Data access within the
Information Warehouse
framework

IBM’s Information Warehouse™ framework
provides a basis for satisfying enterprise
requirements for effective use of business data
resources. It includes an architecture that defines
the structure and interfaces for integrated
solutions and includes products and services
that can be used to create solutions. This paper
uses the Information Warehouse architecture as
a context to describe software components that
can be used for direct access to formatted
business data in a heterogeneous systems
environiment. Concepts of independence between
software components and how this independence
can provide flexibility for change are discussed.
The integration of software from multiple vendors
to create effective solutions is a key emphasis of
this paper.

he Information Warehouse* framework from

1BM includes an architecture, software prod-
ucts, and consulting services to create software
systems that allow organizations to locate, ac-
cess, copy, and manage their data, even in to-
day’s complex, heterogeneous systems environ-
ments. Most companies have an abundance of
data to support their business processes and yet
they struggle to make effective use of the data.
Diverse computer hardware and software sys-
tems and distributed networks are often used to
satisfy the information technology requirements
of a company, and this diversity can add to the
difficulty that the overall organization has in mak-
ing effective use of data. Even understanding the
scope of the data resources of a company can be
challenging. There are usually multiple copies of
the same data for various reasons—sometimes to

300 SINGLETON AND SCHWARTZ

by J. P. Singleton
M. M. Schwartz

make operational data more usable for end users,
and sometimes to place data for better data access
performance. Many times individuals have copies
unbeknown to administrators. In some cases, the
same data are represented differently in copies
because of different application conventions.

Virtually everyone in the organization who uses
data can be affected by this complexity. Data ad-
ministrators have difficulty knowing what data
exist, where copies of data exist, and whether
copies are current and consistent. Systems ad-
ministrators have the complex job of managing
the installation and support of multiple software
packages to support program access to all the
data. Application builders often have to write
multiple programs, each having unique requests,
in order to access all of the required data. End
users have difficulty knowing what data are best
suited for their purpose and how to locate and
access the data. Often end users are presented
with data descriptions that have an administra-
tor’s view of the data rather than a business view
that employs terms they understand. All these
factors make it difficult for an organization to
make effective use of its data.

©Copyright 1994 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

Information Warehouse Architecture I' defines a
structure, components, and programming inter-
faces that can be used to build software systems
so that organizations can locate, access, copy,
and manage their data in an integrated and flexible
manner. The architecture is published for the use
of customers and as a guideline for the integration
of 1BM products and the products of other soft-
ware vendors. This initial architecture is focused
on the requirements of business professionals
(and applications) accessing formatted business
data for informational or decision support use.
(Formatted data are sometimes called structured
data and can be contrasted with text, image, and
video data.)

In this paper, we use the Information Warehouse
architecture as a context to describe logical soft-
ware components that can comprise data access
solutions—a name that we use to refer to software
that provides direct access to data in a heteroge-
neous systems environment. We discuss data ac-
cess solutions with reference to how they satisfy
the application builders’ requirements for data ac-
cess. We also consider aspects related to system
administration. A distributed data environment is
assumed, and the terminology of client/server
computing is used.

We use the term “data access” to refer to access-
ing (i.e., reading or updating) data at the location
where the data are stored. It is generally a syn-
chronous function, that is, after making a data
access request, an application waits until a re-
sponse is received for the request. Data copy or
replication is the copying or staging of data to
another store for subsequent access. Data copy is
frequently an asynchronous process. Data access
and data copy are complementary functions. In-
formation Warehouse Architecture 1 defines a
structure and interfaces to support both.

Application builders’ requirements

The application builders’ point of view is of par-
ticular interest because it is here that “the rubber
meets the road” when it comes to satisfying the
end users’ requirements for consistent and com-
plete access to data. End users want the applica-
tions they use to provide access to all interesting
data regardless of the type of data, the location of
the data, or the data management software used.
Applications have the job of satisfying this re-
quirement, but in reality the requirement is

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

“pushed down” to a lower level and must be sat-
isfied by the software that provides data access
services to the application—the data access so-
lutions.

Many data access solutions are available today.

Virtually all data management vendors provide a
data access solution for access to their data, and

A single consistent interface
can lessen the dependence of the
application on specific data
management software.

perhaps to other data management systems. Still
other software vendors specialize in providing
data access to a variety of data management sys-
tems even though they do not provide data man-
agement systems themselves. We can safely say
that for any data source there is a way to access
the data. That is the good news. The bad news is
the problem of complexity that application build-
ers and systems administrators must deal with
because of the many data access solutions and the
rapid change in data access technology. The chal-
lenge is to find methods to simplify this complex-
ity in a way that provides flexibility to adapt to
changes in technology and changes in the enter-
prise.

The problem, seen in more detail from an appli-
cation builder’s point of view, is that an applica-
tion must often use multiple data access solu-
tions, each having a different interface, to reach
the required data. The multiple solutions intro-
duce complexity and added costs to developing,
testing, and installing applications. Their data ac-
cess requirements call for a single, general, and
consistent interface for accessing all types of
data. Furthermore, this interface must be avail-
able to all the client systems in which the appli-
cation runs. These requirements are the broadest
for commercial application vendors since their
products must operate in all of the prevalent client
systems and access all prevalent data sources, not

SINGLETON AND SCHWARTZ 301

just those of a single enterprise. These vendors
can best realize a return on their investment by
reducing the development effort with a single,
consistent data access interface and by increasing
the number of data sources that the application
can reach.

In addition to the benefits of efficiency and cost,
a single consistent interface can lessen the de-
pendence of the application on specific data man-
agement software by enabling the application to
be separated or isolated from the data manage-
ment software. Having a degree of independence
between the applications and data management
software allows the enterprise more flexibility in
choosing or changing the data management sys-
tems that it uses. Care must be taken to ensure
that dependence on data management software is
not traded for dependence on the consistent in-
terface. Here standards can play an important
role. When the consistent interface complies with
formal standards, additional independence is pro-
vided since the application may be able to run
with multiple product offerings that implement
the interface. In contrast, use of a proprietary
interface results in the application (and the en-
terprise) being “locked in” to the vendor whose
software provides the interface.

Software standard specifications attempt to intro-
duce consistency and homogeneity into the het-
erogeneous world of software. There are factors
that can prevent them from being effective, how-
ever. For one, standards groups define specifica-
tions by consensus among the participating mem-
bers. Often, divergent positions are represented.
Because of this situation, the definition of a stan-
dard can be a lengthy and political process. The
development of a standard can thus be outpaced
by advances in technology. Second, software
vendors naturally attempt to differentiate their
products to show “value add” for their custom-
ers. This differentiation results in changes and ex-
tensions when compared to a standards defini-
tion. Although the changes and additions may
provide added value, customer use of them re-
sults in being “locked in” as mentioned above.
This condition benefits the vendors but not al-
ways the customers. The benefits of advanced
function and “value added” extensions must be
weighed against the benefits of efficiency and in-
dependence that standards provide. Customers
who feel strongly that compliance to standards is

302 SINGLETON AND SCHWARTZ

necessary must make this compliance a clear re-
quirement for software vendors.

We discuss more about standards as we describe
logical components that can comprise data access
solutions. We also consider how each component
can help to meet the requirements of application
builders and how the different components and
approaches simplify or complicate systems ad-
ministration for the enterprise. Finally, we look at
how the overall structure or architecture of a data
access solution can provide the benefits of open-
ness, independence, and flexibility for the enter-
prise.

Components of a data access solution

The software components that we describe pro-
vide data access as a service for applications and
tools, and are typically developed by data access
vendors or data management system vendors.
(We use the term data access vendors to refer to
vendors that provide software for accessing data
but do not provide data management system soft-
ware.) Because the components are described
from a logical view, the individual components
identified do not necessarily exist as discrete
product offerings. Generally, two or more com-
ponents are combined in a product. The compo-
nents we describe can be thought of as capabili-
ties of a data access solution.

We start with the components that are “seen” by
the application program. These components are,
first, the data access language that is used to
express requests passed to the data management
software and, second, the application program-
ming interface (API) that is used to incorporate
these requests into the application program. The
relationship of these two components can be seen
in Figure 1. Although application builders benefit
from all components in the data access solution,
these first two should be the only components
with which they directly interact.

Since we are assuming a distributed environment,
data requests will frequently involve communi-
cation with remote data management software.
We discuss this communication next in two con-
texts. First discussed are the data access proto-
cols that define the content and meaning for the
communications between data access clients and
servers® on different systems. Then, we discuss
how these data access protocols can be affected

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

Figure 1 Data access components

APPLICATION

APPLICATION DATA
PROGRAMMING ACCESS
INTERFACE LANGUAGE

DATA ACCESS
PROTOCOLS

COMMUNICATION
PROTOCOLS

DATA SOURCE

DATA

ACCESS

LANGUAGE
DATA ACCESS
PROTOCOLS
COMMUNICATION
PROTOCOLS

by communication protocols, the protocols that
define how the data access communications are
exchanged between nodes in a computer net-
work. The four components that we have identi-
fied thus far define the basic flow of data access
as shown in the figure. We describe them in detail
and then describe two key additional components
for solving the application builders’ requirements.

In the area of data access, Information Ware-
house Architecture I identifies interfaces for the
data access language and the application pro-
gramming interface. It also identifies a data ac-
cess protocol. These interfaces are critical for in-
tegration—the interface between the application
and the data access solution and the interface be-
tween the client and server systems. Although the
architecture clearly indicates that data access
should be provided through a single consistent
interface, the architecture does not describe or
mandate the “mechanics” of how to achieve it.
Current software technology is very diverse in
this area.

We discuss the interfaces identified by the archi-
tecture for data access in more detail later in this
paper. In addition, we go beyond the architecture
to describe some of the current software technol-
ogy that might be used to provide these in-

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

terfaces. In the course of this discussion, we
introduce the possibility of additional software in-
terfaces. We discuss these interfaces in the same
context as those identified in the architecture. They
provide additional opportunities for openness, in-
dependence, and flexibility in the structure of an
overall data access solution.

In this paper, we use data management system as
a term inclusive of database management systems
and file systems. As we look at the components of
a data access solution, we do not focus on data
management software. We assume that the data
management systems are a “given,” that is, the
data management systems that an enterprise
owns are part of the definition of its requirement
for data access. Access must be provided to the
data with minimal impact on the function of the
data management systems. We focus on how to
reach the data wherever the data exist. The data
to be accessed may be data that are used in the
day-to-day operations of the enterprise or the
data may be a copy of data made for informational
use.

The term “middleware™ has been in popular use
in the computer software community for some
time now. Data access middleware is software
that provides an application with a consistent in-

SINGLETON AND SCHWARTZ 303

terface to underlying (and often remote) services,
insulating the application from the native inter-
faces and complexities required to execute the
services directly. In this paper, all of the data

SQL is currently the most
popular and universal language
for relational database access.

|
access components could be considered to be part
of middleware when, grouped as a data access
solution, they provide a single consistent inter-
face for access to heterogeneous data sources.
Later in the paper we identify two components

that provide key functions most strongly associ-
ated with data access middleware solutions.

Data access language. For our purposes here, a
data access language means the statements that
are used to express what the application intends
to do at the data management system. Examples
are operations such as “fetch a record,” “insert
a record,” and ““create a table.”

Many data access languages are available today.
Examples include dBASE**, DL/1*, QUEL, and SQL
(Structured Query Language). Some of these lan-
guages are designed to control navigation through
the linked records of a hierarchical or network
database. Others are designed to specify the de-
sired result of a database operation, without spec-
ifying how the result is to be accomplished. There
is a fundamental difference between these two
classes of database language. One can be thought
of as process-oriented, the other as “set-” or re-
sult-oriented. The process-oriented language al-
lows the expression of detailed operations such as
‘““get unique record,” “get next record,” and “get
next record within parent and hold for update.”
The set-oriented language allows the expression
of higher-level operations such as “select all
unique rows where the value in the second col-
umn is greater than 2400.”

Of the many available database languages, SQL is
currently the most popular and universal lan-

304 SINGLETON AND SCHWARTZ

guage for relational database access. It is sup-
ported by nearly all of the major relational data
management vendors. As its popularity has in-
creased, even nonrelational data management
vendors have adapted their products to accept it.
As its use has become more and more prevalent,
SQL has proven itself to be a very powerful, ex-
pressive query language, irrespective of the data
store.

SQL was designed to be used with relational
databases, i.c., where data are conceptually or-
ganized in tables and one table is related to an-
other table by data values, not by linked records.
It provides the capability to retrieve data, and to
insert, update, and delete data as well. Elements
of the language deal specifically with relational
constructs such as tables, rows, and columns, and
with operations such as the join and union of mul-
tiple sets of data. SQL is a set-oriented data lan-
guage. An SQL statement expresses what is to be
accomplished, not Aow. An application has no
need to navigate through a database searching for
records. Instead, the application describes what
is to be retrieved (or changed), and the details of
how are left to the database manager.

SQL offers a big advantage to the application that
needs access to data in a heterogeneous environ-
ment. Because SQL can be used for both relational
and nonrelational data access, and because it is
supported in many of the leading database prod-
ucts, it is now possible to use a single data access
language in conjunction with multiple different
data management systems. SQL also has advan-
tages in the client/server environment. Detailed
database operations do not show through in the
language, so implementation differences can be
masked. The set orientation of SQL is a big ad-
vantage over distributed file access, as much
more processing is possible at the remote site on
behalf of one SQL statement. It also supports dis-
tributed data management systems more effi-
ciently than navigational data languages because
repeated function calls are not needed to navigate
through a database.

The success of SQL as a de facto industry standard
for database has prompted action by the recog-
nized standards bodies 1SO (International Orga-
nization for Standardization) and ANSI (American
National Standards Institute), and the industry
consortium X/Open, to write formal definitions’
for the language. These groups have, for the most

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

part, cooperated with each other. The result is
that a very significant amount of SQL has become
standard in the industry, and portability of appli-
cations between different data management sys-
tems is becoming more and more achievable. The
current definition of SQL from ISO and ANSI is
popularly called sgr92. This definition is given
with three levels of conformance: entry, interme-
diate, and full. In 1994, SQL implementations will
be expected to conform to the entry level. Con-
formance to the remaining levels will be expected
at some (as yet unspecified) time in the future.

Although SQL standards exist, they have, until
very recently, lagged behind the full capability of
implementing products. Database vendors, want-
ing to differentiate their products in the market-
place, have augmented them with extensions be-
yond the standard. The extensions are rarely
compatible with any other vendor, so, even
though there is a standard core to the language, it
is very unlikely that the complete SQL set from
any two vendors would be the same.

The differences between these sets of statements
(or dialects) range from the support of completely
unique SQL statements, to additional clauses on
otherwise standard SQL statements, to just the
minor inclusion of an extra keyword, and of
course, might include unique semantics on a
statement because of differences in default values
or actions. Using nonstandard extensions in ap-
plication development results in an application
that is limited to a specific data management sys-
tem, or to one that must test for a capability be-
fore using it—an added complexity, especially if
testing for the capability must be done in a unique
way. Thus, application developers interested in
access to heterogeneous data management sys-
tems are advised to stay within the standard SQL.

There are other differences to consider beyond
the language itself. For instance, the way in which
data and status are presented to the application
can vary. The basic interface between an appli-
cation and an SQL-supporting data management
system is one in which an SQL statement (or some-
thing representing the statement) is passed from
the application to the data manager and the re-
sults of the SQL statement execution are passed
back to the application in the form of data values,
data descriptors, and status information. The way
in which data and status information are passed
between the application and the data manager

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

varies considerably. A control block or descriptor
is normally used, but the format of such a de-
scriptor is not yet standardized. Formal standard-
ization of status codes, data types, and data de-

Until very recently, SQL
standards have lagged behind
the full capability of implementing
products.

scriptors such as those defined in SQL92 will soon
help in this area when data management systems
implementing these features are released.

A final point on nonstandardization in SQL con-
cerns the format and content of schema informa-
tion. Most SOL implementations store schema in-
formation in ““database catalogs” which appear to
the user as normal tables accessible through SQL.
These catalogs contain information about the ta-
bles, columns, data types, user authorities, and so
on in the data management systems. It is probably
safe to say that each of the vendor catalogs is
different, at least in some respects. If the appli-
cation needs information about the objects in a
data management system, chances are that the
application will have to ask each data manager for
the information in a different way, by a different
name, or will see results in different formats.
Schema information covering tables, columns,
and views is specified in the SQL92 intermediate
level, but these tables are only a start for stan-
dardizing all of the information that is needed.

SQL is the data access language of choice for the
Information Warehouse framework. The lan-
guage has been chosen, but one of the many di-
alects must also be chosen. The SQL dialect iden-
tified in Information Warehouse Architecture I is
specified in the ISO-ANSI SQL92 entry level stan-
dard. Using a standard dialect of SQL is very im-
portant if the enterprise needs access to multiple
data management systems. The use of a non-
standard language tends to lock the application
into a single vendor, thus reducing flexibility in
choice of data management systems, and could

SINGLETON AND SCHWARTZ 3095

result'in increased development and maintenance
costs when the application must be changed to
support a different data management system. The

The program preparation process
has not been standardized.

trade-off is that the advanced functionality of-
fered by a specific vendor will not be available to
the application.

The best chance to achieve wide portability and
connectivity for an application and to increase
independence from any particular database man-
agement system (DBMS) is obtained by staying
within the set of SQL statements specified by the
Information Warehouse architecture (SQL92 entry
level).

The implementation differences in control blocks
and schema information can be circumvented by
using a standard application programming inter-
face discussed next.

Application programming interface. Technically,
SOL is a data sublanguage with respect to an ap-
plication programming language such as C or
COBOL. SQL92 does not yet contain the logic con-
structs (for example, IF-THEN-ELSE, DO WHILE)
that are provided by a procedural programming
language. In contrast, the popular programming
languages in use today do not contain anything
close to the expressive power of SQL for manip-
ulating databases. Thus SQL does not yet replace,
but is complementary to, most programming lan-
guages at the functional level. For an application
to gain the benefit of both a high-level program-
ming language and SQL, a process is needed to
combine the statements from the two languages in
the appropriate logical sequence. The process
used is an attribute of the application program-
ming interface.

Information Warehouse Architecture I identifies
two application programming interfaces for ac-
cess to data: embedded SQL and callable SQL.

306 SINGLETON AND SCHWARTZ

Embedded SQL. In embedded SQL, the SQL state-
ments are interspersed directly into the applica-
tion program in sequence with the procedural lan-
guage statements. This style makes the program
logic more straightforward for the programmer
but requires additional source program process-
ing. The programming language typically does not
understand SQL statements, so something must be
done to make the SQL statements acceptable to
the programming language compiler. Embedded
SQL is typically converted by a language prepro-
cessor. The preprocessor converts SQL state-
ments into a series of assignment statements and
procedure calls that are compatible with the pro-
gramming language and are then compiled along
with the rest of the application program state-
ments.

Program preparation is the process whereby SQL
statements are preprocessed, the application pro-
gram is compiled, and program variables and pa-
rameters are bound to the target data manage-
ment system. For some vendors, this process is
accomplished by a preprocessing utility. For oth-
ers, there is no preprocessing step. Instead, the
SQL statements are passed on to the data man-
agement system for interpretation.

The program preparation process has not been
standardized. The differences in this process
must be dealt with by the application builder,
making it more difficult to write an application
that is portable across database managers. This
problem was not as big in the past when most
application development was done in-house for
the data management systems installed in an en-
terprise. One application generally ran with one
data management system. The industry trend,
however, is toward the use of applications and
tools written by software development compa-
nies for general use. These application and tool
builders have a different need. They are moti-
vated to write their applications to run with as
many data management systems as is practical.
Application builders who want to ship “off-the-
shelf” applications are forced to go through
unique program preparation steps for each differ-
ent data management system and ship multiple
prepared modules, or they must provide rela-
tively complex installation procedures and ask
the customer to execute the program preparation
steps during installation. The latter of these two
choices may also force the application builder to

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

ship source code, making it more difficult to keep
proprietary information out of competitors’ hands.

Callable SQL. Callable SQL is an alternative API
for using SQL with a data management system. In
contrast to embedded SQL, the SQL statements are
not embedded within the application as state-
ments. Instead, the statements are passed as
character strings through function calls to the
data management system. These function calls
provide the same capabilities as embedded SQL.
Using a series of function calls, an application is
able to submit an SQL statement for processing,
retrieve the resulting data (if applicable), and in-
spect status information.

Callable SOL has no SQL program preparation pro-
cess. Functions built into callable SQL replace the
processing normally achieved during program
preparation. Since the application code is not pre-
processed, the application can be more indepen-
dent of the data management system. As a result,
it is a major advantage to be able to ship appli-
cations without including source code.

Builders interested in accessing multiple data
management systems with their applications will
probably find callable SQL the more flexible of the
Information Warehouse API alternatives. Callable
SQL functions allow the application to identify
which data management systems are available in
the run-time environment and some of the char-
acteristics of each. Being able to determine these
characteristics at run time means that the appli-
cation builder can adapt the application to the
capabilities of the data source. The information
available includes data server names, server
product identification, and SQL dialect confor-
mance. From this information the application can
infer the availability of specific functional sup-
port.

There are several callable interface implementa-
tions based on SQL in the marketplace today. Some
of the more prominent products and interfaces in-
clude Q+E** Database Library, EDA/SQL**, Open
Client**, Oracle Glue**, and OopBC. Each of these
interfaces uses SQL to express the database opera-
tion, but each of them has its own different set of
function calls and operational capabilities.

The most promising attempt at standardization

for callable SQL is a definition originated by the
SQL Access Group® that is being further refined

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

and extended in cooperation with X/Open, ANSI,
and 1S0. This definition, the sQL Call Level In-
terface (SQL CLI), is expected to be the standard
base for future implementations of callable SQL.
Most of the leading data management vendors are
supporting this work. The callable SQL interfaces
that preceded this emerging standard must
choose to remain different or to evolve to the
standard. The same caveat that appears else-
where in this paper applies here as well: Appli-
cation builders will gain the most flexibility in
choice of data management systems if the func-
tion calls used are those specified in the industry
standard, not those of a specific vendor.

Two components to the data access ApI have been
discussed here (Figure 2)—the function calls in
callable SQL and SQL as the data access language
that is passed through these function calls on to
the data management system. These components
are somewhat independent, but not entirely. The
same function calls, for example, are used to pre-
pare and execute any SQL statement, whether it
be an UPDATE, CREATE, or SELECT. In some
cases, however, a sequence of function calls
might make sense only after execution of a par-
ticular SQL statement (a FETCH call would follow
the execution of a SELECT but not a DELETE). At
alower level, there are dependencies between the
function calls and SQL statements such as the
compatibility of function call parameters with SQL
data types and the matching of error codes with
SQL operations.

The callable SQL identified in Information Ware-
house Architecture I is the version defined by
X/Open and adopted by ANSI and 1SO—the
SQL CLI1.> Use of this API will increase the inde-
pendence of the application from a particular in-
terface provider.

The X/Open SQL CLI specification points to the
X/Open SQL CAE (Common Applications Envi-
ronment) as the definition of SQL to be used in
conjunction with the SQL CLI. Other callable in-
terfaces based on SQL also point to their respec-
tive SQL dialects. Note that it is possible for two
implementations of the same CLI specificatien to
support two different SQL dialects. Because the
X/Open SQL CLI is, for the most part, just a carrier
of SQL statement strings, the SQL dialect to be
used can be specified independently from the
SQL CLI.

SINGLETON AND scHwaRrTz 307

Figure 2 Language and API standards

ELEMENTS OF THE DATA ACCESS
LANGUAGE (SQL92 ENTRY)

SELECT

INSERT

UPDATE

DELETE

DATA TYPES

RETURN CODES
LANGUAGE BINDINGS
FUNCTIONS
CATALOGS

ELEMENTS OF THE APPLICATION
PROGRAMMING INTERFACE (SQL CLI)

ALLOC
CONNECT
DESCRIPTORS
EXEC

FETCH
GETCOL

FREE

The SQL dialect identified in Information Ware-
house Architecture I for both embedded and call-
able SQL is specified in the ISO-ANSI SQL92 entry
level standard. By aligning with existing and up-
coming international standards, the Information
Warehouse framework callable SQL API can pro-
vide an open solution that avoids the pitfalls of
most proprietary solutions.

For the user of Information Warehouse applica-
tions, the use of a standard data access language
and API in this framework promises that it will
finally be possible to buy a “shrink-wrapped” ap-
plication off the shelf and simply install it, and
that it will run with any data management system
supporting the Information Warehouse frame-
work callable SQL API.

To be realistic, however, one should realize that
a standard (common) interface will almost always
represent a subset of the function offered by any
target data management system. It is impractical
to attempt to coordinate competing vendors so
that they all produce the same function at the

308 SINGLETON AND SCHWARTZ

same time. Differences will always exist between
different products.

Application builders must deal with a real di-
lemma. The use of a common interface provides
portability and data location transparency for the
application—a degree of independence from the
rest of the system. The common interface, how-
ever, prevents the application from using all of the
function available at a data management system.
The choice between portability and function be-
longs to the application builder.

An interface would be deficient if it arbitrarily
constrained an application from using function
available at a target data management system.
Some callable SQL implementations provide an
escape mechanism to allow nonstandard function
to be used by the application. The mechanism is
either a special function call or special data access
language syntax. The escape mechanism sepa-
rates or encapsulates the nonstandard request so
that normal syntax and other error checking is
bypassed. An application builder can choose to
use such a mechanism at the expense of applica-
tion portability.

A final point to be made here is that the Infor-
mation Warehouse framework callable SQL API is
not dependent on any particular communications
protocol. This point can be quite significant when-
ever a network is migrated to a new protocol or
upgraded to a new functional level.

Data access protocols. Thus far we have discussed
the components with which the application di-
rectly interacts—the data access language and the
application programming interface. These com-
ponents rely on additional layers of software to
connect to the appropriate data management sys-
tem. When the data are local, that is, on the same
system as the application that issues the request,
the connection is ultimately made by using the
data access API of the local data management sys-
tem. In a distributed environment, the data may
be on a remote system, in which case, distributed
processing is involved in accomplishing the data
access. A data access client on the application
system must “talk to” a data access server on the
system where the data reside. This communica-
tion requires a definition for how requests and
information are exchanged between the software
on the two systems. Such a definition is referred
to as a protocol. A protocol can be more formally

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

defined as a “set of semantic and syntactic rules
that determines the behavior of functional units in
achieving communication.”®

Typically, the protocols required to achieve com-
munication on behalf of an application are actu-
ally multiple protocols existing at different levels
or layers. Each layer defines a set of functions
that are provided as services to upper layers, and
each layer relies on services provided by lower
layers. At each layer, one or more protocols de-
fine precisely how software on different systems
interact to accomplish the functions for that layer.
This layering notion has been formalized in many
architectures. The most widely referenced is the
reference model of Open Systems Interconnec-
tion (08I),” defined by 150 and depicted in Figure
3. We show it here as an example of the relative
responsibilities of different protocols in achieving
communications for data access. The figure indi-
cates that there is a peer-to-peer communication
between software at each layer and a reliance on
underlying layers for services to accomplish com-
munication.

In this subsection, we discuss data access proto-
cols that define the content and meaning of re-
quests and information exchanged between data
access clients and servers. (In the OsI reference
model, data access protocols are a part of the
application layer since they are considered an ap-
plication process.)

Data access protocols rely on underlying proto-
cols to provide services for the communication of
these requests and information. In this paper, we
refer to these supporting protocols as communi-
cations protocols. We will discuss communica-
tions protocols briefly, noting implications that
the protocols can have on data access. (In the 0SI
reference model, communications protocols span
some or all of the layers of the model below the
application layer, depending on the specific pro-
tocol and the range of the services it defines.)

We have said that data access protocols define the
content and meaning of requests and information
exchanged between data access clients and serv-
ers. We list some examples here of exchanges
that might be defined by a data access protocol.
These examples are for a “conversational” pro-
tocol which is a request and reply dialog where
the data access client sends request messages and

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

Figure 3 Reference model for Open Systems

Interconnection

SYSTEM A SYSTEM B
APPLICATION APPLICATION
LAYER . LAYER
PRESENTATION PRESENTATION
LAYER LAYER
SESSION SESSION
LAYER LAYER
TRANSPORT TRANSPORT
LAYER LAYER
NETWORK NETWORK
LAYER LAYER
DATA LINK DATA LINK
LAYER LAYER
PHYSICAL PHYSICAL
LAYER LAYER

N

the server sends the related reply messages. The
examples are:

* Initiation of a conversation

» Identification of the client and server and their
capabilities

» Identification of the database to be accessed
and its characteristics

*% Preparation of an SQL statement for execution,
either for application preprocessing or dynam-
ically at application run time

& Processing a request for data

» Termination of the conversation

Data access clients and servers relying on proto-
cols to define their communications is not so dif-
ferent from people relying on a language and
associated rules of grammar to communicate ver-
bally. And, just as there are many different spo-
ken languages, there are also many different data
access protocols defined. The products that im-
plement these different data access protocols are
distinct data access solutions, that is, they ac-
complish data access in the unique way defined

SINGLETON AND SCHWARTZ 309

by the protocol. A data access client that im-
plements one data access protocol cannot com-
municate directly with a data access server that
implements another data access protocol. Enter-

Today, it is generally accepted
that any data access solution must
provide access to the data management
systems of multiple vendors.

prises often have multiple distinct data access so-
lutions in house in order to address all of their
data access requirements. This situation presents
significant challenges for application use and sys-
tems administration and has become an inhibitor
to the deployment of client/server technology.
This will be discussed further in the subsection on
programming and administration aspects.

Evolution of data access protocols. In the soft-
ware industry today most of the significant data
management vendors and data access vendors
have their own solutions for client/server data ac-
cess. These solutions are based on data access
protocols defined independently by the vendors.
Today’s data access protocols have evolved in
concert with and as a reaction to the evolution of
data access requirements and data access tech-
nology.

One of the most significant factors in the evolu-
tion of data access protocols has been the demand
for openness and the support of the heteroge-
neous enterprise. Today, it is generally accepted
that any data access solution must provide access
to the data management systems of multiple ven-
dors. However, data access protocols that satisfy
this requirement differ greatly in function, topol-
ogy, and the approach they use to incorporate
multivendor data access. The diversity of the pro-
tocols results from the diversity of the require-
ments, independent designs, the starting objec-
tives of a data access protocol, and its “history”
or evolution. Here is an example of different start-
ing objectives and evolution: Some data access
protocols were developed to support decision

310 SINGLETON AND SCHWARTZ

support applications and were initially targeted at
read access for use with a very wide set of data
management systems. Other data access proto-
cols were developed by database vendors for
transaction (and decision support) processing
within the product sets of the vendors. Both can
evolve to satisfy today’s data access require-
ments, but they will be very different from each
other.

We noted that today’s data access protocols differ
in the approach used to incorporate access to the
data management systems of multiple vendors. A
basic difference in approaches is whether the data
access software of different vendors interoper-
ates to create a solution (referred to as “multi-
vendor interoperability” in this paper) or whether
a single vendor creates the total solution. For
many enterprises, multivendor interoperability is
specifically called for in their requirements for
multivendor data access. For many other enter-
prises, it is not a requirement, and either ap-
proach is acceptable. Both types of protocols ex-
ist today, with the single vendor solution being
more predominant.

Design approaches for multivendor data access.
When considering approaches for data access
protocols that allow access to the data manage-
ment systems of multiple vendors, two significant
approaches stand out: open, common protocols
and database gateways. We describe these ap-
proaches in this section and point out which ones
incorporate multivendor interoperability. An-
other approach that accomplishes heterogeneous
data access outside of the data access protocol
will be described later. Microsoft’s Open Data-
base Connectivity (ODBC) falls into this last
category.

1t is the nature of data access protocols to have a
given protocol common to the set of data access
clients and servers that implement the protocol.
The protocol must be general and complete
enough to support the requirements of the clients
and servers that participate in the protocol. As we
have just discussed, the evolution of data access
protocols resulted in many diverse protocols.
Most of these protocols are “closed” or private,
that is, the protocols are used only by the product
set of a given vendor. Some protocols are pub-
lished for the purpose of multivendor participa-
tion as clients or servers in a data access solution.
As a result, a data access client implemented by

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

one vendor can interoperate with a data access
server implemented by another vendor. We refer
to such a protocol as an open, common proto-
col—open because any vendor can participate,
and common because the protocol is common to
the set of data access clients and servers that im-
plement the protocol. (Implicit in this use of the
term “open” is that the protocol is technically
suitable for the use of other vendors.) To be effec-
tive as a heterogeneous solution, an open, com-
mon protocol must be designed for use across
diverse machine architectures and operating sys-
tems. The protocol must be very general and
complete in order to support data access to het-
erogeneous data management systems. No as-
sumptions can be made nor any knowledge pre-
sumed between the data access clients and
servers except what is defined via the protocol. In
private protocols, assumptions can be made and
knowledge can be built into the data access client
and server to support the communication. For
example, a private protocol might assume that
both client and server software know the format
of a particular data structure, and therefore the
format does not need to be defined in the com-
munication. Or assumptions can be made that
floating point data are represented in a single for-
mat rather than in the diverse formats that could
exist in a more heterogeneous environment. Such
assumptions can result in more efficient but less
general communication.

“Opening” the protocol allows, but does not re-
quire, the data management system of any vendor
to participate directly in the dialog of the proto-
col. This factor can be very important for perfor-
mance, data integrity, and security.

Figure 4 illustrates an open, common protocol by
showing a data access client communicating with
the servers of multiple vendors via a single data
access protocol. 1SO RDA,® X/Open RDA,’ and
DRDA* ! (Distributed Relational Database Archi-
tecture*) are all examples of open, common pro-
tocols. !

The second approach for multivendor data access
is a gateway. A gateway is software that has a
dual role of both server and client in data ac-
cess.'! It acts as a server within a given environ-
ment and then acts as a client to pass the appli-
cation request to the target data management
system located in a different environment. In this
way, a gateway can be thought of as extending or

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

Figure 4 Clients and servers using open, common
protocol

APPLICATION

API

CLIENT I:_E]

IJ . b
SERVER LY_‘ SERVER SERVER @

DATA DATA DATA
MANAGEMENT MANAGEMENT MANAGEMENT

SYSTEM [X] SYSTEM SYSTEM ‘Z]

complementing the environment with access to
additional data sources. For example, a gateway
can extend a LAN (local area network) environ-
ment by providing access to data sources that are
on other LANs or on host systems. Or a gateway
can extend the private protocol data access so-
lution of a vendor by providing access to the data
management systems of other vendors. When a
gateway is used, an application connects to (or is
connected to) the gateway as though the gateway
were a server. Typically, the application is un-
aware of the role of the gateway in handling the
data access request.

The placement of gateways within a network var-
ies. They can be on the same system as the client,
on the same system as the target server, or on a
separate system. Where a gateway is placed af-
fects the topology or configuration of the net-
work. In some cases, the architecture of the gate-
way determines the placement. In others, the
placement can be determined by the enterprise on
the basis of systems administration considera-
tions. Figure 5 shows a gateway that is on a sys-
tem separate from both the client and server. The
gateway in Figure 6 is on the same system as the
target data management system.

SINGLETON AND SCHWARTZ 311

Figure 5 Gateway on system separate from client and

server
APPLICATION
AP|
CLIENT
SERVER
GATEWAY
CLIENT @

SERVER D:] SERVER [:E] SERVER [E

DATA DATA DATA
MANAGEMENT MANAGEMENT MANAGEMENT

SYSTEM [Z] SYSTEM SYSTEM @

Gateways vary in terms of the functions they per-
form. Some possible gateway functions are: "

» Translating SQL syntax

» Detecting semantic differences

» Converting data types

~ Accessing generic system catalogs

~ Maintaining transaction boundaries

~ Converting status codes and messages

~ Mapping user identification and security checks

~ Balancing load and limiting the server

» Providing manageable control points for large
networks

~ Mapping LAN communications protocols to
WAN (wide area network) communications pro-
tocols

As can be seen from this list, gateways can have
an “all encompassing” role in data access, and

312 SINGLETON AND SCHWARTZ

their responsibilities can span some or all of the
logical software components that we discuss in
this paper. In this section, however, we are con-
cerned primarily with their role in simply com-
municating a data access request to the target
data management system.

An important measure of the effectiveness of a
gateway is the accuracy and correctness with
which its functions are provided. The most basic
concern is handling a transaction so that data in-
tegrity is preserved. Security is another important
requirement. Also, when transforming requests
for one type of server into requests for another
type of server, it is a challenge to correctly rep-
resent both types of servers. Unavoidable mis-
matches in function sometimes occur. It is im-
portant to understand how the mismatches are
handled and whether there is any loss of function
relative to either server.

Figure 6 Private protocol connection to gateway at
target data management system

APPLICATION

AP|

CLIENT Dﬂ

GATEWAY

SERVER [z]
CLIENT E

SERVER IE SERVER [)g

DATA DATA
MANAGEMENT MANAGEMENT

SYSTEM B] SYSTEM E

DATA
MANAGEMENT

SYSTEM

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

Gateway interfaces are sometimes open, that is,
they are published for the purpose of multivendor
interoperability. Figure 6 is an example of where
the client portion that directly interacts with the
target data management system has been imple-
mented by a vendor different from the vendor im-
plementing the server portion of the gateway. The
client could be implemented by the data manage-
ment vendor, although it is more typical for this
implementation to be done by a third-party ven-
dor. Gateways that have published interfaces can
also be used by an enterprise to develop custom-
ized access to a unique or unusual data source.

Any given vendor’s data access solution or prod-
uct set will probably incorporate a combination of
common protocols and gateways. The example
given earlier of a database vendor using a private
(common) protocol for data access within its own
product set and incorporating gateways for ac-
cess to other vendors’ data management systems
is a case of combined use. SYBASE Open Server**
provides an example of this combination that
would look like Figure 6. Data access requests are
communicated from a SYBASE client (““client X”)
to a SYBASE server (“server X”’) using the SYBASE
private protocol. The gateway is an open gateway
since the Open Server interface is published for
the use of other vendors and for customers. In the
figure, the client portion of the gateway is imple-
mented by “vendor A” for access to the data
management system of “vendor Y.” SYBASE also
uses this interface to provide its own gateways for
access to data management systems like IBM’s
DATABASE 2* (DB2*) and Oracle**.

INGRES**/Gateway fo DB2 is another example of
a private protocol connecting to a gateway, ex-
cept in this case the gateway can be connected to
an open, common protocol. (Refer to Figure 7.)
An INGRES client communicates a data access re-
quest to an INGRES server over INGRES Net, a
private protocol. The client portion of the gate-
way is an application that passes the request to
IBM’s DB2. The DRDA client of DB2 can then com-
municate the request to any DRDA-capable server,
for example, IBM’s DB2 on MVS, VM, or 0S/400*
(Operating System/400*).

It is also possible, although more unusual, for a
common protocol to connect to a gateway. EDA/SQL
Server Engine for DB2 for DRDA from Information
Builders, Inc., is an example. (Refer to Figure 8.)
Client A could be any DRDA-capable client con-

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

Figure 7 Gateway connecting to open, common
protocol

APPLICATION

API

CLIENT m

b

GATEWAY
SERVER E SERVER @ SERVER IZ]
DATA CLIENT DATA
MANAGEMENT MANAGEMENT

SYSTEM @ SYSTEM E
SERVER lZl SERVER SERVER [_i:]

DATA DATA DATA
MANAGEMENT MANAGEMENT MANAGEMENT

SYSTEM E] SYSTEM SYSTEM @

necting to the DB2 DRDA server. (IBM’s Distrib-
uted Database Connection Services [DDCS/2 and
DDCS/6000], Informix** Gateway with DRDA, Mi-
cro Decisionware Database Gateways for DB2,
SQL/DS, and 0S/400, and XDB Link are examples of
DRDA-capable clients.) The EDA/SQL Server En-
gine for DB2 for DRDA provides the client portion
of the gateway using exits provided in DB2. The
gateway can provide access to IMS (Information
Management System) or VSAM (Virtual Storage
Access Method) data available on the same sys-
tem or can provide access to any other data
sources available through EDA/SQL.

We have discussed two design approaches that
allow access to the data management systems of
multiple vendors. In summary, gateways and

SINGLETON AND SCHWARTZ 313

Figure 8 Open, common protocol connecting to
gateway

APPLICATION

AP

CLIENT @

L

GATEWAY
SERVER [E SERVER SERVER [zl
DATA CLIENT DATA
MANAGEMENT MANAGEMENT

SYSTEM {Z]

SYSTEM E J

SERVER

DATA
MANAGEMENT

SYSTEM

open, common protocols are methods for gaining
access to the data management systems of mul-
tiple vendors. Only open gateways and open,
common protocols obtain this access using multi-
vendor interoperability, with the latter being the
more common approach since it tends to be a
more “level playing field.” Open gateways allow
a vendor to participate as a server. Open, com-
mon protocols allow any vendor to participate as
a client, as a server, or as both. The data access
solution of an enterprise can then be comprised of
data access clients and servers from one or many
vendors in a combination decided by the enter-
prise.

Programming and administration aspects. Be-
cause of the diversity of application requirements
and the diversity of the capabilities of data access
solutions, an enterprise frequently has more than

314 SINGLETON AND SCHWARTZ

one data access solution in use. This use has im-
plications for programming and administration.

Thus far, we have discussed data access proto-
cols as though they were independent compo-
nents in a data access solution. In reality, most
products that implement data access protocols
also provide a programming interface for use by
an application. So, when an enterprise has mul-
tiple distinct data access solutions, each presents
its own API, and each is likely to have some dif-
ferences when compared to the others. When an
application must use multiple data access solu-
tions in order to meet its requirements for data
access, the work for the application builder in-
creases as we discussed previously. One factor is
skills; the application builder must learn the nu-
ances of multiple APIs. Another factor is that,
regardless of whether the APIs are different or the
same in style, the application must use each API
separately as shown in Figure 9, because the data
access solutions are distinct and separate. This
has an effect on the design or structure of the
application program. It also has a significant im-
pact on data transparency since the application
must know, or must be “told” in some manner,
which API to use to access the data.

An important implication results from the fact
that the API (and often, the data access language)
is integrated with the data access protocol. When
an application directly uses the API of such a data
access solution, and if the application becomes
dependent on the AP1, implicitly, the application
(and the enterprise) also becomes dependent
on the associated data access implementation.
There are also implications for administration.
For example, an enterprise may have chosen an
open, common protocol as the basis for data ac-
cess. Theoretically, only one data access client
would be required for each client system. Let us
say the enterprise has chosen the data access cli-
ent provided by vendor X. If an application in use
at the enterprise is dependent on the API of vendor
Y which is integrated with vendor Y’s data access
client, then the data access client of vendor Y
would also be required even though both clients
implement the same open, common protocol.

For some applications, a solution such as we de-
scribe later in the subsection on connection man-
agement software can provide independence be-
tween the API and the data access protocol and
can also lessen the complexity of dealing with

1BM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

multiple APIs. However, it does not improve the
complexities of administering data access solu-
tions in the enterprise since it does not decrease
the number of data access solutions required.
Having multiple distinct data access solutions in
use at an enterprise presents a challenge for sys-
tems administrators. The problems are related to
installation, maintenance, and problem determi-
nation.

Any data access solution is comprised of data ac-
cess client and server software components and
supporting definitional information that exist at
the data access client and server systems. The
definitions are information related to the network,
systems, security, and data management prod-
ucts and databases that can be accessed. Some
data access solutions also require their own
schema information similar to that in a relational
database catalog for any data that are to be ac-
cessed. Such definitions are unique to each dis-
tinct data access solution. The systems adminis-
trators must set up and maintain these definitions
along with the data access software components.
When an installation has multiple data access
solutions in use, the work of the systems admin-
istrators generally increases. There are more
components (i.e., software components and def-
initional information) to administer because the
solutions are very likely to overlap. There is more
complexity because different data access solu-
tions will have their own unique procedures, con-
figuration, and support requirements.

Another type of complexity can occur for systems
administrators. Setting up any one data access
solution can be complex in a distributed environ-
ment because of the layers of software used to
accomplish communications. When multiple data
access solutions coexist (or try to) in an environ-
ment, systems administrators must deal at times
with incompatibilities and errors that arise at in-
stallation and run time.

From an administration point of view, minimizing
the number of components in use for data access
and minimizing the number of distinct data access
solutions in use reduces systems administration.
These factors need to be considered as an enter-
prise evaluates data access solutions. Some single-
vendor “all-in-one™ solutions can reduce the num-
ber of components, depending on the topology of
the design approach. An open, common protocol
solution can theoretically reduce the number of data

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

Figure 9 Application use of multiple APIs

APPLICATION
APl API
CLIENT CLIENT

\ z T

SERVER SERVER SERVER
DATA DATA DATA
MANAGEMENT MANAGEMENT MANAGEMENT

SYSTEM E SYSTEM SYSTEM @

access solutions to one. The number of components
can also be reduced to a minimum because typically
only one data access client is required per applica-
tion system and only one data access server is re-
quired for each data management system. Defini-
tional information would be required at each client
and server. The complexities of problem determi-
nation in a multivendor environment can be re-
duced when the common protocol includes trace
and accounting information and system alerts, as is
the case for DRDA.

Here is an example of how an open, common
protocol could enable data access and data mi-
gration in a very heterogeneous environment
while minimizing the number of components.
Consider the large retailer shown in Figure 10.
The retailer has the following systems:

s A mainframe computer at headquarters with en-
terprise inventory and sales data

» Workstations at each retail store for store in-
ventory and sales data

s Multiple LANs for departmental work groups

Each system is from a different hardware vendor
as is each database management system. The re-

SINGLETON AND SCHWARTZ

315

Figure 10 Enterprise use of open, common protocol solution

HEADQUARTERS

[}

RETAIL STORE

FUTURE HEADQUARTERS
R

IIIIHllllllHIIIIIH

[t

o] g

DEPARTMENTAL WORK GROUPS

=CLIENT @:SERVER

tailer requires the mainframe computer applica-
tions to be able to “pull” data from the retail
stores for consolidation at headquarters and re-
quires the retail stores and departmental work
groups to have access to the consolidated data of
the mainframe. Furthermore, the retailer is con-
sidering downsizing the mainframe computer to a
smaller system from another vendor. Downsizing
will require, over time, that the mainframe appli-
cations and data be moved to the new system.
Eventually, the retail stores and departmental
work groups will access the consolidated data on
the new system. During a transition period, data
will be copied periodically from the mainframe to
the new system. With an open, common protocol,
it would be possible to enable all of the data
“paths” between heterogeneous systems and
data management systems having no more than
one client and one server on each system.

Open, common protocol solutions have had some
success to date, but single-vendor solutions are

316 SINGLETON AND SCHWARTZ

by far more predominant. Presently, product sup-
port is probably the most limited for ISO RDA, per-
haps because of the requirement for 0SI commu-
nications. Some support exists for X/Open RDA,
and this support may grow, depending on whether
communication protocols other than 0SI are sup-
ported in the future. Support is the greatest for
DRDA, with a mixture of software vendors pro-
viding client implementations. Server implemen-
tations are provided predominantly by IBM, al-
though some announcements and statements of
intent have been made by other software vendors.
For an open, common protocol to provide the
flexible solution shown in Figure 10, a heteroge-
neous mix of clients and servers implementing the
protocol must be available.

The continuing evolution of data access proto-
cols. We have discussed a few aspects of data
access protocols. But enterprise requirements for
data access solutions are much broader, including
requirements for availability, data integrity, per-

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

formance, function, and specific communications
protocols in addition to openness, flexibility,
manageability, and cost that we have discussed.
Today, enterprises frequently cannot find a single
data access solution that meets all of their re-
quirements. However, enterprise requirements
are the most significant determinant, and data ac-
cess solutions (and their related protocols) will
continue to evolve to meet these requirements.

Technology changes can play a role in the evo-
lution of data access protocols. In the subsection
on enhancement facility, we discuss a component
that, as one of its responsibilities, takes on the
role of coordinating or implementing data access
operations that combine data (multisite join), op-
timize distributed operations (query decomposi-
tion and global optimization), and coordinate dis-
tributed data management operations (multisite
update) across multiple heterogeneous data man-
agement systems. These data access operations
can also be implemented through data access pro-
tocols. Multisite join and multisite update have
been implemented in data access protocols to
varying degrees today. It is possible for an open,
common protocol to provide robust, global opti-
mization through the direct participation of data
management systems. The protocol would define
how data management systems share information
and perform tasks such as moving data in order to
accomplish the most efficient joins. Enhancement
layers introduce a pragmatic “let me do it for
you” approach that provides the function inde-
pendent of the data access protocols and does not
require multivendor participation. Whether open,
common data access protocols evolve to provide
global optimization of queries could be affected
by the acceptance and effectiveness of enhance-
ment layer function.

Economics could also be a determinant in the ev-
olution of data access protocols. Data access so-
lutions that are based on open, common protocols
can have a lower purchase cost since fewer com-
ponents are needed. Also, vendors can price their
components lower since fewer development re-
sources are required overall; for example, a data
access provider would only need to develop a
data access client for each client system it sup-
ports, assuming that data management vendors
provided data access servers. However, today
both software vendors and enterprises have made
significant investments in data access solutions
that are based on private protocols. These invest-

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

ments will affect the acceptance of open, common
protocols at least for the near term.

To be effective, an open, common protocol must
allow vendors to participate in the definition of
the protocol. Earlier we discussed the difficulty of
reaching consensus in standards groups. This
problem applies here, and, as a result, the defi-
nition of an open, common protocol can lag be-
hind advances in technology.

In the end, how much importance enterprises as-
sign to each of their requirements for data access
will determine the rate of evolution. Most enter-
prises struggle with the balance of their require-
ments. It is a very complex formula.

An enterprise has much to consider to make
effective use of what is available and to plan for
change. Chief among these considerations is the
fact that independence between components in a
data access solution can provide flexibility for
change. Information Warehouse Architecture I
identifies DRDA as a protocol for data access. An
open, common protocol such as DRDA provides
independence between data access clients and
Servers.

Communications protocols and their implica-
tions. We have stated that data access protocols
rely on communications protocols to define serv-
ices that accomplish the exchange of data access
messages between nodes in a computer network.
Here we discuss the relationship between data
access protocols and communications protocols.

As is true for data access protocols, there are
multiple communications protocols in the indus-
try today. Most notable are 1SO Open Systems
Interconnection (0SI), Systems Network Archi-
tecture (SNA), Transmission Control Protocol/
Internet Protocol (TCP/P), and Internet Packet
Exchange (1PX**). The fact that multiple commu-
nications protocols exist results from diversity in
network environments, processor resources, and
requirements. An enterprise might use one or
more communications protocols within its com-
puter network, depending on the overall config-
uration requirements. Often, communication so-
lutions are already in place when a data access
solution is selected by an enterprise. Thus, use of
the predominant, existing communication solu-
tions becomes a requirement for data access so-
lutions.

SINGLETON AND SCHWARTZ 317

Having considered the relationship between ap-
plications and data access protocols, and the ef-
fect of applications having to use multiple inter-
faces, we can “see the writing on the wall.”” When
a data access solution has to use multiple com-
munication solutions with differing interfaces and
functions, it encounters the same types of com-
plexity. Data access solutions can become tied
to specific communication solutions because of
their unique interfaces and services. For exam-
ple, 1SO RDA and X/Open RDA currently use only
0SI communications, and DRDA uses only SNA.
Data access solutions can also be limited or en-
hanced in function depending on the services
available through a given communications proto-
col. For example, SNA session outage notification
to the client and server programs makes it pos-
sible for DRDA to initiate transaction backout in
the case of communication line failure. All of
these factors define a relationship between data
access solutions and communication solutions
that is similar in many ways to the relationship
between applications and data access solutions.
Obviously, data access solutions could benefit if
this complexity were reduced. Not surprisingly,
in addition to the software development concerns
that we have just discussed, there is an accom-
panying set of administrative concerns for com-
munication solutions, analogous to what we de-
scribed earlier for data access solutions.

There are significant differences between com-
munications protocols, both in the amount of
services that are provided and in the individual
services. A simple way to get an idea of the dif-
ferences is to discuss the major protocols in the
context of the OsI reference model (refer to Figure
3). The 0sI protocol and SNA define services over
the full range of the stack. However, the two pro-
tocols are different in approach and organization.
TCP/IP, which was designed for the interconnec-
tion of networks with dissimilar communications
protocols rather than for application use, defines
protocols starting at the transport layer. Exam-
ples of services in the presentation layer and ses-
sion layer are user authentication; session outage
notification; and sync point management, which
is used to coordinate updates to multiple data ac-
Cess servers.

As enterprises balance their requirements and
search for ways to manage this complexity, the
same considerations for independence apply.
Flexibility can be gained by achieving some in-

318 SINGLETON AND SCHWARTZ

dependence between data access protocols (or
other applications that require communications)
and the communication solutions. One approach
that simplifies the software development aspects
is to allow applications that were implemented for
use with one communication interface to use
other communication networks with no change to
the application. This use can be accomplished by
providing underlying software that maps requests
for communication services made by the appli-
cation (in this case, a data access solution) to ap-
propriate services of the alternate communication
solution. This approach must provide function
compensation when the service requested by the
application is not provided by the alternate com-
munication solution. IBM’s Multiprotocol Trans-
port Networking (MPTN) architecture®™ defines
such an approach. As an example, the MPTN tech-
nology enables implementations of DRDA, which
was originally designed for SNA LU 6.2 communi-
cations, to communicate via TCP/IP.

Connection management software. We started
with a premise that enterprise data are often lo-
cated in multiple places and that applications
might require access to any part of the data.
Given that applications need to connect to more
than one data source, some problems must be
solved if these connections are to be made effi-
ciently. The problems associated with connection
management include:

¢ Identifying potential data sources

¢ Connecting to selected data management sys-
tems

* Understanding the capabilities and require-
ments of a data management system

¢ Interacting with the data management system

* Providing the necessary control to coordinate
multiple connections

It is very inefficient to include all of this capability
in each application. It becomes much easier for
the application builder if these problems are ad-
dressed in a generic way and are provided as a
service to the application.

In a popular solution, a vendor provides a single
application programming interface and multiple
back-end adapters, one for each type of data man-
agement system. The solution involves the map-
ping, by the adapters, from the single API to the
requirements of each unique data management
system. This solution allows the application to be

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

insulated from the characteristics of each data
management system; they all look the same
through the single API. An important objective is
to provide a high degree of independence between
the API and the adapters (and thus, the data man-
agement systems). When this independence is ob-
tained, the overall system gains flexibility. More
applications can access a greater number of dif-
ferent data management systems.

Solutions of this type available today typically
define an API and a data access protocol that are
designed to work together. Each of the solutions
has a different AP1. The problem here is that ap-
plications using any of these solutions are auto-
matically locked into a proprietary API and can
reach only the data targets supported by the par-
ticular vendor.

A more open solution is to provide a facility that
includes a standard data access API, a standard
data access adapter interface, a standard data ac-
cess protocol, and a switching mechanism (a
router) that controls the connections between ap-
plications and data access adapters (see Figure
11). The difference here is that the components
are designed as independent, pluggable units, and
the emphasis is on the use of open industry stan-
dards in the definition of the interfaces and pro-
tocols. If the components are independent and the
design is open, any vendor can participate by pro-
viding a component in the system. This solution
could allow any application that uses the standard
interface to connect to any data management sys-
tem for which a suitable data access adapter is
provided. Solutions of this type play a key role
often associated with data access middleware, as
defined earlier in the section on components of a
data access solution.

Five important factors contribute to the success
of this solution:

. The design is implemented on all of the re-
quired operating system platforms.

. The supported API contains sufficient function
to satisfy application requirements.

. The design incorporates applicable industry
standards.

. The design is open for any vendor to partici-
pate.

. Application builders and data management
vendors are motivated to provide the support.

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

Figure 11 Connection to multiple data management
systems

APPLICATION

DATA
ACCESS
LANGUAGE

API

ROUTER

ADAPTER ADAPTER

DATA
MANAGEMENT
SYSTEM

DATA DATA
MANAGEMENT MANAGEMENT
SYSTEM SYSTEM

ADAPTER

Many data management vendors in the industry
are currently interested in such a design because
of its inherent efficiencies, and solutions are ap-
pearing, generally based on some form of callable
SQL. An application builder needs to write to and
test only one interface to gain access to many
different data management systems. However, a
data management vendor needs to provide only
one adapter that will enable attachment by nu-
merous industry applications. Even independent
software vendors (those supplying neither the
major applications nor the data management sys-
tems) are building adapters on behalf of several
different data management system products.

Two components of the design have been intro-
duced: the router and the data access adapter. Let
us look more closely at the functions of each.

An example may be useful to illustrate the char-
acteristics of the two components. Suppose we
have a general-purpose report writing and busi-
ness graphics application. The application is
meant to be used in a generalized way, i.e., the
application is to be developed with little knowl-

SINGLETON AND SCHWARTZ 319

edge of the data management system with which
it will operate. The application only assumes that
it can operate using a standard interface (e.g., the
SQL CLI). The general design of the application is

The router is positioned between
the APl and the various data
access adapters.

to allow interaction with a user in a dialog that
prompts the user for information to tailor a report.

First, the application presents a list of the avail-
able data sources (usually expressed in business
terms such as “inventory data” or “daily sales
summaries””) to the user so that one of the sources
can be selected. Upon selection, the application
connects to the appropriate data management
system, then presents a list of information sub-
jects (names representing data) available at that
system. The user then specifies the reports to be
generated and identifies the data to be used and
the functions to be applied to the data. The ap-
plication determines whether the specified data
are available, the data manipulation functions are
supported, and the user is authorized to access
these database resources. The application also
defines the data types expected for the report so
that data conversion can be performed if needed.
The application then controls the fetching of the
data.

Router. Among the first activities in our scenario
are determining the possible data sources and
making the connection to the selected one. These
activities are accomplished using the router.

The router is positioned between the API and the
various data access adapters. The router has ac-
cess to information about each of the potential
data management systems and about which
adapter is used to gain access to a particular data
management system.

When a data access adapter is installed in the
system, information about the adapter and the

320 SINGLETON AND SCHWARTZ

associated data management system are “‘regis-
tered” in the system. Registration information in-
cludes identification of the adapter and a list of
pertinent characteristics. This information is
saved in a configuration file or directory and is
used by the router. The information is made avail-
able to an application through function calls to the
router. It enables an application to interrogate the
system about the accessible data.

When the user chooses particular data to work
with, the router finds and loads the proper data
access adapter and establishes the connection be-
tween the application and adapter.

Because of its position between the API and the
data access adapters, the router accepts function
calls from the application, acts on certain ones,
and passes the rest on to the appropriate adapter.
Requests and actions associated with the operat-
ing environment, connection management, and
transaction state management are handled by the
router. Other requests and actions such as basic
syntax checking, language mapping, data re-
trieval, buffering, and error code generation are
handled by the data access adapter.

In systems that support multiple applications run-
ning at the same time, the router also provides
traffic control between multiple applications and
multiple data access adapters so that each func-
tion call is routed to the proper adapter and data
flowing back through the adapter is returned to
the proper application. Status information must
be maintained for each instance of a running ap-
plication, not unlike the task management re-
quired in a multitasking operating system.

The routing described here is not limited to a sin-
gle node in the network. The routing can be cas-
caded through as many nodes as necessary. In
other words, there can be multiple layers of rout-
ers, and when a connection is made, the routing
information is passed from router to router until
the final destination is reached.

The model we have used thus far has assumed
that there is only one active connection at a time
between the application and the data management
system. Obviously, a router could be provided
that supports multiple simultaneous connections.
If this were done, the routers would have to take
on additional responsibilities with regard to co-
ordination between the connections. We will save

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

these considerations for a later discussion on the
enhancement facility. The delineation between
router and enhancement facility is an arbitrary
one for the purposes of discussion in this paper.
In a given implementation, the boundary between
these two components could disappear.

Data access adapter. One of the most important
components of the design is the data access
adapter. It is this component that hides all of the
real differences between the data management
system and the standard API. These differences
can range from the relatively simple, e.g., trans-
forming a character string from fixed length to
varying length, to the relatively complex, e.g.,
transforming a complex SQL request into the
equivalent flat file record requests. It is the re-
sponsibility of the data access adapter to make
the actual data management system appear to
conform to the semantics of the standard data
access API.

The data access adapter receives data-related
calls from the application via the router and usu-
ally translates them into the native language re-
quired by the target data source. This operation is
most efficient if the target system understands
SQL. It is important to note here that differences
between SQL dialects, or even the differences be-
tween two distinct data access languages, can be
effectively masked in the data access adapter in
many cases. The degree to which such masking is
possible has a direct effect on the consistency and
usefulness of the API and the amount of function
available to the application for a given data man-
agement system. Any mismatch between the API
and the native language mapping constrains the
application in what can be accomplished at the
data management system. In practical implemen-
tations today, complete masking of DBMS char-
acteristics may not be possible. Some underlying
DBMS capabilities such as multiple connection
support or isolation levels may still be exposed.
Applications may still need to be aware of and
exploit these aspects of the DBMS. Our ideal, how-
ever, is to have these considerations minimized at
the API. Minimization can often be accomplished
by selecting appropriate run-time options or other
such DBMS controls that can be manipulated out-
side the application program logic.

For remote data, the data adapter also invokes
any data access protocols necessary to reach the
target data management system. These protocols

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

can be private or they can be open, common pro-
tocols. The protocols can be independent from
the data access API. This independence, provided
by the connection management software between
the API and the data access implementation, pro-
vides additional flexibility to the enterprise in
configuring the data access components.

ODBC is a commonly known example of the router
and adapter function of connection management
software. DRDA is an established distributed data
access protocol. These independent architectures
have been combined in adapter implementations.
ODBC adapters are available that invoke a DRDA
data access client to provide access to any avail-
able DRDA server.

Note that one data adapter can serve one or mul-
tiple data management systems. There are no
bounds in the architecture for what an adapter
might do to match a data management system
with a data request from the API.

The adapter is responsible for conversion be-
tween data types if necessary. Data types can
vary between hardware and operating system
platforms. For example, there are at least three
popular variations on floating point number rep-
resentation. Data management systems may also
implement specialized data types such as graphic
(multibyte) character fields, or very long binary
fields such as the multimedia types for voice, im-
age, or video. We recognize that it is most effi-
cient, and perhaps even necessary, to perform
data conversion at the data source, where infor-
mation about the data is known. If this support is
not available, however, many types of data con-
versions can be performed at the data access
adapter.

The adapter may also provide performance en-
hancements such as blocking of data buffers to
reduce communication line overhead.

Each data management system running today al-
most certainly has its own set of error codes and
messages. The adapter translates these specific
codes into a standard set of status codes that are
defined for the API. Note that whenever error
codes are translated to a standard set, there is the
potential for loss of information. The native error
codes often provide more detailed or specialized
information than a general set of codes. To offset
this possibility, the data access adapter can sup-

SINGLETON AND SCHWARTZ 321

port a diagnostic function where native (un-
mapped) error codes can be returned to the ap-
plication.

A final consideration for data access adapters is

the positioning of the function within the enter-
prise network. Depending on the client machine

The most advantageous place for
the enhancement facility is within
the router or inserted between
the API and the router.

and operating system, the installation of a router
and several data access adapters could easily
overwhelm the processing and storage capability
of the client system. Enterprises that find they
have the need for several data access adapters
may want to configure a network topology that
puts the router and adapter functions on an in-
termediate server.

Enhancement facility. So far, we have presented
a high-level design that helps universal connec-
tivity between applications and data management
systems. We have stated the benefits of standard-
ization, both at the API and the protocol level.
Still, we realize that the complexity associated
with heterogeneity will remain in the industry.
Multiple data management systems and data ac-
cess protocols are already in use. The functional
capability in these systems varies considerably.
Natural market forces will generate additional
functional extensions. These extensions will not
be developed by all vendors in the same way or
at the same time. It is not rational to expect all of
the database vendors to converge on a single stan-
dard in the near future. The cost would be high
and the benefit to a particular vendor uncertain.

What seems more rational is to find a solution that
would provide application connectivity to multi-
ple data management systems while adapting to
the differences in functionality. Several software
developers have seen this opportunity and are

322 SINGLETON AND SCHWARTZ

providing products that map a standard API to
many widely varying data management systems.

In basic form, this scheme does the same thing as
the design we have already described: a standard
API, connectivity to multiple data sources, agree-
ment on a standard core of functionality, and a
fair degree of transparency with regard to the data
sources. There is a set of problems, however, that
our design will not handle without additional
function. These problems stem from the need to
combine data from multiple sources (multisite
joins), to coordinate distributed data management
operations (multisite update), and to optimize dis-
tributed operations (query decomposition and
global optimization). A coordination agent stra-
tegically placed in the design can address these
problems and thereby provide significant advan-
tages to the application builder and the using en-
terprise. We call this coordination agent an en-
hancement facility (Figure 12). It plays a key role
often associated with data access middleware so-
lutions, as defined earlier in this paper.

Some reasons for adding yet another layer to the
design are:

» It is extremely inefficient to put this enhance-
ment function in every application. Duplicating
complex function in each application is unnec-
essary and goes against providing a single con-
sistent application interface.

* There is no provision thus far for one data ac-
cess adapter to communicate with another in a
cooperative way.

* Data management systems from separate ven-
dors do not cooperate in any significant way.

The most advantageous place for the enhance-
ment facility is within the router or inserted be-
tween the API and the router. This placement al-
lows the enhancement facility to use the services
of the router and the data access adapters.

Function provided in the enhancement facility
can solve many of the difficult problems that are
nagging the industry today. The two major cate-
gories for these problems are:

» Coordination between multiple data manage-
ment systems—Some data management ven-
dors are supplying distributed systems in which
the separate nodes can communicate and co-
operate, but only if they are implementations

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

from the same vendor. Multivendor interoper-
ability is starting to appear via RDA and DRDA,
and these protocols can be a basis for coordi-
nation; however, multiple distinct data access
solutions will continue to exist. We foresee a
need, at least temporarily, for a control point
that can adapt and coordinate the various data
access solutions.

Functions such as distributed update, complex
query optimization, and coordinated recovery
all require cooperation between the distributed
nodes. These operations require complex com-
munication, transaction processing controls,
and protection from a vast array of possible fail-
ure conditions.

» Masking of functional deficiencies in the data
management systems—An enhancement facil-
ity can emulate function that might not be avail-
able in the target data management system.
There is a huge opportunity to equalize the dis-
parate systems. The trade-offs are data location
transparency versus performance and network
complexity.

The enhancement facility can compensate for
functional deficiencies by supplying surrogate
function on behalf of the target data management
system. Applications are often caught in a trade-
off between complete application portability,
which requires adherence to a common SQL sub-
set, and being able to exploit the features of an
advanced database manager. This trade-off might
be resolved in favor of advanced features if the
application could team up with an enhancement
facility that can hide the differences between data
management systems.

Here are some examples:

* Scrolling cursors can be simulated by caching
the records in an intermediate buffer.

* Heterogeneous joins can be accomplished by
decomposing the query, issuing separate que-
ries (different syntax if necessary) to the target
data management systems, and then joining the
resulting sets in the enhancement facility.

* Some distributed systems require that the user
log on at every node touched by the data re-
quests. This inconvenience can be eliminated if
the enhancement facility can authenticate the
user one time, then propagate the authentica-
tion as necessary to any other node.

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

Figure 12 Enhancement facility

APPLICATION
DATA
ACCESS
LANGUAGE
AP|
ENHANCEMENT
FACILITY
ROUTER
ADAPTER ADAPTER ADAPTER
DATA
MANAGEMENT
SYSTEM
DATA DATA
MANAGEMENT MANAGEMENT
SYSTEM SYSTEM

* Standard schema information (common catalog
views) can be presented to the application while
working with each data management system in
its own language and protocol. Alternatively, a
global data catalog can be built at the enhance-
ment facility node.

 Remote data can be cached at the enhancement’
facility for improved performance.

* Multiple site update with two-phase commit in-
tegrity can be achieved by controlling each tar-
get site individually. This is possible where each
target site is capable of committing an update.

¢ Integrity constraints can be enforced across het-
erogeneous target data management systems.

* System management functions can be supplied
on behalf of a set of clients.

Note that the enhancement facility functions are
logical building blocks that can be placed on the
client platform, an intermediate server, or with
the target DBMS. The functions can be combined
with routing or data access adapter functions. No
distinct interfaces are defined for these functions.
The net effect of these functions is to increase
consistency of services to the application and to

SINGLETON AND SCHWARTZ 323

decrease dependency on a particular data access
protocol or target data management system.

The complexity of the enhancement facility func-
tions will tend to force the implementation away
from the relatively small client machines toward
larger and faster machines acting as servers or
bridges in the network.

Conclusions

We have described logical building blocks that
comprise solutions to address requirements for
data access. In summary, the requirements of the
application builder, both those in the enterprise
and application software vendors, can be satisfied
to a significant degree. Satisfying enterprise re-
quirements for efficient systems administration
are more difficult, however. Improvements are
identified in some cases. In other cases, trade-offs
are described where application builder require-
ments are met at the expense of increased sys-
tems administration.

We suggest two basic approaches for maximizing
and protecting the investments of application
builders and the enterprise—aligning with stan-
dards for the data access language and API, and
structuring the data access solution such that
components are interchangeable and the depen-
dency of one component on another is minimized.

Use of a standard data access language and ap-
plication programming interface by an application
provides efficiency in developing the application
and limits the dependency that the application has
on the provider of an application programming
interface and on individual data access manage-
ment software. Limiting language and API use to
what is defined by standards is difficult, however.
As we stated earlier, extensions beyond the stan-
dard often have significant value. Application
software vendors may be pressured to exploit
nonstandard extensions in order to differentiate
their products through specialized support. Be-
cause use of a consistent data access language can
limit function, an application builder might
choose to use a consistent language (or dialect)
for a broad set of data management systems and
then use server-dependent language as an excep-
tion for a limited set of strategic data management
systems.

324 SINGLETON AND SCHWARTZ

A data access solution can be structured in sev-
eral ways to make components independent.
Some make it easier for the application builder to
use a standard data access language and API. Each
is summarized below.

When a consistent data access language is pre-
sented to an application and then translated as
necessary to the dialects of specific data manage-
ment systems, it results in a larger base of con-
sistency in the language and increases the inde-
pendence between the application and the data
management system. It is ideal when the data ac-
cess language used by the application conforms to
arecognized standard. If the data access language
is not standard, the application becomes depen-
dent on the provider of the translation rather than
on multiple specific data management systems.
When language translation is performed, un-
avoidable mismatches sometimes occur. It is im-
portant to understand how the mismatches are
handled and whether there is function loss rela-
tive to the target data management system.

Information Warehouse Architecture I identifies
1SO SQL92 as the data access language for the In-
formation Warehouse framework.

When a router is included, independence is in-
troduced between the application and the indi-
vidual data access solutions. It is ideal when the
API of the router conforms to a recognized stan-
dard. If it is not standard, the application becomes
dependent on the provider of the router rather
than on the individual data access solutions. For
an enterprise that has multiple data access solu-
tions, application development effort is reduced
through the use of a single API, yet the application
is enabled to use many individual data access so-
Iutions, thereby reaching many data sources.

Information Warehouse Architecture I identifies
X/Open SQL CLI as the callable SQL API for the In-
formation Warehouse framework. X/Open SQL CLI
is the API that would be associated with a router
component within the Information Warchouse
framework.

When open, common protocols are used, this in-
troduces independence between the data access
clients and servers. This method allows an enter-
prise flexibility in choosing or interchanging the
components of the data access solution. Solutions

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

based on open, common protocols can also pro-
vide benefits in reduced cost and administration.

Information Warehouse Architecture I identifies
DRDA as an open, common protocol for data ac-
cess in the Information Warehouse framework.

When an enhancement facility is included, this
lessens the dependence that an application has on
individual data management systems since there
is more consistency of function and the applica-
tion is less aware of differences between the data
management systems.

Because Information Warehouse Architecture I
identifies open and standard language, interfaces,
and protocols, it offers an opportunity for the en-
terprise to obtain flexibility in choice of data access
components, easier future expansion without per-
turbing current applications and components, re-
duced cost through simplified networks, and re-
duced administrative workload.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Borland Interna-
tional, Q+E Software, Information Builders, Inc., SYBASE,
Inc., Oracle Corporation, Relational Technology, Informix
Software, Inc., or Novell, Inc.

Cited references and notes

1. Information Warehouse Architecture I, SC26-3244, IBM
Corporation (April 1993); available through IBM branch
offices.

2. We use the term data access client to refer to software
that executes in the operating system where the applica-
tion runs and makes requests for data on behalf of the
application. The term data access server is used for soft-
ware that executes in the system where the data reside
and responds to these requests.

3. Database Language SQL, ISO 9075-1992, International
Organization for Standardization, Geneva (1992); Data-
base Language SQL, ANSI X3.135-1992, American Na-
tional Standards Institute, New York (1992); Common
Applications Environment (CAE) for SQL, X/Open
XPG4-SQL, X/Open Company Limited, 1010 El Camino
Real, Suite 380, Menlo Park, CA 94025 (August 1992).

4. The SQL Access Group is a consortium of software com-
panies interested in promoting a set of SQL standards that
will allow heterogeneous connectivity between their data
management systems.

5. This same SQL CLI will be the basis for other implemen-
tations of an SQL call level interface. Microsoft Corp. has
stated the intent to support the SQL CLI in a future vei-
sion of ODBC.

6. IBM Dictionary of Computing, Tenth Edition, McGraw-
Hill, Inc., New York (August 1993), p. 542.

7. Information Processing Systems—Open Systems Inter-
connection—Basic Reference Model, 1SO 7498-1984, In-

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

ternational Organization for Standardization, Geneva
(1984).

8. Information Technology—Open Systems Interconnec-
tion—Remote Database Access, Part 2: SQL Specializa-
tion, ISO/IEC 9579-2:1993, International Organization for
Standardization, Geneva (1993).

9. X/Open CAE Specification, SQL Remote Database Ac-
cess, Doc. No. C307, ISBN 1-872630-98-7, X/Open Com-
pany Limited, 1010 El Camino Real, Suite 380, Menlo
Park, CA 94025 (July 1993).

10. Distributed Relational Database Architecture Reference,
SC26-4651-01, IBM Corporation (March 1993); available
through IBM branch offices.

11. M. Zimowski, “DRDA and RDA: A Comparison,” Data-
base Programming and Design 7, No. 6, 54-61 (June
1994).

12. R. D. Hackathorn, Enterprise Database Connectivity,
John Wiley & Sons, Inc., New York (1993).

13. Multiprotocol Transport Networking: Technical Over-
view, GC31-7073, IBM Corporation (1993); available
through IBM branch offices.

Accepted for publication February 7, 1994.

J. Phil Singleton IBM Software Solutions, Santa Teresa
Laboratory, 555 Bailey Avenue, San Jose, California 95141
(electronic mail: phil@stlvm6.vnet.ibm.com). Mr. Singleton
is a senior programmer in the Information Warchouse Dis-
tributed Data Strategy and Architecture group. He is chair-
man of IBM’s SQL Language Council and coordinator for the
Information Warehouse SQL call-level interface. Prior to his
current work in strategy and architecture, he helped develop
the database query strategy for IBM’s application enabling
layer products and cootdinated the development of the SAA
Query Interface and the SAA Database Interface. Previous
experience includes positions in iechnical planning, field in-
troduction programs, management, system verification test-
ing, programming assurance, and field engineering. He has
worked for IBM since 1965.

M. Michele Schwartz IBM Software Solutions, Santa Teresa
Laboratory, 555 Bailey Avenue, San Jose, California 95141
(electronic mail: mschwartz@vnet.tbm.com). Ms. Schwartz
has been involved in various aspects of IBM’s relational
database product family since 1981. Currently, she is working
on the data access strategy for IBM’s data management prod-
ucts as an advisory programmer in Information Warehouse
Distributed Data Strategy and Architecture. She has also par-
ticipated in the definition of Information Warehouse Archi-
tecture I, distributed database planning for DB2, and the def-
inition of IBM’s query strategy. She was the lead programmer
for Query Management Facility (QMF), a relational database
query application. Prior to her experience with IBM’s rela-
tional product family, Ms. Schwartz lived in Houston, Texas,
and was a software developer on a flight design system for the
Johnson Spacecraft Center and on real-time utility and traffic
control systems.

Reprint Order No. G321-5544.

SINGLETON AND SCHWARTZ 325

