
Extending relational
database technology
for new applications

by J. M. Cheng
N. M. Mattos
D. D. Chamberlin
L. G. DeMichiel

Relational database systems have been very
successful in meeting the needs of today’s
commercial applications. However, emerging
applications in disciplines such as engineering
design are now generating new requirements for
database functionality and performance. This
paper describes a set of extensions to relational
database technology, designed to meet the
requirements of the new generation of
applications. These extensions include a rich
and extensible type subsystem that is tightly
integrated into the Structured Query Language (SQL),
a rules subsystem to enforce global database
semantics, and a variety of performance
enhancements. Many of the extensions described
here have been prototyped at the ISM Database
Technology lnstitute and in research projects at
the ISM Almaden Research Center in order to
demonstrate their feasibility and to validate their
design. Furthermore, many of these extensions
are now under consideration as part of the
evolving American National Standards
Institute/lnternational Organization for
Standardization (ANSIIISO) standard for the
SQL database language.

T he development of relational database sys-
tems has been stimulated over the years by

the rapidly growing demands of commercial ap-
plications. As a result, today’s relational systems
are oriented primarily toward commercial re-
quirements, which typically include on-line trans-
action processing and decision support appli-
cations, based on simply structured data in
tabular form. For this class of applications, rela-

264 CHENG ET AL.

tional database systems are a mature and robust
technology.

Rapid reductions in hardware price and improve-
ments in speed and capacity have led to the ex-
pansion of database systems into new application
areas such as engineering design, multimedia, and
medical systems. These applications often re-
quire the storage of data objects that are very
large, semantically complex, or richly intercon-
nected-requirements that relational database
systems have not been designed to fulfill. Fur-
thermore, the operations performed on these ob-
jects are likely to be much more sophisticated
than those traditionally supported by relational
database systems. For example, a computer de-
signer might need to combine simple objects such
as gates and storage cells into a complex object
whose behavior is represented by a higher-level
abstraction such as a shift register or arithmetic
unit. Furthermore, the engineering design of a
computer chip might be subject to some global
constraint such as a limit on the total number of
transistors.

Wopyright 1994 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

Meeting the needs of this new class of applica-
tions is perhaps the greatest challenge facing to-
day’s relational database systems. We believe
that this challenge can be met by efficiently ex-
tending relational technology with the following
new features:

A rich and extensible type subsystem that en-
ables users to define their own data types and
functions to encapsulate the semantic behavior
of complex objects
An efficient rule subsystem for protecting the
global integrity of the database and providing
active semantics for data
Performance enhancements oriented toward
the processing of large, complex, and richly in-
terconnected data objects

B

B
We believe that these extensions will enable re-
lational systems to meet the requirements of a
new generation of applications, while retaining
the traditional advantages of the relational ap-
proach. In this paper, we describe our view of
such extended relational database management
systems (DBMSS). Many of the extensions de-
scribed here have been demonstrated in experi-
mental prototypes in research and development
laboratories within IBM. Some of them have also
become available in commercial database prod-
ucts such as UniSQL**, INGRES**, Sybase**,
and ORACLE* *. IBM is playing an active role in the
ANSI (American National Standards Institute) and
ISO (International Organization for Standardiza-
tion) database language committees that are de-
fining the next version of the Structured Query
Language (SQL) standard, currently known as
SQL3.’ Many of the extensions described in this
paper are a part of this evolving standard.

Extensible type and function subsystems

One of the most important trends in database
management is the trend toward increasing the
semantic content of the data stored in the data-
base. In object-oriented systems, this is accom-
plished by allowing users to define new data types
(or ‘‘classes’’) and functions (or “methods”) to
represent the entities in their application do-
mains. Relational database systems can be simi-
larly extended to support a richer set of built-in
and user-defined”6 types and functions, to store
instances of these data types in tables, and to use
these functions in queries. These facilities will
enable the semantic behavior of stored objects to

B

become an important resource that can be shared
among applications.

Extending the type subsystem. Modern object-
oriented languages support the important con-
cepts of strong typing, user-defined types and
methods, encapsulation, single and multiple in-
heritance, function overloading, and dynamic
binding. All of these concepts can be incorpo-
rated into relational database systems while pre-
serving the traditional advantages of the rela-
tional data model. In this section, we describe
how strong typing, encapsulation, and inheri-
tance can be supported by means of an extensible
type subsystem. In a later section, we discuss
how an extensible function subsystem can sup-
port function overloading and dynamic binding.

A database type subsystem can be extended both
by providing additional predefined (built-in) data
types and by providing a facility whereby users
can define new data types. Data types that have
well-known semantics and behavior, such as
dates and times, can be most efficiently supported
if they are made an integral part of the database
system. In this paper we give examples of both
new predefined types and facilities for supporting
user-defined types.

Multimedia extensions. Multimedia applications
are a very important part of the new generation of
database applications. Recognizing the impor-
tance of this application category, ISO has re-
cently begun a new project to study multimedia
extensions to the SQL language, including exten-
sions for spatial (involving lines, polygons, etc.)
and temporal (time-varying) queries. Multimedia
applications typically require the storage of very
large but relatively unstructured objects such as
images, drawings, and audio or video sequences.
Such objects are sometimes referred to as binary
large objects, or BLOBS. It is essential that an ex-
tended relational database system be able to store
such very large unstructured objects as entries in
tables. Techniques for efficient storage and ma-
nipulation of large objects have been investigated
by the Starburst relational prototype project at
the IBM Almaden Research Center.’ Unlike most
existing large-object implementations, the Star-
burst approach integrates BLOB support smoothly
into the SQL language. This work has led to a
proposal, recently approved by the ANSI, for in-
corporating BLOBS into SQL3.’

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994 CHENG ET AL. 265

To implement BLOBS efficiently, it is important to
minimize their movement from one place to an-
other in storage. For this reason, the manipula-
tion of BLOBS must be performed within the
database as much as possible, with the final result
being “delivered” to the application at the latest
possible time. Indeed, many BLOB manipulations
can be performed entirely within the database
without ever copying the actual BLOB into the
application space. This avoidance or delay in
copying (“deferred materialization”) of BLOBS is
not only efficient, but also convenient because it
frees the application developer from the alloca-
tion and manipulation of large buffers for holding
intermediate results. In order to maintain good
database clustering and to support the deferred
materialization of BLOBS, a table entry for a BLOB
should not contain the BLOB value itself, but
rather a descriptor that indicates where the BLOB
value is stored in a separate disk extent.

An important technique for the efficient manipu-
lation of large objects, included in the IBM pro-
posal to the m s ~ SQL3 committee, is the concept
of a handle.’ A handle is an opaque token that
represents the value of a BLOB and, as such, can
be used in application programs. If a BLOB-ex-
pression is evaluated and assigned to a variable of
type handle, the variable contains not the actual
BLOB value, but a token that uniquely identifies
this value. The handle indicates to the database
system how the actual BLOB value can be assem-
bled from fragments of one or more BLOBs that are
stored in the database. The handle can be used in
other expressions just as though it were an actual
BLOB. In keeping with the value-based semantics
of SQL, handles represent immutable values
rather than references to large objects. Therefore,
possible side effects that may occur with the use
of references are eliminated. Handles cannot be
used to modify the BLOB value they represent, but
can be used to generate a new, modified BLOB
value. A handle, once created, retains its validity
until the end of the transaction in which it was
created or until it is explicitly released. For ex-
ample, the following statement, which uses the
syntax of the SQL3 assignment statement, creates
a new handle as the value of variable handle3:

SET :handle3 = concat(substr(:handlel, 0, 1000),
substr(:handle2, 0, 2000))

This handle uniquely identifies the BLOB gener-
ated by the right-hand side of the assignment. The

266 CHENG ET AL.

execution of this assignment statement does not
cause the movement of any actual data, and the
new BLOB value is not actually retrieved (or “ma-
terialized”) at this point. Instead, the handle con-

A handle represents the
value of binary large

objects (BLOBS).

tains the information required to assemble a new
BLOB from the first 1000 bytes of the BLOB de-
scribed by handlel and the first 2000 bytes of the
BLOB described by handle2. Of course, handlel
and handle2 may in turn contain information for
assembling their BLOBS from fragments of other
BLOBs stored in the database. The only time BLOB
values are actually materialized is when they are
assigned to a host variable that is a string buffer
(not a handle), or when they are assigned to a
column of a table.

Since a handle is an opaque token, a language-
dependent convention can be defined for declar-
ing variables corresponding to handles in each
host programming language. For example, han-
dles might be declared in the C language by a
statement such as:

HANDLE h l , h2, h3

that might in turn be translated by an SQL pre-
processor into valid C declarations.

The following example illustrates how an appli-
cation program might use a handle to represent a
concatenation of two database BLOBS. In the ex-
ample, the program retrieves small fragments of
the concatenated BLOB, examines them, adds a
third BLOB to the first two, and stores the result
in a database table. This is accomplished with
only a small buffer in the application program.
The movement of the actual data is deferred as
long as possible. Without handles, this example
would be far more difficult to write and less effi-
cient to execute. The example is given in abbre-
viated form, with the application program logic

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

omitted. The example makes use of new built-in
functions defined on BLOBs (e.g., CONCAT,
SUBSTR), treating them as strings of bytes.

I* In the host language, declare h l and h2 */
I* to be BLOB handles, and buffer1 to be a buffer *I
I* of size 4000 bytes. */

SELECT CONCAT(resume, thesis) INTO :hl
FROM applicant WHERE id = :x:

I* So far, no data have been moved. */
/* The next statement materializes 4000 bytes of */
I* the concatenated BLOB into the buffer. */

SET :buffer1 = SUBSTR(:hl, 0, 4000);

I* After examining the buffer, we decide to retrieve *I
I* another fragment of the concatenated BLOB. */

SET :buffer1 = SUBSTR(:hl, 10500, 4000);

/* Having approved the applicant, we now store a */
/* fragment of the resume and thesis, combined with *I
I* a photo, into a table of successful candidates. *I

SELECT photo INTO :h2
FROM applicants WHERE id = :x;

INSERT INTO invitees
VALUES (:x, CONCAT

(SUBSTR(:hl, 0, 8000), :h2)):

I* Now the selected fragments of the original BLOBS *I
/* are materialized, concatenated, and copied into */
/* the new table. *I

The handle concept described above is very im-
portant in meeting the performance requirements
associated with the manipulation of very large ob-
jects and, at the same time, fits nicely into the
semantics of the SQL language. Although it has
been prototyped at the Almaden Research Center
and recently accepted by ANSI for incorporation
into SQL3, we believe that it cannot be found in
existing relational DBMSS.

User-defined data types. An extensible type sys-
tem should support several categories of user-
defined types, including distinct types, abstract
data types, and language types. Each of these
type categories is described below. User-defined
types can be supported by the addition of a new

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

SQL statement, CREATE TYPE. The CREATE TYPE
statement has several variations, each of which
permits a different category of user-defined type
to be constructed from one or more existing
types-

.Distinct types” distinct type is a user-de-
fined data type that shares its internal represen-
tation with an existing type (its “source” type),
but is considered to be a separate and incompat-
ible type for semantic purposes. For example,
one might want to define a picture type, a text
type, and an audio type, all of which have quite
different semantics, but which use BLOB for their
internal representation.

The following example illustrates the creation of
a distinct type named audio:

CREATE DISTINCT TYPE audio AS blob:

Although audio has the same representation as the
predefined data type BLOB, it is considered to be
a separate type that is not comparable to a BLOB
or to any other type. This allows the user to define
functions written specifically for audio and to be
sure that these functions will not be applied to any
other type (pictures, text, etc.).

Distinct types support strong typing by ensuring
that only those functions and operators explicitly
defined on a distinct type can be applied to its
instances. For this reason, a distinct type does not
automatically acquire the functions and operators
of its source type, since these may not be mean-
ingful. (For example, the LENGTH function of the
audio type might return the length of its object in
seconds rather than in bytes.) However, a user
can explicitly specify that certain functions and
operators of the source type should also apply to
the distinct type as described later in the section
“Sourced Functions.” Such functions and oper-
ators can be invoked with no additional run-time
cost because the representation of the distinct
type is the same as that of the source type.

Abstract data types-An abstract data type
(ADT) is a structured data type consisting of a
sequence of heterogeneous named attributes,
whose values may themselves be of any database
type (including other ADTS.) The following state-
ment illustrates the creation of an abstract data
type named t-address:

CHENG ET AL. 267

CREATE TYPE t-address
(number INTEGER,
street CHAR(30),
city CHAR(20),
state CHAR(2),
zip CHAR@));

An abstract data type (as well as any other user-
defined type, e.g., a distinct type) can be used in
the definition of a column of a table, as in the
following example:

CREATE TABLE employee
(id INTEGER,
name CHAR(30),
birthdate DATE,
work-address T ADDRESS,
home address T-ADDRESS,
picture IMAGE);
/* IMAGE is a distinct type on BLOB */

Instances of ADTs are encapsulated in that their
attributes can be accessed or modified only by
functions defined on the ADT. The creation of an
ADT automatically generates accessor functions
(to return the values of the attributes), mutator
functions (to modify the values of the attributes),
and a constructor function (to create a new in-
stance of the ADT). The use of these functions can
be restricted in order to protect the encapsulation
of the ADT. An ADT can be used to represent a
class of objects with complex internal state and
behavior, implemented by means of user-defined
functions that operate on the ADT, using the sys-
tem-generated accessor, mutator, and construc-
tor functions as primitives.

It is transparent to a user whether a function on
an ADT is returning a stored attribute of the ADT
or a computed value. Thus, the internal repre-
sentation of an ADT can be changed without af-
fecting running applications. Hence, in the above
example, the definition of t-address could be
changed in such a way that the zip attribute is not
stored, but rather is computed by a function
based on the attributes number, street, and city.
Such a change would be transparent to applica-
tions that query this attribute using the zip acces-
sor function, as in the following query:

SELECT zip (home-address)
FROM employee
WHERE id = 435423;

268 CHENG ET AL.

An important feature of object-oriented lan-
guages is inheritance, which promotes code re-
use by allowing new types to be defined as spe-
cialized forms of existing types. An extended
relational DBMS supports inheritance by allowing
an ADT to be defined as a subtype of another ADT,
its supertype. The subtype inherits all the at-
tributes and behavior of the supertype, in addition
to defining new attributes and behavior of its own.
Inheritance is illustrated by the following exam-
ple:

CREATE TYPE t-phone
(area-code INTEGER,
phone-number INTEGER):

CREATE TYPE t-bus-phone
UNDER t-phone
(extension INTEGER);

CREATE TYPE t priv-address
UNDER t-address;

CREATE TYPE t-bus-address
UNDER t-address
(bus-phone t-bus-phone);

In this example, t-bus-phone is defined as a sub-
type oft phone, thus acquiring all of the attributes
of t phone as well as the additional attribute ex-
tension, which is an integer. Similarly, the type
t-bus-address is defined as a subtype of t-address,
and acquires all of its attributes in addition to the
attribute bus-phone of type t-bus-phone. Thus, if
a table named customer contains a column named
work addr of type t-bus-address, the following
query would be valid:

SELECT extension(bus-phone(work-addr))
FROM customer
WHERE id = 284693;

Most object-oriented languages provide support
for multiple inheritance-meaning that an ADT
can be defined as a subtype of two or more other
ADTS. Multiple inheritance is also a feature sup-
ported by the draft SQL3 standard. In the case that
an ADT is a subtype of two or more ADTS that have
a common supertype, the attributes of that com-
mon supertype are inherited only once.

Because ADTs are encapsulated such that access
to their attributes is supported only by means of
functions, the access to these attributes is ruled

IEM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

by the algorithm used to select the most appro-
priate function for a given function invocation. In
general, this algorithm selects the most specific
function that is applicable to the types of the op-
erands. Thus, a subtype attribute will override a
supertype attribute of the same name.

Inheritance of behavior (or functions) is sup-
ported in the sense that any function that is de-
fined on a supertype is applicable to instances of
its subtypes. In other words, an instance of a sub-
type can be used in any context where an instance
of a supertype is expected. This principle is called
substitutability. For example, assume the exis-
tence of a function assess-land-value defined on
type t;_address and returning a decimal value. This
function can also be applied to any instance of a
subtype of t-address (i.e., t-bus-address and
t - priv-address), as in the following example:

CREATE TABLE employee
(id INTEGER,
name CHAR(30),
work-address t-bus-address,
home address t-priv-address,
birthdate DATE,
picture IMAGE);
I* IMAGE is a distinct type on BLOB *I

SELECT assess-land-value(work-address)
FROM employee
WHERE assess-land-value(home-address)

> 100000.00

It is important to note that the support of abstract
data types, and especially their use in defining
columns of tables, greatly extends the expressive-
ness and modeling power of relational database
systems. However, this extension is by no means
a departure from the relational data model, since
it deliberately exploits the neutrality of the rela-
tional model toward data types (or domains).

0 Language types-The purpose of language
types is to provide an interface between the
database and programming language type sys-
tems. A language type specifies a host-language
representation into which a database type can be
transformed if necessary. Each language type is
the representation for a specific database type in
a specific host programming language. Trans-
forming an instance of a database type into a cor-
responding language type enables it to be oper-
ated on by library functions written in the host

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

language. User-defined language types have been
used in experimental IBM systems,* but are not
currently included in the draft SQL3 standard or in
existing relational systems.

Most relational database systems support a prim-
itive language type for each of their built-in
database types for each host language. For ex-
ample, the database type INTEGER might corre-
spond to the language type LONG in C, and to the
language type s9p) COMP-4 in COBOL. An applica-
tion program can declare variables in the language
type and use them as input and output variables
in SQL statements, as in the following C example:

int x, y;
I* x and y are host variables of type int *I

SELECT salary INTO :x
FROM emp WHERE id = :y;

If an extended relational database system permits
users to define their own database types, it is also
important to allow them to define the correspond-
ing language types to be used for input and output
of these database types. For example, the follow-
ing statement might declare that the C language
type corresponding to the database type t- phone
defined above is a structure containing four inte-
gers, two of which are used as null indicators:

CREATE LANGUAGE TYPE I-phone FOR t-phone
LANGUAGE C

DECLARATION
' typedef struct

{
int areacode;
int arealsNull;
int number;
int numberlsNull;
} I-phone;

I .

The two functions that convert an instance of a
database type into an instance of a language type,
and vice versa, must be provided by the definer of
the language type.

Once a language type has been defined, a user
might use it to declare input and output variables
to be used in SQL statements in much the same
way as the built-in types, as in the following ex-
ample:

CHENG ET AL. 269

I-phone x;
I* x is a host variable of type I-phone *I
int y;
I* y is a host variable of type int *I

SELECT bus-phone(work addr) INTO :x
FROM emp WHERE id =:y;

Extending the function subsystem. The database
function subsystem can be extended by providing
new built-in functions or by allowing the user to
define functions. In this paper, we concentrate on
user-defined functions since they are the funda-
mental mechanism needed to extend the behavior
of user-defined types. Supporting the evolution of
type behavior is one of the most important re-
quirements of a persistent type system.

Sourcedfinctions. The simplest way for a user to
define a new function is to declare the new func-
tion to be sourced on an existing function, a fea-
ture' that is not supported by SQL3 or by any
relational DBMS that provides user-defined func-
tions. This is analogous to defining a distinct type
based on an existing type. When sourced, the new
function must have the same number of argu-
ments as its source function, each of its argument
types must be capable of being cast to the corre-
sponding argument type of the source function,
and its return type must be capable of being cast
from the return type of the source function.

Sourced functions provide an easy way to create
user-defined functions for a distinct type from ex-
isting functions of the base type. Since operators
such as + and - are treated as functions, sourced
functions can also be used to define such opera-
tors for a distinct type and thereby make use of
the efficient implementation of operators for pre-
defined types. For example, suppose that money
is a distinct type based on the built-in type
decimal (8,2). The following statement could be
used to make the + operator of the decimal type
applicable to the money type:

CREATE FUNCTION " +" (money, money)
RETURNS money
SOURCE " +" (decimal, decimal);

Based on this definition, the expression salary +
bonus, where salary and bonus are columns of
type money, would be interpreted as equiv-
alent to the expression money(decimal (salary) +
decimal (bonus)). (Note that the infix nature of +

270 CHENG ET AL.

is implicitly inherited by the sourced function,
Le., + on money.) If the user defines no function
"*" (money, money), the expression salary * bonus

Sourced, SQL, and external
functions can support

user-defined functions.

will be treated as an error. In this way, a distinct
type can selectively inherit the semantics of its
source type that make sense for the distinct type.

SQLfinctions. In order to create a new function
that is not based on an existing function, it is nec-
essary to write a body that specifies the semantics
of the function. Such function bodies can be writ-
ten either in SQL itself (an SQL function) or in a
host programming language (an external func-
tion). Writing the body of a function in SQL has the
advantages that the function can be executed en-
tirely within the database context, avoiding the
overhead of switching to a host-language context,
and that user-defined types (especially ADTs) can
be passed as arguments to the function without
having to decompose them into more primitive
types understood by the host programming lan-
guage. Moreover, functions written in SQL can be
optimized by the DBMS optimizer.

Some commercial database products permit users
to invoke stored procedures written in a language
that is native to the database product. The draft
SQL3 standard includes several new procedural
features in SQL, such as assignment statements, IF
statements, LOOP statements, CASE statements,
and BEGIN-END blocks, that may help minimize
the proliferation of incompatible procedural lan-
guages. The incorporation of these constructs
into SQL3 will enable users to write portable user-
defined functions that can be stored and executed
in any relational DBMS conforming to the SQL
standard. For example, suppose that an ADT has
been defined to represent a point using rectangu-
lar coordinates:

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

CREATE TYPE point
(x FLOAT,
y FLOAT);

A user could simulate polar coordinates by writ-
ing the following two SQL3 functions that operate
on instances of the point type. Note that these
functions depend on the existence of other func-
tions named SQRT and ARCTAN (which might be
either built-in or user-defined functions).

FUNCTION RHO (:p POINT) RETURNS FLOAT
BEGIN

DECLARE :temp FLOAT;
IF :p IS NULL

THEN SET :temp = NULL
ELSE SET :temp = SQRT((X(:p) * X(:p))

+ (V(:p) * Y(:p)));
RETURN :temp;

END;

FUNCTION THETA (:p POINT) RETURNS FLOAT
BEGIN

IF :p IS NULL
THEN RETURN NULL
ELSE RETURN ARCTAN(Y(:p) / X(:p));

END;

External functions. A user-defined function
whose body is written in a host programming lan-
guage is called an external function. Since lan-
guage types are not supported in the current draft
of SQL3, it is necessary to decompose an ADT in-
stance into its primitive components before pass-
ing it to an external function. If language types, as
described earlier in this paper, are part of a type
subsystem, ADTS can be passed to external func-
tions in the form of language-type instances with
a representation that is appropriate for the host
programming language in which the body of the
external function is written. Thus, the support of
language types would enable the use of external
functions to manipulate ADTs without the need to
decompose them, thereby allowing ADTS to main-
tain their behavior even after “crossing the bor-
der” between the database system and the host
programming language.

The following example illustrates how the RHO
and THETA functions previously defined might be
implemented as external functions without lan-
guage types by decomposing their parameters
into primitive types known by the host language.

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

The two functions are written in C. The function
parameters correspond to the x- and y-compo-
nents of the input type point, followed by a null
indicator for the input point, followed by pointers
to output buffers for the function result and its
null indicator.

void get-rho (float x, float y, int nullln,
float *rho, short *nullOut)

{
if (nullln < 0) *nuIIOut = -1;
else

{
*rho = sqrt((x * x) + (y * y));
*nullOut = 0;
I

I
void get-theta (float x, float y, int nullln,

float *theta, short *nullout)
{
if (nullln < 0) *nuIIOut = -1;
else

{
*theta = atan(y/x);
*nullout = 0;
I

I

Once these C function bodies have been written,
the following SQL statements can be executed to
register the database functions RHO and THETA
and to instruct the database system that they are
implemented by external functions written in C.
The database system will search for these func-
tions in a designated library, and will call them
with a parameter decomposition convention as in
the example above.

CREATE FUNCTION rho(P0INT)
RETURNS FLOAT
EXTERNAL NAME get-rho
LANGUAGE C;

CREATE FUNCTION theta(POINT)
RETURNS FLOAT
EXTERNAL NAME get-theta
LANGUAGE C;

Dynamic binding. In traditional relational data-
base systems, each function has a unique name.
For example, the SUBSTR function in the IBM
DATABASE 2* (DB2*) system is a built-in function

CHENG ET AL. 271

that takes a character string and two integers as
parameters, and returns a character string. How-
ever, in most modern object-oriented languages,
a user can overload a function name by defining
several functions with the same name but with
different parameter types. Overloading is an im-
portant feature for providing type-specific behav-
ior within a subtype family (i.e., the set of all
types that are subtypes of a given supertype). For
example, suppose that t-bus-address is a subtype
of t-address, and that the following functions
have been defined:

assess-land-value (t-address)
returns decimal (1 0,2)

assess-land-value (t-bus-address)
returns decimal (1 0,2)

The assess-land-value function for business ad-
dresses may be a more specialized function that
takes into account the appropriateness of the
property for commercial buildings.

For any given function invocation and a set of
overloaded functions, the function is selected
whose parameter types best match the types of
the actual arguments of the invocation. Because
of subtypes and substitutability, the process of
selecting the best function for a given invocation
cannot always be completed at compile time,
since a run-time argument may be an instance of
a subtype of the corresponding formal parameter
for the function. Consequently, to guarantee the
invocation of the function that is the best match
for a set of arguments, function selection must be
done at run time. Thus, if an instance of a subtype
is passed at run time to a function, the function
that is defined on the subtype is selected for ex-
ecution rather than the function defined on the
static type of the argument. However, the func-
tion invocation is still completely type checked at
compile time to make sure that no type errors will
occur at run time independent of which function
is selected for execution. For example, suppose a
table named customers has a column named loca-
tion, of type t-address. The following query in-
vokes a function on the values in the location col-
umn:

SELECT assess-land-value(1ocation)
FROM customers
WHERE balance-owed > 10000;

272 CHENG ET AL.

Since the value of location in a given row of the
customers table might be either a t-address or a
t-bus-address, it is not possible to select between
the two instances of the assess-land-value func-

The draft SQL3 performs
dynamic binding of

functions based on types
of all their arguments.

tion at compile time. In such a case, the final se-
lection of the function to be invoked is deferred
until run time and is based on the types of the
actual function arguments. This process is called
dynamic binding.

Overloading and dynamic binding of functions are
supported by most object-oriented languages.
However, in many of these languages (e.g.,
C+ +,9 Smalltalk," and Eiffel"), dynamic bind-
ing is based on the type of only a single function
argument. In C+ +, for example, the expression
x+foo(y,z) invokes the function foo on object
x with arguments y and z. In this example, run-
time function selection is based only on the type
of the (implicit) argument x; arguments y and z are
passed to the function but do not participate in
selection of the function instance. Consequently,
in these languages, functions like

draw (window, polygon) returns float
draw (window, triangle) returns float
draw (square-window, polygon) returns float
draw (square-window, triangle) returns float

cannot be dynamically selected based on the ac-
tual types of both window and polygon.

The draft SQL3 language is more flexible than the
above languages in that it performs function se-
lection based on the dynamic types of all the ar-
guments of a function. An invocation draw(:x, :y)
in which the declared type of x is window and the
declared type of y is polygon might result in se-
lection of any of the above four functions, based
on the actual (run-time) type of both the x and y

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

arguments. Algorithms for dynamic binding of
functions based on the types of all their argu-
ments (as in the Common Lisp Object System,

The draft SQL3 includes
a trigger capability.

CLOS)'~ have been developed in experimental IBM
extended relational and recently ac-
cepted for incorporation into SQL3. l4

Managing database rules

As database systems become more advanced,
they are used as repositories not only for data, but
also for the rules (constraints, assertions, and
triggers) that are associated with data. Rules were
first introduced into the standard SQL language by
the Integrity Feature of SQL89,15 which allowed
users to express check constraints to ensure the
validity of data on entry to the database, and ref
erential integrity constraints to guarantee that all
the values of a foreign key are matched by pri-
mary-key values in another table. With the In-
tegrity Feature of SQL89, any attempt to violate a
check constraint or referential integrity con-
straint causes the attempted database update to
be refused. The SQL92 StandardI6 extends the
rules capability of the SQL language in several
important ways. It allows a constraint to be de-
fined for a domain, which in turn can be used in
the definitions of many database columns. It also
provides a richer set of actions for referential in-
tegrity constraints. For example, if a primary key
is updated, the update can be automatically cas-
caded to all the matching foreign keys in depen-
dent tables.

A number of researcher^'^-'^ have experimented
with active databases, in which an arbitrary se-
quence of actions can be triggered by the detec-
tion of some condition in the database. Triggers
are also becoming available in relational database
products such as Sybase, ORACLE, and INGRES.
In general, a trigger consists of a triggering action
(e.g., insertion, deletion, or update), a condition
that must be satisfied in order for the trigger to

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

become effective (generally, an SQL predicate),
and an action (generally, any sequence of SQL
statements). The testing of the trigger condition
and the invocation of its action may be immediate
or deferred (delayed until the end of the current
transaction). A deferred evaluation is important
when the user wants the condition or action of the
trigger to be executed against changes in the
database that have been caused by several SQL
statements (and not only by the triggering action).
The trigger condition and action statements need
access to both the old (pre-update) and new (post-
update) values of the database entries whose
modification caused the trigger to be invoked.
Triggers can be used to monitor important con-
ditions in the database and can also be used to
generate an audit trail of database updates.

Assertions are another important part of a data-
base rule subsystem. They express conditions
that need to be satisfied by the database at all
times. Because they do not have an action part,
they (in contrast to triggers) cannot be used to
perform corrections that might be necessary to
maintain the database in a consistent state. As-
sertions that apply to the database as a whole
(e.g., that the average salary of employees must
not exceed a given value), are particularly easy to
express in a set-oriented relational language such
as SQL, and are well-suited for implementation by
the access path optimizers that are a standard part
of all relational systems.

Assertions and triggers increase the value of
stored data by guaranteeing integrity and increas-
ing semantic content. Relational database sys-
tems are well-suited for the specification of as-
sertions and triggers in an easy-to-understand,
declarative syntax. By associating triggers and
assertions with the data themselves, extended re-
lational systems make it unnecessary to repeat
the logic of the triggers and assertions in every
program that manipulates the data, thus protect-
ing database integrity and making it easier to de-
velop correct applications.

A version of an active database (trigger) capabil-
ity is included as part of the draft SQL3 standard.
The example below illustrates the definition of
several constraints and a trigger, using the syntax
under consideration for SQL3. These statements
guarantee that all salaries and commissions are
positive numbers, that gender data consist only of
certain codes, that employee numbers are unique,

CHENG ET AL. 273

and that all employees are assigned to a valid de-
partment. It also causes all employees who earn
a commission equal to or greater than 20 percent
of their salaries to be entered into a separate
“winners” table.

CREATE DOMAIN money
DECIMAL(8,2)
CHECK (value >= 0);

CREATE TABLE employee
(name VARCHAR(28),
empno DECIMAL(6,O) PRIMARY KEY,
deptno CHAR(4) REFERENCES dept(deptno),
sex CHAR(1) CHECK (sex IN (‘ ,F ’ , I MI)),
salary MONEY,
commission MONEY);

CREATE TRIGGER salestrigl
AFTER UPDATE OF commission
ON employee
WHEN (commission > .2 * salary)

INSERT INTO winners
VALUES (name, deptno, CURRENT DATE)

Performance challenges

Performance is a critical concern for database
systems supporting advanced applications such
as computer-aided software engineering (CASE),
computer-aided design / computer-aided manu-
facturing (CAD/CAM), engineering and scientific
applications, office automation, and hypermedia.
Applications such as these tend to have the fol-
lowing characteristics:

A high degree of interactivity. For example, the
generation of a CAD display may require pro-
cessing of thousands of objects within a human
interaction time. 24

A complex structure where data may include
many cyclic or recursive relationships among
objects. Traversal of these relationships may
require processing of hundreds or thousands of
objects per second.
A need for navigational data access. Applica-
tions often need to traverse graphs of related
objects, as when rearranging connected com-
ponents on a circuit board. During this process,
objects may be visited several times to perform
complex operations. It is sometimes awkward
to express this kind of navigational access in
terms of value-based relational join operations.
A large amount of data. The sheer bulk of

274 CHENG ET AL.

multimedia data leads to rigorous performance
requirements, particularly for real-time appli-
cations such as video display.

A consortium named the Transaction Processing
Performance Council has developed several well-
known database performing benchmarks for on-
line transaction processing (TPC-A, TPC-B, and
TPC-c) and for decision support applications
(T P C - D) . ~ ~ Recently, benchmarks have been de-
veloped to measure the performance of other
kinds of applications:

The Cattell benchmarkz6 measures database
performance on engineering and computer-
aided design (CAD) applications. The test data-
base of the Cattell benchmark consists of a set
of parts in a bill-of-materials application. Each
part is connected to three other randomly se-
lected parts. Measurements are made on ran-
dom lookup, traversal of all connected parts,
and insertion of parts.
The 007 benchmark27 is designed to provide a
comprehensive profile of the performance of
an object-oriented database system. The test
database is built on a set of composite parts
corresponding to a VLSI (very large-scale inte-
grated) CAD application. The benchmark con-
sists of a combination of pointer traversals, dif-
ferent kinds of updates (update to indexed and
nonindexed objects, repeated updates, sparse
updates, updates of cached data, and the cre-
ation and deletion of objects), and different
types of queries (exact match, aggregation,
etc.)
The Sequoia 2000 benchmarkz8 is aimed at geo-
graphic information system (GIS) applications.
The test database consists of raster data, point
data, polygon data, and directed graph data.
The benchmark consists of data load, raster
queries, point and polygon queries, spatial joins
and recursion. Measurements have been made
with POSTGRES (an extended relational DBMS
prototype), GRASS (a public domain geographic
information system), and IPW (a raster-oriented
image processing package).

The next two sections discuss techniques that can
be used with extended relational systems to ad-
dress the performance requirements of advanced
applications. Some of the extensions have been
prototyped and measured. From the introduction
of DB2 Version 1.1 in 1985 until DB2 Version 2.3 in
1991, we have seen a performance improvement

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

of 36 times in transaction throughput for the DB2
benchmark. 29 Faster processors and larger quan-
tities of memory have contributed a factor of
14-18 to this improvement, and software en-
hancements contributed further for a factor of
2-3. We expect that hardware speed and capacity
will continue to improve dramatically, especially
as database systems take advantage of parallel
architectures. For example, DB2 Version 3.1 can
exploit up to eight processors to execute queries
on an IBM ES9000* Model 982.

Language extensions. Language extensions not
only enhance the expressive power of the SQL
language, but also provide information that helps
the database system to optimize query response
time. We will illustrate this point using the recur-
sive query syntax under consideration for SQL3.
Suppose that a MATERIALS table has columns
PART, SUBPART, and QUANTITY. A large assembly
such as an airplane wing might contain many sub-
assemblies such as ailerons and landing gear,
which in turn might contain common parts such
as rivets and hinges. The following recursive
query finds the total quantity of each part that is
used in assembling a wing, summarizing all levels
of assembly. The query works by computing a
temporary table that includes all the first-level
subassemblies of a wing, and then joining the tem-
porary table to the MATERIALS table repeatedly
until all the lower-level subassemblies have been
considered.

SELECT part, subpart, sum(quantity)
FROM

(SELECT part, subpart, quantity
FROM materials
WHERE part = 'wing'

RECURSIVE UNION
temp (part, subpart, quantity)

SELECT t.part, f.subpart, t.quantity * f.quantity
FROM temp t, materials f
WHERE tsubpart = f.part)

GROUP BY part, subpart;

Recursive queries have been implemented in the
Starburst system by means of an automatic query
rewrite algorithm that transforms the recursive
query into another form, eliminating redundant
computation of subparts. Measurements have
shown the resulting query executes 300 times

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

faster than the original nonoptimized recursive
query in some cases.3o

Other language extensions described in this paper
also have positive implications for query perfor-
mance. For example, an extensible type system
allows specialized methods to be incorporated
into query predicates, thus increasing the seman-
tic content of stored data and reducing the num-
ber of times the interface between the host lan-
guage and the database system must be crossed in
processing a query.

Similarly, a rules subsystem moves the respon-
sibility for protecting database integrity from ap-
plication programs into the database itself. In ad-
dition to improving the level of protection, this
approach results in improved performance for
two reasons: first, the number of interactions be-
tween database and application programs is re-
duced; and second, the database system has an
opportunity to group and optimize the checking of
multiple rules.

Improved data access facilities. There are many
ways to improve the efficiency of accessing data.
For example, it is important that data items be
stored near each other physically if they are fre-
quently used together. As a result, fewer logical
blocks of data, or pages, need to be moved and
buffered when these items are transferred to or
from the physical storage medium such as a disk.
Physical clustering within a table has been an im-
portant feature of relational systems for many
years. 31 More recently, the Starburst relational
system has demonstrated significant performance
gains by using cross-table clustering between re-
lated tuples. 32

Relational systems retrieve related objects via
join operations. The repertoire of join evaluation
methods has been improved c o n t i n u ~ u s l y ~ ~ - ~ ~ and
can be further extended to include join indexes
and links. A join index spans two tables, and each
of its entries represents one row of an equijoin
between the tables. (Equijoin occurs when the
comparison operator is equality.) Join indexes al-
low faster read access at the expense of additional
costs for index maintenance during update and
insert operations. Links are logical or physical
pointers from a row to related rows. The Star-
burst relational system has recently demon-
strated significant improvements in join perfor-
mance through the use of links.29

CHENG ET E L 275

The number of I/O operations required to process
a given query can also be reduced by processing
all the common subexpressions in a single pass
over the data. For example, experiments have
shown that the processing time of the following
query can be cut in half by common-subexpres-
sion optimization. The query, which summarizes
a set of high and low-priority orders, is a part of
the TPC-D benchmark under consideration by the
Transaction Processing Performance Council.

SELECT I-shipmode, count(*), high priority'
FROM orders, lineitem
WHERE o-orderkey = I-orderkey AND

(0-orderpriority = I 1 -urgent' OR

(I-shipmode-= ' mail OR

I commitdate <:-receiptdate AND
lrshipdate < I-commitdate AND
I receiptdate BETWEEN 94001 AND 94365

o orderpriority = ' 2-high ') AND

I shipmode = 'ship') AND

GROUP BYI-shipmode

UNION ALL

SELECT I-shipmode, count(*), ' low priority'
FROM orders, lineitem
WHERE o-orderkey = I-orderkey AND

o-orderpriority < > I 1 -urgent I AND
o-orderpriority < > ' 2-high ' AND
(I-shipmode = ' mail' OR

I commitdate < I receiptdate AND
I-shipdate < I commitdate AND
I-receiptdate BETWEEN 94001 AND 94365

I-shipmode = 'ship') AND

GROUP BYI-shipmode

ORDER BY 2 DESC;

Several performance optimizations are possible
in the processing of large objects, including the
following:

Direct transfer of data from disk to application,
bypassing DBMS buffers
Bypass logging (optional), thus avoiding exces-
sive I/O traffic on the log file

* Allow users to define their own functions on
long fields and to use them in queries. This en-
ables testing of search predicates on long fields
to be moved from application programs into the
database engine, thus eliminating unnecessary
transfers of long fields between the database
and the application.

276 CHENG ET AL.

Defer materialization of long fields as long as
possible, using the handle concept as described
in a previous section of this paper.

Conclusions

Relational database systems have become domi-
nant in the industry because they offer the ad-
vantages of data independence, high-level set-ori-
ented query languages, automatic optimization,
multiple views of shared data, and support for a
variety of host programming languages. These ad-
vantages are as important today as ever. How-
ever, a new generation of applications is appear-
ing that will stress today's database systems in
unprecedented ways. This paper has discussed
several ways in which relational database tech-
nology is evolving to meet the challenges of this
new generation of applications. We have de-
scribed how relational database systems can be
extended to support user-defined types, func-
tions, and rules, and we have discussed several
different approaches for improving the perfor-
mance of extended relational systems. The ad-
vantages of extended relational DBMSs can be
summarized as follows:

Upward-compatible type extensions to stan-
dard relational systems:

Because user-defined types and functions are
used in exactly the same way as system-pro-
vided types and functions, they are an upward-
compatible extension to today's relational sys-
tems. This approach minimizes the necessary
extensions to standard SQL and enriches the be-
havior of the data elements over which the re-
lational database is defined. User-defined types
and functions are also an important part of the
object-oriented extensions in the draft SQL3
standard.

Multifunctions:

In SQL3, the selection of a function to be in-
voked is based on the dynamic types of all its
arguments. This is in contrast to languages such
as C+ + , 9 Smalltalk, lo and Eiffel," which per-
form dynamic function selection based on the
type of a single argument. Algorithms have
been developed" whereby the type-safety of a
multifunction can be guaranteed at compile
time even though the actual function selection
is performed at run time.

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

Preservation of database type behavior in the
host language:

By using language types, instances of database
types can be fetched into application programs

Moreover, instances of database types can be
converted into representations that are appro-
priate to a host language. This allows existing
libraries written in host programming languages
to be used to manipulate instances of database
types in the host language.

b without losing their type-specific behavior.

Integration with multiple host languages:

The type extensions described in this paper are
accessible from multiple host languages, in
keeping with the usual practice of relational sys-

language can be used against data retrieved
from the database, and functions defined in the
database can be applied to data created in an
application program. Thus the semantics of a
user-defined type can be shared across multiple
programming languages, using the database as
a common repository.

1 tems. Type libraries that are written in a host

Declarative rules:

The declarative approach in which the system
automatically enforces constraints and rules is
a distinctive feature of extended relational sys-
tems. 37 B

Improved support for very large objects:

The use of handles to represent BLOB values
improves both the performance and the conve-
nience of BLOBS by deferring their materializa-
tion for as long as possible.

Many of the techniques described in this paper
have been demonstrated by experimental proto-
types at the IBM Almaden Research Center2*7’38
and at the IBM Database Technology Institute. By
means of these techniques, we believe that rela-
tional systems can add value to stored data and
continue to deliver superior function in a chang-
ing application environment.

Acknowledgments

The ideas presented in this paper are the work of
many people at several IBM locations. We ac-
knowledge the contributions of the members of

b

b
IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

the IBM Database Technology Institute, the Star-
burst and Polyglot research projects at the IBM
Almaden Research Center, the development staff
at the IBM Almaden, Santa Teresa, and Toronto
laboratories, and the IBM SQL Language Council.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of UniSQL, Inc., lngres
Corp., Sybase, Inc., or Oracle Corp.

Cited references

1. Database Language SQL3 (Working Draft), Jim Melton,
Editor, ANSI Database Committee (X3H2), American
National Standards Institute, New York (September
1993).

2. L. DeMichiel, D. Chamberlin, B. Lindsay, R. Agrawal,
and M. Arya, “Polyglot: Extensions to Relational Data-
bases for Sharable Types and Functions in a Multi-Lan-
guage Environment,” Proceedings of the Ninth Zntema-
tional Conference on Data Engineeling, Vienna; IEEE
Computer Society Press. Los Alarnitos, CA j1993),
pp. 651-661. Also available as Research Report RJ-8888,

Heights, NY 10598 (1992).
IBM Thomas J. Watson Research Center, Yorktown

3. G. Gardarin, J-P. Cheiney, G. Kiernan, D. Pastre, and
H. Stora, “Managing Complex Objects in an Extensible
Relational DBMS,” Proceedings of the Fifteenth Inter-
national Conference on Very Large Data Bases, Amster-
dam; Morgan Kaufmann Publishers, Incorporated, Palo

4. V. Linnemann, K. Kuesperr, P. Dadam, P. Pislor,
R. Erbe, A, Kemper, N. Suedkarnp, G. Walch, and
M. Wallrath, “Design and Implementarion of an Exten-
sible Database Management System: Supporting User
Defined Data Types and Functions,” Proceedings of the
Fourteenth International Conference on Very Large Data
Bases, Los Angeles, CA; Morgan Kaufrnann Publishers,
Incorporated, Palo Alto, CA (August 1988), pp. 294-305.

5. F. Manola and U. Dayal, “PDM: An Object-Oriented
Data Model,” Proceedings of the 1986 Zntemational
Workshop on Object-Oriented Database Systems, IEEE
Computer Society, Washington, DC (September 1986).

6. M. Stonebraker, “Inclusion of New Types in Relational
Database Systems,” Proceedings oj’the Second Zntema-
tional Conference on Data Engineering, Los Angeles,
CA; IEEE Computer Society, Washington, DC (1986).

7. T. J. Lehman and B. G. Lindsay, “The Starburst Long
Field Manager,.’ Proceedings of the Fifteenth Interna-
tional Conference on Very Laqe Data Bases, Amster-
dam; Morgan Kaufmann Publishers, Incorporated, Palo

8. P. Cotton, T. Lehman, N. Mattos, and F. Pellow, Large
Object Strings, ANSI X3H2-93-341, Rev. 1, ANSI Data-
base Committee (X3H2), American National Standards
Institute, New York (July 1993).

9. B. Stroustrup, The C+ + Programming Language, Add-
ison-Wesley Publishing Co., Reading, MA (1987).

10. A. Goldberg and D. Robson, Smalltalk-80: The Language
and ItsZmplementation, Addison-Wesley Publishing CO.,
Reading, MA (1983).

11. B. Meyer, Eiffel: The Language, Technical Report TR-

Alto, CA (August 1989), pp. 55-66.

Alto, CA (August 1989), pp. 375-383.

CHENG ET AL. 277

EI-l7/RM, Interactive Software Engineering Inc., 270
Storke Rd., Suite 7, Goleta, CA 93117 (August 1989).

12. D. G. Bobrow, L. G. DeMichiel, R. P. Gabriel, S. E.
Keene, G. Kiczeles, and D. A. Moon, Common LISP
Object System Specijication, ANSI X3J13 Document 80-
002R; also published in ACM SIGPLAN Notices 23, spe-
cial issue (September 1988).

13. R. Agrawal, L. DeMichiel, and B. Lindsay, “Static Type
Checking of Multi-Methods,’’ OOPSLA ’91 Proceedings,
Phoenix, A Z ; Association for Computing Machinery,
New York, pp. 113-128.

14. L. DeMichiel and N. Mattos, Enhancing the Algorithm
for Subject Routine Determination to Better Support
Multi-Functions and Multiple Inheritance, ANSI X3H2-
93-373, Rev. 1, ANSI Database Committee (X3H2),
American National Standards Institute, New York (Sep-
tember 1993).

15. Database Language SQL with Integrity Enhancement,
ANSI Standard X3.135-1989, American National Stan-
dards Institute, New York.

16. Database Language SQL, ANSI Standard X3.135-1992,
American National Standards Institute, New York.

17. D. Chamberlin and K. Eswaran, “Functional Specifica-
tions of a Subsystem for Database Integrity,” Proceed-
ings of the First International Conference on Very Large
Data Bases, Framingham, MA, Association for Comput-
ing Machinery, New York (September 1975).

18. M. Hsu, R. Ladin, and D. McCarthy, “ A n Execution
Model for Active Data Base Management Systems,” Pro-
ceedings of the Third International Conference on Data
and Knowledge Bases, Improving Usability and Respon-
siveness, Jerusalem; Morgan Kaufmann Publishers, In-
corporated, San Mateo, CA (June 1988).

19. M. Stonebraker, E. Hanson, and S. Potamiano, “The
POSTGRES Rule Manager,” IEEE Transactions on Soft-
ware Engineering 14, 7, 897-907 (July 1988).

20. U. Dayal, M. Hsu, R. Ladin, D. McCarthy, A. Rosenthal,
S. Sarin, M. Livny, R. Jauhari, M. Carey, B. Blaustein,
A. Buchmann, and U. Chakravarthy, HiPAC: A Research
Project in Active, Time-Constrained Database Manage-
ment-Final Technical Report, Technical Report XAIT-
89-02, Xerox Advanced Information Technology (July
1989).

21. M. Stonebraker, A. Jhingran, J. Goh, and S. Potami-
nanos, “On Rules, Procedures, Caching and Views in
Data Base Systems,” Proceedings of the ACM SIGMOD
International Conference on the Management of Data,
Nashville, TN; Association for Computing Machinery,
New York (1990), pp. 281-290.

22. U. Schreier, H. Pirahesh, R. Agrawal, and C. Mohan,
“Alert: An Architecture for Transforming a Passive
DBMS into an Active DBMS,” Proceedings of the
Seventeenth International Conference on Very Large
Data Bases, Barcelona; Morgan Kaufmann Publishers,
Incorporated, San Mateo, CA (September 1991), pp. 469-
478.

23. J. Widom, R. J. Cochrane, and B. G. Lindsay, “Imple-
menting Set-Oriented Production Rules as an Extension
to Starburst,” Proceedings of the Seventeenth Interna-
tional Conference on Very Large Data Bases, Barcelona;
Morgan Kaufmann Publishers, Incorporated, San Mateo,
CA (September 1991), pp. 275-286.

24. W. Harrison and H. Ossher, A Comparison and Evalua-
tion of Five Persistent Object Stores: Versant OODBMSw,
ObjectStoreTM, GemstoneTM, CLORIS, and RPDEIOS,

278 CHENG ET AL.

Research Report RC-16724, IBM Thomas J. Watson Re-
search Center, Yorktown Heights, NY 10598 (April 1991).

25. The Benchmark Handbook for Database and Transaction
Processing Systems, Jim Gray, Editor, Morgan Kauf-
mann Publishers, Incorporated, San Mateo, CA (1991).

26. R. Cattell, “An Engineering Database Benchmark,” The
Benchmark Handbook for Database and Transaction
Processing Systems, Jim Gray, Editor, Morgan Kauf-
mann Publishers, Incorporated, San Mateo, CA (1991).

27. M. Carey, D. DeWitt, and J. Naughton, “The 007 Bench-
mark,” Proceedings of the 1993 ACM SIGMOD Interna-
tional Conference on the Management of Data, Wash-
ington, DC; Association for Computing Machinery, New
York (June 1993), pp. 12-21.

28. M. Stonebraker, J. Frew, K. Gardels, and J. Meredith,
“The Sequoia 2000 Storage Benchmark,” Proceedings of
the 1993 ACM SIGMOD International Conference on the
Management of Data, Washington, DC; Association for
Computing Machinery, New York (June 1993), pp. 2-11.

29. D. Hauser and A. Shibamiya, “Evolution of DB2 Perfor-
mance,” InfoDB 6, No. 4,2-13 (Summer 1992). Published
by Database Associates International, P.O. Box 215,
Morgan Hill, CA 95038.

30. H. Pirahesh, G. Kiernan, R. Agrawal, B. Lindsay,
G. Lohman, and J. McPherson, Implementing Recursive
Query Processing in a Relational DBMS, unpublished
manuscript, IBM Almaden Research Center, 650 Harry
Road, San Jose, CA 95120.

31. P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A.
Lorie, and T. G. Price, “Access Path Selection in a Re-
lational Database Management System,” Proceedings of
the ACM SIGMOD Conference, Boston, MA; Associa-
tion for Computing Machinery, New York (June 1979),
pp. 23-34.

32. M. Carey, E. Shekita, G. Lapis, B. Lindsay, and
J. McPherson, “An Incremental Join Attachment for
Starburst,” Proceedings of the Sixteenth International
Conference on Very Large Data Bases, Brisbane, Aus-
tralia (September 1990), pp. 662-673. Also Research Re-
port RJ-7544, IBM Almaden Research Center, 650 Harry
Road, San Jose, CA 95120.

33. K. Bratbergsengen, “Hashing Methods and Relational
Algebra Operations,” Proceedings of the Tenth Znterna-
tional Conference on Very Large Data Bases, Singapore
(August 1984), pp. 323-333. Department of Computer Sci-
ence, Norwegian Institute of Technology, University of
Trondheim, N-7074 Norway.

34. D. J. DeWitt and R. Gerber, “Multiprocessor Hash-
Based Join Algorithms,” Proceedings of the Eleventh In-
ternational Conference on Very Large Data Bases,
Stockholm (1985), pp. 151-164. Department of Computer
Science, University of Wisconsin, Madison, WI 53706.

35. P. Valduriez, “Join Indices,” ACM Transactions on
Database Systems 12, No. 2, 218-246 (June 1987).

36. J. Cheng, D. Haderle, R. Hedges, B. Iyer, T. Messinger,
C. Mohan, and Y. Wang, “An Efficient Hybrid Join Al-
gorithm: A DB2 Prototype,” Proceedings of the Seventh
International Conference on Data Engineering, Kobe, Ja-
pan; IEEE Computer Society Press, Los Alamitos, CA
(April 1991).

37. The Committee for Advanced DBMS Function, “Third-
Generation Data Base System Manifesto,” SIGMOD
Record 19, 3 (September 1990).

38. G. Lohman, B. Lindsay, H. Pirahesh, and B. Schiefer,
“Extensions to Starburst: Objects, Types, Functions, and

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

Rules,” Communications of the ACM 34, No. 10,95-109
(October 1991).

Accepted for publication February 14, 1994.

Josephine M. Cheng IBM Software Solutions Division,
Santa Teresa Laboratory, 555 Bailey Avenue, San Jose, Cal-
ifornia 95141 (electronic mail: chengjm@vnet. ibm. corn). Ms.
Cheng is a Senior Technical Staff Member and a manager at
the Database Technology Institute at the IBM Santa Teresa
Laboratory, responsible for advanced technology in IBM
database products. Her interests include object-oriented tech-
nology, multimedia technology, and new application areas.
Previously, Ms. Cheng participated in development of the
DB2 relational database system as a designer, implementer,
and manager. She has filed five patents in query processing
and optimization. Ms. Cheng received the B.S. degree in
mathematics and computer science and the M.S. degree in
computer science from the University of California, Los An-
geles, in 1975 and 1977 respectively.

Nelson M. Mattos IBM Software Solutions Division, Santa
Teresa Laboratory, 555 Bailey Ave, San Jose, California
95141 (electronic mail: mattos@vnet. ibm. com). Dr. Mattos is
a database language architect at the Database Technology In-
stitute at the IBM Santa Teresa Laboratory, working on ex-
tended relational database systems. He is also IBM’s SQL
Standard Project Authority and a member of the ANSI Tech-
nical Committee X3H2 for Database, as well as a U.S. rep-
resentative to the International Organization for Standardiza-
tion (ISO) committee for databases. He has contributed
extensively to the design of SQL3. Prior to joining IBM,
Dr. Mattos worked for several years as the leader of a large
project on object-oriented and knowledge base management
systems at the University of Kaiserslautern in Germany. He
received a Ph.D. in computer science from the University of
Kaiserslautern in 1989. He has published several papers and
a book on data and knowledge management.

)

Donald D. Chamberlln IBMAlmaden Research Center, 650
Hany Road, San Jose, California 95120 (electronic mail:
chamberlin@almaden.ibm.com). Dr. Chamberlin is a re-
search staff member at the IBM Almaden Research Center
and an adjunct professor of computer engineering at Santa
Clara University. His current work is focused on object-ori-
ented extensions to relational database systems. He is an
ACM Fellow and was one of the original developers of the
SQL data language. He received a Ph.D. in electrical engi-
neering from Stanford University and joined IBM at the T. J.
Watson Research Center in Yorktown Heights, New York.
He has published numerous papers on database management
and document processing, and has received the ACM Soft-
ware System Award and two IBM Corporate Awards for his
contributions to relational database systems.

1

)
IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

Linda G. DeMlchlel IBM Alrnaden Research Center, 650
Hany Road, San Jose, California 95120 (electronic mail:
lgd@almaden.ibm.com). Dr. DeMichiel is a research staff
member at the IBM Almaden Research Center, where her
current work is focused on the design of object-oriented type
systems for databases. She is also a contributor to the ANSI
X3H2 Technical Committee for Databases. Prior to joining
IBM, she worked at Lucid Inc., on the design and specifica-
tion of the Common Lisp Object System, and at Xerox Corp.,
on the Pilot operating system. She received an A.B. degree
from Oberlin College and a Ph.D. degree in computer science
from Stanford University.

Reprint Order No. G321-5542.

CHENG ET AL. 279

