The Business Object
Management System

The Business Object Management System
(BOMS) is a distributed resource manager that
generalizes and extends the concepts of shared
corporate information to include not only data
that are structured such that the data can be held
in relational tables but also generalized, complex
business information objects. BOMS allows
enterprises to store, manage, and query the
totality of their documents, business transaction
records, images, etc., in a uniform and consistent
way. With this system, businesses can make
more effective use of information that has in

the past been inaccessible to thorough and
systematic queries and that could not be
integrated effeclively into existing or new
business processes. BOMS is targeted toward
very large collections of information objects (on
the order of a billion objects, equivalent to
terabytes of data) and allows enterprises to
unlock information treasures that would
otherwise remain hidden in collections of that
size. BOMS is influenced by theoretical concepts,
such as object-orientation and hypermedia, but
relies on proven relational database and
transaction processing concepts. BOMS has
been implemented with DATABASE 2™

(DB2°) and Customer Information Control
System/Enterprise Systems Architecture
(CICS/ESA™) and has been in productive use
since 1991.

he systematic and effective use of data today

is just a small fraction of what it potentially
could be—given appropriate methods and proce-
dures to access, exploit, and share that data, and
based on a common semantic understanding.
Data are often plentiful, but the problem is to
transform the data effectively into information
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that contributes to the achievement of business
and competitive capabilities. “Data’ and “infor-
mation” are not the same, although many people
often use these words as synonyms; ironically, an
enterprise can be data-rich, but information-poor.
In order to transform data into valuable informa-
tion, the data must be associated with semantics
and put into context before being made available
to the knowledge worker (one who extracts and
organizes information from data). A major prob-
lem for the knowledge worker is to select the data
that are pertinent in a given situation and put that
data into context with other data. A related prob-
lem is the failure to recognize links and similar-
ities between pieces of data that are stored in dif-
ferent formats and in separate locations or
libraries.

Information (or document) retrieval system de-
sign has been the poor stepchild of the computer
revolution, and, although relational databases'?
such as DATABASE 2* (DB2*)* and enterprise-wide
data models ** provide a solution for data that are
structured such that they can be held in tables, the
wealth of unstructured information is still largely
inaccessible to systematic queries and cannot be
integrated easily into existing or new business
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processes. Relational database management sys-
tems (RDBMS) were designed to avoid the disad-
vantages of earlier hierarchical and network da-
tabase systems and to solve the needs of business

The logical foundations of
information retrieval and

data retrieval systems are
fundamentally different.

data processing applications. Although they have
succeeded at this task admirably, standard rela-
tional databases are insufficient for computer-
aided design data, documents, etc., and need to
be extended. ™" Similarly, full text search infor-
mation retrieval systems were designed to avoid
the disadvantages and complexities of primitive
indexing systems. However, they often provide
unsatisfactory results: for example, in a primitive
full text search system in which each document
contains a line Document Number = . . . , search-
ing for documents about documents (e.g., about
document processing, archiving, handling, man-
agement, etc.) can become nearly impossible. A
fundamental problem here is that pure full text
search systems typically lack clearly defined data
items with limited meaning and role(s).

As a consequence, even large enterprises with
sophisticated, state-of-the-art data processing
systems exploit surprisingly small portions of
their data systematically. In most cases, only data
that lend themselves to tabular structuring, such
as accounting data, customer reference data, etc.,
are accessible for data processing. The vast ma-
jority of data entering an enterprise, especially
data that are generated through formal or informal
internal business processes, or that the enterprise
communicates to external involved parties, are
“dead data™ because there are no effective ways
to transform that data into useful and valuable
business information. Figure 1 schematically
shows the flow of work and related data through
an enterprise. Qur example is from the world of
financial institutions but is also typical of many
other types of enterprises. Incoming documents
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include traditional correspondence and machine-
readable documents that are transmitted through
EDI (electronic document interchange) or special-
ized networks, such as S.W.LF.T. (Society for
Worldwide Interbank Financial Telecommunica-
tion). The data stores shown are typically tran-
sient, work-in-process queues. Because the rep-
resentation form and structure of most of the
information in these queues is not sufficiently
standardized, there is no straightforward way to
store the information in the operational database
in a manner that would allow users to query, join,
and retrieve the information by a unified method.

In our example, we assume that business profes-
sionals and clerical workers use word processors
and spreadsheets to prepare customer contracts
and related analyses and memos, and the con-
tracts and the supporting material are sent either
as plain, traditional paper documents or through
the internal electronic mail system of the enter-
prise to the manager that must approve the con-
tracts. However, this work is usually done
ad hoc, in isolation, and related to specific busi-
ness process instances. Consequently, once a
business transaction is completed, the associated
information is cleared from the transient work
queues (in our example, the documents and
memos prepared on word processors and spread-
sheets) and is no longer accessible for future on-
line investigation. Much information that could
be valuable, for example, for later customer or
market segment analysis, to define future mar-
keting plans, etc., is lost, or the information is
impractical to locate and consolidate from paper
archives or from electronic archives that were de-
signed as, or just happened to become, “logical
islands.”

Commercial development of information re-
trieval has frequently treated document retrieval
as merely a variant of data retrieval. However,
the logical foundations of information retrieval
and data retrieval systems are fundamentally dif-
ferent.'*'® A data retrieval system directly an-
swers deterministic questions, such as what is
John Doe’s account balance? The fundamental
criterion of success for a data retrieval system is
correctness, i.e., one needs only to ask: does the
system correctly answer the question? An infor-
mation retrieval system is more indirect and prob-
abilistic, i.e., it provides references to a docu-
ment or to a set of documents that will likely
contain what the user wants. For example, an
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Figure 1 Flow of work and related data through an enterprise
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investment adviser in a bank may want to deter- predetermined access points (for example, cus-
mine which customers are promising prospects tomer number, or creation date). Many such doc-
for a new product that the bank is about to launch. ument storage systems provide only static “fold-
The criterion for successful information retrieval ers” (files used to store and organize electronic
in such cases is utility, as in this case: “Did the documents). Documents must be linked to these
investment adviser find all the useful informa- folders when they are stored. Consequently,
e Lo o i
tion?” This is a much more subjective criterion users cannot define their own folders to collect all
than correctness that can be applied in the case of documents that are relevant in a given context,
a data retrieval system. perhaps even years after the documents have

been stored. Because of their static classification
schemes and their limited flexibility, such designs
must pretend that it is possible to foresee how
information will be used in the future. Unfortu-
nately, that is seldom possible, and such designs
are, therefore, unable to solve some of the most
pressing needs. Instead, in order to allow a user
to view stored document collections according to

Because of the fuzzy nature of information re-
trieval, its effectiveness is less dependent on
the physical searching speed of the system and
is more dependent on the number of logical de-
cisions the user must make in a search. These
decisions include the construction of formal
search requests, evaluating the usefulness of doc-
ument references, and revising formal search re-

quests if the results from an initial search are not current information needs, and in order to find
satisfactory. relevant information with as few logical decisions

as possible, the document retrieval system must
Some electronic document storage systems are provide a large number of individual access points
designed to emulate traditional paper or COM to a single document, and access must be allowed
(computer output on microfiche) archives in the via a large number of ad hoc specifications of
sense that they provide only a small number of Boolean combinations of these access points.
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Moreover, it must allow folders to be defined
dynamically.

In this paper, we first describe the background
setting for the Business Object Management Sys-
tem (BOMS). We then describe the basic BOMS
concepts to manage the organizational and ad-
ministrative complexity that is inherent to very
large collections of complex information objects.
We show that BOMS is influenced by theoretical
concepts, such as object orientation and hyper-
media, but takes a pragmatic approach to solve a
real and pressing business need.

In presenting the concepts and system design of
BOMS, we first discuss a classification scheme to
divide a collection of information objects into
families, with family-specific attributes that can
be used as search terms, for access control, for
presentation, and for storage management pur-
poses. Then we describe the main components of
the logical structure of BOMS, i.e., the libraries,
the catalog, and the environment store. We show
how the environment store and the catalog, to-
gether with access control rules and other meta-
data are used to provide users with a single-sys-
tem view, and with flexible ways to search for
and to establish dynamic relationships between
objects that are relevant in a given business
context.

In a separate section, we describe an access con-
trol scheme that allows security policies to be
specified in a high-level language. Because the
specification of security policies is orthogonal to
the administration of user and object attributes,
the scheme adapts well to large numbers of users
and objects in a dynamic environment with the
need for fast, flexible, and reliable adaptation of
access constraints to the needs implied by chang-
ing circumstances.

Finally, we describe the system design and a
practical implementation of a BOMS distributed
resource manager that was driven by the stringent
capacity and throughput requirements of a major
Swiss bank. Under the control of an integrated,
CICS/ESA*-based (Customer Information Control
System/Enterprise Systems Architecture-based)
transaction management system, BOMS services
can be accessed by human users and by distrib-
uted client processes. The BOMS transaction man-
ager mediates between the users’ single-system
image and the underlying hardware and software
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complexity and heterogeneity. In particular, the
BOMS transaction manager hides any physical
segmentation of the BOMS information store from
the users.

Enterprise information management

Changing the nature of the work itself. In markets
with little or no growth, the overall economic cli-
mate, increasing cost pressure, and aggressive
competition demand more effective ways of doing

Information systems are
an important element
in growth strategies.

business to maintain or increase market share and
profitability. Information systems play a vital role
in this effort,'”! but they are also an important
element in growth strategies. Such strategies
must be designed to meet tomorrow’s main bus-
iness needs, i.e., the need to deliver new and en-
hanced services, both within the enterprise and to
customers or prospects, while keeping adminis-
trative costs under control.

The main goal of traditional image and document
processing systems is often to increase the effi-
ciency of “back office” operations (those not in-
terfacing with customers). Increasing the effi-
ciency of the “front office” is more or less a side
effect, and most of the knowledge worker’s needs
(or dreams) remain unfulfilled. We are, however,
not satisfied with making current processes more
efficient but want to allow and even encourage
new and more effective business processes.
Therefore, we propose a more radical new ap-
proach that allows knowledge workers and other
business professionals to exploit greater portions
of the large percentage (typically 95 percent or
more) of information that is today still inaccessi-
ble for on-line analysis, thereby enabling enter-
prises to introduce new types of products and
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services. Such an approach becomes increasingly
important for enterprises that want to become
more effective and gain a competitive advantage
by actively and consciously exploiting larger por-
tions of the information that has in the past been
inaccessible to systematic and consistent analy-
sis, and that could not be integrated into existing
or new business services. From our own practical
work, we know that these advantages are sub-
stantial for large financial institutions, but we be-
lieve that similar considerations hold for other
types of enterprises as well. For example, there
are strong indications that the pharmaceutical in-
dustry could achieve significant reductions in
their “time to market” if they had a uniform and
flexible way to access and consolidate the wealth
of information that is produced before a new drug
is submitted for registration.

Computerized collections of millions and billions
of complex information objects are, or will soon
become, a practical business requirement. More-
over, such collections will often grow at rates of
up to one hundred million new objects per annum
(p-a.), and new objects will have to be kept for
very long times. Large financial institutions typ-
ically have the need, for audit and for legal rea-
sons, to keep business records for 10 or more
years. For large banks, up to ten million account
statements p.a. and up to one hundred million
payment transaction records p.a. are not unusual,
and, consequently, one billion (10%) objects will
soon become the typical order of magnitude that
must be handled.

The challenge for enterprises with such ambitions
is to find a practical solution to the problem of
managing the organizational and administrative
complexity that comes along with collections of
that size. The key to solving this problem is to
hide the complexity from the users and to provide
them with a single-system view of all of the com-
plex information objects of an enterprise, includ-
ing both current and old (i.e., archived) objects.
Moreover, users need a unified and coherent way
to query and handle all objects in the collection.

Access control. Managing and actively exploiting
such new orders of magnitude also requires fun-
damentally new security concepts. In order for
legitimate users to be able to easily access infor-
mation for which they are authorized, without
having the information compromised by unautho-
rized users, such huge collections of valuable bus-
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Table 1 Main objectives of access control

Privacy Ability to decide whether, when, and to
whom information is released, and to
enforce such decisions. Included is the
ability to decide that certain information
is not to be released except to selected

individuals and to enforce the decision.

Ability to present the release of secret
information to individuals who are not
cleared (i.e., authorized) to see such
classified information. This is equivalent
to the privacy requirement except that
the decision on whether information is
released is based on two particular
information and user attributes, i.e.,
secret and cleared, which are kept under
light administrative control.

Ability to prevent unauthorized
modification of information.

Secrecy

Integrity

iness information require new types of access
control.

Access control is an aspect of information secu-
rity or, more specifically, an aspect of information
risk management, traditionally having the three
main objectives listed in Table 1.

For the enterprise-wide exploitation of shared
corporate information objects, being able to ef-
fectively manage users’ rights, i.e., to specify
granular access controls without incurring an
unacceptable administrative workload, becomes
critically important. However, when collections
of information objects reach the size that we en-
vision for BOMS, and when they are in a dynamic
environment with the need for fast, flexible, gran-
ular, and reliable adaptation of access constraints
to changing circumstances, most currently avail-
able access control models become impractical.
The main problems are the number and the com-
plexity of the administrative decisions and ac-
tions that are required to enforce the access con-
trol policies of an enterprise. For the expected
number and frequency of personnel, organiza-
tional, and environmental changes, currently
available models make it difficult to figure out
how to specify access controls, and it is difficult
to verify that the controls in place indeed corre-
spond to what is intended. Consequently, the
number and complexity of administrative deci-
sions and actions required to enforce adequate
security policies could prevent the implementa-
tion and exploitation of the foreseen enterprise-
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wide information object stores. Without funda-
mentally new concepts to replace traditional
clerical procedures of resource access control
specification and administration by more effi-
cient, flexible, and to a large extent automatic
procedures, either huge graveyards of inactive
and largely inaccessible data would result, or un-
acceptable security exposures would occur.

The Business Object Management System. The
key to our approach is the notion of a Business
Object Management System (BOMS) for complex
information objects defined as logically con-
nected sets of information that can be referred to
and manipulated in their collective form. The size
of such objects can vary from a few bytes to
megabytes. Note that our definition of an object
is different from the definitions that are normally
used in the context of object-oriented program-
ming.

BOMS is a separate transaction management layer
on top of one or multiple, potentially heteroge-
neous, database management systems. BOMS at-
tempts to combine the advantages of RDBMS with
some of the advantages of object-oriented data-
base management systems (OODBMSs). The
strengths of an RDBMS include the capability to
support multiple logical views of shared data and
set-oriented queries, whereas an OODBMS pro-
vides support for complex objects with encapsu-
lated semantics. Views permit each application or
query to see data organized in its own preferred
way, and encapsulation shields programmers
from irrelevant implementation details and forces
them to access data only through strictly con-
trolled interfaces. BOMS provides all of that but is
not meant to be a general-purpose OODBMS. For
example, BOMS is not meant to extend procedural
programming languages with support for persis-
tent data types, and inheritance is supported only
in a very limited sense.

BOMS provides a methodology to structure and
position all of the complex information objects of
an enterprise such that they become a known,
integrated, and well-managed part of the infor-
mation assets of the enterprise. Conceptually, the
BOMS methodology includes elements of tradi-
tional data modeling methodologies that allow op-
erational data to be structured by way of classi-
fication schemes. However, these concepts are
extended such that they apply not only to struc-
tured data that can be held in relational tables but
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also to complex business information objects that
are insufficiently structured for relational data-
base management systems.

BOMS is first of all designed to support the knowl-
edge worker in new ways that go beyond what
image and document processing systems nor-
mally intend and are capable of. In addition, BOMS
also provides new opportunities to make the front
office not only more efficient, but also more effec-
tive, and provides opportunities for new front of-
fice services that were previously impossible. Ex-
amples are the capability for a total customer
view, and immediate responses to customer in-
quiries even when they relate to complex rela-
tionships between involved parties.

Figure 2 shows how BOMS complements the tra-
ditional operational database where structured
data are stored, normally in the form of tables.
BOMS is enterprise-wide, i.e., it covers the com-
plete work flow: from order entry, through order
processing, to order confirmation. Moreover, as
Figure 3 shows, BOMS also supports business pro-
cesses that traditionally received little or no sup-
port from the operational database, such as mar-
keting. Postprocessing of order confirmations
seen in the figure is an example of a business pro-
cess that extracts information that is expected to
become useful for later analyses. Figure 4 depicts
how BOMS, together with the traditional opera-
tional database, adds new qualities to existing
business processes, such as the capability to pro-
vide business professionals with a total customer
view, or the capability for inmediate responses to
customer inquiries. Moreover, and perhaps more
importantly, new services become possible, such
as fundamentally new types of information re-
search and analysis, an information subscription
for business professionals, and, potentially, a
wealth of other, new business processes that still
wait to be devised—all to make an enterprise
more flexible and more competitive.

Related work. A series of articles'%***’ elaborate
on the hypothesis that new methods are needed to
filter and control the potentially unlimited flow of
information that the information age promises.
They argue that information retrieval systems
have in the past ignored some aspects of the more
general area of information filtering, and they dis-
cuss how current information retrieval models
could be extended.
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Figure 2 BOMS complements the traditional operational database
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Linnemann et al.' discuss the “misuse” of tra-
ditional database systems as “byte containers”
for complex data objects that are not sufficiently
structured for the underlying database. A conse-
quence of such a misuse is that the database
system cannot support search predicates on the
contents of these containers. It is left to the ap-
plication programs to interpret these byte strings
and to implement the functions that manipulate
them. The resulting high dependency between the
physical data representation and individual appli-
cation programs negates one of the major advan-
tages of database systems. To overcome these
drawbacks, an extension of the traditional rela-
tional model is proposed that supports “nested”
relations and that has an SQL-like language inter-
face for complex objects. An extended version of
SQL (Structured Query Language) with object-
oriented features for structured complex objects
is also discussed in Gardarin et al.!!
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With the 1BM Information Warehouse* concept,
some aspects of which are discussed in other pa-
pers in this issue of the /BM Systems Journal,
BOMS shares the focus on corporate information
assets and the goal to provide knowledge workers
with easy access to such assets. A related goal
that BOMS shares with the Information Ware-
house architecture is the concept of providing
users with a single-system view of a potentially
heterogeneous and distributed set of information.

Although BOMs has been conceived, designed,
and implemented independently, BOMS could be
seen as a way to extend the scope of the current
Information Warehouse architecture to provide
support for nonformatted and compound infor-
mation. Such extensions could include libraries
for documents and for business transaction rec-
ords or, more generally, for arbitrary collections
of data of different types which together consti-
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Figure 3 BOMS support of business processes not supported by operational database

INCOMING DOCUMENTS ———; I—-—--——-> OUTGOING DOCUMENTS
1
1 ‘ ‘ [
ORDER ; ORDER ORDER :
; ENTRY PROCESSING CONFIRMATION |
| s o [ | ’ ¢
: : 4 r 7y
L
v L B X
RKET] POST-
MARKETING PROCESSING
ﬂ b
COPIES INTERNAL PROCESS INQUIRY COPIES
DOCUMENTATION RESULTS
v h 4 v v h 4

UNSTRUCTURED INFORMATION
BUSINESS TRANSACTION RECORDS

(BUSINESS OBJECT MANAGEMENT SYSTEM: SHARED CORPORATE OBJECTS

tute complex business objects with many com-
plex relationships.

Although BOMS does provide support for complex
information objects as we have defined them
above, BOMS is not an OODBMS, at least not in the
sense as it is described by many current research-
ers.*-*® 0ODBMS:s typically focus on removing the
semantic gap between application domains and
their representation in persistent storage. An im-
portant goal of many current OODBMS:s is to alle-
viate the mismatch between procedural program-
ming languages and traditional database systems
by allowing applications to store arbitrary pro-
gramming or GUI (graphical user interface) ob-
jects directly into persistent storage. The ap-
proach followed by many currently available
OODBMSs is to enhance object-oriented program-
ming languages with functions to access and ma-
nipulate persistent program objects. However,
imbedding persistent data into a procedural pro-
gramming language such as C+ + precludes many
of the advantages of a nonprocedural, set-ori-
ented query language such as SQL. Compared to
relational systems, that procedural approach re-
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sults in a loss of logical data independence, i.e.,
the single most important advantage of relational
database systems. In addition, OODBMSs typically
represent relationships as distinct from data val-
ues, whereas RDBMS represent relationships by
data values. A resulting drawback is that many
current OODBMSs cannot easily support multiple
logical views of shared data, i.e., the kind of
queries that can be supported depends on how
individual objects and object collections are de-
signed. A practical requirement that follows is
that, with an OODBMS, one should know in ad-
vance (i.e., when the database and the object col-
lections are designed) how the information will be
used in the future. Because that knowledge is
nearly impossible to obtain for information with a
useful lifetime of ten or more years, that require-
ment can effectively limit the potential use of in-
formation stored in an OODBMS.

Examples of prototype database systems that
have explored new concepts such as object sup-
port are ORION,*' POSTGRES,* and Starburst."
Whereas ORION is typical for the revolutionary
approach that starts from scratch, POSTGRES and
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Figure 4 BOMS adds new qualities to existing business processes
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Starburst are typical for the evolutionary ap-
proach that extends SQL with new features. POST-
GRES was developed at the University of Califor-
nia, Berkeley. POSTGRES adds object and rule
management capabilities to the functions offered
by a traditional database management system.
The POSTGRES object management capabilities
are designed to support nontraditional data types
such as bit maps and polygons that are required
for computer-aided design and other engineering
applications. The POSTGRES rules system sup-
ports triggers, i.e., event-driven programming
and a more flexible and more powerful way to
specify and to enforce integrity constraints—
compared with the referential integrity rules nor-
mally supported by current database manage-
ment systems.

The Starburst project at IBM’s Almaden Research
Center is another example of an evolutionary ap-
proach to extend existing relational databases.
Starburst is not a pure OODBMS, but it addresses
many of the issues that OODBMSs raise, including
complex object support, extensible types and
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methods, encapsulation, inheritance, overload-
ing, and late binding. Overloading denotes the
concept whereby a method may have different
implementations. When a method is called, the
implementation that is dispatched and executed
depends on the type of the object on which the
method is invoked. Starburst is more ambitious
than earlier object-oriented systems because the
focus is not only on accommodating objects, but
also on extensions based on a set-oriented, de-
clarative query language.

Extensions to the conventional relational data
algebra to model the evolution of database sche-
mas are described in McKenzie and Snodgrass. *
Conventional databases allow only one schema to
be in force at a time. Consequently, when the
schema is modified, for example, when new at-
tributes are introduced or when existing at-
tributes are either merged or split, the database
must be restructured, or reorganized. For BOMS,
and for other databases that store past states,
such reorganizations are no longer adequate. In-
stead, multiple schemas must be in effect simul-
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taneously, each of which applies to a specific in-
terval in the past. In that sense schema versioning

A central problem of
information retrieval is
how to represent
information for retrieval.

refers to the retention of past schemas that result
from a schema evolution. References 41 and 42
are papers related to this subject.

Melampus,* a research prototype (named after a
great seer in Greek mythology who could under-
stand the speech of animals and birds), addresses
the problem of finding related data that may orig-
inate from different sources and that may lack
common formats and even semantics. It is argued
that the lack of a comprehensive way to manip-
ulate the wealth of information in a system is a
fundamental reason why the worth of the infor-
mation resource is often only latent and cannot be
fully realized. Melampus intends to provide a
computing environment that will enable data to be
used in unanticipated ways, ease the formation of
new relationships among data, and promote the
sharing of data between applications.

Rufus* is an object-oriented data model and a
storage system with associated search methods.
It is built around a centralized description of data
types and formats that supports the construction
of applications operating across data types. By
integrating the data attributes in a central place,
retrieval on a semantic level rather than at a
purely syntactical (i.e., text-oriented) level be-
comes possible. Rufus attempts to eliminate the
problems of more conservative approaches in
which the semantics of the data formats are
locked away in individual application programs.

Document and image processing have recently
caught widespread interest.** However, many
publications show a bias toward small-scale ap-
plications. Practical aspects such as systems ad-
ministration and integration into enterprise oper-
ations are mostly omitted.
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Through the availability of relatively cheap opti-
cal storage media, scanning of incoming docu-
ments®>' has recently become, for some enter-
prises, a means to reduce the costs that are
associated with the handling of paper, i.e., a task
that does not require specialized skills but that is
labor-intensive. With ImagePlus*, when paper
first enters the business, its information is cap-
tured as an electronic image.> From that point it
is distributed, tracked, and processed electroni-
cally. In addition to providing cost-effective ways
to replace warehouses filled with paper, optical
disk storage is also used to replace COM archives
to store, in a bank, for example, financial trans-
action statements as they are generated by the
operational data processing applications. Al-
though these uses of new technology are valu-
able, they are mainly targeted at automating ex-
isting processes to make them more efficient.

The majority of information retrieval research has
been aimed at more experimentally tractable
small-scale systems, but it is increasingly appar-
ent that retrieval systems with large numbers of
documents are a fundamentally different genre of
system than small-scale systems, and that quan-
titative growth of an information retrieval system
causes qualitative changes in its structure and
processes.

A series of research reports* and a recent IBM
Systems Journal paper® describe the require-
ments analysis, architecture, design, and imple-
mentation of a document storage subsystem that
has evolved to IRM, the IBM Image and Records
Management System. % IRM is a toolkit that pro-
vides components for image scanning, displaying,
and printing services, and for object library,
folder management, and work list management
services. These services can be customized and
integrated to produce comprehensive, versatile
image processing and work flow management sys-
tems with custom graphical interfaces.

BOMS concepts and system design

Object families. Object families, which we define
as sets of objects sharing some common proper-
ties, implement a basic BOMS concept that we
have adapted to an enterprise scale and demon-
strated in practice. They address the organiza-
tional and administrative requirements of very
large object collections by means of an n-dimen-
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Figure 5 Two-dimensional categorization of information objects
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sional classification scheme that assigns each ob-
ject to exactly one class. Families are uniquely
identified by n family descriptors, i.e., attributes
with values that are shared by all family mem-
bers. In addition, each family is characterized by
sets of attributes that are mandatory for all mem-
bers of the family, but for which each family
member (i.e., each object) has its own values; we
call these attributes “object descriptors.”

In principle, BOMS allows an arbitrary number of
family descriptors, i.e.,n =1,2,3,...,andn
can be changed over time. However, as seen in
Figure 5, n = 2 is often an intuitive and practical
choice:

1. The enterprise’s organizational unit that cre-
ates information objects, or that receives the
information object from an external involved
party; examples are: top management, legal
department, audit department, etc.

2. The semantic type of an information object,
such as minutes, incoming letters, orders,
statements, etc.

As illustrated in Figure 5, setting up BOMS with
n = 2 family descriptors leads to a two-dimen-
sional categorization of all information objects,
which is intuitive and appealing, which appears to
reflect the business reality of many enterprises
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N/A: NOT APPLICABLE

well, and which appears to be relatively stable
over time. Obviously, the values of the family
descriptors “organizational source” and “object
semantics” are installation-specific; the values of
the columns (top management, legal department,
etc.) and the rows (minutes, incoming letters,
etc.) in Figure 5 are only examples. Moreover,
not all possible combinations may be applicable in
a given scenario, i.e., there may be families with
no members. For example, minutes may be gen-
erated by top management, by legal, and by the
audit department, but not by either the payments
department or the securities department. Simi-
larly, orders and statements may relate to the
payments and securities departments, but not to
top management, nor to legal or the audit depart-
ment.

BOMS information objects. A central problem of
information retrieval is how to represent infor-
mation for retrieval. BOMS information objects
are logically connected sets of information that
can be referred to and manipulated in their
collective form. Conceptually, BOMS information
objects contain the following five structural
elements: object profile, body, search terms,
comments, and transforms.

Object profile. The object profile structural ele-
ment contains object descriptors that can be used
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as search arguments, for access control, to con-
trol presentation and storage management, and
for administrative purposes. It also contains
meta-information about how the object is repre-
sented, i.e., whether it is an EBCDIC (extended
binary-coded decimal interchange code) string,
an RFT (revisable form text) data stream, an im-
age, or information that is encoded in some other
form. The types and names of mandatory and op-
tional descriptors in the object profile are defined
by the family to which the object belongs.

A basic BOMS concept is the requirement that
all object profiles must be time-invariant and
that all descriptors in an object profile must de-
scribe only the object itself. More specifically, the
descriptors in the object profiles must not de-
scribe facts that apply to multiple objects. For
example, they must not hold information about
the environment in which the object was created,
such as information about the organizational
structure of the enterprise. Instead, such infor-
mation is kept—separate from the object profiles
and redundancy-free—in the environment store
that we will describe presently.

Object descriptors can be scalars, or n-dimen-
sional vectors. Figure 6 shows, as an example, an
object from the hypothetical family F,; (see Fig-
ure 5), i.e., a security settlement statement. In
this example, the order number is a scalar be-
cause it is a descriptor that consists of a single
value. This descriptor contrasts with a vector de-
scriptor that consists of an ordered set of num-
bers. In our example, an item called To the Debit
of Account is a three-dimensional vector, the
three dimensions being account number, value
date, and amount. Objects can have multiple in-
stances of descriptors. For example, the object in
Figure 6 has two instances of the descriptor com-
missions.

Body. Body is the main information content.
From the BOMS perspective, the body is an un-
interpreted bit string that is handled in its entirety.
Conceptually, there is no upper limit to the size of
the body, and the information that is contained in
the body can be represented as an EBCDIC string,
an RFT data stream, a binary encoded image, or in
any other form. However, BOMS maintains infor-
mation about the representation form of the body,
i.e., so-called meta-information, in the object pro-
file.
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Search terms. The search terms structural ele-
ment contains additional items that can be used
for queries.

Comments. The comments element contains an-
notations that users may attach (i.e., “staple”),
over time, to the object.

Transforms. The transforms structural element
contains transformations of the object body, such
as an abstract of a text document, a verbal de-
scription of an image, a low-resolution, com-
pressed form of an image, etc.

All structural elements and the object descriptors
in the object profile are self-defining, i.e., have
their associated element profiles that describe the
data format and the number of instances con-
tained. This allows us, for example, to relate an
arbitrary number of comments with a given object
and with multiple transforms. Moreover, schema
evolutions® and changes in the representation
form of object descriptors can be hidden from the
users. This support for multiple versions of de-
scriptors allows BOMS to adapt to changing re-
quirements without the need to change previously
stored objects, and without disturbing the users’
consistent and stable single-system view.

BOMS structure. Figure 7 shows the basic BOMS
structure. It consists of two main processes: the
service request manager, which is the main front-
end process, and the library manager, which is
the main back-end process that accesses the li-
braries (Library 1, Library 2, ..., Library n)
where information objects reside.

The service request manager provides the inter-
face through which human users and automated
client processes interact with BOMS. The service
request manager is a complex information object
resource manager that supports requests to store
objects and to query or retrieve objects. It oper-
ates asynchronously, i.e., once a terminal user or
client process has issued a service request, it is
free to continue with other tasks. Service re-
quests are persistent across sessions, i.c., they
survive user logoff and system restart operations.
When a service request has been processed, the
service request manager puts the reply into the
service reply queue for subsequent display on the

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994




Figure 6 Security settlement statement example

AN
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CH-9999 ANYTOWN
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user’s terminal or for further manipulation by the The service request manager handles two main
client process. For simplicity, Figure 7 shows types of requests:
only a single service reply queue. In reality, how-
ever, each client process has its private area in 1. Object retrieval requests, requests for objects
that queue and sees only the replies that pertain that meet certain criteria. Such requests are
to its own requests. These private areas are also transformed into one or multiple library orders
used to synchronize and recompose the results and then passed on to the library manager. The
from multiple background processes that may run transformation relies on the catalog, on access
independently and asynchronously. control rules, on information from the envi-
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Figure 7 The basic BOMS structure
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ronment store, and other meta-data. When the
library manager returns the requested objects,
the service request manager places them into
the service reply queue and notifies the re-
questing process, or terminal user.

2. Object query requests, requests for lists of ob-
jects that meet certain criteria. Such requests
do not require that the objects actually be re-
trieved, i.e., they can be handled by querying
and joining information from the catalog, from
the access control rules base, from informa-
tion about the environment, and from other
meta-data. However, the replies to such object
query requests are also put into the service
reply queue, similar to retrieved object bodies.

The service request manager provides terminal
users and client processes with a view that em-
phasizes the semantic commonalities of informa-
tion objects and hides possible differences in the
representation and storage formats. For example,
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all objects of the semantic type contract can be
handled in a uniform and coherent way, even if
they manifest themselves in different data stream
formats, such as typed letters and scanned im-
ages. Objects of different data stream formats can
be kept under the control of different storage sub-
systems without impacting the single-system/
single-library view that users have.

The library manager fulfills the library orders re-
ceived from the service request manager, i.c.,
stores and retrieves the bodies and other struc-
tural elements of the BOMS information objects. It
is a binary object resource manager in the sense
that it is not aware of the nature (i.e., both the
format and the semantics) of the objects it is
handling.

The Libraries 1 to # are the stores for the bodies

and for related structural elements of the BOMS
information objects. All libraries have the same
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architecture, but they may vary in physical im-
plementation. Each library consists of the library
shell, which provides the interface code to the
library manager, and the library core, imple-
mented with the underlying DBMS or access meth-
ods, or both. This layered structure allows BOMS
to integrate multiple storage subsystems that can
be based on different technologies—without dis-
turbing the users’ single-system, or single-library
view. It allows enterprises to take advantage of
newer storage subsystems with better price-per-
formance ratios, as they will inevitably become
available through advances in technology. Typi-
cally, new objects will be stored in libraries that
are implemented with new storage technology,
while the old objects can continue to reside in the
older libraries that are implemented with older
storage technology. The BOMS design guarantees
a single-library view, i.e., both the old and the
new objects are seen by the users as if they were
stored in a single, uniform library.

In addition to the two main processes, Figure 7
also shows the catalog, the environment store,
the access control rule base, and the meta-data
store, all of which provide input to both the ser-
vice request manager and the library manager
processes.

Conceptually, the catalog is a redundancy-free
table in which each row represents the time-
invariant attributes of an information object and
pointers to the object and its related elements,
such as comments and transformations, in the
BOMS libraries. The attributes include the object
profiles and all element profiles. They are repre-
sented as scalars or as complex structures, such
as vectors or sets of vectors.

The environment store contains time-stamped in-
formation about the state of the environment both
in the past and present, i.e., at the time when
BOMS processes an object query or retrieval re-
quest. From the environment store, BOMS can in-
fer information about the state of the environment
at certain times during the life cycle of an object;
for example, when the object was created, five
years after it was created, or now. Such informa-
tion could, in principle, also be stored in the cat-
alog, but the resulting number of catalog updates
required to reflect environment state changes
would be impractical for the size of object col-
lections that we envision—which is the underly-
ing motivation for our requirement that the cat-
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alog should be redundancy-free and contain only
time-invariant information.

Information from the organization chart of an en-
terprise is typical of what is in the environment
store that may be used to describe certain aspects
of information objects. For example, let us as-

The environment store contains
time-stamped information about
the state of the environment.

sume that d was the managing director of the or-
ganization unit u, at time t, when a certain object
o was created by employee e, in the organization
unit u;;, which was at that time a part of the or-
ganization unit u,. It is easy to imagine situations
in which one might be interested in identifying all
objects of a certain type (say, contracts worth
more than one million dollars) that had been cre-
ated, in a certain period of time, in all organiza-
tion units directed by d. One might therefore be
tempted to store d as an attribute of o in the cat-
alog entry that describes 0. However, this would
probably have to be repeated in many catalog en-
tries and would lead to the well-known problems
related to redundant information. The idea to
avoid redundant information by storing d as a
family descriptor for contracts which would then
be shared by all objects in that family also fails,
because we do not want to define a new family
of contracts whenever a new director is assigned
to manage u,. More generally, it is impossible to
know in advance all possible ways in which users
may wish to identify objects.® It is, therefore,
best to normalize all descriptive information kept
about objects in the same way as it is traditionally
done for relational databases. Based on these in-
sights, all descriptive information that would vi-
olate normalization rules is stored external to the
catalog. In our example, it suffices to store, in
the catalog, the fact that o was created at time t,
by employee ¢,. The fact that e; was then as-
signed to u,;, that u,; was a part of u,, and that d
was then the managing director of u, is kept in the
environment store.
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The historic dimension of the environment store
also allows BOMS to bridge schema evolutions,
i.e., to provide users with a stable view of object
characteristics even when the structure and rep-
resentation of certain descriptors changes over
time. Through an automatic mapping of object
queries to multiple descriptor schemas that cor-
respond to multiple historic periods, users are
shielded from the possibility that certain object
characteristics may have been represented
differently during multiple periods of time. Con-
sider, for example, a case where a descriptor
CUSTOMER_NUMBER had for some time been
represented as BIDnnnnnn, where BID was the
identifier of the branch with which the customer
had a business relationship, and where nnnnnn
was a number that was unique across the enter-
prise. Searching for objects related to a certain
customer across all branches of the enterprise
therefore involves wild card clauses of the form

WHERE CUSTOMER_NUMBER ='$nnnnnnn' (1)

where $ is the wild card character that matches all
branch identifiers.

Now, let us assume that, at some point in time, it
is decided that the enterprise would like to be able
to better manage its business relationships with
all types of involved parties. Therefore, the en-
terprise may choose to introduce a new, enter-
prise-wide descriptor INVOLVED_PARTY_NUMBER
that will supersede the CUSTOMER_NUMBER. The
new descriptor INVOLVED_PARTY_NUMBER will
be of the form mmmmmm, i.e., it will no longer
include a reference to a particular branch. How-
ever, because the identifier of the branch where
certain business transactions are handled is still
considered to be important, a new descriptor
BRANCH_IDENTIFIER is introduced. For new ob-
jects, which are described according to the new
scheme, searches related to a certain customer
now require clauses of the form

WHERE INVOLVED_PARTY_NUMBER ='mmmmmmm' (2)

However, if a user searches for older objects with
descriptors of the older type, BOMS will automat-
ically map the query to the old form in Equation
1 with the wild card search across all branches. In
general, the user does not have to be aware of the
possibility that older objects may have been de-
scribed according to schemas that were different
from those commonly used today. Moreover,
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there is no need for the user to be aware of the
time when the new descriptor types were intro-
duced. BOMS can infer all that from the historic
dimension of the environment store and map the
external user query into a series of BOMS-internal
queries that will retrieve all relevant objects, even
if different descriptor types were used during mul-
tiple historic periods. The motivation for having
this activity transparent to the user is threefold:
(1) Schema evolutions are inevitable; we cannot
ignore changes in the business environment and
must, therefore, be able to adapt descriptor sche-
mas so that they always reflect current reality. (2)
We want to provide the users with a consistent
view and avoid the need for users to be aware of,
and understand, the consequences of schema ev-
olutions. (3) We want to avoid the need to modify
the descriptors (i.e., catalog entries) of stored ob-
jects to reflect schema evolutions. For the size of
object collections that we envision, and given the
requirement that BOMS must be almost continu-
ously available for user queries (close to 7 X 24
hours), it would be impractical.

Querying, retrieving, and organizing business ob-
jects. The ability to identify and retrieve objects
that are relevant in a given business context de-
pends on being able to describe the properties
that separate relevant from irrelevant objects. To-
gether, the catalog and the environment store al-
low associative queries that can take into account
not only properties inherent to the objects them-
selves, but also the state of the environment in
which the objects were created. Because both the
catalog and the enterprise store are designed as
collections of relational tables, and because of the
flexibility of the relational model, interobject re-
lationships do not have to be predefined. The lim-
itations of standard approaches to structure doc-
ument, image, and object databases with relatively
few and predefined links from individual docu-
ments to index terms are avoided. Instead, with
the relational join operator, objects can be
dynamically related based on attribute values;
i.e., access is associative through a value-based,
nonprocedural specification of a collection of rel-
evant information objects. Consequently, search-
ing for information closely matches the activity of
the human mind, which is inherently associative.
More specifically, there is no need for static, pre-
defined and hard-coded links between objects to
define folders, for example, to keep all objects
together that belong to a certain organization unit
in the enterprise. Folders can be defined dynam-
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ically and separately by each user by specifying in
a query what common properties all objects in a
folder should have. In fact, a BOMS folder is sim-
ply made up of one or more lists of objects that
share certain characteristics.

Object queries allow users to work with informa-
tion objects in the same way in which they are
used to working with paper documents. Objects
that meet the selection criteria of a query can be

The first step in a
typical sequence of
interactions with BOMS
is to set up a query.

assigned to private subject folders, and folders
can be subdivided with file tabs. New objects can
be added to existing folders. For example, with
the push of a button, a user can request that all
new objects that entered BOMS since the last ex-
ecution of a query and that meet the selection
criteria of the query are added to the current con-
tent of a folder. It is an easy and powerful way to
keep subject folders up to date. Moreover, ob-
jects can be copied or moved between folders, or
from one file tab to another. Entire file tabs can be
moved or copied between folders. However, this
action affects only a particular user’s view of
these objects. The objects themselves, and all
other users’ views of these objects, remain un-
changed by such operations.

Figure 8 illustrates the main processes perceived
by a BOMS user: query, retrieve, and deliver. Also
shown are the data flows into and out of these
processes. The query process is implemented by
the service request manager; the implementations
of the retrieve and deliver processes are distrib-
uted across the service request and the library
manager (see Figure 7). The actions of the calling
user or client process are represented by the col-
ored arrows in Figure 8.

The first step in a typical sequence of interactions
with BOMS is to set up a query, either by calling
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the BOMS application programming interface (API)
with the search criteria as parameters (typically
done by a client program) or by interactively
specifying the search criteria in application-spe-
cific panels on a terminal. In that way, a conjunc-
tion of predicates on the attributes of the BOMS
information objects is created to act as a filter
through which the collection of information ob-
jects is presented to the user. The query process
applies that filter to the catalog and to the envi-
ronment store and returns a list of qualifying ob-
jects to the user. For each object that matches the
specified search criteria, provided the user is au-
thorized to know that the object exists (according
to the access control rules), the list of qualifying
objects contains a separate entry. That entry con-
tains selected elements from information kept in
the catalog about the corresponding object. What
elements are in the catalog depends on the family
to which the object belongs. From these elements
the BOMS application designer can select the
elements that are included in the list. In that
sense, the list of qualifying objects is a dynamic
folder with (references to) objects that pertain to
the business issue or the question that was the
origin of the query. The entries in the folder can
come from multiple object families and from
objects that are encoded in different data stream
formats.

In many cases, the list of qualifying objects is
sufficient to meet immediate information needs.
For example, when customer 0987.654321 (Fig-
ure 6) calls to inquire about the quantity and the
price of the securities that the bank had sold for
him or her on January 17, 1994, normally retrieval
of the complete settlement statement from the li-
brary is not required (see Figure 6). The list of
qualifying objects will contain an entry that cor-
responds to the settlement statement for order
number 123456789, and the entry will contain the
vector descriptor {security number, quantity,
price, currency, amount}. If the customer is sat-
isfied with that information, no further action is
required. Only if the customer insists on a copy of
the settlement statement must the object itself be
retrieved from the library and printed.

In that case, the user could then select the entry
that corresponds to the settlement statement
123456789 from the list of qualifying objects, and
specify that BOMS should retrieve the correspond-
ing object from the library and deliver it to the
user’s local printer or, optionally, to the bank’s
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Figure 8 Main processes perceived by a BOMS user
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automated print and mail factory, which would
then print the statement, put it into an envelope,
and place it in the external mail. More generally,
the BOMS service request manager will deliver the
retrieved object to the service reply queue, where
it will be picked up by other processes, such as a
print process or a process that displays the object
on the user’s screen for interactive browsing,
with subsecond response time for page-up or
-down operations. Because the retrieve process is
asynchronous and because the retrieved objects
are put into the service reply queue (see Figure 7),
which is persistent, the user can submit a retrieval
request and then return to some other work or
even log off from the system, resuming work later
with the retrieved (set of) object(s).

An important aspect is that users can initiate op-
erations against entries in the list of qualifying
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objects, such as print or browse, without knowing
the format in which the object is represented.
Irrespective of whether it is an ASCII file, an RFT
document, an image, or anything else, such re-
quests will call the appropriate browse or print
programs.

Another aspect is that users can build upon the
results of a query, i.e., use the descriptor values
of objects that meet the selection criteria of one
query to formulate a subsequent query. For ex-
ample, imagine a user who has issued a query
about a customer and an account number. One of
the returned objects may be an account statement
in which a particular line item arouses the user’s
interest. The user can now trace the information
flow forward and backward, for example, by is-
suing queries that search for related information
about events that either preceded and followed or
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preceded or followed the event that is represented
by that particular line item. That related informa-
tion may include different types of objects such as
the corresponding accounting voucher and the
original order, which may be a transaction record
that was received through S.W.LF.T., an e-mail
message, or the scanned image of a letter. How-
ever, this navigation through related object fam-
ilies is transparent to the user. The capability to
link information objects of different types and
from different sources appears as a kind of hy-
pertext facility allowing related pieces of infor-
mation to be identified and retrieved in a unified
and coherent way. Although this procedure is ini-
tially step-wise and iterative, the results can be
accumulated in a folder for subsequent immediate
access to the combined set of retrieved objects.

Access control. A fundamental problem with most
current access control models is that they do not
support direct, high-level specification of the ac-
cess control policies of an enterprise. Instead, it
is left to administrators to define low-level con-
trols that they (the administrators) consider to be
suitable for enforcing the policies. Consequently,
with most current models, there is an inevitable
semantic gap between the access control policies
of an enterprise and their implementation and en-
forcement. For example, with available models,
the following instances of least privilege and
“separation of duties” cannot be specified and
enforced directly:

“No system programmer must ever update infor-
mation objects that are members of family F,,
(see Figure 5), irrespective of where in the storage
hierarchy such an object might currently be.”

“A person can access information objects only
when the organizational source of the object (see
Figure 5) corresponds to the organizational unit in
which the person works. Exceptions to this rule
are object families F, ,, where, for example X,y =
{(2,3),(5,5),(9,2)}. For these families, more per-
missive rules are allowed.”

Instead, these and similar policies depend on pro-
cedures and administrative controls (e.g., ap-
provals) that are external to the access control
model—external in the sense that they are usually
documented in procedure manuals but depend on
humans to interpret and enforce them. In other
words, the policies are not in a form that would
allow a computer to interpret and enforce them.
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A general problem with such external procedures
is that they are often difficult to verify and to en-
force. In addition, when the size of object collec-
tions reaches the orders of magnitude that we
foresee for BOMS implementations, such access
control schemes are no longer practical. The ex-
pected number and frequency of personnel, or-
ganizational, and environmental changes in an en-
terprise during the lifetime of an object (up to 10
and more years) would lead to a prohibitive ad-
ministrative workload (due to the number and
complexity of administrative decisions and ac-
tions required to enforce the security of policies
and their changes over time). Alternatively, it
would lead to cases where users are, often un-
knowingly, granted more rights than are justified
by business requirements. In other words, there
would be a growing risk of compromising (i.e.,
failing to enforce) existing “least privilege poli-
cies,” as a consequence of the need to keep the
security administration workload at an accept-
able level.

Consequently, BOMS provides an access control
scheme that allows the direct specification and
enforcement of policies, as in the examples
above, in order to make access control easier to
understand and verify and to reduce the admin-
istrative workload.

BOMS access control is an extension and gener-
alization of current mandatory access control as
commonly used in military defense applications.
Mandatory access control normally relates object
classification labels of the type top secret, secret,
etc., to the users’ clearance levels and is based on
rules such as:

“Users can access only objects with classification
labels that are equal to, or less than, the users’
clearance.”

For example, users with top secret clearance can
access top secret and secret objects, but users
with secret clearance can access only secret ob-
jects.

BOMS access control is similar in that it does not
put access control into the hands of individual
users. However, BOMS access control does not
rely on the standard classification labels and user
clearance levels but allows enterprise-specific
rules that can refer to arbitrary object and user
characteristics and to information about the envi-
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ronment. In particular, the access control rules
can refer to object family attributes and to at-
tribute values of individual objects. These rules
are specified in a declarative language that is in-
tuitive and close to the way in which people think
about these policies—and that can be interpreted
and enforced by the computer.

The BOMS usage of these rules is twofold:

1. The service request manager joins the access
control rules with the selection predicates
from the service request to limit the number of
entries in the list of qualifying objects (see Fig-
ure 8). For example, if there is a general access
control rule in place that prevents users from
accessing certain information from outside
their own departments, the list of qualifying
objects will contain only entries about infor-
mation from their own departments, even if
the users’ search criteria did not specify that
restriction. This rule prevents careless (or ma-
licious) users from impacting the BOMS perfor-
mance by issuing service requests with insuf-
ficiently qualified search criteria, possibly
leading to thousands of irrelevant objects be-
ing retrieved. An interesting side effect of that
concept is that it also allows the use of security
policies that prevent users from knowing
whether certain information exists.

2. When the library manager returns the re-
trieved object bodies from the libraries, the
access control rules are applied to the object
descriptors. Only those objects that pass the
test are delivered to the requesting user’s ser-
vice reply queue (see Figure 7).

For run-time performance reasons, the rule-
based representation of access control policies is
mapped (i.e., compiled) into a tabular form sim-
ilar to traditional access lists. The important
point, however, is that this mapping is done me-
chanically and not left to the discretion of admin-
istrators. Moreover, whenever changed circum-
stances require it, access control policies can be
adapted easily and quickly, using the declarative
high-level language. Without further administra-
tive overhead, the changes will then be reflected
mechanically in the tabular, compiled run-time
form of the access control rules.
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Practical implementation of BOMS as a
distributed resource manager

BOMS is designed and implemented as a CICS/ESA-
based resource manager, i.e., both the BOMS ser-
vice request manager and the library manager are
implemented as a set of CICS* programs. The cat-
alog, the environment store, and the meta-data
store (see Figure 7) are implemented as sets of
DB2 tables. The creation of these tables is adap-
tive in the sense that the family classification
scheme of a particular BOMS installation and the
particular enterprise-specific search terms are in-
put to a semiautomated table creation process. In
the first operational release, the object libraries
have also been implemented with DB2, but, in
principle, any existing or emerging storage tech-
nology can be used, for example, 0AM (object
access method) and optical libraries or emerging
specialized BLOB (binary large object) servers.

Irrespective of how the object libraries are im-
plemented, and even when libraries of different
types are mixed, users perceive the complete
BOMS storage as a single, virtually boundaryless
storage plane. Information objects meeting the
criteria of a search or retrieval request may be
distributed across multiple libraries that may, in
turn, again be distributed across multiple nodes,
but any such physical segmentation is completely
invisible to the user. Access to information ob-
jects and navigation between them is provided
exclusively on the basis of descriptors pertinent
to the user’s business view.

In order to allow multiple nodes to cooperate
transparently, BOMS uses an integrated routing
and coordination facility and a node routing table.
Incoming service requests are split up into sepa-
rate node requests when the service request man-
ager determines, during the initial screening of a
service request, that remote nodes contain librar-
ies with potentially qualifying objects. The replies
to these separate node requests are reported back
to the source node, where they are consolidated
and coordinated into one complete reply to the
original service request. Node routing may be
based on descriptor value ranges such as family,
organizational source (branch office, department,
etc.), data stream format, element type, status
(production, training, test, etc.), or time period
when the object was stored. Over time, the dis-
tribution of objects in a network of BOMS nodes
can be changed without disturbing the users’ sin-
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gle-system view. New nodes can be added, and
existing nodes can be “stabilized,” in the sense
that no more new objects are stored in these
nodes. In this way BOMS installations can keep
existing object collections and begin to store new
objects in nodes that are implemented with
newer, more cost-effective storage technology
and still maintain the users’ single-system view of
both old and new collections. In that sense, BOMS
is an integrator for different library technologies
that will inevitably emerge over time.

A feature exclusive to BOMS (according to our
knowledge) is that the size of object collections
and the query performance are not limited by a
requirement to keep the catalog information for
all objects on line; similarly it is not required to
keep all historic layers of the environment store
on line. This arrangement is achieved by further
segmenting the parts of the virtual storage plane
covered by individual libraries into self-sufficient
logical units of data (LUD), which contain well-
defined sets of information objects, together with
all the accompanying catalog and environment in-
formation that is required to access the objects
and to navigate between them (see Figure 9).
Consistent with the concept of a two-dimensional
storage plane, the segments are rectangular areas
containing the objects from individual families
from a certain period. As Figure 9 illustrates, the
splits along the time axis can be at irregular in-
tervals. For example, a split can be made when
the number of objects in an LUD reaches a certain,
family-specific value, or when an LUD exceeds
the capacity or performance limitations of a
database management system. In any case, ac-
cess to individual LUDs is through a pointer in the
meta-data (see Figure 7), but this additional level
of indirection is invisible to the user. If such a
pointer is found to point to an LUD that is off-
loaded to secondary storage, the BOMS service
request manager automatically makes a call to the
appropriate storage subsystem to bring the LUD
on line again. In other words, when a query refers
to an LUD that is off line, all of this action is han-
dled transparently—very much like a “soft page
fault” is handled by a virtual memory operating
system reading missing pages from secondary
storage into main memory in a manner transpar-
ent to the application program that made a refer-
ence to a memory location that was found to be
“paged out.” In the first operational release, each
LUD is implemented as a separate DB2 database,
i.e., a related collection of table spaces and their
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indexes, used together as an operational unit for
starting and stopping all accesses and for off-load-
ing to secondary storage.

Because the amount of meta-data that must be
kept on line to point to off-loaded LUDs and to the
relevant slices of the environment store is orders
of magnitude smaller than a typical LUD catalog,
that approach allows BOMS collections to grow to
orders of magnitude impossible with systems that
rely on the concept that all catalog information for
all objects must always be on line. In particular,
the LUD concept decouples the size of BOMS ob-
ject collections from the amount of data a given
database management system can hold. In addi-
tion, we can limit the size of catalog and envi-
ronment store portions so that we can keep the
performance of relational queries and joins at an
acceptable level. By adding a layer of software
above traditional relational database manage-
ment systems, we obtain the freedom to exploit
evolving database management systems, but we
also become, to a large extent, independent of
product cycles.
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A productive prototype with over 200 users and
more than nine million documents was running
successfully from 1989 until 1991. In October
1991, a production release was put into operation,
and at the beginning of 1992, more than 10 million
annual account closing statements (20 gigabytes)
were stored; during that year, approximately two
million objects were stored each month. In De-
cember 1992 we had a total of 40 million objects,
and by January 1994 we had 95 million objects
(220 gigabytes) in our BOMS implementation.
Many objects are relatively small, typically 2000
bytes, but we have also some very large objects;
the largest objects exceed 10000 pages. During
the first days of 1994 we had once again over 10
million annual closing statements (24 gigabytes),
which were inserted in less than two calendar
days. Since January 1994 we have been storing
500000 new objects (1 gigabyte) every day, and
we expect to have a total of at least 200 million
objects by the end of 1994. The main reason for
the steep increase in 1994 is that we have now
begun to store statements generated by the pay-
ments application. The number of users has been
growing steadily; on an average day we now have
600 users who generate approximately 4000 ser-
vice requests. Most of the queries are complex,
and the average response time of 5 to 10 seconds
meets all practical user requirements. With the
availability of the payments transaction state-
ments, and with other applications gradually be-
ginning to rely exclusively on BOMS to provide
their users with access to historic data, we expect
a significant increase in the number of users and
the number of service requests. The potential
number of internal users is on the order of 10000,
and if customers of the bank were also allowed to
directly access BOMS, that number could grow to
even larger orders of magnitude. The maximum
number of users that BOMS can support is limited
only by the number of nodes and the number of
CICS regions per node.

Conclusion

BOMS is based on, and extends, concepts from the
relational database model. A resultant practical
advantage is that relationships between objects
can be established dynamically, based on at-
tribute values, i.e., interobject relationships do
not have to be predefined. When users search and
collect information, they can dynamically define
their own folders to meet the needs of a given
situation. This method contrasts to alternative ap-
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proaches requiring static folders, in which docu-
ments are put into folders when they are stored,
often using hard-coded links. Because the BOMS
folders are orthogonal to the BOMS object fami-
lies, they can be defined independently by each
user, according to the criteria that are relevant at
the time the information is needed, rather than
according to the criteria that appear to be impor-
tant at the time when the information is stored.
Thus, BOMS eliminates the dilemma of trying to
guess in advance the contexts in which informa-
tion could become useful in the future—a futile
task indeed when one considers that information
stored in BOMS has a useful lifetime of ten or more
years.

Because the profile of an object contains only de-
scriptors that are time-invariant and unique to the
object, BOMS has a fundamental advantage over
more simplistic approaches not having the con-
cept of a separate environment store. The envi-
ronment store allows us to maintain, redundancy-
free, multiple historic versions of time-varying
information potentially relating to multiple ob-
jects. We can, therefore, join information about
individual object instances with information
about the environment in which an object was
created. Joining allows queries to arise that would
otherwise be impossible to answer in collections
of the size we envision.

Because of a clear separation between the BOMS
application and system layers, based on client/
server and resource manager principles, all im-
plementation complexities are hidden from the
users. Despite the inevitable underlying complex-
ity and heterogeneity, users are provided with a
single-system view.

The workstation provides a single point of access
to what appears (to the user) to be an integrated
set of information and processing resources.
However, these resources can actually reside on
a variety of platforms. Users are given a concep-
tual view of information objects, without having
to know where and how these objects are stored.

BOMS is designed to provide the flexibility to ex-
ploit and introduce any convenient storage tech-
nology whenever it is cost-effective, without dis-
turbing the single-library view. BOMS can act as an
integrator of different library types, different (het-
erogeneous) database management systems, and
different hardware and systems software plat-
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forms. In particular, it removes most dependen-
cies from the capability of a database manage-
ment system to transparently manage the vast
amount of information that will inevitably accu-
mulate over the years. By transparently splitting
object families into logical units of data, which
can be held in separate DBMS instances, BOMS
circumvents any potential limitation on the max-
imum amount of data that a given database man-
agement system can accommodate.

BOMS is a conceptual platform with a pragmatic
implementation that can transform organizational
structures and support new ways of making deci-
sions. Because BOMS requires, or at least encour-
ages, an enterprise to define a common, unified
terminology to describe its information assets, it
can be a catalyst and enabling platform to inte-
grate otherwise isolated parts of an enterprise.
The common terminology with BOMS as a pow-
erful means to share common information can
help to bridge potential semantic gaps that pre-
vent effective communication and mutual under-
standing in a large enterprise. By adopting the
BOMS concepts, enterprises can prepare to be able
to filter and interpret ever increasing amounts of
heterogeneous information in new ways that re-
flect new and changed situations. In that sense,
we hope that BOMS is a contribution toward one
of the most urgent mandates of our time, i.e.,
learning to thrive on chaos.®

In the future, we plan to further investigate pos-
sibilities to integrate different library types, in-
cluding ImagePlus, and ways to provide users
with a single-system view of ODA (office docu-
ment architecture) and SGML (standard general-
ized markup language) document collections.
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