defines a set of four interfaces  depicted 
in Figure 6. The application program interface 
(API) is between applications and  “basic soft- 
ware,” e.g., international  standards  for COBOL, 
C, SQL (Structured  Query  Language),  and is de- 
signed to allow application portability. The sys- 
tems  interconnection  interface defines communi- 
cations  protocols  and relies on both OSI and 
Internet  protocols.  The human interface defines 
display formats  and  workstation  operations.  A 
fourth  interface,  the  interenvironment informa- 
tion interchange  interface is defined to allow in- 
formation to  be passed from a  development envi- 
ronment to an execution  environment or  to 
exchange application source  code and data 
among execution  environments.  This  interface 
defines interchange  character sets and  codes. The 
interface  enables  three  types of development in- 
formation to  be passed: application program 
source  code,  database definitions (SQL data  de- 
scription language, DDL), and screen definitions. 

In addition to  the interfaces, NTT has defined eight 
conformance  classes for the MIA specifications. 

IBM SYSTEMS  JOURNAL,  VOL 33, NO 3, 1994 BAUER ET AL. 409 



Figure 6 The MIA interfaces 
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Thus,  vendors  who wish to label their  product as 
conforming to a  particular  class of MIA specifica- 
tions  must  demonstrate it against the  relevant  test 
suite. 

CORDS architecture 

The  view of distributed  applications  interacting in 
a  peer-to-peer  manner  has led the CORDS project 
to adopt  the  process model originally described 
by  Strom  et al. 26 The  nature of a  process-oriented 

peer-to-peer  environment  for  distributed applica- 
tions is the  central  focus of the CORDS research 
project. Issues and questions regarding how to 
realize such  an  environment,  what  services it re- 
quires, and how existing systems  can  be incor- 
porated  and  evolve  were  central in the  research. 

Some of this  research  has resulted in the  devel- 
opment of the CORDS architecture. 35336 The prime 
constituents of the  architecture, namely the  pro- 
cess model and the CORDS functional framework, 
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are described in this  section,  the  former  repre- 
senting the  abstract  computational model used as 
the basis  for the peer-to-peer  view of computing, 
and  the  latter  encompassing  the underlying dis- 
tributed  services.  This  architecture  is evolving as 
our  experience with ongoing research  prompts us 
to refine its definition. The  partial realization of 
this  architecture  and  the  incorporation of tools, 
such  as  the  distributed debugger, have provided 
the  basis  for  other  research  into  the design, de- 
velopment,  and management within a  distributed 
computing  environment. For an in-depth descrip- 
tion of the CORDS architecture, see References 35 
and 36. 

The process model. The  process model provides  a 
simple and elegant paradigm for building soft- 
ware.  The model enables  a  distributed  computing 
environment with consistent  access  to applica- 
tions,  data,  resources,  and  services  and facilitates 
the  separation of logical, or application concerns, 
from the  details of how services provided by  the 
architecture  are realized. This allows one  to 
structure  distributed  software  systems using pro- 
cesses  as  the building blocks. Each process  is 
based  on  the  concepts of encapsulation  and in- 
formation-hiding as well as  on  serial  computation. 

The  independence of processes allows them to 
operate  as  peer  entities.  The  process paradigm 
assumes  an infinite universe;  that is, there is no 
notion of a global state  or a global time. There- 
fore,  processes  do  not  observe  a given absolute 
order  when  executing  distributed  events.  Each 
process  maintains  some local state,  and  only  the 
program executing in that  process  can  manipulate 
that  state. All data are local to  a  process, and 
there  are  no  shared  variables;  this is useful in 
simplifying the complexity of distributed applica- 
tions. The model also assumes  data  and  process 
persistence, i.e., assumes  that  these  can  be  pro- 
vided  automatically by underlying run-time ser- 
vices if desired. 

An active  process  interacts  with  another  process 
by creating  a  channel on which it can  send  mes- 
sages. A message  channel is realized by  connect- 
ing an  output  port of the  sender  to an input port 
of the  receiver;  each  port  is  typed.  The  interface 
to a given process  is  determined  solely  by  the 
types of its  input  ports.  Thus, any  processes with 
matching output and input ports  may  be  con- 
nected if they  choose. The  type definition for a 
port  can  be written  separately  and  independently 
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of the  internal  process information. More  details 
of the  process model can  be found elsewhere26 as 
well as a  comparison of the  process model to  ob- 
ject-oriented  approaches. 37 Several languages im- 
plementing the  process model concepts  have 
been  prototyped  and  studied. 3 ~ 0  

Figure 7 illustrates  the  peer-to-peer  process 
model view of the CORDS multidatabase  compo- 
nent  and  the CORDS management component. The 
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various  shapes  represent  the  typed message ports 
of the  process model. Such  ports may allow bi- 
directional,  many-to-many  communication as de- 
picted in this figure. Some  ports in the diagram are 

Layers of the CORDS functional 
framework  illustrate the logical 

separation of functionality 
among  the  various services. 

not  connected,  since all defined ports  do  not need 
to  be utilized by  every  peer application. This is 
depicted by unfilled port  symbols.  These  pro- 
cesses  instantiate  the CORDS multidatabase com- 
ponent6  and  the CORDS management compo- 
nent.36341  The  services  represented by  these 
processes  are defined in the CORDS functional 
framework  described below. 

The CORDS functional  framework. We now pro- 
ceed  to define the CORDS functional framework, 
depicted in Figure 8. This  framework  describes 
the organization of the logical services and func- 
tions  that  address  the  requirements identified ear- 
lier. Extensions  to existing tools  or  the  creation of 
new  tools are required in order  to satisfy  some of 
those  requirements, e.g., language and run-time 
extensions to support  the  development, debug- 
ging, etc., of distributed applications. What is im- 
portant in the context of the  architecture, how- 
ever, is the  services  that  such  tools  require. Given 
the breadth of the  requirements, it was not  pos- 
sible to  thoroughly  explore all of the required ser- 
vices in detail within the  scope of the  project; 
some  components, e.g., security  services, remain 
to  be  explored in depth. 

The underlying view of computation  provided by 
the  process model proved useful in considering 
the allocation and  separation of services among 
the  various  components. For example, it became 
apparent during the  research  that  the manage- 
ment  component would require  access  to  name 
services  and  to information about  resources 
within the  distributed computing environment. 
These  services,  subsequently embodied as name 
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services  and information repository  services 
(within the  systems  services  components;  see 
Figure 8), would also  be required by  other  system 
services  and by components at the application 
layer  (namely, applications, application tools, 
and services and management applications). Fur- 
ther,  the  data  access and storage  services  re- 
quired by  the name services  and  the  repository 
services, e.g., for storage of information neces- 
sary for the management processes  and for the 
performance  data  gathered, could be provided by 
the  data  services  component.  This  iterative  ap- 
proach led to  a simpler view of the  distributed 
services  and provided a much more  consistent 
partitioning of services.  This, in turn, led to  the 
realization that  the  data  services could rely on the 
management services to provide information re- 
garding network traffic, host loading, etc., needed 
for decisions in query optimization. As  our un- 
derstanding of the  various  services  evolves with 
subsequent  research,  the  services  may  continue 
to evolve based on the  process view. 

The  layers of the functional framework  illustrate 
the logical separation of functionality among the 
various  services.  It is likely that  the  components 
of one  layer will make  use of the  services of the 
components  at  the  layer  beneath, though this 
does not imply that  such  a relationship may be 
strictly  clientherver, nor that  a  component  act 
strictly  as  a  server, especially with respect  to 
components at the  same logical level. Each of the 
five logical layers of the functional framework is 
now discussed. 

Applications layer: This  layer  encompasses dis- 
tributed applications developed for the  end 
users of the  distributed computing system and 
any  support  tools for the composition of appli- 
cations.  It also includes applications used by 
two  classes of specialized users,  those  respon- 
sible for the  operation  and management of the 
distributed applications and the distributed com- 
puting environment, and those who develop dis- 
tributed applications. 
CORDS service  environment:  This  layer  speci- 
fies the  services required by  applications and 
tools in the  applications  layer.  These  services 
hide the peculiarities of the middleware layer 
and  provide  a  standard  set of interfaces  to  en- 
sure  that  applications and tools  that utilize ser- 
vices in this  layer may remain independent of 
changes in the lower layers.  A partial list of 
services includes security  services,  data  ser- 
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Figure 8 The CORDS functional  framework 

APPLICATION  DEVELOPMENT  TOOLS  DISTRIBUTED  APPLICATIONS  MANAGEMENT  APPLICATIONS 

r I 

I APPLICATION  SERVICE  INTERFACE 

APPLICATION  SERVICES 

PRESENTATION 
SERVICES 

I DlSPLAY I 

I I 

... 

SYSTEM  MANAGEMENT  SERVICES 
I SERVICES 

1 

REPOSITORY 

I 1 

I NAME I 
TRANSACTION 
MANAGEMENT 

I D  AUTHENTICATION 

1 ... 

I I  
SYSTEM 
MANAGE- 
MENT 

I COMMUNICATION  SERVICES 

/CWIVI/RPCII.P 
SYSTEM  SERVICES 

TRANSACTION  MANAGEMENT 
I ‘  

NETWORK 
MANAGE- 
MENT 

TRANSPORT  INTERCONNECT  SERVICES 

1 

IBM SYSTEMS  JOURNAL,  VOL 33, NO 3, 1994 BAUER ET AL. 413 



vices,  communication  services,  presentation 
services,  system  services,  and management 
services. The specification of the CORDS service 
environment (CSE), as well as its  instantiation 
through  prototypes,  is one of the  objectives of 
the CORDS project. 
Middleware: Standardization efforts (such as 
OSF DCE) are building platforms to hide the  de- 
tails of individual proprietary  systems  and to 
provide  services  across  these  systems. An ob- 
jective of the CORDS project is to identify the 
services of this  layer, to determine  the  com- 
pleteness of existing middleware systems  and 
proposals  (see  Reference 42 for a  study of the 
adequacy of middleware services to  support 
distributed application development  environ- 
ments), and to  enhance  these  services  where 
required. 
Transport  interconnect  services:  This  layer 
identifies the  basic  set of services required to 
connect  heterogeneous  systems.  The  intercon- 
nection  services in the middleware employ 
services in this layer. 
Proprietary  services:  The  base  layer  consists of 
the  services provided by  the  proprietary  hard- 
ware,  operating  system, and network  services. 

Two  aspects regarding the  description of the  func- 
tional framework  must  be  kept in mind. First,  one 
motivation for using a layered framework is to 
facilitate the reader’s  understanding of the  ser- 
vices  and  their  interactions.  It allows a  clear  rep- 
resentation of the  services available to (or  re- 
quired by) each group: applications, tools, or 
services.  Second,  the CORDS functional frame- 
work  presents  a logical view of a  system.  It al- 
lows  one to provide  the  user with the services 
required to design, build, and maintain distrib- 
uted applications. The goal of this  framework  is to 
satisfy  the  requirements identified earlier. The 
use of services in any  layer  are  not  precluded by 
any  other  layer;  those  users  who  require lower- 
level services  may utilize them. 

Emerging technologies will provide  a  computing 
environment  that differs from the  present envi- 
ronment, in scale if not in concept, by  such  a large 
factor  that  many of the  present  approaches  to sys- 
tem  development and use may  become  obsolete. 
As a  result,  there are  two implications for  any 
framework for distributed  computing  that is to 
support long-term development. First,  the frame- 
work  must allow systems  to evolve to  take ad- 
vantage of the  new  features  and  methods  pro- 
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vided by  these technologies. Second, it should 
allow systems  to span a  spectrum of technologies. 
We elaborate  on  the  layers  and  services within 
the CORDS functional framework in the  remainder 
of this  section. 

CORDS application layer. The CORDS application 
layer  encompasses  distributed applications de- 
veloped for end  users,  applications used in the 
operation  and management of the  distributed ap- 
plications and the  distributed computing environ- 
ment (management applications), and applica- 
tions (i.e., tools) used by  those  who  develop 
distributed applications (development applica- 
tions). All of these applications may make use of 
applications developed as services for other  ap- 
plications (application services). 

Application services  are built upon the services 
provided by  the CSE and  may  be used by  other 
components in the application layer: application 
development tools, distributed applications, and 
management tools. An example of an application 
service would be  a visualization service.  The ser- 
vice, provided by  one  or more visualization tools, 
would include the ability to manipulate data  vi- 
sually, the ability to perform pattern matching on 
visual  data,  the ability to visually  select  portions 
of the  data  and filter the  data,  the ability to  browse 
and edit  the  visual  data, and finally, the ability to 
improve  visual  data  such as graphs  without dis- 
torting the information the  data  contain.  The  tools 
that make up the visualization service  depend  on 
the  presentation  services of the CSE. 

Application development  tools are used for the 
development of distributed applications. Appli- 
cation  developers should be  able to select  the 
most  appropriate tool for each required function 
and be confident that  the  chosen  suite of tools  can 
work  together.  This idea suggests  that  standard 
architectures for tool integration (both  control 
and  data integration) and  intertool communica- 
tion are necessary.  New  approaches, which pro- 
vide  a finer grained data  exchange  between  tools, 
must be integrated with  the existing tool archi- 
tecture.  This  framework will  itself make  use of the 
underlying CORDS services. 

Application development in a  distributed envi- 
ronment  requires languages to facilitate program- 
ming. Distributed debugging tools providing 
capabilities such as the monitoring of communi- 
cations  between  processes within an application, 

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994 



and  the replaying of previous  executions, will also 
be  required.  Tool or service  mechanisms  need  to 
be  provided  for modeling and  schema definition, 
access  control,  interprogram communication, 
and  resource  and  execution  service binding. 
Static  and  dynamic naming and registering of re- 
sources  and  their capabilities are  needed. 

The application development  environment relies 
on data  services,  presentation  services, commu- 
nication services,  and  system  services,  particu- 
larly  name,  authentication, and transaction man- 
agement services, of the CSE. The CORDS appli- 
cation development architecture assumes that all 
industry-standard tool services can be provided by 
an interface to the underlying CORDS services. No 
assumptions are made, at present, about the dis- 
tributed programming model or language necessary 
to  create distributed applications. 

Management tools  are used for the management 
of distributed  applications,  system  services,  net- 
work  services, and resources.  Examples of man- 
agement applications are modeling and simula- 
tion  tools, monitoring and  control tools, and 
analysis  and  report tools. Modeling and simula- 
tion tools are used to model complex application, 
system,  and  network configurations and  deter- 
mine "what-if"  performance for those being de- 
veloped. Monitoring and  control  tools  are used to 
keep  track of the  behaviour of managed entities 
and  to  perform  control  actions  when  needed. 
Analysis  and  report  tools  are  used  to perform 
analysis  (such as statistical  analysis)  on  the mon- 
itored  data  and  produce useful reports  for  the sys- 
tems  and  network  administrators.  These manage- 
ment  tools  make use of the  services provided by 
the CSE, particularly  the management services. 

Distributed applications are  executed by end 
users; run-time support  for  such  applications  is 
provided by underlying services. 

The CORDS sewice environment layer. Our goal 
is  to define and  elaborate  an  environment for de- 
signing, developing, and managing distributed  ap- 
plications in a  peer-to-peer  environment.  The 
CORDS service  environment  consists of those 
services  required  to  support application develop- 
ment tools, distributed  applications, and manage- 
ment tools. To fully specify the functional frame- 
work of the CSE, one  must define: 
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The CORDS service  interface,  the  services avail- 
able to applications  and  tools 
The components and component  relationships 
within the CSE, that  is,  the  services  provided  by 
each  component 
A mapping from the  services specified in the 
CORDS service  interface to  the components 
within the CSE 
A mapping from the services  required by com- 
ponents within the CSE to  the  services specified 
in the middleware interface 

In  this  paper, we have  concentrated  on  the set of 
services to  support distributed  applications and 
tools.  The  services  are  grouped  into  components 
and logical collections of subcomponents.  The 
subcomponents do not necessarily partition the 
functionality of a  component.  Thus, within a  sin- 
gle component,  two  subcomponents  may  provide 
overlapping services.  This  description of the CSE 
represents  our  understanding of the  needs  and  the 
information required. Ongoing research is aimed 
at assessing and validating these  services  and 
their relationships. Within the  scope of the CSE, 
several  assumptions  are made: 

Each  service  component  may  be  composed of 
subcomponents  that may be  distributed  ser- 
vices. 
Each  service should be  considered  a  black box. 
Thus,  changes within a  service  component 
should not affect other  components, tools, or 
applications, allowing the  (future) migration of 
environments and applications, which are based 
on the CORDS framework, to incorporate new 
technologies. 
A component  may  represent  a  number of ser- 
vices,  each of which  may  have  its own specific 
interface.  The  component  interface would be 
the union of the individual service  interfaces. 
Each  component  is  assumed to have  a manage- 
ment interface,  an  interface  that  can  be  used to 
collect component-specific information about 
its state, performance, operation, errors, events, 
etc. The information collected via this interface is 
in addition to  any  other reporting the component 
may do, such  as  a return code. 
The  process model will be employed to model 
the  components  and  their  interaction in the  ar- 
chitecture. 

We now describe  each of the CSE components in 
more detail. 
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Data services-Support for distributed data  ser- 
vices within a distributed computing environment 
is essential. The  data  services component encom- 
passes  several  data  sources within a single logical 
umbrella. The  database  service offers the  stan- 
dard functionality of database management sys- 
tems. The  current  service includes, but  is not 
restricted  to, navigational, relational, and object- 
oriented  databases and multidatabases. The mul- 
tidatabase  provides a single logical view of 
multiple, heterogeneous  data  sources  that  are 
distributed throughout the computing environ- 
ment. The multidatabase subcomponent is de- 
scribed in greater detail elsewhere.6 Other  ser- 
vices will be added within the data  services 
component as needed, for example, an object 
store. 

The  data  services  use  the name service,  transac- 
tion management service, and information repos- 
itory  service provided by the  systems  services, as 
well as  the communication and security  services. 

Presentation  services-Presentation services pro- 
vide  the functions required to display informa- 
tion. The  services  satisfy several characteristics: 
the ability to present  various kinds of data-plain 
text,  typeset  text, graphic images, video, audio; 
the ability to use  various kinds of devices-work- 
stations,  printers, high-resolution display units; 
the ability to handle input events; and the ability 
to provide access  that  is local or distributed. This 
set of services will continue to be refined to meet 
evolving graphics standards,  such as GKS43 or 
P H I G S , ~  and to  incorporate new services (e.g., 
multimedia) as the technology becomes available. 

For example, the X Window System** permits a 
display device to be  connected with an applica- 
tion running on a remote  host.  It is currently done 
by explicitly specifying network  addresses.  In  the 
future,  such information could be  extracted from 
the name service,  thus alleviating work by the 
toolkit builder, system manager, application de- 
veloper, or application user. 

Management  services-A critical aspect of a dis- 
tributed computing environment will be  the abil- 
ity  to configure, monitor, and control a wide range 
of applications, services, networks, and devices 
(which we collectively call managed objects). In- 
formation about  the managed objects will be 
needed by management tools. Current activities 
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in network management will provide techniques 
and tools for specifying and collecting network 
management information. However,  at higher 
levels, the collection of information about system 

Presentation services provide 
the functions required to 

display  information. 

services and applications, tools to analyze the in- 
formation, and services  to monitor and control 
system activities will be needed. 

The management services  consist of several  sub- 
systems: management information repository 
subsystem, configuration subsystem, monitoring 
subsystem,  control  subsystem, and management 
agents. The management information repository 
subsystem  consists of a set of information repos- 
itories providing storage for management infor- 
mation. The configuration subsystem is respon- 
sible for keeping track of the configuration 
information on managed objects, and for initiating 
and terminating managed objects. The monitoring 
subsystem is responsible for monitoring the be- 
haviour of managed objects. The  control  sub- 
system performs appropriate  control  actions  on 
managed objects as a result of their behaviour 
being monitored by the monitoring subsystem. 
The management agents  are responsible for mon- 
itoring and controlling the behaviour of managed 
objects on behalf of users  (or management tools). 
The CORDS distributed management architecture 
and details on its  components  are described in 
greater detail elsewhere. 45 

Management services  use  services from the  data 
service, security  service, name service, and com- 
munication service. Management agents depend 
on services  that may be specific to particular net- 
works, operating systems,  or  hosts. We assume 
here  that  such agents are provided to  the man- 
agement service  components as closed units 
along with  descriptions of what  they provide, how 
they may be invoked and collected, and where 
they  are applicable. 
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Communication  services-The development of dis- 
tributed  applications  and  tools  requires  access to 
communication primitives that  enable  data  and 
control information to flow between  components. 
One of the  objectives of CORDS is  to  explore  the 
use of the  process model in the  architecture as a 
simple (logical) mechanism to allow applica- 
tions to communicate.  This  mechanism may be 
mapped to  more complex communication mech- 
anisms at a lower layer,  transparent to  the appli- 
cation  developer or user. 

Two basic  forms of communication  are required: 
synchronous and asynchronous. Both types of 
primitives could have  several  realizations using 
services provided by  the middleware layer. Ini- 
tially, the  services  may  be  provided by an RPC- 
like mechanism, presumably  independent  of  any 
specific RPC implementation. Eventually,  such 
exchanges should take place on  a  peer-to-peer 
basis. 

System services-A variety of information about 
the  distributed  system is needed to  operate within 
the  system and to  ensure  that it performs effi- 
ciently. Some of this information will be required 
by distributed  applications,  whereas  other infor- 
mation may  be  needed by management functions. 

Services  are provided by components within the 
logical collection of system  services and include 
naming services (directory), transaction  and 
recovery  services (transaction management 
service), authentication  and  security  services 
(authentication service), a  repository  service (in- 
formation repository service), and file, operating, 
and  run-time  services.  Some of these  services, 
especially the  last  three identified, may  actually 
be provided by existing services  at  the middle- 
ware layer or proprietary  systems.  The inclusion 
of such  services within the CSE is to (1) provide  a 
logically consistent  view of available services 
within the CSE and  for  processes  at  the application 
layer,  and (2) provide  the  means to incorporate 
future  functionality or provide  a single interface 
to multiple realizations of the  services  at  the mid- 
dleware or proprietary  systems  layers. 

Comparison of architectures. A detailed compar- 
ison of the CORDS architecture and the  other  ar- 
chitectures  and  frameworks  discussed earlier is 
beyond the  scope of this  paper.  Nevertheless, 
some  general  comments comparing CORDS to  the 
other efforts are in order. 
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CORDS takes  a  peer-to-peer view of computing 
rather  than  the  client/server  view of such  others 
as ANSA, OSF DCE, UI-ATLAS, and MIA. As men- 
tioned earlier, we believe that  client/server com- 
puting will evolve to a  peer-to-peer  environment, 
and  research is required  to begin to understand 
the  requirements and needs of such  an  environ- 
ment  and how that evolution can be smoothly  ac- 
commodated. 

Moreover, CORDS derives  many of its  require- 
ments from the  anticipated  needs of the  end  user, 
application developer,  and  system  administrator. 
The  objective is to identify services  needed  by 
these  classes of users and to identify what  tools 
are  required  to simplify their tasks.  This is one 
reason why  the CORDS project  has been con- 
cerned with services to  support  access  to heter- 
ogeneous  data  sources, use of distributed  trans- 
actions, application management, distributed 
debugging, and visualization. 

CORDS also  assumes  the  existence of middleware 
to  provide  basic  services  across  heterogeneous 
computing platforms. OSF DCE and ANSAWare 
represent  such middleware. One  objective of the 
CORDS architecture was  to hide details of the mid- 
dleware from application developers  and to insu- 
late  them  from  changes in middleware as plat- 
forms evolve. Middleware, such  as OSF DCE, 
provides  basic platform interoperability  service, 
but  broader sets of services are also required to 
support  applications  and tools. 

The ROSA effort takes  a similar approach  to  that 
adopted by CORDS, although the focus is on broad- 
band telecommunication services. Thus, although 
there are similar objectives such as scalability and 
openness, the computing and communication envi- 
ronments and end-user communities are different. 

Finally, the ODP reference model represents  a  sin- 
gle collection of concepts  and  terms  for  describ- 
ing distributed computing systems. It should be 
possible to  map  the  various  distributed computing 
architectures,  frameworks, and environments 
discussed in this  paper, including CORDS, to  the 
reference model to examine similarities and dif- 
ferences.  This  comparison, though interesting, is 
beyond  the  scope of this  paper. 

Validating  architectural  concepts 

A team of researchers,  developers,  and  graduate 
students  developed  a  prototype  system46  to eval- 
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Figure 9 Prototype  process  interactions 
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uate  our preliminary ideas  about the architecture. a simple test  suite of applications  that utilized 
The development  took  place  at the IBM Centre  for these  services. The prototype  development  took 
Advanced  Studies (CAS) during the summer of place part way through the project, and many of 
1992. The prototype included basic  services, sim- our  ideas  about  the functional framework  were in 
iIar to  those  described in the  previous  section,  and the  formative  stages.  One  objective of the  proto- 
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type  experience  was to have  these  ideas evolve 
and  mature. 

Basic  services included a  process  communication 
facility that embodied the  essential  concepts of 
the  process model and  other  services  required  by 
a  prototype  distributed application. The applica- 
tion integrated  components for telephone  direc- 
tory  white pages, electronic mail, a  calendar sys- 
tem,  and  a  personal banking service (similar to  a 
personal  automatic teller machine). In  this  sec- 
tion, we  present  an  overview of the design and 
development  experiences of this effort. 

Prototype design. The prototype  components  can 
be divided into two broad  categories  that reflect 
its design: services  (systems  and  applications) 
and applications. Figure 9 depicts  a  process-ori- 
ented  view of the relationships among the  various 
prototype  components.  Not all components  need 
to  be active  simultaneously,  and  connections  can 
be  established or terminated dynamically. More- 
over,  these  applications  represent  those of a sin- 
gle user;  other mail processes,  for  example, could 
exist for other  users.  The logical organization of 
these  components within the CORDS functional 
framework is illustrated in Figure 10. 

Services. To  provide  distributed  process  control 
and  communication primitives in a single homo- 
geneous  infrastructure,  a  library of routines was 
designed to  provide  process model primitives for 
the application programmer. A virtual  distributed 
process  space  was designed and implemented to 
support  virtual  processes  that  spanned  heteroge- 
neous  computers running OSF DCE. The design 
used a  communications  library to implement the 
process  space  instead of a language, such  as  Con- 
~ e r t / C ~ ~  or  Hermes. 39 These  communication 
services (Process  Comms. in Figure 10) could be 
used, in addition to  the OSF DCE communication 
primitives, to  create and  communicate with dis- 
tributed  (virtual)  processes.  These  services  are 
not explicitly depicted in Figure 9 since  they are 
realized as  the  process-to-process  connections. 

A process  server (Process  Server) was imple- 
mented to provide the  actual  mechanisms  to  cre- 
ate, manage, and  trace  communications  between 
processes in the virtual  process  space.  It imple- 
ments  the  process  server  concepts  presented in 
Cygnus48 from the  University of Michigan, and 
C ~ n c e r t / C ~ ~  from the IBM Thomas J. Watson Re- 
search  Center. 
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Although OSF DCE included the GDS x.500 imple- 
mentation,  the  prototype utilized the EAN X . 5 0 0 ~ ~  
(EAN X.500) version.  The  reason  for  choosing  this 
X.500 implementation was  that  subsequent  re- 

Prototype components can be 
divided into  services  and 

applications. 

search  developments required an x.500 service 
that  understood  transaction  semantics.  Our plan 
was  to achieve  this by including transaction fa- 
cilities within the EAN X.500 service. 

To  provide  the  transaction management function- 
ality lacking in OSF DCE, the  project  adopted  the 
X/Open distributed  transaction  processing  sys- 
tem, XA” (XA). This  system defines a  protocol 
between  resource  managers (Resource  Manager) 
and transaction  managers (Encina) to provide 
global control of distributed  transactions. To ex- 
pedite  the  development of resource managers, the 
project implemented an m-interface bridge using 
E n ~ i n a ~ ~ , ’ ~  to perform many of the required func- 
tions, including data  recovery. 

The  EZWindows (EZ-Windows) system  developed 
at IBM was used to facilitate GUI development.  It 
provided a higher-level language for dynamically 
constructing Motif** windows and reduced  the 
need for arcane X Window System programming. 

The  event  collector” (Event  Collector) collects 
communication events from an RPC monitor as 
well as  the  communications  monitored by  the pro- 
cess  server.  Servers  and  clients using the DCE RPC 
were developed in the usual fashion. However, in 
addition to  the  usual configuration steps,  the de- 
veloper  arranged  to  have  the  output of the OSF 
DCE Interface Definition Language (IDL) compiler 
passed  to  a  postprocessor.  The  postprocessor au- 
tomatically instrumented  the RPC client and 
server  to send  communication  event  messages to 
the  event  collector. Events  are displayed on event 
time lines representing running processes. As il- 
lustrated in Figure 9, events from all of the  basic 



Figure 10 Prototype  components  and  services  within  the CORDS functional  framework 
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applications  were  sent to  the  event collector. 
These  events  were  then displayed via the  event 
display  process (Event Display). Although the 
event  display is placed within the management 
applications of the application layer, it could also 
be placed within the application development 
tools  since it proved to  be valuable in tracing and 
debugging interprocess communication. 

The logical organization of these  components also 
illustrates  services relied upon at the middleware 
level. These services were primarily those provided 
by DCE with additions as needed, such as Encina. 

Prototype applications. A suite of applications  for 
a  distributed office environment was built and in- 
cluded  electronic mail, appointment scheduling, 
telephone  directory  white pages, and  a  personal 
banker.  Where possible, the  project  took existing 
applications  and re-engineered them  for  the dis- 
tributed  environment. Re-engineering allowed us 
to  assess  the effort and  complexity involved in 
adapting legacy applications to  the services 
within the CORDS functional  framework. 

The mail system is based on an X Window System 
version of the RAND message handling system.53 
The new mail system was decomposed  into  a  user 
interface  component  and  peer  message  transfer 
agents,  which  communicated by using virtual  pro- 
cess communication primitives. 

The  project re-engineered a  personal  calendar 
program developed at  the IBM Zurich Laboratory. 
The program  was  decomposed  into  two  parts:  a 
client with  user  interface and a  personal  server 
that managed an individual calendar.  The  decom- 
position made it possible  to add a new feature,  a 
meeting scheduler. A user wishing to  schedule  a 
meeting would use the client and  contact  the  (per- 
sonal) servers  associated  with  each of the people 
involved in the meeting. The  calendar  system also 
used the communication  libraries for communi- 
cation  between  the  client and server. 

A white  pages client providing information about 
the  project and CORDS participants  was  devel- 
oped.  It  used  EZWindows  to build the user in- 
terface,  and  the  communication  libraries were 
used for communication  with the E m  X.500 
server. As expected,  EZWindows  considerably 
reduced  the time and effort required  for  user in- 
terface  development,  and  communication tracing 
made it easy  to monitor  the X.500 usage. 
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Finally, a  personal  banker, similar to  an  auto- 
matic teller application, was  used to investigate 
the  requirements  transactions would place on the 
environment.  Starting with an X Window System 
automatic teller demonstration from Encina,  a 
number of bank  account  resource  managers  were 
constructed. We found that  the xA-interface  bridge 
made it easy  to include new resource managers. 

Experiences. The  project aided our  understanding 
and supported  a number of key  concepts in 
CORDS. First,  the  process  communication primi- 
tives  and  the  process  server  demonstrated  the 
feasibility of the  process model as a useful para- 
digm for developing distributed  applications in a 
heterogeneous  environment.  Second,  certain 
services,  such as transaction  support,  were iden- 
tified as requirements of applications and appli- 
cation  services.  These  requirements helped to 
further refine the  service  framework of the  archi- 
tecture.  Third,  process  communications  and, in 
particular,  the  event tracing facility demonstrated 
the  usefulness of providing system monitoring. 
Finally, valuable  experience  and knowledge of 
software  interfaces, integration issues,  and  the 
practical implications of heterogeneity  were 
gained during the implementation effort. 

Concluding  remarks 

Our  research  into  a  distributed  computing envi- 
ronment and support  services  was motivated by 
what we perceived as  two  eventual paradigm 
shifts. First,  the  trend  toward  more human-ori- 
ented  computing  suggests  that  future  computing 
environments will have  to  provide  the building 
blocks  and composition mechanisms to enable 
domain specialists to build customized applica- 
tions.  This  trend  requires  development  environ- 
ments in which underlying services and platform 
details  are hidden, in which distribution is trans- 
parent,  and in which operation  and management 
can tailor and optimize run-time behaviour. It 
also implies that methodologies are  required to 
facilitate composition and creation of application 
toolkits,  components, and building blocks along 
with  interconnection mechanisms. 

Second,  we  see  the  emergence of clientherver 
interaction  as  an interim step toward  a  broader 
computing  environment  based on peer-to-peer 
interaction. As with  the  current clienthewer 
environment, new sets of tools, languages, and 
services will be required to  facilitate  the  devel- 
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opment of applications in this  environment. We 
also felt that  a  peer-to-peer model could accom- 
modate existing applications-essentially wrap- 
ping each  as  an  entity  capable of (perhaps limited) 
interaction with other applications. Peer-to-peer 
computing is  also  consistent with the  trend 
toward  more human-oriented computing environ- 
ments  as  just  described. Application building 
blocks  viewed as  peers  that  can  be  interconnected 
is  a simple model familiar to  users  who  must deal 
with human peers  on an everyday basis. Of 
course, providing the  mechanisms to make  such 
an interconnection of applications straightfor- 
ward  poses significant challenges. 

On the  basis of these  trends,  a  number of require- 
ments  for  future  distributed computing environ- 
ments  were identified. Problems arising from try- 
ing to realize a  computing  environment satisfying 
these  requirements  have  been  the  focus of the 
research  within  the CORDS project.  One  aspect of 
this  work  has  been  the identification of an  archi- 
tecture and framework  for  a  distributed  comput- 
ing environment.  The  architecture  has emerged in 
parallel with research on problems arising from 
some of the  issues cited above  and  has  evolved as 
our  understanding of problems,  issues,  services, 
and  dependencies  has changed. An early  version 
of the architecture was validated with a  prototype 
that met with some  success.  The  prototype 
experience  also helped to clarify some  ideas and 
to illustrate  some of the  complexities  and chal- 
lenges. 

Perhaps  more  than anything the  architecture  has 
helped us to understand  what  problems  exist, 
even if we did not  have  the  resources to pursue 
them,  and  has provided a  context for considering 
interdisciplinary  problems arising in different ar- 
eas of distributed computing, such as interactions 
among multidatabases,  distributed application 
management, and  system  management.  The in- 
terdependencies,  interactions,  and  relationships 
among services in these different domains would 
not  have  been  apparent had it not been for this 
broader view. The  research in these  areas, in 
turn,  has reinforced the need for  and  potential of 
peer-to-peer  interactions. 

Though the  project  to  date  has  addressed  only 
some of the  fundamental  issues in the develop- 
ment of an  environment  based on and services 
supporting  peer-to-peer computing, it has vali- 
dated  our original hypotheses and has  met with 
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several  successes, including several  prototypes. 
It has  also  demonstrated the need for  interaction 
among experts in multiple areas of distributed 
computing. Since  an  operational  distributed com- 
puting environment will entail  many different 
services, it is imperative that dependencies among 
such services be understood and that the integra- 
tion of such services be explored. 
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