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In order to provide real-time  responses to 
complex queries involving large  volumes of data, 
it has  become  necessary to exploit parallelism in 
query processing. This paper  addresses the 
issues and solutions relating to intraquery 
parallelism in a relational database  management 
system (DBMS). We provide a broad framework 
for the study of  the numerous issues that need to 
be addressed in supporting parallelism efficiently 
and flexibly, The alternatives for a parallel 
architecture system are discussed, followed by 
the focus on how  a query can be parallelized  and 
how that affects load balancing of the different 
tasks created.  The final part of the paper 
contains information about how the IBM 
DATABASE 2" (DB2@) Version 3 product 
provides support for  I/O parallelism to reduce 
response time for data-intensive  queries. 

T he widespread  adoption of the  easy-to-use 
products of relational database  technology 

has led to  the expectation  that  responses  to  que- 
ries should be  received  faster  than  before,  espe- 
cially because  the  queries may be  posed by a  user 
at a terminal rather  than by a  batch program, as 
in the  past. Although high-level ad hoc  query lan- 
guages like SQL (Structured  Query  Language) are 
used to  access the  database management system 
(DBMS) to generate  complex  reports,  volumes of 
data  have grown rapidly, resulting in queries  be- 
coming data-intensive  and complex. 

Solutions to reduce  the  complexity of query  pro- 
cessing  and  improve  the  response time of queries 

include moving additional function  into  the  query 
languages and exploiting parallelism of both  the 
hardware  and  the  software  processing. 

This  paper  explores  two main topics in this envi- 
ronment.  First, in sections  on  overall  system  ar- 
chitecture  options  and parallel algorithms, the  use 
of parallelism is discussed in the  architecture, in 
processing queries,  and in various relational op- 
erators.  Second,  the implementation of I/O paral- 

product to reduce  response time for data-inten- 
sive  and I/O bound  queries is described in the  sec- 
tion on I/O parallelism in DB2 Version 3. Readers 
of this  paper  who  only  want to understand how 
DB2 Version 3 exploits parallelism may  skip di- 
rectly  to  this  section. 

lelism in the IBM DATABASE  2*  (DB2*) Version 3 

Background 

Trends in the  environment and where  some of the 
solutions  may  be found are  important to under- 
stand as parallelism is exploited. 

Volumes of data. Today  there  are  customers  who 
would like to  store  more than 100 gigabytes of 
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data in a single table  and  keep  the  data on line and 
readily available.' The  amount of data  kept in a 
single large relational database  is  expected  to  be 
in the  terabyte range in the coming decade,  caus- 
ing queries to become  extremely  data-intensive. 
Furthermore,  there is growing emphasis on sup- 
porting newer,  nontraditional  database applica- 
tions,  such as Computer-Aided Software Engi- 
neering (CASE), geographical information systems 
(GIS),  and multimedia applications, where  the  vol- 
umes of data  are  enormous  compared  to  those in 
traditional  business  data processing. 

Complexity of queries. The  complexity of the  que- 
ries  that  are being posed is also growing as a result 
of competition intensifying in various sectors of 
the  economy  and direct-mail marketing becoming 
more and more common. Ad hoc  interactions 
with the new generation DBMSs are commonly 
performed through high-level user  interfaces, al- 
lowing complex  queries to  be specified very easily 
by users,  where  the  users  may  not  even  be  aware 
of the  complexity of their requests.  Often,  a high- 
level interface  query  results in many  complex 
DBMS queries, which must  have  a  short  response 
time due  to  the interactive  nature of the  user in- 
terface.  This  increases  both  the  complexity  and 
the traffic rate of DBMS queries.  The  same phe- 
nomenon occurs in interfaces  between high-level 
programming languages, such  as  visual  query 
generators  and  visual  fourth-generation lan- 
guages (4GLs). These programming environments 
allow programmers  to  write applications that ini- 
tiate  many  complex DBMS queries  where  those 
queries  become logic-intensive. 

Even though the  processing  power of affordable 
parallel computers is expected  to  be  over 1000 
million instructions per second (MIPS) shortly,  the 
combination of massive  amounts of data plus 
enormous  processing  power still creates  the envi- 
ronment for much  more  complex  queries.  Hence, 
we expect  that  future DBMSs will have to deal with 
applications  that  are  both  data-intensive  and log- 
ic-intensive. 

Solution  areas. We  expect  the functionality pro- 
vided by  such  query languages to grow consid- 
erably.  Today's relational query languages typi- 
cally  do  not  have  the  functions  for  statistical 
analysis and structural  (complex  objects,  record 
structures,  etc.) expressibility, which are  crucial 
for  data  summation  and engineering databases, 
respectively.  More of the application logic will be 
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moved inside the DBMS, both  for  better perfor- 
mance (bringing function to  data) and for better 
sharing of data among applications (better  pro- 
tection of data  by  encapsulation). Given that ap- 
plications tend to  be sequential, applying the 
complex  search  predicates  (record  selection cri- 
teria) within the DBMS would allow parallelism to 
be exploited in evaluating those  predicates also, 
thereby  potentially reducing the  response time 
tremendously. 

DBMSs will also  have to deal with a  much larger 
set of data  types and operations.  From  the appli- 
cation  performance  viewpoint,  this is valuable 
since it allows more type-specific operations  to  be 
specified in search  predicates, so that massive 
amounts of irrelevant  data  do  not  have  to  pass 
through  the different layers of the DBMS to  the 
applications. This  is  particularly significant since 
the  data  rate of the  output from DBMSs is typically 
much less  than  the  data  rate of storage  devices 
from which data  are  retrieved.  Operations  such  as 
outer  join,  recursion, and sampling should be han- 
dled by DBMSS for the  same  reason. 

Exploiting  parallelism. The limitations to  the im- 
provement of response time via  faster  processors 
and larger memories alone lead us  to believe that 
in most  cases,  one  can  hope  to get real-time re- 
sponses  to data- and logic-intensive queries  only 
by exploiting parallelism. 

Limitations in not usingparallelism. The follow- 
ing are  observations  that  support  our premise: 

Based  on  the  trends of the  recent  past, it is ex- 
pected  that  the  growth in the  processing  capac- 
ity of a  uniprocessor  or  a closely-coupled mul- 
tiprocessor is not going to  be sufficient to 
provide real-time responses to certain  types of 
complex  queries using such  systems. At least 
today, it appears  that  the  dollars per MIPS 
($/MIPS) cost of the  very powerful machines is 
much higher than  the $/MIPS cost of smaller, mi- 
croprocessor-based machines. 
Even though the  price of main memory  keeps 
declining rapidly and  the  sizes of the memories 
that  are  attachable  to  a single processor  keep 
growing, the  volume of data to  be handled 
keeps growing also. Further,  with  some archi- 
tectures,  there  are limits on  the amount  of main 
memory  that  may  be  attached  to  a single ma- 
chine (e.g., 2 gigabytes of real memory due  to 
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the 31-bit real  memory  addressing used on  the 
IBM System/370*). 
As  the  processors  become  more  and  more pow- 
erful (even in the  smaller  microprocessor-based 
machines),  the gap between  the CPU processing 
speed  and  the 110 capacity of a single device 
becomes  wider  and  wider.  This is at present 
necessitating  the  use of techniques like disk 
striping3  (spreading  a single file across multiple 
disks) and  disk arrays4  to improve  the I/O band- 
width. For a long time, systems like the IBM 
Transaction  Processing  Facility (TPF)’ used 
disk striping in software to improve  intertrans- 
action parallelism. But now, striping is needed 
to support  intratransaction  and  query parallel- 
ism as well. Disk striping, if done in software, 
already  demands parallelism at  least at the I/O 

b 

1 level to  access  the multiple disk in parallel. 

Support for the  use ofparallelism. The problems 
that  the  query optimization and  the  query  execu- 
tion logic must handle are expanding because  the 
nature of the  queries  that DBMSs must handle is 
expanding. Exploiting parallelism will provide so- 
lutions  that will overcome  the limitations previ- 
ously  mentioned.  This may come  as  a  surprise  to 
some  people  who might be led to think  that  the 
way  to  address  the  response time requirement is 
to  stay with the simpler strategy of no  intraquery 
parallelism, faster  processors,  and larger and 
larger amounts of memory. But in order  to gain 
price-performance  advantages and response time 
improvements,  the  trend is toward building a sys- 
tem consisting of many  machines  and exploiting 
intraquery parallelism. 

Overall system architecture options 

In building a parallel system,  many  objects  exist 
with respect to how different components  are in- 
terconnected. In this  section  we  discuss  some of 
the  system  architecture possibilities. 

B 

b Shared  data,  nothing, or everything. One  ap- 
proach to improving the  capacity  and availability 
characteristics of a single-system DBMS is to  use 
multiple systems.  There  are  three major architec- 
tures in use in the  multisystem  environment as 
shown in Figure 1:6 (1) shared disks or  data  shar- 
ing, 7-12 (2) shared nothing or partitioned  data, l3,I4 

and (3) shared everything. 

and each  system  has  its own buffer pool (see Fig- 
ure 1A). Every  system  that  has an instance of the 
DBMS executing  on it may access and modify any 
portion of the  database  on  the  shared disks. Since 
each  instance  has  its own buffer pool and because 
conflicting accesses  to  the same  data  may  be 
made from different systems,  the  interactions 
among the  systems  must  be controlled via  various 
synchronization  protocols.  This  necessitates 
global locking and protocols for the  maintenance 
of buffer coherency. SD is the  approach used 
in the IBM IMSNS’52’6 (Information Management 
SystemNirtual Storage), TPF,’ and DB2, 8-10~17 in 
the Digital Equipment  Corp. RDBNMS**, l1 and in 
the Oracle Corp.  Oracle** Parallel Server.  These 
systems  are using the SD architecture  for inter- 
transaction parallelism rather  than  intra-transac- 
tion parallelism. 

With shared nothing (SN), each  system  owns  a 
portion of the  database  and  only  that  portion  may 
be  directly  read or modified by that  system  (see 
Figure 1B). That is, the  database is partitioned 
among the multiple systems.  The kind of synchro- 
nization protocols mentioned before for SD are 
not needed for SN. But a  transaction  accessing 
data in multiple systems would need  a form of 
two-phase commit protocol (e.g., the Presumed 
Abort protoc01~~”~) to  coordinate  its activities. 
This is the  approach  taken in the  Tandem  Non- 
Stop SQL**,~’ ,~~ the  Teradata  Corp. DBC/1012**,22 
the  Microelectronics and Computer Technology 
Corp. (MCC) Bubba,23-25 the IBM Almaden Re- 
search ARBRE project,26 and the  University of 
Wisconsin Gamma. 3,27 

In the  shared  everything (SE) approach, memory, 
in addition to disks, is also shared  across  the  pro- 
cessors  (see  Figure  1C).  The  University of Cali- 
fornia at Berkeley XPRS system  has  adopted  this 
approach. 28,29 It has  been pointed out 2y that SE has 
scalability problems. But it is  attractive within a 
node of an SD or SN system. It helps reduce  the 
number of nodes, making system management 
and load balancing easier. D B ~ , ~ ’  for example, is 
able to  very nicely exploit an SE machine like an 
IBM ES/9000* Model 900 in the 9021 family, which 
has six processors.  Further,  this  architecture  pro- 
vides an effective basis  for  the implementation of 
DB2 parallelism, as discussed in the  section  on I/O 
parallelism in DB2. 

With shared  disks (SD) all the  disks containing the Arguments in favor of SD are given31 in the  con- 
databases  are  shared among the different systems text of complex  objects  and parallelism. For com- 
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plex objects, it is said that partitioning the  data, and the  transaction monitor (like IMS/DC34 [Infor- 
as is required with SN, is  a big problem. mation Management SystemData Communica- 

tions] or C I C S * ~ ~  [Customer Information Control 
Transaction  monitors. In discussing an overall ar-  System])  cannot be ignored. Most online trans- 
chitecture,  the role of data  communications32~33 actions are  executed in the environment of a 
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transaction monitor. The  monitors  provide  sup- 
port  for terminal interactions, message queue 
management, logging, program libraries,  etc. 36 

They  are in essence an extension of the  base  op- 
erating  system. 

Supporting  the  transaction monitor and  the envi- 
ronment  that it needs  is  essential  even in a parallel 
architecture  system.  Any existing large applica- 
tion base  that relies on such  an  environment  must 
be  accounted for. Resources (CPU, I D ,  commu- 
nication) used in the non-DBMS part of transac- 
tions (i.e., in transaction  monitors  and applica- 
tions)  are very significant. Hence, it is  important 
to provide a parallel environment  for  both appli- 
cations  and  transaction  monitors.  The  Tandem 
Nonstop SQL provides  such  an  environment.  This 
is  the  so-called peer-peer configuration. 

If the  adopted  approach is one in which  the  mon- 
itor would run on one  or more  front-end  machines 
(machines running the application code) and the 
actual  data management would be  done in a  back- 
end  (database) machine (the  so-calledfront-end- 
back-end configuration) where parallelism would 
be  exploited using machines of a different nature 
from the  front-end  machines,  then  two  issues 
must  be  addressed.  First,  the  cost of the  interac- 
tions  between  the  front  end and the  back  end  must 
be considered  when evaluating the  performance 
implications of this  approach  on the transaction 
workload.  This division of labor  between  the 
front  end and the  back  end is bound to increase 
the overall  path length of a  transaction.  This in- 
crease will be felt especially in the  case of the 
short  transactions of the  transaction  workload. 
One  way to  address this problem is to  support  the 
notion of stored  procedures and make  the  front- 
end  issue  a single call to  the  back  end  to execute 
a  sequence of SQL statements. 

The second  issue with the front-end-back-end 
configuration is related to pushing more applica- 
tion functions down into  the lower layers of the 
DBMS, either in the form of operations on abstract 
data  types,  function  libraries (for scientific rou- 
tines,  statistical  routines,  etc.),  methods  on  ob- 
jects  stored in the  database  (as in the  object-ori- 
ented DBMSS), or rules  (as in rule-based systems). 
This  trend  essentially  fosters  a  more uniform run- 
time  environment for applications and DBMSs, 
thereby allowing functions  to  move from appli- 
cations  into DBMS more easily. As a  result, it may 
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not be  a good idea to  have  a very special-purpose 
operating  system in the  back  end. 

Interconnection  technologies  and  requirements. 
The  technology used for  interconnecting  the pro- 
cessors  and  the  storage  devices  plays  a  crucial 
role in determining the  communication  band- 
width  that  can  be  sustained  between  the  proces- 
sors themselves, and between  the  processors and 
the  storage  devices. While f i b e r - ~ p t i c ~ ~  switches 
can  sustain high bandwidths and cover  more dis- 
tances  compared to copper  interconnects,  the 
costs of fiber-optic interface  and switching de- 
vices  are still rather high. 

In the  case of the SD approach,  the  storage  de- 
vices  must  be  attached  through  a  switch  since  any 
processor  must  be  capable of accessing  any of the 
devices.  This  means  that  the  switch should sup- 
port high bandwidth communication. The  proces- 
sor-to-processor  communications will be less in 
this  environment, if parallelism for a given trans- 
action is going to  be handled within a  system  by 
utilizing a  multiprocessor like the  six-way IBM 
ES/9000 Model 900 (in the 9021 family). Most of the 
processor-to-processor  communication is likely 
to  be  messages relating to global locking and 
buffer coherency p ro to~o l s .~" , ' ~  

With SN, the  devices  may be locally attached to 
the owning processors,  perhaps using less  expen- 
sive technologies. In this  case,  the  processor-to- 
processor  communications  can  be significant if a 
given complex  query  is  accessing  data  owned by 
multiple systems, and the  extracted  data  must  be 
sent  to  other  processors  to perform operations 
such as join. The  Teradata  database machine uses 
a  specially designed interconnection  network 
called the  Ynet, which can connect  up  to 1024 
microprocessors. 22 To provide fault tolerance, 
the  system actually includes two completely in- 
dependent  Ynet  structures. When both  Ynets 'are 
operational, message traffic is equally divided be- 
tween  the  two.  The Ynet is also  able  to  sort  the 
data as they flow through it. 

Short  transactions  and  complex queries. It  is very 
important  that  the  system  architecture  chosen 
can  accommodate  complex  queries as well as 
short  transactions against the same data.  That  is, 
it should be possible to pose ad hoc  queries 
against the  same  data on which the "bread and 
butter" applications of the  customers  [the appli- 
cations  that financially support  the  business]  are 
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also performing on-line, short  transactions  that 
may be updating as well as reading the  data.  The 
former is called the query workload and the  latter 
is called the transaction workload. In  modern  ap- 
plications, the  transaction  workload  transfers 
most of the new data from the real world into 
databases.  Hence, it is the producer of the  data 
from  the  database viewpoint. Examples  are  trans- 
actions originating from automated teller ma- 
chines (ATMS), point-of-sale transactions, and 
stock  exchange  transactions.  Complex  queries 
are usually consumers of data.  Sharing  between 
producers  and  consumers of data is a  fundamental 
phenomenon. Good performance for the  transac- 
tion workload  must  be  guaranteed  since  those 
transactions  have  more  stringent  response time 
constraints. 

Traditionally, users  have  been  forced  to deal with 
this problem of handling the  transaction and 
query  workloads  properly by maintaining two dif- 
ferent  databases on two different systems.  One of 
the  databases is the  one  most  up-to-date  and it is 
against that  one  that  the  transaction  workload is 
run. The  other  database  is  an  extracted  version of 
the first one  and it is  on this  extracted  database 
that  the  complex  queries  are  executed.  Not all 
users  are  happy with this solution. In addition to 
the  problems of having to maintain two different 
systems,  the disk storage  requirements  are  dou- 
bled for the  data  that  are  replicated.38 Addition- 
ally, there  is  the  expensive  extraction  process 
that  needs  to  be performed periodically and  that 
only gives out-of-date  data to  the ad hoc  query 
users.  Some of the  advantages of this  two-data- 
base  strategy  are: (1) the  two  types of workloads 
are on different machines  and  hence could hope- 
fully be  more easily managed, and (2) since  the 
second  database is a  read-only  one, different ac- 
cess  paths  and buffer management policies (or 
even  a different DBMS) may be defined for it to 
improve  the  performance of complex  queries. 
Some of these  users  with  dual  databases  may 
have  an IMS system  that is running the  older  trans- 
action  workload and from which they  are unable 
to migrate away quickly, due  to performance  and 
application rewrite  cost.  They  may  extract  data 
from such  a  system  and  put it into  a DB2 or  Tera- 
data  system for the benefit of their newer decision 
support applications. 

When both sets of workloads  are brought into  the 
same  system,  great  care  must  be  exercised to  en- 
sure  that  the  exploitation of parallelism by the 
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complex  queries  does not consume  too  much  re- 
source (CPU, I/O, and memory) at  the  expense of 
the  short  transactions.  This  requires  that  the  sys- 
tem, at the  least,  support  a  priority  concept  for 
treating different users  or  database  requests dif- 
ferently.  Some  server-based  systems do not  have 
such  a  concept, which leads  to very unpredictable 
response  times  and  wide  variances. DB2 Version 
3 has  added  a  capability to control  the amount of 
resources used by parallel queries. We discuss 
this in the section on I/O parallelism in DB2 Ver- 
sion 3 .  A  resource  governor would also  be  essen- 
tial to  control  “runaway”  queries. DB2 Version 2, 
Release 1 for example, introduced  such  a  gover- 
nor for controlling the  resource  consumption of 
dynamic SQL queries. 

There is also a  concurrency  versus locking over- 
head dilemma with respect  to mixing these  work- 
loads  with very different characteristics. In order 
to maximize concurrency for the  transaction 
workload,  the  developers of the application 
would be highly tempted to  choose fine-granular- 
ity (e.g., record) locking.39 But this will make the 
query  workload  incur significant locking over- 
head since  queries in general  access large num- 
bers of records.  Apart from the  overhead  con- 
cern,  the major problem may  be  that  the  locks 
held by  the  complex  queries will delay  the  trans- 
action  workload from performing updates. Typi- 
cally, this problem is dealt with by executing  the 
complex  queries with the isolation level of cursor 
stability. That  is,  the  read  locks  are given up as 
soon as  the  cursor  moves from one record  to  the 
next. Even though many DBMSs (like DB2, DB2/2* 
and Nonstop SQL) support  cursor  stability,  the 
research  literature  has  concentrated  only on re- 
peatable  read. More implications of cursor  sta- 
bility on data  accesses  have  been  discussed in 
References 40-42. 

The locking path length overhead problem is nor- 
mally addressed using different solutions, with 
each  one compromising on some functionality or 
the  other.  Two of the  solutions  are: unlocked 
reads and transient versioning. 

Unlocked reads. With unlocked reads,  the  que- 
ries  are  run  without locking and use  to 
assure physical consistency of the  pages being 
read. IMS supports  this  type of access  via  what is 
called GOprocessing. Relational systems like the 
Tandem Nonstop SQL, and  the IBM Application 
System/400* (ASI400*) and DB2/2 also  support  such 
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accesses.  This solution avoids  not  only  the lock- 
ing overhead  but  also  the  undesirable lock con- 
flicts between  the  two  types of workloads.  This 
approach has  the  disadvantage  that uncommitted 
data may be exposed to  the transactions  that  are 
not obtaining locks.  In  particular, integrity con- 
straint  violations may be  noticed by  the unlocked 
readers. For statistical  queries (e.g., market anal- 
ysis  queries),  this  exposure usually causes little or 
no problem. But  there is a  concern regarding 
queries dealing with structured (e.g., computer- 
aided design/computer-aided manufacturing, or 
CAD/CAM) objects,  where  inconsistent  data  close 
to the  root of the  object may result in retrieving 
a very different, and possibly invalid set of objects 
close  to  the  leaves  (as in a  tree  structure).  In  fact, 
this problem, to a  lesser  degree, also occurs with 
cursor  stability. Retrieval of the  children (as in a 
parent-child relationship for the  set of objects)  at 
two different times during the  course of a  query 
may result in two different sets since the read  data 
are locked  only briefly and  the  data might have 
been  updated in between  the  two  retrievals. 

Transient versioning. In the  transient  versioning 
approach,  for  data  that are being modified, one  or 
more  older  versions of the  data  may  be main- 
t a i ~ ~ e d . ~ ~  With this  support,  the  query  workload 
would be  able  to  read  without locking. Just  for 
data  that are being modified, a slightly older but 
committed  version of that  data will be  exposed to 
such  transactions.  The  advantage is that  the da- 
tabase  that is being exposed will be  internally  con- 
sistent.  Concerns  may  be  that  not all the  exposed 
data  are  up  to date  and  that  there is a slight in- 
crease in storage  consumption  and  complexity to 
keep multiple copies of some of the  data.  But  the 
major problem may be  that typically in such 
schemes  the  transactions  that  are  not locking are 
not allowed to  do  any updates  and  such  transac- 
tions  must  declare  themselves to  be read-only. 

In  References 44 and 45, a  technique called 
Commit-LSNis presented  for eliminating, most of 
the time, the need for locking when  cursor  sta- 
bility accesses  are  made.  This  technique  takes 
advantage of some information (e.g., the log se- 
quence  number39)  that is tracked, for recovery 
purposes,  on  every page to conclude  (without 
locking) that all the  data in a page are in the  com- 
mitted state.  It helps in reducing the locking over- 
head for  update  transactions  also,  when  record 
locking is in effect. Concurrency is also improved 
in conjunction with index  concurrency  control 
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methods like ARIES/IM.42 Many applications of the 
Commit-LSN technique  are  described in detail 
in Reference 45.  Commit-LSN has  been imple- 
mented in DB2 Version 3. 

I/O versus CPU parallelism. Query  processing in 
a parallel environment  requires  four major re- 
source  types: CPU, I/O, memory,  and communi- 
cation.  Some form of parallelism is needed for 

Different degrees of 
parallelism are needed 

for different  types. 

large-scale use of any of these  resources. Disk 
arrays4 provide large amounts of storage as well 
as many  read/write  arms for higher bandwidth. 
(They may also improve availability by striping 
different bits of a  byte on different devices and by 
storing  some  parity  bits in a similar fashion.) Main 
memory  subsystems  with  many  ports  and  many 
memory  modules  provide similar features.  Like- 
wise, communication systems with switches at 
different levels and  many  ports  provide high 
bandwidth. The  degree of parallelism needed in 
each  resource  type (e.g., CPU) depends on the 
load on that  resource  type and the  speed of a 
component of that  resource  type. As a  result, dif- 
ferent  degrees of parallelism are  needed for dif- 
ferent  resource  types.  Next, we discuss  the  rela- 
tionship between parallelism of two major 
resource  types in DBMSS: CPU and I/O. 

Our objective is: Minimize the  response time (up 
to  a threshold), where  the  constraint is the 
amount of given resources. Threshold is defined 
as  that  response time below which minimization 
is not significant. In other  words, we want  to max- 
imize use of the given limited resources to mini- 
mize the  response time up to a  threshold.46 Dif- 
ferent  degrees of parallelism may  satisfy  this 
objective.  Suppose we can fully utilize the CPU 
resource  with 100 tasks  or with 1000 tasks.  One 
question is what  the  degree of parallelism should 
be. We argue  that it is important  to find the min- 
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imal degree of parallelism, while satisfying our 
objective. The higher the  degree of parallelism, 
the  harder  the load balancing would be. By in- 
creasing  the  number of tasks  across which work 
is being distributed, we  are decreasing  the num- 
ber of records  that  each  task handles. In other 
words, we have fragmented the  processing and 
made it less set oriented, hence  potentially  com- 
promising one of the major benefits that  the  re- 
lational model provides us. As a  result,  the 
processing may become  less efficient. For exam- 
ple, we may lose the efficiency of sequential 
p r e f e t ~ h ~ ~  because  each  task  does  not  access 
enough pages to  take full advantage of sequential 
prefetch in terms of amortizing the  cost of an 110 
call across  a large number of pages. 

Inefficiency can  also  arise in accessing  data 
through nonclustered indices. In  sequential  pro- 
cessing, we  extract  the RIDS (or record identifiers) 
of qualified records from the  index,  sort  the RIDS 
by page identification, and  then perform the I/O. 40 

Hence,  each  relevant  data page is retrieved  only 
once. If many  tasks  do  this in parallel, often  the 
same page may  be  retrieved  many times, because, 
for a given page, more  than  one  task  may be in- 
terested in different records in it. Each  task  has  a 
certain fixed cost  associated with operations  such 
as  opening  and closing scans,  and  sort initializa- 
tion (e.g., initialization of the  tournament  trees 
when  tournament  sorts  are  used).  This  cost is 
multiplied by  the  degree of task parallelism. In 
addition to  the  wastage of CPU cycles,  other  re- 
sources like memory  and  channel  capacity may 
also  be  wasted.  Contention for disk arms and 
channels  may  also  be  increased. 

The relationship between CPU and I/O parallelism 
raises  a  concern  that  often  there is a significant 
mismatch  between  the degree of parallelism 
needed for CPU and  that  needed for the I/O sub- 
system.  One  reason for this is that  the  speed of I/O 
devices  has  not  increased  over time as fast as that 
of CPUS. To  study the relationship between 110 and 
CPU parallelism, consider  the problem of access- 
ing the  base  tables  directly  or through indices. If 
all the  data fit  in  main memory,  then  each  task is 
CPU bound,  and we need  only  one  task per CPU. 
Hence,  the  degree of parallelism is the  number of 
available CPUS. If data  are on disks,  the  tasks  can 
be I/O bound if one  disk  arm  at  a time is  used.  This 
causes  a significant mismatch  between  the  de- 
grees of parallelism needed for CPU and I/O. The 
reason is that  the  speeds of the available disks  are 
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too low compared to  the power of the  currently 
available CPUS. Therefore, we need to  have  nu- 
merous  disk  arms,  as in disk arrays,  to  keep  up 
with each CPU. 

Let us discuss an example. We assume  that  the 
processing  capacity of each CPU is 30 MIPS. Con- 
sider two types of disks: (1) Slower disks with 
3MBPS (megabytes  per  second)  bandwidth, and 20 
ms (millisecond) average  seek plus search (i.e., 
rotational  latency) time, and (2) Faster disks with 
higher bandwidth  and  moderately lower seek plus 
search time. Let us assume  that  these  disks  are  an 
order of magnitude better in bandwidth (30MBPS) 
and half the  order of magnitude better in average 
seek plus search time (7 ms). 

Consider  two  types of queries: (1) Type 1 that  are 
complex  queries with numerous  sequential  table 
scans,  and (2) Type 2 that  are  complex  queries 
with numerous RID list data  accesses, as previ- 
ously explained (mostly doing random I/o). 

The  second  type of query is chosen  when  the  ta- 
ble is very big and the  predicates  are very selec- 
tive. Hence,  we may be heavily using even  non- 
clustered indices (one index,  or  several, with 
index ANDing or ORing4'). The  queries of the first 
type mainly do  sequential I/O. Hence, for each 110, 
the seeusearch cost is incurred  once for a  set of 
pages (e.g., 64 pages) and  the limiting factor is 
mostly the  data  transfer bandwidth of the disk. 
The  second  type of queries mainly do  random I/O, 
hence the  seeusearch time delay  is usually in- 
curred for every page. In  this  second  case,  the 
seekhearch time is the limiting factor. 

As the I/O speed  increases, we need less parallel- 
ism in the I/O subsystem.  There are two interest- 
ing cases:  Case 1 is  where  the  degrees of paral- 
lelism for CPU and I/O are  close  to  each  other, and 
Case 2 is where  the  degree of parallelism for 110 is 
much more  than  that for CPU (more than  an  order 
of magnitude for  the  Type 2 complex  queries  pre- 
viously  explained). 

In Case 1, the  system is not significantly CPU or 
I/O bound.  Each  task  spends roughly equal time 
using CPU or I/O resources.  Suppose  each  task 
does  asynchronous  disk page prefetch,  where  the 
task  starts  the I/O for the  next  set of pages at  the 
time it starts working on the  current  set of pages. 
Under  these  conditions,  each  task  becomes CPU 
bound,  and it is sufficient to  have  as  many  tasks 
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as CPUS. I/O parallelism follows from (happens as 
a result of) CPU parallelism, and no  special  mech- 
anism is needed for I/O parallelism. 

For  Case 2, we have  two possibilities: 

1. Use  the  same  approach  as in Case 1, where I/O 
parallelism follows from CPU parallelism. In 
this  case,  each  task  is now mostly I/o bound 
(even with I/O overlap). We need to  increase 
the  degree of CPU parallelism to  that of I/O, 
hence allowing better utilization of resources, 
such as  the CPU. The problem with this  ap- 
proach is that it artificially increases  the CPU 
parallelism significantly (an  order of magni- 
tude in the  previous  Type  2  example).  This 
may  not  be  acceptable  because  as we argued 

allelism in CPU as much as possible for  better 
load balancing and  reduction of overheads. 

2. Decouple parallelism of CPU and I/O sub- 
systems. Allow I/O to have  more parallelism 
than CPU. This is the  desired  approach. An 
example of such  an  approach is the  use of disk 
arrays  where different blocks of data  are  scat- 
tered on different disks.  Note  that we mostly 
need this  for  random I/O, allowing different 
disk arms  to  work  on different blocks of data. 
As explained before  (and in References 40 and 
48), a CPU task  accesses  the  index  and  forms  a 

given to  the I/O subsystem (via a START IiO in- 
struction).  Suppose  these  pages  are  stored in a 
disk array.  The  control unit of the  disk  array is 
responsible  to initiate 110 (tasks) on different 
disk  devices in parallel to  retrieve  the pages. 

B 

1 before, we want  to  decrease  the  degree of par- 

D list of pages  to  be  retrieved.  This list can  be 

So far, we have  discussed  the  three main archi- 
tectures  for parallelism: shared  everything, 
shared  disks, and shared nothing. Further,  we 
showed  that in addition to CPU, parallel use of I/O 
resources is important. In the following section, 

B 
we  concentrate on how to parallelize queries.  As 
we will see, parallelization of queries and load 
balancing typically become  harder  as we move 
from the  shared  everything to shared  disks  to 
shared nothing architecture. 

Parallel  algorithms 

In this  section,  we  discuss  the  ways of parallel- 
izing a  query, load balancing issues,  what impact 
parallelization has  on different components  of  a 

relational DBMS, and how parallelism is enhanced 
with some relational operators. 

Targets of parallelization. There  are two ways of 
parallelizing complex  queries: Program parallel- 
ism where  the  execution of multiple operations of 
a given program occurs in parallel, and data par- 
allelism where  the  execution of a single operation 
occurs  by  operating  on  its input data (possibly, 
different pieces) in parallel. 

Program parallelism (PP) and data parallelism (DP) 
are possible in  all the  three  architectures, SD, SN 
and SE, defined earlier,  and  can  be mixed. DP is 
the  key  to supporting  a high degree of parallelism, 
whereas  the  degree of parallelism obtainable by 
PP is often much less  than  that of DP. 

Programparallelism. Let us consider  an  example 
that involves joining the four tables TO, T1, T2, 
and T3. A possible execution  strategy is one in 
which the  join of  TO and T1 is performed in par- 
allel with the join of T2  and T3. We call this  style 
of execution independent task execution. An- 
other  possible  execution  strategy is one in which 
the join of  TO and T1 is performed by  task S1, 
which then  sends  the  result  records  incrementally 
to  task  S2  to perform the join with T2. S2 then 
sends  its result records  incrementally to  S3  to  do 
the join with T3. We say  that  this  style of execu- 
tion makes use of asynchronous pipelines. The 
reasoning behind the name has to  do with the  fact 
that  the  records  are piped between  tasks.  But, 
unlike the  synchronous pipelining used in sequen- 
tial plans (e.g., as in System  R49),  here different 
stages of the pipeline are not executed in a  lock- 
step fashion. 

The  queue  between  the  producer  and  consumer 
tasks is called a table queue since  its  contents  are 
records in (composite)  tables. Obviously, some 
sort of flow control is needed  between  the  pro- 
ducer(s)  and  consumer(s) of a  table  queue in order 
to reduce  the overflow of the  queue  to disk, if the 
queue  gets  too large due  to a slow consumer.  This 
kind of asynchronous pipelining is also proposed 
in References 50 and 51, and  is also useful in dis- 
tributed DBMSS. It was also used in the R* proto- 
type.52 In the  latter,  the communication network 
protocols provided the pacing between  the  pro- 
ducer  and  the  consumer. 

An execution plan is a partially ordered  set of 
0~e ra tox - s .~~  Examples of operators  are  index  or 
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data  access and predicate  evaluators,  sort,  join, 
aggregation, etc.  The  number of operators  de- 
pends  on the complexity of queries. Obviously, 
the degree of parallelism obtainable by PP is lim- 
ited by the  number of operators used in a  query. 
In  fact,  the  actual  degree of parallelism attainable 
is usually much  less  than  this  upper  bound  due to 
the  dependencies  between  operators. For exam- 
ple, the merge join of T1 and T2 cannot  start until 
the  access  and  sort of T1 and T2 are  completed. 
In  most of the  cases, PP is not sufficient to  provide 
a  degree of parallelism in the 100s or 1000s. How- 
ever, PP is more useful in conjunction with DP, 
which is discussed  more  later.  The  cost of inter- 
task  communication  between  operators in two 
different tasks  is  considerably higher than  that 
between  operators within the  same  task  and, in 
fact, in systems like DB2, the  records  are  not  cop- 
ied (in most of the  cases)  when  they go through 
synchronous pipelines between  operators.  This 
cost  is  particularly high if tasks  are in different 
processors  that  are  not  sharing memory. Analysis 
of queries in the  context of a model based  on 
projected  path lengths of MVS (the IBM Multiple 
Virtual Storage  operating  system) and DB2 shows 
that  the  path length more  than  doubles if all syn- 
chronous pipelines are  replaced by asynchronous 
 pipeline^.^^ The  extra  path lengths are mostly  due 
to  the  costs of forming records, inserting them 
into  and retrieving them from table queues. 

Data parallelism. DP is the  key  to  supporting  a 
high degree of parallelism. Currently,  a  table may 
be divided up into  a  number of partitions  (one 
such  system, DB2, allows up to 64 partitions,  for 
example).  This  is  true  even in a  system  that  does 
not employ parallelism within a  query  (beyond 
doing sequential prefetching of data using system 
tasks in anticipation of future  requests from the 
user’s query  processing  task47).  Each  partition 
may  be  stored  on  a different device (possibly of a 
different type) and reorganized independently. 
DB2 partitioning is based on nonoverlapping key 
ranges, as specified by  the  creator of the table. In 
contrast,  systems like TPF, Bubba, DBC/1012, 22 and 
Grace54  use hashing to assign records to different 
partitions. 

A hybrid approach is one  that  combines DP and 
PP. The  extreme  case of the hybrid approach is the 
one  where  we associate  one  task with each  op- 
erator for each  data partition. That is, we employ 
full DP and full PP and name this  approachparallel 
asynchronous  pipelines.  This  approach is unde- 
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sirable from the viewpoint of the  tremendous in- 
crease in path length that it would cause.  Hence, 
if DP provides  the  desired parallelism, then  use 
synchronous pipeline as much as possible for 
each  partition  and  run different partitions in par- 
allel. This  scheme  is named theparallel synchro- 
nous  pipeline  approach. 

Pipelining helps reduce  peaks in data communi- 
cations  and  disk I/O. If pipelining is  not  used, in an 
SN architecture,  the  data from the producer  are 
transferred  across  the  network  and  put on the  disk 
at  the consumer’s system.  This  may  cause  a  peak 
in communication if the  producer  does  not  have 
much work  to  do (e.g.,  it is reading the local work 
files and distributing them  across  the network). 
But, if the  data  are piped to the  consumer,  then 
usually it is the  consumer  who  is  the  bottleneck 
due  to  the  processing (e.g., join)  that  needs to  be 
performed on the incoming data,  and also may be 
due to  the lower priority assigned to it. As a  re- 
sult,  the  data  transfer is spread  over  a longer pe- 
riod of time, thereby reducing the  peak in the 
communication traffic. An asynchronous ap- 
proach and a  synchronous  approach  are  pre- 
sented in Reference 55 for controlling and man- 
aging query pipelines. 

Load-balancing  issues. As discussed in the  previ- 
ous section  on parallelism, the  key  elements of 
parallelism are  data  and  computation  partition- 
ing. Different methods of data partitioning (e.g., 
key range partitioning) and computation  parti- 
tioning (e.g., program and  data parallelism) were 
mentioned before. Computation partitioning 
must  be  done  such  that  the  load  is  spread as 
evenly  as possible among the different tasks  and 
different physical resources involved in the com- 
putation.  Two  kinds of load balancing are impor- 
tant: (1) physical resource level (e.g., load bal- 
ancing of CPU nodes  across  many  simultaneous 
applications), and (2) logical resource level (e.g., 
load balancing of different tasks  accessing  a  table 
in parallel). Other  discussions  on load balancing 
can be found in Reference 56. 

Physical load balancing.  In  this  paper, we discuss 
only physical load balancing involving CPU nodes, 
not the load balancing of I/O and communication 
resources.  In  the  partitioned  architecture (SN), 
the  data from a  disk  must  be  retrieved  through  the 
CPU node  where  the disk is attached.  This node 
controls I/O and locking, applies the local predi- 
cates,  extracts  the qualified records, and sends 
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them  to the next  stage of computation, which may Also, the Commit-LSN t e ~ h n i q u e ~ ~ , ~ ’  may be used 
be in another node. A node may become  over- to reduce  contention  and  to avoid a significant 
loaded if there is too much demand for  the  data amount of locking overhead. 
under  its  control.  To  reduce  the load on  this  node, 
we might consider  the following alternatives: Logical load balancing. With data parallelism, 

1. Off-loading predicate  evaluation  and  record One way of partitioning the work is to assign a each  operator is assigned a  portion of the  work. 
extraction.  This  requires sending raw pages to 
the  destination  nodes. Locking is essentially  at in Figure the Sales Table is partitioned into data task  to  each physical data partition. For example, 

the page level because the Source node for sales in January,  February,  etc.  Since  the  vol- 
records.  Another  alternative is for the  desti- 
nation node  to do  the locking, but  this  requires 
a global locking mechanism, as in the SD ar- 
chitecture.  In  a  partitioned  architecture (SN), 
usually all the locking is done locally. The 

B 

distinguish between qualified and ume of sales records is higher during  the nlonths 

B 
effectke communicati& bandwidth required 
may also  increase  considerably  because  the 
records  are not filtered at  the  source. With 
this, the SN architecture  comes  closer  to  the SD 

Physical  and  logical 
resource level  load 

balancing  are important. 
architecture,  where raw pages are  shared 
among the  nodes. But unlike in SD, no buffer 
coherency  protocols  are  needed. 

2. Data redistribution. We  can  redistribute  the 
data  to avoid the overloading of the  node.  This 
is possible if different pages, or different rec- 
ords within pages are demanded from the dif- 
ferent  nodes. Also, it requires a priori knowl- 
edge of the  data usage pattern.  Further,  the 
usage pattern must not change too  often (e.g., 
between  day and night times). Note  that  the SD 
architecture can handle such  pattern  changes 
very well. 

3. Orthogonal data  distribution.  In  this  approach, 
the  correlation  between distribution of data 
placement and data usage is minimized. An 
example of this is random  data  placement. 
This  approach is the  best  for avoiding skews, 
however, it does  not allow the clustering of 
data to minimize 1/0 and locking costs.  This  is 
a  drawback  particularly  for handling of com- 
plex  objects. Also, the  overhead may be  too 
much for small queries.  (For example, if a  re- 

will involve at least 15 tasks  on 15 nodes in the 
SN architecture.) 

1 quest  results in 15 records,  then it probably 

It is possible  that  the  same  set of records is de- 
manded from different nodes. If the  data  are  only 
read  most of the time, then data replication can 
reduce  contention.  Otherwise,  the  data  must  be 
granularized more through schema  changes,  or 
new lock modes (such as increment/decrement 
locks) must  be  introduced  to  reduce  contention. 

of October,  November,  and  December,  more  par- 
titions are assigned to  these months.  The  query 
for computing average  sales for each kind of item 
sold per month can  easily  be  computed by run- 
ning one  task per partition to aggregate the  data 
of each  partition  and  consolidate  the aggregates at 
the  end.  This load is balanced across different 
tasks assuming uniform sizes  for  the partitions. 
We call this physical partitioning. 

Now  consider  another  example  where  the  query 
is for computing the  monthly  average  for  the  sum- 
mer goods. For this, the load of the  query will be 
higher for the physical partitions  associated with 
the  summer  months.  Therefore we need to run 
more  tasks  for  the  summer  partitions and fewer 
tasks for the  winter  partitions to balance  the load 
of tasks. As shown in Figure 2, suppose we need 
to run four  tasks  for  the month of June.  To 
achieve  this, we may logically partition this  phys- 
ical partition into  four logical partitions,  each  con- 
taining roughly one  week of data  and running a 
task for each logical partition. Likewise,  consider 
another  example  where  the  query  is  for  comput- 
ing the  monthly  average for the  winter goods. For 
this, the load of the  query will be higher for  the 
physical partitions  associated with the  winter 
months.  Therefore we need to run more  tasks  for 
the  winter  partitions and fewer tasks for the sum- 
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Figure 2 Example of logical partitioning 

- 
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360 MOHAN ET AL. IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994 



mer  partitions to balance the load of tasks.  This 
example  shows  that physical partitioning is not 
sufficient to achieve load balancing. Physical par- 
titioning of data helps load balancing, but load 
balancing must be done  for  each  query. In an  ex- 
treme  case,  the  query might be only  for  the month 
of September, which has  only  one  partition. For 
this, logical partitioning is a must to achieve  par- 
allelism. 

Although the  above  example might apply to  the 
Access  and  the  Group  By  types of operators, load 
balancing must  be  done  for all the  operators,  such 
as join and  sort.  References 57 and 58 address  the 
load balancing issues  for  the  sort  operator. 

Impact of parallelism  on DBMS components. In 
this  section we give an  overview of different com- 
ponents of a typical DBMS, then explain the  fea- 
tures of these  components  that  are  important  for 
parallelism. For  ease of exposition, we present 
this in terms of enhancements  needed  to paral- 
lelize a  sequential DBMS. 

We call the  upper  part of the  system  that  deals 
with  query optimization and plan generation  the 
relational data  system (RDS). The lower part  of  the 
system  that  deals with buffer management-con- 
currency  control,  recovery,  record management, 
and  space management-is called the  data  man- 
ager (DM). We discuss  the  enhancements  that 
need to  be  done at the RDS and DM levels. These 
levels  correspond  to  the  System  R RDS and Re- 
search  Storage  System (RSS) levels.59 

Enhancements  to  the SQL language are  necessary 
to make more parallelism possible within the 
DBMS. Although the 1992 (SQL2  SQL) standard al- 
lows  an  insert  statement to provide multiple rec- 
ords,  most  implementations of sQL allow the  ap- 
plication to  provide  only  one  record at a time to 
the DBMS for insertion.  As  a  result,  there is little 
chance  for parallelism for  such  insert  opera- 
tions." The  same  is  true for the SQL statements 
update or delete where  current of cursor. Only 
one record  at  a time can  be  updated or deleted in 
this  case. We must allow the application to  spec- 
ify update or delete  for  a  set of records in one SQL 
command. 61 Enhancements  to  the application 
program  interface  are  also  required  to  interface to 
DBMS applications  that  have  many parallel pieces. 

The optimizer may be designed to deal with the 
questions relating to  the degree of parallelism and 
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the assignment of work  to  the different tasks 
solely at  the time of query compilation. This 
would be  what we call compile-time or static op- 
timization. Another possible approach is where, 
in addition to doing the compile-time determina- 
tion of the  number of tasks, enough intelligence is 
built into  the  run-time  support and the plans them- 
selves  to dynamically adapt  the  execution plan. 
This would be  based on information about  the 
loads on the different processors,  characteristics 
(size,  data  distribution,  etc.) of the  intermediate 
results,  the availability of memory,  etc. Typi- 
cally, this dynamic optimization is more difficult 
to accomplish than  the  static optimization ap- 
proach. 

Complexity of optimization is already  a major 
problem in relational DBMSs, and parallelism 
makes  this problem even bigger. One  question  is 
whether  there is a  compromise  approach to  op- 
timization that  does not increase  complexity  too 
much. One idea is a  two-phase  static optimizer. In 
the first phase, it optimizes  the  query, ignoring 
parallelism (i.e., acts  as if the query will be run in 
a  sequential DBMS). In  the  second  phase, it takes 
the  query plan chosen in the first phase  and  op- 
timizes it further for parallelism. This is the  ap- 
proach  chosen in XPRS,29 mentioned earlier, and 
DB2 Version 3 (discussed in a  later  section).  This 
approach is particularly  attractive if we  want  to 
parallelize an existing DBMS. The  two-phase  op- 
timization approach  also  reduces  the  search 
space of optimization,  hence reducing optimiza- 
tion time. 

Obviously, there will be  situations  for which this 
approach  does not produce  an optimal plan due  to 
the fragmentation of optimization.  Let  us  con- 
sider  an example. Suppose  the first phase  chooses 
plan alternative P1 and rejects plan alternative P2. 
If P2 is much more  expensive  than P1, then  usu- 
ally we  are not interested in the parallelized ver- 
sion of P2 either.  The  reason is that it wastes  a 
significant amount of resource  and  such  wastage 
is not acceptable in a multiuser environment.  Fur- 
thermore,  there is a good chance  that  its  response 
time will be worse  than  that of P1. If the  resource 
consumption of P1 is not very different and  the 
parallelized version of P2 is better  than  the  par- 
allelized version of P1 then  this original choice of 
P1 over P2 was a bad choice. 

Let us  assume  that in the  previous  example P1 
uses  the  nested  loop and P2 uses  the  sort-merge 
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join  methods;  suppose  the  sequential optimizer 
chooses P1 since it has  a  lower  cost,  but  not by a 
wide margin. In the SN architecture,  there is a 
major difference in performance of nested loop 
versus  sort merge. This problem arises  when  the 
corresponding  partitions of the  outer  and inner 
tables  are  not  co-located.  Then, for each  record of 
the  outer,  we  have  to  visit  other  nodes  to get the 
matching inner  records. If the  system  has N 

Parallelism is enhanced 
in some of the  key 

relational operations. 

nodes and each  node  accesses  the  records of the 
outer,  we  need N tasks  for  this.  Each of these 
tasks  has  to  execute N -  1 tasks in N -  1 other  nodes 
to get the matching inner records.  Therefore,  the 
number of tasks  is in the  order of N 2 ,  and the 
computation is fragmented in the  order of N 2 .  
The  sort-merge  alternative (P2) can  run  this  query 
with N tasks  for  the  outer, N tasks  for  the  inner, 
and N tasks for the join. Therefore, it is in the 
order ofN. N 2  number of tasks is not acceptable, 
particularly  when N is large (for N = 40, number 
of tasks is more  than 1000). Also, the efficiency of 
computation  may  be  drastically  reduced  when it 
is fragmented N 2  times. Therefore, the sort-merge 
alternative (P2) is preferable, and the two-phase op- 
timization  will miss this better alternative. Such sit- 
uations typically arise in the SN architecture. 

As argued above,  the parallel optimization of a 
query  depends on how much resource is avail- 
able. This is usually known at run time. However, 
one  source of complexity of dynamic  optimiza- 
tion is the  need  for  the modification of the plan at 
run time, particularly during the  execution of the 
plan. One way  to avoid this  is for the  static  op- 
timizer to optimize the  query  based  on  the max- 
imum amount of available resources.  Then, at run 
time, the  degree of parallelism of each  part of the 
plan can  be  changed  based  on  the  actual  amount 
of available resource.  This usually does  not  re- 
quire  complex plan changes  at  run time. This is 
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the  approach  chosen for DB2 Version 3, as  we will 
see  later. 

Another  change  that would be  desirable to  the 
RDS component is the  consideration of bushy 
joins (i.e., composite  inner tables) in addition to 
the  System R approach of considering only non- 
composite inners. Otherwise, we would be  re- 
stricted  to pipelining as  the  only  means of getting 
program parallelism among the  join  operations. 
Join pipelining is feasible only if no  sort  needs  to 
be performed on  the  result of one join before  the 
next  join  can  be performed. 

The run-time component of a parallel DBMS must 
support  starting and stopping of tasks, monitoring 
their progress, and communicating run-time er- 
rors. A paper  on  Gammaz7  discusses  such  sup- 
port. In a multiuser environment,  only  a  portion 
of the  resources is allocated to a given query. 
Parallel queries  have  the  potential of using the 
entire  system  resources,  such as CPU, I/O, etc. 
Therefore,  there is a need for a  run-time  mecha- 
nism to limit resource usage rate of queries  to  the 
assigned values. This usually requires cooperation 
with the (operating) system resource manager. 

Enhancements  may  be  necessary  at  the DM level 
for  the handling of large buffer sizes,  and possibly 
multiple buffer 110 parallelism, task  struc- 
ture,  and locking support for parallelized update 
queries. 

Parallelism  and  relational  operators. Parallel- 
ism is enhanced if we (1) reduce  dependencies 
between  operations  (see  the discussion that fol- 
lows  about  the join operation), and (2) make  even 
the lower level DBMS functions  more  set-oriented 
(e.g., by performing aggregation during sort).  In 
this  section we discuss  the  functions  that must be 
considered in parallelization of some of the  key 
relational operations. 

Access. Access refers  to  accessing  permanent  ta- 
bles  or  work files. This  operation  also  includes 
acquiring any  locks, applying the eligible predi- 
cates  and performing projections. An access  may 
be  via indices or  by table  scans. When access  via 
index is chosen, more than  one  index  may  be  used 
for  accessing  the  records of a single table.40 

Join. The join operation involves taking the re- 
sults of accessing  two or more  tables  and applying 
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the join predicates. If parallelism among accesses 
and  the join is being maximized, then, during the 
access of the inner table, we cannot  take  advan- 
tage of those  predicates on the inner table  that 
involve columns of the  outer table. The effect is 
as if the  nested  loop join method is not being used 
and  the  accesses  are  more like those performed in 
the  sort-merge join method. 

Group By.  Ideally, aggregation should be com- 
bined with  the  sort and merge phases of the SQL 
Group  By operation,  instead of being performed 
as a  separate  operation  after  the merge is com- 
pleted and we have  a  completely  sorted  stream. 
Combining aggregation with other  operations will 
cut down the number of passes through the  data 
by one.  More  importantly, in most  cases, it  will 
reduce  the  number of records  to  be dealt with in 
the merge phases,  thereby  potentially reducing 
the CPU and 110 overheads. 

Duplicate  elimination. Duplicate elimination also 
should be combined with sort  and merge opera- 
tions. Of course, if the  columns of interest in the 
result  constitute  the  key of a nonunique index, 
then it would be highly preferable to make the 
index manager itself return  only  nonduplicate  val- 
ues.  Under  these  conditions, retrieving all the 
keys and then eliminating duplicates in the  index 
manager’s caller would be much more  expensive, 
since  indices typically store  duplicate  keys in a 
compressed form that  can drastically reduce  the 
number of comparisons required to  select  only 
one  instance of each  duplicate key. It may also 
reduce  the number of locks  that  are  acquired, de- 
pending on what  the  objects of locking are  (see 
References 41,  42, and 45 for more  discussions). 
This will be especially beneficial in the SD envi- 
ronment  where the locks  are global locks. While 
the  above  points  are applicable even  without  par- 
allelism coming into the  picture,  they  become  ex- 
tremely  important in the  context of a  database 
machine,  since adopting them could lead to  a 
drastic  reduction in communication traffic also. 

Selection. In the  case of the  set-oriented  insert, 
delete, and update  operations,  the  selection of the 
records  can go on in parallel with the  insert,  de- 
lete,  or  update  operation. Depending on the  con- 
sistency level used (repeatable  read  or  cursor  sta- 
bility) during the  retrievals,  by  the time the  delete 
or update  operation  is  executed,  the  records  that 
previously qualified may no longer qualify for the 
delete or update  due to  the activities of other 
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transactions.  This  has to  be dealt with carefully to 
avoid inconsistencies.  This kind of problem arises 
even  when  there is no intratransaction parallel- 
ism, but  the  data  access is postponed until the 
index  accesses  are finished and cursor stability is 
used during the  index  access  (see  References 40, 
45, and 62 for  more  discussions). 

Union. The union operation will not  have much 
work  to  do, unless (1) duplicates  are  to be elim- 
inated,  or (2) an Order  By  clause  exists. If dupli- 
cate elimination is required,  then,  unless multi- 
query optimization is going to  be performed and 
somehow  the  queries  constituting  the  operands of 
the union are going to be combined,  the elimina- 
tion of the  postprocessing required to remove  du- 
plicates would not be possible in most  cases. 

I/O parallelism in DB2 Version 3 

D B ~  Version 3 (DB2 v3) provides  support  for  ex- 
ploiting 110 parallelism (IOP) to  reduce  response 
time for data-intensive, 110-bound queries. For a 
table  with large amounts of data, DB2 users may 
partition the  table (physical  partitioning) onto 
separate I/O devices. 

In  prior  releases, DB2 always  read  each  table in a 
single stream  manner,  one  partition after another. 
Therefore,  a large percentage of the  query  re- 
sponse time might have  been  spent on waiting for 
110 operations  to  complete. DB2 v3 provides  the 
capability to fully utilize the I/O bandwidth that is 
made possible by  the use of a  partitioned table. 
DB2 will initiate multiple concurrent I/O requests 
for a single-user query  and perform parallel 110 
processing  on multiple data  partitions.  The  query 
elapsed time can  thus  be significantly reduced for 
110-bound queries. 

If a  table is created  as  a  partitioned  table, DB2 can 
exploit the possibility of IOP when  this  table  needs 
access. When a  table is not  created as a  parti- 
tioned table, DB2 may  consider partitioning such 
a  table  into multiple work files to benefit from IOP 
in subsequent  operations. For example,  when  a 
table  needs  to  be  sorted for performing a  sort- 
merge join, DB2 may consider partitioning the  sort 
output  into multiple work files and then  executing 
the  join in parallel. 

DB2 uses IOP for both  dynamic and static SQL que- 
ries. In the  distributed  context, it is used for both 
local and  remote  queries (with a DB2 requestor 
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and  a DB2 server).  Users  have  the ability to tell 
DB2 whether or not it should consider using IOP. 
Even if the  user  asks  for IOP, it  will be used only 
if the optimizer determines  that it is likely to  be 
useful. Using the EXPLAIN statement,  a  user  can 
find out  whether DB2 has planned to exploit IOP for 
a given query. 

IOP is designed to support  read-only  uo-bound 
queries.  It  can  be  exploited for an  embedded 
SELECT, a  read-only  cursor,  or  a  subquery  since 
their  results are read  only and never  updated. I/O- 
bound  queries  are  those  queries  whose  response 
time is dominated by  the time for completing 110 
operations. For a given query,  when  the  user  has 
requested IOP, if DB2 estimates  that  its 1/0 pro- 
cessing time is much higher than  its CPU process- 
ing time, then it  will choose  to activate multiple 
parallel I/O streams. IOP can  be applied to  both 
single-table accesses  and multiple-table joins. 
Typical types of queries  that  can  take  advantage 
of IOP include: 

Queries  with  intensive  data  scans and high se- 
lectivity: These  queries involve large volumes 
of data to  be scanned,  but  relatively few rows 
meet  the  search  criteria  and  are  returned. 
Queries containing aggregate functions: Similar 
to  the first type of queries, column functions 
(MIN, MAX, SUM, AVG, COUNT) usually involve 
large amounts of data  to  be  scanned, but  few 
aggregate results  are  returned. 
Queries  accessing long data rows: These  que- 
ries  access  tables with long data  rows,  and  the 
ratio of rows  per page is very low (e.g., each 
page contains  only one row). 

For  these  types of queries, DB2 spends  most of the 
time fetching pages (high I/O cost), and relatively 
little time processing  rows (low CPU cost).  There- 
fore, IOP can  be used to reduce the 110 elapsed 
time. When a  query is I/O bound,  the I/O band- 
width  determines  the  query  elapsed time. Query 
elapsed time decreases  when I/O bandwidth in- 
creases. 

The fundamental  strategy of IOP is to  process por- 
tions of a single user  query in parallel through  the 
use of horizontal  data partitioning. DB2 will at- 
tempt  to fully utilize the I/O bandwidth of the  par- 
titioned table by triggering parallel sequential 
prefetches on multiple partitions.  The number of 
parallel I/O streams  activated in a  query is called 
the degree ofparallelism.  One  or  more  consec- 
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utive  operations  (each  operation  can  be  a  table 
access,  a  join,  or  a  sort)  can  be  executed in par- 
allel as a  group,  such  that all the  operations in this 
group have  the  same  degree of parallelism. Such 
a  group is referred to  as  aparallel  group. 

The  sequential  prefetch  support  that  has  existed 
from DB2 Version 1, Release i4’ is essential  to  the 
implementation of IOP. Sequential  prefetch is a 
mechanism to trigger asynchronous I/O opera- 
tions. Pages are fetched  into  the buffer pool be- 
fore  they  are  required,  and  several  consecutive 
pages (e.g., 32 pages) are read with a single I/O 
operation.  This  technique allows CPU and I/O pro- 
cessing to overlap,  and  reduces  the  query  elapsed 
time. 

Figure 3  illustrates  sequential  prefetch. When a 
CPU is processing  a set of pages fetched  into  the 
buffer pool (e.g., set sl), the I/O subsystem is 
fetching the  next  group of pages (e.g., set s2). 
Therefore,  the CPU and I/O processing  are  over- 
lapped,  but  the 110 processing itself is still in se- 
quential mode in DB2 Version 2. As processors 
become  faster,  more  queries  become I/O bound. 
The figure shows  a  case  where  the CPU speed is 
faster  than  that of I/O, which results in the CPU 
waiting for 110 operations to complete.  Query  per- 
formance  can  be improved further by overlapping 
the I/O operations with one  another. With IOP, 
multiple instances of the  same  operation  are ex- 
ecuted  on  many disjoint partition key  ranges  or 
page ranges. 

Figure 3  also  shows an example of parallel I/o 
processing  on  a  table with two partitions.  It  as- 
sumes  that  the CPU processing  speed is two times 
faster  than  the I/O processing  speed. DB2 invokes 
two parallel 110 streams  to fetch  data from the two 
partitions  concurrently.  Except during the initial 
transitive  stage,  the CPU is kept  busy all the time 
processing  data, while sequential  prefetches  on 
different partitions  continue to  be triggered in a 
round robin fashion until the  query is complete. 
During the initial transitive  stage, CPU processing 
will be  delayed while waiting for  the first few se- 
quential  prefetches to  be activated  for all the 
partitions. 

The  placement of files on  the disk is critical to  the 
performance of IOP. To maximize the  perfor- 
mance  improvement, I/O contention should be 
kept  to  a minimal amount by spreading  the  par- 
titions over different disks, and allowing each I/O 
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Figure 3 Illustration of I/O parallelism 
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stream  to  operate on a  separate 110 channel  (bus) 
path.  The DB2 v 3  IOP approach is extensible to any 
possible future  support for CPU parallelism within 
a machine and  even  across  machines in a  shared 
disks  environment. 

Planning for parallelism. The DB2 V3 optimizer is 
used  to group similar degrees of parallelism. 

Parallel  groups. A parallel plan is produced  by 
the optimizer based on the  best  sequential plan by 
parallelizing its 110 bottlenecks,  thereby reducing 
its  elapsed time. In DB2 v2,  the  optimizer  pro- 
duces  a  sequential  query plan that  consists of a 
chain of operations.  Each  operation  can  be  a  table 
access,  a  join,  or  a  sort, and is represented by a 
minipfan data  structure.  To  support IOP in DB2 V3, 
the pre-existing optimizer has  been  enhanced 
with apostoptimization  phase  that  examines  the 
best  sequential plan produced by  the pre-existing 

logic and determines which operations  are I/O 
bound and can benefit from IOP. Some  operations 
with the  same  degree of parallelism are grouped 
together.  Each of those  groups is called aparallel 
group - 
The general rule-of-thumb to  determine  the 
groupings of parallelism is: A parallel group starts 
with an  access and continues  to  cascade until 
there is a  sort  operation.  Since CPU parallelism is 
not being exploited in DB2 v3,  a  sort  operation will 
have to be performed sequentially on a single pro- 
cessor.  Therefore,  a  sort  operation stops a  par- 
allel group in the miniplan chain.  There  can po- 
tentially be two different parallel groups  that  a 
table  can  be in: one for accessing  that  table  and 
another  for joining that  table  with  a  composite 
table. This usually means  that  the  table is sorted 
with parallel table access and then  partitioned  for 
the  next parallel join. 
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Degree of parallelism. The degree of parallelism 
is  the  number of parallel I/O streams  activated for 
a  table.63 The optimizer estimates  the  degree of 
parallelism for  each parallel group  (at compile 
time or at run time). However,  since  some im- 
portant  factors  are  not  known until run time (such 
as amount of buffer pool resources available and 
values of host  variables),  the  actual  degree of par- 
allelism may  be  adjusted  at run time. The run- 
time logic goes  through  a  process called bufler 
pool negotiation to determine  whether enough 
buffers are available to  stay with the degree of 
parallelism determined by  the optimizer at  com- 
pile time. As a result of (automated) negotiation, 
a parallel plan may even fall back to  the original 
sequential plan at  run time. To be  able to  do  the 
run-time  adjustment, the compiled plan is aug- 
mented to include partitioning information for all 
the  referenced tables. 

The goal of IOP is to  reduce  elapsed time with 
optimal resource utilization. Therefore,  the de- 
gree of parallelism can  be  determined in two 
steps.  The first step  is  to estimate  the  best  pos- 
sible elapsed time for a given parallel group in the 
query.  To  do this, we pretend  that  every physical 
partition is going to  be accessed by a  separate I/O 
stream.  The  second  step is to find the minimum 
degree of parallelism that  can  achieve  the  best 
possible elapsed time (see  the  earlier  section  on 
I/O versus CPU parallelism for further discussion). 

Step 1: Estimate  the  best possible elapsed time. 

Elapsed  time = max (CPU processing  time, 

I/O elapsed  time = maximum  partition I/O time 

Yields: 

Elapsed  time = max (CPU processing  time, 
maximum  partition I/O time) 

I/O elapsed  time) 

Thus: 

The total  elapsed time is the maximum of CPU 
processing time and I/O elapsed time, assuming 
CPU processing and I/O are  totally  overlapped 
with  each  other. 
The CPU processing time is equivalent to  the 
CPU resource utilization time estimated  for  se- 
quential plan, assuming the CPU overhead  for 
activating parallelism is negligible. 
The I/O elapsed time is determined by  the max- 
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imum partition I/O time (Le., the  partition  that 
takes  the longest time to finish its UO). This  is 
due  to  the  fact  that,  with IOP, all the  partitions 
of all the  tables  are  read in parallel. Therefore, 
the  slowest  partition  becomes  the  bottleneck. 
Having multiple I/O streams  accessing  a single 
partition  cannot  reduce  the  elapsed time of par- 
tition 110 time since  those multiple I/O streams 
have to  share  the same physical device. 
By  substituting CPU processing  time with se- 
quential CPU time and I/O elapsed time with 
maximum partition I/O time, we obtain  a  for- 
mula for  the  best  possible  elapsed time. It  is the 
maximum of the  sequential CPU time and the 
largest partition I/O time. 

Step 2: Find  the minimum degree of parallelism 
needed to achieve  the  elapsed  time  estimated in 
Step 1. 

A table  can be accessed in parallel either through 
key partitioning (for an  index  scan) or page par- 
titioning (for a  table  scan). To determine  the  de- 
gree of parallelism, we derive  appropriate key 
ranges or page ranges  to  achieve  the  best possible 
elapsed time based  on  the following assumptions: 

Data are uniformly distributed within a  parti- 
tion. 
I/O contention  can be made negligible when mul- 
tiple 110 streams  access  a single physical parti- 
tion by making those multiple streams  access 
that  partition at different times. 

The  key  ranges  or page ranges being derived are 
called logical partitions. Each logical partition is 
accessed by  an 110 stream. Logical partitions do 
not  necessarily  correspond  to physical partitions 
and may not fall into physical partition  bound- 
aries. The degree of parallelism can  be found after 
all the logical partitions are derived. It is impor- 
tant  that  when  more  than  one  table is present in 
a parallel group,  the  corresponding logical parti- 
tions of the different tables  have matching key 
ranges. This is necessary  to  make  sure  that  a  set 
of records of one  table is read into the buffer pool 
around the same time the  corresponding joining 
records of the  other  tables  are  also  read in. 

Impact of host variables on degree ofparallelism. 
The optimizer determines  the  degree of parallel- 
ism at compilation time if there  are  no  host  var- 
iables in the  query  that may influence the  degree 
of parallelism. If a  query  references  a host vari- 
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able that  involves  the partitioning key, which may 
influence the I/O time of the  query,  then  the ideal 
degree of parallelism cannot be determined at 
compile time. When host  variables  are  present, 
the compiled plan has  been augmented to include 
the necessary CPU and I/O time information so that 
the run-time logic can  evaluate  the  values of host 
variables, adjust the I/O time of the  query,  and 
determine  the  actual  degree of parallelism. The 
run-time logic does  the  latter  by invoking a  pro- 
cedure in the optimizer component. 

The  values of host  variables  can  be  used to de- 
termine which part of a  table  is qualified to  be 
accessed. The partition I/O time can  be  adjusted 
accordingly. 

Buffer  manager  extensions. A  few  extensions  to 
the buffer manager were  needed to  support IOP. 
Those  extensions are described in this  section. 

Conditional p a g e   k i n g .  Until DB2 V3, whenever 
a fixgage request was invoked, buffer manager 
(BM) tried to find the  requested page in the buffer 
pool. If BM could not find the page, it allocated a 
buffer slot  for  the page and scheduled  a read I/O 
operation. BM suspended  the  invoker uncondi- 
tionally whenever  a  read I/O was in progress.  The 
read I/O could be triggered either by  the  invoker 
or  by an asynchronous  prefetch  task. With IOP, 
since  a  query  process could be initiating many 
concurrent I/O streams, it was beneficial for the 
process  to switch to a different I/O stream if the 
current I/O stream ran into  any  wait  state. 

In order  to allow the  process  to switch to a dif- 
ferent I/o stream, BM in DB2 v3 provides  a condi- 
tional fixpage request. When this  option is used, 
the BM invoker  is  not  forced to wait  for  any  read 
110 to  be completed for the  requested page, but  an 
asynchronous I/O will be initiated on behalf of the 
requester.  In  the  absence of CPU parallelism, 
since  a single process  has  to  process multiple I/O 
streams,  such  processing is made possible by 
making the  process go as far as it can with pro- 
cessing  the  pages of a  particular I/O stream  that 
are in the buffer pool before switching to pages 
from another I/O stream. Anytime the  process  de- 
cides to  process a  particular  stream,  the  process 
issues  an unconditional fixpage for the  next page 
to  be processed (Le., the page for which a con- 
ditional h-page performed during the  previous 
round of processing of this  stream resulted in a 
page not  found in bufferpool response from BM). 
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For  any  subsequent pages of that  stream, condi- 
tional h-pages are issued during the  current 
round. 

Bufferpool  availability. Each parallel stream  re- 
quires  at  least 16 pages, and up to a maximum of 
64 pages from the buffer pool for  sequential 
prefetch.  (One  study  has  shown  that  each 110 
stream should maintain at  least 16 buffer pages for 
sequential  prefetch in order  to obtain  a  reasonable 
reduction in response time with IOP.) The 
prefetch  quantity  can  be dynamically adjusted by 
DB2 based  on  the  system-wide buffer pool usage. 
If the  sequential  prefetch  quantity is Q pages, 
then  the number of buffer pages required per I/O 
stream  is 2Q pages (Q for pages currently being 
processed  and Q for  the  next  set of pages being 
prefetched). 

At run time, DB2 will look at the  number of buffer 
pages available and  determine  the maximum 
number of parallel I/O streams  that it can  support 
without  jeopardizing  the  performance of other 
queries running in the  system. To derive  the  ac- 
tual degree of parallelism at run time for  a parallel 
group, DB2 divides this maximum number by the 
number of tables  that need to  be accessed by this 
group. This new degree may be lower than  the 
planned degree if the  current buffer pool usage is 
high. 

Performance  monitoring  and tuning. New  trace 
and  statistics  records  are  produced by DB2 v3 to 
help in performance monitoring and tuning. They 
provide  the following information: 

Description of how the  tables within a parallel 
group  are  partitioned  by specifying the  key 
range and page range for each  partition 
Elapsed time statistics for each parallel opera- 
tion 
Number of times the buffer manager was unable 
to allocate  the  desired  number of buffers to sup- 
port the planned degree of parallelism for  a  par- 
allel group 
Number of times the  sequential  prefetch  quan- 
tity had to  be reduced in order  to allow multiple 
queries to continue to execute  concurrently 
with IOP 
How  often  the page had already  been 
prefetched  into  the buffer pool, when DB2 
needed a page during the  execution of a parallel 
query 
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The  system  administrator is allowed to specify 
what  percentage of the buffer pages can  be used 
to support prefetching for IOP. 

Possible extensions. The following are  some  areas 
that will potentially  improve  performance, if im- 
plemented. 

Nonuniform distribution of partitioning keyval- 
ues-The current implementation assumes  a 
uniform distribution of partitioning key  values. 
As  a  matter of fact,  for  some time, DB2 has  been 
supporting  the efficient handling of those  situ- 
ations  where  there is nonuniform distribution of 
key  values  by  tracking  frequently  occurring  key 
values.64 But this  latter information can  be  ex- 
ploited further to  do a  better  job of logical par- 
titioning. 
Better modeling of CPU availability-To en- 
courage IOP, DB2 assumes  that  the CPU is 100 
percent available to  the  query in order  to  obtain 
the  best  estimates  for  the I/O and CPU times. 
This CPU available percentage may need to  be 
adjusted  to reflect the  situation  where CPU uti- 
lization is high when  the  query  is  executed. 
Parallel I/OS for write operations-SQL insert, 
delete,  and  update  statements also can benefit 
from IOP. This  can  be  done by parallelizing at 
least  the  retrieval  portions of those  statements 
(e.g., the  evaluation of the  subquery in the  case 
of an  insert from subquery  statements).  A fur- 
ther  step would be  to update  any  indexes also in 
parallel. 

Conclusions 

In this  paper we discuss  some  architectural  alter- 
natives  and design approaches for introducing in- 
traquery parallelism in a relational DBMS. We dis- 
cuss  the  pros  and  cons of the  shared nothing (SN) 
and shared  disks (SD) architectures. While scal- 
ability might be a problem for SD, it has  many 
advantages with respect  to load balancing and 
database design. Further  research  is needed to 
clarify these  points.  A possibility is using the SD 
architecture in the  nodes of an SN system.  This 
gives us  more powerful nodes  that  are  easier to 
manage and  whose load is easier  to balance. 
Availability in case of failures of some  processors 
within a  node is also  enhanced with this hybrid 
approach. We also  discuss  the increasingly im- 
portant role that disk arrays will play in improving 
the  performance of the I/O subsystem  to  match  the 
latter with that of the CPUS. In addition, we dis- 

368 MOHAN ET AL. 

cuss  asynchronous pipelining using table  queues 
and the  overheads  that  they impose compared  to 
synchronous pipelining. Parallel synchronous 
pipelining is pointed out  as  the  preferred  method 
of accomplishing parallelism, whenever possible. 
With respect  to load balancing, we discuss  some 
of the major issues. We may not  foresee  some 
skew  problems  at compile time due  to  the  absence 
of knowledge about  the  values of bindings of host 
variables,  correlations,  etc.  This  requires doing 
some  work  at  run time. This is a major research 
problem. 

Other major topics  that must be  considered in the 
study of a parallel DBMS include system manage- 
ment, utilities (database reload, unload, reorga- 
nization, etc.),  performance of transaction  work- 
load on a large number of small CPUS, and the mix 
of transaction  and  query  workloads. We are  con- 
tinuing work on the  research  topics  that  we  have 
identified in this  paper. 

We also  present in detail the implementation of I/O 
parallelism in DB2 v3. 
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