
The  Business  Object 
Management  System 

by M. Schlatter 
R. Furegati 
F. Jeger 
H. Schneider 
H. Streckeisen 

The Business  Object Management  System 
(BOMS) is a distributed resource manager that 
generalizes  and  extends  the  concepts  of  shared 
corporate information to include not only data 
that are structured such that the  data  can be held 
in relational  tables but also  generalized,  complex 
business  information  objects. BOMS allows 
enterprises to store, manage,  and query the 
totality of  their  documents,  business transaction 
records, images,  etc., in a uniform and  consistent 
way. With this system,  businesses  can make 
more  effective  use  of information that has in 
the past  been  inaccessible to thorough and 
systematic  queries and that could not be 
integrated  effectively into existing or new 
business  processes. BOMS is targeted  toward 
very  large collections of information objects  (on 
the  order  of  a billion objects,  equivalent to 
terabytes  of  data)  and allows enterprises to 
unlock information treasures  that  would 
otherwise  remain  hidden in collections of that 
size. BOMS is influenced  by  theoretical  concepts, 
such as object-orientation and  hypermedia, but 
relies on proven  relational database  and 
transaction  processing  concepts. BOMS  has 
been  implemented with DATABASE 2” 
(DBP) and  Customer  Information Control 
S stem/Enterprise  Systems  Architecture 
(&CS/ESA”)  and  has  been in productive use 
since 1991. 

T he systematic and effective use of data  today 
is just  a small fraction of what it potentially 

could be-given appropriate  methods and proce- 
dures  to  access, exploit, and share  that  data, and 
based  on  a common semantic understanding. 
Data  are  often plentiful, but the problem is  to 
transform  the  data effectively into information 
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that  contributes to the achievement of business 
and competitive capabilities. “Data” and “infor- 
mation” are not the  same, although many people 
often use  these  words as synonyms; ironically, an 
enterprise  can  be  data-rich, but information-poor. 
In  order  to transform data  into  valuable informa- 
tion, the  data must be  associated  with  semantics 
and put  into  context before being made available 
to  the knowledge worker  (one  who  extracts and 
organizes information from data). A major prob- 
lem for the knowledge worker  is  to  select  the  data 
that  are  pertinent in a given situation and put  that 
data  into  context  with  other  data. A related prob- 
lem is  the failure to recognize links and similar- 
ities  between pieces of data  that  are  stored in  dif- 
ferent  formats and in separate locations or 
libraries. 

Information (or  document) retrieval system  de- 
sign has been the poor stepchild of the  computer 
revolution, and, although relational databases’,’ 
such as DATABASE 2* (DB2*)3 and enterprise-wide 
data models ,L’ provide a solution for data  that  are 
structured  such  that  they  can be held  in tables,  the 
wealth of unstructured information is still largely 
inaccessible to systematic  queries and cannot  be 
integrated easily into existing or new business 
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processes. Relational database management sys- 
tems (RDBMS) were designed to avoid the disad- 
vantages of earlier  hierarchical  and  network  da- 
tabase  systems  and  to  solve  the  needs of business 

The logical foundations of 
information retrieval and 

data retrieval systems are 
fundamentally different. 

data  processing  applications. Although they  have 
succeeded  at  this  task admirably, standard rela- 
tional databases  are insufficient for  computer- 
aided design data,  documents,  etc., and need to 
be  extended. ‘@13 Similarly, full text  search infor- 
mation  retrieval  systems were designed to avoid 
the  disadvantages and complexities of primitive 
indexing systems.  However,  they  often  provide 
unsatisfactory  results: for example, in a primitive 
full text  search  system in which each  document 
contains  a line Document Number = . . . , search- 
ing for  documents  about documents (e.g., about 
document processing, archiving, handling, man- 
agement, etc.)  can  become  nearly impossible. A 
fundamental problem here is that  pure full text 
search  systems typically lack  clearly defined data 
items  with limited meaning and role(s). 

As a  consequence,  even large enterprises with 
sophisticated,  state-of-the-art  data  processing 
systems exploit surprisingly small portions of 
their  data  systematically.  In  most  cases,  only  data 
that lend themselves  to  tabular  structuring,  such 
as accounting  data,  customer  reference  data, etc., 
are accessible for data processing. The  vast ma- 
jority of data  entering  an  enterprise, especially 
data  that are generated  through formal or informal 
internal  business  processes,  or  that  the  enterprise 
communicates  to  external involved parties,  are 
“dead  data”  because  there  are no effective ways 
to transform  that  data  into useful and valuable 
business information. Figure 1 schematically 
shows  the flow of work  and  related  data through 
an  enterprise.  Our example is from the world of 
financial institutions  but  is  also typical of many 
other  types of enterprises. Incoming documents 
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include traditional correspondence  and machine- 
readable  documents  that  are  transmitted through 
ED1 (electronic  document  interchange) or special- 
ized networks,  such as S.W.I.F.T. (Society for 
Worldwide Interbank Financial Telecommunica- 
tion). The  data  stores  shown  are typically tran- 
sient,  work-in-process  queues.  Because  the  rep- 
resentation form and  structure of most of the 
information in these  queues is not sufficiently 
standardized,  there is no straightforward  way to 
store  the information in the  operational  database 
in a  manner  that would allow users  to  query, join, 
and retrieve  the information by a unified method. 

In  our example, we assume  that  business  profes- 
sionals and clerical workers  use  word  processors 
and spreadsheets  to  prepare  customer  contracts 
and related  analyses  and memos, and the  con- 
tracts  and  the  supporting material are  sent  either 
as plain, traditional paper  documents  or through 
the  internal  electronic mail system of the  enter- 
prise to  the manager that must approve  the  con- 
tracts.  However,  this  work  is usually done 
ad hoc, in isolation, and related to specific busi- 
ness  process  instances.  Consequently,  once  a 
business  transaction  is  completed,  the  associated 
information is cleared from the  transient  work 
queues (in our example, the  documents  and 
memos  prepared on word  processors and spread- 
sheets) and is no longer accessible  for  future  on- 
line investigation. Much information that could 
be  valuable, for example, for later  customer  or 
market segment analysis, to define future  mar- 
keting plans, etc., is  lost,  or  the information is 
impractical to  locate  and  consolidate from paper 
archives or from electronic  archives  that  were  de- 
signed as,  or  just  happened  to  become, “logical 
islands.” 

Commercial development of information re- 
trieval has  frequently  treated  document  retrieval 
as merely a  variant of data retrieval. However, 
the logical foundations of information retrieval 
and data  retrieval  systems  are  fundamentally dif- 
ferent. A data  retrieval  system  directly  an- 
swers  deterministic  questions,  such as what is 
John Doe’s account  balance?  The  fundamental 
criterion of success for a  data  retrieval  system is 
correctness, i.e., one  needs  only  to ask: does the 
system  correctly  answer  the  question? An infor- 
mation retrieval  system is more indirect and prob- 
abilistic, i.e., it provides  references to a  docu- 
ment  or to a  set of documents  that will l ikely 
contain  what  the  user  wants.  For example, an 
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Figure 1 Flow of work  and  related  data  through  an  enterprise 
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investment  adviser in a  bank  may  want  to  deter- 
mine which  customers  are promising prospects 
for  a new product  that  the  bank is about to launch. 
The criterion  for  successful information retrieval 
in such cases is utility, as in this  case: “Did the 
investment  adviser find  all the useful informa- 
tion?”  This is a much more  subjective  criterion 
than  correctness  that  can  be applied in the  case of 
a  data  retrieval  system. 

Because of the  fuzzy  nature of information re- 
trieval, its  effectiveness is less  dependent  on 
the physical searching  speed of the  system  and 
is more  dependent on  the number of logical de- 
cisions the user  must  make in a  search.  These 
decisions include the construction of formal 
search  requests, evaluating the  usefulness of doc- 
ument references,  and revising formal search  re- 
quests if the  results from an initial search  are  not 
satisfactory. 

Some  electronic  document  storage  systems are 
designed to  emulate traditional paper  or COM 
(computer  output on microfiche) archives in the 
sense  that  they  provide  only  a small number of 

J 
predetermined  access  points (for example, cus- 
tomer  number, or creation  date).  Many  such  doc- 
ument  storage  systems  provide  only  static “fold- 
ers” (files used to  store and organize electronic 
documents).  Documents must be linked to  these 
folders  when  they  are  stored.  Consequently, 
users  cannot define their own folders to collect all 
documents  that  are  relevant in a given context, 
perhaps  even  years  after  the  documents  have 
been  stored.  Because of their static classification 
schemes  and  their limited flexibility, such designs 
must  pretend  that it is possible to foresee how 
information will be used in the  future.  Unfortu- 
nately, that is seldom possible, and such designs 
are,  therefore,  unable to solve  some of the  most 
pressing needs.  Instead, in order  to allow a  user 
to view  stored  document collections according to 
current information needs,  and in order  to find 
relevant information with as few logical decisions 
as possible, the  document  retrieval  system  must 
provide  a large number of individual access  points 
to  a single document, and access  must  be allowed 
via  a large number of ad hoc specifications of 
Boolean combinations of these  access  points. 
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Moreover, it must allow folders  to  be defined 
dynamically. 

In  this  paper, we first describe  the  background 
setting  for  the  Business Object Management Sys- 
tem (BOMS). We then  describe  the  basic BOMS 
concepts  to manage the organizational and ad- 
ministrative complexity  that  is  inherent to  very 
large collections of complex information objects. 
We show  that BOMS is influenced by theoretical 
concepts,  such  as  object  orientation and hyper- 
media, but  takes  a pragmatic approach  to  solve  a 
real  and  pressing  business need. 

In presenting  the  concepts  and  system design of 
BOMS, we first discuss  a classification scheme to 
divide a collection of information objects  into 
families, with family-specific attributes  that  can 
be  used as  search  terms, for access  control,  for 
presentation,  and  for  storage management pur- 
poses.  Then we describe  the main components of 
the logical structure of BOMS, i.e., the libraries, 
the catalog, and  the  environment  store. We show 
how the  environment  store  and  the catalog, to- 
gether with access  control  rules and other  meta- 
data  are used to  provide  users with a single-sys- 
tem view,  and with flexible ways  to  search for 
and to establish  dynamic  relationships  between 
objects  that  are  relevant in a given business 
context. 

In a  separate  section,  we  describe  an  access  con- 
trol  scheme  that allows security policies to  be 
specified in a high-level language. Because  the 
specification of security policies is orthogonal to 
the administration of user  and  object  attributes, 
the  scheme  adapts well to large numbers of users 
and  objects in a  dynamic  environment with the 
need for fast, flexible, and reliable adaptation of 
access  constraints to  the needs implied by chang- 
ing circumstances. 

Finally, we describe  the  system design and  a 
practical implementation of a BOMS distributed 
resource manager that was driven by the  stringent 
capacity and throughput  requirements of a major 
Swiss  bank.  Under  the  control of an  integrated, 
CICS/ESA*-based (Customer Information Control 
SystedEnterprise Systems  Architecture-based) 
transaction management system, BOMS services 
can  be accessed by human users  and .by distrib- 
uted client processes.  The BOMS transaction man- 
ager mediates  between  the  users’ single-system 
image and  the underlying hardware and software 
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complexity  and heterogeneity. In  particular,  the 
BOMS transaction manager hides any physical 
segmentation of the BOMS information store from 
the  users. 

Enterprise information management 

Changing  the  nature of the  work  itself. In  markets 
with little or no growth, the  overall  economic cli- 
mate, increasing cost  pressure,  and aggressive 
competition demand more effective ways of doing 

Information systems are 
an important element 
in growth strategies. 

~~ 

business to maintain or increase  market  share and 
profitability. Information systems  play  a  vital role 
in this effort,’”21 but  they  are also an  important 
element in growth strategies.  Such  strategies 
must be designed to  meet tomorrow’s main bus- 
iness needs, Le., the need to deliver new and  en- 
hanced  services,  both within the  enterprise  and to 
customers  or prospects, while keeping adminis- 
trative  costs  under  control. 

The main goal of traditional image and  document 
processing  systems  is  often  to  increase  the effi- 
ciency of “back office” operations  (those  not in- 
terfacing with customers).  Increasing  the effi- 
ciency of the  “front office” is more  or  less a  side 
effect, and most of the knowledge worker’s needs 
(or  dreams) remain unfulfilled. We are,  however, 
not satisfied with making current  processes  more 
efficient but  want to allow and even  encourage 
new and  more effective business  processes. 
Therefore, we propose  a  more radical new ap- 
proach  that allows knowledge workers and other 
business  professionals to exploit greater  portions 
of the large percentage (typically 95 percent  or 
more) of information that is today still inaccessi- 
ble for on-line analysis, thereby enabling enter- 
prises  to  introduce  new  types of products and 
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services.  Such  an  approach  becomes increasingly 
important  for  enterprises  that  want to become 
more effective and gain a  competitive  advantage 
by actively  and  consciously exploiting larger por- 
tions of the information that  has in the  past  been 
inaccessible to systematic  and  consistent analy- 
sis, and that could not  be  integrated  into existing 
or new business  services.  From  our own practical 
work,  we know  that  these  advantages  are  sub- 
stantial  for large financial institutions,  but we be- 
lieve  that similar considerations hold for  other 
types of enterprises as well. For  example,  there 
are strong indications that  the  pharmaceutical in- 
dustry  could  achieve significant reductions in 
their  “time to market” if they had a uniform and 
flexible way  to  access and  consolidate  the  wealth 
of information that is produced  before  a  new  drug 
is  submitted  for registration. 

Computerized  collections of millions and billions 
of complex information objects  are,  or will soon 
become,  a  practical  business  requirement. More- 
over,  such  collections will often  grow  at  rates of 
up to  one hundred million new objects  per annum 
(p.a.), and  new  objects will have to  be kept for 
very long times. Large financial institutions  typ- 
ically have  the  need, for audit and  for legal rea- 
sons, to keep  business  records  for 10 or  more 
years.  For large banks,  up to ten million account 
statements  p-a. and up to  one hundred million 
payment  transaction  records p-a.  are not unusual, 
and, consequently,  one billion (lo9) objects will 
soon become  the typical order of magnitude that 
must  be handled. 

The challenge for enterprises with such  ambitions 
is  to find a  practical  solution to  the problem of 
managing the organizational and  administrative 
complexity  that  comes along with collections of 
that  size.  The  key to solving this problem is to 
hide the  complexity from the  users  and  to  provide 
them with a single-system view of all of the com- 
plex information objects of an  enterprise, includ- 
ing both  current and old (i.e., archived)  objects. 
Moreover,  users need a unified and coherent  way 
to  query and handle all objects in the collection. 

Access control. Managing and  actively exploiting 
such new orders of magnitude also requires fun- 
damentally  new  security  concepts. In order  for 
legitimate users  to  be  able  to easily access infor- 
mation for which they  are  authorized,  without 
having the information compromised by unautho- 
rized users,  such huge collections of valuable  bus- 
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Table 1 Main objectives of access control 

Privacy  Ability to decide  whether, when, and to 
whom  information is released, and to 
enforce  such decisions. Included is the 
ability to decide that  certain  information 
is not to be released except to selected 
individuals  and to enforce  the decision. 

Secrecy Ability to present the release of secret 
information to individuals who are not 
cleared (i.e., authorized) to see such 
classified  information.  This is equivalent 
to the  privacy  requirement except that 
the  decision on whether  information is 
released is based on two particular 
information  and  user  attributes, i.e., 
secret and cleared, which are  kept  under 
light  administrative  control. 

modification  of  information. 
Integrity  Ability to prevent  unauthorized 

iness information require new types of access 
control. 

Access  control  is  an  aspect of information secu- 
rity  or,  more specifically, an  aspect of information 
risk management, traditionally having the  three 
main objectives listed in Table 1. 

For  the  enterprise-wide  exploitation of shared 
corporate information objects, being able to ef- 
fectively manage users’ rights, Le., to  specify 
granular access  controls  without incurring an 
unacceptable  administrative  workload,  becomes 
critically important.  However,  when  collections 
of information objects  reach  the  size  that  we  en- 
vision  for BOMS, and  when  they  are in a  dynamic 
environment with the need for fast, flexible, gran- 
ular, and reliable adaptation of access  constraints 
to changing circumstances, most currently avail- 
able access  control models become impractical. 
The main problems  are  the number and  the  com- 
plexity of the administrative  decisions and ac- 
tions  that  are required to  enforce  the  access  con- 
trol policies of an  enterprise. For  the  expected 
number  and  frequency of personnel, organiza- 
tional, and  environmental  changes,  currently 
available models  make it  difficult to figure out 
how to specify access  controls,  and it is difficult 
to verify  that  the  controls in place indeed  corre- 
spond to what  is  intended.  Consequently,  the 
number  and  complexity of administrative deci- 
sions  and  actions  required  to  enforce  adequate 
security policies could prevent  the implementa- 
tion and  exploitation of the  foreseen  enterprise- 



wide information object  stores. Without funda- 
mentally new  concepts  to replace traditional 
clerical procedures of resource  access  control 
specification and administration by more effi- 
cient, flexible, and to a large extent  automatic 
procedures,  either huge graveyards of inactive 
and largely inaccessible data would result,  or un- 
acceptable  security  exposures would occur. 

The  Business  Object  Management  System. The 
key  to  our approach is the  notion of a  Business 
Object Management System (BOMS) for complex 
information objects defined as logically con- 
nected sets of information that  can  be referred to 
and manipulated in their collective form. The  size 
of such  objects  can vary from a few bytes  to 
megabytes. Note that  our definition of an  object 
is different from the definitions that  are normally 
used in the  context of object-oriented program- 
ming. 

BOMS is a  separate  transaction management layer 
on top of one  or multiple, potentially heteroge- 
neous,  database management systems. BOMS at- 
tempts  to combine  the  advantages of RDBMS with 
some of the  advantages of object-oriented  data- 
base management systems (OODBMSS). The 
strengths of an RDBMS include the  capability  to 
support multiple logical views of shared  data and 
set-oriented  queries,  whereas an OODBMS pro- 
vides  support for complex  objects with encapsu- 
lated semantics. Views permit each application or 
query  to  see  data organized in its own preferred 
way,  and  encapsulation  shields  programmers 
from irrelevant implementation details  and  forces 
them  to  access  data  only  through  strictly  con- 
trolled interfaces. BOMS provides all of that  but  is 
not  meant to  be a  general-purpose OODBMS. For 
example, BOMS is  not  meant  to  extend  procedural 
programming languages with support  for  persis- 
tent  data  types, and inheritance is supported  only 
in a very limited sense. 

BOMS provides  a methodology to  structure and 
position all of the  complex information objects of 
an  enterprise  such  that  they  become  a known, 
integrated,  and well-managed part of the infor- 
mation assets of the  enterprise.  Conceptually,  the 
BOMS methodology includes  elements of tradi- 
tional data modeling methodologies that allow op- 
erational  data  to be structured  by  way of classi- 
fication schemes.  However,  these  concepts are 
extended  such  that  they  apply  not  only  to  struc- 
tured  data  that  can  be held in relational tables  but 
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also to complex  business information objects  that 
are insufficiently structured  for relational data- 
base management systems. 

BOMS is first of  all designed to  support  the knowl- 
edge worker in new ways  that go beyond  what 
image and  document  processing  systems  nor- 
mally intend and are capable of. In addition, BOMS 
also provides new opportunities  to make the  front 
office not  only  more efficient, but  also more effec- 
tive, and provides  opportunities  for new front of- 
fice services  that  were  previously impossible. Ex- 
amples are  the  capability for a  total  customer 
view, and immediate responses  to  customer in- 
quiries  even  when  they  relate to complex rela- 
tionships  between involved parties. 

Figure 2 shows how BOMS complements  the  tra- 
ditional operational  database  where  structured 
data are stored, normally in the form of tables. 
BOMS is enterprise-wide, i.e., it covers  the com- 
plete work flow: from order  entry, through order 
processing, to  order confirmation. Moreover, as 
Figure 3 shows, BOMS also supports  business  pro- 
cesses  that traditionally received little or  no  sup- 
port from the  operational  database,  such  as  mar- 
keting. Postprocessing of order confirmations 
seen in the figure is an  example of a  business  pro- 
cess  that  extracts information that  is  expected  to 
become useful for later analyses. Figure 4 depicts 
how BOMS, together  with  the traditional opera- 
tional database,  adds new qualities to existing 
business  processes,  such as the  capability to pro- 
vide  business  professionals with a  total  customer 
view, or  the capability for immediate responses to 
customer inquiries. Moreover,  and  perhaps  more 
importantly,  new  services  become possible, such 
as fundamentally new types of information re- 
search  and analysis, an information subscription 
for business professionals, and, potentially, a 
wealth of other, new business  processes  that still 
wait to  be devised-all to make an  enterprise 
more flexible and more  competitive. 

Related work. A series of articles 16322-27 elaborate 
on the  hypothesis  that  new  methods  are needed to 
filter and  control  the potentially unlimited flow of 
information that  the information age promises. 
They  argue  that information retrieval  systems 
have in the past ignored some  aspects of the  more 
general area of information filtering, and  they dis- 
cuss how current information retrieval models 
could be  extended. 
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Figure 2 BOMS complements  the  traditional  operational  database 
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Linnemann  et a1.l’ discuss  the  “misuse” of tra- 
ditional database  systems  as  “byte  containers” 
for  complex  data  objects  that  are  not sufficiently 
structured  for  the underlying database. A conse- 
quence of such  a misuse is that  the  database 
system  cannot  support  search  predicates  on  the 
contents of these  containers.  It is left to  the ap- 
plication programs  to  interpret  these  byte  strings 
and  to implement the  functions  that manipulate 
them. The resulting high dependency  between  the 
physical data  representation and individual appli- 
cation  programs  negates one of the major advan- 
tages of database  systems. To overcome  these 
drawbacks,  an  extension of the  traditional  rela- 
tional model is  proposed  that  supports  “nested” 
relations  and  that  has  an SQL-like language inter- 
face for complex  objects. An extended  version of 
SQL (Structured  Query  Language)  with  object- 
oriented  features for structured  complex  objects 
is  also  discussed in Gardarin  et  al.” 

With the IBM Information Warehouse*  concept,” 
some  aspects of which  are  discussed in other  pa- 
pers in this  issue of the ZBM Systems Journal, 
BOMS shares  the  focus  on  corporate information 
assets  and  the goal to provide knowledge workers 
with easy  access to such  assets. A related goal 
that BOMS shares  with  the Information Ware- 
house  architecture is the  concept of providing 
users  with  a single-system view of a  potentially 
heterogeneous and distributed  set of information. 

Although BOMS has  been  conceived, designed, 
and implemented independently, BOMS could be 
seen  as  a  way  to  extend  the  scope of the  current 
Information Warehouse  architecture  to  provide 
support for nonformatted and compound infor- 
mation.  Such  extensions could include libraries 
for documents  and for business  transaction rec- 
ords  or,  more generally, for arbitrary  collections 
of data of different types which together  consti- 
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Figure 3 BOMS support of business  processes  not  supported  by  operational  database 
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tute  complex  business  objects with many  com- 
plex relationships. 

Although BOMS does  provide  support for complex 
information objects  as  we  have defined them 
above, BOMS is  not  an OODBMS, at  least  not in the 
sense  as it is  described by many  current  research- 
ers. 29-38 OODBMSs typically focus on removing the 
semantic  gap  between application domains and 
their  representation in persistent  storage. An im- 
portant goal of many  current OODBMSS is  to alle- 
viate  the mismatch between  procedural program- 
ming languages and traditional database  systems 
by allowing applications  to  store  arbitrary pro- 
gramming or GUI (graphical user  interface)  ob- 
jects directly  into  persistent  storage.  The ap- 
proach followed by many  currently available 
OODBMSs is to  enhance object-oriented program- 
ming languages with functions  to  access  and ma- 
nipulate persistent program objects.  However, 
imbedding persistent  data  into  a  procedural  pro- 
gramming language such as C+ + precludes  many 
of the  advantages of a  nonprocedural,  set-ori- 
ented  query language such as SQL. Compared to 
relational systems,  that  procedural  approach  re- 
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sults in a  loss of logical data  independence, i.e., 
the single most  important  advantage of relational 
database  systems. In addition, OODBMSs typically 
represent relationships as distinct from data  val- 
ues,  whereas RDBMS represent  relationships by 
data  values. A resulting drawback is that  many 
current OODBMSS cannot easily support multiple 
logical views of shared  data, i.e., the kind of 
queries  that  can  be  supported  depends  on how 
individual objects and object  collections  are de- 
signed. A practical requirement  that follows is 
that, with an OODBMS, one should know in ad- 
vance (i.e., when  the  database and the  object  col- 
lections  are designed) how the information will be 
used in the  future.  Because  that knowledge is 
nearly impossible to  obtain for information with a 
useful lifetime of ten or more  years,  that  require- 
ment can effectively limit the  potential use of in- 
formation stored in an OODBMS. 

Examples of prototype  database  systems  that 
have  explored new concepts  such  as  object  sup- 
port are ORION,31 POSTGRES,39 and  Starburst.I3 
Whereas ORION is typical for the  revolutionary 
approach  that  starts  from  scratch, POSTGRES and 
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Figure 4 BOMS adds new qualities  to  existing  business  processes 
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Starburst  are typical for the evolutionary  ap- 
proach  that  extends SQL with new features. POST- 
GREs was developed at  the  University of Califor- 
nia, Berkeley. POSTGRES adds  object  and rule 
management capabilities to  the  functions offered 
by a  traditional  database management system. 
The POSTGRES object  management capabilities 
are designed to  support nontraditional  data  types 
such  as bit maps  and polygons that  are  required 
for  computer-aided design and  other engineering 
applications. The POSTGRES rules  system  sup- 
ports triggers, i.e., event-driven programming 
and  a  more flexible and  more powerful way  to 
specify  and to enforce integrity constraints- 
compared  with  the referential integrity rules  nor- 
mally supported by  current  database manage- 
ment systems. 

The  Starburst  project  at IBM's Almaden Research 
Center is another  example of an evolutionary  ap- 
proach to extend existing relational databases. 
Starburst is not  a  pure oODBMS, but it addresses 
many of the issues  that OODBMSs raise, including 
complex  object  support,  extensible  types  and 

methods,  encapsulation,  inheritance,  overload- 
ing, and late binding. Overloading denotes  the 
concept  whereby  a method may  have different 
implementations. When a  method is called, the 
implementation that  is  dispatched  and  executed 
depends  on  the  type of the  object on which the 
method is invoked. Starburst  is  more  ambitious 
than earlier object-oriented  systems  because the 
focus is not  only  on accommodating objects,  but 
also on extensions  based  on  a  set-oriented,  de- 
clarative  query language. 

Extensions  to  the conventional relational data 
algebra to model the  evolution of database  sche- 
mas  are  described in McKenzie  and  Snodgrass. 40 

Conventional  databases allow only  one  schema to 
be in force at a time. Consequently,  when  the 
schema is modified, for example, when  new  at- 
tributes are introduced or when existing at- 
tributes are either merged or split, the  database 
must be restructured, or reorganized. For BoMS, 
and for other  databases  that  store  past  states, 
such  reorganizations  are no longer adequate.  In- 
stead, multiple schemas  must be in effect simul- 
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taneously,  each of which applies to a specific in- 
terval in the  past.  In  that senseschema versioning 

A central  problem of 
information retrieval  is 

how to represent 
information for retrieval. 

refers  to  the  retention of past  schemas  that result 
from a  schema evolution. References 41 and 42 
are  papers  related  to  this  subject. 

M e l a m p u ~ , ~ ~  a  research  prototype (named after  a 
great  seer in Greek mythology who could under- 
stand  the  speech of animals and  birds),  addresses 
the problem of finding related  data  that  may orig- 
inate from different sources  and  that may lack 
common  formats  and  even  semantics.  It  is argued 
that  the  lack of a  comprehensive way  to manip- 
ulate  the  wealth of information in a  system  is  a 
fundamental  reason  why  the  worth of the infor- 
mation  resource is often  only  latent  and  cannot  be 
fully realized. Melampus intends  to  provide  a 
computing environment  that will enable  data to  be 
used in unanticipated  ways,  ease  the  formation of 
new relationships among data, and promote  the 
sharing of data  between applications. 

is  an  object-oriented  data model and  a 
storage  system with associated  search  methods. 
It  is built around  a  centralized  description of data 
types  and  formats  that  supports  the  construction 
of applications operating  across  data  types. By 
integrating the  data  attributes in a  central place, 
retrieval on a  semantic level rather  than  at  a 
purely  syntactical (Le., text-oriented) level be- 
comes possible. Rufus attempts  to eliminate the 
problems of more  conservative  approaches in 
which the  semantics of the  data  formats  are 
locked  away in individual application programs. 

Document  and image processing  have  recently 
caught  widespread  interest. 45-49 However,  many 
publications show  a  bias  toward small-scale ap- 
plications. Practical  aspects  such as  systems ad- 
ministration and integration into  enterprise  oper- 
ations  are mostly omitted. 
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Through the availability of relatively cheap opti- 
cal  storage media, scanning of incoming docu- 
m e n t ~ ~ ' , ~ ~  has  recently  become,  for  some  enter- 
prises,  a  means  to  reduce  the  costs  that are 
associated with the handling of paper, i.e., a  task 
that  does  not  require specialized skills but  that is 
labor-intensive. With Imageplus*,  when  paper 
first enters  the  business,  its information is cap- 
tured as an  electronic image. 52 From  that point it 
is distributed,  tracked,  and  processed  electroni- 
cally. In addition to providing cost-effective ways 
to replace  warehouses filled with paper, optical 
disk storage is also used to replace COM archives 
to  store, in a  bank,  for example, financial trans- 
action  statements  as  they  are  generated  by  the 
operational  data  processing  applications. Al- 
though these  uses of new technology are  valu- 
able, they  are mainly targeted  at  automating  ex- 
isting processes  to make them more efficient. 

The  majority of information retrieval  research  has 
been aimed at  more  experimentally  tractable 
small-scale systems,  but it is increasingly appar- 
ent  that  retrieval  systems with large numbers of 
documents  are  a  fundamentally different genre of 
system  than small-scale systems,  and  that  quan- 
titative  growth of an information retrieval  system 
causes  qualitative  changes in its  structure and 
processes. 

A series of research  report^^^"^ and  a  recent ZBM 
Systems Journal paper5' describe  the  require- 
ments analysis, architecture, design, and imple- 
mentation of a  document  storage  subsystem  that 
has evolved to IRM, the IBM Image and  Records 
Management System. 5M0 IRM is  a toolkit that  pro- 
vides  components  for image scanning, displaying, 
and printing services,  and  for  object library, 
folder management, and  work list management 
services.  These  services  can  be  customized  and 
integrated to produce  comprehensive,  versatile 
image processing  and  work flow management sys- 
tems with custom graphical interfaces. 

BOMS concepts and system design 

Object  families. Object families, which we define 
as  sets of objects  sharing  some common proper- 
ties, implement a  basic BOMS concept  that we 
have  adapted to an  enterprise  scale  and  demon- 
strated in practice.  They  address  the organiza- 
tional and  administrative  requirements of very 
large object  collections by means of an  n-dimen- 
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Flgure 5 Two-dimensional  categorization of information  objects 
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sional classification scheme  that assigns each  ob- 
ject  to  exactly  one  class. Families are uniquely 
identified by n family descriptors, i.e., attributes 
with values  that  are  shared  by all family mem- 
bers.  In  addition,  each family is  characterized  by 
sets of attributes  that  are  mandatory for all mem- 
bers of the family, but  for which each family 
member (i.e., each  object)  has  its own values; we 
call these  attributes  “object descriptors.’’ 

In principle, BOMS allows an  arbitrary  number of 
family descriptors, Le., n = 1, 2 ,  3, . . . , and n 
can  be changed  over time. However,  as  seen in 
Figure 5 ,  n = 2 is  often  an intuitive and  practical 
choice: 

1. The  enterprise’s organizational unit that  cre- 
ates information objects, or  that receives  the 
information object  from  an  external involved 
party;  examples  are:  top  management, legal 
department, audit department,  etc. 

2. The semantic type of an information object, 
such  as  minutes, incoming letters,  orders, 
statements,  etc. 

As illustrated in Figure 5 ,  setting  up BOMS with 
n = 2 family descriptors  leads to a two-dimen- 
sional categorization of all information objects, 
which is intuitive and appealing, which appears  to 
reflect the  business  reality of many  enterprises 
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N/A:  NOT  APPLICABLE 

well, and which appears  to  be relatively stable 
over time. Obviously, the  values of the family 
descriptors  “organizational  source” and “object 
semantics”  are installation-specific; the  values of 
the  columns  (top management, legal department, 
etc.)  and the rows  (minutes, incoming letters, 
etc.) in Figure 5 are only examples. Moreover, 
not all possible  combinations  may be applicable in 
a given scenario, i.e., there  may be families with 
no  members. For example,  minutes may be gen- 
erated by top  management,  by legal, and by  the 
audit department,  but  not by  either  the  payments 
department or  the securities  department. Simi- 
larly, orders  and  statements may relate to  the 
payments and securities  departments,  but  not to 
top management, nor to legal or  the audit depart- 
ment. 

BOMS information  objects. A central problem of 
information retrieval is how to represent infor- 
mation for retrieval. BOMS information objects 
are logically connected sets of information that 
can  be  referred to and manipulated in their 
collective form. Conceptually, BOMS information 
objects  contain  the following five structural 
elements: object profile, body,  search  terms, 
comments,  and  transforms. 

Object profile. The  object profile structural ele- 
ment contains  object  descriptors  that  can  be used 
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as search  arguments,  for  access  control, to con- 
trol  presentation  and  storage management, and 
for administrative  purposes.  It  also  contains 
meta-information about how the  object is repre- 
sented, i.e., whether it is  an EBCDIC (extended 
binary-coded decimal interchange  code) string, 
an RFT (revisable form text)  data  stream,  an im- 
age, or information that  is  encoded in some  other 
form. The  types  and  names of mandatory  and  op- 
tional descriptors in the  object profile are defined 
by  the family to which the  object belongs. 

A basic BOMS concept is the  requirement  that 
all object profiles must  be time-invariant and 
that all descriptors in an  object profile must  de- 
scribe  only  the  object itself. More specifically, the 
descriptors in the  object profiles must  not de- 
scribe  facts  that apply to multiple objects. For 
example, they  must  not hold information about 
the  environment in which the  object  was  created, 
such  as information about  the organizational 
structure of the enterprise.  Instead, such infor- 
mation is kept-separate from the  object profiles 
and redundancy-free-in the  environment  store 
that  we will describe  presently. 

Object descriptors  can  be  scalars,  or  n-dimen- 
sional vectors.  Figure 6 shows, as an example, an 
object from the hypothetical family F, (see Fig- 
ure 9 ,  i.e., a  security  settlement  statement. In 
this example, the  order  number  is  a  scalar  be- 
cause it is a  descriptor  that  consists of a single 
value.  This  descriptor  contrasts with a vector de- 
scriptor  that  consists of an  ordered  set of num- 
bers. In our example, an item called To the  Debit 
of Account  is  a three-dimensional vector,  the 
three dimensions being account number, value 
date, and amount.  Objects  can  have multiple in- 
stances of descriptors. For example, the  object in 
Figure 6 has two instances of the descriptor com- 
missions. 

Body. Body is the  main information content. 
From  the BOMS perspective,  the  body is an un- 
interpreted bit string  that  is handled in its  entirety. 
Conceptually,  there is no  upper limit to  the  size of 
the body,  and the information that is contained in 
the  body  can  be  represented  as  an EBCDIC string, 
an RFT data  stream,  a  binary  encoded image, or in 
any  other form. However, BOMS maintains infor- 
mation about  the  representation form of the  body, 
i.e., so-called meta-information, in the object pro- 
file. 
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Search terms. The  search  terms  structural ele- 
ment contains additional items  that  can  be used 
for  queries. 

Comments. The comments element contains  an- 
notations  that  users may attach (Le., “staple”), 
over time, to  the  object. 

Transforms. The  transforms  structural element 
contains  transformations of the  object  body,  such 
as an abstract of a  text  document,  a  verbal  de- 
scription of an image, a low-resolution, com- 
pressed form of an image, etc. 

All structural  elements and the  object  descriptors 
in the  object profile are self-defining, i.e., have 
their associated element profiles that  describe  the 
data  format and the  number of instances  con- 
tained.  This allows us, for example, to relate an 
arbitrary number of comments  with  a given object 
and with multiple transforms.  Moreover,  schema 
evolutionsa  and  changes in the  representation 
form of object  descriptors  can be hidden from the 
users.  This  support for multiple versions of de- 
scriptors allows BOMS to  adapt to changing re- 
quirements  without  the need to  change  previously 
stored  objects, and without disturbing the  users’ 
consistent  and  stable single-system view. 

BOMS structure. Figure 7 shows  the  basic BOMS 
structure.  It  consists of two main processes: the 
service  request manager, which is  the main front- 
end process, and the  library  manager, which is 
the main back-end process  that  accesses  the li- 
braries  (Library 1, Library 2, . . . , Library n) 
where information objects reside. 

The service  request manager provides  the  inter- 
face  through which human users  and  automated 
client processes  interact with BoMS. The  service 
request manager is a  complex information object 
resource manager that  supports  requests  to  store 
objects and to  query  or retrieve  objects.  It  oper- 
ates  asynchronously, Le., once  a terminal user or 
client process  has  issued  a  service  request, it is 
free to continue  with  other  tasks.  Service  re- 
quests  are  persistent  across  sessions, i.e., they 
survive  user logoff and system  restart  operations. 
When a  service  request  has  been  processed, the 
service  request manager puts  the  reply  into  the 
service  reply  queue  for  subsequent display on  the 
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Figure 6 Security  settlement  statement  example 
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user’s terminal or  for  further manipulation by  the 
client  process. For simplicity, Figure 7 shows 
only  a single service  reply  queue.  In reality, how- 
ever,  each client process  has  its  private  area in 
that  queue  and  sees  only  the  replies  that  pertain 
to its own requests.  These  private  areas  are also 
used to synchronize  and  recompose the results 
from multiple background  processes  that may run 
independently and asynchronously. 

B 
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The service  request manager handles two main 
types of requests: 

1. Object  retrieval  requests,  requests for objects 
that  meet  certain  criteria.  Such  requests are 
transformed  into one  or multiple library orders 
and then  passed on  to  the library manager. The 
transformation relies on  the catalog, on  access 
control rules, on information from the envi- 
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Figure 7 The basic BOMS structure 
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ronment  store,  and  other  meta-data. When the 
library manager returns  the  requested  objects, 
the  service  request manager places  them  into 
the service  reply  queue  and notifies the  re- 
questing  process, or terminal user. 

2. Object query requests,  requests  for  lists of ob- 
jects that  meet  certain  criteria.  Such  requests 
do  not  require  that  the  objects  actually  be  re- 
trieved, Le., they  can  be handled by querying 
and joining information from  the catalog, from 
the  access  control  rules  base, from informa- 
tion about  the  environment,  and from other 
meta-data.  However,  the  replies to such  object 
query  requests  are  also  put  into  the  service 
reply  queue, similar to  retrieved  object bodies. 

The  service  request manager provides terminal 
users and client  processes  with  a  view  that em- 
phasizes  the  semantic commonalities of informa- 
tion objects  and hides possible differences in the 
representation  and  storage  formats. For example, 

all objects of the semantic  type contract can be 
handled in a  uniform  and  coherent  way,  even if 
they manifest themselves in different data  stream 
formats,  such as typed  letters  and  scanned im- 
ages. Objects of different data  stream  formats  can 
be  kept  under  the  control of different storage  sub- 
systems  without impacting the single-system/ 
single-library view  that  users have. 

The  library manager fulfills the  library  orders  re- 
ceived from the  service  request manager, i.e., 
stores  and  retrieves  the bodies and  other  struc- 
tural  elements of the BOMS information objects.  It 
is a  binary  object  resource manager in the  sense 
that it is  not  aware of the  nature (Le., both  the 
format and the  semantics) of the  objects it is 
handling. 

The  Libraries 1 to n are  the  stores for the bodies 
and for  related  structural  elements of the BOMS 
information objects. All libraries have  the  same 
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architecture,  but  they  may vary in physical im- 
plementation. Each  library  consists of the  library 
shell, which provides  the  interface  code  to  the 
library  manager,  and  the  library  core, imple- 
mented with the underlying DBMS or access  meth- 
ods,  or  both.  This  layered  structure allows BOMS 
to integrate multiple storage  subsystems  that  can 
be based on different technologies-without dis- 
turbing the  users’ single-system, or single-library 
view. It allows enterprises  to  take  advantage of 
newer  storage  subsystems with better  price-per- 
formance  ratios, as they will inevitably become 
available through  advances in technology. Typi- 
cally, new  objects will be  stored in libraries  that 
are implemented with new storage technology, 
while the old objects  can  continue  to reside in the 
older  libraries  that  are implemented with  older 
storage technology. The BOMS design guarantees 
a single-library view, Le., both  the old and the 
new  objects  are  seen  by  the  users  as if they  were 
stored in a single, uniform library. 

In addition to the two main processes, Figure 7 
also  shows  the catalog, the environment  store, 
the  access  control rule base, and the  meta-data 
store, all of which provide input to  both  the  ser- 
vice  request manager and the library  manager 
processes. 

Conceptually, the catalog  is  a  redundancy-free 
table in which  each row represents  the time- 
invariant  attributes of an information object  and 
pointers to  the object and its  related  elements, 
such as comments and transformations, in the 
BOMS libraries.  The  attributes include the  object 
profiles and all element profiles. They  are  repre- 
sented  as  scalars  or  as  complex  structures,  such 
as  vectors  or  sets of vectors. 

The environment  store  contains time-stamped in- 
formation  about  the  state of the  environment  both 
in the  past  and  present, i.e., at  the time when 
BOMS processes  an  object  query  or  retrieval  re- 
quest.  From  the  environment  store, BOMS can in- 
fer information about the  state of the  environment 
at  certain  times during the life cycle of an  object; 
for example, when the object was  created, five 
years after it was  created,  or now. Such informa- 
tion could, in principle, also be stored in the  cat- 
alog, but  the resulting number of catalog  updates 
required to reflect environment  state  changes 
would be impractical for the  size of object  col- 
lections  that we  envisionwhich is  the  underly- 
ing motivation for our  requirement  that  the  cat- 
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alog should be redundancy-free and contain  only 
time-invariant information. 

Information from the  organization  chart of an  en- 
terprise is typical of what is in the  environment 
store  that  may  be used to describe  certain  aspects 
of information objects.  For example, let us as- 

The environment store  contains 
time-stamped information about 

the state of the  environment. 

sume  that  d was  the managing director of the  or- 
ganization unit u1 at time t,  when  a  certain  object 
o was created by employee e, in the organization 
unit u,,, which was  at  that time a  part of the  or- 
ganization unit ul. It is easy  to imagine situations 
in which  one might be  interested in identifying all 
objects of a  certain  type  (say,  contracts  worth 
more  than one million dollars)  that had been  cre- 
ated, in a  certain period of time, in  all organiza- 
tion units  directed by d. One might therefore  be 
tempted to  store d as an  attribute of o in the  cat- 
alog entry  that  describes 0. However,  this would 
probably  have to  be repeated in many catalog en- 
tries and would lead to  the well-known problems 
related  to  redundant information. The idea to 
avoid redundant information by storing  d as a 
family descriptor for contracts which would then 
be  shared  by all objects in that family also fails, 
because  we  do not want  to define a new family 
of contracts  whenever  a new director is assigned 
to manage u,. More generally, it is impossible to 
know in advance all possible ways in which users 
may wish to identify objects.61 It is,  therefore, 
best  to normalize all descriptive information kept 
about  objects in the  same way  as it is traditionally 
done  for relational databases. Based on these  in- 
sights, all descriptive information that would vi- 
olate normalization rules is stored  external to  the 
catalog. In  our  example, it suffices to  store, in 
the  catalog,  the  fact  that o was  created at time t, 
by employee e,.  The  fact  that  e,  was  then as- 
signed to  uI1,  that u,, was a  part of u,, and that  d 
was  then  the managing director of u,  is  kept in the 
environment  store. 
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The historic dimension of the  environment  store 
also allows BoMS to bridge schema  evolutions, 
i.e., to provide  users  with  a  stable  view of object 
characteristics  even  when the  structure  and  rep- 
resentation of certain  descriptors  changes  over 
time. Through  an  automatic mapping of object 
queries to multiple descriptor  schemas  that  cor- 
respond  to multiple historic  periods,  users  are 
shielded from the possibility that  certain  object 
characteristics  may  have  been  represented 
differently during multiple periods of time. Con- 
sider, for example, a  case  where  a descriptor 
CUSTOMER-NUMBER had for some time been 
represented as BIDnnnnnn, where BID was  the 
identifier of the  branch with which the  customer 
had a  business relationship, and  where  nnnnnn 
was a  number  that was unique  across  the  enter- 
prise. Searching  for  objects related to a  certain 
customer  across all branches of the  enterprise 
therefore  involves wild card  clauses of the form 

WHERE CUSTOMER-NUMBER = '$nnnnnnn' (1) 

where $ is the wild card  character  that  matches all 
branch identifiers. 

Now, let us assume  that,  at  some point in time, it 
is decided  that  the  enterprise would like to  be able 
to  better manage its  business  relationships with 
all types of involved parties.  Therefore,  the  en- 
terprise may choose  to introduce  a  new,  enter- 
prise-wide descriptor INVOLVED-PARTY-NUMBER 
that will supersede  the CUSTOMER-NUMBER. The 
new  descriptor INVOLVED-PARTY-NUMBER will 
be of the  form mmmmmm, i.e.,  it will no longer 
include a  reference  to  a  particular  branch.  How- 
ever,  because  the identifier of the  branch  where 
certain  business  transactions are handled is still 
considered to  be important,  a  new  descriptor 
BRANCH-IDENTIFIER is introduced. For new ob- 
jects, which are  described  according  to  the  new 
scheme,  searches related to  a  certain  customer 
now require  clauses of the form 

WHERE INVOLVED-PARTY-NUMBER = 'mmmmmmm' (2) 

However, if a  user  searches  for  older  objects with 
descriptors of the  older  type, BOMS will automat- 
ically map  the  query  to  the old form in Equation 
1 with  the wild card  search  across all branches. In 
general,  the  user  does  not  have  to  be  aware of the 
possibility that  older  objects  may  have  been  de- 
scribed  according to  schemas  that  were different 
from  those commonly used today. Moreover, 
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there  is  no need for  the  user to  be  aware of the 
time when  the  new  descriptor  types  were  intro- 
duced. BOMS can infer all that  from the historic 
dimension of the  environment  store and map the 
external  user  query  into  a  series of BoMs-internal 
queries  that will retrieve all relevant  objects,  even 
if different descriptor  types  were used during mul- 
tiple historic  periods.  The motivation for having 
this  activity  transparent  to  the  user  is threefold: 
(1) Schema  evolutions  are inevitable; we cannot 
ignore changes in the  business  environment  and 
must,  therefore, be able to adapt  descriptor  sche- 
mas so that  they  always reflect current reality. (2) 
We want  to provide the  users with a  consistent 
view  and avoid the need for users  to  be aware of, 
and understand,  the  consequences of schema  ev- 
olutions. (3) We want to avoid the  need to modify 
the  descriptors (Le., catalog entries) of stored  ob- 
jects  to reflect schema evolutions. For the  size of 
object  collections  that we envision, and given the 
requirement  that BOMS must be almost  continu- 
ously available for user  queries  (close to 7 X 24 
hours), it would be impractical. 

Querying,  retrieving, and organizing  business  ob- 
jects. The ability to identify and retrieve  objects 
that  are  relevant in a given business  context  de- 
pends on being able to describe  the  properties 
that  separate  relevant from irrelevant  objects.  To- 
gether, the catalog and the environment  store al- 
low associative  queries  that  can  take  into  account 
not only  properties  inherent to  the  objects them- 
selves,  but  also  the state of the  environment in 
which the  objects  were  created.  Because  both  the 
catalog and  the  enterprise  store  are designed as 
collections of relational tables, and  because of the 
flexibility of the relational model, interobject  re- 
lationships  do  not  have  to  be predefined. The lim- 
itations of standard  approaches  to  structure  doc- 
ument,  image,  and object databases with relatively 
few and  predefined links from individual docu- 
ments  to  index  terms  are avoided. Instead,  with 
the relational join operator,  objects  can  be 
dynamically related based on attribute  values; 
i.e., access is associative through a  value-based, 
nonprocedural specification of a collection of rel- 
evant information objects.  Consequently,  search- 
ing for information closely  matches  the  activity of 
the human mind, which is inherently  associative. 
More specifically, there is no need for  static,  pre- 
defined and  hard-coded  links  between  objects to 
define folders, for example, to  keep all objects 
together  that  belong  to  a  certain  organization unit 
in the  enterprise.  Folders  can  be defined dynam- 
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ically and  separately  by  each  user  by specifying in 
a  query  what common properties all objects in a 
folder should have. In fact,  a BOMS folder is sim- 
ply made  up of one  or more lists of objects  that 
share certain  characteristics. 

Object queries allow users  to  work with informa- 
tion objects in the  same  way in which they  are 
used to working with paper  documents.  Objects 
that  meet  the  selection  criteria of a  query  can  be 

The first step in a 
typical  sequence of 

interactions with BOMS 
is to set up a query. 

assigned to private  subject  folders,  and  folders 
can  be subdivided with file tabs.  New  objects  can 
be  added to existing folders.  For example, with 
the push of a  button,  a  user  can  request  that all 
new objects  that  entered BOMS since  the  last  ex- 
ecution of a  query and that  meet  the  selection 
criteria of the  query  are  added  to  the  current  con- 
tent of a folder. It  is  an  easy and powerful way  to 
keep  subject  folders  up  to  date.  Moreover,  ob- 
jects  can  be copied or  moved  between  folders,  or 
from one file tab  to  another.  Entire file tabs  can  be 
moved or copied  between  folders.  However,  this 
action affects only  a  particular user’s view of 
these  objects.  The  objects  themselves,  and all 
other  users’  views of these  objects, remain un- 
changed by such  operations. 

Figure  8  illustrates  the main processes  perceived 
by a BOMS user: query, retrieve, and deliver. Also 
shown are  the  data flows into  and out of these 
processes.  The  query  process is implemented by 
the service  request manager; the  implementations 
of the  retrieve and deliver processes  are distrib- 
uted  across  the  service  request  and  the  library 
manager (see Figure 7). The  actions of the calling 
user  or client process  are  represented  by  the col- 
ored  arrows in Figure 8. 

The first step in a typical sequence of interactions 
with BOMS is  to set  up  a  query,  either by calling 
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the BOMS application programming interface (API) 
with the  search  criteria as parameters (typically 
done by a client program)  or by interactively 
specifying the  search  criteria in application-spe- 
cific panels on a terminal. In that  way,  a  conjunc- 
tion of predicates on the  attributes of the BOMS 
information objects is created  to  act  as  a filter 
through  which  the collection of information ob- 
jects is presented to  the user. The  query  process 
applies  that filter to  the  catalog  and  to  the envi- 
ronment  store and returns  a list of qualifiing ob- 
jects to  the user. For each  object  that  matches  the 
specified search  criteria, provided the  user is au- 
thorized  to know that  the  object  exists  (according 
to  the  access control  rules),  the list of qualifying 
objects  contains  a  separate  entry.  That  entry  con- 
tains  selected  elements from information kept in 
the  catalog  about  the  corresponding  object. What 
elements  are in the  catalog  depends on the family 
to which the  object belongs. From  these  elements 
the BOMS application designer can  select  the 
elements  that are included in the list. In that 
sense,  the list of qualifying objects  is  a  dynamic 
folder with (references to)  objects  that  pertain  to 
the  business  issue or  the question  that was  the 
origin of the  query.  The  entries in the folder can 
come from multiple object families and from 
objects  that  are  encoded in different data  stream 
formats. 

In many  cases,  the list of qualifying objects is 
sufficient to meet immediate information needs. 
For example, when  customer 0987.654321 (Fig- 
ure 6) calls to inquire about  the  quantity  and  the 
price of the  securities  that  the  bank had sold for 
him or her on January 17,1994, normally retrieval 
of the  complete  settlement  statement from the li- 
brary is not required (see  Figure 6). The list of 
qualifying objects will contain  an entry that  cor- 
responds  to  the  settlement  statement for order 
number 123456789, and  the  entry will contain the 
vector  descriptor  {security  number,  quantity, 
price,  currency, amount}. If the  customer is sat- 
isfied with that information, no further  action is 
required. Only if the  customer  insists on a  copy of 
the  settlement  statement  must  the  object itself be 
retrieved from the  library and printed. 

In that  case,  the  user could then  select  the  entry 
that  corresponds  to  the  settlement  statement 
123456789 from the list of qualifying objects, and 
specify that BOMS should retrieve the  correspond- 
ing object from the  library  and deliver it to  the 
user’s local printer  or, optionally, to  the bank’s 
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Figure 8 Main  processes perceived by a BOMS user 
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automated print and mail factory, which would 
then print the  statement,  put it into  an  envelope, 
and place it  in the  external mail. More generally, 
the BOMS service  request manager will deliver the 
retrieved  object to the  service  reply  queue,  where 
it  will be picked up  by  other processes,  such as a 
print process  or a  process  that  displays  the  object 
on  the  user's  screen for interactive browsing, 
with  subsecond  response time for page-up or 
-down operations.  Because  the  retrieve  process is 
asynchronous and because  the  retrieved  objects 
are  put  into  the  service  reply  queue  (see  Figure 7), 
which  is  persistent,  the  user  can submit a  retrieval 
request  and  then  return to  some  other  work  or 
even log off from the  system, resuming work  later 
with the  retrieved  (set of) object(,). 

An important  aspect is that  users  can initiate op- 
erations against entries in the list of qualifying 

objects,  such as print or browse,  without knowing 
the  format in which the  object is represented. 
Irrespective of whether it is an ASCII file, an RFT 
document, an image, or anything else,  such  re- 
quests will call the  appropriate  browse  or print 
programs. 

Another  aspect is that  users  can build upon the 
results of a  query, i.e., use  the  descriptor  values 
of objects  that meet the  selection  criteria of one 
query  to formulate  a  subsequent  query. For  ex- 
ample, imagine a  user  who  has  issued  a  query 
about  a  customer  and  an  account  number. One of 
the  returned  objects  may  be  an  account  statement 
in which a  particular line item arouses  the  user's 
interest. The user  can now trace  the information 
flow forward  and  backward, for example, by is- 
suing queries  that  search  for  related information 
about  events  that  either  preceded and followed or 
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preceded or followed the  event  that  is  represented 
by that  particular line item. That  related informa- 
tion may include different types of objects  such  as 
the  corresponding  accounting  voucher and the 
original order, which may be a  transaction  record 
that  was  received through S.W.I.F.T., an e-mail 
message, or  the scanned image of a  letter.  How- 
ever,  this navigation through  related  object fam- 
ilies is transparent to  the user. The capability  to 
link information objects of different types  and 
from different sources  appears  as  a kind of hy- 
pertext facility allowing related  pieces of infor- 
mation to  be identified and  retrieved in a unified 
and  coherent  way. Although this  procedure is ini- 
tially step-wise  and  iterative,  the  results  can be 
accumulated in a folder for subsequent immediate 
access  to  the combined set of retrieved  objects. 

Access control. A fundamental problem with  most 
current  access  control models is that  they  do  not 
support  direct, high-level specification of the  ac- 
cess control policies of an enterprise.  Instead, it 
is left to  administrators  to define low-level con- 
trols  that  they  (the  administrators)  consider  to  be 
suitable  for enforcing the policies. Consequently, 
with most  current  models,  there  is  an inevitable 
semantic gap between  the  access  control policies 
of an  enterprise and their implementation and  en- 
forcement. For example, with available models, 
the following instances of least privilege and 
“separation of duties”  cannot  be specified and 
enforced directly: 

“No system programmer must  ever  update infor- 
mation objects  that  are  members of family F, 
(see  Figure 5) ,  irrespective of where in the  storage 
hierarchy  such an object might currently  be.” 

“A person  can  access information objects  only 
when  the organizational source of the  object  (see 
Figure 5 )  corresponds  to  the organizational unit in 
which the  person  works.  Exceptions  to  this rule 
are object families Fx,y, where, for example x,y = 
{(2,3),(5,5),(9,2)}. For  these families, more per- 
missive rules  are allowed.” 

Instead,  these  and similar policies depend on pro- 
cedures  and  administrative  controls (e.g., ap- 
provals)  that  are  external  to  the  access  control 
model-external in the  sense  that  they  are usually 
documented in procedure  manuals  but  depend on 
humans  to  interpret  and  enforce them. In other 
words,  the policies are  not in a form that would 
allow a  computer to interpret  and  enforce them. 

IBM SYSTEMS JOURNAL,  VOL 33, NO 2, 1994 

A general problem with  such  external  procedures 
is that  they  are  often difficult to  verify and to  en- 
force. In addition, when  the  size of object collec- 
tions  reaches  the  orders of magnitude that we 
foresee  for BOMS implementations, such  access 
control  schemes  are no longer practical.  The  ex- 
pected  number  and  frequency of personnel,  or- 
ganizational, and  environmental  changes in an en- 
terprise during the lifetime of an  object (up to 10 
and  more  years) would lead to  a prohibitive ad- 
ministrative workload (due to  the  number and 
complexity of administrative  decisions and ac- 
tions  required  to  enforce  the  security of policies 
and their changes  over time). Alternatively, it 
would lead to  cases  where  users  are,  often un- 
knowingly, granted  more rights than  are justified 
by business  requirements. In other  words,  there 
would be  a growing risk of compromising (i.e., 
failing to enforce) existing “least privilege poli- 
cies,”  as  a  consequence of the need to keep  the 
security administration workload  at an accept- 
able level. 

Consequently, BOMS provides an access  control 
scheme  that allows the  direct specification and 
enforcement of policies, as in the  examples 
above, in order  to  make  access  control  easier  to 
understand  and  verify  and  to  reduce  the admin- 
istrative  workload. 

BOMS access  control is an  extension and gener- 
alization of current  mandatory  access  control  as 
commonly used in military defense applications. 
Mandatory  access  control normally relates  object 
classification labels of the  type  top  secret,  secret, 
etc., to  the users’  clearance levels and is based on 
rules such as: 

“Users  can  access only  objects with classification 
labels  that  are  equal  to, or less  than,  the  users’ 
clearance.’’ 

For example, users with top  secret  clearance  can 
access  top  secret  and  secret  objects,  but  users 
with secret  clearance  can  access  only  secret  ob- 
jects. 

BOMS access  control is similar in that it does not 
put  access  control  into  the  hands of individual 
users.  However, BOMS access  control  does not 
rely on the  standard classification labels and user 
clearance  levels  but allows enterprise-specific 
rules  that  can  refer  to  arbitrary  object and user 
characteristics  and  to information about  the envi- 



ronment.  In  particular,  the  access  control  rules 
can  refer to object family attributes  and  to  at- 
tribute  values of individual objects.  These  rules 
are specified in a  declarative language that  is in- 
tuitive  and  close  to  the way in which people think 
about  these policies-and that  can  be interpreted 
and enforced by  the  computer. 

The BOMS usage of these  rules is twofold: 

1. The  service  request manager joins  the  access 
control  rules with the  selection  predicates 
from the  service  request to limit the  number of 
entries in the list of qualifying objects  (see Fig- 
ure 8). For example, if there is a  general  access 
control rule in place  that  prevents  users from 
accessing  certain information from outside 
their own departments,  the list of qualifying 
objects will contain  only  entries  about infor- 
mation from their own  departments,  even if 
the users’  search  criteria did not  specify  that 
restriction.  This rule prevents  careless  (or ma- 
licious) users from impacting the BOMS perfor- 
mance by issuing service  requests with insuf- 
ficiently qualified search  criteria, possibly 
leading to thousands of irrelevant  objects  be- 
ing retrieved. An interesting  side effect of that 
concept is that it also allows the  use of security 
policies that  prevent  users from knowing 
whether  certain information exists. 

2. When the library manager returns  the  re- 
trieved object  bodies from the libraries, the 
access  control  rules  are applied to  the object 
descriptors. Only those  objects  that  pass  the 
test  are delivered to the  requesting  user’s  ser- 
vice  reply  queue (see Figure 7). 

For run-time performance  reasons,  the rule- 
based  representation of access  control policies is 
mapped (i.e., compiled) into  a  tabular form sim- 
ilar to traditional access lists. The  important 
point,  however,  is  that  this mapping is done me- 
chanically and not left to  the discretion of admin- 
istrators.  Moreover,  whenever changed circum- 
stances  require  it,  access  control policies can  be 
adapted  easily  and quickly, using the declarative 
high-level language. Without  further administra- 
tive  overhead, the changes will then be reflected 
mechanically in the  tabular, compiled run-time 
form of the  access  control rules. 
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Practical implementation of BOMS as a 
distributed resource manager 

BOMS is designed and implemented as a CICS/ESA- 
based  resource manager, i.e., both  the BOMS ser- 
vice  request manager and  the  library manager are 
implemented as a set of CICS* programs. The  cat- 
alog, the  environment  store, and the  meta-data 
store  (see Figure 7) are implemented as  sets of 
DB2 tables. The creation of these  tables is adap- 
tive in the  sense  that  the family classification 
scheme of a  particular BOMS installation and the 
particular enterprise-specific search  terms  are in- 
put to a  semiautomated  table  creation  process.  In 
the first operational  release,  the  object  libraries 
have  also  been implemented with DB2, but, in 
principle, any existing or emerging storage  tech- 
nology can  be used, for example, OAM (object 
access  method)  and  optical  libraries or emerging 
specialized BLOB (binary large object)  servers. 

Irrespective of how the  object  libraries  are im- 
plemented, and even  when  libraries of different 
types  are mixed, users  perceive  the  complete 
BOMS storage as a single, virtually  boundaryless 
storage plane. Information objects meeting the 
criteria of a  search  or retrieval  request may be 
distributed  across multiple libraries  that may, in 
turn, again be  distributed  across multiple nodes, 
but  any  such physical segmentation is completely 
invisible to  the user.  Access  to information ob- 
jects  and navigation between  them  is provided 
exclusively on the  basis of descriptors  pertinent 
to  the user’s  business view. 

In order  to allow multiple nodes to  cooperate 
transparently, BOMS uses an integrated routing 
and coordination facility and  a  node routing table. 
Incoming service  requests  are split up  into  sepa- 
rate  node  requests  when  the  service  request man- 
ager determines, during the initial screening of a 
service  request,  that  remote  nodes  contain librar- 
ies with potentially qualifying objects.  The replies 
to  these  separate node  requests  are  reported  back 
to  the  source node, where  they  are  consolidated 
and  coordinated  into  one  complete  reply  to the 
original service  request.  Node routing may  be 
based on descriptor  value ranges such  as family, 
organizational source  (branch office, department, 
etc.),  data  stream  format, element type,  status 
(production, training, test,  etc.),  or time period 
when  the  object was  stored. Over time, the  dis- 
tribution of objects in a  network of BOMS nodes 
can  be changed without disturbing the  users’ sin- 
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gle-system view. New nodes  can  be  added,  and 
existing nodes  can  be  “stabilized,” in the  sense 
that  no  more new objects  are  stored in these 
nodes. In  this way BOMS installations  can  keep 
existing object  collections  and begin to  store new 
objects in nodes  that are implemented with 
newer,  more cost-effective storage  technology 
and still maintain the  users’ single-system view of 
both old and  new  collections. In that  sense, BOMS 
is an  integrator for different library technologies 
that will inevitably emerge  over time. 

A feature  exclusive to BOMS (according to  our 
knowledge) is  that  the  size of object  collections 
and  the  query  performance  are  not limited by a 
requirement to  keep  the catalog information for 
all objects  on line; similarly it is  not  required  to 
keep all historic  layers of the  environment  store 
on line. This  arrangement is achieved by further 
segmenting the  parts of the virtual  storage plane 
covered by individual libraries  into self-sufficient 
logical units of data (LUD), which contain well- 
defined sets of information objects,  together  with 
all the  accompanying  catalog  and  environment in- 
formation  that  is  required to  access  the  objects 
and to navigate  between  them  (see  Figure 9). 
Consistent  with  the  concept of a two-dimensional 
storage  plane, the segments  are  rectangular  areas 
containing the  objects from individual families 
from a  certain period. As Figure 9 illustrates, the 
splits along the time axis can  be  at irregular in- 
tervals. For example, a split can  be  made  when 
the  number of objects in an LUD reaches  a  certain, 
family-specific value, or when  an LUD exceeds 
the  capacity or performance limitations of a 
database management system.  In  any  case,  ac- 
cess  to individual LUDS is  through  a  pointer in the 
meta-data  (see  Figure 7), but  this additional level 
of indirection is invisible to  the  user. If such  a 
pointer  is  found to point to an LUD that is off- 
loaded to  secondary storage,  the BOMS service 
request manager automatically  makes  a call to  the 
appropriate  storage  subsystem to bring the LUD 
on line again. In  other  words,  when  a  query  refers 
to an LUD that is off line, all of this  action  is han- 
dled transparently-very much like a  “soft page 
fault”  is handled by a  virtual  memory  operating 
system reading missing pages from secondary 
storage  into main memory in a  manner  transpar- 
ent  to  the application program that  made  a refer- 
ence  to  a  memory  location  that  was found to  be 
“paged out.”  In  the first operational  release,  each 
LUD is implemented as a  separate DB2 database, 
i.e., a  related collection of table  spaces  and their 
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Figure 9 Logical units of data  in  virtual  storage  plane 
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indexes, used together as an operational unit for 
starting  and  stopping all accesses  and for off-load- 
ing to  secondary  storage. 

Because  the  amount of meta-data  that  must  be 
kept on line to point to off-loaded LUDS and  to  the 
relevant  slices of the  environment  store  is  orders 
of magnitude smaller  than  a typical LUD catalog, 
that  approach allows BOMS collections  to grow to 
orders of magnitude impossible with systems  that 
rely on  the  concept  that all catalog information for 
all objects  must  always  be on line. In particular, 
the LUD concept  decouples  the  size of BOMS ob- 
ject  collections from the  amount of data  a given 
database management system  can hold. In addi- 
tion, we can limit the size of catalog  and envi- 
ronment store  portions so that  we  can  keep  the 
performance of relational queries and joins  at  an 
acceptable level. By adding a  layer of software 
above  traditional relational database manage- 
ment systems, we obtain  the  freedom to exploit 
evolving database management systems,  but we 
also  become, to a large extent,  independent of 
product  cycles. 
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A productive  prototype with over 200 users and 
more  than nine million documents  was running 
successfully from 1989 until 1991. In  October 
1991, a  production  release was put  into  operation, 
and  at  the beginning of 1992, more  than 10 million 
annual  account closing statements (20 gigabytes) 
were  stored; during that  year,  approximately  two 
million objects  were  stored  each month. In De- 
cember 1992 we had a  total of 40 million objects, 
and by  January 1994 we had 95 million objects 
(220 gigabytes) in our BOMS implementation. 
Many  objects  are relatively small, typically 2000 
bytes,  but  we  have  also  some  very large objects; 
the largest objects  exceed 10000 pages. During 
the first days of 1994 we had once again over 10 
million annual closing statements (24 gigabytes), 
which  were  inserted in less  than  two  calendar 
days.  Since  January 1994 we have  been  storing 
500000 new  objects (1 gigabyte) every  day, and 
we expect to have  a  total of at least 200 million 
objects  by  the  end of 1994. The main reason for 
the  steep  increase in 1994 is  that we have now 
begun to  store  statements  generated  by  the pay- 
ments application. The  number of users  has  been 
growing steadily; on an  average  day we now have 
600 users  who  generate  approximately 4000 ser- 
vice  requests. Most of the  queries are complex, 
and  the  average  response time of 5 to 10 seconds 
meets all practical  user  requirements. With the 
availability of the  payments  transaction  state- 
ments,  and  with  other applications gradually be- 
ginning to rely exclusively on BOMS to provide 
their  users with access  to historic  data, we expect 
a significant increase in the  number of users  and 
the number of service  requests. The potential 
number of internal  users  is on the  order of 10000, 
and if customers of the  bank  were also allowed to 
directly  access BOMS, that number could grow to 
even larger orders of magnitude. The maximum 
number of users  that BOMS can  support  is limited 
only by  the  number of nodes and the  number of 
CICS regions per node. 

Conclusion 

BOMS is based on, and  extends,  concepts from the 
relational database model. A resultant practical 
advantage  is  that  relationships  between  objects 
can  be  established dynamically, based on at- 
tribute  values, Le., interobject  relationships  do 
not  have  to  be predefined. When users  search and 
collect information, they  can dynamically define 
their own  folders to meet the needs of a given 
situation.  This  method  contrasts  to  alternative ap- 
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proaches requiring static folders, in which docu- 
ments  are  put  into  folders  when  they are  stored, 
often using hard-coded links. Because  the BOMS 
folders  are  orthogonal  to  the BOMS object fami- 
lies, they  can  be defined independently by each 
user,  according  to  the  criteria  that  are  relevant at 
the time the information is  needed,  rather  than 
according to  the criteria  that  appear to  be impor- 
tant  at  the time when  the information is stored. 
Thus, BOMS eliminates the dilemma of trying to 
guess in advance  the  contexts in which informa- 
tion could become useful in the future-a futile 
task  indeed  when  one  considers  that information 
stored in BOMS has  a useful lifetime of ten  or  more 
years. 

Because  the profile of an object  contains  only de- 
scriptors  that  are time-invariant and unique to  the 
object, BOMS has  a  fundamental  advantage  over 
more simplistic approaches not having the  con- 
cept of a  separate  environment  store.  The envi- 
ronment  store allows us  to maintain, redundancy- 
free, multiple historic  versions of time-varying 
information potentially relating to multiple ob- 
jects.  We  can,  therefore, join infogmation about 
individual object  instances  with information 
about  the  environment in which an  object  was 
created. Joining allows queries  to  arise  that would 
otherwise  be impossible to  answer in collections 
of the  size we envision. 

Because of a  clear  separation  between  the BOMS 
application and  system  layers,  based  on client/ 
server  and  resource manager principles, all im- 
plementation complexities  are hidden from the 
users.  Despite  the inevitable underlying complex- 
ity and heterogeneity,  users  are  provided with a 
single-system view. 

The  workstation  provides  a single point of access 
to  what  appears  (to  the  user)  to  be  an integrated 
set of information and processing  resources. 
However,  these  resources  can  actually  reside on 
a  variety of platforms. Users  are given a  concep- 
tual view of information objects,  without having 
to  know  where  and how these  objects  are  stored. 

BOMS is designed to provide  the flexibility to  ex- 
ploit and  introduce  any  convenient  storage  tech- 
nology whenever it is cost-effective, without dis- 
turbing the  single-libraryview. BOMS can  act as an 
integrator of different library  types, different (het- 
erogeneous)  database management systems, and 
different hardware  and  systems  software plat- 
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forms.  In  particular, it removes  most  dependen- 
cies  from the capability of a  database manage- 
ment system  to transparently manage the vast 
amount of information that will inevitably  accu- 
mulate  over the  years.  By  transparently splitting 
object families into logical units of data, which 
can  be held in separate DBMS instances, BOMS 
circumvents  any potential limitation on  the max- 
imum amount of data  that  a given database man- 
agement system  can  accommodate. 

BOMS is a  conceptual platform with  a  pragmatic 
implementation that  can  transform organizational 
structures  and  support new ways of making deci- 
sions. Because BOMS requires, or  at least  encour- 
ages, an  enterprise to define a  common, unified 
terminology to describe  its information assets, it 
can  be  a  catalyst  and enabling platform to inte- 
grate  otherwise isolated parts of an  enterprise. 
The common terminology with BOMS as a pow- 
erful means  to  share common information can 
help to bridge potential  semantic  gaps  that  pre- 
vent effective communication  and  mutual  under- 
standing in a large enterprise.  By  adopting  the 
BOMS concepts,  enterprises  can  prepare  to  be  able 
to filter and  interpret  ever increasing amounts of 
heterogeneous information in new ways  that  re- 
flect new  and changed situations. In that  sense, 
we hope  that BOMS is  a  contribution  toward  one 
of the  most urgent mandates of our time, i.e., 
learning to  thrive on chaos.62 

In  the  future, we plan to  further  investigate  pos- 
sibilities to integrate different library  types, in- 
cluding ImagePlus, and  ways  to provide  users 
with  a single-system view of ODA (office docu- 
ment architecture)  and SGML (standard general- 
ized markup language) document collections. 
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