Books

Distributed Computing Environments, Daniel
Cerutti and Donna Pierson, Editors, McGraw-
Hill, Inc., New York, 1993. 398 pp. (ISBN 0-07-
010516-2).

This book provides a comprehensive one-volume
survey of current developments in distributed
computing, which includes such au courant top-
ics as client/server, open systems, technology
trends, and standards activities. Targeted primar-
ily for users involved in strategic planning, sys-
tem analysis, and purchasing decisions, it would
be helpful to anyone who wants detailed back-
ground or a broader understanding of the feature
topics and product announcements that appear
regularly in today’s trade press.

The contributors include 15 experts who hold in-
fluential jobs in the computer industry, many of
whom have been deeply involved in shaping the
topics discussed.

The biggest problem in preparing a survey of fast-
changing developments is where to begin and
where to end. One contributor, Hal Lorin,
chooses to begin in the Paleolithic Era—not the
Paleolithic Era (Old Stone Age) of human social
and economic development, but the similar era of
computing, which Lorin defines as the period
from 1955-1970, the period of centralization.
Later eras include Mesolithic Computing, 1971-
1980, the period of time-sharing interactive sys-
tems; the Neolithic Period, 1981-1990, the era of
VLSI (very large scale integration) and changing
economics; and the Early Bronze Age, 1991-
2000, our current era of accelerating change.

This witty style is mirrored in some of the other
chapters, including, surprisingly, a chapter on
standards by Gary Leikam, who outlines not only
the history of current standards groups but also
the major issues involved. Although it is often

372 BooOKs

claimed that standards suppress innovation,
Leikam feels they actually serve to accelerate the
introduction of new technology by providing a
stable common foundation to build upon. Where
effective standards originate is sometimes uncer-
tain, as shown by contrasting the 0OSI (open sys-
tems interconnection) network model with the In-
ternet. “OSI is the quintessential example of a
clean-slate, prescriptive approach to standardi-
zation by committee in advance of proven feasi-
bility,” he writes, “versus the Internet’s prag-
matic, engineering-oriented style of controlled
experimentation and demonstrated workability
and compatibility prior to formalization.”

Like Caesar’s Gaul, this volume is divided into
three parts.

Part 1, “The Environment,” consists of sections
on the rise of distributed computing and open sys-
tems, and on the business of distributed comput-
ing.

Part 2, “The Technology of Network Comput-
ing,” begins with an essay on models of comput-
ing, then moves on to issues of connectivity,
communications, network operating systems, cli-
ent/server computing, distributed systems man-
agement, and distributed transaction systems.

Part 3, “The Distributed Computing Industry,”
covers technology trends and directions, archi-
tecture, standards activities, research efforts, and
leading-edge environments.

A volume with 15 contributors represents varied

viewpoints, but a poll of the authors would prob-
ably support the following views:

©Copyright 1994 by International Business Machines Corpo-
ration.

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

1. Changing computer models result from chang-
ing economics.

2. Technology, rather than user needs, drives
these changes.

3. Standards and open systems are good, but

4. Users will not wait for standards before adopt-
ing new technology.

Of course, even a volume created to interpret
changing technology is always threatened by fur-
ther changes. For example, Bob Blake in his
chapter on leading-edge environments writes
“when applications reside on different systems,
either the data must move to the program, or the
program must move to the data,” thus implicitly
denying the existence of the object paradigm. Ted
Hanss’ chapter on research directions surveys
ten major efforts, ranging alphabetically from the
Amoeba project at the Free University in The
Netherlands to TRON in Japan, and including An-
drew, Athena, Chorus**, Institutional File Sys-
tem, LOCUS™*, Mach, Plan 9, and Sprite.

Covering as it does current topics, this book
would be particularly useful to anyone writing re-
ports or preparing presentations on any of these
new technologies, and it could be particularly
useful to anyone involved in purchasing new tech-
nology, for, as the book argues, the rate of change
has been dramatic, but we are promised a greater
rate of change still. It becomes tremendously dif-
ficult to know when to commit to a technology
because of the danger that the technology will be
rendered obsolete before it has begun to pay for
itself. Editor Cerutti recommends a “half-step
ahead strategy,” which can be achieved by being
the first to innovate in a certain area. “Once a
product or technology begins to be a leader in the
marketplace, it must be made available to other
parties for adoption. Success depends on the
decisions of how and when to make the technol-
ogy available.” And, I expect, success for the
user would lie in correctly determining when to
adopt it.

George McQuilken
Demeter International, Inc.
Marblehead

Massachusetts

**Trademark or registered trademark of Chorus, Inc., or Lo-
cus Computing Corp.

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

Enterprise Computing, Alan R. Simon, Bantam
Books, New York, 1992. 303 pp. (ISBN 0-553-
08953-6).

Implementing the Enterprise, Alan R. Simon,
Bantam Books, New York, 1993. 396 pp. (ISBN
0-553-09152-2).

The first of these two books by Alan Simon, En-
terprise Computing, is an ambitious book. It tries
to bring together a large number of the elements
of what the author (and others) call enterprise
computing. The author characterizes his topic as
the search for the integration of enterprise sys-
tems resources. Despite the fuzzy edges of this
area, most of us would agree with the author’s
general structure and his selection of particular
aspects.

The book addresses the present and emerging
technologies of “open™ “distributed” systems,
covering many key standards and the relevant
state of the art in communications, database, ap-
plications development, mail, and client/server.
The discussions are informal, accessible, forth-
right, and occasionally even amiable. I believe it
is a quite useful book for a broad range of pro-
fessional and management needs.

One must read the preface. It reveals the author’s
concerns with the material and some of his rea-
sons for treating certain areas as he does. The
preface convinces the reader that the author is an
honest and diligent man, anticipating the objec-
tions of some readers (including this reviewer),
and struggling with the vast amorphousness of the
topic area.

Part One introduces topics about motivation,
some Kkey standards (POSIX**, ISO GOSIP [Inter-
national Organization for Standardization gov-
ernment OSI profile], X.400, X.500), and takes on
some of the CASE (computer-aided software en-
gineering) and API (application programming in-
terface) issues in a context of interoperable and
portable distributed systems. The treatment is
competent and informed.

Part Two provides a full description of IBM Sys-
tems Application Architecture* (SAA*) and Digi-
tal Equipment Network Application Support**
(NAS) as exemplars of a set of interfaces and pro-
tocols constituting a ““systems architecture.”
Something of the nature of the architectures of

Books 373

some other key vendors is also discussed. Also in
Part Two we have a reasonable discussion of
communications issues across SNA, DNA, and
TCP/IP (Systems Network Architecture, digital
network architecture, and Transmission Control
Protocol/Internet Protocol). There is an interest-
ing first discussion of emerging higher perfor-
mance telecommunications technologies. Per-
haps most useful in Part Two is the calm and
professional way the author discusses issues of
migration. He introduces considerations in a de-
liberate way, avoiding the hysterical hype of
words like “legacy,” “downsizing,” “rightsiz-
ing.” Not quite as satisfactory, because it lacks
some necessary concepts, is the honest try at a
discussion of portable applications.

There are many things right with this book. In
particular, the intelligence and professionalism of
the author. The book deserves reading by strat-
egists in using organizations as well as by mar-
keting staffs of systems vendors. Consultants
should browse it to see how topics are organized
and stressed.

Unbhappily, by the nature of its ambition, and be-
cause of rapidly accelerating rates of changes, the
book already seems incomplete and, in parts, un-
satistying. Every reviewer, of course, will have
his or her own biases, and I am necessarily re-
vealing my own. My purpose is not to diminish
the value of the book, but to suggest it cannot be
the only book that is read in this area, and that
shifts in perspective since its publication leave
certain of its assessments off focus.

The broad coverage necessarily leads to a certain
amount of inconsistency in detail in the way that
various technologies are covered. For example,
in Chapter Three, we have some actual SQL
(structured query language) examples, but we
have no corresponding level of detail for program-
to-program communications, remote procedure
calls, or any of the other key software technolo-
gies. Some technology is treated almost “in pass-
ing,” and it is not clear whether all of the deci-
sions about detail and level seem proper in the
spring of 1994.

One great difficulty of the book is the treatment of
vendor-sponsored architectures like SAA and
NAS. The discussions of these seem very much
influenced by vendor material and vendor con-
sultation, so that they lack some of the profes-

374 BoOKS

sional judgment that the author provides in other
sections. SAA and NAS, like other architectures of
the mid-1980s, seem to some to lack the direct
relevance they once had. The book does not ad-
dress the forces operating on vendor architec-
tures as new technologies and cultures enter the
market. The dramatically increasing role of
X/Open as a certifier of standards, within and
without the UNIX** community, is not at all men-
tioned.

On balance the book is useful. It is honest, com-
petent, and like all books in rapidly changing dis-
ciplines, flawed. Whether some of the conditions
of 1994 might have been foreseen in 1991 is a
judgment for the reader to make.

Implementing the Enterprise, the second volume
by Simon, is a companion to Enterprise Comput-
ing, written with the intention of exploring the
topics of that book in somewhat greater detail.
The subject of both books is the technology for
achieving what some call enterprise computing,
and others cooperative computing or distributed
open computing. All these phrases represent the
notion that the resources of computing can be
arrayed across geographical boundaries and sys-
tem differences to form an apparently coherent
computing resource. This is something many of
us hope is true, but few of us are disciplining our-
selves to achieve.

The author makes two important points in the
preface: there can be no canned philosophy for
achieving enterprise computing and it is neces-
sary to deeply research the literature of ideas and
available products in order to act as one’s own
systems integrator. Both these points are valid
and suggest an intelligent framework within
which to explore the technologies.

The book begins with an overview of enterprise
computing that should relieve the reader of the
need to read the 1992 work. It then follows with
material relevant to communications protocols,
messaging and directory protocols (X.400 and
X.500), network management, object-oriented in-
terfaces, database management, user interface
standards, and client/server. It concludes with a
(very) short chapter on methodology for imple-
menting the enterprise and a model from Com-

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

puter Associates about how computing will look
in the 1990s.

There is much valuable information in this vol-
ume. The author’s style is readable, even charm-
ing at times, and he makes the material accessible
to the professional mind-set. The material is cur-
rent and provides coverage for most of the key
issues now concerning information technology
staffs.

However, the book falls short of its intent to ex-
plore the topics of the earlier book in more detail.
There seems to be some confusion in the author
about the intent of this book, and whether he ex-
pects its readers to be familiar with the 1992
work. In addition, in a book called “Implement-
ing the Enterprise,” where point of view is of key
importance, the tone is often set by those inter-
viewed at various vendors or by the writer of the
literature. Topics are frequently discussed in de-
tail only within the structure of a particular ap-
proach. In some areas, key technologies are not
mentioned.

My clients concerned with implementing the en-
terprise are anxious to know the standards and
emerging technologies; they are also, by way of
“implementing,” anxious for reality tests. They
need guidance as to what is solidly available prod-
uct, which of various competing technologies is
more solid, over what time frames. What are the
pitfalls and the dangers. This is crude and vulgar
stuff, but it is the natural stuff of “implementing”
the enterprise.

It is a daunting task to synthesize the vast jungle
of technologies and assess them in a consistent
and informed manner. But it is surely the task of
a book called “Implementing the Enterprise.” Al-
though this book had much that was of interest,
it cannot be considered entirely successful.

Harold Lorin
The Manticore Consultancy
and Senior Adjunct Professor,
Hofstra University
New York

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of the Institute of Elec-
trical and Electronic Engineers (IEEE), Digital Equipment
Corporation, or X/Open Company Ltd.

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

Centralized and Distributed Operating Systems,
Gary J. Nutt, Prentice-Hall, Inc., Englewood
Cliffs, New Jersey, 1992. 418 pp. (ISBN 0-13-
122326-7).

This book is a sophisticated and elegant presen-
tation of the fundamental technologies of modern
operating systems. It revisits basic principles in
the light of contemporary systems structures and
provides an integrated framework for topics as
diverse as multiprocessor scheduling and the cli-
ent/server model. It is clearly written for the se-
rious student of these topics, containing minimum
hype and a narrative style that assumes a profes-
sionalism on the part of the reader. This reviewer
has adapted it for a graduate course in operating
systems design.

The book begins with a useful review of the view-
points we have about what operating systems are.
It reminds us of our notions of a system as re-
source manager and as the creator of an abstract
machine whose characteristics are more conve-
nient for programmers than the raw hardware ar-
chitecture. Then we are given a fast trip through
history, a characterization of contemporary sys-
tems structures and operating systems, and we
are sent out on our journey over the technologies.
For the most part, the technologies are discussed
with insight and precision in a clean and nicely
flowing narrative style.

The order in which the technologies are discussed
moves outward from a center. Each discussion
contains the accumulated wisdom of our long
experience in operating systems design and,
where appropriate, some new insights. The early
chapters explore basic process concepts, process
scheduling, process synchronization, protection,
and communications.

The discussions are supported by formalized pro-
gramming notations where useful. The algorith-
mic presentations are clean and useful extensions
of the discussions. Beyond small algorithmic sec-
tions, the author uses a wide range of standard
representations to clarify and support his ideas.
Process precedence is shown by Petri net and
Precedence graph representations of process ac-
tivities over time. The formalisms are not at all
heavy, and serve to give quick visual impressions
of ideas that would be difficult to illustrate in only
narrative form. Only rarely, although it does
happen, does the author speak particularly to

Books 375

the logician or computer scientist. But despite
occasional arguments beyond the notational
background of most of us, the book is still useful
for the graduate student and general reader of the
industry with some degree of software experi-
ence.

The book touches on the classical issues, discuss-
ing deadlock fully with a section on the Banker’s
Algorithm, detection, and recovery. It provides
nice formalisms for scheduling and useful discus-
sions of various dispatching and queuing models
for both uniprocessors and multiprocessors.
Memory management is discussed fully with ar-
ticulate exposition of basic mapping mechanisms
and fundamental address abstractions. Multics
mechanisms, which should be included as the
seminal technology in any book in this area, are
explained briefly. I regret that the author chose
not to discuss capability-based addressing more
completely, but this may be a sentimental view,
since it seems to have been so rejected by the
industry. On the other hand, there is a nice rich
discussion of the behavior of various paging al-
gorithms in various contexts and a convincing re-
view of “working set” principles.

Throughout the early chapters, we encounter ma-
terial that is the usual material for an operating
systems book. The order of the material is sen-
sible, and the sophistication of the discussion is
well beyond what we have become used to over
an unfortunate period for operating systems
books. This book seems to break the trend toward
books that are glosses over vendor manuals or
that have large letters, many pictures, and simple
words.

At Chapter 10 we begin to encounter the material
that makes the book an important event in the
culture of software. Networking, client/server,
and distributed computing issues often excluded
from operating systems texts are introduced. The
author provides the basics in Chapter 10, intro-
ducing the lower layer and middle layer proto-
cols, the attributes of Ethernet and Token Ring
LANs, appropriate issues of naming, and naming
conventions.

The end of Chapter 10 undertakes the client/
server model. The author defines client/server
correctly to be an inherently asymmetric model
(no peer-to-peer client/server nonsense here) and
insists, correctly, that the master is the client,

376 BoOKs

providing a nice distinction between client/server
and host-centric systems. Finally, he introduces
Berkeley Sockets as the API (application pro-
gramming interface) for the client/server model.

One wonders, at this point, whether the cleanli-
ness and professionalism of the discussion really
requires such a narrow treatment. It might well be
so. But unhappily, no matter how “hypey” the
environment may be, it is hard to feel absolutely
comfortable with a client/server discussion that
omits a discussion of remote procedure call (RPC)
at this point, only to include it later on in a pot-
pourri chapter on “distributed functionality.”
Yet this criticism is not crucial.

The book includes introductory but useful dis-
cussions of the standard distributed file sys-
tems—AT&T Remote File System**, Sun Net-
work File System**, and the Sprite File System.
Unbhappily, once again, there is an insufficient dis-
cussion of the technology leading to the Distrib-
uted File System** whose view of the duties of a
server are sufficiently different to merit discus-
sion, and whose origin in the Andrew File System
is sufficiently respectable not to offend a careful
academic. Andrew is referred to very cursively in
the text.

Chapter 12 is a general overview of various tech-
nologies in network environments. It is good in so
far as it sensitizes the reader that there are topics
here about which much more should be under-
stood. The chapter contains the literature that will
be useful in achieving this understanding.

The later chapters of the book, under the um-
brella of “case studies,” discuss structural and
architectural features of those operating systems
that have had the greatest intellectual impact:
UNIX** RC4000, THE, RIG (Rochester Intelligent
Gateway), Accent, Mach, and my own favorite,
Carnegie Mellon Hydra, which even today looks
like a design document for NT**. In the network
area, the author has correctly chosen LOCUS**
and Eden, the V kernel as the key operating sys-
tems. I am personally sorry not to see something
about Chorus** and Choices, but one cannot, can
one, have everything. The author concludes with
some discussion of queuing theory and simulation
as methods for understanding operating system
performance. I have never thought that this was
true, since most queuing models do not reflect
actual systems behavior too closely, but it is an

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

elegant academic pretense, and not for me to be
rude.

Each chapter is supported by an extensive list of
additional publications on the topic. It is clear that
few of the seminal books have not been consid-
ered. For a reviewer who was present at much of
the creation, and saw ideas evolve over time, it is
pleasing to see how all this has been seamed to-
gether into a timeless intellectual structure. I like
it enough to have used it in my own class. It is a
quality book, a serious book, an intelligent book.
Some may think it omits some important tech-
nologies, but not all would agree. I am pleased to
have it available to me.

Harold Lorin
The Manticore Consultancy
and Senior Adjunct Professor,
Hofstra University
New York

**Trademark or registered trademark of Sun Microsystems,
Inc., Open Software Foundation, X/Open Co. Ltd., Microsoft
Corporation, Locus Computing Corporation, or Chorus, Inc.

Note—The books reviewed are those the Editor thinks might
be of interest to our readers. The reviews express the opinions
of the reviewers.

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

sooks 377

