Parallelism in relational
database management
systems

In order to provide real-time responses to
complex queries involving large volumes of data,
it has become necessary to exploit parallelism in
query processing. This paper addresses the
issues and solutions relating to intraquery
parallelism in a relational database management
system (DBMS). We provide a broad framework
for the study of the numerous issues that need to
be addressed in supporting paralielism efficiently
and flexibly. The alternatives for a parallel
architecture system are discussed, followed by
the focus on how a query can be parallelized and
how that affects load balancing of the different
tasks created. The final part of the paper
contains information about how the IBM
DATABASE 2™ (DB2") Version 3 product
provides support for /O parallelism to reduce
response time for data-intensive queries.

he widespread adoption of the easy-to-use

products of relational database technology
has led to the expectation that responses to que-
ries should be received faster than before, espe-
cially because the queries may be posed by a user
at a terminal rather than by a batch program, as
in the past. Although high-level ad hoc query lan-
guages like SQL (Structured Query Language) are
used to access the database management system
(DBMS) to generate complex reports, volumes of
data have grown rapidly, resulting in queries be-
coming data-intensive and complex.

Solutions to reduce the complexity of query pro-
cessing and improve the response time of queries
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include moving additional function into the query
languages and exploiting parallelism of both the
hardware and the software processing.

This paper explores two main topics in this envi-
ronment. First, in sections on overall system ar-
chitecture options and parallel algorithms, the use
of parallelism is discussed in the architecture, in
processing queries, and in various relational op-
erators. Second, the implementation of 1/0 paral-
lelism in the IBM DATABASE 2* (DB2*) Version 3
product to reduce response time for data-inten-
sive and 1/0 bound queries is described in the sec-
tion on I/0 parallelism in DB2 Version 3. Readers
of this paper who only want to understand how
DB2 Version 3 exploits parallelism may skip di-
rectly to this section.

Background

Trends in the environment and where some of the
solutions may be found are important to under-
stand as parallelism is exploited.

Volumes of data. Today there are customers who
would like to store more than 100 gigabytes of
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data in a single table and keep the data on line and
readily available.' The amount of data kept in a
single large relational database is expected to be
in the terabyte range in the coming decade, caus-
ing queries to become extremely data-intensive.
Furthermore, there is growing emphasis on sup-
porting newer, nontraditional database applica-
tions, such as Computer-Aided Software Engi-
neering (CASE), geographical information systems
(G18), and multimedia applications, where the vol-
umes of data are enormous compared to those in
traditional business data processing.

Complexity of queries. The complexity of the que-
ries that are being posed is also growing as a result
of competition intensifying in various sectors of
the economy and direct-mail marketing becoming
more and more common. Ad hoc interactions
with the new generation DBMSs are commonly
performed through high-level user interfaces, al-
lowing complex queries to be specified very easily
by users, where the users may not even be aware
of the complexity of their requests. Often, a high-
level interface query results in many complex
DBMS queries, which must have a short response
time due to the interactive nature of the user in-
terface. This increases both the complexity and
the traffic rate of DBMS queries. The same phe-
nomenon occurs in interfaces between high-level
programming languages, such as visual query
generators and visual fourth-generation lan-
guages (4GLs). These programming environments
allow programmers to write applications that ini-
tiate many complex DBMS queries where those
queries become logic-intensive.

Even though the processing power of affordable
parallel computers is expected to be over 1000
million instructions per second (MIPS) shortly, the
combination of massive amounts of data plus
enormous processing power still creates the envi-
ronment for much more complex queries. Hence,
we expect that future DBMSs will have to deal with
applications that are both data-intensive and log-
ic-intensive.

Solution areas. We expect the functionality pro-
vided by such query languages to grow consid-
erably. Today’s relational query languages typi-
cally do not have the functions for statistical
analysis and structural (complex objects, record
structures, etc.) expressibility, which are crucial
for data summation and engineering databases,
respectively. More of the application logic will be
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moved inside the DBMS, both for better perfor-
mance (bringing function to data) and for better
sharing of data among applications (better pro-
tection of data by encapsulation).? Given that ap-
plications tend to be sequential, applying the
complex search predicates (record selection cri-
teria) within the DBMS would allow parallelism to
be exploited in evaluating those predicates also,
thereby potentially reducing the response time
tremendously.

DBMSs will also have to deal with a much larger
set of data types and operations. From the appli-
cation performance viewpoint, this is valuable
since it allows more type-specific operations to be
specified in search predicates, so that massive
amounts of irrelevant data do not have to pass
through the different layers of the DBMS to the
applications. This is particularly significant since
the data rate of the output from DBMSs is typically
much less than the data rate of storage devices
from which data are retrieved. Operations such as
outer join, recursion, and sampling should be han-
dled by DBMSs for the same reason.

Exploiting parallelism. The limitations to the im-
provement of response time via faster processors
and larger memories alone lead us to believe that
in most cases, one can hope to get real-time re-
sponses to data- and logic-intensive queries only
by exploiting parallelism.

Limitations in not using parallelism. The follow-
ing are observations that support our premise:

» Based on the trends of the recent past, it is ex-
pected that the growth in the processing capac-
ity of a uniprocessor or a closely-coupled mul-
tiprocessor is not going to be sufficient to
provide real-time responses to certain types of
complex queries using such systems. At least
today, it appears that the dollars per MIPS
($/MIPS) cost of the very powerful machines is
much higher than the $/MiPS cost of smaller, mi-
croprocessor-based machines.

* Even though the price of main memory keeps
declining rapidly and the sizes of the memories
that are attachable to a single processor keep
growing, the volume of data to be handled
keeps growing also. Further, with some archi-
tectures, there are limits on the amount of main
memory that may be attached to a single ma-
chine (e.g., 2 gigabytes of real memory due to
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the 31-bit real memory addressing used on the
IBM System/370%).

* As the processors become more and more pow-
erful (even in the smaller microprocessor-based
machines), the gap between the CPU processing
speed and the 10 capacity of a single device
becomes wider and wider. This is at present
necessitating the use of techniques like disk
striping® (spreading a single file across multiple
disks) and disk arrays* to improve the /0 band-
width. For a long time, systems like the IBM
Transaction Processing Facility (TPF)’ used
disk striping in software to improve intertrans-
action parallelism. But now, striping is needed
to support intratransaction and query parallel-
ism as well. Disk striping, if done in software,
already demands parallelism at least at the 1/0
level to access the multiple disk in parallel.

Support for the use of parallelism. The problems
that the query optimization and the query execu-
tion logic must handle are expanding because the
nature of the queries that DBMSs must handle is
expanding. Exploiting parallelism will provide so-
lutions that will overcome the limitations previ-
ously mentioned. This may come as a surprise to
some people who might be led to think that the
way to address the response time requirement is
to stay with the simpler strategy of no intraquery
parallelism, faster processors, and larger and
larger amounts of memory. But in order to gain
price-performance advantages and response time
improvements, the trend is toward building a sys-
tem consisting of many machines and exploiting
intraquery parallelism.

Overall system architecture options

In building a parallel system, many objects exist
with respect to how different components are in-
terconnected. In this section we discuss some of
the system architecture possibilities.

Shared data, nothing, or everything. One ap-
proach to improving the capacity and availability
characteristics of a single-system DBMS is to use
multiple systems. There are three major architec-
tures in use in the multisystem environment as
shown in Figure 1:® (1) shared disks or data shar-
ing, " (2) shared nothing or partitioned data, *'*
and (3) shared everything.

With shared disks (SD) all the disks containing the
databases are shared among the different systems
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and each system has its own buffer pool (see Fig-
ure 1A). Every system that has an instance of the
DBMS executing on it may access and modify any
portion of the database on the shared disks. Since
each instance has its own buffer pool and because
conflicting accesses to the same data may be
made from different systems, the interactions
among the systems must be controlled via various
synchronization protocols. This necessitates
global locking and protocols for the maintenance
of buffer coherency. SD is the approach used
in the 1BM 1MS/vs ™' (Information Management
System/Virtual Storage), TPF,” and DB2,*'"" in
the Digital Equipment Corp. RDB/VMS**,!! and in
the Oracle Corp. Oracle** Parallel Server. These
systems are using the SD architecture for inter-
transaction parallelism rather than intra-transac-
tion parallelism.

With shared nothing (SN), each system owns a
portion of the database and only that portion may
be directly read or modified by that system (see
Figure 1B). That is, the database is partitioned
among the multiple systems. The kind of synchro-
nization protocols mentioned before for SD are
not needed for SN. But a transaction accessing
data in multiple systems would need a form of
two-phase commit protocol (e.g., the Presumed
Abort protocol'®?) to coordinate its activities.
This is the approach taken in the Tandem Non-
Stop SQL**,??! the Teradata Corp. DBC/1012**,%
the Microelectronics and Computer Technology
Corp. (MCC) Bubba,”??® the 1BM Almaden Re-
search ARBRE project,” and the University of
Wisconsin Gamma. >

In the shared everything (SE) approach, memory,
in addition to disks, is also shared across the pro-
cessors (see Figure 1C). The University of Cali-
fornia at Berkeley XPRS system has adopted this
approach.?? It has been pointed out® that SE has
scalability problems. But it is attractive within a
node of an SD or SN system. It helps reduce the
number of nodes, making system management
and load balancing easier. DB2,* for example, is
able to very nicely exploit an SE machine like an
IBM ES/9000* Model 900 in the 9021 family, which
has six processors. Further, this architecture pro-
vides an effective basis for the implementation of
DB2 parallelism, as discussed in the section on I/O
parallelism in DB2.

Arguments in favor of SD are given® in the con-
text of complex objects and parallelism. For com-
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Figure 1 Architectural alternatives
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32,33 actions are executed in the environment of a
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transaction monitor. The monitors provide sup-
port for terminal interactions, message queue
management, logging, program libraries, etc.*
They are in essence an extension of the base op-
erating system.

Supporting the transaction monitor and the envi-
ronment that it needs is essential even in a parallel
architecture system. Any existing large applica-
tion base that relies on such an environment must
be accounted for. Resources (CPU, 1O, commu-
nication) used in the non-DBMS part of transac-
tions (i.e., in transaction monitors and applica-
tions) are very significant. Hence, it is important
to provide a parallel environment for both appli-
cations and transaction monitors. The Tandem
NonStop SQL provides such an environment. This
is the so-called peer-peer configuration.

If the adopted approach is one in which the mon-
itor would run on one or more front-end machines
(machines running the application code) and the
actual data management would be done in a back-
end (database) machine (the so-called front-end—
back-end configuration) where parallelism would
be exploited using machines of a different nature
from the front-end machines, then two issues
must be addressed. First, the cost of the interac-
tions between the front end and the back end must
be considered when evaluating the performance
implications of this approach on the transaction
workload. This division of labor between the
front end and the back end is bound to increase
the overall path length of a transaction. This in-
crease will be felt especially in the case of the
short transactions of the transaction workload.
One way to address this problem is to support the
notion of stored procedures and make the front-
end issue a single call to the back end to execute
a sequence of SQL statements.

The second issue with the front-end-back-end
configuration is related to pushing more applica-
tion functions down into the lower layers of the
DBMS, either in the form of operations on abstract
data types, function libraries (for scientific rou-
tines, statistical routines, etc.), methods on ob-
jects stored in the database (as in the object-ori-
ented DBMSs), or rules (as in rule-based systems).
This trend essentially fosters a more uniform run-
time environment for applications and DBMSs,
thereby allowing functions to move from appli-
cations into DBMS more easily. As a result, it may
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not be a good idea to have a very special-purpose
operating system in the back end.

Interconnection technologies and requirements.
The technology used for interconnecting the pro-
cessors and the storage devices plays a crucial
role in determining the communication band-
width that can be sustained between the proces-
sors themselves, and between the processors and
the storage devices. While fiber-optic®’ switches
can sustain high bandwidths and cover more dis-
tances compared to copper interconnects, the
costs of fiber-optic interface and switching de-
vices are still rather high.

In the case of the SD approach, the storage de-
vices must be attached through a switch since any
processor must be capable of accessing any of the
devices. This means that the switch should sup-
port high bandwidth communication. The proces-
sor-to-processor communications will be less in
this environment, if parallelism for a given trans-
action is going to be handled within a system by
utilizing a multiprocessor like the six-way IBM
ES/9000 Model 900 (in the 9021 family). Most of the
processor-to-processor communication is likely
to be messages relating to global locking and .
buffer coherency protocols. '

With SN, the devices may be locally attached to
the owning processors, perhaps using less expen-
sive technologies. In this case, the processor-to-
processor communications can be significant if a
given complex query is accessing data owned by
multiple systems, and the extracted data must be
sent to other processors to perform operations
such as join. The Teradata database machine uses
a specially designed interconnection network
called the Ynet, which can connect up to 1024
microprocessors.? To provide fault tolerance,
the system actually includes two completely in-
dependent Ynet structures. When both Ynets are
operational, message traffic is equally divided be-
tween the two. The Ynet is also able to sort the
data as they flow through it.

Short transactions and complex queries. It is very
important that the system architecture chosen
can accommodate complex queries as well as
short transactions against the same data. That is,
it should be possible to pose ad hoc queries
against the same data on which the “bread and
butter” applications of the customers [the appli-
cations that financially support the business] are
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also performing on-line, short transactions that
may be updating as well as reading the data. The
former is called the query workload and the latter
is called the transaction workload. In modern ap-
plications, the transaction workload transfers
most of the new data from the real world into
databases. Hence, it is the producer of the data
from the database viewpoint. Examples are trans-
actions originating from automated teller ma-
chines (ATMs), point-of-sale transactions, and
stock exchange transactions. Complex queries
are usually consumers of data. Sharing between
producers and consumers of data is a fundamental
phenomenon. Good performance for the transac-
tion workload must be guaranteed since those
transactions have more stringent response time
constraints.

Traditionally, users have been forced to deal with
this problem of handling the transaction and
query workloads properly by maintaining two dif-
ferent databases on two different systems. One of
the databases is the one most up-to-date and it is
against that one that the transaction workload is
run. The other database is an extracted version of
the first one and it is on this extracted database
that the complex queries are executed. Not all
users are happy with this solution. In addition to
the problems of having to maintain two different
systems, the disk storage requirements are dou-
bled for the data that are replicated.® Addition-
ally, there is the expensive extraction process
that needs to be performed periodically and that
only gives out-of-date data to the ad hoc query
users. Some of the advantages of this two-data-
base strategy are: (1) the two types of workloads
are on different machines and hence could hope-
fully be more easily managed, and (2) since the
second database is a read-only one, different ac-
cess paths and buffer management policies (or
even a different DBMS) may be defined for it to
improve the performance of complex queries.
Some of these users with dual databases may
have an IMS system that is running the older trans-
action workload and from which they are unable
to migrate away quickly, due to performance and
application rewrite cost. They may extract data
from such a system and put it into a DB2 or Tera-
data system for the benefit of their newer decision
support applications.

When both sets of workloads are brought into the
same system, great care must be exercised to en-
sure that the exploitation of parallelism by the
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complex queries does not consume too much re-
source (CPU, I/0, and memory) at the expense of
the short transactions. This requires that the sys-
tem, at the least, support a priority concept for
treating different users or database requests dif-
ferently. Some server-based systems do not have
such a concept, which leads to very unpredictable
response times and wide variances. DB2 Version
3 has added a capability to control the amount of
resources used by parallel queries. We discuss
this in the section on 1/0 parallelism in DB2 Ver-
sion 3. A resource governor would also be essen-
tial to control “runaway” queries. DB2 Version 2,
Release 1 for example, introduced such a gover-
nor for controlling the resource consumption of
dynamic SQL queries.

There is also a concurrency versus locking over-
head dilemma with respect to mixing these work-
loads with very different characteristics. In order
to maximize concurrency for the transaction
workload, the developers of the application
would be highly tempted to choose fine-granular-
ity (e.g., record) locking.* But this will make the
query workload incur significant locking over-
head since queries in general access large num-
bers of records. Apart from the overhead con-
cern, the major problem may be that the locks
held by the complex queries will delay the trans-
action workload from performing updates. Typi-
cally, this problem is dealt with by executing the
complex queries with the isolation level of cursor
stability. That is, the read locks are given up as
soon as the cursor moves from one record to the
next. Even though many DBMSs (like DB2, DB2/2* !
and NonStop SQL) support cursor stability, the
research literature has concentrated only on re-
peatable read. More implications of cursor sta-
bility on data accesses have been discussed in
References 40-42.

The locking path length overhead problem is nor-
mally addressed using different solutions, with
each one compromising on some functionality or
the other. Two of the solutions are: unlocked
reads and transient versioning.

Unlocked reads. With unlocked reads, the que-
ries are run without locking and use latches®* to
assure physical consistency of the pages being
read. IMS supports this type of access via what is
called Go processing. Relational systems like the
Tandem NonStop SQL, and the IBM Application
System/400* (AS/400*) and DB2/2 also support such
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accesses. This solution avoids not only the lock-
ing overhead but also the undesirable lock con-
flicts between the two types of workloads. This
approach has the disadvantage that uncommitted
data may be exposed to the transactions that are
not obtaining locks. In particular, integrity con-
straint violations may be noticed by the unlocked
readers. For statistical queries (e.g., market anal-
ysis queries), this exposure usually causes little or
no problem. But there is a concern regarding
queries dealing with structured (e.g., computer-
aided design/computer-aided manufacturing, or
CAD/CAM) objects, where inconsistent data close
to the root of the object may result in retrieving
a very different, and possibly invalid set of objects
close to the leaves (as in a tree structure). In fact,
this problem, to a lesser degree, also occurs with
cursor stability. Retrieval of the children (as in a
parent-child relationship for the set of objects) at
two different times during the course of a query
may result in two different sets since the read data
are locked only briefly and the data might have
been updated in between the two retrievals.

Transient versioning. In the transient versioning
approach, for data that are being modified, one or
more older versions of the data may be main-
tained.* With this support, the query workload
would be able to read without locking. Just for
data that are being modified, a slightly older but
committed version of that data will be exposed to
such transactions. The advantage is that the da-
tabase that is being exposed will be internally con-
sistent. Concerns may be that not all the exposed
data are up to date and that there is a slight in-
crease in storage consumption and complexity to
keep multiple copies of some of the data. But the
major problem may be that typically in such
schemes the transactions that are not locking are
not allowed to do any updates and such transac-
tions must declare themselves to be read-only.

In References 44 and 45, a technique called
Commit_LSN is presented for eliminating, most of
the time, the need for locking when cursor sta-
bility accesses are made. This technique takes
advantage of some information (e.g., the log se-
quence number™®) that is tracked, for recovery
purposes, on every page to conclude (without
locking) that all the data in a page are in the com-
mitted state. It helps in reducing the locking over-
head for update transactions also, when record
locking is in effect. Concurrency is also improved
in conjunction with index concurrency control
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methods like ARIES/IM. “ Many applications of the
Commit_LSN technique are described in detail
in Reference 45. Commit_LSN has been imple-
mented in DB2 Version 3.

I/O versus CPU parallelism. Query processing in
a parallel environment requires four major re-
source types: CPU, 1/0, memory, and communi-
cation. Some form of parallelism is needed for

Different degrees of
parallelism are needed
for different types.

large-scale use of any of these resources. Disk
arrays* provide large amounts of storage as well
as many read/write arms for higher bandwidth.
(They may also improve availability by striping
different bits of a byte on different devices and by
storing some parity bits in a similar fashion.) Main
memory subsystems with many ports and many
memory modules provide similar features. Like-
wise, communication systems with switches at
different levels and many ports provide high
bandwidth. The degree of parallelism needed in
each resource type (e.g., CPU) depends on the
load on that resource type and the speed of a
component of that resource type. As a result, dif-
ferent degrees of parallelism are needed for dif-
ferent resource types. Next, we discuss the rela-
tionship between parallelism of two major
resource types in DBMSs: CPU and 1/O.

Our objective is: Minimize the response time (up
to a threshold), where the constraint is the
amount of given resources. Threshold is defined
as that response time below which minimization
is not significant. In other words, we want to max-
imize use of the given limited resources to mini-
mize the response time up to a threshold.* Dif-
ferent degrees of parallelism may satisfy this
objective. Suppose we can fully utilize the CPU
resource with 100 tasks or with 1000 tasks. One
question is what the degree of parallelism should
be. We argue that it is important to find the min-
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imal degree of parallelism, while satisfying our
objective. The higher the degree of parallelism,
the harder the load balancing would be. By in-
creasing the number of tasks across which work
is being distributed, we are decreasing the num-
ber of records that each task handles. In other
words, we have fragmented the processing and
made it less set oriented, hence potentially com-
promising one of the major benefits that the re-
lational model provides us. As a result, the
processing may become less efficient. For exam-
ple, we may lose the efficiency of sequential
prefetch*’ because each task does not access
enough pages to take full advantage of sequential
prefetch in terms of amortizing the cost of an 1/0
call across a large number of pages.

Inefficiency can also arise in accessing data
through nonclustered indices. In sequential pro-
cessing, we extract the RIDs (or record identifiers)
of qualified records from the index, sort the RIDs
by page identification, and then perform the 10.%
Hence, each relevant data page is retrieved only
once. If many tasks do this in parallel, often the
same page may be retrieved many times, because,
for a given page, more than one task may be in-
terested in different records in it. Each task has a
certain fixed cost associated with operations such
as opening and closing scans, and sort initializa-
tion (e.g., initialization of the tournament trees
when tournament sorts are used). This cost is
multiplied by the degree of task parallelism. In
addition to the wastage of CPU cycles, other re-
sources like memory and channel capacity may
also be wasted. Contention for disk arms and
channels may also be increased.

The relationship between CPU and 10 parallelism
raises a concern that often there is a significant
mismatch between the degree of parallelism
needed for CPU and that needed for the 1/0 sub-
system. One reason for this is that the speed of /0
devices has not increased over time as fast as that
of CPUs. To study the relationship between 1/0 and
CPU parallelism, consider the problem of access-
ing the base tables directly or through indices. If
all the data fit in main memory, then each task is
CPU bound, and we need only one task per CPU.
Hence, the degree of parallelism is the number of
available CPUs. If data are on disks, the tasks can
be 170 bound if one disk arm at a time is used. This
causes a significant mismatch between the de-
grees of parallelism needed for CPU and 1/0. The
reason is that the speeds of the available disks are
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too low compared to the power of the currently
available cpUs. Therefore, we need to have nu-
merous disk arms, as in disk arrays, to keep up
with each cpuU.

Let us discuss an example. We assume that the
processing capacity of each CPU is 30 MIPS. Con-
sider two types of disks: (1) Slower disks with
3MBPS (megabytes per second) bandwidth, and 20
ms (millisecond) average seek plus search (i.e.,
rotational latency) time, and (2) Faster disks with
higher bandwidth and moderately lower seek plus
search time. Let us assume that these disks are an
order of magnitude better in bandwidth (30MBPS)
and half the order of magnitude better in average
seek plus search time (7 ms).

Consider two types of queries: (1) Type 1 that are
complex queries with numerous sequential table
scans, and (2) Type 2 that are complex queries
with numerous RID list data accesses, as previ-
ously explained (mostly doing random 1/0).

The second type of query is chosen when the ta-
ble is very big and the predicates are very selec-
tive. Hence, we may be heavily using even non-
clustered indices (one index, or several, with
index ANDing or ORing*). The queries of the first
type mainly do sequential /0. Hence, for each 1/0,
the seck/search cost is incurred once for a set of
pages (e.g., 64 pages) and the limiting factor is
mostly the data transfer bandwidth of the disk.
The second type of queries mainly do random 1/0,
hence the seck/search time delay is usually in-
curred for every page. In this second case, the
seek/search time is the limiting factor.

As the 1/0 speed increases, we need less parallel-
ism in the 1/0 subsystem. There are two interest-
ing cases: Case 1 is where the degrees of paral-
lelism for CPU and 1/0 are close to each other, and
Case 2 is where the degree of parallelism for 1/0 is
much more than that for CPU (more than an order
of magnitude for the Type 2 complex queries pre-
viously explained).

In Case 1, the system is not significantly CPU or
1/0 bound. Each task spends roughly equal time
using CPU or /O resources. Suppose each task
does asynchronous disk page prefetch, where the
task starts the 1O for the next set of pages at the
time it starts working on the current set of pages.
Under these conditions, each task becomes CPU
bound, and it is sufficient to have as many tasks
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as CPUs. 1/0 parallelism follows from (happens as
a result of) CPU parallelism, and no special mech-
anism is needed for 1/0 parallelism.

For Case 2, we have two possibilities:

1. Use the same approach as in Case 1, where /O
parallelism follows from CPU parallelism. In
this case, each task is now mostly /0 bound
(even with 1/0 overlap). We need to increase
the degree of CPU parallelism to that of 1/0,
hence allowing better utilization of resources,
such as the cpu. The problem with this ap-
proach is that it artificially increases the CPU
parallelism significantly (an order of magni-
tude in the previous Type 2 example). This
may not be acceptable because as we argued
before, we want to decrease the degree of par-
allelism in CPU as much as possible for better
load balancing and reduction of overheads.

2. Decouple parallelism of CPU and /O sub-
systems. Allow 1/0 to have more parallelism
than cpu. This is the desired approach. An
example of such an approach is the use of disk
arrays where different blocks of data are scat-
tered on different disks. Note that we mostly
need this for random 1/0, allowing different
disk arms to work on different blocks of data.
As explained before (and in References 40 and
48), a CPU task accesses the index and forms a
list of pages to be retrieved. This list can be
given to the /O subsystem (via a START §/O in-
struction). Suppose these pages are stored in a
disk array. The control unit of the disk array is
responsible to initiate /O (tasks) on different
disk devices in parallel to retrieve the pages.

So far, we have discussed the three main archi-
tectures for parallelism: shared everything,
shared disks, and shared nothing. Further, we
showed that in addition to CPU, parallel use of 1/0
resources is important. In the following section,
we concentrate on how to parallelize queries. As
we will see, parallelization of queries and load
balancing typically become harder as we move
from the shared everything to shared disks to
shared nothing architecture.

Parallel algorithms

In this section, we discuss the ways of parallel-
izing a query, load balancing issues, what impact
parallelization has on different components of a
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relational DBMS, and how parallelism is enhanced
with some relational operators.

Targets of parallelization. There are two ways of
parallelizing complex queries: Program parallel-
ism where the execution of multiple operations of
a given program occurs in parallel, and data par-
allelism where the execution of a single operation
occurs by operating on its input data (possibly,
different pieces) in parallel.

Program parallelism (PP) and data parallelism (DP)
are possible in all the three architectures, SD, SN
and SE, defined earlier, and can be mixed. DP is
the key to supporting a high degree of parallelism,
whereas the degree of parallelism obtainable by
PP is often much less than that of DP.

Program parallelism. Let us consider an example
that involves joining the four tables T0, T1, T2,
and T3. A possible execution strategy is one in
which the join of T0 and T1 is performed in par-
allel with the join of T2 and T3. We call this style
of execution independent task execution. An-
other possible execution strategy is one in which
the join of TO and T1 is performed by task S1,
which then sends the result records incrementally
to task S2 to perform the join with T2. S2 then
sends its result records incrementally to S3 to do
the join with T3. We say that this style of execu-
tion makes use of asynchronous pipelines. The
reasoning behind the name has to do with the fact
that the records are piped between tasks. But,
unlike the synchronous pipelining used in sequen-
tial plans (e.g., as in System R*), here different
stages of the pipeline are not executed in a lock-
step fashion.

The queue between the producer and consumer
tasks is called a table queue since its contents are
records in (composite) tables. Obviously, some
sort of flow control is needed between the pro-
ducer(s) and consumer(s) of a table queue in order
to reduce the overflow of the queue to disk, if the
queue gets too large due to a slow consumer. This
kind of asynchronous pipelining is also proposed
in References 50 and 51, and is also useful in dis-
tributed DBMSs. It was also used in the R* proto-
type.*? In the latter, the communication network
protocols provided the pacing between the pro-
ducer and the consumer.

An execution plan is a partially ordered set of
operators.> Examples of operators are index or
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data access and predicate evaluators, sort, join,
aggregation, etc. The number of operators de-
pends on the complexity of queries. Obviously,
the degree of parallelism obtainable by PP is lim-
ited by the number of operators used in a query.
In fact, the actual degree of parallelism attainable
is usually much less than this upper bound due to
the dependencies between operators. For exam-
ple, the merge join of T1 and T2 cannot start until
the access and sort of T1 and T2 are completed.
In most of the cases, PP is not sufficient to provide
a degree of parallelism in the 100s or 1000s. How-
ever, PP is more useful in conjunction with DP,
which is discussed more later. The cost of inter-
task communication between operators in two
different tasks is considerably higher than that
between operators within the same task and, in
fact, in systems like DB2, the records are not cop-
ied (in most of the cases) when they go through
synchronous pipelines between operators. This
cost is particularly high if tasks are in different
processors that are not sharing memory. Analysis
of queries in the context of a model based on
projected path lengths of Mvs (the IBM Multiple
Virtual Storage operating system) and DB2 shows
that the path length more than doubles if all syn-
chronous pipelines are replaced by asynchronous
pipelines.”' The extra path lengths are mostly due
to the costs of forming records, inserting them
into and retrieving them from table queues.

Data parallelism. DP is the key to supporting a
high degree of parallelism. Currently, a table may
be divided up into a number of partitions (one
such system, DB2, allows up to 64 partitions, for
example). This is true even in a system that does
not employ parallelism within a query (beyond
doing sequential prefetching of data using system
tasks in anticipation of future requests from the
user’s query processing task*’). Each partition
may be stored on a different device (possibly of a
different type) and reorganized independently.
DB2 partitioning is based on nonoverlapping key
ranges, as specified by the creator of the table. In
contrast, systems like TPF, Bubba, DBC/1012,* and
Grace® use hashing to assign records to different
partitions.

A hybrid approach is one that combines DP and
PP. The extreme case of the hybrid approach is the
one where we associate one task with each op-
erator for each data partition. That is, we employ
full DP and full PP and name this approach parallel
asynchronous pipelines. This approach is unde-
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sirable from the viewpoint of the tremendous in-
crease in path length that it would cause. Hence,
if DP provides the desired parallelism, then use
synchronous pipeline as much as possible for
each partition and run different partitions in par-
allel. This scheme is named the parallel synchro-
nous pipeline approach.

Pipelining helps reduce peaks in data communi-
cations and disk 1/0. If pipelining is not used, in an
SN architecture, the data from the producer are
transferred across the network and put on the disk
at the consumer’s system. This may cause a peak
in communication if the producer does not have
much work to do (e.g., it is reading the local work
files and distributing them across the network).
But, if the data are piped to the consumer, then
usually it is the consumer who is the bottleneck
due to the processing (e.g., join) that needs to be
performed on the incoming data, and also may be
due to the lower priority assigned to it. As a re-
sult, the data transfer is spread over a longer pe-
riod of time, thereby reducing the peak in the
communication traffic. An asynchronous ap-
proach and a synchronous approach are pre-
sented in Reference 55 for controlling and man-

aging query pipelines.

Load-balancing issues. As discussed in the previ-
ous section on parallelism, the key elements of
parallelism are data and computation partition-
ing. Different methods of data partitioning (e.g.,
key range partitioning) and computation parti-
tioning (e.g., program and data parallelism) were
mentioned before. Computation partitioning
must be done such that the load is spread as
evenly as possible among the different tasks and
different physical resources involved in the com-
putation. Two kinds of load balancing are impor-
tant: (1) physical resource level (e.g., load bal-
ancing of CPU nodes across many simultaneous
applications), and (2) logical resource level (e.g.,
load balancing of different tasks accessing a table
in parallel). Other discussions on load balancing
can be found in Reference 56.

Physical load balancing. In this paper, we discuss
only physical load balancing involving CPU nodes,
not the load balancing of 1/0 and communication
resources. In the partitioned architecture (SN),
the data from a disk must be retrieved through the
CPU node where the disk is attached. This node
controls 1/0 and locking, applies the local predi-
cates, extracts the qualified records, and sends
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them to the next stage of computation, which may
be in another node. A node may become over-
loaded if there is too much demand for the data
under its control. To reduce the load on this node,
we might consider the following alternatives:

1. Off-loading predicate evaluation and record
extraction. This requires sending raw pages to
the destination nodes. Locking is essentially at
the page level because the source node cannot
distinguish between qualified and unqualified
records. Another alternative is for the desti-
nation node to do the locking, but this requires
a global locking mechanism, as in the SD ar-
chitecture. In a partitioned architecture (SN),
usually all the locking is done locally. The
effective communication bandwidth required
may also increase considerably because the
records are not filtered at the source. With
this, the SN architecture comes closer to the SD
architecture, where raw pages are shared
among the nodes. But unlike in SD, no buffer
coherency protocols are needed.

2. Data redistribution. We can redistribute the
data to avoid the overloading of the node. This
is possible if different pages, or different rec-
ords within pages are demanded from the dif-
ferent nodes. Also, it requires a priori knowl-
edge of the data usage pattern. Further, the
usage pattern must not change too often (e.g.,
between day and night times). Note that the SD
architecture can handle such pattern changes
very well.

3. Orthogonal data distribution. In this approach,
the correlation between distribution of data
placement and data usage is minimized. An
example of this is random data placement.
This approach is the best for avoiding skews,
however, it does not allow the clustering of
data to minimize /0 and locking costs. This is
a drawback particularly for handling of com-
plex objects. Also, the overhead may be too
much for small queries. (For example, if a re-
quest results in 15 records, then it probably
will involve at least 15 tasks on 15 nodes in the
SN architecture.)

It is possible that the same set of records is de-
manded from different nodes. If the data are only
read most of the time, then data replication can
reduce contention. Otherwise, the data must be
granularized more through schema changes, or
new lock modes (such as increment/decrement
locks) must be introduced to reduce contention.
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Also, the Commit_LSN technique** may be used
q y

to reduce contention and to avoid a significant
amount of locking overhead.

Logical load balancing. With data parallelism,
each operator is assigned a portion of the work.
One way of partitioning the work is to assign a
task to each physical data partition. For example,
in Figure 2 the Sales Table is partitioned into data
for sales in January, February, etc. Since the vol-
ume of sales records is higher during the months

Physical and logical
resource level load
balancing are important.

of October, November, and December, more par-
titions are assigned to these months. The query
for computing average sales for each kind of item
sold per month can easily be computed by run-
ning one task per partition to aggregate the data
of each partition and consolidate the aggregates at
the end. This load is balanced across different
tasks assuming uniform sizes for the partitions.
We call this physical partitioning.

Now consider another example where the query
is for computing the monthly average for the sum-
mer goods. For this, the load of the query will be
higher for the physical partitions associated with
the summer months. Therefore we need to run
more tasks for the summer partitions and fewer
tasks for the winter partitions to balance the load
of tasks. As shown in Figure 2, suppose we need
to run four tasks for the month of June. To
achieve this, we may logically partition this phys-
ical partition into four logical partitions, each con-
taining roughly one week of data and running a
task for each logical partition. Likewise, consider
another example where the query is for comput-
ing the monthly average for the winter goods. For
this, the load of the query will be higher for the
physical partitions associated with the winter
months. Therefore we need to run more tasks for
the winter partitions and fewer tasks for the sum-
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Figure 2 Example of logical partitioning

DATA STORAGE PARTITIONING QUERY-BASED PARTITIONING
(OR HOW WORK IS APPORTIONED)

SALES TABLE MONTHLY AVERAGE MONTHLY AVERAGE MONTHLY AVERAGE
SUMMER GOODS WINTER GOODS

JANUARY

FEBRUARY

MARCH

APRIL

MAY

JUNE

JuLy

AUGUST

SEPTEMBER

OCTOBER

NOVEMBER

DECEMBER

BASED ON VOLUME OF SALES:
MULTIPLE PARTITIONS
ARE NEEDED FOR EACH MONTH

THE LOAD ON THE QUERY
IS HIGHER IN THESE MONTHS
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mer partitions to balance the load of tasks. This
example shows that physical partitioning is not
sufficient to achieve load balancing. Physical par-
titioning of data helps load balancing, but load
balancing must be done for each query. In an ex-
treme case, the query might be only for the month
of September, which has only one partition. For
this, logical partitioning is a must to achieve par-
allelism.

Although the above example might apply to the
Access and the Group By types of operators, load
balancing must be done for all the operators, such
as join and sort. References 57 and 58 address the
load balancing issues for the sort operator.

Impact of parallelism on DBMS components. In
this section we give an overview of different com-
ponents of a typical DBMS, then explain the fea-
tures of these components that are important for
parallelism. For ease of exposition, we present
this in terms of enhancements needed to paral-
lelize a sequential DBMS.

We call the upper part of the system that deals
with query optimization and plan generation the
relational data system (RDS). The lower part of the
system that deals with buffer management—con-
currency control, recovery, record management,
and space management—is called the data man-
ager (DM). We discuss the enhancements that
need to be done at the RDS and DM levels. These
levels correspond to the System R RDS and Re-
search Storage System (RSS) levels.™

Enhancements to the SOL language are necessary
to make more parallelism possible within the
DBMS. Although the 1992 (sQL2 SQL) standard al-
lows an insert statement to provide multiple rec-
ords, most implementations of SQL allow the ap-
plication to provide only one record at a time to
the DBMS for insertion. As a result, there is little
chance for parallelism for such insert opera-
tions.® The same is true for the SOL statements
update or delete where current of cursor. Only
one record at a time can be updated or deleted in
this case. We must allow the application to spec-
ify update or delete for a set of records in one SQL
command.® Enhancements to the application
program interface are also required to interface to
DBMS applications that have many parallel pieces.

The optimizer may be designed to deal with the
questions relating to the degree of parallelism and
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the assignment of work to the different tasks
solely at the time of query compilation. This
would be what we call compile-time or static op-
timization. Another possible approach is where,
in addition to doing the compile-time determina-
tion of the number of tasks, enough intelligence is
built into the run-time support and the plans them-
selves to dynamically adapt the execution plan.
This would be based on information about the
loads on the different processors, characteristics
(size, data distribution, etc.) of the intermediate
results, the availability of memory, etc. Typi-
cally, this dynamic optimization is more difficult
to accomplish than the static optimization ap-
proach.

Complexity of optimization is already a major
problem in relational DBMSs, and parallelism
makes this problem even bigger. One question is
whether there is a compromise approach to op-
timization that does not increase complexity too
much. One idea is a two-phase static optimizer. In
the first phase, it optimizes the query, ignoring
parallelism (i.e., acts as if the query will be run in
a sequential DBMS). In the second phase, it takes
the query plan chosen in the first phase and op-
timizes it further for parallelism. This is the ap-
proach chosen in XPRS,? mentioned earlier, and
DB2 Version 3 (discussed in a later section). This
approach is particularly attractive if we want to
parallelize an existing DBMS. The two-phase op-
timization approach also reduces the search
space of optimization, hence reducing optimiza-
tion time.

Obviously, there will be situations for which this
approach does not produce an optimal plan due to
the fragmentation of optimization. Let us con-
sider an example. Suppose the first phase chooses
plan alternative P1 and rejects plan alternative P2.
If P2 is much more expensive than P1, then usu-
ally we are not interested in the parallelized ver-
sion of P2 either. The reason is that it wastes a
significant amount of resource and such wastage
is not acceptable in a multiuser environment. Fur-
thermore, there is a good chance that its response
time will be worse than that of P1. If the resource
consumption of P1 is not very different and the
parallelized version of P2 is better than the par-
allelized version of P1 then this original choice of
P1 over P2 was a bad choice.

Let us assume that in the previous example P1
uses the nested loop and P2 uses the sort-merge
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join methods; suppose the sequential optimizer
chooses P1 since it has a lower cost, but not by a
wide margin. In the SN architecture, there is a
major difference in performance of nested loop
versus sort merge. This problem arises when the
corresponding partitions of the outer and inner
tables are not co-located. Then, for each record of
the outer, we have to visit other nodes to get the
matching inner records. If the system has N

Parallelism is enhanced
in some of the key
relational operations.

nodes and each node accesses the records of the
outer, we need N tasks for this. Each of these
tasks has to execute N-1 tasks in N-1 other nodes
to get the matching inner records. Therefore, the
number of tasks is in the order of N?, and the
computation is fragmented in the order of N?.
The sort-merge alternative (P2) can run this query
with N tasks for the outer, N tasks for the inner,
and N tasks for the join. Therefore, it is in the
order of N. N? number of tasks is not acceptabile,
particularly when N is large (for N = 40, number
of tasks is more than 1000). Also, the efficiency of
computation may be drastically reduced when it
is fragmented N times. Therefore, the sort-merge
alternative (P2) is preferable, and the two-phase op-
timization will miss this better alternative. Such sit-
uations typically arise in the SN architecture.

As argued above, the parallel optimization of a
query depends on how much resource is avail-
able. This is usually known at run time. However,
one source of complexity of dynamic optimiza-
tion is the need for the modification of the plan at
run time, particularly during the execution of the
plan. One way to avoid this is for the static op-
timizer to optimize the query based on the max-
imum amount of available resources. Then, at run
time, the degree of parallelism of each part of the
plan can be changed based on the actual amount
of available resource. This usually does not re-
quire complex plan changes at run time. This is
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the approach chosen for DB2 Version 3, as we will
see later.

Another change that would be desirable to the
RDS component is the consideration of bushy
joins (i.e., composite inner tables) in addition to
the System R approach of considering only non-
composite inners. Otherwise, we would be re-
stricted to pipelining as the only means of getting
program parallelism among the join operations.
Join pipelining is feasible only if no sort needs to
be performed on the result of one join before the
next join can be performed.

The run-time component of a parallel DBMS must
support starting and stopping of tasks, monitoring
their progress, and communicating run-time er-
rors. A paper on Gamma?® discusses such sup-
port. In a multiuser environment, only a portion
of the resources is allocated to a given query.
Parallel queries have the potential of using the
entire system resources, such as CPU, 1/0, etc.
Therefore, there is a need for a run-time mecha-
nism to limit resource usage rate of queries to the
assigned values. This usually requires cooperation
with the (operating) system resource manager.

Enhancements may be necessary at the DM level
for the handling of large buffer sizes, and possibly
multiple buffer pools,* 1/0 parallelism, task struc-
ture, and locking support for parallelized update
queries.

Parallelism and relational operators. Parallel-
ism is enhanced if we (1) reduce dependencies
between operations (see the discussion that fol-
lows about the join operation), and (2) make even
the lower level DBMS functions more set-oriented
(e.g., by performing aggregation during sort). In
this section we discuss the functions that must be
considered in parallelization of some of the key
relational operations.

Access. Access refers to accessing permanent ta-
bles or work files. This operation also includes
acquiring any locks, applying the eligible predi-
cates and performing projections. An access may
be via indices or by table scans. When access via
index is chosen, more than one index may be used
for accessing the records of a single table.*

Join. The join operation involves taking the re-
sults of accessing two or more tables and applying
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the join predicates. If parallelism among accesses
and the join is being maximized, then, during the
access of the inner table, we cannot take advan-
tage of those predicates on the inner table that
involve columns of the outer table. The effect is
as if the nested loop join method is not being used
and the accesses are more like those performed in
the sort-merge join method.

Group By. Ideally, aggregation should be com-
bined with the sort and merge phases of the SQL
Group By operation, instead of being performed
as a separate operation after the merge is com-
pleted and we have a completely sorted stream.
Combining aggregation with other operations will
cut down the number of passes through the data
by one. More importantly, in most cases, it will
reduce the number of records to be dealt with in
the merge phases, thereby potentially reducing
the CPU and 1/0 overheads.

Duplicate elimination. Duplicate elimination also
should be combined with sort and merge opera-
tions. Of course, if the columns of interest in the
result constitute the key of a nonunique index,
then it would be highly preferable to make the
index manager itself return only nonduplicate val-
ues. Under these conditions, retrieving all the
keys and then eliminating duplicates in the index
manager’s caller would be much more expensive,
since indices typically store duplicate keys in a
compressed form that can drastically reduce the
number of comparisons required to select only
one instance of each duplicate key. It may also
reduce the number of locks that are acquired, de-
pending on what the objects of locking are (see
References 41, 42, and 45 for more discussions).
This will be especially beneficial in the SD envi-
ronment where the locks are global locks. While
the above points are applicable even without par-
allelism coming into the picture, they become ex-
tremely important in the context of a database
machine, since adopting them could lead to a
drastic reduction in communication traffic also.

Selection. In the case of the set-oriented insert,
delete, and update operations, the selection of the
records can go on in parallel with the insert, de-
lete, or update operation. Depending on the con-
sistency level used (repeatable read or cursor sta-
bility) during the retrievals, by the time the delete
or update operation is executed, the records that
previously qualified may no longer qualify for the
delete or update due to the activities of other
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transactions. This has to be dealt with carefully to
avoid inconsistencies. This kind of problem arises
even when there is no intratransaction parallel-
ism, but the data access is postponed until the
index accesses are finished and cursor stability is
used during the index access (see References 40,
45, and 62 for more discussions).

Union. The union operation will not have much
work to do, unless (1) duplicates are to be elim-
inated, or (2) an Order By clause exists. If dupli-
cate elimination is required, then, unless multi-
query optimization is going to be performed and
somehow the queries constituting the operands of
the union are going to be combined, the elimina-
tion of the postprocessing required to remove du-
plicates would not be possible in most cases.

I/O parallelism in DB2 Version 3

DB2 Version 3 (DB2 V3) provides support for ex-
ploiting 1O parallelism (I0P) to reduce response
time for data-intensive, [/0-bound queries. For a
table with large amounts of data, DB2 users may
partition the table (physical partitioning) onto
separate I/0 devices.

In prior releases, DB2 always read each table in a
single stream manner, one partition after another.
Therefore, a large percentage of the query re-
sponse time might have been spent on waiting for
/O operations to complete. DB2 V3 provides the
capability to fully utilize the 1/0 bandwidth that is
made possible by the use of a partitioned table.
DB2 will initiate multiple concurrent 1/O requests
for a single-user query and perform parallel 1/0
processing on multiple data partitions. The query
elapsed time can thus be significantly reduced for
1/0-bound queries.

If a table is created as a partitioned table, DB2 can
exploit the possibility of I0P when this table needs
access. When a table is not created as a parti-
tioned table, DB2 may consider partitioning such
a table into multiple work files to benefit from 10P
in subsequent operations. For example, when a
table needs to be sorted for performing a sort-
merge join, DB2 may consider partitioning the sort
output into multiple work files and then executing
the join in parallel.

DB2 uses I0P for both dynamic and static SQL que-
ries. In the distributed context, it is used for both
local and remote queries (with a DB2 requestor
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and a DB2 server). Users have the ability to tell
DB2 whether or not it should consider using I0P.
Even if the user asks for 10P, it will be used only
if the optimizer determines that it is likely to be
useful. Using the EXPLAIN statement, a user can
find out whether DB2 has planned to exploit 10P for
a given query.

IOP is designed to support read-only 1/0-bound
queries. It can be exploited for an embedded
SELECT, a read-only cursor, or a subquery since
their results are read only and never updated. 1/0-
bound queries are those queries whose response
time is dominated by the time for completing 1/0
operations. For a given query, when the user has
requested IOP, if DB2 estimates that its 1/0 pro-
cessing time is much higher than its CPU process-
ing time, then it will choose to activate multiple
parallel 1/0 streams. IOP can be applied to both
single-table accesses and multiple-table joins.
Typical types of queries that can take advantage
of 10P include:

¢ Queries with intensive data scans and high se-
lectivity: These queries involve large volumes
of data to be scanned, but relatively few rows
meet the search criteria and are returned.

* Queries containing aggregate functions: Similar
to the first type of queries, column functions
(MIN, MAX, SUM, AVG, COUNT) usually involve
large amounts of data to be scanned, but few
aggregate results are returned.

¢ Queries accessing long data rows: These que-
ries access tables with long data rows, and the
ratio of rows per page is very low (e.g., each
page contains only one row).

For these types of queries, DB2 spends most of the
time fetching pages (high I/O cost), and relatively
little time processing rows (low CPU cost). There-
fore, 10P can be used to reduce the 1/0 elapsed
time. When a query is I/O bound, the I/0 band-
width determines the query elapsed time. Query
elapsed time decreases when 1/0 bandwidth in-
creases.

The fundamental strategy of 10P is to process por-
tions of a single user query in parallel through the
use of horizontal data partitioning. DB2 will at-
tempt to fully utilize the /0 bandwidth of the par-
titioned table by triggering parallel sequential
prefetches on multiple partitions. The number of
parallel /0 streams activated in a query is called
the degree of parallelism. One or more consec-
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utive operations (each operation can be a table
access, a join, or a sort) can be executed in par-
allel as a group, such that all the operations in this
group have the same degree of parallelism. Such
a group is referred to as a parallel group.

The sequential prefetch support that has existed
from DB2 Version 1, Release 1 is essential to the
implementation of 10P. Sequential prefetch is a
mechanism to trigger asynchronous IO opera-
tions. Pages are fetched into the buffer pool be-
fore they are required, and several consecutive
pages (e.g., 32 pages) are read with a single 1/0
operation. This technique allows CPU and /O pro-
cessing to overlap, and reduces the query elapsed
time.

Figure 3 illustrates sequential prefetch. When a
CPU is processing a set of pages fetched into the
buffer pool (e.g., set sl), the /0 subsystem is
fetching the next group of pages (e.g., set s2).
Therefore, the CPU and IO processing are over-
lapped, but the /O processing itself is still in se-
quential mode in DB2 Version 2. As processors
become faster, more queries become 1O bound.
The figure shows a case where the CPU speed is
faster than that of /0, which results in the CPU
waiting for /O operations to complete. Query per-
formance can be improved further by overlapping
the O operations with one another. With I0P,
multiple instances of the same operation are ex-
ecuted on many disjoint partition key ranges or
page ranges.

Figure 3 also shows an example of parallel 1/0
processing on a table with two partitions. It as-
sumes that the CPU processing speed is two times
faster than the 1/0 processing speed. DB2 invokes
two parallel 1O streams to fetch data from the two
partitions concurrently. Except during the initial
transitive stage, the CPU is kept busy all the time
processing data, while sequential prefetches on
different partitions continue to be triggered in a
round robin fashion until the query is complete.
During the initial transitive stage, CPU processing
will be delayed while waiting for the first few se-
quential prefetches to be activated for all the
partitions.

The placement of files on the disk is critical to the
performance of 10P. To maximize the perfor-
mance improvement, /O contention should be
kept to a minimal amount by spreading the par-
titions over different disks, and allowing each /O
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Figure 3 lllustration of 1/0 parallelism
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stream to operate on a separate 1/O channel (bus)
path. The DB2 V3 10P approach is extensible to any
possible future support for CPU parallelism within
a machine and even across machines in a shared
disks environment.®

Planning for parallelism. The DB2 V3 optimizer is
used to group similar degrees of parallelism.

Parallel groups. A parallel plan is produced by
the optimizer based on the best sequential plan by
parallelizing its 10 bottlenecks, thereby reducing
its elapsed time. In DB2 V2, the optimizer pro-
duces a sequential query plan that consists of a
chain of operations. Each operation can be a table
access, a join, or a sort, and is represented by a
miniplan data structure. To support IOP in DB2 V3,
the pre-existing optimizer has been enhanced
with a postoptimization phase that examines the
best sequential plan produced by the pre-existing
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logic and determines which operations are I/O
bound and can benefit from IOP. Some operations
with the same degree of parallelism are grouped
together. Each of those groups is called a parallel

group.

The general rule-of-thumb to determine the
groupings of parallelism is: A parallel group starts
with an access and continues to cascade until
there is a sort operation. Since CPU parallelism is
not being exploited in DB2 V3, a sort operation will
have to be performed sequentially on a single pro-
cessor. Therefore, a sort operation stops a par-
allel group in the miniplan chain. There can po-
tentially be two different parallel groups that a
table can be in: one for accessing that table and
another for joining that table with a composite
table. This usually means that the table is sorted
with parallel table access and then partitioned for
the next parallel join.
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Degree of parallelism. The degree of parallelism
is the number of parallel 1/0 streams activated for
a table.” The optimizer estimates the degree of
parallelism for each parallel group (at compile
time or at run time). However, since some im-
portant factors are not known until run time (such
as amount of buffer pool resources available and
values of host variables), the actual degree of par-
allelism may be adjusted at run time. The run-
time logic goes through a process called buffer
pool negotiation to determine whether enough
buffers are available to stay with the degree of
parallelism determined by the optimizer at com-
pile time. As a result of (automated) negotiation,
a parallel plan may even fall back to the original
sequential plan at run time. To be able to do the
run-time adjustment, the compiled plan is aug-
mented to include partitioning information for all
the referenced tables.

The goal of 10P is to reduce elapsed time with
optimal resource utilization. Therefore, the de-
gree of parallelism can be determined in two
steps. The first step is to estimate the best pos-
sible elapsed time for a given parallel group in the
query. To do this, we pretend that every physical
partition is going to be accessed by a separate 1/0
stream. The second step is to find the minimum
degree of parallelism that can achieve the best
possible elapsed time (see the earlier section on
1/0 versus CPU parallelism for further discussion).

Step 1: Estimate the best possible elapsed time.

Elapsed time = max (CPU processing time,
I/O elapsed time)
I/O elapsed time = maximum partition 1/O time

Yields:

Elapsed time = max (CPU processing time,
maximum partition 1/O time)

Thus:

 The total elapsed time is the maximum of CPU
processing time and I/0 elapsed time, assuming
CPU processing and I/0 are totally overlapped
with each other.

* The CPU processing time is equivalent to the
CPU resource utilization time estimated for se-
quential plan, assuming the CPU overhead for
activating parallelism is negligible.

* The /0 elapsed time is determined by the max-
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imum partition I/0 time (i.e., the partition that
takes the longest time to finish its 1/0). This is
due to the fact that, with 0P, all the partitions
of all the tables are read in parallel. Therefore,
the slowest partition becomes the bottleneck.
Having multiple 1/0 streams accessing a single
partition cannot reduce the elapsed time of par-
tition 1/0 time since those multiple /O streams
have to share the same physical device.

* By substituting CPU processing time with se-
quential CPU time and I/O elapsed time with
maximum partition /O time, we obtain a for-
mula for the best possible elapsed time. It is the
maximum of the sequential CPU time and the
largest partition I/O time.

Step 2: Find the minimum degree of parallelism
needed to achieve the elapsed time estimated in
Step 1.

A table can be accessed in parallel either through
key partitioning (for an index scan) or page par-
titioning (for a table scan). To determine the de-
gree of parallelism, we derive appropriate key
ranges or page ranges to achieve the best possible
elapsed time based on the following assumptions:

* Data are uniformly distributed within a parti-
tion.

* 1/0 contention can be made negligible when mul-
tiple /0 streams access a single physical parti-
tion by making those multiple streams access
that partition at different times.

The key ranges or page ranges being derived are
called logical partitions. Each logical partition is
accessed by an 1/O stream. Logical partitions do
not necessarily correspond to physical partitions
and may not fall into physical partition bound-
aries. The degree of parallelism can be found after
all the logical partitions are derived. It is impor-
tant that when more than one table is present in
a parallel group, the corresponding logical parti-
tions of the different tables have matching key
ranges. This is necessary to make sure that a set
of records of one table is read into the buffer pool
around the same time the corresponding joining
records of the other tables are also read in.

Impact of host variables on degree of parallelism.
The optimizer determines the degree of parallel-
ism at compilation time if there are no host var-
iables in the query that may influence the degree
of parallelism. If a query references a host vari-

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994




able that involves the partitioning key, which may
influence the 1/0 time of the query, then the ideal
degree of parallelism cannot be determined at
compile time. When host variables are present,
the compiled plan has been augmented to include
the necessary CPU and /O time information so that
the run-time logic can evaluate the values of host
variables, adjust the 1/0 time of the query, and
determine the actual degree of parallelism. The
run-time logic does the latter by invoking a pro-
cedure in the optimizer component.

The values of host variables can be used to de-
termine which part of a table is qualified to be
accessed. The partition /O time can be adjusted
accordingly.

Buffer manager extensions. A few extensions to
the buffer manager were needed to support IOP.
Those extensions are described in this section.

Conditional page fixing. Until DB2 V3, whenever
a fix_page request was invoked, buffer manager
(BM) tried to find the requested page in the buffer
pool. If BM could not find the page, it allocated a
buffer slot for the page and scheduled a read 1/0
operation. BM suspended the invoker uncondi-
tionally whenever a read 1/O was in progress. The
read 1/0 could be triggered either by the invoker
or by an asynchronous prefetch task. With 10P,
since a query process could be initiating many
concurrent 1/O streams, it was beneficial for the
process to switch to a different 1/0 stream if the
current I/O stream ran into any wait state.

In order to allow the process to switch to a dif-
ferent 1/0 stream, BM in DB2 V3 provides a condi-
tional fix_page request. When this option is used,
the BM invoker is not forced to wait for any read
1/0 to be completed for the requested page, but an
asynchronous 1/0 will be initiated on behalf of the
requester. In the absence of CPU parallelism,
since a single process has to process multiple 10
streams, such processing is made possible by
making the process go as far as it can with pro-
cessing the pages of a particular /O stream that
are in the buffer pool before switching to pages
from another 1/0 stream. Anytime the process de-
cides to process a particular stream, the process
issues an unconditional fix_page for the next page
to be processed (i.e., the page for which a con-
ditional fix_page performed during the previous
round of processing of this stream resulted in a
page not found in buffer pool response from BM).
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For any subsequent pages of that stream, condi-
tional fix_pages are issued during the current
round.

Buffer pool availability. Each parallel stream re-
quires at least 16 pages, and up to a maximum of
64 pages from the buffer pool for sequential
prefetch. (One study has shown that each 10
stream should maintain at least 16 buffer pages for
sequential prefetch in order to obtain a reasonable
reduction in response time with 10P.) The
prefetch quantity can be dynamically adjusted by
DB2 based on the system-wide buffer pool usage.
If the sequential prefetch quantity is Q pages,
then the number of buffer pages required per /0
stream is 2Q pages (Q for pages currently being
processed and Q for the next set of pages being
prefetched).

At run time, DB2 will look at the number of buffer
pages available and determine the maximum
number of parallel /0 streams that it can support
without jeopardizing the performance of other
queries running in the system. To derive the ac-
tual degree of parallelism at run time for a parallel
group, DB2 divides this maximum number by the
number of tables that need to be accessed by this
group. This new degree may be lower than the
planned degree if the current buffer pool usage is
high.

Performance monitoring and tuning. New trace
and statistics records are produced by DB2 V3 to
help in performance monitoring and tuning. They
provide the following information:

* Description of how the tables within a parallel
group are partitioned by specifying the key
range and page range for each partition

» Elapsed time statistics for each parallel opera-
tion

e Number of times the buffer manager was unable
to allocate the desired number of buffers to sup-
port the planned degree of parallelism for a par-
allel group

e Number of times the sequential prefetch quan-
tity had to be reduced in order to allow multiple
queries to continue to execute concurrently
with 10P

e How often the page had already been
prefetched into the buffer pool, when DB2
needed a page during the execution of a parallel

query
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The system administrator is allowed to specify
what percentage of the buffer pages can be used
to support prefetching for 10P.

Possible extensions. The following are some areas
that will potentially improve performance, if im-
plemented.

* Nonuniform distribution of partitioning key val-
ues—The current implementation assumes a
uniform distribution of partitioning key values.
As a matter of fact, for some time, DB2 has been
supporting the efficient handling of those situ-
ations where there is nonuniform distribution of
key values by tracking frequently occurring key
values.® But this latter information can be ex-
ploited further to do a better job of logical par-
titioning.

* Better modeling of CPU availability—To en-
courage I0P, DB2 assumes that the CPU is 100
percent available to the query in order to obtain
the best estimates for the /0 and CPU times.
This CPU available percentage may need to be
adjusted to reflect the situation where CPU uti-
lization is high when the query is executed.

* Parallel 1/0s for write operations—SQL insert,
delete, and update statements also can benefit
from 10P. This can be done by parallelizing at
least the retrieval portions of those statements
(e.g., the evaluation of the subquery in the case
of an insert from subquery statements). A fur-
ther step would be to update any indexes also in
parallel.

Conclusions

In this paper we discuss some architectural alter-
natives and design approaches for introducing in-
traquery parallelism in a relational DBMS. We dis-
cuss the pros and cons of the shared nothing (SN)
and shared disks (SD) architectures. While scal-
ability might be a problem for SD, it has many
advantages with respect to load balancing and
database design. Further research is needed to
clarify these points. A possibility is using the SD
architecture in the nodes of an SN system. This
gives us more powerful nodes that are easier to
manage and whose load is easier to balance.
Availability in case of failures of some processors
within a node is also enhanced with this hybrid
approach. We also discuss the increasingly im-
portant role that disk arrays will play in improving
the performance of the 1/0 subsystem to match the
latter with that of the CPUs. In addition, we dis-
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cuss asynchronous pipelining using table queues
and the overheads that they impose compared to
synchronous pipelining. Parallel synchronous
pipelining is pointed out as the preferred method
of accomplishing parallelism, whenever possible.
With respect to load balancing, we discuss some
of the major issues. We may not foresee some
skew problems at compile time due to the absence
of knowledge about the values of bindings of host
variables, correlations, etc. This requires doing
some work at run time. This is a major research
problem.

Other major topics that must be considered in the
study of a parallel DBMS include system manage-
ment, utilities (database reload, unload, reorga-
nization, etc.), performance of transaction work-
load on a large number of small CPUs, and the mix
of transaction and query workloads. We are con-
tinuing work on the research topics that we have
identified in this paper.

We also present in detail the implementation of 1/0
parallelism in DB2 V3.
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