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Relational  database systems have  been  very 
successful in meeting the needs of today’s 
commercial applications. However,  emerging 
applications in disciplines such as  engineering 
design are now  generating new requirements  for 
database functionality and  performance. This 
paper describes a set of extensions to relational 
database technology, designed to meet the 
requirements  of the new generation of 
applications. These extensions include a rich 
and extensible type subsystem that is  tightly 
integrated into the Structured Query  Language (SQL), 
a rules subsystem to enforce global database 
semantics,  and  a variety of  performance 
enhancements.  Many  of the extensions described 
here  have  been prototyped at the ISM  Database 
Technology lnstitute and in research projects at 
the ISM Almaden  Research  Center in order to 
demonstrate their feasibility and to validate their 
design. Furthermore,  many of these extensions 
are  now  under consideration as part of the 
evolving American  National  Standards 
Institute/lnternational Organization for 
Standardization (ANSIIISO) standard for the 
SQL database  language. 

T he development of relational database  sys- 
tems  has  been  stimulated  over the  years  by 

the rapidly growing demands of commercial ap- 
plications. As a  result, today’s relational systems 
are  oriented primarily toward commercial re- 
quirements,  which typically include on-line trans- 
action  processing and decision support appli- 
cations,  based  on simply structured  data in 
tabular form. For this  class of applications, rela- 
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tional database  systems  are  a  mature and robust 
technology. 

Rapid reductions in hardware  price  and improve- 
ments in speed and capacity  have led to  the  ex- 
pansion of database  systems  into new application 
areas  such  as engineering design, multimedia, and 
medical systems.  These applications often  re- 
quire  the  storage of data  objects  that  are very 
large, semantically complex, or richly intercon- 
nected-requirements that relational database 
systems  have  not  been designed to fulfill. Fur- 
thermore,  the  operations performed on these  ob- 
jects  are likely to  be much  more  sophisticated 
than  those traditionally supported by relational 
database  systems. For example, a  computer  de- 
signer might need to  combine simple objects  such 
as  gates  and  storage  cells  into  a  complex  object 
whose  behavior is represented by a higher-level 
abstraction  such as a shift register or  arithmetic 
unit. Furthermore,  the engineering design of a 
computer chip might be  subject to some global 
constraint  such  as  a limit on the  total number of 
transistors. 
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Meeting the  needs of this  new  class of applica- 
tions  is  perhaps  the  greatest challenge facing to- 
day’s relational database  systems.  We believe 
that  this challenge can  be met by efficiently ex- 
tending relational technology with  the following 
new features: 

A rich and  extensible  type  subsystem  that  en- 
ables  users  to define their own data  types  and 
functions to encapsulate  the  semantic  behavior 
of complex  objects 
An efficient rule subsystem  for  protecting  the 
global integrity of the  database  and providing 
active  semantics for data 
Performance  enhancements  oriented  toward 
the  processing of large, complex, and richly in- 
terconnected  data  objects 

B 

B 
We believe that  these  extensions will enable  re- 
lational systems  to meet  the  requirements of a 
new generation of applications, while retaining 
the traditional advantages of the relational ap- 
proach. In this  paper, we describe  our  view  of 
such  extended relational database management 
systems (DBMSS). Many of the  extensions  de- 
scribed  here  have  been  demonstrated in experi- 
mental prototypes in research and development 
laboratories within IBM. Some of them  have  also 
become available in commercial database  prod- 
ucts  such as  UniSQL**, INGRES**, Sybase**, 
and ORACLE* *. IBM is playing an  active role in the 
ANSI (American National Standards  Institute)  and 
ISO (International Organization for Standardiza- 
tion)  database language committees  that  are  de- 
fining the  next  version of the  Structured  Query 
Language (SQL) standard,  currently known as 
SQL3.’ Many of the  extensions  described in this 
paper  are  a  part of this evolving standard. 

Extensible type and function  subsystems 

One of the most important  trends in database 
management is the  trend  toward increasing the 
semantic  content of the  data  stored in the  data- 
base. In object-oriented  systems,  this is accom- 
plished by allowing users  to define new data  types 
(or ‘‘classes’’) and functions (or “methods”)  to 
represent  the  entities in their application do- 
mains. Relational database  systems  can  be simi- 
larly  extended  to  support  a  richer  set of built-in 
and  user-defined”6  types and functions, to  store 
instances of these  data  types in tables, and to use 
these  functions in queries.  These facilities will 
enable  the  semantic  behavior of stored  objects  to 
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become  an  important  resource  that  can  be  shared 
among applications. 

Extending  the  type  subsystem. Modern  object- 
oriented languages support  the  important  con- 
cepts of strong typing, user-defined types  and 
methods,  encapsulation, single and multiple in- 
heritance, function overloading, and dynamic 
binding. All of these  concepts  can  be  incorpo- 
rated  into relational database  systems while pre- 
serving  the traditional advantages of the  rela- 
tional data model. In  this  section, we describe 
how strong typing, encapsulation,  and inheri- 
tance  can  be  supported by means of an  extensible 
type  subsystem. In a  later  section,  we  discuss 
how an  extensible function subsystem  can  sup- 
port  function overloading and dynamic binding. 

A database  type  subsystem  can be extended  both 
by providing additional predefined (built-in) data 
types  and  by providing a facility whereby  users 
can define new data  types.  Data  types  that  have 
well-known semantics and behavior,  such as 
dates and times, can  be most efficiently supported 
if they  are made an integral part of the  database 
system. In this  paper we give examples of both 
new predefined types  and facilities for  supporting 
user-defined types. 

Multimedia  extensions. Multimedia applications 
are  a  very  important  part of the new generation of 
database applications. Recognizing the impor- 
tance of this application category, ISO has  re- 
cently begun a new project  to  study multimedia 
extensions to  the SQL language, including exten- 
sions for spatial (involving lines, polygons, etc.) 
and temporal (time-varying) queries. Multimedia 
applications typically require  the  storage of very 
large but relatively unstructured  objects  such as 
images, drawings, and  audio  or  video  sequences. 
Such  objects  are  sometimes  referred  to as binary 
large objects,  or BLOBS. It is essential  that  an  ex- 
tended relational database  system be able  to  store 
such very large unstructured  objects as entries in 
tables. Techniques for efficient storage and ma- 
nipulation of large objects  have  been investigated 
by the  Starburst relational prototype  project  at 
the IBM Almaden Research Center.’ Unlike most 
existing large-object implementations, the  Star- 
burst  approach  integrates BLOB support  smoothly 
into  the SQL language. This  work  has led to a 
proposal,  recently  approved by  the ANSI, for in- 
corporating BLOBS into SQL3.’ 
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To implement BLOBS efficiently, it is important  to 
minimize their movement from one place to an- 
other in storage.  For  this  reason,  the manipula- 
tion of BLOBS must be performed within the 
database as much as possible, with  the final result 
being “delivered” to the application at the  latest 
possible time. Indeed, many BLOB manipulations 
can be performed entirely within the  database 
without  ever copying the  actual BLOB into  the 
application space.  This avoidance or delay in 
copying (“deferred  materialization”) of BLOBS is 
not only efficient, but  also convenient because it 
frees  the application developer from the alloca- 
tion and manipulation of large buffers for holding 
intermediate  results.  In  order to maintain good 
database clustering and to support  the deferred 
materialization of BLOBS, a  table  entry for a BLOB 
should not contain  the BLOB value itself, but 
rather  a  descriptor  that  indicates  where  the BLOB 
value  is  stored in a  separate disk extent. 

An important  technique for the efficient manipu- 
lation of large objects, included in the IBM pro- 
posal to the m s ~  SQL3 committee, is the  concept 
of a handle.’ A handle is an opaque  token  that 
represents  the  value of a BLOB and, as  such,  can 
be used in application programs. If a BLOB-ex- 
pression is evaluated and assigned to  a  variable of 
type handle, the  variable  contains not the actual 
BLOB value,  but  a  token  that uniquely identifies 
this  value.  The handle indicates to the  database 
system how the actual BLOB value  can  be  assem- 
bled from fragments of one  or  more BLOBs that  are 
stored in the  database.  The handle can  be used in 
other  expressions  just as though it were an actual 
BLOB. In keeping with the  value-based  semantics 
of SQL, handles represent immutable values 
rather  than  references to large objects.  Therefore, 
possible side effects that may occur  with  the  use 
of references  are eliminated. Handles  cannot  be 
used to modify the BLOB value  they  represent,  but 
can  be used to generate  a new, modified BLOB 
value. A handle, once  created,  retains  its validity 
until the  end of the  transaction in which it was 
created or until it is explicitly released. For  ex- 
ample, the following statement, which uses  the 
syntax of the SQL3 assignment statement,  creates 
a new handle as the  value of variable handle3: 

SET :handle3 = concat(substr(:handlel, 0, 1000), 
substr(:handle2, 0, 2000)) 

This handle uniquely identifies the BLOB gener- 
ated by the right-hand side of the assignment. The 
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execution of this assignment statement  does not 
cause  the movement of any  actual  data, and the 
new BLOB value is not actually retrieved  (or  “ma- 
terialized”)  at this point. Instead,  the handle con- 

A handle represents  the 
value of binary large 

objects (BLOBS). 

tains  the information required to assemble a new 
BLOB from the first 1000 bytes of the BLOB de- 
scribed by handlel and the first 2000 bytes of the 
BLOB described by handle2. Of course, handlel 
and handle2 may in turn contain information for 
assembling their BLOBS from fragments of other 
BLOBs stored in the  database.  The  only time BLOB 
values  are actually materialized is  when  they  are 
assigned to a host variable  that is a  string buffer 
(not  a handle), or  when  they  are assigned to  a 
column of a table. 

Since  a handle is an opaque  token,  a language- 
dependent  convention  can  be defined for declar- 
ing variables  corresponding to handles in each 
host programming language. For example, han- 
dles might be declared in the C language by  a 
statement  such as: 

HANDLE h l ,  h2,  h3 

that might  in turn  be  translated  by an SQL pre- 
processor  into valid C declarations. 

The following example illustrates how an appli- 
cation program might use  a handle to  represent  a 
concatenation of two database BLOBS. In  the ex- 
ample, the program retrieves small fragments of 
the  concatenated BLOB, examines them, adds  a 
third BLOB to the first two, and stores  the result 
in a  database table. This  is accomplished with 
only  a small buffer  in the application program. 
The movement of the  actual  data is deferred as 
long as possible. Without handles, this example 
would be far more difficult to write and less effi- 
cient  to  execute.  The example is given in abbre- 
viated form, with the application program logic 
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omitted.  The  example  makes  use of new built-in 
functions defined on BLOBs (e.g., CONCAT, 
SUBSTR), treating  them as strings of bytes. 

I* In  the  host  language,  declare h l  and  h2 */ 
I* to be  BLOB  handles,  and  buffer1 to  be  a  buffer *I 
I* of  size 4000 bytes. */ 

SELECT  CONCAT(resume,  thesis)  INTO :hl 
FROM  applicant  WHERE id = :x: 

I* So far,  no  data  have  been  moved. */ 
/* The  next  statement  materializes 4000 bytes  of */ 
I* the  concatenated  BLOB  into  the  buffer. */ 

SET  :buffer1 = SUBSTR(:hl, 0, 4000); 

I* After  examining  the  buffer,  we  decide to retrieve *I 
I* another  fragment  of  the  concatenated  BLOB. */ 

SET  :buffer1 = SUBSTR(:hl, 10500, 4000); 

/* Having  approved  the  applicant,  we  now  store a */ 
/* fragment  of  the  resume  and  thesis,  combined  with *I 
I* a photo,  into a table  of  successful  candidates. *I 

SELECT  photo  INTO  :h2 
FROM applicants WHERE id = :x; 

INSERT  INTO  invitees 
VALUES (:x, CONCAT 

(SUBSTR(:hl, 0, 8000), :h2)): 

I* Now  the  selected  fragments  of  the  original  BLOBS *I 
/* are  materialized,  concatenated,  and  copied  into */ 
/* the  new  table. *I 

The handle concept  described  above  is very im- 
portant in meeting the  performance  requirements 
associated with the manipulation of very large ob- 
jects and, at  the  same time, fits nicely into the 
semantics of the SQL language. Although it has 
been  prototyped at the Almaden Research  Center 
and  recently  accepted by ANSI for incorporation 
into SQL3, we believe that it cannot  be found in 
existing relational DBMSS. 

User-defined data types. An extensible  type  sys- 
tem should support  several  categories of user- 
defined types, including distinct  types,  abstract 
data  types,  and language types.  Each of these 
type  categories is described below. User-defined 
types  can  be supported by the addition of a new 
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SQL statement, CREATE  TYPE. The CREATE  TYPE 
statement  has  several  variations,  each of which 
permits  a different category of user-defined type 
to  be  constructed from one  or  more existing 
types- 

.Distinct types” distinct  type  is  a  user-de- 
fined data  type  that  shares  its  internal  represen- 
tation with an existing type  (its  “source”  type), 
but is considered to  be a  separate  and incompat- 
ible type for semantic  purposes. For example, 
one might want  to define a  picture  type,  a  text 
type, and an  audio  type, all of which  have  quite 
different semantics,  but  which  use BLOB for  their 
internal representation. 

The following example  illustrates  the  creation of 
a  distinct  type named audio: 

CREATE  DISTINCT TYPE audio  AS blob: 

Although audio has  the  same  representation as  the 
predefined data  type BLOB, it is  considered to  be 
a  separate  type  that is not  comparable  to  a BLOB 
or  to  any  other  type.  This allows the  user to define 
functions  written specifically for  audio  and to  be 
sure  that  these  functions will not be applied to  any 
other  type  (pictures,  text,  etc.). 

Distinct types  support  strong typing by ensuring 
that  only  those  functions  and  operators explicitly 
defined on  a  distinct  type  can  be applied to  its 
instances. For this  reason,  a  distinct  type  does  not 
automatically  acquire  the  functions  and  operators 
of its  source  type,  since  these  may  not  be  mean- 
ingful. (For example, the LENGTH function of the 
audio type might return  the length of its  object in 
seconds  rather  than in bytes.)  However,  a  user 
can explicitly specify  that  certain  functions  and 
operators of the  source  type  should also apply to 
the  distinct  type as described  later in the  section 
“Sourced  Functions.”  Such  functions  and  oper- 
ators  can  be invoked with no additional run-time 
cost  because  the  representation of the  distinct 
type is the  same as  that of the  source type. 

Abstract data types-An abstract  data  type 
(ADT) is  a  structured  data  type consisting of a 
sequence of heterogeneous named attributes, 
whose  values may themselves  be of any  database 
type (including other ADTS.) The following state- 
ment illustrates  the  creation of an  abstract  data 
type named t-address: 
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CREATE  TYPE t-address 
(number INTEGER, 
street CHAR(30), 
city CHAR(20), 
state CHAR(2), 
zip CHAR@)); 

An abstract  data  type  (as well as  any  other user- 
defined type, e.g., a  distinct  type)  can  be used in 
the definition of a column of a  table, as in the 
following example: 

CREATE  TABLE employee 
(id INTEGER, 
name CHAR(30), 
birthdate DATE, 
work-address T  ADDRESS, 
home address T-ADDRESS, 
picture IMAGE); 
/* IMAGE is a distinct type on BLOB */ 

Instances of ADTs are encapsulated in that  their 
attributes  can  be  accessed  or modified only by 
functions defined on the ADT. The  creation of an 
ADT automatically generates  accessor  functions 
(to  return  the  values of the  attributes),  mutator 
functions (to modify the  values of the  attributes), 
and  a  constructor  function  (to  create  a  new in- 
stance of the ADT). The  use of these  functions  can 
be  restricted in order  to  protect  the  encapsulation 
of the ADT. An ADT can  be  used  to  represent  a 
class of objects  with  complex internal state and 
behavior, implemented by means of user-defined 
functions  that  operate on the ADT, using the sys- 
tem-generated  accessor,  mutator, and construc- 
tor  functions as primitives. 

It  is  transparent to a  user  whether  a  function on 
an ADT is returning  a  stored  attribute of the ADT 
or a  computed  value.  Thus,  the  internal  repre- 
sentation of an ADT can  be  changed  without af- 
fecting running applications. Hence, in the  above 
example, the definition of t-address could be 
changed in such  a way  that  the zip attribute is not 
stored,  but  rather  is  computed  by  a  function 
based on the  attributes  number,  street,  and city. 
Such  a  change would be  transparent  to applica- 
tions  that  query  this  attribute using the zip acces- 
sor  function, as in the following query: 

SELECT zip (home-address) 
FROM employee 
WHERE id = 435423; 
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An important  feature of object-oriented lan- 
guages is inheritance, which  promotes  code  re- 
use by allowing new types  to  be defined as  spe- 
cialized forms of existing types. An extended 
relational DBMS supports  inheritance by allowing 
an ADT to be defined as a  subtype of another ADT, 
its  supertype.  The  subtype  inherits all the  at- 
tributes  and  behavior of the  supertype, in addition 
to defining new attributes and behavior of its  own. 
Inheritance  is  illustrated by the following exam- 
ple: 

CREATE  TYPE t-phone 
(area-code INTEGER, 
phone-number INTEGER): 

CREATE  TYPE t-bus-phone 
UNDER t-phone 
(extension INTEGER); 

CREATE  TYPE t  priv-address 
UNDER t-address; 

CREATE  TYPE t-bus-address 
UNDER t-address 
(bus-phone  t-bus-phone); 

In this  example, t-bus-phone is defined as a  sub- 
type oft phone, thus acquiring all of the  attributes 
of t phone as well as  the additional attribute ex- 
tension, which is an integer. Similarly, the  type 
t-bus-address is defined as a subtype of t-address, 
and  acquires all of its  attributes in addition to  the 
attribute bus-phone of type t-bus-phone. Thus, if 
a table named customer contains  a column named 
work  addr of type t-bus-address, the following 
query would be valid: 

SELECT extension(bus-phone(work-addr)) 
FROM customer 
WHERE id = 284693; 

Most object-oriented languages provide  support 
for multiple inheritance-meaning that an ADT 
can  be defined as a  subtype of two or  more  other 
ADTS. Multiple inheritance is also  a  feature  sup- 
ported by  the  draft SQL3 standard.  In  the  case  that 
an ADT is a  subtype of two or  more ADTS that  have 
a  common  supertype,  the  attributes of that com- 
mon supertype  are  inherited  only  once. 

Because ADTs are  encapsulated  such  that  access 
to their attributes  is  supported  only by means of 
functions,  the  access to  these  attributes is ruled 
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by  the algorithm used to  select  the  most  appro- 
priate  function for a given function invocation. In 
general, this algorithm selects  the  most specific 
function  that  is applicable to  the  types of the  op- 
erands.  Thus,  a  subtype  attribute will override  a 
supertype  attribute of the  same name. 

Inheritance of behavior  (or functions) is sup- 
ported in the  sense  that  any  function  that is de- 
fined on a  supertype  is applicable to  instances of 
its  subtypes. In other  words, an instance of a  sub- 
type  can  be used in any  context  where  an  instance 
of a  supertype is expected.  This principle is called 
substitutability.  For  example,  assume  the  exis- 
tence of a function assess-land-value defined on 
type t;_address and  returning  a decimal value.  This 
function can  also  be applied to  any  instance of a 
subtype of t-address (i.e., t-bus-address and 
t - priv-address), as in the following example: 

CREATE TABLE employee 
(id  INTEGER, 
name  CHAR(30), 
work-address  t-bus-address, 
home  address  t-priv-address, 
birthdate DATE, 
picture IMAGE); 
I* IMAGE is a distinct type on  BLOB *I 

SELECT  assess-land-value(work-address) 
FROM  employee 
WHERE assess-land-value(home-address) 

> 100000.00 

It  is  important to note  that  the  support of abstract 
data  types, and especially their  use in defining 
columns of tables,  greatly  extends  the  expressive- 
ness  and modeling power of relational database 
systems.  However,  this  extension is by no means 
a  departure from the relational data model, since 
it deliberately exploits the  neutrality of the rela- 
tional model toward  data  types  (or domains). 

0 Language types-The purpose of language 
types is to provide an interface  between  the 
database  and programming language type sys- 
tems. A language type specifies a host-language 
representation  into which a  database  type can be 
transformed if necessary.  Each language type is 
the representation for a specific database  type in 
a specific host programming language. Trans- 
forming an  instance of a  database  type  into  a  cor- 
responding language type  enables it to  be  oper- 
ated on by library  functions  written in the  host 
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language. User-defined language types  have  been 
used in experimental IBM systems,*  but  are not 
currently included in the  draft SQL3 standard  or in 
existing relational systems. 

Most relational database  systems  support  a prim- 
itive language type  for  each of their built-in 
database  types  for  each  host language. For  ex- 
ample, the  database  type INTEGER might corre- 
spond  to  the language type LONG in C, and to  the 
language type s9p) COMP-4 in COBOL. An applica- 
tion program can  declare  variables in the language 
type  and  use  them  as input and output  variables 
in SQL statements,  as in the following C example: 

int x, y; 
I* x and  y are host variables of type int *I 

SELECT  salary  INTO :x 
FROM  emp  WHERE id = :y; 

If an  extended relational database  system  permits 
users  to define their own database  types, it is  also 
important  to allow them to define the  correspond- 
ing language types  to  be used for input and output 
of these  database  types.  For example, the follow- 
ing statement might declare  that  the C language 
type  corresponding to  the  database  type t- phone 
defined above is a  structure containing four inte- 
gers, two of which  are used as null indicators: 

CREATE  LANGUAGE TYPE I-phone FOR t-phone 
LANGUAGE  C 

DECLARATION 
' typedef struct 

{ 
int areacode; 
int arealsNull; 
int number; 
int numberlsNull; 
} I-phone; 

I .  

The  two  functions  that  convert  an  instance of a 
database  type  into  an  instance of a language type, 
and vice  versa,  must  be  provided  by  the definer of 
the language type. 

Once  a language type  has  been defined, a  user 
might use it to  declare input and  output  variables 
to  be used in SQL statements in much the  same 
way  as  the built-in types, as in the following ex- 
ample: 
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I-phone x; 
I* x is a  host  variable of type  I-phone *I 
int y; 
I* y is a  host  variable of type  int *I 

SELECT  bus-phone(work  addr)  INTO :x 
FROM emp  WHERE id =:y; 

Extending  the  function  subsystem. The  database 
function  subsystem  can be extended by providing 
new built-in functions or  by allowing the  user  to 
define functions. In this  paper, we  concentrate  on 
user-defined functions  since  they  are the funda- 
mental mechanism needed  to  extend  the  behavior 
of user-defined types.  Supporting  the evolution of 
type  behavior  is  one of the  most  important  re- 
quirements of a  persistent  type  system. 

Sourcedfinctions. The  simplest way for  a  user  to 
define a  new  function is to declare  the  new  func- 
tion to  be sourced on  an existing function,  a  fea- 
ture'  that  is  not  supported  by SQL3 or  by  any 
relational DBMS that  provides user-defined func- 
tions.  This  is analogous to defining a  distinct  type 
based  on  an existing type. When sourced,  the  new 
function  must  have  the  same number of argu- 
ments  as  its  source function, each of its argument 
types  must  be capable of being cast  to  the  corre- 
sponding argument type of the  source  function, 
and  its  return  type  must  be  capable of being cast 
from  the  return  type of the  source  function. 

Sourced  functions  provide  an easy  way  to  create 
user-defined functions  for  a  distinct  type from ex- 
isting functions of the  base  type.  Since  operators 
such  as + and - are  treated as functions,  sourced 
functions  can  also  be  used to define such  opera- 
tors for  a  distinct  type  and  thereby  make  use of 
the efficient implementation of operators  for  pre- 
defined types. For example, suppose  that money 
is  a  distinct  type  based on  the built-in type 
decimal (8,2). The following statement could be 
used to make  the + operator of the decimal type 
applicable to  the money type: 

CREATE  FUNCTION " +" (money,  money) 
RETURNS  money 
SOURCE " +" (decimal,  decimal); 

Based  on  this definition, the  expression salary + 
bonus, where salary and bonus are  columns of 
type money, would be  interpreted as equiv- 
alent to  the expression money(  decimal  (salary) + 
decimal (bonus) ). (Note  that  the infix nature of + 
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is implicitly inherited by  the  sourced  function, 
Le., + on money.) If the  user defines no  function 
"*"  (money,  money), the  expression salary * bonus 

Sourced, SQL, and external 
functions can support 

user-defined functions. 

will be  treated as an  error. In this  way,  a  distinct 
type  can  selectively inherit the  semantics of its 
source  type  that  make  sense for the  distinct  type. 

SQLfinctions. In  order  to  create a  new  function 
that is not  based  on  an existing function, it is nec- 
essary  to  write a  body  that specifies the  semantics 
of the  function.  Such  function  bodies  can  be  writ- 
ten  either in SQL itself (an SQL function) or in a 
host programming language (an external  func- 
tion). Writing the  body of a  function in SQL has  the 
advantages  that  the  function  can be executed  en- 
tirely within  the  database  context, avoiding the 
overhead of switching to a host-language context, 
and that user-defined types (especially ADTs) can 
be  passed  as  arguments to the  function  without 
having to decompose  them  into  more primitive 
types  understood by the  host programming lan- 
guage. Moreover,  functions  written in SQL can  be 
optimized by  the DBMS optimizer. 

Some commercial database  products permit users 
to invoke stored  procedures  written in a language 
that  is  native to  the  database  product.  The  draft 
SQL3 standard  includes  several new procedural 
features in SQL, such as assignment statements, IF 
statements, LOOP statements, CASE statements, 
and BEGIN-END blocks,  that  may help minimize 
the proliferation of incompatible procedural lan- 
guages. The incorporation of these  constructs 
into SQL3 will enable  users to write  portable  user- 
defined functions  that  can  be  stored  and  executed 
in any relational DBMS conforming to the SQL 
standard. For example,  suppose  that  an ADT has 
been defined to represent  a point using rectangu- 
lar  coordinates: 
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CREATE  TYPE point 
(x FLOAT, 
y FLOAT); 

A user could simulate polar coordinates by writ- 
ing the following two SQL3 functions  that  operate 
on  instances of the point type.  Note  that  these 
functions  depend on  the existence of other  func- 
tions named SQRT and ARCTAN (which might be 
either built-in or user-defined functions). 

FUNCTION  RHO (:p POINT)  RETURNS  FLOAT 
BEGIN 

DECLARE :temp FLOAT; 
IF :p IS  NULL 

THEN  SET :temp = NULL 
ELSE  SET :temp = SQRT( (X(:p) * X(:p)) 

+ (V(:p) * Y(:p)) ); 
RETURN :temp; 

END; 

FUNCTION  THETA (:p POINT)  RETURNS  FLOAT 
BEGIN 

IF :p IS NULL 
THEN  RETURN  NULL 
ELSE  RETURN  ARCTAN( Y(:p) / X(:p) ); 

END; 

External functions. A user-defined function 
whose  body is written in a  host programming lan- 
guage is called an external  function. Since lan- 
guage types  are not supported in the  current  draft 
of SQL3, it is  necessary  to decompose  an ADT in- 
stance  into  its primitive components  before  pass- 
ing it to  an  external  function. If language types, as 
described  earlier in this  paper,  are  part of a  type 
subsystem, ADTS can  be  passed  to  external  func- 
tions in the form of language-type instances with 
a  representation  that  is  appropriate  for  the  host 
programming language in which the  body of the 
external function is  written.  Thus,  the  support of 
language types would enable  the  use of external 
functions to manipulate ADTs without  the need to 
decompose  them,  thereby allowing ADTS to main- 
tain their  behavior  even after “crossing  the  bor- 
der”  between  the  database  system  and  the  host 
programming language. 

The following example  illustrates how the RHO 
and THETA functions  previously defined might be 
implemented as external  functions  without lan- 
guage types  by  decomposing their parameters 
into primitive types  known by  the  host language. 
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The  two  functions  are  written in C. The  function 
parameters  correspond  to  the x- and  y-compo- 
nents of the input type point, followed by a null 
indicator for the  input point, followed by pointers 
to  output buffers for the  function result and  its 
null indicator. 

void get-rho  (float x, float y, int nullln, 
float *rho, short *nullOut) 

{ 
if (nullln < 0) *nuIIOut = -1; 
else 

{ 
*rho = sqrt((x * x) + (y * y)); 
*nullOut = 0; 
I 

I 
void get-theta  (float x, float y, int nullln, 

float *theta, short *nullout) 
{ 
if (nullln < 0) *nuIIOut = -1; 
else 

{ 
*theta = atan(y/x); 
*nullout = 0; 
I 

I 

Once  these C function  bodies  have  been  written, 
the following SQL statements  can  be  executed  to 
register the  database  functions RHO and THETA 
and to instruct  the  database  system  that  they  are 
implemented by external  functions  written in C. 
The  database  system will search  for  these  func- 
tions in a designated library, and will call them 
with a  parameter  decomposition  convention as in 
the  example  above. 

CREATE  FUNCTION rho(P0INT) 
RETURNS  FLOAT 
EXTERNAL  NAME get-rho 
LANGUAGE C; 

CREATE  FUNCTION theta( POINT) 
RETURNS  FLOAT 
EXTERNAL  NAME get-theta 
LANGUAGE  C; 

Dynamic binding. In traditional relational data- 
base  systems,  each  function  has  a unique name. 
For example, the SUBSTR function in the IBM 
DATABASE 2* ( DB2*) system is a built-in function 
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that  takes  a  character  string  and two integers as 
parameters,  and  returns  a  character  string.  How- 
ever, in most  modern  object-oriented languages, 
a  user  can overload a  function name by defining 
several  functions with the  same  name  but with 
different parameter  types. Overloading is an im- 
portant  feature for providing type-specific behav- 
ior within a  subtype family (i.e., the  set of all 
types  that  are  subtypes of a given supertype).  For 
example, suppose  that t-bus-address is a  subtype 
of t-address, and  that  the following functions 
have been defined: 

assess-land-value  (t-address) 
returns decimal (1 0,2) 

assess-land-value  (t-bus-address) 
returns  decimal (1 0,2) 

The assess-land-value function for business  ad- 
dresses may be  a  more specialized function  that 
takes  into  account  the  appropriateness of the 
property  for commercial buildings. 

For any given function  invocation  and  a set of 
overloaded  functions,  the  function is selected 
whose  parameter  types  best  match the  types of 
the  actual  arguments of the invocation. Because 
of subtypes  and  substitutability,  the  process of 
selecting  the  best  function  for  a given invocation 
cannot  always  be  completed  at compile time, 
since  a run-time argument may  be  an  instance of 
a  subtype of the corresponding formal parameter 
for  the  function.  Consequently,  to  guarantee  the 
invocation of the  function  that is the  best  match 
for  a  set of arguments,  function  selection  must  be 
done at run time. Thus, if an instance of a  subtype 
is passed  at  run time to  a  function,  the  function 
that is defined on the  subtype is selected  for  ex- 
ecution  rather  than  the  function defined on the 
static  type of the argument. However,  the  func- 
tion invocation  is still completely  type  checked  at 
compile time to make  sure  that  no  type  errors will 
occur at run time independent of which function 
is selected  for  execution. For example, suppose  a 
table named customers has  a column named loca- 
tion, of type t-address. The following query in- 
vokes  a  function on the  values in the location col- 
umn: 

SELECT assess-land-value(1ocation) 
FROM  customers 
WHERE balance-owed > 10000; 
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Since  the  value of location in a given row of the 
customers table might be  either  a t-address or a 
t-bus-address, it is not possible to select  between 
the two instances of the assess-land-value func- 

The  draft SQL3 performs 
dynamic  binding of 

functions based on types 
of all  their arguments. 

tion at compile time. In  such  a  case,  the final se- 
lection of the  function  to  be invoked is deferred 
until run time and is based on the  types of the 
actual function  arguments.  This  process is called 
dynamic binding. 

Overloading and  dynamic binding of functions  are 
supported by most object-oriented languages. 
However, in many of these languages (e.g., 
C+ +,9 Smalltalk," and Eiffel"), dynamic bind- 
ing is based  on  the  type of only  a single function 
argument. In C+ +, for example, the  expression 
x+foo(y,z) invokes  the function foo on  object 
x with arguments y and z. In this example, run- 
time function selection is based  only on the  type 
of the (implicit) argument x; arguments y and z are 
passed  to  the  function  but  do  not  participate in 
selection of the  function  instance.  Consequently, 
in these languages, functions like 

draw  (window,  polygon)  returns float 
draw  (window,  triangle)  returns float 
draw  (square-window,  polygon)  returns float 
draw  (square-window,  triangle)  returns float 

cannot  be dynamically selected  based on the  ac- 
tual types of both window and polygon. 

The draft SQL3 language is more flexible than  the 
above languages in that it performs function se- 
lection based on the  dynamic  types of all the  ar- 
guments of a function. An invocation draw(:x,  :y) 
in which the  declared  type of x is window and the 
declared  type of y is polygon might result in se- 
lection of any of the  above four functions,  based 
on the  actual  (run-time)  type of both  the x and y 
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arguments. Algorithms for  dynamic binding of 
functions  based on the  types of all their  argu- 
ments  (as in the Common Lisp  Object  System, 

The  draft SQL3 includes 
a trigger capability. 

CLOS)'~ have  been  developed in experimental IBM 
extended relational and  recently  ac- 
cepted  for  incorporation  into SQL3. l4 

Managing  database  rules 

As  database  systems  become  more  advanced, 
they  are used as repositories not only for data,  but 
also  for  the  rules  (constraints,  assertions, and 
triggers) that  are  associated with data. Rules were 
first introduced  into  the  standard SQL language by 
the  Integrity  Feature of SQL89,15 which allowed 
users  to  express check constraints  to  ensure  the 
validity of data on entry  to  the  database,  and ref 
erential integrity constraints to guarantee  that all 
the  values of a foreign key  are  matched  by pri- 
mary-key  values in another table. With the  In- 
tegrity  Feature of SQL89, any  attempt to violate  a 
check  constraint or referential integrity con- 
straint  causes  the  attempted  database  update to 
be refused. The SQL92 StandardI6  extends  the 
rules  capability of the SQL language in several 
important  ways.  It allows a  constraint to  be de- 
fined for  a domain, which in turn  can be used in 
the definitions of many  database  columns.  It  also 
provides  a richer set of actions for referential in- 
tegrity  constraints.  For example, if a  primary key 
is  updated,  the  update  can  be  automatically  cas- 
caded to all the matching foreign keys in depen- 
dent tables. 

A  number of  researcher^'^-'^ have  experimented 
with active databases, in which  an  arbitrary  se- 
quence of actions  can be triggered by the  detec- 
tion of some condition in the  database. Triggers 
are also becoming available in relational database 
products  such  as  Sybase, ORACLE, and INGRES. 
In  general,  a trigger consists of a triggering action 
(e.g., insertion, deletion, or  update),  a condition 
that  must  be satisfied in order  for  the trigger to 
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become effective (generally, an SQL predicate), 
and an action (generally, any  sequence of SQL 
statements). The testing of the trigger condition 
and the invocation of its  action  may  be immediate 
or  deferred (delayed until the  end of the  current 
transaction). A deferred  evaluation is important 
when  the  user  wants the condition or action of the 
trigger to  be executed against changes in the 
database  that  have  been  caused by several SQL 
statements (and not  only by the triggering action). 
The trigger condition  and  action  statements need 
access  to  both  the old (pre-update)  and new (post- 
update)  values of the  database  entries  whose 
modification caused the trigger to  be invoked. 
Triggers can  be used to monitor important  con- 
ditions in the  database and can  also be used to 
generate  an audit trail of database  updates. 

Assertions are another  important  part of a  data- 
base rule subsystem.  They  express  conditions 
that need to  be satisfied by  the  database  at all 
times. Because  they do not have  an  action  part, 
they (in contrast  to triggers) cannot  be used to 
perform corrections  that might be  necessary  to 
maintain the  database in a  consistent  state.  As- 
sertions  that  apply to  the  database  as  a  whole 
(e.g., that  the  average  salary of employees  must 
not exceed  a given value),  are particularly easy  to 
express in a  set-oriented relational language such 
as SQL, and  are well-suited for implementation by 
the  access  path  optimizers  that  are  a  standard  part 
of all relational systems. 

Assertions  and triggers increase  the  value of 
stored  data  by  guaranteeing integrity and increas- 
ing semantic  content. Relational database  sys- 
tems  are well-suited for  the specification of as- 
sertions and triggers in an  easy-to-understand, 
declarative  syntax.  By associating triggers and 
assertions with the  data  themselves,  extended  re- 
lational systems  make it unnecessary to repeat 
the logic of the triggers and  assertions in every 
program that  manipulates  the  data,  thus  protect- 
ing database integrity and making it easier to de- 
velop  correct applications. 

A  version of an  active  database (trigger) capabil- 
ity is included as part of the  draft SQL3 standard. 
The  example below illustrates  the definition of 
several  constraints  and  a trigger, using the  syntax 
under  consideration  for SQL3. These  statements 
guarantee  that all salaries and commissions are 
positive numbers,  that  gender  data  consist  only of 
certain  codes,  that  employee  numbers  are unique, 
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and that all employees are assigned to a valid de- 
partment. It  also  causes all employees who  earn 
a commission equal to or greater  than 20 percent 
of their salaries to be  entered  into a separate 
“winners” table. 

CREATE DOMAIN money 
DECIMAL(8,2) 
CHECK  (value >= 0); 

CREATE TABLE  employee 
(name VARCHAR(28), 
empno  DECIMAL(6,O) PRIMARY KEY, 
deptno CHAR(4) REFERENCES dept(deptno), 
sex CHAR(1) CHECK (sex IN ( ‘ ,F ’ ,  I MI)), 
salary MONEY, 
commission MONEY); 

CREATE TRIGGER salestrigl 
AFTER UPDATE OF commission 
ON employee 
WHEN (commission > .2 * salary) 

INSERT INTO winners 
VALUES  (name,  deptno, CURRENT DATE) 

Performance  challenges 

Performance is a critical concern for database 
systems  supporting  advanced applications such 
as computer-aided software engineering (CASE), 
computer-aided design / computer-aided manu- 
facturing (CAD/CAM), engineering and scientific 
applications, office automation, and hypermedia. 
Applications such as these  tend to have  the fol- 
lowing characteristics: 

A high degree of interactivity. For example, the 
generation of a CAD display may require pro- 
cessing of thousands of objects within a human 
interaction time. 24 

A complex  structure  where  data may include 
many cyclic or recursive relationships among 
objects.  Traversal of these relationships may 
require processing of hundreds or thousands of 
objects  per  second. 
A need for navigational data  access. Applica- 
tions often need to traverse  graphs of related 
objects, as when rearranging connected com- 
ponents on a circuit board. During this  process, 
objects may be visited several times to perform 
complex  operations.  It is sometimes awkward 
to  express  this kind of navigational access in 
terms of value-based relational join operations. 
A large amount of data.  The  sheer bulk of 
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multimedia data  leads to rigorous performance 
requirements, particularly for real-time appli- 
cations  such as video display. 

A consortium named the  Transaction Processing 
Performance Council has developed several well- 
known database performing benchmarks for on- 
line transaction processing (TPC-A, TPC-B, and 
TPC-c) and for decision support applications 
( T P C - D ) . ~ ~  Recently, benchmarks  have been de- 
veloped to measure the performance of other 
kinds of applications: 

The Cattell benchmarkz6  measures  database 
performance on engineering and computer- 
aided design (CAD) applications. The  test  data- 
base of the Cattell benchmark  consists of a set 
of parts in a bill-of-materials application. Each 
part is connected to three  other randomly se- 
lected parts.  Measurements  are made on ran- 
dom lookup, traversal of all connected  parts, 
and insertion of parts. 
The 007 benchmark27  is designed to provide a 
comprehensive profile of the performance of 
an object-oriented database  system.  The  test 
database is built on a set of composite parts 
corresponding to a VLSI (very large-scale inte- 
grated) CAD application. The  benchmark  con- 
sists of a combination of pointer traversals, dif- 
ferent kinds of updates  (update to indexed and 
nonindexed objects,  repeated  updates,  sparse 
updates,  updates of cached data, and the  cre- 
ation and deletion of objects), and different 
types of queries  (exact  match, aggregation, 
etc.) 
The Sequoia 2000 benchmarkz8 is aimed at geo- 
graphic information system (GIS) applications. 
The  test  database  consists of raster  data, point 
data, polygon data, and directed graph data. 
The  benchmark  consists of data load, raster 
queries, point and polygon queries, spatial joins 
and recursion. Measurements  have  been made 
with POSTGRES (an  extended relational DBMS 
prototype), GRASS (a public domain geographic 
information system), and IPW (a raster-oriented 
image processing package). 

The  next  two  sections  discuss  techniques  that  can 
be used with  extended relational systems  to  ad- 
dress  the performance requirements of advanced 
applications. Some of the  extensions have been 
prototyped and measured. From  the introduction 
of DB2 Version 1.1 in 1985 until DB2 Version 2.3 in 
1991, we  have  seen a performance improvement 
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of  36 times in transaction  throughput  for  the DB2 
benchmark. 29 Faster  processors  and larger quan- 
tities of memory  have  contributed  a  factor of 
14-18 to  this  improvement,  and  software  en- 
hancements  contributed  further for a  factor of 
2-3. We expect  that  hardware  speed  and  capacity 
will continue to improve dramatically, especially 
as  database  systems  take  advantage of parallel 
architectures. For example, DB2 Version 3.1 can 
exploit up to eight processors  to execute  queries 
on an IBM ES9000* Model 982. 

Language  extensions. Language  extensions  not 
only  enhance  the  expressive  power of the SQL 
language, but  also  provide information that helps 
the  database  system  to optimize query  response 
time. We will illustrate  this point using the  recur- 
sive  query  syntax  under  consideration for SQL3. 
Suppose  that  a MATERIALS table  has  columns 
PART, SUBPART, and QUANTITY. A large assembly 
such  as an airplane wing might contain  many  sub- 
assemblies such  as  ailerons  and landing gear, 
which in turn might contain  common  parts  such 
as rivets  and hinges. The following recursive 
query finds the  total  quantity of each  part  that is 
used in assembling a wing, summarizing all levels 
of assembly. The  query  works  by computing a 
temporary  table  that  includes all the first-level 
subassemblies of a wing, and  then joining the tem- 
porary  table  to  the MATERIALS table  repeatedly 
until all the lower-level subassemblies  have  been 
considered. 

SELECT  part,  subpart, sum(quantity) 
FROM 

(SELECT  part,  subpart,  quantity 
FROM  materials 
WHERE part = 'wing' 

RECURSIVE UNION 
temp (part,  subpart,  quantity) 

SELECT t.part, f.subpart,  t.quantity * f.quantity 
FROM temp t, materials f 
WHERE tsubpart = f.part) 

GROUP BY part,  subpart; 

Recursive  queries  have  been implemented in the 
Starburst  system  by  means of an automatic  query 
rewrite algorithm that  transforms  the  recursive 
query  into  another  form, eliminating redundant 
computation of subparts.  Measurements  have 
shown  the resulting query  executes 300 times 
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faster  than the original nonoptimized recursive 
query in some  cases.3o 

Other language extensions  described in this  paper 
also have  positive implications for query  perfor- 
mance. For example, an  extensible  type  system 
allows specialized methods  to  be incorporated 
into  query  predicates,  thus increasing the  seman- 
tic  content of stored  data  and reducing the num- 
ber of times  the  interface  between  the  host lan- 
guage and  the  database  system  must  be  crossed in 
processing  a  query. 

Similarly, a  rules  subsystem  moves  the  respon- 
sibility for protecting  database integrity from ap- 
plication programs  into  the  database itself. In ad- 
dition to improving the level of protection,  this 
approach  results in improved performance  for 
two  reasons: first, the  number of interactions  be- 
tween  database and application programs is re- 
duced;  and  second,  the  database  system  has  an 
opportunity to group  and optimize the checking of 
multiple rules. 

Improved  data  access  facilities. There  are  many 
ways  to  improve  the efficiency of accessing  data. 
For example, it is  important  that  data  items  be 
stored  near  each  other physically if they  are  fre- 
quently  used  together. As a  result,  fewer logical 
blocks of data,  or pages, need to  be moved and 
buffered when  these  items  are  transferred  to  or 
from the physical storage medium such as a disk. 
Physical clustering within a  table  has  been  an im- 
portant  feature of relational systems for many 
years. 31 More  recently,  the  Starburst relational 
system  has  demonstrated significant performance 
gains by using cross-table clustering between  re- 
lated tuples. 32 

Relational systems  retrieve  related  objects  via 
join operations.  The  repertoire of join  evaluation 
methods  has  been  improved c o n t i n u ~ u s l y ~ ~ - ~ ~  and 
can  be  further  extended  to include join indexes 
and links. A join index  spans two tables, and each 
of its  entries  represents  one  row of an equijoin 
between  the  tables. (Equijoin occurs  when  the 
comparison  operator is equality.) Join  indexes al- 
low faster  read  access  at  the  expense of additional 
costs for index  maintenance during update  and 
insert  operations.  Links  are logical or physical 
pointers from a  row to related rows. The  Star- 
burst relational system  has  recently  demon- 
strated significant improvements in join perfor- 
mance through the  use of links.29 
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The number of I/O operations required to  process 
a given query  can also be  reduced by processing 
all the  common  subexpressions in a single pass 
over  the  data.  For  example,  experiments  have 
shown  that  the  processing time of the following 
query can be  cut in  half by common-subexpres- 
sion optimization.  The  query, which summarizes 
a  set of high and low-priority orders, is a  part of 
the TPC-D benchmark  under  consideration by  the 
Transaction  Processing  Performance Council. 

SELECT  I-shipmode, count(*), high priority' 
FROM orders, lineitem 
WHERE  o-orderkey = I-orderkey  AND 

(0-orderpriority = I 1 -urgent' OR 

(I-shipmode-= ' mail OR 

I commitdate <:-receiptdate  AND 
lrshipdate < I-commitdate  AND 
I receiptdate  BETWEEN  94001  AND  94365 

o orderpriority = ' 2-high ' )  AND 

I shipmode = 'ship') AND 

GROUP BYI-shipmode 

UNION ALL 

SELECT  I-shipmode, count(*), ' low priority' 
FROM orders, lineitem 
WHERE  o-orderkey = I-orderkey  AND 

o-orderpriority < > I 1 -urgent I AND 
o-orderpriority < > ' 2-high ' AND 
(I-shipmode = ' mail' OR 

I commitdate < I receiptdate  AND 
I-shipdate < I commitdate  AND 
I-receiptdate  BETWEEN  94001  AND  94365 

I-shipmode = 'ship') AND 

GROUP BYI-shipmode 

ORDER  BY 2 DESC; 

Several  performance  optimizations  are  possible 
in the  processing of large objects, including the 
following: 

Direct  transfer of data from disk to application, 
bypassing DBMS buffers 
Bypass logging (optional),  thus avoiding exces- 
sive I/O traffic on the log  file 

* Allow users to define their own functions on 
long fields and  to  use  them in queries.  This  en- 
ables testing of search  predicates on long fields 
to be moved from application programs into  the 
database engine, thus eliminating unnecessary 
transfers of long fields between  the  database 
and  the application. 
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Defer materialization of long fields as long as 
possible, using the handle concept as described 
in a  previous  section of this  paper. 

Conclusions 

Relational database  systems  have  become domi- 
nant in the  industry  because  they offer the  ad- 
vantages of data  independence, high-level set-ori- 
ented  query languages, automatic  optimization, 
multiple views of shared  data,  and  support for a 
variety of host programming languages. These  ad- 
vantages  are  as  important  today  as  ever.  How- 
ever,  a new generation of applications is appear- 
ing that will stress  today's  database  systems in 
unprecedented  ways.  This  paper  has  discussed 
several  ways in which relational database  tech- 
nology is evolving to meet  the challenges of this 
new generation of applications. We have  de- 
scribed how relational database  systems  can  be 
extended to support user-defined types,  func- 
tions,  and rules, and we have  discussed  several 
different approaches for improving the perfor- 
mance of extended relational systems.  The  ad- 
vantages of extended relational DBMSs can be 
summarized as follows: 

Upward-compatible  type  extensions to stan- 
dard relational systems: 

Because user-defined types and functions  are 
used in exactly  the  same  way as system-pro- 
vided  types and functions,  they are an  upward- 
compatible extension  to  today's relational sys- 
tems. This  approach minimizes the  necessary 
extensions  to  standard SQL and  enriches  the  be- 
havior of the  data  elements  over which the  re- 
lational database is defined. User-defined types 
and functions  are  also  an  important  part of the 
object-oriented  extensions in the draft SQL3 
standard. 

Multifunctions: 

In SQL3, the  selection of a  function  to  be in- 
voked is based on the dynamic  types  of all its 
arguments.  This is in contrast to languages such 
as C+ + , 9  Smalltalk, lo and Eiffel," which per- 
form dynamic  function  selection  based on  the 
type of a single argument. Algorithms have 
been  developed"  whereby  the  type-safety of a 
multifunction can  be  guaranteed  at compile 
time even though the actual function  selection 
is performed at run time. 
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Preservation of database  type  behavior in the 
host language: 

By using language types,  instances of database 
types  can  be fetched  into application programs 

Moreover,  instances of database  types  can  be 
converted  into  representations  that are appro- 
priate to a  host language. This allows existing 
libraries  written in host programming languages 
to  be used to manipulate instances of database 
types in the  host language. 

b without losing their type-specific behavior. 

Integration with multiple host languages: 

The  type  extensions  described in this  paper  are 
accessible from multiple host languages, in 
keeping with the  usual  practice of relational sys- 

language can be used against data  retrieved 
from the  database,  and  functions defined in the 
database  can  be applied to  data  created in an 
application program. Thus  the  semantics of a 
user-defined type  can  be  shared  across multiple 
programming languages, using the  database  as 
a common repository. 

1 tems. Type  libraries  that  are  written in a  host 

Declarative rules: 

The  declarative  approach in which the  system 
automatically  enforces  constraints  and  rules is 
a  distinctive  feature of extended relational sys- 
tems. 37 B 

Improved  support  for very large objects: 

The  use of handles to represent BLOB values 
improves  both  the  performance  and  the  conve- 
nience of BLOBS by deferring their materializa- 
tion for as long as possible. 

Many of the techniques  described in this  paper 
have  been  demonstrated by experimental  proto- 
types  at  the IBM Almaden Research Center2*7’38 
and  at  the IBM Database  Technology  Institute. By 
means of these  techniques, we believe that  rela- 
tional systems  can  add  value  to  stored  data and 
continue  to deliver superior function in a  chang- 
ing application environment. 
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