
A distributed system
architecture for a
distributed application
environment

by M. A. Bauer
N. Coburn
D. L. Erickson
P. J. Finnigan
J. W. Hong
P.-A Larson
J. Pachl
J. Slonim
D. J. Taylor
T. J. Teorey

Advances in communications technology,
development of powerful desktop workstations,
and increased user demands for sophisticated
applications are rapidly changing computing
from a traditional centralized model to a
distributed one. The tools and services for
supporting the design, development, deployment,
and management of applications in such an
environment must change as well. This paper is
concerned with the architecture and framework
of services required to support distributed
applications through this evolution to new
environments. In particular, the paper outlines
our rationale for a peer-to-peer view of
distributed systems, presents motivation for our
research directions, describes an architecture,
and reports on some preliminary experiences
with a prototype system.

C ontinuous advances in communications
technology coupled with the development

of powerful desktop workstations are fueling the
growth of distributed computing. Users’ demands
for transparent access to information and ap-
plications, regardless of the hosts on which
they reside, require interoperability among het-
erogeneous hosts, operating systems, and data

sources. The development of distributed applica-
tions in such environments presents many chal-
lenges to the developers of applications and to the
providers of computing and development envi-
ronments.

Developers of distributed applications must often
cope with details of protocols, differing data rep-
resentations, multiple communication standards,
and more. Development tools (such as languages,
test case generators, and debuggers) are often
limited in their support for developing distributed
applications. Even when distributed applications
are made to work, their ongoing management and
operation become challenges requiring sophisti-
cated expertise to overcome performance prob-
lems, changing systems, etc.

OCopyright 1994 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

BAUER ET AL. 399 IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

Figure 1 Evolution of the computing environment

P APPLICATION

CENTRALIZED

LARGE APPLICATIONS
WRITTEN BY EXPERT

INTERACT ONLY THROUGH
PROGRAMMERS

DATA STORAGE OR

NONPORTABLE: WRITTEN
EXTERNAL MEDIA

AND ARCHITECTURE
FOR A SPECIFIC SYSTEM

r
I - - DISTRIBUTED

1 r
J 1

CLIENTLSERVER

WORLD PARTITIONED INTO

- LESS EXPERTISE NEEDED
CLIENTS AND SERVERS a ! SERVERS
FEW, RELATIVELY COMPLEX
FOR DEVELOPING CLIENTS

PEER-TO-PEER

MULTIAPPLICATIONS.
SPECIALIZED, NUMEROUS
WRITTEN BY APPLICATIONS
PROGRAMMER OR EVEN BY
END USER uu DYNAMICALLY CONFIGURABLE
BY END USER

AND ARCHITECTURES
LANGUAGES, SYSTEMS,
PORTABLE: ACROSS

1

Providers of distributed computing and develop-
ment environments, therefore, must supply ser-
vices that hide the myriad of details from the
application developers and that enable the devel-
opment of distributed applications. There are,
however, many questions about the nature of fu-
ture distributed applications and their supporting
services: What are the services required by dis-
tributed applications? How should these services
be designed and implemented to accommodate
openness, scalability, and manageability? How
should services be distributed? How are different
sets of services related? What is a suitable archi-
tecture for multiple services that can accommo-

400 BAUER ET AL.

date both existing systems and the emergence of
new technology?

The CORDS research project is an effort to under-
stand the problems and challenges that are central
to the development of environments for the de-
sign, development, and management of distrib-
uted applications. It brings together researchers
from four IBM research laboratories, six Canadian
universities, four American universities, and
other international research centres. The acro-
nym “CORDS” stems from the original name for
the group: “COnsortium for Research on Distrib-
uted Systems.’’ Even though the official name of
the project, Le., the name on the original pro-
posal, was “Alliance for Research in Distributed
Systems,” the acronym for the group was kept.

The scope of the research encompasses both new
techniques for developing distributed applica-
tions and for understanding the services required
by distributed applications and the associated
tools. Included in the latter category are the in-
tegration and distribution requirements of both
applications and support tools. Other research ef-
forts have addressed problems in these areas
as well; for example, Advanced Networked
Systems Architecture (ANSA” *), ‘9’ Distributed
Computing Architecture, Common Applica-
tions Environment (cAE),~ and Open Software
Foundation Distributed Computing Environment
(OSF DCE**).5

CORDS is unique in two fundamental aspects.
First, CORDS takes a basic premise that distrib-
uted environments and applications using these
environments are evolving from an environment
with clientlsewer interactions to one with peer-
to-peer interactions. Second, it brings together
researchers with different expertise in distributed
computing in order to understand the trade-offs,
boundaries, and interplay between different sets
of services and applications. The researchers
have expertise in a number of areas: (distributed)
databases, programming languages, (distributed)
systems, and visualization techniques.

This paper is concerned with the architecture and
framework of services required in a distributed
application development environment. It outlines
the rationale for our peer-to-peer view of distrib-
uted systems, presents motivation for the re-
search directions, and describes the architecture.
The architecture emerging from the research to

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

date serves as a blueprint to guide researchers in
developing prototypes and investigating impor-
tant integration problems. Its definition is contin-
uously being refined to reflect the ongoing re-
search within CORDS addressing more specific
questions involving, for example, multidata-
bases, 6,7 application distributed
debugging, 12,13 and visualization. ‘&16

The paper is organized as follows. First we dis-
cuss the motivation for the CORDS project and
describe our long-term view of distributed appli-
cation development and management environ-
ments. Following that is a brief overview of other
efforts in defining distributed architectures and
associated services. Then the CORDS architecture
is introduced. Afterward a brief overview is given
of a “proof of concept” prototype developed
within the CORDS project, relating its services to
components with the CORDS architecture.

Motivation: shifting paradigms

Distributed systems with tens or even hundreds
of thousands of computing nodes interacting over
vast communication channels are already possi-
ble. As technology continues to advance, more
and more powerful computers will be available to
individuals. In turn, these computers will have
access via high-speed communications to a vast
array of computing resources.

This view of the computing environment is not
radical but is rather a natural evolution of the
computing field itself (see Figure 1). Initially,
computing was done on large, centralized sys-
tems with limited access. This phase gave way to
time-sharing environments and in turn to net-
worked environments capable of supporting cli-
entherver applications. In each phase of this
evolution, computing power has been brought
closer to the individual user. Intertwined with this
evolution of computing technology is the manner
in which users interact with the computing envi-
ronment and the applications available to the
user. More powerful computers, advances in in-
terface technology, and more sophisticated ap-
plications have meant that the number of users
capable of using computing and information re-
sources is constantly increasing.

Just as the computing environment has evolved,
we see human-computer interaction evolving
from one that required computer-oriented hu-

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

Figure 2 Evolution of human-computer interaction

COMPUTER-ORIENTED
HUMANS

n

1 PROGRAMMERS I

HUMAN-ORIENTED
ING

”

I OFAMODELDOMAIN I
I

”’\ DIRECT
’‘SUPPORT

\

4-b DOMAIN-SPECIFIC
PROBLEM-SOLVING
ENVIRONMENT

mans, to one best described as human-oriented
computing (see Figure 2). Such a fundamental
paradigm shift in the way computing is viewed
has two significant implications. First, the end
user will become increasingly more important in
developing applications. Second, domain spe-
cialists will emerge and will be responsible for
developing domain-specific toolkits. These tool-
kits will consist of domain-specific building
blocks. As end users become familiar with these
building blocks, they will be able to easily com-
bine them to obtain the desired application func-
tionality. Computing models will be required to
permit users to combine components to form cus-
tomized applications. More importantly for our

BAUER ET AL. 401

research, underlying computation models, ser-
vices, and tools must support these specialists
and application composition.

We believe that in the long term the partitioning
of components into clients and servers will be-
come constraining and that a computing environ-
ment based on peer-to-peer interactions will be

We see the current environments
with clientherver interactions

as evolving naturally to
peer-to-peer interactions.

required. This is not to say that components will
not take on roles of clients and servers, but rather
that the role may change with time and may differ
among components; our rationale is further
elaborated in the following subsection. More-
over, the shift in the way applications are devel-
oped, namely an increased reliance on domain
specialists and the composition and customiza-
tion of applications by end users, will exacerbate
the problems in defining, specifying, and integrat-
ing the services of future distributed computing
systems. Some of the requirements of these fu-
ture distributed computing systems are discussed
in the succeeding subsection.

Evolution to a peer-to-peer environment. Our view
of the evolution of the computing environment
coupled with the evolution toward a human-
oriented computing environment suggests a
distributed environment that supports greater
human-oriented, end-user computing. The com-
putational model, therefore, should be one that is
familiar to end users; the peer-to-peer model sat-
isfies this requirement. Our premise is that the
composition of applications will be more natural
for end users if the model is peer-to-peer in that
this model is natural for many human interac-
tions. It is a more general model of interaction
than clientlserver, since no (artificial) hierarchy
of servers and clients needs to be defined.

402 BAUER ET AL.

Moreover, we see the current environments with
clientlserver interactions as evolving naturally to
peer-to-peer interactions. In peer-to-peer com-
puting, relationships may be many-to-many. Lay-
ering and clientlserver relationships are not re-
quired. Furthermore, each process or component
is independent. In some circumstances involving
distributed computing, it is easy to see client/
server relationships. In many others, however,
entities may take on simultaneous roles of both
clients and servers. Consider the following ex-
ample which arose in the context of the CORDS
project. The management of large distributed en-
vironments requires the collection of data from
devices, hosts, etc. Some or all of this information
might be stored for subsequent analysis or for
historical use, e.g., in modeling. The storage and
management of these data can be handled by
available database systems. That is, the manage-
ment components use the services of the database
system. Conversely, the database system re-
quires the collection of network and processor
performance information in order to effectively
optimize the distributed queries; i.e., the data-
base system makes use of the management ser-
vices. Which is the client and which is the server?
An artificial separation of roles leads to either a
duplication of services or to a clumsy architec-
ture. From the perspective of the end user or ap-
plication designer, both components of the sys-
tem offer services that can be used naturally by
the other.

We also feel that a peer-to-peer model can more
easily accommodate existing applications. Mi-
grating a centralized application to a clienthewer
model requires, at a minimum, that it be turned
into a server that reacts to requests from user
clients. This introduces complexities arising with
multiple clients and further conversion to accom-
modate multithreading. In a peer-to-peer envi-
ronment, the application could be essentially
“wrapped” as an entity capable of (perhaps lim-
ited) interaction with other applications. The
“wrapper” could handle the peer-to-peer com-
munication with other components, leaving the
existing application changed little or not at all.

The evolutionary trends in computing and modes
of human-computer interaction have led us to
consider distributed application development and
operational environments based on peer-to-peer
interaction. In particular, we have considered the
services required of the underlying distributed

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

system. The nature of these services, the under-
lying problems in realizing them, the accommo-
dation of existing and emerging applications, and
the heterogeneity of computing platforms have

Distributed environments
must be able to accommodate

emerging technologies.

provided the motivation for our work. The archi-
tecture emerging from this work, though not com-
plete, represents a blueprint for models and pro-
totypes. By studying these models and gaining
experience in prototype development and man-
agement, we hope to answer some of the funda-
mental questions surrounding the nature of ser-
vices required for distributed applications based
on peer-to-peer interactions.

Requirements of future distributed systems. Any
environment supporting the development, de-
ployment, and management of distributed appli-
cations will have to provide services and be based
on an architecture that addresses a number of key
requirements of distributed computing systems.
An environment based on a human-oriented,
peer-to-peer computing model will be no differ-
ent, although we feel that it will provide a more
successful approach in the long term. Following
are a set of broad requirements that we feel are
most important. These requirements have shaped
our research even if we have not yet begun to
address some of them directly.

Issues of performance and cost will continue to be
important, but other issues, such as reusability
and transparency, will be as important. Many of
the requirements discussed below are not orthog-
onal. Compromises and trade-offs among differ-
ent sets of services will be necessary. Much work
remains to understand fully the nature of these
compromises and trade-offs as well as to under-
stand how the underlying services are integrated
and distributed.

Support peer-to-peer development. The services
provided by the distributed environment will
have to support the development and operation of
distributed applications as collections of peer
components. Development tools and languages
will be required to support composition of com-
ponents to form complex applications customized
for particular users. The applications and tools
will require services to locate components on re-
mote hosts, dynamically connect to and terminate
peer-to-peer connections, and migrate compo-
nents, etc., across heterogeneous computing plat-
forms. The underlying services must provide a
simple interface to application developers and do-
main specialists to reduce the complexity of de-
veloping such applications.

Accommodation of legacy applications. The mi-
gration of legacy applications to a fully distributed
environment will require that existing applica-
tions and services evolve rather than be rewrit-
ten. The interoperability of existing (centralized)
applications and services with distributed appli-
cations and services must be addressed. Our view
is that within a peer-to-peer environment, such
applications and services can be encapsulated, at
least logically as a peer process, and integrated
with new emerging distributed applications and
services.

Accommodation of emerging applications. Con-
versely, distributed environments must be able to
accommodate emerging technologies such as
high-speed networks. System administrators
should not be constrained to use the “lowest-
common-denominator,’ of technologies and ser-
vices in their computing environment. In partic-
ular, the distributed environment should allow
systems developers and administrators to exploit
the features of emerging computing environ-
ments: high-speed networks and high-perfor-
mance end-user workstations (with enhanced
processing power, main memory, and secondary
storage). In addition, it should allow heterogene-
ity to percolate up to the application development
level by supporting distributed applications that
are developed by using more than one program-
ming language.

Support for security and privacy. In most orga-
nizations, the security of data and authenticated
access to their computing resources is para-
mount. Security within centralized environments
is supported by limiting access through well-

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

defined access and authorization systems. How-
ever, within a distributed computing environment
security remains a challenging problem, in part
because the security of each resource is depen-
dent on the security provided by the other com-
ponents of the If one component in
the distributed system does not provide adequate
security, the security of the entire system may be
at risk.

Manageabiliy. A distributed computing system
consists of heterogeneous computing devices,
communication networks, operating system ser-
vices, and applications. The unavailability, incor-
rect operation, or inefficient operation of mission-
critical devices, services, and applications could
mean real losses to the affected organization.19
Thus, for effective operation and management,
these devices, services, and applications must be
monitored and controlled.

Data access. Access to distributed, heteroge-
neous data sources creates a set of commonly
identified user requirements. The requirements
fall into two broad categories: connectivity and
integration. Connectivity implies the ability to ac-
cess data either at a remote site or stored by a data
source that is different from the host source used
by the application. Data integration implies the
ability to utilize heterogeneous data in a seamless
fashion so that the data do not intrude on the logic
of the application. Integration should provide the
translation of the data’s schema, data types, data
format, return codes, and error codes so that any
heterogeneity in the underlying data sources is
transparent to the user. Accessing and updating
data at multiple heterogeneous sources must be
transparent.

Support for role-specific transparency. It is gen-
erally accepted that some level of transparency is
desirable in a distributed environment. It is also
clear that the level of transparency desired may
vary among the different users of the system.
Transparency allows the application developer to
view the system as a set of logical resources, al-
leviating the need to deal with the heterogeneous
and distributed nature of the available resources.
Thus, transparency is important in hiding details
of the underlying systems and is instrumental in
avoiding some of the complexity often associated
with the development of distributed applications.
The detail that an application developer may have
to cope with may be too great for an end user

404 BAUER ET AL.

interested in composing or customizing compo-
nent applications to form a new application. In
contrast, a system administrator may need access
to much greater detail when trying to discover a
performance problem. The environment must
provide a vision of and control of the distributed
system in some circumstances and provide trans-
parency in others.

Support for visualization. Whether one is design-
ing, developing, managing, or utilizing a distrib-
uted system, there is a large amount of informa-
tion that a human must process. Visualization
techniques can be used to verify, understand, and
interpret this vast amount of information. ’O Once
again, given the need to support a human-oriented
computing environment, visualization techniques
are required to facilitate a user’s understanding
and manipulation of this information.

Support for application development languages
and tools. Programming distributed applications
requires the use of third- or fourth-generation pro-
gramming languages with appropriate extensions
to allow effective use of underlying services. Lan-
guages such as Cor~cert/C’~-’~ have concurrent
programming primitives that exploit underlying
services in a more abstract way. Tools are emerg-
ing that help application programmers partition
existing applications into the peer-to-peer or cli-
entherver paradigms. 24,25 Because new technol-
ogy will continue to emerge, there is a clear need
for a flexible “workbench” technology into which
new tools can be added and work together with
other new or existing tools. This technology will
become particularly important as these tools be-
come application- or domain-specific and are in
turn combined by domain specialists to produce
applications in other areas. This workbench must
also provide the configuration management and
version control tools to help application develop-
ers working in the new distributed environment to
build, tune, and deploy these applications. Ide-
ally, one could extend existing tools to accom-
modate distributed applications and, thus, assist
in adaptation and reduce training costs.

Support for distributed debugging and testing.
Distributed applications may generate large num-
bers of “messages” between the components of
an application and with other applications. Dis-
tributed applications will not execute with any
given total order of program events due to con-
currency and asynchrony. Debugging such appli-

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

cations must enable a developer to trace events
and faults, to capture error conditions, to identify
interacting components, to replay events, and to
map physical events to logical ones. Further-
more, new testing techniques must be developed
since familiar testing techniques, such as regres-
sion testing, are impossible to use in the presence
of asynchrony.

Accommodate evolving services. Underlying
hardware and system services will continue to
evolve, including the ones identified above. The
computing environment must be able to accom-
modate a continuous process of extension, refine-
ment, and standardization of services without
having a negative impact on the applications de-
veloped in and supported by the environment.

Related work

As noted in the introduction, the focus of this
paper is on the framework and architecture for
services required of an environment for develop-
ing, deploying, and managing distributed appli-
cations. Agreat deal of research has been done on
various aspects of distributed computing sys-
tems, from protocols and communication primi-
tives, to fault tolerance, to distributed algorithms.
A review of such work is clearly beyond the scope
of this paper, though it is potentially relevant in
the specification and definition of services dis-
cussed later in this paper.

Several efforts have, however, been addressing
problems arising out of questions related to the
nature of services and their integration and dis-
tribution in support of distributed applications.
As previously noted, a primary difference be-
tween the CORDS project and other projects is the
unique focus of CORDS on the peer-to-peer envi-
ronment. Notwithstanding these differences and
given the central issues raised in the previous sec-
tion, there are many similarities in the goals of the
projects and, therefore, in the types of services
provided.

In this section, we provide a brief survey of other
research projects that have addressed distributed
services in architectural contexts. Within these
projects, various terms are used: architecture,
framework, etc. In an effort to relate these efforts
to our own, we attempt to use a single set of
terms; these are defined in Table 1.

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

fable 1 Basic terminology

Model

Reference model

Computational model

Framework

Functional framework

Architecture

Environment

An abstraction of real-world en-
tities into a set of precisely de-
fined concepts, and relation-
ships. Examples include a
computational model, data
model, communication model,
and a naming model.

A general model defining terms,
concepts, and relationships in a
particular area that can be used
by other, more specific models
or used as a vehicle for compar-
ison of models in that area. Ex-
amples would include the OS1
reference model and the ODP
reference model.

An abstraction of real-world en-
tities into a set of precisely de-
fined computational concepts
and relationships. Examples in-
clude the process rela-
tional model, ” and CSP.

The definition and organization
of concepts to satisfy a set of re-
quirements for a system. Exam-
ples include the OS1 manage-
ment framework and the Internet
management framework.

The definition and organization
of logical services and functions
that satisfy a set of requirements
for a system. An example would
be the CORDS functional frame-
work presented later.

A refinement and specification of
a functional framework in terms
of one or more models.

Instantiation of one or more ar-
chitectures and possibly other
things such as tools or languages
that do not have an architecture
or have an unspecified architec-
ture. ANSAware and OSF DCE
are examples of such an environ-
ment.

Specifically, we discuss: the open distributed pro-
cessing basic reference model (oDP),’~ the Ad-
vanced Networked Systems Architecture
(ANSA), 1,2730 UNIX International’s ATLAS Distrib-
uted Computing Architecture, X/Open Common
Applications En~ironment ,~ the RACE Open
Services Architecture (ROSA),31-33 and the Multi-
vendor Integration Architecture (MIA). 34

Open distributed processing. The open distributed
processing (ODP) standardization effort is aimed
at developing standards to support open distrib-
uted processing within an enterprise frame-

ANSA is an architecture
for distributed

computing.

work.29 The eventual standards are intended to
enable enterprises to cope with heterogeneous
systems and information sources. Work on the
standards are done as Working Group 7 of the
International Organization for Standardization
(ISO) IEC Subcommittee 21, which is responsible
for standards in information technology. Current
work is focused on the development of a refer-
ence model for open distributed systems.

The ODP standards are intended to support a
broad range of distributed applications encom-
passing such areas as home entertainment, bank-
ing systems, medical systems, and information
services, as well as others.

The reference model for ODP defines the technical
basis for the ODP standards and specifies how ODP
and its component standards relate to ISO refer-
ence models and existing standards. The refer-
ence model is composed of three parts:

1. A descriptive model that defines concepts that
could be applied to any distributed processing
system

2. A prescriptive model that presents a generic
architecture for ODP

3. An architectural semantics that provides a for-
malization of the central reference model con-
cepts

The standardization effort to date has focused pri-
marily on the descriptive model and the formal-
ization method(s) to be used to specify the archi-
tectural semantics. ODP has adopted the ANSA
models described below.

406 BAUER ET AL.

ANSA. ANSA is an architecture for distributed
computing. Its objectives include the integration
of products from multiple vendors, scalability,
and graceful evolution. The architecture is based
on a set of models, each offering domain-related
concepts and rules: the enterprise model, infor-
mation model, computational model, engineering
model, and technology model. The enterprise
model allows the construction of a model of an
organization and its changes. The information
model allows the designer to model the use of
information. The computational model defines
the facilities required of a programming system
for the implementation of a distributed applica-
tion. The engineering model defines the function
of the infrastructure, and the technology model
allows conformance rules for its realization. The
ANSA “models” were used as the initial input to
the definition of the ODP reference model and be-
came the “viewpoints” of ODP.

In ANSA, all data are considered to be remote. It
is assumed that one component does not have
direct access to another. All data are accessed
through remote procedure call (RPC), and all ser-
vices are negotiated through trading services.
Trading is one of the two important concepts in-
troduced by ANSA. Trading is the process em-
ployed by clients to utilize attributes of a service,
including locating appropriate servers and ser-
vices on the network, a sort of “yellow pages”
(telephone directory) access to services. The sec-
ond concept, federation, allows interoperability
between systems while allowing systems to main-
tain control of their domain. The emphasis of
ANSA is on interfaces, particularly between ser-
vices, and is based on the clientherver model.
ANSAware is a commercially available distributed
computing environment based on ANSA.

UI-ATLAS distributed computing architecture.
Unix International is a worldwide nonprofit con-
sortium based in Parsippany, New Jersey. Their
distributed computing environment is UI-ATLAS.
This project has three main objectives. First, to
allow the computer industry to provide technol-
ogy encompassing the widest range of interoper-
ability of existing systems. Second, to see that the
technology is provided at the lowest possible re-
source cost. Third, to have both the user and ad-
ministrator see the entire system as one, single
system.

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994

Figure 3 UI-ATLAS distributed computing architecture

/
~~ ~~

I I

0 APPLICATION TOOLS 1
DESIGN DEVELOPMENT TEST DOCUMENTATION

I I I I

0 APPLICATION SERVICES I
FILE MESSAGING DATA

MANAGEMENT PROCESSING INTERFACE
TRANSACTION USER

I I I I

DISTRIBUTION SERVICES I
OBJECT
MANAGEMENT NAMING

FEDERATED TIME SECURITY DISTRIBUTED
MANAGEMENT

I I I

U COMMUNICATION SERVICES I
I OS1 I RPCs

FAULT-TOLERANT TCP/IP
SUPPORT SERVICES

I I I

BASE OS SERVICES I
SVR4 FAMILY
KERNEL, COMMANDS, BASIC I/O, AND FILE TYPES

II LEGACY SYSTEMS I
~~

MAINFRAME INTEROPERABILITY:
LU 6.2

PC INTEROPERABILITY:

APPLESHARE
NetWare

OLVDDE

PC EMULATION

UI-ATLAS is a fairly comprehensive object-ori-
ented architecture for distributed computing sys-
tems (see Figure 3). The vision of UI-ATLAS is of
open, distributed computing made simple, con-
sistent, scalable, robust, and manageable. This
vision includes hiding system complexity. Over-
all, the top-level requirements are: integration,
scalability, flexibility, extensibility, openness, in-
formation integrity, and security. UI-ATLAS will
offer a superset of OSF DCE. In particular, it will
extend transaction processing, database access,
and integration with legacy systems.

WOpen Common Applications Environment.
X/Open is a consortium of information system
suppliers, user organizations, and software com-
panies. WOpen has defined a service environ-
ment, the Common Applications Environment
(CAE), (see Figure 4) which it describes as a
“comprehensive and integrated system environ-
ment. ”

/

/

9

The goal of the CAE is to provide an “open sys-
tems” environment. To accomplish this goal, it
defines a set of (implementation-independent)
service interfaces. Thus, users and developers
can develop applications that are portable and in-
teroperable. The portability of applications is at
the source-code level. The adoption of applica-
tions and services that adhere to the CAE speci-
fications allows a heterogeneous mix of computer
systems and application software. The specifica-
tions are developed by extending current systems
(e.g., the UNIX** operating system) to provide a
comprehensive application interface. All mem-
bers of the consortium agree to support the de-
fined service interfaces collectively known as the
WOpen System Interface (XSI). In this way
X/Open hopes to achieve “openness.”

One of the primary concerns of WOpen is the
selection and adoption of standards: dejure stan-
dards if they exist, defacto standards otherwise.

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994 BAUER ET AL. 407

Figure 4 The WOpen Common Applications Environment

I

USER
INTERFACE

/ APPLICATION INTERWORKING -
1

~~~~~ 

p ? E % q - i r I F l  
DATA  ACCESS DATAACCESS 

INTERNATIONALIZATION 

In  the latter  case, X/Open will try  to obtain formal 
standards  based  on  the  chosen de facto stan- 
dards. 

ROSA. The RACE Open  Services  Architecture 
(ROSA) is an  object-oriented  architecture  for in- 
tegrated  broadband  communications (IBC) ser- 
vices. 32,33 Its goal is to provide  a  set of concepts, 
rules, and recipes for the specification, design, 
and implementation of “open”  services.  These 
services should be able to accommodate  both  new 
services  and existing services and allow the in- 
teroperability of new  and existing services.  Fur- 
thermore,  the  architecture  is to  be independent of 
new and evolving network technologies. 

Two  basic  frameworks are in the architecture:  the 
Service Specification Framework (SSF) and the 
Resource Specification Framework (RSF). The 
concepts,  rules,  and  recipes of the  architecture 
are embodied by  the SSF in a  convenient form for 
a  service designer. In ODP terminology, the SSF 
covers  the  computational  viewpoint. The con- 

/ 

/ 

1 

cepts  for  the SSF can  best  be described by  the 
following object  types  that it defines: 

Service control allows a  user  to join,  leave,  sus- 
pend,  and  resume  activities in a  service,  and to 
negotiate service  parameters. 
Session allows the  service  control  object  to  add, 
as well as change and  delete  user  state infor- 
mation. 
Charge allows charges  incurred during a user’s 
session to  be recorded and manipulated. 
Transport  control maintains  status information 
with respect to  transport connections. 

The RSF is  oriented  more  toward  system design- 
ers. Its  purposes include defining abstractions  for 
telecommunication resources, defining compo- 
nents  required in target systems  to fulfill openness 
requirements, and defining rules  for  extensions of 
its  concepts. The SSF and the RSF are  somewhat 
related through  a  requirement-mechanism rela- 
tionship, the basis of the mapping between  the 
frameworks  (see  Figure 5) .  

408 BAUER ET  AL IBM  SYSTEMS  JOURNAL, VOL 33, NO 3, 1994 



Implicit or explicit requirements of the SSF are put 
on the infrastructure through service specifications. 
New services are specified  using SSF components, 
which helps to provide technology independence. 
Likewise, new network infrastructures are speci- 
fied according to RSF rules, and thus do not impact 
the SSF. 

The following is  a list of some of the suggested 
RSF objects. 

Trail provides multipoint transfer of multi- 
media end-user information. In addition, there 
are  objects  such  as addMedia, removeMedia, 
suspendMedia, resumeMedia, and  syncMedia. 
X-connection provides multipoint transfer of a 
monomedia end-user  interface. 

jects. 
TypeManager allows one  to  add and delete 
types as well as to find a list of subtypes  that  are 
defined. 
Trader maintains  a  dynamic information repos- 
itory of services  currently available in the  sys- 
tem. 
Clock is  for  objects  that  require the current time 
or wish to  receive regular interval  “ticks.” 
Cluster can manipulate and  group  a collection 
of objects. 
Binder can  set  up or  destroy communication 

Storage provides  storage and retrieval for pas- 

1 

1 Creator allows the  creation and deletion of ob- 

1 channels  between  objects. 

sive  clusters. 

Multivendor  Integration  Architecture. The Multi- 
vendor  Integration  Architecture (MIA) is designed 
to allow the  interoperability of and  portability 
across  heterogeneous  systems  based on the cli- 
ent/server model. MIA specifies a  set of service 
interfaces  that reflect the  open  systems  architec- 
ture  concept. MIA was defined by the Nippon 
Telegraph  and  Telephone  Corporation (m). 

1 The main goal of MIA is multivendorization..on- 
structing  a  system  with  components from differ- 
ent  vendors.  The  potential  problems in multiven- 
dorization  can be placed broadly  into  three 
categories: portability, interoperability, and pro- 
cedures. To avoid these problems, it aims to  es- 
tablish a  framework of standard  interfaces  for 
those  services  that  most  directly affect the  user. 
MIA uses open  systems  technology: national and 
international  standards, de facto standards,  and 
specifications provided by open  systems  vendors. 

Figure 5 Relationship  between  the  SSF  and  RSF  in 
ROSA 

SERVICES 

I 

S S F  
SERVICE  SEMANTICS,  REQUIREMENTS  ON 
THE  INFRASTRUCTURE 

? 

RSF 
MECHANISMS  FOR  OPEN  SUPPORT  OF  SERVICES 
BY  TELECOMMUNICATION  RESOURCES 

I 

TELECOMMUNICATION  RESOURCES 

It is primarily intended as a guideline for vendors 
making NTT bids. NTT is not promoting MIA as a 
standard, though they  are trying to incorporate 
relevant  standards  and  to  work with standards 
bodies on those  interfaces  that are not  yet  stan- 
dardized. 

The MIA defines a set of four interfaces  depicted 
in Figure 6. The application program interface 
(API) is between applications and  “basic soft- 
ware,” e.g., international  standards  for COBOL, 
C, SQL (Structured  Query  Language),  and is de- 
signed to allow application portability. The sys- 
tems  interconnection  interface defines communi- 
cations  protocols  and relies on both OSI and 
Internet  protocols.  The human interface defines 
display formats  and  workstation  operations.  A 
fourth  interface,  the  interenvironment informa- 
tion interchange  interface is defined to allow in- 
formation to  be passed from a  development envi- 
ronment to an execution  environment or  to 
exchange application source  code and data 
among execution  environments.  This  interface 
defines interchange  character sets and  codes. The 
interface  enables  three  types of development in- 
formation to  be passed: application program 
source  code,  database definitions (SQL data  de- 
scription language, DDL), and screen definitions. 

In addition to  the interfaces, NTT has defined eight 
conformance  classes for the MIA specifications. 

IBM SYSTEMS  JOURNAL,  VOL 33, NO 3, 1994 BAUER ET AL. 409 



Figure 6 The MIA interfaces 

"""""""""""""" L - 
HUMAN INTERFACE 

""""""""""""" 

VENDER A s  WORKSTATION VENDER B s  HOST 

PROGRAM 
APPLICATION PROGRAM 

INTERFACE (API) 

SYSTEMS INTERCONNECTION 

INTERFACE SYSTEM 

PROGRAM 

.""""""""""""""""- 

.""""""""""""""""- 
SOFTWARE B 

SOFWARE A 

EXECUTION ENVIRONMENT INTERENVIRONMENT INFORMATION """"""""""""""""""""""""""""""""- 
DEVELOPMENT ENVIRONMENT 

vi 

T INTERCHANGE INTERFACE 

VORKSTATION 

Thus,  vendors  who wish to label their  product as 
conforming to a  particular  class of MIA specifica- 
tions  must  demonstrate it against the  relevant  test 
suite. 

CORDS architecture 

The  view of distributed  applications  interacting in 
a  peer-to-peer  manner  has led the CORDS project 
to adopt  the  process model originally described 
by  Strom  et al. 26 The  nature of a  process-oriented 

peer-to-peer  environment  for  distributed applica- 
tions is the  central  focus of the CORDS research 
project. Issues and questions regarding how to 
realize such  an  environment,  what  services it re- 
quires, and how existing systems  can  be incor- 
porated  and  evolve  were  central in the  research. 

Some of this  research  has resulted in the  devel- 
opment of the CORDS architecture. 35336 The prime 
constituents of the  architecture, namely the  pro- 
cess model and the CORDS functional framework, 

410 BAUER ET AL IBM SYSTEMS  JOURNAL, VOL 33, NO 3, 1994 



are described in this  section,  the  former  repre- 
senting the  abstract  computational model used as 
the basis  for the peer-to-peer  view of computing, 
and  the  latter  encompassing  the underlying dis- 
tributed  services.  This  architecture  is evolving as 
our  experience with ongoing research  prompts us 
to refine its definition. The  partial realization of 
this  architecture  and  the  incorporation of tools, 
such  as  the  distributed debugger, have provided 
the  basis  for  other  research  into  the design, de- 
velopment,  and management within a  distributed 
computing  environment. For an in-depth descrip- 
tion of the CORDS architecture, see References 35 
and 36. 

The process model. The  process model provides  a 
simple and elegant paradigm for building soft- 
ware.  The model enables  a  distributed  computing 
environment with consistent  access  to applica- 
tions,  data,  resources,  and  services  and facilitates 
the  separation of logical, or application concerns, 
from the  details of how services provided by  the 
architecture  are realized. This allows one  to 
structure  distributed  software  systems using pro- 
cesses  as  the building blocks. Each process  is 
based  on  the  concepts of encapsulation  and in- 
formation-hiding as well as  on  serial  computation. 

The  independence of processes allows them to 
operate  as  peer  entities.  The  process paradigm 
assumes  an infinite universe;  that is, there is no 
notion of a global state  or a global time. There- 
fore,  processes  do  not  observe  a given absolute 
order  when  executing  distributed  events.  Each 
process  maintains  some local state,  and  only  the 
program executing in that  process  can  manipulate 
that  state. All data are local to  a  process, and 
there  are  no  shared  variables;  this is useful in 
simplifying the complexity of distributed applica- 
tions. The model also assumes  data  and  process 
persistence, i.e., assumes  that  these  can  be  pro- 
vided  automatically by underlying run-time ser- 
vices if desired. 

An active  process  interacts  with  another  process 
by creating  a  channel on which it can  send  mes- 
sages. A message  channel is realized by  connect- 
ing an  output  port of the  sender  to an input port 
of the  receiver;  each  port  is  typed.  The  interface 
to a given process  is  determined  solely  by  the 
types of its  input  ports.  Thus, any  processes with 
matching output and input ports  may  be  con- 
nected if they  choose. The  type definition for a 
port  can  be written  separately  and  independently 

IBM  SYSTEMS  JOURNAL,  VOL 33, NO 3, 1994 

Figure 7 Utilization of the  process model in CORDS 
~ ~ ~~ ~ ~~~~ 

CORDS 
MANAGEMENT 
PROCESS + 
MULTIDATABASE 
PROCESS 

3 

I PROCESS 

0 
D 

1 SECURITY 
PROCESS 

J 

TRANSACTION 
PROCESS 

3 

of the  internal  process information. More  details 
of the  process model can  be found elsewhere26 as 
well as a  comparison of the  process model to  ob- 
ject-oriented  approaches. 37 Several languages im- 
plementing the  process model concepts  have 
been  prototyped  and  studied. 3 ~ 0  

Figure 7 illustrates  the  peer-to-peer  process 
model view of the CORDS multidatabase  compo- 
nent  and  the CORDS management component. The 

BAUER ET AL. 411 



various  shapes  represent  the  typed message ports 
of the  process model. Such  ports may allow bi- 
directional,  many-to-many  communication as de- 
picted in this figure. Some  ports in the diagram are 

Layers of the CORDS functional 
framework  illustrate the logical 

separation of functionality 
among  the  various services. 

not  connected,  since all defined ports  do  not need 
to  be utilized by  every  peer application. This is 
depicted by unfilled port  symbols.  These  pro- 
cesses  instantiate  the CORDS multidatabase com- 
ponent6  and  the CORDS management compo- 
nent.36341  The  services  represented by  these 
processes  are defined in the CORDS functional 
framework  described below. 

The CORDS functional  framework. We now pro- 
ceed  to define the CORDS functional framework, 
depicted in Figure 8. This  framework  describes 
the organization of the logical services and func- 
tions  that  address  the  requirements identified ear- 
lier. Extensions  to existing tools  or  the  creation of 
new  tools are required in order  to satisfy  some of 
those  requirements, e.g., language and run-time 
extensions to support  the  development, debug- 
ging, etc., of distributed applications. What is im- 
portant in the context of the  architecture, how- 
ever, is the  services  that  such  tools  require. Given 
the breadth of the  requirements, it was not  pos- 
sible to  thoroughly  explore all of the required ser- 
vices in detail within the  scope of the  project; 
some  components, e.g., security  services, remain 
to  be  explored in depth. 

The underlying view of computation  provided by 
the  process model proved useful in considering 
the allocation and  separation of services among 
the  various  components. For example, it became 
apparent during the  research  that  the manage- 
ment  component would require  access  to  name 
services  and  to information about  resources 
within the  distributed computing environment. 
These  services,  subsequently embodied as name 

412 BAUER ET AL. 

services  and information repository  services 
(within the  systems  services  components;  see 
Figure 8), would also  be required by  other  system 
services  and by components at the application 
layer  (namely, applications, application tools, 
and services and management applications). Fur- 
ther,  the  data  access and storage  services  re- 
quired by  the name services  and  the  repository 
services, e.g., for storage of information neces- 
sary for the management processes  and for the 
performance  data  gathered, could be provided by 
the  data  services  component.  This  iterative  ap- 
proach led to  a simpler view of the  distributed 
services  and provided a much more  consistent 
partitioning of services.  This, in turn, led to  the 
realization that  the  data  services could rely on the 
management services to provide information re- 
garding network traffic, host loading, etc., needed 
for decisions in query optimization. As  our un- 
derstanding of the  various  services  evolves with 
subsequent  research,  the  services  may  continue 
to evolve based on the  process view. 

The  layers of the functional framework  illustrate 
the logical separation of functionality among the 
various  services.  It is likely that  the  components 
of one  layer will make  use of the  services of the 
components  at  the  layer  beneath, though this 
does not imply that  such  a relationship may be 
strictly  clientherver, nor that  a  component  act 
strictly  as  a  server, especially with respect  to 
components at the  same logical level. Each of the 
five logical layers of the functional framework is 
now discussed. 

Applications layer: This  layer  encompasses dis- 
tributed applications developed for the  end 
users of the  distributed computing system and 
any  support  tools for the composition of appli- 
cations.  It also includes applications used by 
two  classes of specialized users,  those  respon- 
sible for the  operation  and management of the 
distributed applications and the distributed com- 
puting environment, and those who develop dis- 
tributed applications. 
CORDS service  environment:  This  layer  speci- 
fies the  services required by  applications and 
tools in the  applications  layer.  These  services 
hide the peculiarities of the middleware layer 
and  provide  a  standard  set of interfaces  to  en- 
sure  that  applications and tools  that utilize ser- 
vices in this  layer may remain independent of 
changes in the lower layers.  A partial list of 
services includes security  services,  data  ser- 

IBM SYSTEMS  JOURNAL, VOL 33, NO 3, 1994 



Figure 8 The CORDS functional  framework 

APPLICATION  DEVELOPMENT  TOOLS  DISTRIBUTED  APPLICATIONS  MANAGEMENT  APPLICATIONS 

r I 

I APPLICATION  SERVICE  INTERFACE 

APPLICATION  SERVICES 

PRESENTATION 
SERVICES 

I DlSPLAY I 

I I 

... 

SYSTEM  MANAGEMENT  SERVICES 
I SERVICES 

1 

REPOSITORY 

I 1 

I NAME I 
TRANSACTION 
MANAGEMENT 

I D  AUTHENTICATION 

1 ... 

I I  
SYSTEM 
MANAGE- 
MENT 

I COMMUNICATION  SERVICES 

/CWIVI/RPCII.P 
SYSTEM  SERVICES 

TRANSACTION  MANAGEMENT 
I ‘  

NETWORK 
MANAGE- 
MENT 

TRANSPORT  INTERCONNECT  SERVICES 

1 

IBM SYSTEMS  JOURNAL,  VOL 33, NO 3, 1994 BAUER ET AL. 413 



vices,  communication  services,  presentation 
services,  system  services,  and management 
services. The specification of the CORDS service 
environment (CSE), as well as its  instantiation 
through  prototypes,  is one of the  objectives of 
the CORDS project. 
Middleware: Standardization efforts (such as 
OSF DCE) are building platforms to hide the  de- 
tails of individual proprietary  systems  and to 
provide  services  across  these  systems. An ob- 
jective of the CORDS project is to identify the 
services of this  layer, to determine  the  com- 
pleteness of existing middleware systems  and 
proposals  (see  Reference 42 for a  study of the 
adequacy of middleware services to  support 
distributed application development  environ- 
ments), and to  enhance  these  services  where 
required. 
Transport  interconnect  services:  This  layer 
identifies the  basic  set of services required to 
connect  heterogeneous  systems.  The  intercon- 
nection  services in the middleware employ 
services in this layer. 
Proprietary  services:  The  base  layer  consists of 
the  services provided by  the  proprietary  hard- 
ware,  operating  system, and network  services. 

Two  aspects regarding the  description of the  func- 
tional framework  must  be  kept in mind. First,  one 
motivation for using a layered framework is to 
facilitate the reader’s  understanding of the  ser- 
vices  and  their  interactions.  It allows a  clear  rep- 
resentation of the  services available to (or  re- 
quired by) each group: applications, tools, or 
services.  Second,  the CORDS functional frame- 
work  presents  a logical view of a  system.  It al- 
lows  one to provide  the  user with the services 
required to design, build, and maintain distrib- 
uted applications. The goal of this  framework  is to 
satisfy  the  requirements identified earlier. The 
use of services in any  layer  are  not  precluded by 
any  other  layer;  those  users  who  require lower- 
level services  may utilize them. 

Emerging technologies will provide  a  computing 
environment  that differs from the  present envi- 
ronment, in scale if not in concept, by  such  a large 
factor  that  many of the  present  approaches  to sys- 
tem  development and use may  become  obsolete. 
As a  result,  there are  two implications for  any 
framework for distributed  computing  that is to 
support long-term development. First,  the frame- 
work  must allow systems  to evolve to  take ad- 
vantage of the  new  features  and  methods  pro- 

414 BAUER ET AL. 

vided by  these technologies. Second, it should 
allow systems  to span a  spectrum of technologies. 
We elaborate  on  the  layers  and  services within 
the CORDS functional framework in the  remainder 
of this  section. 

CORDS application layer. The CORDS application 
layer  encompasses  distributed applications de- 
veloped for end  users,  applications used in the 
operation  and management of the  distributed ap- 
plications and the  distributed computing environ- 
ment (management applications), and applica- 
tions (i.e., tools) used by  those  who  develop 
distributed applications (development applica- 
tions). All of these applications may make use of 
applications developed as services for other  ap- 
plications (application services). 

Application services  are built upon the services 
provided by  the CSE and  may  be used by  other 
components in the application layer: application 
development tools, distributed applications, and 
management tools. An example of an application 
service would be  a visualization service.  The ser- 
vice, provided by  one  or more visualization tools, 
would include the ability to manipulate data  vi- 
sually, the ability to perform pattern matching on 
visual  data,  the ability to visually  select  portions 
of the  data  and filter the  data,  the ability to  browse 
and edit  the  visual  data, and finally, the ability to 
improve  visual  data  such as graphs  without dis- 
torting the information the  data  contain.  The  tools 
that make up the visualization service  depend  on 
the  presentation  services of the CSE. 

Application development  tools are used for the 
development of distributed applications. Appli- 
cation  developers should be  able to select  the 
most  appropriate tool for each required function 
and be confident that  the  chosen  suite of tools  can 
work  together.  This idea suggests  that  standard 
architectures for tool integration (both  control 
and  data integration) and  intertool communica- 
tion are necessary.  New  approaches, which pro- 
vide  a finer grained data  exchange  between  tools, 
must be integrated with  the existing tool archi- 
tecture.  This  framework will  itself make  use of the 
underlying CORDS services. 

Application development in a  distributed envi- 
ronment  requires languages to facilitate program- 
ming. Distributed debugging tools providing 
capabilities such as the monitoring of communi- 
cations  between  processes within an application, 

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994 



and  the replaying of previous  executions, will also 
be  required.  Tool or service  mechanisms  need  to 
be  provided  for modeling and  schema definition, 
access  control,  interprogram communication, 
and  resource  and  execution  service binding. 
Static  and  dynamic naming and registering of re- 
sources  and  their capabilities are  needed. 

The application development  environment relies 
on data  services,  presentation  services, commu- 
nication services,  and  system  services,  particu- 
larly  name,  authentication, and transaction man- 
agement services, of the CSE. The CORDS appli- 
cation development architecture assumes that all 
industry-standard tool services can be provided by 
an interface to the underlying CORDS services. No 
assumptions are made, at present, about the dis- 
tributed programming model or language necessary 
to  create distributed applications. 

Management tools  are used for the management 
of distributed  applications,  system  services,  net- 
work  services, and resources.  Examples of man- 
agement applications are modeling and simula- 
tion  tools, monitoring and  control tools, and 
analysis  and  report tools. Modeling and simula- 
tion tools are used to model complex application, 
system,  and  network configurations and  deter- 
mine "what-if"  performance for those being de- 
veloped. Monitoring and  control  tools  are used to 
keep  track of the  behaviour of managed entities 
and  to  perform  control  actions  when  needed. 
Analysis  and  report  tools  are  used  to perform 
analysis  (such as statistical  analysis)  on  the mon- 
itored  data  and  produce useful reports  for  the sys- 
tems  and  network  administrators.  These manage- 
ment  tools  make use of the  services provided by 
the CSE, particularly  the management services. 

Distributed applications are  executed by end 
users; run-time support  for  such  applications  is 
provided by underlying services. 

The CORDS sewice environment layer. Our goal 
is  to define and  elaborate  an  environment for de- 
signing, developing, and managing distributed  ap- 
plications in a  peer-to-peer  environment.  The 
CORDS service  environment  consists of those 
services  required  to  support application develop- 
ment tools, distributed  applications, and manage- 
ment tools. To fully specify the functional frame- 
work of the CSE, one  must define: 

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994 

The CORDS service  interface,  the  services avail- 
able to applications  and  tools 
The components and component  relationships 
within the CSE, that  is,  the  services  provided  by 
each  component 
A mapping from the  services specified in the 
CORDS service  interface to  the components 
within the CSE 
A mapping from the services  required by com- 
ponents within the CSE to  the  services specified 
in the middleware interface 

In  this  paper, we have  concentrated  on  the set of 
services to  support distributed  applications and 
tools.  The  services  are  grouped  into  components 
and logical collections of subcomponents.  The 
subcomponents do not necessarily partition the 
functionality of a  component.  Thus, within a  sin- 
gle component,  two  subcomponents  may  provide 
overlapping services.  This  description of the CSE 
represents  our  understanding of the  needs  and  the 
information required. Ongoing research is aimed 
at assessing and validating these  services  and 
their relationships. Within the  scope of the CSE, 
several  assumptions  are made: 

Each  service  component  may  be  composed of 
subcomponents  that may be  distributed  ser- 
vices. 
Each  service should be  considered  a  black box. 
Thus,  changes within a  service  component 
should not affect other  components, tools, or 
applications, allowing the  (future) migration of 
environments and applications, which are based 
on the CORDS framework, to incorporate new 
technologies. 
A component  may  represent  a  number of ser- 
vices,  each of which  may  have  its own specific 
interface.  The  component  interface would be 
the union of the individual service  interfaces. 
Each  component  is  assumed to have  a manage- 
ment interface,  an  interface  that  can  be  used to 
collect component-specific information about 
its state, performance, operation, errors, events, 
etc. The information collected via this interface is 
in addition to  any  other reporting the component 
may do, such  as  a return code. 
The  process model will be employed to model 
the  components  and  their  interaction in the  ar- 
chitecture. 

We now describe  each of the CSE components in 
more detail. 

BAUER ET AL. 415 



Data services-Support for distributed data  ser- 
vices within a distributed computing environment 
is essential. The  data  services component encom- 
passes  several  data  sources within a single logical 
umbrella. The  database  service offers the  stan- 
dard functionality of database management sys- 
tems. The  current  service includes, but  is not 
restricted  to, navigational, relational, and object- 
oriented  databases and multidatabases. The mul- 
tidatabase  provides a single logical view of 
multiple, heterogeneous  data  sources  that  are 
distributed throughout the computing environ- 
ment. The multidatabase subcomponent is de- 
scribed in greater detail elsewhere.6 Other  ser- 
vices will be added within the data  services 
component as needed, for example, an object 
store. 

The  data  services  use  the name service,  transac- 
tion management service, and information repos- 
itory  service provided by the  systems  services, as 
well as  the communication and security  services. 

Presentation  services-Presentation services pro- 
vide  the functions required to display informa- 
tion. The  services  satisfy several characteristics: 
the ability to present  various kinds of data-plain 
text,  typeset  text, graphic images, video, audio; 
the ability to use  various kinds of devices-work- 
stations,  printers, high-resolution display units; 
the ability to handle input events; and the ability 
to provide access  that  is local or distributed. This 
set of services will continue to be refined to meet 
evolving graphics standards,  such as GKS43 or 
P H I G S , ~  and to  incorporate new services (e.g., 
multimedia) as the technology becomes available. 

For example, the X Window System** permits a 
display device to be  connected with an applica- 
tion running on a remote  host.  It is currently done 
by explicitly specifying network  addresses.  In  the 
future,  such information could be  extracted from 
the name service,  thus alleviating work by the 
toolkit builder, system manager, application de- 
veloper, or application user. 

Management  services-A critical aspect of a dis- 
tributed computing environment will be  the abil- 
ity  to configure, monitor, and control a wide range 
of applications, services, networks, and devices 
(which we collectively call managed objects). In- 
formation about  the managed objects will be 
needed by management tools. Current activities 

416 BAUER ET AL. 

in network management will provide techniques 
and tools for specifying and collecting network 
management information. However,  at higher 
levels, the collection of information about system 

Presentation services provide 
the functions required to 

display  information. 

services and applications, tools to analyze the in- 
formation, and services  to monitor and control 
system activities will be needed. 

The management services  consist of several  sub- 
systems: management information repository 
subsystem, configuration subsystem, monitoring 
subsystem,  control  subsystem, and management 
agents. The management information repository 
subsystem  consists of a set of information repos- 
itories providing storage for management infor- 
mation. The configuration subsystem is respon- 
sible for keeping track of the configuration 
information on managed objects, and for initiating 
and terminating managed objects. The monitoring 
subsystem is responsible for monitoring the be- 
haviour of managed objects. The  control  sub- 
system performs appropriate  control  actions  on 
managed objects as a result of their behaviour 
being monitored by the monitoring subsystem. 
The management agents  are responsible for mon- 
itoring and controlling the behaviour of managed 
objects on behalf of users  (or management tools). 
The CORDS distributed management architecture 
and details on its  components  are described in 
greater detail elsewhere. 45 

Management services  use  services from the  data 
service, security  service, name service, and com- 
munication service. Management agents depend 
on services  that may be specific to particular net- 
works, operating systems,  or  hosts. We assume 
here  that  such agents are provided to  the man- 
agement service  components as closed units 
along with  descriptions of what  they provide, how 
they may be invoked and collected, and where 
they  are applicable. 

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994 



Communication  services-The development of dis- 
tributed  applications  and  tools  requires  access to 
communication primitives that  enable  data  and 
control information to flow between  components. 
One of the  objectives of CORDS is  to  explore  the 
use of the  process model in the  architecture as a 
simple (logical) mechanism to allow applica- 
tions to communicate.  This  mechanism may be 
mapped to  more complex communication mech- 
anisms at a lower layer,  transparent to  the appli- 
cation  developer or user. 

Two basic  forms of communication  are required: 
synchronous and asynchronous. Both types of 
primitives could have  several  realizations using 
services provided by  the middleware layer. Ini- 
tially, the  services  may  be  provided by an RPC- 
like mechanism, presumably  independent  of  any 
specific RPC implementation. Eventually,  such 
exchanges should take place on  a  peer-to-peer 
basis. 

System services-A variety of information about 
the  distributed  system is needed to  operate within 
the  system and to  ensure  that it performs effi- 
ciently. Some of this information will be required 
by distributed  applications,  whereas  other infor- 
mation may  be  needed by management functions. 

Services  are provided by components within the 
logical collection of system  services and include 
naming services (directory), transaction  and 
recovery  services (transaction management 
service), authentication  and  security  services 
(authentication service), a  repository  service (in- 
formation repository service), and file, operating, 
and  run-time  services.  Some of these  services, 
especially the  last  three identified, may  actually 
be provided by existing services  at  the middle- 
ware layer or proprietary  systems.  The inclusion 
of such  services within the CSE is to (1) provide  a 
logically consistent  view of available services 
within the CSE and  for  processes  at  the application 
layer,  and (2) provide  the  means to incorporate 
future  functionality or provide  a single interface 
to multiple realizations of the  services  at  the mid- 
dleware or proprietary  systems  layers. 

Comparison of architectures. A detailed compar- 
ison of the CORDS architecture and the  other  ar- 
chitectures  and  frameworks  discussed earlier is 
beyond the  scope of this  paper.  Nevertheless, 
some  general  comments comparing CORDS to  the 
other efforts are in order. 

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994 

CORDS takes  a  peer-to-peer view of computing 
rather  than  the  client/server  view of such  others 
as ANSA, OSF DCE, UI-ATLAS, and MIA. As men- 
tioned earlier, we believe that  client/server com- 
puting will evolve to a  peer-to-peer  environment, 
and  research is required  to begin to understand 
the  requirements and needs of such  an  environ- 
ment  and how that evolution can be smoothly  ac- 
commodated. 

Moreover, CORDS derives  many of its  require- 
ments from the  anticipated  needs of the  end  user, 
application developer,  and  system  administrator. 
The  objective is to identify services  needed  by 
these  classes of users and to identify what  tools 
are  required  to simplify their tasks.  This is one 
reason why  the CORDS project  has been con- 
cerned with services to  support  access  to heter- 
ogeneous  data  sources, use of distributed  trans- 
actions, application management, distributed 
debugging, and visualization. 

CORDS also  assumes  the  existence of middleware 
to  provide  basic  services  across  heterogeneous 
computing platforms. OSF DCE and ANSAWare 
represent  such middleware. One  objective of the 
CORDS architecture was  to hide details of the mid- 
dleware from application developers  and to insu- 
late  them  from  changes in middleware as plat- 
forms evolve. Middleware, such  as OSF DCE, 
provides  basic platform interoperability  service, 
but  broader sets of services are also required to 
support  applications  and tools. 

The ROSA effort takes  a similar approach  to  that 
adopted by CORDS, although the focus is on broad- 
band telecommunication services. Thus, although 
there are similar objectives such as scalability and 
openness, the computing and communication envi- 
ronments and end-user communities are different. 

Finally, the ODP reference model represents  a  sin- 
gle collection of concepts  and  terms  for  describ- 
ing distributed computing systems. It should be 
possible to  map  the  various  distributed computing 
architectures,  frameworks, and environments 
discussed in this  paper, including CORDS, to  the 
reference model to examine similarities and dif- 
ferences.  This  comparison, though interesting, is 
beyond  the  scope of this  paper. 

Validating  architectural  concepts 

A team of researchers,  developers,  and  graduate 
students  developed  a  prototype  system46  to eval- 



~ 

Figure 9 Prototype  process  interactions 

DESKTOP  APPLICATION  PROCESS 

EZ-WINDOWS 
PROCESS 

J 

EXISTING  CONNECTIONS #- 

FUTURE  CONNECTIONS bbdb 

EVENT  DISPLAY 
PROCESS 

ENClNA 
PROCESS 

uate  our preliminary ideas  about the architecture. a simple test  suite of applications  that utilized 
The development  took  place  at the IBM Centre  for these  services. The prototype  development  took 
Advanced  Studies (CAS) during the summer of place part way through the project, and many of 
1992. The prototype included basic  services, sim- our  ideas  about  the functional framework  were in 
iIar to  those  described in the  previous  section,  and the  formative  stages.  One  objective of the  proto- 

418 BAUER ET AL. IBM SYSTEMS  JOURNAL,  VOL 33, NO 3. 1994 



type  experience  was to have  these  ideas evolve 
and  mature. 

Basic  services included a  process  communication 
facility that embodied the  essential  concepts of 
the  process model and  other  services  required  by 
a  prototype  distributed application. The applica- 
tion integrated  components for telephone  direc- 
tory  white pages, electronic mail, a  calendar sys- 
tem,  and  a  personal banking service (similar to  a 
personal  automatic teller machine). In  this  sec- 
tion, we  present  an  overview of the design and 
development  experiences of this effort. 

Prototype design. The prototype  components  can 
be divided into two broad  categories  that reflect 
its design: services  (systems  and  applications) 
and applications. Figure 9 depicts  a  process-ori- 
ented  view of the relationships among the  various 
prototype  components.  Not all components  need 
to  be active  simultaneously,  and  connections  can 
be  established or terminated dynamically. More- 
over,  these  applications  represent  those of a sin- 
gle user;  other mail processes,  for  example, could 
exist for other  users.  The logical organization of 
these  components within the CORDS functional 
framework is illustrated in Figure 10. 

Services. To  provide  distributed  process  control 
and  communication primitives in a single homo- 
geneous  infrastructure,  a  library of routines was 
designed to  provide  process model primitives for 
the application programmer. A virtual  distributed 
process  space  was designed and implemented to 
support  virtual  processes  that  spanned  heteroge- 
neous  computers running OSF DCE. The design 
used a  communications  library to implement the 
process  space  instead of a language, such  as  Con- 
~ e r t / C ~ ~  or  Hermes. 39 These  communication 
services (Process  Comms. in Figure 10) could be 
used, in addition to  the OSF DCE communication 
primitives, to  create and  communicate with dis- 
tributed  (virtual)  processes.  These  services  are 
not explicitly depicted in Figure 9 since  they are 
realized as  the  process-to-process  connections. 

A process  server (Process  Server) was imple- 
mented to provide the  actual  mechanisms  to  cre- 
ate, manage, and  trace  communications  between 
processes in the virtual  process  space.  It imple- 
ments  the  process  server  concepts  presented in 
Cygnus48 from the  University of Michigan, and 
C ~ n c e r t / C ~ ~  from the IBM Thomas J. Watson Re- 
search  Center. 

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994 

Although OSF DCE included the GDS x.500 imple- 
mentation,  the  prototype utilized the EAN X . 5 0 0 ~ ~  
(EAN X.500) version.  The  reason  for  choosing  this 
X.500 implementation was  that  subsequent  re- 

Prototype components can be 
divided into  services  and 

applications. 

search  developments required an x.500 service 
that  understood  transaction  semantics.  Our plan 
was  to achieve  this by including transaction fa- 
cilities within the EAN X.500 service. 

To  provide  the  transaction management function- 
ality lacking in OSF DCE, the  project  adopted  the 
X/Open distributed  transaction  processing  sys- 
tem, XA” (XA). This  system defines a  protocol 
between  resource  managers (Resource  Manager) 
and transaction  managers (Encina) to provide 
global control of distributed  transactions. To ex- 
pedite  the  development of resource managers, the 
project implemented an m-interface bridge using 
E n ~ i n a ~ ~ , ’ ~  to perform many of the required func- 
tions, including data  recovery. 

The  EZWindows (EZ-Windows) system  developed 
at IBM was used to facilitate GUI development.  It 
provided a higher-level language for dynamically 
constructing Motif** windows and reduced  the 
need for arcane X Window System programming. 

The  event  collector” (Event  Collector) collects 
communication events from an RPC monitor as 
well as  the  communications  monitored by  the pro- 
cess  server.  Servers  and  clients using the DCE RPC 
were developed in the usual fashion. However, in 
addition to  the  usual configuration steps,  the de- 
veloper  arranged  to  have  the  output of the OSF 
DCE Interface Definition Language (IDL) compiler 
passed  to  a  postprocessor.  The  postprocessor au- 
tomatically instrumented  the RPC client and 
server  to send  communication  event  messages to 
the  event  collector. Events  are displayed on event 
time lines representing running processes. As il- 
lustrated in Figure 9, events from all of the  basic 



Figure 10 Prototype  components  and  services  within  the CORDS functional  framework 

DISTRIBUTED  APPLICATIONS 

DESKTOP  APPLICATION 

APPLICATION  DEVELOPMENT  TOOLS 

I l l  APPLICATION  SERVICES 

EZ-WINDOWS 

SECURITY 
SERVICES 

DATA COMMUNICATION 
SERVICES I 1 SERVICES 

COMMS. 

a MANAGEMENT  APPLICATIONS 

I EVENT  DISPLAY I 

pzlm 
COLLECTOR 

I 

7 1  I DCE RPC SERVICE 

TRANSPORT  INTERCONNECT  SERVICES I I  

420 BAUER ET AL.  IBM  SYSTEMS  JOURNAL,  VOL 33, NO 3, 1994 



applications  were  sent to  the  event collector. 
These  events  were  then displayed via the  event 
display  process (Event Display). Although the 
event  display is placed within the management 
applications of the application layer, it could also 
be placed within the application development 
tools  since it proved to  be valuable in tracing and 
debugging interprocess communication. 

The logical organization of these  components also 
illustrates  services relied upon at the middleware 
level. These services were primarily those provided 
by DCE with additions as needed, such as Encina. 

Prototype applications. A suite of applications  for 
a  distributed office environment was built and in- 
cluded  electronic mail, appointment scheduling, 
telephone  directory  white pages, and  a  personal 
banker.  Where possible, the  project  took existing 
applications  and re-engineered them  for  the dis- 
tributed  environment. Re-engineering allowed us 
to  assess  the effort and  complexity involved in 
adapting legacy applications to  the services 
within the CORDS functional  framework. 

The mail system is based on an X Window System 
version of the RAND message handling system.53 
The new mail system was decomposed  into  a  user 
interface  component  and  peer  message  transfer 
agents,  which  communicated by using virtual  pro- 
cess communication primitives. 

The  project re-engineered a  personal  calendar 
program developed at  the IBM Zurich Laboratory. 
The program  was  decomposed  into  two  parts:  a 
client with  user  interface and a  personal  server 
that managed an individual calendar.  The  decom- 
position made it possible  to add a new feature,  a 
meeting scheduler. A user wishing to  schedule  a 
meeting would use the client and  contact  the  (per- 
sonal) servers  associated  with  each of the people 
involved in the meeting. The  calendar  system also 
used the communication  libraries for communi- 
cation  between  the  client and server. 

A white  pages client providing information about 
the  project and CORDS participants  was  devel- 
oped.  It  used  EZWindows  to build the user in- 
terface,  and  the  communication  libraries were 
used for communication  with the E m  X.500 
server. As expected,  EZWindows  considerably 
reduced  the time and effort required  for  user in- 
terface  development,  and  communication tracing 
made it easy  to monitor  the X.500 usage. 

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994 

Finally, a  personal  banker, similar to  an  auto- 
matic teller application, was  used to investigate 
the  requirements  transactions would place on the 
environment.  Starting with an X Window System 
automatic teller demonstration from Encina,  a 
number of bank  account  resource  managers  were 
constructed. We found that  the xA-interface  bridge 
made it easy  to include new resource managers. 

Experiences. The  project aided our  understanding 
and supported  a number of key  concepts in 
CORDS. First,  the  process  communication primi- 
tives  and  the  process  server  demonstrated  the 
feasibility of the  process model as a useful para- 
digm for developing distributed  applications in a 
heterogeneous  environment.  Second,  certain 
services,  such as transaction  support,  were iden- 
tified as requirements of applications and appli- 
cation  services.  These  requirements helped to 
further refine the  service  framework of the  archi- 
tecture.  Third,  process  communications  and, in 
particular,  the  event tracing facility demonstrated 
the  usefulness of providing system monitoring. 
Finally, valuable  experience  and knowledge of 
software  interfaces, integration issues,  and  the 
practical implications of heterogeneity  were 
gained during the implementation effort. 

Concluding  remarks 

Our  research  into  a  distributed  computing envi- 
ronment and support  services  was motivated by 
what we perceived as  two  eventual paradigm 
shifts. First,  the  trend  toward  more human-ori- 
ented  computing  suggests  that  future  computing 
environments will have  to  provide  the building 
blocks  and composition mechanisms to enable 
domain specialists to build customized applica- 
tions.  This  trend  requires  development  environ- 
ments in which underlying services and platform 
details  are hidden, in which distribution is trans- 
parent,  and in which operation  and management 
can tailor and optimize run-time behaviour. It 
also implies that methodologies are  required to 
facilitate composition and creation of application 
toolkits,  components, and building blocks along 
with  interconnection mechanisms. 

Second,  we  see  the  emergence of clientherver 
interaction  as  an interim step toward  a  broader 
computing  environment  based on peer-to-peer 
interaction. As with  the  current clienthewer 
environment, new sets of tools, languages, and 
services will be required to  facilitate  the  devel- 

BAUER ET AL. 421 



opment of applications in this  environment. We 
also felt that  a  peer-to-peer model could accom- 
modate existing applications-essentially wrap- 
ping each  as  an  entity  capable of (perhaps limited) 
interaction with other applications. Peer-to-peer 
computing is  also  consistent with the  trend 
toward  more human-oriented computing environ- 
ments  as  just  described. Application building 
blocks  viewed as  peers  that  can  be  interconnected 
is  a simple model familiar to  users  who  must deal 
with human peers  on an everyday basis. Of 
course, providing the  mechanisms to make  such 
an interconnection of applications straightfor- 
ward  poses significant challenges. 

On the  basis of these  trends,  a  number of require- 
ments  for  future  distributed computing environ- 
ments  were identified. Problems arising from try- 
ing to realize a  computing  environment satisfying 
these  requirements  have  been  the  focus of the 
research  within  the CORDS project.  One  aspect of 
this  work  has  been  the identification of an  archi- 
tecture and framework  for  a  distributed  comput- 
ing environment.  The  architecture  has emerged in 
parallel with research on problems arising from 
some of the  issues cited above  and  has  evolved as 
our  understanding of problems,  issues,  services, 
and  dependencies  has changed. An early  version 
of the architecture was validated with a  prototype 
that met with some  success.  The  prototype 
experience  also helped to clarify some  ideas and 
to illustrate  some of the  complexities  and chal- 
lenges. 

Perhaps  more  than anything the  architecture  has 
helped us to understand  what  problems  exist, 
even if we did not  have  the  resources to pursue 
them,  and  has provided a  context for considering 
interdisciplinary  problems arising in different ar- 
eas of distributed computing, such as interactions 
among multidatabases,  distributed application 
management, and  system  management.  The in- 
terdependencies,  interactions,  and  relationships 
among services in these different domains would 
not  have  been  apparent had it not been for this 
broader view. The  research in these  areas, in 
turn,  has reinforced the need for  and  potential of 
peer-to-peer  interactions. 

Though the  project  to  date  has  addressed  only 
some of the  fundamental  issues in the develop- 
ment of an  environment  based on and services 
supporting  peer-to-peer computing, it has vali- 
dated  our original hypotheses and has  met with 

422 BAUER ET AL. 

several  successes, including several  prototypes. 
It has  also  demonstrated the need for  interaction 
among experts in multiple areas of distributed 
computing. Since  an  operational  distributed com- 
puting environment will entail  many different 
services, it is imperative that dependencies among 
such services be understood and that the integra- 
tion of such services be explored. 

Acknowledgments 

We would like to  thank all the  developers,  fac- 
ulty, students,  researchers, and programmers 
who  have  worked on the CORDS project: Hasina 
Abdu, Utpal Amin, Gopi Krishna Attaluri, 
Joshua  Auerbach, David Bachmann, David E. 
Bacon, Pravin Baliga, J. Michael Bennett, Jay P. 
Black, Gerold Boersma,  Barry  Brachman, Martin 
Brachwitz,  Dexter P. Bradshaw,  Lauri J. Brown, 
Yvan Cazabon,  Jhitti Chiarawongse, Hsien- 
Kwang Chiou, Mariano  Consens, Crispin Cowan, 
Kerman  Deboo,  Jan  de  Meer,  Alexander Dupuy, 
Frank Eigler, Danilo Florissi, Patricia Soares Flo- 
rissi, Arthur Goldberg, German Goldszmidt, Ma- 
sum  Hasan,  Curtis  Hirischuk, Yen-Min Huang, 
Yanni Jew, Michael Kalantar, Mike Katchabaw, 
Zenith Keeping, Willard Korfhage, Thomas Kuntz, 
Alex Liu, Ming-Ling Lo, Greg Lobe, Andy Lowry, 
Kelly Lyons, Andrew Marshall, T. Patrick Martin, 
Albert0 Mendelzon, Brian Minard, Shahrokh Nam- 
var, Gerald Neufeld, Manny Noik, John O'Neil, 
Ian Parsons, Glenn  N.  Paulley, Frank Pellow, 
Wendy Powley, Gary Promhouse, David Rappa- 
port, C.  V.  (Ravi) Ravishankar, Jerome Rolia, 
James Russell, Jonathan Schaeffer, S. Sengupta, 
Avi Silberschatz, Mike Starkey, Rob E. Strom, Du- 
ane Szafron, Xueli Tang, Dimitra Vista, Sam Wang, 
Zhanpeng Wang, Gerald Winters, Weipeng  Yan, 
Shaula Yemini, Yechiam Yemini (YY), Daniel 
Yellin, Jianchun Zhang,  and  Qiang  Zhu. We apol- 
ogize for any omissions or  errors in this list. 

We would also like to  thank  the  referees of this 
paper  for  the  excellent  comments  and suggestions 
for improving the  paper. 

Research  reported in this  paper was supported by 
the IBM Centre for Advanced  Studies  and by  the 
Natural  Sciences  and Engineering Research 
Council of Canada. 

**Trademark or registered trademark of Architecture Projects 
Management Ltd. (AI"), Open Software Foundation, Inc., 
WOpen Company Limited, or the Massachusetts Institute of 
Technology. 

IBM SYSTEMS JOURNAL,  VOL 33, NO 3, 1994 



Cited  references 

1. D. S. Marshak, “ANSA A Model for Distributed  Com- 
puting,” Network Monitor 6, No. 11, 3-22 (November 
1991). 

2. Architecture and Design Frameworks, Technical Report 
TR.38.00, Architecture  and  Projects Management Ltd., 
Cambridge, U K  (February 1993). 

3. “Unix Consortiums Building Distributed  Computing 
Standards,” Database  Reviews (USA) 3, No. 5,4-7 (Oc- 
tober 1991). 

4. S. H. Dolberg, ‘‘XIOpen  in the 1990s,” Open Information 
Systems 8, No. 1, 3-19 (January 1993). 

5. D. Fauth, J. Gossels, D. Hartman, B. Johnson, R. Kumar, 
N. Leser, D. Lounsbury, D. Mackey, C.  Shue, T.  Smith, 
J. Steiner, and W. Tuvell, OSF Distributed Computing 
Environment Rationale, Technical Report, Open  Soft- 
ware  Foundation, Cambridge,  MA (May 1990). 

6. N.  Coburn and P.-A. Larson, “Multi-Database  Services: 
Issues  and Architectural Design,” Proceedings of CAS- 

(November 1992). 
7. T. P. Martin, M. Bauer, N. Coburn, P.-A Larson, 

G. Neufeld, J. Pachl, and J. Slonim, “Directory Require- 
ments for a Multidatabase Service,” Proceedings of CAS- 
CON ’92, IBM  Centre  for Advanced  Studies, Toronto 
(November 1992). 

8. U. Amin, D.  W. Bachmann, K. Deboo, and T. J. Teorey, 
“NESTMOD:  The  NetMod-NEST  Interface,” Proceed- 
ings of CASCON ’91 and  Technical Report  TR 74.064, 
IBM Centre for Advanced Studies, Toronto  (October 
1991), pp. 239-254. 

9. G. Goldszmidt, S. Yemini, and Y. Yemini, “Network 
Management by Delegation-the MAD Approach,” Pro- 
ceedings of CASCON ’91, IBM Centre for  Advanced 
Studies, Toronto  (October 1991), pp. 347-361. 

10. J. W. Hong  and M. A.  Bauer, “Design and Implementa- 
tion of a Generic Distributed  Applications  Management 
System,” Proceedings of the GLOBECOM ’93, Houston, 
TX  (November 1993), pp. 207-211. 

11. J. W.  Hong, M. A. Bauer,  and J. M. Bennett, “Integration 
of the  Directory  Service in the  Network Management 
Framework,” Proceedings of the Third International 
Symposium on Integrated Network Management, San 
Francisco (April 1993), pp. 149-160. 

12. D. Taylor, “A Prototype Debugger  for Hermes,” Pro- 
ceedings of CASCON ’92, Volume I ,  IBM Centre for  Ad- 
vanced  Studies,  Toronto  (November 1992), pp. 29-42. 
Also in Volume ZI, pp. 313-326. 

13. T. Kunz  and D. J. Taylor, “Distributed Debugging Using 
a Reverse-Engineering  Tool,” Proceedings of the 3rd Re- 
verse Engineering  Forum (September 1992). 

14. K. A.  Lyons,  “Cluster Busting in Anchored Graph 
Drawing,” Proceedings of CASCON ’92, J. Botsford, 
A. Ryman, J. Slonim, and D. Taylor, Editors,  IBM 
Centre for Advanced  Studies,  Toronto  (November 1992), 

15. M. P. Consens,  C.  N. Knight,  and A. 0. Mendelzon, The 
pp. 7-17. 

Architecture of the G+lGraphlog Visual Query System, 
Technical Report  TR 74.054, IBM Canada  Laboratory, 
895 Don Mills Road, North York, Ontario M3C 1W3, 
Canada (April 1991). 

16. M. Consens, M. Hasan,  and  A. Mendelzon,  “Debugging 
Distributed  Programs by Visualizing and Querying Event 
Traces,” Proceedings of the 3rdACMlONR Workshop on 

D 

D CON ’92, IBM Centre for  Advanced  Studies, Toronto 

D 

1 

IBM  SYSTEMS JOURNAL, VOL 33. NO 3, 1994 

Parallel and Distributed Debugging (May 1993); ex- 
tended abstract. 

17. B. Randell and J. E. Dobson,  “Reliability and  Security 
Issues in Distributed  Computing Systems,” IEEE  1986 
Symposium on Reliability in Distributed Software and 
Database Systems (January 1986), pp. 113-118. 

18.  M. Satyanarayanan, “Integrating Security in a Large Dis- 
tributed System,” ACM Transactions on Computer Sys- 
tems 7, No. 3, 247-280 (August 1989). 

19. C. A. Joseph  and K.  H.  Muralidhar, “Integrated  Network 
Management in an Enterprise Environment,” IEEE Net- 
work 4, No. 4,  7-13 (July 1990). 

20. P. J. Finnigan and R. Marom, Current Issues in Visual- 
ization, Technical Report TR 74.100, IBM Canada  Lab- 
oratory, 895 Don Mills Road, North York, Ontario M3C 
1W3, Canada (1992). 

21. J. Auerbach, M. Kennedy, J. Russell, and S. Yemini, 
Interprocess Communication in ConcertlC, Research Re- 
port  RC 17341, IBM Thomas J. Watson  Research Center, 
Yorktown Heights, NY (October 1991). 

22, J. S. Auerbach, ConcertIC Specification, Research Re- 
port  RC 18994, IBM Thomas J. Watson  Research  Center, 
Yorktown  Heights, NY (1991). 

23. J. Russell, The Concert In te~ace  Definition Language, 
Research  Report  RC 19229, IBM Thomas J. Watson Re- 
search  Center, Yorktown  Heights, NY (1992). 

24. A.  C. Choi and W. Scacchi, “Extracting  and  Restructur- 
ing the Design of Large  Software  Systems,” IEEE Sofr- 
ware 7, No. 1, 6 6 7 1  (1990). 

25. H. A. Mueller and  K. Klashinsky, “Rigi-A System for 
Programming-in-the-Large,” Proceedings of the Tenth 
International Conference on Software Engineering, Raf- 
fles City,  Singapore  (April 1988), pp. 80-86. 

26.  R. E. Strom,  “A Comparison of the Object-Oriented and 
Process Paradigms,” SZGPUN Notices 21, No. 10  (Oc- 
tober 1986). 

27. E. F. Codd,  “A Relational  Model of Data for Large 
Shared  Data  Banks” Communications of the ACM 13, 
No. 6 (August 1970). 

28.  C.  A. R. Hoare, Communicating Sequential Processes, 
Prentice-Hall,  Inc.,  Englewood Cliffs, NJ (1985). 

29. ISO/IEC/JTCl/SC21/WG7, Basic Reference Model of 
Open Distributed Processing: Parts 1-5, Technical 
Report  CCITT X.901-X.905 and IS0 10746-1-10746-5, 
International Organization  for  Standardization, Geneva 
(1992). 

30. ANSA Reference Manual, Release 1.01, Architecture 
Projects Management Ltd., Cambridge, U K  (July 1989). 

31. M. Key, “ROSA-RACE Open  Services  Architecture,” 
Seventh International Conference on Software Engineer- 
ing for Telecommunication Switching Systems, Bourne- 
mouth, U K  (July 1989), pp. 1620. 

32. RACE Open Services Architecture: ROSA Handbook, Re- 
lease Two, Technical Report D.WPQ.2 93IFTWDNRI 
DS/A/013/bl, RACE Project, European Commission, Brus- 
sels (December 1992). 

33. RACE Open Services  Architecture: ROSA Architecture, 
Release Two, Technical Report D.WPY.2 93/BTUDNR/ 
DS/A/005/bl, RACE Project, European Commission, Brus- 
sels (May 1992). 

34. Multivendor Integration Architecture, Concepts and De- 
sign Philosophy, Nippon  Telegraph and  Telephone Cor- 
poration, Tokyo (1992). 

35. M. A. Bauer, G. Bochman,  N. Coburn, D. L. Erickson, 
P. J. Finnigan, J. W. Hong, P.-A. Larson, T. P. Martin, 



A. Mendelzon, G. Neufeld, A. Silberschatz, J. Slonim, 
D. Taylor, T. J. Teorey, and Y. Yemini, The CORDS 
Architecture: Version 1.0, IBM Centre  for  Advanced 
Studies, Toronto  (May 1993). 

36. M.  A. Bauer, G. Bochman, N.  Coburn, D. L.  Erickson, 
P. J.  Finnigan, J. W. Hong, P.-& Larson, T. P. Martin, 
A. Mendelzon, G. Neufeld, A. Silberschatz, J. Slonim, 
D. Taylor, T. J. Teorey,  and Y. Yemini, The CORDS 
Architecture: Version 2, IBM  Centre for Advanced  Stud- 
ies, Toronto (1994), in preparation. 

37. M. A. Bauer, R. E. Strom,  N.  Coburn, D. L.  Erickson, 
P. J. Finnigan, J. W. Hong, P.-.& Larson, and J. Slonim, 
“Issues in Distributed  Architectures:  A  Comparison of 
Two Paradigms,” Proceedings of  the  International Con- 
ference on Open Distributed Processing, Berlin, Ger- 
many  (September 1993), pp. 411-417. 

38. A. Black,  N. Hutchinson, E. Jul, and  H. Levy, “Object 
Structure in the  Emerald  System,” Proceedings of  the 
ACM Conference on Object-Oriented Systems, Lan- 
guages and Applications (October 1986), pp. 78-86. 

39. R. E. Strom, D. F. Bacon, A. Goldberg, A. Lowry, D. Y. 
Yemini, and S. A. Yemini, Hemes: A Language for Dis- 
tributed Computing, Prentice-Hall,  Inc.,  Englewood 
Cliffs, NJ  (January 1991). 

40. A. P. Goldberg, ConcertlC: A Language for Distributed 
C Programming-Tutorial, IBM Thomas J. Watson Re- 
search  Center,  Yorktown Heights, NY  (March 1993). 

41. J. W. Hong, M. Bauer,  and M. Bennett,  “The Role of 
Directory  Services in Network Management,” Proceed- 
ings of CASCON ’92, IBM Centre for  Advanced Studies, 
Toronto  (November 1992). 

42. J. Slonim, J. W. Hong, P. J. Finnigan, D. L. Erickson, 
N. Coburn, and M.  A. Bauer, “Does Midware  Provide an 
Adequate Distributed  Application  Environment,” Pro- 
ceedings of  the International  Conference on Open Dis- 
tributed Processing, Berlin, Germany  (September 1993), 
pp. 34-46. 

43. American National Standard for Information Systems: 
Computer Graphics-Graphical  Kernel System (GKS) 
Functional Description, ANSI X3.124.1 Edition,  Ameri- 
can  National  Standards  Institute,  New York (1985). 

44. Programmer’s  Hierarchical Interactive Graphics System 
(PHZGS), ISO/IEC 9592-1 Edition, International Organi- 
zation for Standardization,  Geneva. 

45. M. A. Bauer, P. J.  Finnigan, J. W.  Hong,  J. A. Rolia, T. J. 
Teorey,  and G. Winters, “CORDS Distributed Manage- 
ment,” Proceedings of CASCON ’93, IBM Centre for 
Advanced Studies, Toronto  (October 1993), pp. 27-40. 

46. G. K. Attaluri, D. Bradshaw, P. J. Finnigan, N.  Hinds, 
M. Kalantar, K. A. Lyons, A. D. Marshall, J. Pachl,  and 
H.  Tran,  “Operation  Jump  Start: A  CORDS  Integration 
Prototype  Using  DCE,” Proceedings of CASCON ’93, 
IBM  Centre  for  Advanced Studies, Toronto  (November 
1993), pp. 621-636. 

47. S. A. Yemini, G. S. Goldszmidt, A. D. Stoyenko, Y. Wei, 
and L. Beeck, “Concert: A  High-Level-Language  Ap- 
proach  to  Heterogeneous Distributed Systems,” Pro- 
ceedings of the  9th  International  Conference on Distrib- 
uted  Computing Systems (June 1989), pp. 162-171. 

48. R. N. Chang and C. V. Ravishankar, Language  Support 
for an Abstract View of Network Service, Technical Re- 
port,  University of Michigan, Ann Arbor, MI (1989). 

49. G. Neufeld, B. Brachman,  and M. Goldberg, “The  EAN 
X.500 Directory  Service,” Journal  of Internetworking 
Research and  Experience 3, No. 2, 55-82 (June 1992). 

424 BAUER  ET AL. 

50. CAE Specification. Distributed Transaction  Processing: 
T h e m  Specifcation, WOpen  Company Limited, United 
Kingdom (1991). 

51. Encina:  Product Overview, Transarc Corporation,  Pitts- 
burgh, PA (1991). 

52. Encina  Toolkit  Executive  Programmer’s Reference, 
Transarc Corporation,  Pittsburgh, PA (1991). 

53. M. T.  Rose, E. A. Stefferud,  and J. N. Sweet,  “MH: A 
Multifarious User Agent,” Computer Networks and 
ZSDN Systems 10, No. 2, 1-26 (September 1985). 

Accepted for publication March 30, 1994. 

Michael A. Bauer Department of Computer  Science,  Univer- 
sity of Western Ontario,  London,  Ontario N6A 5B7, Canada 
(electronic mail: bauer@csd.uwo.ca). Dr. Bauer  is chairman 
of the  Computer  Science  Department  at  the  University of 
Western Ontario. He holds  a  Ph.D. from  the  University of 
Toronto in computer science. His  research  interests include 
distributed  computing,  distributed  directories, and  software 
engineering. 

Neil  Coburn Antares Alliance Group  Canada Ltd., Missis- 
sauga,  Ontario  L5N lvS, Canada (electronic mail: nzcaO 
@amdahlcsdc.com). Dr. Coburn completed  his Ph.D. at  the 
University of Waterloo in 1988. He worked  as  Research As- 
sistant Professor in the Department of Computer  Science  at 
the  University of Waterloo until 1993, when he joined Antares 
Alliance Group  Canada Ltd. His  research  interests include 
multidatabases, parallel databases,  query optimization,  and 
the  development and  maintenance of large software  systems. 

Doreen L. Erickson Department of Computer Science, 
Southern  Technical University, Marietta, Georgia 30060-2896 
(electronic mail: erickson@st6000.sct.edu). Dr. Erickson re- 
ceived her Ph.D. from  the  University of Waterloo in 1993 and 
held a postdoctoral position  with  the University of Western 
Ontario  and  the IBM Centre for Advanced  Studies in 1993. 
She is now Associate Professor of Computer  Science  at  South- 
ern Technical  University. Her  research  interests include  par- 
allel and  distributed  computing and  cryptography. 

PatrickJ. Finnigan ZBMSoftwareSolutwnsDivision, Toron- 
to Laboratory, 1150  Eglinton Avenue E, Don Mills,  Ontario 
M3C lH7, Canada (electronic mail:  finnigan@vnet.ibrn. 
com). Mr.  Finnigan is a staff member at the  IBM Toronto 
Software Solutions Laboratory. He received  his M.Sc.  in 
computer  science from the  University of Waterloo in 1994. 
His  research  interests include  visualization  for  distributed ap- 
plications and  software engineering. 

James W. Hong Department of Computer Science,  Univer- 
sity of  Western  Ontario,  London,  Ontario N6A 5B7, Canada 
(electronic mail: jwkhong@csd.uwo.ca). Dr. Hong is a  re- 
search  associate  and an  adjunct  professor in the Department 
of Computer  Science  at  the  University of Western Ontario. He 
received  his Ph.D. from  the  University of Waterloo in 1991. 
His  research  interests include  distributed  computing, operat- 
ing systems,  software engineering, and  network management. 

IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994 



Per-ike Larson Department of Computer Science, Univer- 
sity of Waterloo, Waterloo, Ontario N2L 3G1, Canada (elec- 
tronic mail:palarson@maytag.  uwaterloo.ca). Dr. Larson  is a 
professor in the  Department of Computer  Science  at the  Uni- 
versity of Waterloo. He  served  as chairman of the department 
during 1989-1992. His  research  interests include  multidata- 
base  systems,  query optimization  and  processing, and parallel 
databases. 

Jan Pachl SHL Systemhouse, Inc., Toronto, Ontario M5J 
IR7, Canada (electronic mail: jkpachl@jeeves.uwater- 
1oo.ca). Dr. Pachl  was a research staff member at the IBM 
Toronto  Software Solutions Laboratory’s  Centre for Ad- 
vanced  Studies until 1993. His  research  interests include dis- 
tributed systems  and distributed  algorithms. 

Jacob Slonim ZBM Software Solutions Division, Centre for 
Advanced Studies, Toronto Laboratory, IBM Canada Ltd., 
844 Don Mills Road, North York, Ontario M3C 1 V 7 ,  Canada 
(electronic mail: jslonim@vnet.ibm. com). Dr. Slonim is head 
of research  for the IBM Toronto  Software  Solutions  Labora- 
tory’s Centre for  Advanced Studies.  He received  his Ph.D. 
from  Kansas  State  University in 1979 and  is an  adjunct  pro- 
fessor at the  University of Western Ontario and  the  University 
of Waterloo. His  research  interests include databases, dis- 
tributed systems,  and  software engineering. 

David J. Taylor Department of Computer Science, University 
of Waterloo, Waterloo, Ontario N2L 3G1, Canada (electronic 
mail: dtaylor@boomer.  uwaterloo.ca). Dr. Taylor  is Associ- 
ate  Professor of Computer  Science at the University of Wa- 
terloo. His  research  interests include  distributed systems  and 
software fault-tolerance. 

Toby J. Teorey University ofMichigan, Ann Arbor, Michigan 
48103-4943 (electronic mail: teorey@umich.edu). Dr. Teorey 
is  Professor of Electrical  Engineering  and Computer  Science 
at  the  University of Michigan and  is Associate  Chair  for  Com- 
puter Science. He holds  a  Ph.D. from  the  University of Wis- 
consin in computer science. His  research  interests include 
data modeling, distributed databases,  and  network perfor- 
mance tools. 

Reprint Order No. G321-5548. 

b IBM SYSTEMS JOURNAL, VOL 33, NO 3, 1994 BAUER ET AL. 425 


