A distributed system
architecture for a
distributed application
environment

Advances in communications technology,
development of powerful desktop workstations,
and increased user demands for sophisticated
applications are rapidly changing computing
from a traditional centralized model to a
distributed one. The tools and services for
supporting the design, development, deployment,
and management of applications in such an
environment must change as well. This paper is
concerned with the architecture and framework
of services required to support distributed
applications through this evolution to new
environments. In particular, the paper outlines
our rationale for a peer-to-peer view of
distributed systems, presents motivation for our
research directions, describes an architecture,
and reports on some preliminary experiences
with a prototype system.

Continuous advances in communications
technology coupled with the development
of powerful desktop workstations are fueling the
growth of distributed computing. Users’ demands
for transparent access to information and ap-
plications, regardless of the hosts on which
they reside, require interoperability among het-
erogeneous hosts, operating systems, and data
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sources. The development of distributed applica-
tions in such environments presents many chal-
lenges to the developers of applications and to the
providers of computing and development envi-
ronments.

Developers of distributed applications must often
cope with details of protocols, differing data rep-
resentations, multiple communication standards,
and more. Development tools (such as languages,
test case generators, and debuggers) are often
limited in their support for developing distributed
applications. Even when distributed applications
are made to work, their ongoing management and
operation become challenges requiring sophisti-
cated expertise to overcome performance prob-
lems, changing systems, etc.
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Figure 1 Evolution of the computing environment
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Providers of distributed computing and develop-
ment environments, therefore, must supply ser-
vices that hide the myriad of details from the
application developers and that enable the devel-
opment of distributed applications. There are,
however, many questions about the nature of fu-
ture distributed applications and their supporting
services: What are the services required by dis-
tributed applications? How should these services
be designed and implemented to accommodate
openness, scalability, and manageability? How
should services be distributed? How are different
sets of services related? What is a suitable archi-
tecture for multiple services that can accommo-
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date both existing systems and the emergence of
new technology?

The CORDS research project is an effort to under-
stand the problems and challenges that are central
to the development of environments for the de-
sign, development, and management of distrib-
uted applications. It brings together researchers
from four 1BM research laboratories, six Canadian
universities, four American universities, and
other international research centres. The acro-
nym “CORDS” stems from the original name for
the group: “COnsortium for Research on Distrib-
uted Systems.” Even though the official name of
the project, i.e., the name on the original pro-
posal, was “Alliance for Research in Distributed
Systems,” the acronym for the group was kept.

The scope of the research encompasses both new
techniques for developing distributed applica-
tions and for understanding the services required
by distributed applications and the associated
tools. Included in the latter category are the in-
tegration and distribution requirements of both
applications and support tools. Other research ef-
forts have addressed problems in these areas
as well; for example, Advanced Networked
Systems Architecture (ANSA**),"? Distributed
Computing Architecture,’ Common Applica-
tions Environment (CAE),* and Open Software
Foundation Distributed Computing Environment
(OSF DCE**).>

CORDS is unique in two fundamental aspects.
First, CORDS takes a basic premise that distrib-
uted environments and applications using these
environments are evolving from an environment
with client/server interactions to one with peer-
to-peer interactions. Second, it brings together
researchers with different expertise in distributed
computing in order to understand the trade-offs,
boundaries, and interplay between different sets
of services and applications. The researchers
have expertise in a number of areas: (distributed)
databases, programming languages, (distributed)
systems, and visualization techniques.

This paper is concerned with the architecture and
framework of services required in a distributed
application development environment. It outlines
the rationale for our peer-to-peer view of distrib-
uted systems, presents motivation for the re-
search directions, and describes the architecture.
The architecture emerging from the research to
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date serves as a blueprint to guide researchers in
developing prototypes and investigating impor-
tant integration problems. Its definition is contin-
uously being refined to reflect the ongoing re-
search within CORDS addressing more specific
questions involving, for example, multidata-
bases,®’ application management,*'"' distributed
debugging, '*" and visualization. "

The paper is organized as follows. First we dis-
cuss the motivation for the CORDS project and
describe our long-term view of distributed appli-
cation development and management environ-
ments. Following that is a brief overview of other
efforts in defining distributed architectures and
associated services. Then the CORDS architecture
is introduced. Afterward a brief overview is given
of a “proof of concept” prototype developed
within the CORDS project, relating its services to
components with the CORDS architecture.

Motivation: shifting paradigms

Distributed systems with tens or even hundreds
of thousands of computing nodes interacting over
vast communication channels are already possi-
ble. As technology continues to advance, more
and more powerful computers will be available to
individuals. In turn, these computers will have
access via high-speed communications to a vast
array of computing resources.

This view of the computing environment is not
radical but is rather a natural evolution of the
computing field itself (see Figure 1). Initially,
computing was done on large, centralized sys-
tems with limited access. This phase gave way to
time-sharing environments and in turn to net-
worked environments capable of supporting cli-
ent/server applications. In each phase of this
evolution, computing power has been brought
closer to the individual user. Intertwined with this
evolution of computing technology is the manner
in which users interact with the computing envi-
ronment and the applications available to the
user. More powerful computers, advances in in-
terface technology, and more sophisticated ap-
plications have meant that the number of users
capable of using computing and information re-
sources is constantly increasing.

Just as the computing environment has evolved,
we see human-computer interaction evolving
from one that required computer-oriented hu-
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Figure 2 Evolution of human-computer interaction

COMPUTER-ORIENTED
HUMANS

PROGRAMMERS

HUMAN-ORIENTED
COMPUTING

S

Q VISUAL INTERPRETATI
OF A MODEL DOMAIN

X

‘\
~ DIRECT
N SUPPORT

)
A

ION

DOMAIN EXPERT | 4 » DOMAIN-SPEGIFIC
PROBLEM-SOLVING

ENVIRONMENT

mans, to one best described as human-oriented
computing (see Figure 2). Such a fundamental
paradigm shift in the way computing is viewed
has two significant implications. First, the end
user will become increasingly more important in
developing applications. Second, domain spe-
cialists will emerge and will be responsible for
developing domain-specific toolkits. These tool-
kits will consist of domain-specific building
blocks. As end users become familiar with these
building blocks, they will be able to easily com-
bine them to obtain the desired application func-
tionality. Computing models will be required to
permit users to combine components to form cus-
tomized applications. More importantly for our
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research, underlying computation models, ser-
vices, and tools must support these specialists
and application composition.

We believe that in the long term the partitioning
of components into clients and servers will be-
come constraining and that a computing environ-
ment based on peer-to-peer interactions will be

We see the current environments
with client/server interactions
as evolving naturally to
peer-to-peer interactions.

required. This is not to say that components will
not take on roles of clients and servers, but rather
that the role may change with time and may differ
among components; our rationale is further
elaborated in the following subsection. More-
over, the shift in the way applications are devel-
oped, namely an increased reliance on domain
specialists and the composition and customiza-
tion of applications by end users, will exacerbate
the problems in defining, specifying, and integrat-
ing the services of future distributed computing
systems. Some of the requirements of these fu-
ture distributed computing systems are discussed
in the succeeding subsection.

Evolution to a peer-to-peer environment. Our view
of the evolution of the computing environment
coupled with the evolution toward a human-
oriented computing environment suggests a
distributed environment that supports greater
human-oriented, end-user computing. The com-
putational model, therefore, should be one that is
familiar to end users; the peer-to-peer model sat-
isfies this requirement. Our premise is that the
composition of applications will be more natural
for end users if the model is peer-to-peer in that
this model is natural for many human interac-
tions. It is a more general model of interaction
than client/server, since no (artificial) hierarchy
of servers and clients needs to be defined.
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Moreover, we see the current environments with
client/server interactions as evolving naturally to
peer-to-peer interactions. In peer-to-peer com-
puting, relationships may be many-to-many. Lay-
ering and client/server relationships are not re-
quired. Furthermore, each process or component
is independent. In some circumstances involving
distributed computing, it is easy to see client/
server relationships. In many others, however,
entities may take on simultaneous roles of both
clients and servers. Consider the following ex-
ample which arose in the context of the CORDS
project. The management of large distributed en-
vironments requires the collection of data from
devices, hosts, etc. Some or all of this information
might be stored for subsequent analysis or for
historical use, e.g., in modeling. The storage and
management of these data can be handled by
available database systems. That is, the manage-
ment components use the services of the database
system. Conversely, the database system re-
quires the collection of network and processor
performance information in order to effectively
optimize the distributed queries; i.e., the data-
base system makes use of the management ser-
vices. Which is the client and which is the server?
An artificial separation of roles leads to either a
duplication of services or to a clumsy architec-
ture. From the perspective of the end user or ap-
plication designer, both components of the sys-
tem offer services that can be used naturally by
the other.

We also feel that a peer-to-peer model can more
easily accommodate existing applications. Mi-
grating a centralized application to a client/server
model requires, at a minimum, that it be turned
into a server that reacts to requests from user
clients. This introduces complexities arising with
multiple clients and further conversion to accom-
modate multithreading. In a peer-to-peer envi-
ronment, the application could be essentially
“wrapped” as an entity capable of (perhaps lim-
ited) interaction with other applications. The
“wrapper” could handle the peer-to-peer com-
munication with other components, leaving the
existing application changed little or not at all.

The evolutionary trends in computing and modes
of human-computer interaction have led us to
consider distributed application development and
operational environments based on peer-to-peer
interaction. In particular, we have considered the
services required of the underlying distributed
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system. The nature of these services, the under-
lying problems in realizing them, the accommo-
dation of existing and emerging applications, and
the heterogeneity of computing platforms have

Distributed environments
must be able to accommodate
emerging technologies.

provided the motivation for our work. The archi-
tecture emerging from this work, though not com-
plete, represents a blueprint for models and pro-
totypes. By studying these models and gaining
experience in prototype development and man-
agement, we hope to answer some of the funda-
mental questions surrounding the nature of ser-
vices required for distributed applications based
on peer-to-peer interactions.

Requirements of future distributed systems. Any
environment supporting the development, de-
ployment, and management of distributed appli-
cations will have to provide services and be based
on an architecture that addresses a number of key
requirements of distributed computing systems.
An environment based on a human-oriented,
peer-to-peer computing model will be no differ-
ent, although we feel that it will provide a more
successful approach in the long term. Following
are a set of broad requirements that we feel are
most important. These requirements have shaped
our research even if we have not yet begun to
address some of them directly.

Issues of performance and cost will continue to be
important, but other issues, such as reusability
and transparency, will be as important. Many of
the requirements discussed below are not orthog-
onal. Compromises and trade-offs among differ-
ent sets of services will be necessary. Much work
remains to understand fully the nature of these
compromises and trade-offs as well as to under-
stand how the underlying services are integrated
and distributed.

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

Support peer-to-peer development. The services
provided by the distributed environment will
have to support the development and operation of
distributed applications as collections of peer
components. Development tools and languages
will be required to support composition of com-
ponents to form complex applications customized
for particular users. The applications and tools
will require services to locate components on re-
mote hosts, dynamically connect to and terminate
peer-to-peer connections, and migrate compo-
nents, etc., across heterogeneous computing plat-
forms. The underlying services must provide a
simple interface to application developers and do-
main specialists to reduce the complexity of de-
veloping such applications.

Accommodation of legacy applications. The mi-
gration of legacy applications to a fully distributed
environment will require that existing applica-
tions and services evolve rather than be rewrit-
ten. The interoperability of existing (centralized)
applications and services with distributed appli-
cations and services must be addressed. Our view
is that within a peer-to-peer environment, such
applications and services can be encapsulated, at
least logically as a peer process, and integrated
with new emerging distributed applications and
services.

Accommodation of emerging applications. Con-
versely, distributed environments must be able to
accommodate emerging technologies such as
high-speed networks. System administrators
should not be constrained to use the “lowest-
common-denominator” of technologies and ser-
vices in their computing environment. In partic-
ular, the distributed environment should allow
systems developers and administrators to exploit
the features of emerging computing environ-
ments: high-speed networks and high-perfor-
mance end-user workstations (with enhanced
processing power, main memory, and secondary
storage). In addition, it should allow heterogene-
ity to percolate up to the application development
level by supporting distributed applications that
are developed by using more than one program-
ming language.

Support for security and privacy. In most orga-
nizations, the security of data and authenticated
access to their computing resources is para-
mount. Security within centralized environments
is supported by limiting access through well-
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defined access and authorization systems. How-
ever, within a distributed computing environment
security remains a challenging problem, in part
because the security of each resource is depen-
dent on the security provided by the other com-
ponents of the system.’'® If one component in
the distributed system does not provide adequate
security, the security of the entire system may be
at risk.

Manageability. A distributed computing system
consists of heterogeneous computing devices,
communication networks, operating system ser-
vices, and applications. The unavailability, incor-
rect operation, or inefficient operation of mission-
critical devices, services, and applications could
mean real losses to the affected organization.
Thus, for effective operation and management,
these devices, services, and applications must be
monitored and controlled.

Data access. Access to distributed, heteroge-
neous data sources creates a set of commonly
identified user requirements. The requirements
fall into two broad categories: connectivity and
integration. Connectivity implies the ability to ac-
cess data either at a remote site or stored by a data
source that is different from the host source used
by the application. Data integration implies the
ability to utilize heterogeneous data in a seamless
fashion so that the data do not intrude on the logic
of the application. Integration should provide the
translation of the data’s schema, data types, data
format, return codes, and error codes so that any
heterogeneity in the underlying data sources is
transparent to the user. Accessing and updating
data at multiple heterogeneous sources must be
transparent.

Support for role-specific transparency. It is gen-
erally accepted that some level of transparency is
desirable in a distributed environment. It is also
clear that the level of transparency desired may
vary among the different users of the system.
Transparency allows the application developer to
view the system as a set of logical resources, al-
leviating the need to deal with the heterogeneous
and distributed nature of the available resources.
Thus, transparency is important in hiding details
of the underlying systems and is instrumental in
avoiding some of the complexity often associated
with the development of distributed applications.
The detail that an application developer may have
to cope with may be too great for an end user
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interested in composing or customizing compo-
nent applications to form a new application. In
contrast, a system administrator may need access
to much greater detail when trying to discover a
performance problem. The environment must
provide a vision of and control of the distributed
system in some circumstances and provide trans-
parency in others.

Support for visualization. Whether one is design-
ing, developing, managing, or utilizing a distrib-
uted system, there is a large amount of informa-
tion that a human must process. Visualization
techniques can be used to verify, understand, and
interpret this vast amount of information.? Once
again, given the need to support a human-oriented
computing environment, visualization techniques
are required to facilitate a user’s understanding
and manipulation of this information.

Support for application development languages
and tools. Programming distributed applications
requires the use of third- or fourth-generation pro-
gramming languages with appropriate extensions
to allow effective use of underlying services. Lan-
guages such as Concert/C* have concurrent
programming primitives that exploit underlying
services in a more abstract way. Tools are emerg-
ing that help application programmers partition
existing applications into the peer-to-peer or cli-
ent/server paradigms.?*? Because new technol-
ogy will continue to emerge, there is a clear need
for a flexible “workbench” technology into which
new tools can be added and work together with
other new or existing tools. This technology will
become particularly important as these tools be-
come application- or domain-specific and are in
turn combined by domain specialists to produce
applications in other areas. This workbench must
also provide the configuration management and
version control tools to help application develop-
ers working in the new distributed environment to
build, tune, and deploy these applications. Ide-
ally, one could extend existing tools to accom-
modate distributed applications and, thus, assist
in adaptation and reduce training costs.

Support for distributed debugging and testing.
Distributed applications may generate large num-
bers of “messages” between the components of
an application and with other applications. Dis-
tributed applications will not execute with any
given total order of program events due to con-
currency and asynchrony. Debugging such appli-
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cations must enable a developer to trace events
and faults, to capture error conditions, to identify
interacting components, to replay events, and to
map physical events to logical ones. Further-
more, new testing techniques must be developed
since familiar testing techniques, such as regres-
sion testing, are impossible to use in the presence
of asynchrony.

Accommodate evolving services. Underlying
hardware and system services will continue to
evolve, including the ones identified above. The
computing environment must be able to accom-
modate a continuous process of extension, refine-
ment, and standardization of services without
having a negative impact on the applications de-
veloped in and supported by the environment.

Related work

As noted in the introduction, the focus of this
paper is on the framework and architecture for
services required of an environment for develop-
ing, deploying, and managing distributed appli-
cations. A great deal of research has been done on
various aspects of distributed computing sys-
tems, from protocols and communication primi-
tives, to fault tolerance, to distributed algorithms.
A review of such work is clearly beyond the scope
of this paper, though it is potentially relevant in
the specification and definition of services dis-
cussed later in this paper.

Several efforts have, however, been addressing
problems arising out of questions related to the
nature of services and their integration and dis-
tribution in support of distributed applications.
As previously noted, a primary difference be-
tween the CORDS project and other projects is the
unique focus of CORDS on the peer-to-peer envi-
ronment. Notwithstanding these differences and
given the central issues raised in the previous sec-
tion, there are many similarities in the goals of the
projects and, therefore, in the types of services
provided.

In this section, we provide a brief survey of other
research projects that have addressed distributed
services in architectural contexts. Within these
projects, various terms are used: architecture,
framework, etc. In an effort to relate these efforts
to our own, we attempt to use a single set of
terms; these are defined in Table 1.
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Table 1 Basic terminology

An abstraction of real-world en-
tities into a set of precisely de-
fined concepts, and relation-
ships. Examples include a
computational model, data
model, communication model,
and a naming model.

Model

Reference model A general model defining terms,
concepts, and relationships in a
particular area that can be used
by other, more specific models
or used as a vehicle for compar-
ison of models in that area. Ex-
amples would include the OSI
reference model and the ODP

reference model.

An abstraction of real-world en-
tities into a set of precisely de-
fined computational concepts
and relationships. Examples in-
clude the process model,* rela-
tional model,?” and CSP.%

Computational model

The definition and organization
of concepts to satisfy a set of re-
quirements for a system. Exam-
ples inciude the OSI manage-
ment framework and the Internet
management framework.

Framework

Functional framework The definition and organization
of logical services and functions
that satisfy a set of requirements
for a system. An example would
be the CORDS functional frame-

work presented later.

Architecture A refinement and specification of
a functional framework in terms
of one or more models.

Environment Instantiation of one or more ar-

chitectures and possibly other
things such as tools or languages
that do not have an architecture
or have an unspecified architec-
ture. ANSAware and OSF DCE
are examples of such an environ-
ment.

Specifically, we discuss: the open distributed pro-
cessing basic reference model (0DP),” the Ad-
vanced Networked Systems Architecture
(ANsA),** UNIX International’s ATLAS Distrib-
uted Computing Architecture,’® X/Open Common
Applications Environment,* the RACE Open
Services Architecture (ROSA),”"™ and the Multi-
vendor Integration Architecture (MI1A).*
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Open distributed processing. The open distributed
processing (ODP) standardization effort is aimed
at developing standards to support open distrib-
uted processing within an enterprise frame-

ANSA is an architecture
for distributed
computing.

work.” The eventual standards are intended to
enable enterprises to cope with heterogeneous
systems and information sources. Work on the
standards are done as Working Group 7 of the
International Organization for Standardization
(180) 1IEC Subcommittee 21, which is responsible
for standards in information technology. Current
work is focused on the development of a refer-
ence model for open distributed systems.

The ODP standards are intended to support a
broad range of distributed applications encom-
passing such areas as home entertainment, bank-
ing systems, medical systems, and information
services, as well as others.

The reference model for ODP defines the technical
basis for the ODP standards and specifies how ODP
and its component standards relate to 1SO refer-
ence models and existing standards. The refer-
ence model is composed of three parts:

1. A descriptive model that defines concepts that
could be applied to any distributed processing
system

2. A prescriptive model that presents a generic

architecture for ODP

. An architectural semantics that provides a for-

malization of the central reference model con-
cepts

W

The standardization effort to date has focused pri-
marily on the descriptive model and the formal-
ization method(s) to be used to specify the archi-
tectural semantics. ODP has adopted the ANSA
models described below.
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ANSA. ANSA is an architecture for distributed
computing. Its objectives include the integration
of products from multiple vendors, scalability,
and graceful evolution.? The architecture is based
on a set of models, each offering domain-related
concepts and rules: the enterprise model, infor-
mation model, computational model, engineering
model, and technology model. The enterprise
model allows the construction of a model of an
organization and its changes. The information
model allows the designer to model the use of
information. The computational model defines
the facilities required of a programming system
for the implementation of a distributed applica-
tion. The engineering model defines the function
of the infrastructure, and the technology model
allows conformance rules for its realization. The
ANSA “models” were used as the initial input to
the definition of the ODP reference model and be-
came the “viewpoints” of ODP.

In ANSA, all data are considered to be remote. It
is assumed that one component does not have
direct access to another. All data are accessed
through remote procedure call (RPC), and all ser-
vices are negotiated through trading services.
Trading is one of the two important concepts in-
troduced by ANSA. Trading is the process em-
ployed by clients to utilize attributes of a service,
including locating appropriate servers and ser-
vices on the network, a sort of “yellow pages”
(telephone directory) access to services. The sec-
ond concept, federation, allows interoperability
between systems while allowing systems to main-
tain control of their domain. The emphasis of
ANSA is on interfaces, particularly between ser-
vices, and is based on the client/server model.
ANSAware is a commercially available distributed
computing environment based on ANSA.

UI-ATLAS distributed computing architecture.
Unix International is a worldwide nonprofit con-
sortium based in Parsippany, New Jersey. Their
distributed computing environment is U-ATLAS.’
This project has three main objectives. First, to
allow the computer industry to provide technol-
ogy encompassing the widest range of interoper-
ability of existing systems. Second, to see that the
technology is provided at the lowest possible re-
source cost. Third, to have both the user and ad-
ministrator see the entire system as one, single
system.
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Figure 3 UI-ATLAS distributed computing architecture
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UI-ATLAS is a fairly comprehensive object-ori-
ented architecture for distributed computing sys-
tems (see Figure 3). The vision of UL-ATLAS is of
open, distributed computing made simple, con-
sistent, scalable, robust, and manageable. This
vision includes hiding system complexity. Over-
all, the top-level requirements are: integration,
scalability, flexibility, extensibility, openness, in-
formation integrity, and security. UI-ATLAS will
offer a superset of OSF DCE. In particular, it will
extend transaction processing, database access,
and integration with legacy systems.

X/Open Common Applications Environment.
X/Open is a consortium of information system
suppliers, user organizations, and software com-
panies. X/Open has defined a service environ-
ment, the Common Applications Environment
(CAE), (see Figure 4) which it describes as a
“comprehensive and integrated system environ-
ment.”
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The goal of the CAE is to provide an “open sys-
tems” environment. To accomplish this goal, it
defines a set of (implementation-independent)
service interfaces. Thus, users and developers
can develop applications that are portable and in-
teroperable. The portability of applications is at
the source-code level. The adoption of applica-
tions and services that adhere to the CAE speci-
fications allows a heterogeneous mix of computer
systems and application software. The specifica-
tions are developed by extending current systems
(e.g., the UNIX** operating system) to provide a
comprehensive application interface. All mem-
bers of the consortium agree to support the de-
fined service interfaces collectively known as the
X/Open System Interface (XSI). In this way
X/Open hopes to achieve “openness.”

One of the primary concerns of X/Open is the
selection and adoption of standards: de jure stan-
dards if they exist, de facto standards otherwise.
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Figure 4 The X/Open Common Applications Environment
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In the latter case, X/Open will try to obtain formal
standards based on the chosen de facto stan-
dards.

ROSA. The RACE Open Services Architecture
(ROSA) is an object-oriented architecture for in-
tegrated broadband communications (IBC) ser-
vices.*?* Its goal is to provide a set of concepts,
rules, and recipes for the specification, design,
and implementation of “open” services. These
services should be able to accommodate both new
services and existing services and allow the in-
teroperability of new and existing services. Fur-
thermore, the architecture is to be independent of
new and evolving network technologies.

Two basic frameworks are in the architecture: the
Service Specification Framework (SSF) and the
Resource Specification Framework (RSF). The
concepts, rules, and recipes of the architecture
are embodied by the SSF in a convenient form for
a service designer. In ODP terminology, the SSF
covers the computational viewpoint. The con-
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cepts for the SSF can best be described by the
following object types that it defines:

» Service control allows a user to join, leave, sus-
pend, and resume activities in a service, and to
negotiate service parameters.

* Session allows the service control object to add,
as well as change and delete user state infor-
mation.

* Charge allows charges incurred during a user’s
session to be recorded and manipulated.

 Transport control maintains status information
with respect to transport connections.

The RSF is oriented more toward system design-
ers. Its purposes include defining abstractions for
telecommunication resources, defining compo-
nents required in target systems to fulfill openness
requirements, and defining rules for extensions of
its concepts. The SSF and the RSF are somewhat
related through a requirement-mechanism rela-
tionship, the basis of the mapping between the
frameworks (see Figure 5).

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994




Implicit or explicit requirements of the SSF are put
on the infrastructure through service specifications.
New services are specified using SSF components,
which helps to provide technology independence.
Likewise, new network infrastructures are speci-
fied according to RSF rules, and thus do not impact
the SSF.

The following is a list of some of the suggested
RSF objects.

* Trail provides multipoint transfer of multi-
media end-user information. In addition, there
are objects such as addMedia, removeMedia,
suspendMedia, resumeMedia, and syncMedia.

* X-connection provides multipoint transfer of a
monomedia end-user interface.

e Creator allows the creation and deletion of ob-
jects.

* TypeManager allows one to add and delete
types as well as to find a list of subtypes that are
defined.

¢ Trader maintains a dynamic information repos-
itory of services currently available in the sys-
tem.

* Clock is for objects that require the current time
or wish to receive regular interval “ticks.”

* Cluster can manipulate and group a collection
of objects.

* Binder can set up or destroy communication
channels between objects.

* Storage provides storage and retrieval for pas-
sive clusters.

Multivendor Integration Architecture. The Multi-
vendor Integration Architecture (MIA) is designed
to allow the interoperability of and portability
across heterogeneous systems based on the cli-
ent/server model. MIA specifies a set of service
interfaces that reflect the open systems architec-
ture concept. MIA was defined by the Nippon
Telegraph and Telephone Corporation (NTT).

The main goal of MIA is multivendorization—con-
structing a system with components from differ-
ent vendors. The potential problems in multiven-
dorization can be placed broadly into three
categories: portability, interoperability, and pro-
cedures. To avoid these problems, it aims to es-
tablish a framework of standard interfaces for
those services that most directly affect the user.
MIA uses open systems technology: national and
international standards, de facto standards, and
specifications provided by open systems vendors.
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Figure 5 Relationship between the SSF and RSF in
ROSA
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It is primarily intended as a guideline for vendors
making NTT bids. NTT is not promoting MIA as a
standard, though they are trying to incorporate
relevant standards and to work with standards
bodies on those interfaces that are not yet stan-
dardized.

The MIA defines a set of four interfaces depicted
in Figure 6. The application program interface
(AP1) is between applications and ““basic soft-
ware,” e.g., international standards for COBOL,
C, sQL (Structured Query Language), and is de-
signed to allow application portability. The sys-
tems interconnection interface defines communi-
cations protocols and relies on both 0SI and
Internet protocols. The human interface defines
display formats and workstation operations. A
fourth interface, the interenvironment informa-
tion interchange interface is defined to allow in-
formation to be passed from a development envi-
ronment to an execution environment or to
exchange application source code and data
among execution environments. This interface
defines interchange character sets and codes. The
interface enables three types of development in-
formation to be passed: application program
source code, database definitions (SQL data de-
scription language, DDL), and screen definitions.

In addition to the interfaces, NTT has defined eight
conformance classes for the MIA specifications.
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Figure 6 The MIA interfaces
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Thus, vendors who wish to label their product as
conforming to a particular class of MIA specifica- tions is the central focus of the CORDS research
tions must demonstrate it against the relevant test project. Issues and questions regarding how to
suite. realize such an environment, what services it re-

quires, and how existing systems can be incor-

peer-to-peer environment for distributed applica-

CORDS architecture

The view of distributed applications interacting in
a peer-to-peer manner has led the CORDS project
to adopt the process model originally described
by Strom et al.*® The nature of a process-oriented
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porated and evolve were central in the research.

Some of this research has resulted in the devel-
opment of the CORDS architecture.*>*® The prime
constituents of the architecture, namely the pro-
cess model and the CORDS functional framework,
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are described in this section, the former repre-
senting the abstract computational model used as
the basis for the peer-to-peer view of computing,
and the latter encompassing the underlying dis-
tributed services. This architecture is evolving as
our experience with ongoing research prompts us
to refine its definition. The partial realization of
this architecture and the incorporation of tools,
such as the distributed debugger, 1 have provided
the basis for other research into the design, de-
velopment, and management within a distributed
computing environment. For an in-depth descrip-
tion of the CORDS architecture, see References 35
and 36.

The process model. The process model provides a
simple and elegant paradigm for building soft-
ware. The model enables a distributed computing
environment with consistent access to applica-
tions, data, resources, and services and facilitates
the separation of logical, or application concerns,
from the details of how services provided by the
architecture are realized. This allows one to
structure distributed software systems using pro-
cesses as the building blocks. Each process is
based on the concepts of encapsulation and in-
formation-hiding as well as on serial computation.

The independence of processes allows them to
operate as peer entities. The process paradigm
assumes an infinite universe; that is, there is no
notion of a global state or a global time. There-
fore, processes do not observe a given absolute
order when executing distributed events. Each
process maintains some local state, and only the
program executing in that process can manipulate
that state. All data are local to a process, and
there are no shared variables; this is useful in
simplifying the complexity of distributed applica-
tions. The model also assumes data and process
persistence, i.e., assumes that these can be pro-
vided automatically by underlying run-time ser-
vices if desired.

An active process interacts with another process
by creating a channel on which it can send mes-
sages. A message channel is realized by connect-
ing an output port of the sender to an input port
of the receiver; each port is typed. The interface
to a given process is determined solely by the
types of its input ports. Thus, any processes with
matching output and input ports may be con-
nected if they choose. The type definition for a
port can be written separately and independently
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Figure 7 Utilization of the process model in CORDS
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of the internal process information. More details
of the process model can be found elsewhere® as
well as a comparison of the process model to ob-
ject-oriented approaches. ¥’ Several languages im-
plementing the process model concepts have
been prototyped and studied. ¥4

Figure 7 illustrates the peer-to-peer process
model view of the CORDS multidatabase compo-
nent and the CORDS management component. The
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various shapes represent the typed message ports
of the process model. Such ports may allow bi-
directional, many-to-many communication as de-
picted in this figure. Some ports in the diagram are

Layers of the CORDS functional
framework illustrate the logical
separation of functionality
among the various services.

not connected, since all defined ports do not need
to be utilized by every peer application. This is
depicted by unfilled port symbols. These pro-
cesses instantiate the CORDS multidatabase com-
ponent® and the CORDS management compo-
nent.’**" The services represented by these
processes are defined in the CORDS functional
framework described below.

The CORDS functional framework. We now pro-
ceed to define the CORDS functional framework,
depicted in Figure 8. This framework describes
the organization of the logical services and func-
tions that address the requirements identified ear-
lier. Extensions to existing tools or the creation of
new tools are required in order to satisfy some of
those requirements, e.g., language and run-time
extensions to support the development, debug-
ging, etc., of distributed applications. What is im-
portant in the context of the architecture, how-
ever, is the services that such tools require. Given
the breadth of the requirements, it was not pos-
sible to thoroughly explore all of the required ser-
vices in detail within the scope of the project;
some components, €.g., security services, remain
to be explored in depth.

The underlying view of computation provided by
the process model proved useful in considering
the allocation and separation of services among
the various components. For example, it became
apparent during the research that the manage-
ment component would require access to name
services and to information about resources
within the distributed computing environment.
These services, subsequently embodied as name
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services and information repository services
(within the systems services components; see
Figure 8), would also be required by other system
services and by components at the application
layer (namely, applications, application tools,
and services and management applications). Fur-
ther, the data access and storage services re-
quired by the name services and the repository
services, €.g., for storage of information neces-
sary for the management processes and for the
performance data gathered, could be provided by
the data services component. This iterative ap-
proach led to a simpler view of the distributed
services and provided a much more consistent
partitioning of services. This, in turn, led to the
realization that the data services could rely on the
management services to provide information re-
garding network traffic, host loading, etc., needed
for decisions in query optimization. As our un-
derstanding of the various services evolves with
subsequent research, the services may continue
to evolve based on the process view.

The layers of the functional framework illustrate
the logical separation of functionality among the
various services. It is likely that the components
of one layer will make use of the services of the
components at the layer beneath, though this
does not imply that such a relationship may be
strictly client/server, nor that a component act
strictly as a server, especially with respect to
components at the same logical level. Each of the
five logical layers of the functional framework is
now discussed.

* Applications layer: This layer encompasses dis-
tributed applications developed for the end
users of the distributed computing system and
any support tools for the composition of appli-
cations. It also includes applications used by
two classes of specialized users, those respon-
sible for the operation and management of the
distributed applications and the distributed com-
puting environment, and those who develop dis-
tributed applications.

* CORDS service environment: This layer speci-
fies the services required by applications and
tools in the applications layer. These services
hide the peculiarities of the middleware layer
and provide a standard set of interfaces to en-
sure that applications and tools that utilize ser-
vices in this layer may remain independent of
changes in the lower layers. A partial list of
services includes security services, data ser-
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Figure 8 The CORDS functional framework
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vices, communication services, presentation
services, system services, and management
services. The specification of the CORDS service
environment (CSE), as well as its instantiation
through prototypes, is one of the objectives of
the CORDS project.
Middleware: Standardization efforts (such as
OSF DCE) are building platforms to hide the de-
tails of individual proprietary systems and to
provide services across these systems. An ob-
jective of the CORDS project is to identify the
services of this layer, to determine the com-
pleteness of existing middleware systems and
proposals (see Reference 42 for a study of the
adequacy of middleware services to support
distributed application development environ-
ments), and to enhance these services where
required.

» Transport interconnect services: This layer
identifies the basic set of services required to
connect heterogeneous systems. The intercon-
nection services in the middleware employ
services in this layer.

* Proprietary services: The base layer consists of
the services provided by the proprietary hard-
ware, operating system, and network services.

Two aspects regarding the description of the func-
tional framework must be kept in mind. First, one
motivation for using a layered framework is to
facilitate the reader’s understanding of the ser-
vices and their interactions. It allows a clear rep-
resentation of the services available to (or re-
quired by) each group: applications, tools, or
services. Second, the CORDS functional frame-
work presents a logical view of a system. It al-
lows one to provide the user with the services
required to design, build, and maintain distrib-
uted applications. The goal of this framework is to
satisfy the requirements identified earlier. The
use of services in any layer are not precluded by
any other layer; those users who require lower-
level services may utilize them.

Emerging technologies will provide a computing
environment that differs from the present envi-
ronment, in scale if not in concept, by such a large
factor that many of the present approaches to sys-
tem development and use may become obsolete.
As a result, there are two implications for any
framework for distributed computing that is to
support long-term development. First, the frame-
work must allow systems to evolve to take ad-
vantage of the new features and methods pro-
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vided by these technologies. Second, it should
allow systems to span a spectrum of technologies.
We elaborate on the layers and services within
the CORDS functional framework in the remainder
of this section.

CORDS application layer. The CORDS application
layer encompasses distributed applications de-
veloped for end users, applications used in the
operation and management of the distributed ap-
plications and the distributed computing environ-
ment (management applications), and applica-
tions (i.e., tools) used by those who develop
distributed applications (development applica-
tions). All of these applications may make use of
applications developed as services for other ap-
plications (application services).

Application services are built upon the services
provided by the CSE and may be used by other
components in the application layer: application
development tools, distributed applications, and
management tools. An example of an application
service would be a visualization service. The ser-
vice, provided by one or more visualization tools,
would include the ability to manipulate data vi-
sually, the ability to perform pattern matching on
visual data, the ability to visually select portions
of the data and filter the data, the ability to browse
and edit the visual data, and finally, the ability to
improve visual data such as graphs without dis-
torting the information the data contain. The tools
that make up the visualization service depend on
the presentation services of the CSE.

Application development tools are used for the
development of distributed applications. Appli-
cation developers should be able to select the
most appropriate tool for each required function
and be confident that the chosen suite of tools can
work together. This idea suggests that standard
architectures for tool integration (both control
and data integration) and intertool communica-
tion are necessary. New approaches, which pro-
vide a finer grained data exchange between tools,
must be integrated with the existing tool archi-
tecture. This framework will itself make use of the
underlying CORDS services.

Application development in a distributed envi-
ronment requires languages to facilitate program-
ming. Distributed debugging tools providing
capabilities such as the monitoring of communi-
cations between processes within an application,
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and the replaying of previous executions, will also
be required. Tool or service mechanisms need to
be provided for modeling and schema definition,
access control, interprogram communication,
and resource and execution service binding.
Static and dynamic naming and registering of re-
sources and their capabilities are needed.

The application development environment relies
on data services, presentation services, commu-
nication services, and system services, particu-
larly name, authentication, and transaction man-
agement services, of the CSE. The CORDS appli-
cation development architecture assumes that all
industry-standard tool services can be provided by
an interface to the underlying CORDS services. No
assumptions are made, at present, about the dis-
tributed programming model or language necessary
to create distributed applications.

Management tools are used for the management
of distributed applications, system services, net-
work services, and resources. Examples of man-
agement applications are modeling and simula-
tion tools, monitoring and control tools, and
analysis and report tools. Modeling and simula-
tion tools are used to model complex application,
system, and network configurations and deter-
mine “what-if” performance for those being de-
veloped. Monitoring and control tools are used to
keep track of the behaviour of managed entities
and to perform control actions when needed.
Analysis and report tools are used to perform
analysis (such as statistical analysis) on the mon-
itored data and produce useful reports for the sys-
tems and network administrators. These manage-
ment tools make use of the services provided by
the CSE, particularly the management services.

Distributed applications are executed by end
users; run-time support for such applications is
provided by underlying services.

The CORDS service environment layer. Our goal
is to define and elaborate an environment for de-
signing, developing, and managing distributed ap-
plications in a peer-to-peer environment. The
CORDS service environment consists of those
services required to support application develop-
ment tools, distributed applications, and manage-
ment tools. To fully specify the functional frame-
work of the CSE, one must define:
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* The CORDS service interface, the services avail-
able to applications and tools

* The components and component relationships
within the CSE, that is, the services provided by
each component

* A mapping from the services specified in the
CORDS service interface to the components
within the CSE

¢ A mapping from the services required by com-
ponents within the CSE to the services specified
in the middleware interface :

In this paper, we have concentrated on the set of
services to support distributed applications and
tools. The services are grouped into components
and logical collections of subcomponents. The
subcomponents do not necessarily partition the
functionality of a component. Thus, within a sin-
gle component, two subcomponents may provide
overlapping services. This description of the CSE
represents our understanding of the needs and the
information required. Ongoing research is aimed
at assessing and validating these services and
their relationships. Within the scope of the CSE,
several assumptions are made:

» Each service component may be composed of
subcomponents that may be distributed ser-
vices.

 Each service should be considered a black box.
Thus, changes within a service component
should not affect other components, tools, or
applications, allowing the (future) migration of
environments and applications, which are based
on the CORDS framework, to incorporate new
technologies.

* A component may represent a number of ser-
vices, each of which may have its own specific
interface. The component interface would be
the union of the individual service interfaces.

¢ Each component is assumed to have a manage-
ment interface, an interface that can be used to
collect component-specific information about
its state, performance, operation, errors, events,
etc. The information collected via this interface is
in addition to any other reporting the component
may do, such as a return code.

* The process model will be employed to model
the components and their interaction in the ar-
chitecture.

We now describe each of the CSE components in
more detail.
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Data services—Support for distributed data ser-.

vices within a distributed computing environment
is essential. The data services component encom-
passes several data sources within a single logical
umbrella. The database service offers the stan-
dard functionality of database management sys-
tems. The current service includes, but is not
restricted to, navigational, relational, and object-
oriented databases and multidatabases. The mul-
tidatabase provides a single logical view of
multiple, heterogeneous data sources that are
distributed throughout the computing environ-
ment. The multidatabase subcomponent is de-
scribed in greater detail elsewhere.® Other ser-
vices will be added within the data services
component as needed, for example, an object
store.

The data services use the name service, transac-
tion management service, and information repos-
itory service provided by the systems services, as
well as the communication and security services.

Presentation services—Presentation services pro-
vide the functions required to display informa-
tion. The services satisfy several characteristics:
the ability to present various kinds of data—plain
text, typeset text, graphic images, video, audio;
the ability to use various kinds of devices—work-
stations, printers, high-resolution display units;
the ability to handle input events; and the ability
to provide access that is local or distributed. This
set of services will continue to be refined to meet
evolving graphics standards, such as GKS* or
PHIGS,* and to incorporate new services (e.g.,
multimedia) as the technology becomes available.

For example, the X Window System** permits a
display device to be connected with an applica-
tion running on a remote host. It is currently done
by explicitly specifying network addresses. In the
future, such information could be extracted from
the name service, thus alleviating work by the
toolkit builder, system manager, application de-
veloper, or application user.

Management services—A critical aspect of a dis-
tributed computing environment will be the abil-
ity to configure, monitor, and control a wide range
of applications, services, networks, and devices
(which we collectively call managed objects). In-
formation about the managed objects will be
needed by management tools. Current activities
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in network management will provide techniques
and tools for specifying and collecting network
management information. However, at higher
levels, the collection of information about system

Presentation services provide
the functions required to
display information.

services and applications, tools to analyze the in-
formation, and services to monitor and control
system activities will be needed.

The management services consist of several sub-
systems: management information repository
subsystem, configuration subsystem, monitoring
subsystem, control subsystem, and management
agents. The management information repository
subsystem consists of a set of information repos-
itories providing storage for management infor-
mation. The configuration subsystem is respon-
sible for keeping track of the configuration
information on managed objects, and for initiating
and terminating managed objects. The monitoring
subsystem is responsible for monitoring the be-
haviour of managed objects. The control sub-
system performs appropriate control actions on
managed objects as a result of their behaviour
being monitored by the monitoring subsystem.
The management agents are responsible for mon-
itoring and controlling the behaviour of managed
objects on behalf of users (or management tools).
The CORDS distributed management architecture
and details on its components are described in
greater detail elsewhere.®

Management services use services from the data
service, security service, name service, and com-
munication service. Management agents depend
on services that may be specific to particular net-
works, operating systems, or hosts. We assume
here that such agents are provided to the man-
agement service components as closed units
along with descriptions of what they provide, how
they may be invoked and collected, and where
they are applicable.
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Communication services—The development of dis-
tributed applications and tools requires access to
communication primitives that enable data and
control information to flow between components.
One of the objectives of CORDS is to explore the
use of the process model in the architecture as a
simple (logical) mechanism to allow applica-
tions to communicate. This mechanism may be
mapped to more complex communication mech-
anisms at a lower layer, transparent to the appli-
cation developer or user.

Two basic forms of communication are required:
synchronous and asynchronous. Both types of
primitives could have several realizations using
services provided by the middleware layer. Ini-
tially, the services may be provided by an RPC-
like mechanism, presumably independent of any
specific RPC implementation. Eventually, such
exchanges should take place on a peer-to-peer
basis.

System services—A variety of information about
the distributed system is needed to operate within
the system and to ensure that it performs effi-
ciently. Some of this information will be required
by distributed applications, whereas other infor-
mation may be needed by management functions.

Services are provided by components within the
logical collection of system services and include
naming services (directory), transaction and
recovery services (transaction management
service), authentication and security services
(authentication service), a repository service (in-
formation repository service), and file, operating,
and run-time services. Some of these services,
especially the last three identified, may actually
be provided by existing services at the middle-
ware layer or proprietary systems. The inclusion
of such services within the CSE is to (1) provide a
logically consistent view of available services
within the CSE and for processes at the application
layer, and (2) provide the means to incorporate
future functionality or provide a single interface
to multiple realizations of the services at the mid-
dleware or proprietary systems layers.

Comparison of architectures. A detailed compar-
ison of the CORDS architecture and the other ar-
chitectures and frameworks discussed earlier is
beyond the scope of this paper. Nevertheless,
some general comments comparing CORDS to the
other efforts are in order.
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CORDS takes a peer-to-peer view of computing
rather than the client/server view of such others
as ANSA, OSF DCE, UI-ATLAS, and MIA. As men-
tioned earlier, we believe that client/server com-
puting will evolve to a peer-to-peer environment,
and research is required to begin to understand
the requirements and needs of such an environ-
ment and how that evolution can be smoothly ac-
commodated.

Moreover, CORDS derives many of its require-
ments from the anticipated needs of the end user,
application developer, and system administrator.
The objective is to identify services needed by
these classes of users and to identify what tools
are required to simplify their tasks. This is one
reason why the CORDS project has been con-
cerned with services to support access to heter-
ogeneous data sources, use of distributed trans-
actions, application management, distributed
debugging, and visualization.

CORDS also assumes the existence of middleware
to provide basic services across heterogeneous
computing platforms. OSF DCE and ANSAware
represent such middleware. One objective of the
CORDS architecture was to hide details of the mid-
dleware from application developers and to insu-
late them from changes in middleware as plat-
forms evolve. Middleware, such as OSF DCE,
provides basic platform interoperability service,
but broader sets of services are also required to
support applications and tools.

The ROSA effort takes a similar approach to that
adopted by CORDS, although the focus is on broad-
band telecommunication services. Thus, although
there are similar objectives such as scalability and
openness, the computing and communication envi-
ronments and end-user communities are different.

Finally, the ODP reference model represents a sin-
gle collection of concepts and terms for describ-
ing distributed computing systems. It should be
possible to map the various distributed computing
architectures, frameworks, and environments
discussed in this paper, including CORDS, to the
reference model to examine similarities and dif-
ferences. This comparison, though interesting, is
beyond the scope of this paper.

Validating architectural concepts

A team of researchers, developers, and graduate
students developed a prototype system® to eval-
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Figure 9 Prototype process interactions
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uate our preliminary ideas about the architecture.
The development took place at the IBM Centre for
Advanced Studies (CAS) during the summer of
1992. The prototype included basic services, sim-
ilar to those described in the previous section, and
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a simple test suite of applications that utilized
these services. The prototype development took
place part way through the project, and many of
our ideas about the functional framework were in
the formative stages. One objective of the proto-
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type experience was to have these ideas evolve
and mature.

Basic services included a process communication
facility that embodied the essential concepts of
the process model and other services required by
a prototype distributed application. The applica-
tion integrated components for telephone direc-
tory white pages, electronic mail, a calendar sys-
tem, and a personal banking service (similar to a
personal automatic teller machine). In this sec-
tion, we present an overview of the design and
development experiences of this effort.

Prototype design. The prototype components can
be divided into two broad categories that reflect
its design: services (systems and applications)
and applications. Figure 9 depicts a process-ori-
ented view of the relationships among the various
prototype components. Not all components need
to be active simultaneously, and connections can
be established or terminated dynamically. More-
over, these applications represent those of a sin-
gle user; other mail processes, for example, could
exist for other users. The logical organization of
these components within the CORDS functional
framework is illustrated in Figure 10.

Services. To provide distributed process control
and communication primitives in a single homo-
geneous infrastructure, a library of routines was
designed to provide process model primitives for
the application programmer. A virtual distributed
process space was designed and implemented to
support virtual processes that spanned heteroge-
neous computers running OSF DCE. The design
used a communications library to implement the
process space instead of a language, such as Con-
cert/C* or Hermes.* These communication
services (Process Comms. in Figure 10) could be
used, in addition to the OSF DCE communication
primitives, to create and communicate with dis-
tributed (virtual) processes. These services are
not explicitly depicted in Figure 9 since they are
realized as the process-to-process connections.

A process server (Process Server) was imple-
mented to provide the actual mechanisms to cre-
ate, manage, and trace communications between
processes in the virtual process space. It imple-
ments the process server concepts presented in
Cygnus® from the University of Michigan, and
Concert/C*¥ from the 1BM Thomas J. Watson Re-
search Center.
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Although OSF DCE included the GDS X.500 imple-
mentation, the prototype utilized the EAN X.500%
(EAN X.500) version. The reason for choosing this
X.500 implementation was that subsequent re-

Prototype components can be
divided into services and
applications.

search developments required an X.500 service
that understood transaction semantics. Our plan
was to achieve this by including transaction fa-
cilities within the EAN X.500 service.

To provide the transaction management function-
ality lacking in OSF DCE, the project adopted the
X/Open distributed transaction processing sys-
tem, XA (XA). This system defines a protocol
between resource managers (Resource Manager)
and transaction managers (Encina) to provide
global control of distributed transactions. To ex-
pedite the development of resource managers, the
project implemented an XA-interface bridge using
Encina®* to perform many of the required func-
tions, including data recovery.

The EZWindows (EZ-Windows) system developed
at IBM was used to facilitate GUI development. It
provided a higher-level language for dynamically
constructing Motif** windows and reduced the
need for arcane X Window System programming.

The event collector’? (Event Collector) collects
communication events from an RPC monitor as
well as the communications monitored by the pro-
cess server. Servers and clients using the DCE RPC
were developed in the usual fashion. However, in
addition to the usual configuration steps, the de-
veloper arranged to have the output of the OSF
DCE Interface Definition Language (IDL) compiler
passed to a postprocessor. The postprocessor au-
tomatically instrumented the RPC client and
server to send communication event messages to
the event collector. Events are displayed on event
time lines representing running processes. As il-
lustrated in Figure 9, events from all of the basic
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Figure 10 Prototype components and services within the CORDS functional framework
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applications were sent to the event collector.
These events were then displayed via the event
display process (Event Display). Although the
event display is placed within the management
applications of the application layer, it could also
be placed within the application development
tools since it proved to be valuable in tracing and
debugging interprocess communication.

The logical organization of these components also
illustrates services relied upon at the middleware
level. These services were primarily those provided
by DCE with additions as needed, such as Encina.

Prototype applications. A suite of applications for
a distributed office environment was built and in-
cluded electronic mail, appointment scheduling,
telephone directory white pages, and a personal
banker. Where possible, the project took existing
applications and re-engineered them for the dis-
tributed environment. Re-engineering allowed us
to assess the effort and complexity involved in
adapting legacy applications to the services
within the CORDS functional framework.

The mail system is based on an X Window System
version of the RAND message handling system. >
The new mail system was decomposed into a user
interface component and peer message transfer
agents, which communicated by using virtual pro-
cess communication primitives.

The project re-engineered a personal calendar
program developed at the IBM Zurich Laboratory.
The program was decomposed into two parts: a
client with user interface and a personal server
that managed an individual calendar. The decom-
position made it possible to add a new feature, a
meeting scheduler. A user wishing to schedule a
meeting would use the client and contact the (per-
sonal) servers associated with each of the people
involved in the meeting. The calendar system also
used the communication libraries for communi-
cation between the client and server.

A white pages client providing information about
the project and CORDS participants was devel-
oped. It used EZWindows to build the user in-
terface, and the communication libraries were
used for communication with the EAN X.500
server. As expected, EZWindows considerably
reduced the time and effort required for user in-
terface development, and communication tracing
made it easy to monitor the X.500 usage.
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Finally, a personal banker, similar to an auto-
matic teller application, was used to investigate
the requirements transactions would place on the
environment. Starting with an X Window System
automatic teller demonstration from Encina, a
number of bank account resource managers were
constructed. We found that the XA-interface bridge
made it easy to include new resource managers.

Experiences. The project aided our understanding
and supported a number of key concepts in
CORDS. First, the process communication primi-
tives and the process server demonstrated the
feasibility of the process model as a useful para-
digm for developing distributed applications in a
heterogeneous environment. Second, certain
services, such as transaction support, were iden-
tified as requirements of applications and appli-
cation services. These requirements helped to
further refine the service framework of the archi-
tecture. Third, process communications and, in
particular, the event tracing facility demonstrated
the usefulness of providing system monitoring.
Finally, valuable experience and knowledge of
software interfaces, integration issues, and the
practical implications of heterogeneity were
gained during the implementation effort.

Concluding remarks

Our research into a distributed computing envi-
ronment and support services was motivated by
what we perceived as two eventual paradigm
shifts. First, the trend toward more human-ori-
ented computing suggests that future computing
environments will have to provide the building
blocks and composition mechanisms to enable
domain specialists to build customized applica-
tions. This trend requires development environ-
ments in which underlying services and platform
details are hidden, in which distribution is trans-
parent, and in which operation and management
can tailor and optimize run-time behaviour. It
also implies that methodologies are required to
facilitate composition and creation of application
toolkits, components, and building blocks along
with interconnection mechanisms.

Second, we see the emergence of client/server
interaction as an interim step toward a broader
computing environment based on peer-to-peer
interaction. As with the current client/server
environment, new sets of tools, languages, and
services will be required to facilitate the devel-
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opment of applications in this environment. We
also felt that a peer-to-peer model could accom-
modate existing applications—essentially wrap-
ping each as an entity capable of (perhaps limited)
interaction with other applications. Peer-to-peer
computing is also consistent with the trend
toward more human-oriented computing environ-
ments as just described. Application building
blocks viewed as peers that can be interconnected
is a simple model familiar to users who must deal
with human peers on an everyday basis. Of
course, providing the mechanisms to make such
an interconnection of applications straightfor-
ward poses significant challenges.

On the basis of these trends, a number of require-
ments for future distributed computing environ-
ments were identified. Problems arising from try-
ing to realize a computing environment satisfying
these requirements have been the focus of the
research within the CORDS project. One aspect of
this work has been the identification of an archi-
tecture and framework for a distributed comput-
ing environment. The architecture has emerged in
parallel with research on problems arising from
some of the issues cited above and has evolved as
our understanding of problems, issues, services,
and dependencies has changed. An early version
of the architecture was validated with a prototype
that met with some success. The prototype
experience also helped to clarify some ideas and
to illustrate some of the complexities and chal-
lenges.

Perhaps more than anything the architecture has
helped us to understand what problems exist,
even if we did not have the resources to pursue
them, and has provided a context for considering
interdisciplinary problems arising in different ar-
eas of distributed computing, such as interactions
among multidatabases, distributed application
management, and system management. The in-
terdependencies, interactions, and relationships
among services in these different domains would
not have been apparent had it not been for this
broader view. The research in these areas, in
turn, has reinforced the need for and potential of
peer-to-peer interactions.

Though the project to date has addressed only
some of the fundamental issues in the develop-
ment of an environment based on and services
supporting peer-to-peer computing, it has vali-
dated our original hypotheses and has met with
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several successes, including several prototypes.
It has also demonstrated the need for interaction
among experts in multiple areas of distributed
computing. Since an operational distributed com-
puting environment will entail many different
services, it is imperative that dependencies among
such services be understood and that the integra-
tion of such services be explored.
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