
The Business Object
Management System

by M. Schlatter
R. Furegati
F. Jeger
H. Schneider
H. Streckeisen

The Business Object Management System
(BOMS) is a distributed resource manager that
generalizes and extends the concepts of shared
corporate information to include not only data
that are structured such that the data can be held
in relational tables but also generalized, complex
business information objects. BOMS allows
enterprises to store, manage, and query the
totality of their documents, business transaction
records, images, etc., in a uniform and consistent
way. With this system, businesses can make
more effective use of information that has in
the past been inaccessible to thorough and
systematic queries and that could not be
integrated effectively into existing or new
business processes. BOMS is targeted toward
very large collections of information objects (on
the order of a billion objects, equivalent to
terabytes of data) and allows enterprises to
unlock information treasures that would
otherwise remain hidden in collections of that
size. BOMS is influenced by theoretical concepts,
such as object-orientation and hypermedia, but
relies on proven relational database and
transaction processing concepts. BOMS has
been implemented with DATABASE 2”
(DBP) and Customer Information Control
S stem/Enterprise Systems Architecture
(&CS/ESA”) and has been in productive use
since 1991.

T he systematic and effective use of data today
is just a small fraction of what it potentially

could be-given appropriate methods and proce-
dures to access, exploit, and share that data, and
based on a common semantic understanding.
Data are often plentiful, but the problem is to
transform the data effectively into information

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

that contributes to the achievement of business
and competitive capabilities. “Data” and “infor-
mation” are not the same, although many people
often use these words as synonyms; ironically, an
enterprise can be data-rich, but information-poor.
In order to transform data into valuable informa-
tion, the data must be associated with semantics
and put into context before being made available
to the knowledge worker (one who extracts and
organizes information from data). A major prob-
lem for the knowledge worker is to select the data
that are pertinent in a given situation and put that
data into context with other data. A related prob-
lem is the failure to recognize links and similar-
ities between pieces of data that are stored in dif-
ferent formats and in separate locations or
libraries.

Information (or document) retrieval system de-
sign has been the poor stepchild of the computer
revolution, and, although relational databases’,’
such as DATABASE 2* (DB2*)3 and enterprise-wide
data models ,L’ provide a solution for data that are
structured such that they can be held in tables, the
wealth of unstructured information is still largely
inaccessible to systematic queries and cannot be
integrated easily into existing or new business

Wopyright 1994 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

SCHLATTER ET AL. 239

processes. Relational database management sys-
tems (RDBMS) were designed to avoid the disad-
vantages of earlier hierarchical and network da-
tabase systems and to solve the needs of business

The logical foundations of
information retrieval and

data retrieval systems are
fundamentally different.

data processing applications. Although they have
succeeded at this task admirably, standard rela-
tional databases are insufficient for computer-
aided design data, documents, etc., and need to
be extended. ‘@13 Similarly, full text search infor-
mation retrieval systems were designed to avoid
the disadvantages and complexities of primitive
indexing systems. However, they often provide
unsatisfactory results: for example, in a primitive
full text search system in which each document
contains a line Document Number = . . . , search-
ing for documents about documents (e.g., about
document processing, archiving, handling, man-
agement, etc.) can become nearly impossible. A
fundamental problem here is that pure full text
search systems typically lack clearly defined data
items with limited meaning and role(s).

As a consequence, even large enterprises with
sophisticated, state-of-the-art data processing
systems exploit surprisingly small portions of
their data systematically. In most cases, only data
that lend themselves to tabular structuring, such
as accounting data, customer reference data, etc.,
are accessible for data processing. The vast ma-
jority of data entering an enterprise, especially
data that are generated through formal or informal
internal business processes, or that the enterprise
communicates to external involved parties, are
“dead data” because there are no effective ways
to transform that data into useful and valuable
business information. Figure 1 schematically
shows the flow of work and related data through
an enterprise. Our example is from the world of
financial institutions but is also typical of many
other types of enterprises. Incoming documents

240 SCHLAITER ET AL.

include traditional correspondence and machine-
readable documents that are transmitted through
ED1 (electronic document interchange) or special-
ized networks, such as S.W.I.F.T. (Society for
Worldwide Interbank Financial Telecommunica-
tion). The data stores shown are typically tran-
sient, work-in-process queues. Because the rep-
resentation form and structure of most of the
information in these queues is not sufficiently
standardized, there is no straightforward way to
store the information in the operational database
in a manner that would allow users to query, join,
and retrieve the information by a unified method.

In our example, we assume that business profes-
sionals and clerical workers use word processors
and spreadsheets to prepare customer contracts
and related analyses and memos, and the con-
tracts and the supporting material are sent either
as plain, traditional paper documents or through
the internal electronic mail system of the enter-
prise to the manager that must approve the con-
tracts. However, this work is usually done
ad hoc, in isolation, and related to specific busi-
ness process instances. Consequently, once a
business transaction is completed, the associated
information is cleared from the transient work
queues (in our example, the documents and
memos prepared on word processors and spread-
sheets) and is no longer accessible for future on-
line investigation. Much information that could
be valuable, for example, for later customer or
market segment analysis, to define future mar-
keting plans, etc., is lost, or the information is
impractical to locate and consolidate from paper
archives or from electronic archives that were de-
signed as, or just happened to become, “logical
islands.”

Commercial development of information re-
trieval has frequently treated document retrieval
as merely a variant of data retrieval. However,
the logical foundations of information retrieval
and data retrieval systems are fundamentally dif-
ferent. A data retrieval system directly an-
swers deterministic questions, such as what is
John Doe’s account balance? The fundamental
criterion of success for a data retrieval system is
correctness, i.e., one needs only to ask: does the
system correctly answer the question? An infor-
mation retrieval system is more indirect and prob-
abilistic, i.e., it provides references to a docu-
ment or to a set of documents that will l ikely
contain what the user wants. For example, an

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

Figure 1 Flow of work and related data through an enterprise

L

I

i

investment adviser in a bank may want to deter-
mine which customers are promising prospects
for a new product that the bank is about to launch.
The criterion for successful information retrieval
in such cases is utility, as in this case: “Did the
investment adviser find all the useful informa-
tion?” This is a much more subjective criterion
than correctness that can be applied in the case of
a data retrieval system.

Because of the fuzzy nature of information re-
trieval, its effectiveness is less dependent on
the physical searching speed of the system and
is more dependent on the number of logical de-
cisions the user must make in a search. These
decisions include the construction of formal
search requests, evaluating the usefulness of doc-
ument references, and revising formal search re-
quests if the results from an initial search are not
satisfactory.

Some electronic document storage systems are
designed to emulate traditional paper or COM
(computer output on microfiche) archives in the
sense that they provide only a small number of

J
predetermined access points (for example, cus-
tomer number, or creation date). Many such doc-
ument storage systems provide only static “fold-
ers” (files used to store and organize electronic
documents). Documents must be linked to these
folders when they are stored. Consequently,
users cannot define their own folders to collect all
documents that are relevant in a given context,
perhaps even years after the documents have
been stored. Because of their static classification
schemes and their limited flexibility, such designs
must pretend that it is possible to foresee how
information will be used in the future. Unfortu-
nately, that is seldom possible, and such designs
are, therefore, unable to solve some of the most
pressing needs. Instead, in order to allow a user
to view stored document collections according to
current information needs, and in order to find
relevant information with as few logical decisions
as possible, the document retrieval system must
provide a large number of individual access points
to a single document, and access must be allowed
via a large number of ad hoc specifications of
Boolean combinations of these access points.

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994 SCHLATTER ET AL. 241

Moreover, it must allow folders to be defined
dynamically.

In this paper, we first describe the background
setting for the Business Object Management Sys-
tem (BOMS). We then describe the basic BOMS
concepts to manage the organizational and ad-
ministrative complexity that is inherent to very
large collections of complex information objects.
We show that BOMS is influenced by theoretical
concepts, such as object orientation and hyper-
media, but takes a pragmatic approach to solve a
real and pressing business need.

In presenting the concepts and system design of
BOMS, we first discuss a classification scheme to
divide a collection of information objects into
families, with family-specific attributes that can
be used as search terms, for access control, for
presentation, and for storage management pur-
poses. Then we describe the main components of
the logical structure of BOMS, i.e., the libraries,
the catalog, and the environment store. We show
how the environment store and the catalog, to-
gether with access control rules and other meta-
data are used to provide users with a single-sys-
tem view, and with flexible ways to search for
and to establish dynamic relationships between
objects that are relevant in a given business
context.

In a separate section, we describe an access con-
trol scheme that allows security policies to be
specified in a high-level language. Because the
specification of security policies is orthogonal to
the administration of user and object attributes,
the scheme adapts well to large numbers of users
and objects in a dynamic environment with the
need for fast, flexible, and reliable adaptation of
access constraints to the needs implied by chang-
ing circumstances.

Finally, we describe the system design and a
practical implementation of a BOMS distributed
resource manager that was driven by the stringent
capacity and throughput requirements of a major
Swiss bank. Under the control of an integrated,
CICS/ESA*-based (Customer Information Control
SystedEnterprise Systems Architecture-based)
transaction management system, BOMS services
can be accessed by human users and .by distrib-
uted client processes. The BOMS transaction man-
ager mediates between the users’ single-system
image and the underlying hardware and software

242 SCHUITER ET AL.

complexity and heterogeneity. In particular, the
BOMS transaction manager hides any physical
segmentation of the BOMS information store from
the users.

Enterprise information management

Changing the nature of the work itself. In markets
with little or no growth, the overall economic cli-
mate, increasing cost pressure, and aggressive
competition demand more effective ways of doing

Information systems are
an important element
in growth strategies.

~~

business to maintain or increase market share and
profitability. Information systems play a vital role
in this effort,’”21 but they are also an important
element in growth strategies. Such strategies
must be designed to meet tomorrow’s main bus-
iness needs, Le., the need to deliver new and en-
hanced services, both within the enterprise and to
customers or prospects, while keeping adminis-
trative costs under control.

The main goal of traditional image and document
processing systems is often to increase the effi-
ciency of “back office” operations (those not in-
terfacing with customers). Increasing the effi-
ciency of the “front office” is more or less a side
effect, and most of the knowledge worker’s needs
(or dreams) remain unfulfilled. We are, however,
not satisfied with making current processes more
efficient but want to allow and even encourage
new and more effective business processes.
Therefore, we propose a more radical new ap-
proach that allows knowledge workers and other
business professionals to exploit greater portions
of the large percentage (typically 95 percent or
more) of information that is today still inaccessi-
ble for on-line analysis, thereby enabling enter-
prises to introduce new types of products and

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

services. Such an approach becomes increasingly
important for enterprises that want to become
more effective and gain a competitive advantage
by actively and consciously exploiting larger por-
tions of the information that has in the past been
inaccessible to systematic and consistent analy-
sis, and that could not be integrated into existing
or new business services. From our own practical
work, we know that these advantages are sub-
stantial for large financial institutions, but we be-
lieve that similar considerations hold for other
types of enterprises as well. For example, there
are strong indications that the pharmaceutical in-
dustry could achieve significant reductions in
their “time to market” if they had a uniform and
flexible way to access and consolidate the wealth
of information that is produced before a new drug
is submitted for registration.

Computerized collections of millions and billions
of complex information objects are, or will soon
become, a practical business requirement. More-
over, such collections will often grow at rates of
up to one hundred million new objects per annum
(p.a.), and new objects will have to be kept for
very long times. Large financial institutions typ-
ically have the need, for audit and for legal rea-
sons, to keep business records for 10 or more
years. For large banks, up to ten million account
statements p-a. and up to one hundred million
payment transaction records p-a. are not unusual,
and, consequently, one billion (lo9) objects will
soon become the typical order of magnitude that
must be handled.

The challenge for enterprises with such ambitions
is to find a practical solution to the problem of
managing the organizational and administrative
complexity that comes along with collections of
that size. The key to solving this problem is to
hide the complexity from the users and to provide
them with a single-system view of all of the com-
plex information objects of an enterprise, includ-
ing both current and old (i.e., archived) objects.
Moreover, users need a unified and coherent way
to query and handle all objects in the collection.

Access control. Managing and actively exploiting
such new orders of magnitude also requires fun-
damentally new security concepts. In order for
legitimate users to be able to easily access infor-
mation for which they are authorized, without
having the information compromised by unautho-
rized users, such huge collections of valuable bus-

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

~~~ 

Table 1 Main objectives of access control 

Privacy  Ability to decide  whether, when, and to 
whom  information is released, and to 
enforce  such decisions. Included is the 
ability to decide that  certain  information 
is not to be released except to selected 
individuals  and to enforce  the decision. 

Secrecy Ability to present the release of secret 
information to individuals who are not 
cleared (i.e., authorized) to see such 
classified  information.  This is equivalent 
to the  privacy  requirement except that 
the  decision on whether  information is 
released is based on two particular 
information  and  user  attributes, i.e., 
secret and cleared, which are  kept  under 
light  administrative  control. 

modification  of  information. 
Integrity  Ability to prevent  unauthorized 

iness information require new types of access 
control. 

Access  control  is  an  aspect of information secu- 
rity  or,  more specifically, an  aspect of information 
risk management, traditionally having the  three 
main objectives listed in Table 1. 

For  the  enterprise-wide  exploitation of shared 
corporate information objects, being able to ef- 
fectively manage users’ rights, Le., to  specify 
granular access  controls  without incurring an 
unacceptable  administrative  workload,  becomes 
critically important.  However,  when  collections 
of information objects  reach  the  size  that  we  en- 
vision  for BOMS, and  when  they  are in a  dynamic 
environment with the need for fast, flexible, gran- 
ular, and reliable adaptation of access  constraints 
to changing circumstances, most currently avail- 
able access  control models become impractical. 
The main problems  are  the number and  the  com- 
plexity of the administrative  decisions and ac- 
tions  that  are required to  enforce  the  access  con- 
trol policies of an  enterprise. For  the  expected 
number  and  frequency of personnel, organiza- 
tional, and  environmental  changes,  currently 
available models  make it  difficult to figure out 
how to specify access  controls,  and it is difficult 
to verify  that  the  controls in place indeed  corre- 
spond to what  is  intended.  Consequently,  the 
number  and  complexity of administrative deci- 
sions  and  actions  required  to  enforce  adequate 
security policies could prevent  the implementa- 
tion and  exploitation of the  foreseen  enterprise- 



wide information object  stores. Without funda- 
mentally new  concepts  to replace traditional 
clerical procedures of resource  access  control 
specification and administration by more effi- 
cient, flexible, and to a large extent  automatic 
procedures,  either huge graveyards of inactive 
and largely inaccessible data would result,  or un- 
acceptable  security  exposures would occur. 

The  Business  Object  Management  System. The 
key  to  our approach is the  notion of a  Business 
Object Management System (BOMS) for complex 
information objects defined as logically con- 
nected sets of information that  can  be referred to 
and manipulated in their collective form. The  size 
of such  objects  can vary from a few bytes  to 
megabytes. Note that  our definition of an  object 
is different from the definitions that  are normally 
used in the  context of object-oriented program- 
ming. 

BOMS is a  separate  transaction management layer 
on top of one  or multiple, potentially heteroge- 
neous,  database management systems. BOMS at- 
tempts  to combine  the  advantages of RDBMS with 
some of the  advantages of object-oriented  data- 
base management systems (OODBMSS). The 
strengths of an RDBMS include the  capability  to 
support multiple logical views of shared  data and 
set-oriented  queries,  whereas an OODBMS pro- 
vides  support for complex  objects with encapsu- 
lated semantics. Views permit each application or 
query  to  see  data organized in its own preferred 
way,  and  encapsulation  shields  programmers 
from irrelevant implementation details  and  forces 
them  to  access  data  only  through  strictly  con- 
trolled interfaces. BOMS provides all of that  but  is 
not  meant to  be a  general-purpose OODBMS. For 
example, BOMS is  not  meant  to  extend  procedural 
programming languages with support  for  persis- 
tent  data  types, and inheritance is supported  only 
in a very limited sense. 

BOMS provides  a methodology to  structure and 
position all of the  complex information objects of 
an  enterprise  such  that  they  become  a known, 
integrated,  and well-managed part of the infor- 
mation assets of the  enterprise.  Conceptually,  the 
BOMS methodology includes  elements of tradi- 
tional data modeling methodologies that allow op- 
erational  data  to be structured  by  way of classi- 
fication schemes.  However,  these  concepts are 
extended  such  that  they  apply  not  only  to  struc- 
tured  data  that  can  be held in relational tables  but 

244 S C H L A ~ E R  ET AL. 

also to complex  business information objects  that 
are insufficiently structured  for relational data- 
base management systems. 

BOMS is first of  all designed to  support  the knowl- 
edge worker in new ways  that go beyond  what 
image and  document  processing  systems  nor- 
mally intend and are capable of. In addition, BOMS 
also provides new opportunities  to make the  front 
office not  only  more efficient, but  also more effec- 
tive, and provides  opportunities  for new front of- 
fice services  that  were  previously impossible. Ex- 
amples are  the  capability for a  total  customer 
view, and immediate responses  to  customer in- 
quiries  even  when  they  relate to complex rela- 
tionships  between involved parties. 

Figure 2 shows how BOMS complements  the  tra- 
ditional operational  database  where  structured 
data are stored, normally in the form of tables. 
BOMS is enterprise-wide, i.e., it covers  the com- 
plete work flow: from order  entry, through order 
processing, to  order confirmation. Moreover, as 
Figure 3 shows, BOMS also supports  business  pro- 
cesses  that traditionally received little or  no  sup- 
port from the  operational  database,  such  as  mar- 
keting. Postprocessing of order confirmations 
seen in the figure is an  example of a  business  pro- 
cess  that  extracts information that  is  expected  to 
become useful for later analyses. Figure 4 depicts 
how BOMS, together  with  the traditional opera- 
tional database,  adds new qualities to existing 
business  processes,  such as the  capability to pro- 
vide  business  professionals with a  total  customer 
view, or  the capability for immediate responses to 
customer inquiries. Moreover,  and  perhaps  more 
importantly,  new  services  become possible, such 
as fundamentally new types of information re- 
search  and analysis, an information subscription 
for business professionals, and, potentially, a 
wealth of other, new business  processes  that still 
wait to  be devised-all to make an  enterprise 
more flexible and more  competitive. 

Related work. A series of articles 16322-27 elaborate 
on the  hypothesis  that  new  methods  are needed to 
filter and  control  the potentially unlimited flow of 
information that  the information age promises. 
They  argue  that information retrieval  systems 
have in the past ignored some  aspects of the  more 
general area of information filtering, and  they dis- 
cuss how current information retrieval models 
could be  extended. 

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994 



Figure 2 BOMS complements  the  traditional  operational  database 

OPERATIONAL  DATABASE:  SHARED  CORPORATE  DATA 

I STRUCTURED  DATA  TABLES 

INCOMING  DOCUMENTS I 

CORRESPONDENCE 

S.W.I.F.T. 
ED1 
FAX 

E-MAIL 

0 . 0  

PROCESSING  CONFIRMATION 

COPIES OF 
INCOMING 
DOCUMENTS I INTERNAL 

PROCESS 
DOCUMENTATION I 

w 
INQUlRY 
RESULTS 

T b OUTGOING  DOCUMENTS 

ACCOUNT  STATEMENTS 
SETTLEMENT  STATEMENT 
PAYMENT  TRANSACTION 
S.W.I.F.T. 
ED1 
CORRESPONDENCE ... 

COPIES OF 
OWcioING 
DOCUMENTS 

BUSINESS  TRANSACTION  RECORDS 
UNSTRUCTURED  INFORMATION 

I I 

BUSINESS  OBJECT  MANAGEMENT  SYSTEM:  SHARED  CORPORATE  OBJECTS 

Linnemann  et a1.l’ discuss  the  “misuse” of tra- 
ditional database  systems  as  “byte  containers” 
for  complex  data  objects  that  are  not sufficiently 
structured  for  the underlying database. A conse- 
quence of such  a misuse is that  the  database 
system  cannot  support  search  predicates  on  the 
contents of these  containers.  It is left to  the ap- 
plication programs  to  interpret  these  byte  strings 
and  to implement the  functions  that manipulate 
them. The resulting high dependency  between  the 
physical data  representation and individual appli- 
cation  programs  negates one of the major advan- 
tages of database  systems. To overcome  these 
drawbacks,  an  extension of the  traditional  rela- 
tional model is  proposed  that  supports  “nested” 
relations  and  that  has  an SQL-like language inter- 
face for complex  objects. An extended  version of 
SQL (Structured  Query  Language)  with  object- 
oriented  features for structured  complex  objects 
is  also  discussed in Gardarin  et  al.” 

With the IBM Information Warehouse*  concept,” 
some  aspects of which  are  discussed in other  pa- 
pers in this  issue of the ZBM Systems Journal, 
BOMS shares  the  focus  on  corporate information 
assets  and  the goal to provide knowledge workers 
with easy  access to such  assets. A related goal 
that BOMS shares  with  the Information Ware- 
house  architecture is the  concept of providing 
users  with  a single-system view of a  potentially 
heterogeneous and distributed  set of information. 

Although BOMS has  been  conceived, designed, 
and implemented independently, BOMS could be 
seen  as  a  way  to  extend  the  scope of the  current 
Information Warehouse  architecture  to  provide 
support for nonformatted and compound infor- 
mation.  Such  extensions could include libraries 
for documents  and for business  transaction rec- 
ords  or,  more generally, for arbitrary  collections 
of data of different types which together  consti- 

SCHLAITER ET AL. 245 IBM  SYSTEMS  JOURNAL, VOL 33, NO 2, 1994 



Figure 3 BOMS support of business  processes  not  supported  by  operational  database 

, 
OUTGOING  DOCUMENTS INCOMING DOCUMENTS 

ORDER 
PROCESSING I CONFIRMATION 11 1 ORDER 

INTERNAL  PROCESS 
DOCUMENTATION 

I"_T 
INQUIRY 
RESULTS 

UNSTRUCTURED  INFORMATION 
BUSINESS  TRANSACTION  RECORDS 

1 
COPIES 1' I 

POST- 
PROCESSING 

I I 

BUSINESS  OBJECT  MANAGEMENT  SYSTEM:  SHARED  CORPORATE  OBJECTS 

tute  complex  business  objects with many  com- 
plex relationships. 

Although BOMS does  provide  support for complex 
information objects  as  we  have defined them 
above, BOMS is  not  an OODBMS, at  least  not in the 
sense  as it is  described by many  current  research- 
ers. 29-38 OODBMSs typically focus on removing the 
semantic  gap  between application domains and 
their  representation in persistent  storage. An im- 
portant goal of many  current OODBMSS is  to alle- 
viate  the mismatch between  procedural program- 
ming languages and traditional database  systems 
by allowing applications  to  store  arbitrary pro- 
gramming or GUI (graphical user  interface)  ob- 
jects directly  into  persistent  storage.  The ap- 
proach followed by many  currently available 
OODBMSs is to  enhance object-oriented program- 
ming languages with functions  to  access  and ma- 
nipulate persistent program objects.  However, 
imbedding persistent  data  into  a  procedural  pro- 
gramming language such as C+ + precludes  many 
of the  advantages of a  nonprocedural,  set-ori- 
ented  query language such as SQL. Compared to 
relational systems,  that  procedural  approach  re- 

246 SCHIA~ER ET AL. 

sults in a  loss of logical data  independence, i.e., 
the single most  important  advantage of relational 
database  systems. In addition, OODBMSs typically 
represent relationships as distinct from data  val- 
ues,  whereas RDBMS represent  relationships by 
data  values. A resulting drawback is that  many 
current OODBMSS cannot easily support multiple 
logical views of shared  data, i.e., the kind of 
queries  that  can  be  supported  depends  on how 
individual objects and object  collections  are de- 
signed. A practical requirement  that follows is 
that, with an OODBMS, one should know in ad- 
vance (i.e., when  the  database and the  object  col- 
lections  are designed) how the information will be 
used in the  future.  Because  that knowledge is 
nearly impossible to  obtain for information with a 
useful lifetime of ten or more  years,  that  require- 
ment can effectively limit the  potential use of in- 
formation stored in an OODBMS. 

Examples of prototype  database  systems  that 
have  explored new concepts  such  as  object  sup- 
port are ORION,31 POSTGRES,39 and  Starburst.I3 
Whereas ORION is typical for the  revolutionary 
approach  that  starts  from  scratch, POSTGRES and 

IBM  SYSTEMS  JOURNAL,  VOL 33, NO 2, 1994 



~~~ ~ ~ 

Figure 4 BOMS adds new qualities to existing business processes

OPERATIONAL DATABASE: SHARED CORPORATE DATA

STRUCTURED DATA TABLES

TOTAL

VIEW
CUSTOMER 11 IMMEDIATE

TO CUSTOMER
RESPONSE

INQUIRlES

w
RESEARCH PROCESSES

STILL TO BE
INFORMATION
ANALYSIS

DEVISED

INFORMATION
SUBSCRIPTION

I
UNSTRUCTURED INFORMATION
BUSINESS TRANSACTION RECORDS

BUSINESS OBJECT MANAGEMENT SYSTEM: SHARED CORPORATE OBJECTS

Starburst are typical for the evolutionary ap-
proach that extends SQL with new features. POST-
GREs was developed at the University of Califor-
nia, Berkeley. POSTGRES adds object and rule
management capabilities to the functions offered
by a traditional database management system.
The POSTGRES object management capabilities
are designed to support nontraditional data types
such as bit maps and polygons that are required
for computer-aided design and other engineering
applications. The POSTGRES rules system sup-
ports triggers, i.e., event-driven programming
and a more flexible and more powerful way to
specify and to enforce integrity constraints-
compared with the referential integrity rules nor-
mally supported by current database manage-
ment systems.

The Starburst project at IBM's Almaden Research
Center is another example of an evolutionary ap-
proach to extend existing relational databases.
Starburst is not a pure oODBMS, but it addresses
many of the issues that OODBMSs raise, including
complex object support, extensible types and

methods, encapsulation, inheritance, overload-
ing, and late binding. Overloading denotes the
concept whereby a method may have different
implementations. When a method is called, the
implementation that is dispatched and executed
depends on the type of the object on which the
method is invoked. Starburst is more ambitious
than earlier object-oriented systems because the
focus is not only on accommodating objects, but
also on extensions based on a set-oriented, de-
clarative query language.

Extensions to the conventional relational data
algebra to model the evolution of database sche-
mas are described in McKenzie and Snodgrass. 40

Conventional databases allow only one schema to
be in force at a time. Consequently, when the
schema is modified, for example, when new at-
tributes are introduced or when existing at-
tributes are either merged or split, the database
must be restructured, or reorganized. For BoMS,
and for other databases that store past states,
such reorganizations are no longer adequate. In-
stead, multiple schemas must be in effect simul-

IBM SYSTEMS JOURNAL, VOL 33. NO 2, 1994 SCHLAT~ER ET AL. 247

taneously, each of which applies to a specific in-
terval in the past. In that senseschema versioning

A central problem of
information retrieval is

how to represent
information for retrieval.

refers to the retention of past schemas that result
from a schema evolution. References 41 and 42
are papers related to this subject.

M e l a m p u ~ , ~ ~ a research prototype (named after a
great seer in Greek mythology who could under-
stand the speech of animals and birds), addresses
the problem of finding related data that may orig-
inate from different sources and that may lack
common formats and even semantics. It is argued
that the lack of a comprehensive way to manip-
ulate the wealth of information in a system is a
fundamental reason why the worth of the infor-
mation resource is often only latent and cannot be
fully realized. Melampus intends to provide a
computing environment that will enable data to be
used in unanticipated ways, ease the formation of
new relationships among data, and promote the
sharing of data between applications.

is an object-oriented data model and a
storage system with associated search methods.
It is built around a centralized description of data
types and formats that supports the construction
of applications operating across data types. By
integrating the data attributes in a central place,
retrieval on a semantic level rather than at a
purely syntactical (Le., text-oriented) level be-
comes possible. Rufus attempts to eliminate the
problems of more conservative approaches in
which the semantics of the data formats are
locked away in individual application programs.

Document and image processing have recently
caught widespread interest. 45-49 However, many
publications show a bias toward small-scale ap-
plications. Practical aspects such as systems ad-
ministration and integration into enterprise oper-
ations are mostly omitted.

248 SCHLAITER ET AL.

Through the availability of relatively cheap opti-
cal storage media, scanning of incoming docu-
m e n t ~ ~ ' , ~ ~ has recently become, for some enter-
prises, a means to reduce the costs that are
associated with the handling of paper, i.e., a task
that does not require specialized skills but that is
labor-intensive. With Imageplus*, when paper
first enters the business, its information is cap-
tured as an electronic image. 52 From that point it
is distributed, tracked, and processed electroni-
cally. In addition to providing cost-effective ways
to replace warehouses filled with paper, optical
disk storage is also used to replace COM archives
to store, in a bank, for example, financial trans-
action statements as they are generated by the
operational data processing applications. Al-
though these uses of new technology are valu-
able, they are mainly targeted at automating ex-
isting processes to make them more efficient.

The majority of information retrieval research has
been aimed at more experimentally tractable
small-scale systems, but it is increasingly appar-
ent that retrieval systems with large numbers of
documents are a fundamentally different genre of
system than small-scale systems, and that quan-
titative growth of an information retrieval system
causes qualitative changes in its structure and
processes.

A series of research report^^^"^ and a recent ZBM
Systems Journal paper5' describe the require-
ments analysis, architecture, design, and imple-
mentation of a document storage subsystem that
has evolved to IRM, the IBM Image and Records
Management System. 5M0 IRM is a toolkit that pro-
vides components for image scanning, displaying,
and printing services, and for object library,
folder management, and work list management
services. These services can be customized and
integrated to produce comprehensive, versatile
image processing and work flow management sys-
tems with custom graphical interfaces.

BOMS concepts and system design

Object families. Object families, which we define
as sets of objects sharing some common proper-
ties, implement a basic BOMS concept that we
have adapted to an enterprise scale and demon-
strated in practice. They address the organiza-
tional and administrative requirements of very
large object collections by means of an n-dimen-

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

Flgure 5 Two-dimensional categorization of information objects

TOP LEGAL AUDIT PAYMENTS
MANAGEMENT DEPARTMENT DEPARTMENT DEPARTMENT DEPARTMENT

SECURITIES ...
MINUTES F u F12 F13 NIA NIA OBJECT

SEMANTICS
INCOMING
LETTERS

FPt F22 F23 F 24 F I

ORDERS NlA N/A N/A F34 F35

STATEMENTS N/A NlA N/A F4.4 F45

OUTGOING
LETTERS

F51 F52 F53 F54 F 5s

CONTRACTS Fsc FSZ N/A Fsa F6S

REPORTS F71 F 72 F 73 NIA NIA

...
ORGANIZATIONAL SOURCE

sional classification scheme that assigns each ob-
ject to exactly one class. Families are uniquely
identified by n family descriptors, i.e., attributes
with values that are shared by all family mem-
bers. In addition, each family is characterized by
sets of attributes that are mandatory for all mem-
bers of the family, but for which each family
member (i.e., each object) has its own values; we
call these attributes “object descriptors.’’

In principle, BOMS allows an arbitrary number of
family descriptors, Le., n = 1, 2 , 3, . . . , and n
can be changed over time. However, as seen in
Figure 5 , n = 2 is often an intuitive and practical
choice:

1. The enterprise’s organizational unit that cre-
ates information objects, or that receives the
information object from an external involved
party; examples are: top management, legal
department, audit department, etc.

2. The semantic type of an information object,
such as minutes, incoming letters, orders,
statements, etc.

As illustrated in Figure 5 , setting up BOMS with
n = 2 family descriptors leads to a two-dimen-
sional categorization of all information objects,
which is intuitive and appealing, which appears to
reflect the business reality of many enterprises

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

N/A: NOT APPLICABLE

well, and which appears to be relatively stable
over time. Obviously, the values of the family
descriptors “organizational source” and “object
semantics” are installation-specific; the values of
the columns (top management, legal department,
etc.) and the rows (minutes, incoming letters,
etc.) in Figure 5 are only examples. Moreover,
not all possible combinations may be applicable in
a given scenario, i.e., there may be families with
no members. For example, minutes may be gen-
erated by top management, by legal, and by the
audit department, but not by either the payments
department or the securities department. Simi-
larly, orders and statements may relate to the
payments and securities departments, but not to
top management, nor to legal or the audit depart-
ment.

BOMS information objects. A central problem of
information retrieval is how to represent infor-
mation for retrieval. BOMS information objects
are logically connected sets of information that
can be referred to and manipulated in their
collective form. Conceptually, BOMS information
objects contain the following five structural
elements: object profile, body, search terms,
comments, and transforms.

Object profile. The object profile structural ele-
ment contains object descriptors that can be used

SCHLAITER ET AL. 249

as search arguments, for access control, to con-
trol presentation and storage management, and
for administrative purposes. It also contains
meta-information about how the object is repre-
sented, i.e., whether it is an EBCDIC (extended
binary-coded decimal interchange code) string,
an RFT (revisable form text) data stream, an im-
age, or information that is encoded in some other
form. The types and names of mandatory and op-
tional descriptors in the object profile are defined
by the family to which the object belongs.

A basic BOMS concept is the requirement that
all object profiles must be time-invariant and
that all descriptors in an object profile must de-
scribe only the object itself. More specifically, the
descriptors in the object profiles must not de-
scribe facts that apply to multiple objects. For
example, they must not hold information about
the environment in which the object was created,
such as information about the organizational
structure of the enterprise. Instead, such infor-
mation is kept-separate from the object profiles
and redundancy-free-in the environment store
that we will describe presently.

Object descriptors can be scalars, or n-dimen-
sional vectors. Figure 6 shows, as an example, an
object from the hypothetical family F, (see Fig-
ure 9 , i.e., a security settlement statement. In
this example, the order number is a scalar be-
cause it is a descriptor that consists of a single
value. This descriptor contrasts with a vector de-
scriptor that consists of an ordered set of num-
bers. In our example, an item called To the Debit
of Account is a three-dimensional vector, the
three dimensions being account number, value
date, and amount. Objects can have multiple in-
stances of descriptors. For example, the object in
Figure 6 has two instances of the descriptor com-
missions.

Body. Body is the main information content.
From the BOMS perspective, the body is an un-
interpreted bit string that is handled in its entirety.
Conceptually, there is no upper limit to the size of
the body, and the information that is contained in
the body can be represented as an EBCDIC string,
an RFT data stream, a binary encoded image, or in
any other form. However, BOMS maintains infor-
mation about the representation form of the body,
i.e., so-called meta-information, in the object pro-
file.

250 SCHLAITER ET AL.

Search terms. The search terms structural ele-
ment contains additional items that can be used
for queries.

Comments. The comments element contains an-
notations that users may attach (Le., “staple”),
over time, to the object.

Transforms. The transforms structural element
contains transformations of the object body, such
as an abstract of a text document, a verbal de-
scription of an image, a low-resolution, com-
pressed form of an image, etc.

All structural elements and the object descriptors
in the object profile are self-defining, i.e., have
their associated element profiles that describe the
data format and the number of instances con-
tained. This allows us, for example, to relate an
arbitrary number of comments with a given object
and with multiple transforms. Moreover, schema
evolutionsa and changes in the representation
form of object descriptors can be hidden from the
users. This support for multiple versions of de-
scriptors allows BOMS to adapt to changing re-
quirements without the need to change previously
stored objects, and without disturbing the users’
consistent and stable single-system view.

BOMS structure. Figure 7 shows the basic BOMS
structure. It consists of two main processes: the
service request manager, which is the main front-
end process, and the library manager, which is
the main back-end process that accesses the li-
braries (Library 1, Library 2, . . . , Library n)
where information objects reside.

The service request manager provides the inter-
face through which human users and automated
client processes interact with BoMS. The service
request manager is a complex information object
resource manager that supports requests to store
objects and to query or retrieve objects. It oper-
ates asynchronously, Le., once a terminal user or
client process has issued a service request, it is
free to continue with other tasks. Service re-
quests are persistent across sessions, i.e., they
survive user logoff and system restart operations.
When a service request has been processed, the
service request manager puts the reply into the
service reply queue for subsequent display on the

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

Figure 6 Security settlement statement example

A
ORDER 1 1 2 3 4 5 6 7 8 9 1

NYCORP. INC.
CH-9999 ANYTOWN

CUSTOMER 10967.654321 I
ACCORDING TO YOUR PHONE ORDER FROM JANUARY 14,1%@4

WE HAVE TODAY AT THE FROM YOUR CUSTODY

ACCOUNT 1 7 6 5 4 3 2 1 - 2 1

1

ITEM SECURITY QUANTITY PRICE CURRENCY AMOUNT

FANCY CO. 1123454321 5
~ ~~

300.- US DOLLARS 1500.“

TOTAL SOLD US DOLLARS 10 500:-

%COMMISSIONS US DOLLARS 500:-

AND HAVE CREDITED US DOLLARS 10 000.-
AT A RATE OF SWISS FRANCS 1.30

TO YOUR ACCOUNT 7654321-1

VALUE DATE JANUARY 17.1984 SWISS FRANCS 13 o00.-

-

user’s terminal or for further manipulation by the
client process. For simplicity, Figure 7 shows
only a single service reply queue. In reality, how-
ever, each client process has its private area in
that queue and sees only the replies that pertain
to its own requests. These private areas are also
used to synchronize and recompose the results
from multiple background processes that may run
independently and asynchronously.

B
IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

The service request manager handles two main
types of requests:

1. Object retrieval requests, requests for objects
that meet certain criteria. Such requests are
transformed into one or multiple library orders
and then passed on to the library manager. The
transformation relies on the catalog, on access
control rules, on information from the envi-

S C H L A ~ E R ET AL. 251

Figure 7 The basic BOMS structure

ENVIRONMENT

SERVICE REQUEST SERVICE REPLY

! 4

I

ronment store, and other meta-data. When the
library manager returns the requested objects,
the service request manager places them into
the service reply queue and notifies the re-
questing process, or terminal user.

2. Object query requests, requests for lists of ob-
jects that meet certain criteria. Such requests
do not require that the objects actually be re-
trieved, Le., they can be handled by querying
and joining information from the catalog, from
the access control rules base, from informa-
tion about the environment, and from other
meta-data. However, the replies to such object
query requests are also put into the service
reply queue, similar to retrieved object bodies.

The service request manager provides terminal
users and client processes with a view that em-
phasizes the semantic commonalities of informa-
tion objects and hides possible differences in the
representation and storage formats. For example,

all objects of the semantic type contract can be
handled in a uniform and coherent way, even if
they manifest themselves in different data stream
formats, such as typed letters and scanned im-
ages. Objects of different data stream formats can
be kept under the control of different storage sub-
systems without impacting the single-system/
single-library view that users have.

The library manager fulfills the library orders re-
ceived from the service request manager, i.e.,
stores and retrieves the bodies and other struc-
tural elements of the BOMS information objects. It
is a binary object resource manager in the sense
that it is not aware of the nature (Le., both the
format and the semantics) of the objects it is
handling.

The Libraries 1 to n are the stores for the bodies
and for related structural elements of the BOMS
information objects. All libraries have the same

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

architecture, but they may vary in physical im-
plementation. Each library consists of the library
shell, which provides the interface code to the
library manager, and the library core, imple-
mented with the underlying DBMS or access meth-
ods, or both. This layered structure allows BOMS
to integrate multiple storage subsystems that can
be based on different technologies-without dis-
turbing the users’ single-system, or single-library
view. It allows enterprises to take advantage of
newer storage subsystems with better price-per-
formance ratios, as they will inevitably become
available through advances in technology. Typi-
cally, new objects will be stored in libraries that
are implemented with new storage technology,
while the old objects can continue to reside in the
older libraries that are implemented with older
storage technology. The BOMS design guarantees
a single-library view, Le., both the old and the
new objects are seen by the users as if they were
stored in a single, uniform library.

In addition to the two main processes, Figure 7
also shows the catalog, the environment store,
the access control rule base, and the meta-data
store, all of which provide input to both the ser-
vice request manager and the library manager
processes.

Conceptually, the catalog is a redundancy-free
table in which each row represents the time-
invariant attributes of an information object and
pointers to the object and its related elements,
such as comments and transformations, in the
BOMS libraries. The attributes include the object
profiles and all element profiles. They are repre-
sented as scalars or as complex structures, such
as vectors or sets of vectors.

The environment store contains time-stamped in-
formation about the state of the environment both
in the past and present, i.e., at the time when
BOMS processes an object query or retrieval re-
quest. From the environment store, BOMS can in-
fer information about the state of the environment
at certain times during the life cycle of an object;
for example, when the object was created, five
years after it was created, or now. Such informa-
tion could, in principle, also be stored in the cat-
alog, but the resulting number of catalog updates
required to reflect environment state changes
would be impractical for the size of object col-
lections that we envisionwhich is the underly-
ing motivation for our requirement that the cat-

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

alog should be redundancy-free and contain only
time-invariant information.

Information from the organization chart of an en-
terprise is typical of what is in the environment
store that may be used to describe certain aspects
of information objects. For example, let us as-

The environment store contains
time-stamped information about

the state of the environment.

sume that d was the managing director of the or-
ganization unit u1 at time t, when a certain object
o was created by employee e, in the organization
unit u,,, which was at that time a part of the or-
ganization unit ul. It is easy to imagine situations
in which one might be interested in identifying all
objects of a certain type (say, contracts worth
more than one million dollars) that had been cre-
ated, in a certain period of time, in all organiza-
tion units directed by d. One might therefore be
tempted to store d as an attribute of o in the cat-
alog entry that describes 0. However, this would
probably have to be repeated in many catalog en-
tries and would lead to the well-known problems
related to redundant information. The idea to
avoid redundant information by storing d as a
family descriptor for contracts which would then
be shared by all objects in that family also fails,
because we do not want to define a new family
of contracts whenever a new director is assigned
to manage u,. More generally, it is impossible to
know in advance all possible ways in which users
may wish to identify objects.61 It is, therefore,
best to normalize all descriptive information kept
about objects in the same way as it is traditionally
done for relational databases. Based on these in-
sights, all descriptive information that would vi-
olate normalization rules is stored external to the
catalog. In our example, it suffices to store, in
the catalog, the fact that o was created at time t,
by employee e,. The fact that e, was then as-
signed to uI1, that u,, was a part of u,, and that d
was then the managing director of u, is kept in the
environment store.

SCHLATER ET AL. 253

The historic dimension of the environment store
also allows BoMS to bridge schema evolutions,
i.e., to provide users with a stable view of object
characteristics even when the structure and rep-
resentation of certain descriptors changes over
time. Through an automatic mapping of object
queries to multiple descriptor schemas that cor-
respond to multiple historic periods, users are
shielded from the possibility that certain object
characteristics may have been represented
differently during multiple periods of time. Con-
sider, for example, a case where a descriptor
CUSTOMER-NUMBER had for some time been
represented as BIDnnnnnn, where BID was the
identifier of the branch with which the customer
had a business relationship, and where nnnnnn
was a number that was unique across the enter-
prise. Searching for objects related to a certain
customer across all branches of the enterprise
therefore involves wild card clauses of the form

WHERE CUSTOMER-NUMBER = '$nnnnnnn' (1)

where $ is the wild card character that matches all
branch identifiers.

Now, let us assume that, at some point in time, it
is decided that the enterprise would like to be able
to better manage its business relationships with
all types of involved parties. Therefore, the en-
terprise may choose to introduce a new, enter-
prise-wide descriptor INVOLVED-PARTY-NUMBER
that will supersede the CUSTOMER-NUMBER. The
new descriptor INVOLVED-PARTY-NUMBER will
be of the form mmmmmm, i.e., it will no longer
include a reference to a particular branch. How-
ever, because the identifier of the branch where
certain business transactions are handled is still
considered to be important, a new descriptor
BRANCH-IDENTIFIER is introduced. For new ob-
jects, which are described according to the new
scheme, searches related to a certain customer
now require clauses of the form

WHERE INVOLVED-PARTY-NUMBER = 'mmmmmmm' (2)

However, if a user searches for older objects with
descriptors of the older type, BOMS will automat-
ically map the query to the old form in Equation
1 with the wild card search across all branches. In
general, the user does not have to be aware of the
possibility that older objects may have been de-
scribed according to schemas that were different
from those commonly used today. Moreover,

254 SCHIATTER ET AL.

there is no need for the user to be aware of the
time when the new descriptor types were intro-
duced. BOMS can infer all that from the historic
dimension of the environment store and map the
external user query into a series of BoMs-internal
queries that will retrieve all relevant objects, even
if different descriptor types were used during mul-
tiple historic periods. The motivation for having
this activity transparent to the user is threefold:
(1) Schema evolutions are inevitable; we cannot
ignore changes in the business environment and
must, therefore, be able to adapt descriptor sche-
mas so that they always reflect current reality. (2)
We want to provide the users with a consistent
view and avoid the need for users to be aware of,
and understand, the consequences of schema ev-
olutions. (3) We want to avoid the need to modify
the descriptors (Le., catalog entries) of stored ob-
jects to reflect schema evolutions. For the size of
object collections that we envision, and given the
requirement that BOMS must be almost continu-
ously available for user queries (close to 7 X 24
hours), it would be impractical.

Querying, retrieving, and organizing business ob-
jects. The ability to identify and retrieve objects
that are relevant in a given business context de-
pends on being able to describe the properties
that separate relevant from irrelevant objects. To-
gether, the catalog and the environment store al-
low associative queries that can take into account
not only properties inherent to the objects them-
selves, but also the state of the environment in
which the objects were created. Because both the
catalog and the enterprise store are designed as
collections of relational tables, and because of the
flexibility of the relational model, interobject re-
lationships do not have to be predefined. The lim-
itations of standard approaches to structure doc-
ument, image, and object databases with relatively
few and predefined links from individual docu-
ments to index terms are avoided. Instead, with
the relational join operator, objects can be
dynamically related based on attribute values;
i.e., access is associative through a value-based,
nonprocedural specification of a collection of rel-
evant information objects. Consequently, search-
ing for information closely matches the activity of
the human mind, which is inherently associative.
More specifically, there is no need for static, pre-
defined and hard-coded links between objects to
define folders, for example, to keep all objects
together that belong to a certain organization unit
in the enterprise. Folders can be defined dynam-

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

ically and separately by each user by specifying in
a query what common properties all objects in a
folder should have. In fact, a BOMS folder is sim-
ply made up of one or more lists of objects that
share certain characteristics.

Object queries allow users to work with informa-
tion objects in the same way in which they are
used to working with paper documents. Objects
that meet the selection criteria of a query can be

The first step in a
typical sequence of

interactions with BOMS
is to set up a query.

assigned to private subject folders, and folders
can be subdivided with file tabs. New objects can
be added to existing folders. For example, with
the push of a button, a user can request that all
new objects that entered BOMS since the last ex-
ecution of a query and that meet the selection
criteria of the query are added to the current con-
tent of a folder. It is an easy and powerful way to
keep subject folders up to date. Moreover, ob-
jects can be copied or moved between folders, or
from one file tab to another. Entire file tabs can be
moved or copied between folders. However, this
action affects only a particular user’s view of
these objects. The objects themselves, and all
other users’ views of these objects, remain un-
changed by such operations.

Figure 8 illustrates the main processes perceived
by a BOMS user: query, retrieve, and deliver. Also
shown are the data flows into and out of these
processes. The query process is implemented by
the service request manager; the implementations
of the retrieve and deliver processes are distrib-
uted across the service request and the library
manager (see Figure 7). The actions of the calling
user or client process are represented by the col-
ored arrows in Figure 8.

The first step in a typical sequence of interactions
with BOMS is to set up a query, either by calling

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

the BOMS application programming interface (API)
with the search criteria as parameters (typically
done by a client program) or by interactively
specifying the search criteria in application-spe-
cific panels on a terminal. In that way, a conjunc-
tion of predicates on the attributes of the BOMS
information objects is created to act as a filter
through which the collection of information ob-
jects is presented to the user. The query process
applies that filter to the catalog and to the envi-
ronment store and returns a list of qualifiing ob-
jects to the user. For each object that matches the
specified search criteria, provided the user is au-
thorized to know that the object exists (according
to the access control rules), the list of qualifying
objects contains a separate entry. That entry con-
tains selected elements from information kept in
the catalog about the corresponding object. What
elements are in the catalog depends on the family
to which the object belongs. From these elements
the BOMS application designer can select the
elements that are included in the list. In that
sense, the list of qualifying objects is a dynamic
folder with (references to) objects that pertain to
the business issue or the question that was the
origin of the query. The entries in the folder can
come from multiple object families and from
objects that are encoded in different data stream
formats.

In many cases, the list of qualifying objects is
sufficient to meet immediate information needs.
For example, when customer 0987.654321 (Fig-
ure 6) calls to inquire about the quantity and the
price of the securities that the bank had sold for
him or her on January 17,1994, normally retrieval
of the complete settlement statement from the li-
brary is not required (see Figure 6). The list of
qualifying objects will contain an entry that cor-
responds to the settlement statement for order
number 123456789, and the entry will contain the
vector descriptor {security number, quantity,
price, currency, amount}. If the customer is sat-
isfied with that information, no further action is
required. Only if the customer insists on a copy of
the settlement statement must the object itself be
retrieved from the library and printed.

In that case, the user could then select the entry
that corresponds to the settlement statement
123456789 from the list of qualifying objects, and
specify that BOMS should retrieve the correspond-
ing object from the library and deliver it to the
user’s local printer or, optionally, to the bank’s

SCHLAITER ET AL. 255

Figure 8 Main processes perceived by a BOMS user

=-
USER OR
API QUERY I SUMMARY INFORMATION

ABOUT QUALlWlNG
LIBRARY OBJECTS

USER OR
API SELECTtON

(LIST OF OBJECTS TO BE DELIVERED)

USER OR
API* RECEIVER

1
(LIST OF OBJECTS TO BE RETRIEVED)

RETRIEVED
OBJECTS

DELIVERED OBJECTS u
* EXAMPLES SCREEN, PRINTER, MAIL, ...

automated print and mail factory, which would
then print the statement, put it into an envelope,
and place it in the external mail. More generally,
the BOMS service request manager will deliver the
retrieved object to the service reply queue, where
it will be picked up by other processes, such as a
print process or a process that displays the object
on the user's screen for interactive browsing,
with subsecond response time for page-up or
-down operations. Because the retrieve process is
asynchronous and because the retrieved objects
are put into the service reply queue (see Figure 7),
which is persistent, the user can submit a retrieval
request and then return to some other work or
even log off from the system, resuming work later
with the retrieved (set of) object(,).

An important aspect is that users can initiate op-
erations against entries in the list of qualifying

objects, such as print or browse, without knowing
the format in which the object is represented.
Irrespective of whether it is an ASCII file, an RFT
document, an image, or anything else, such re-
quests will call the appropriate browse or print
programs.

Another aspect is that users can build upon the
results of a query, i.e., use the descriptor values
of objects that meet the selection criteria of one
query to formulate a subsequent query. For ex-
ample, imagine a user who has issued a query
about a customer and an account number. One of
the returned objects may be an account statement
in which a particular line item arouses the user's
interest. The user can now trace the information
flow forward and backward, for example, by is-
suing queries that search for related information
about events that either preceded and followed or

256 SCHLAITER ET AL IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

preceded or followed the event that is represented
by that particular line item. That related informa-
tion may include different types of objects such as
the corresponding accounting voucher and the
original order, which may be a transaction record
that was received through S.W.I.F.T., an e-mail
message, or the scanned image of a letter. How-
ever, this navigation through related object fam-
ilies is transparent to the user. The capability to
link information objects of different types and
from different sources appears as a kind of hy-
pertext facility allowing related pieces of infor-
mation to be identified and retrieved in a unified
and coherent way. Although this procedure is ini-
tially step-wise and iterative, the results can be
accumulated in a folder for subsequent immediate
access to the combined set of retrieved objects.

Access control. A fundamental problem with most
current access control models is that they do not
support direct, high-level specification of the ac-
cess control policies of an enterprise. Instead, it
is left to administrators to define low-level con-
trols that they (the administrators) consider to be
suitable for enforcing the policies. Consequently,
with most current models, there is an inevitable
semantic gap between the access control policies
of an enterprise and their implementation and en-
forcement. For example, with available models,
the following instances of least privilege and
“separation of duties” cannot be specified and
enforced directly:

“No system programmer must ever update infor-
mation objects that are members of family F,
(see Figure 5) , irrespective of where in the storage
hierarchy such an object might currently be.”

“A person can access information objects only
when the organizational source of the object (see
Figure 5) corresponds to the organizational unit in
which the person works. Exceptions to this rule
are object families Fx,y, where, for example x,y =
{(2,3),(5,5),(9,2)}. For these families, more per-
missive rules are allowed.”

Instead, these and similar policies depend on pro-
cedures and administrative controls (e.g., ap-
provals) that are external to the access control
model-external in the sense that they are usually
documented in procedure manuals but depend on
humans to interpret and enforce them. In other
words, the policies are not in a form that would
allow a computer to interpret and enforce them.

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

A general problem with such external procedures
is that they are often difficult to verify and to en-
force. In addition, when the size of object collec-
tions reaches the orders of magnitude that we
foresee for BOMS implementations, such access
control schemes are no longer practical. The ex-
pected number and frequency of personnel, or-
ganizational, and environmental changes in an en-
terprise during the lifetime of an object (up to 10
and more years) would lead to a prohibitive ad-
ministrative workload (due to the number and
complexity of administrative decisions and ac-
tions required to enforce the security of policies
and their changes over time). Alternatively, it
would lead to cases where users are, often un-
knowingly, granted more rights than are justified
by business requirements. In other words, there
would be a growing risk of compromising (i.e.,
failing to enforce) existing “least privilege poli-
cies,” as a consequence of the need to keep the
security administration workload at an accept-
able level.

Consequently, BOMS provides an access control
scheme that allows the direct specification and
enforcement of policies, as in the examples
above, in order to make access control easier to
understand and verify and to reduce the admin-
istrative workload.

BOMS access control is an extension and gener-
alization of current mandatory access control as
commonly used in military defense applications.
Mandatory access control normally relates object
classification labels of the type top secret, secret,
etc., to the users’ clearance levels and is based on
rules such as:

“Users can access only objects with classification
labels that are equal to, or less than, the users’
clearance.’’

For example, users with top secret clearance can
access top secret and secret objects, but users
with secret clearance can access only secret ob-
jects.

BOMS access control is similar in that it does not
put access control into the hands of individual
users. However, BOMS access control does not
rely on the standard classification labels and user
clearance levels but allows enterprise-specific
rules that can refer to arbitrary object and user
characteristics and to information about the envi-

ronment. In particular, the access control rules
can refer to object family attributes and to at-
tribute values of individual objects. These rules
are specified in a declarative language that is in-
tuitive and close to the way in which people think
about these policies-and that can be interpreted
and enforced by the computer.

The BOMS usage of these rules is twofold:

1. The service request manager joins the access
control rules with the selection predicates
from the service request to limit the number of
entries in the list of qualifying objects (see Fig-
ure 8). For example, if there is a general access
control rule in place that prevents users from
accessing certain information from outside
their own departments, the list of qualifying
objects will contain only entries about infor-
mation from their own departments, even if
the users’ search criteria did not specify that
restriction. This rule prevents careless (or ma-
licious) users from impacting the BOMS perfor-
mance by issuing service requests with insuf-
ficiently qualified search criteria, possibly
leading to thousands of irrelevant objects be-
ing retrieved. An interesting side effect of that
concept is that it also allows the use of security
policies that prevent users from knowing
whether certain information exists.

2. When the library manager returns the re-
trieved object bodies from the libraries, the
access control rules are applied to the object
descriptors. Only those objects that pass the
test are delivered to the requesting user’s ser-
vice reply queue (see Figure 7).

For run-time performance reasons, the rule-
based representation of access control policies is
mapped (i.e., compiled) into a tabular form sim-
ilar to traditional access lists. The important
point, however, is that this mapping is done me-
chanically and not left to the discretion of admin-
istrators. Moreover, whenever changed circum-
stances require it, access control policies can be
adapted easily and quickly, using the declarative
high-level language. Without further administra-
tive overhead, the changes will then be reflected
mechanically in the tabular, compiled run-time
form of the access control rules.

258 SCHLATTER ET AL.

Practical implementation of BOMS as a
distributed resource manager

BOMS is designed and implemented as a CICS/ESA-
based resource manager, i.e., both the BOMS ser-
vice request manager and the library manager are
implemented as a set of CICS* programs. The cat-
alog, the environment store, and the meta-data
store (see Figure 7) are implemented as sets of
DB2 tables. The creation of these tables is adap-
tive in the sense that the family classification
scheme of a particular BOMS installation and the
particular enterprise-specific search terms are in-
put to a semiautomated table creation process. In
the first operational release, the object libraries
have also been implemented with DB2, but, in
principle, any existing or emerging storage tech-
nology can be used, for example, OAM (object
access method) and optical libraries or emerging
specialized BLOB (binary large object) servers.

Irrespective of how the object libraries are im-
plemented, and even when libraries of different
types are mixed, users perceive the complete
BOMS storage as a single, virtually boundaryless
storage plane. Information objects meeting the
criteria of a search or retrieval request may be
distributed across multiple libraries that may, in
turn, again be distributed across multiple nodes,
but any such physical segmentation is completely
invisible to the user. Access to information ob-
jects and navigation between them is provided
exclusively on the basis of descriptors pertinent
to the user’s business view.

In order to allow multiple nodes to cooperate
transparently, BOMS uses an integrated routing
and coordination facility and a node routing table.
Incoming service requests are split up into sepa-
rate node requests when the service request man-
ager determines, during the initial screening of a
service request, that remote nodes contain librar-
ies with potentially qualifying objects. The replies
to these separate node requests are reported back
to the source node, where they are consolidated
and coordinated into one complete reply to the
original service request. Node routing may be
based on descriptor value ranges such as family,
organizational source (branch office, department,
etc.), data stream format, element type, status
(production, training, test, etc.), or time period
when the object was stored. Over time, the dis-
tribution of objects in a network of BOMS nodes
can be changed without disturbing the users’ sin-

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

gle-system view. New nodes can be added, and
existing nodes can be “stabilized,” in the sense
that no more new objects are stored in these
nodes. In this way BOMS installations can keep
existing object collections and begin to store new
objects in nodes that are implemented with
newer, more cost-effective storage technology
and still maintain the users’ single-system view of
both old and new collections. In that sense, BOMS
is an integrator for different library technologies
that will inevitably emerge over time.

A feature exclusive to BOMS (according to our
knowledge) is that the size of object collections
and the query performance are not limited by a
requirement to keep the catalog information for
all objects on line; similarly it is not required to
keep all historic layers of the environment store
on line. This arrangement is achieved by further
segmenting the parts of the virtual storage plane
covered by individual libraries into self-sufficient
logical units of data (LUD), which contain well-
defined sets of information objects, together with
all the accompanying catalog and environment in-
formation that is required to access the objects
and to navigate between them (see Figure 9).
Consistent with the concept of a two-dimensional
storage plane, the segments are rectangular areas
containing the objects from individual families
from a certain period. As Figure 9 illustrates, the
splits along the time axis can be at irregular in-
tervals. For example, a split can be made when
the number of objects in an LUD reaches a certain,
family-specific value, or when an LUD exceeds
the capacity or performance limitations of a
database management system. In any case, ac-
cess to individual LUDS is through a pointer in the
meta-data (see Figure 7), but this additional level
of indirection is invisible to the user. If such a
pointer is found to point to an LUD that is off-
loaded to secondary storage, the BOMS service
request manager automatically makes a call to the
appropriate storage subsystem to bring the LUD
on line again. In other words, when a query refers
to an LUD that is off line, all of this action is han-
dled transparently-very much like a “soft page
fault” is handled by a virtual memory operating
system reading missing pages from secondary
storage into main memory in a manner transpar-
ent to the application program that made a refer-
ence to a memory location that was found to be
“paged out.” In the first operational release, each
LUD is implemented as a separate DB2 database,
i.e., a related collection of table spaces and their

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

Figure 9 Logical units of data in virtual storage plane

OWECT FAMtLtES *

I
CATALOG
INFORMATWN 1 OBJECT I ”“““””

CONTENTS

I
1

indexes, used together as an operational unit for
starting and stopping all accesses and for off-load-
ing to secondary storage.

Because the amount of meta-data that must be
kept on line to point to off-loaded LUDS and to the
relevant slices of the environment store is orders
of magnitude smaller than a typical LUD catalog,
that approach allows BOMS collections to grow to
orders of magnitude impossible with systems that
rely on the concept that all catalog information for
all objects must always be on line. In particular,
the LUD concept decouples the size of BOMS ob-
ject collections from the amount of data a given
database management system can hold. In addi-
tion, we can limit the size of catalog and envi-
ronment store portions so that we can keep the
performance of relational queries and joins at an
acceptable level. By adding a layer of software
above traditional relational database manage-
ment systems, we obtain the freedom to exploit
evolving database management systems, but we
also become, to a large extent, independent of
product cycles.

SCHLATTER ET AL. 259

A productive prototype with over 200 users and
more than nine million documents was running
successfully from 1989 until 1991. In October
1991, a production release was put into operation,
and at the beginning of 1992, more than 10 million
annual account closing statements (20 gigabytes)
were stored; during that year, approximately two
million objects were stored each month. In De-
cember 1992 we had a total of 40 million objects,
and by January 1994 we had 95 million objects
(220 gigabytes) in our BOMS implementation.
Many objects are relatively small, typically 2000
bytes, but we have also some very large objects;
the largest objects exceed 10000 pages. During
the first days of 1994 we had once again over 10
million annual closing statements (24 gigabytes),
which were inserted in less than two calendar
days. Since January 1994 we have been storing
500000 new objects (1 gigabyte) every day, and
we expect to have a total of at least 200 million
objects by the end of 1994. The main reason for
the steep increase in 1994 is that we have now
begun to store statements generated by the pay-
ments application. The number of users has been
growing steadily; on an average day we now have
600 users who generate approximately 4000 ser-
vice requests. Most of the queries are complex,
and the average response time of 5 to 10 seconds
meets all practical user requirements. With the
availability of the payments transaction state-
ments, and with other applications gradually be-
ginning to rely exclusively on BOMS to provide
their users with access to historic data, we expect
a significant increase in the number of users and
the number of service requests. The potential
number of internal users is on the order of 10000,
and if customers of the bank were also allowed to
directly access BOMS, that number could grow to
even larger orders of magnitude. The maximum
number of users that BOMS can support is limited
only by the number of nodes and the number of
CICS regions per node.

Conclusion

BOMS is based on, and extends, concepts from the
relational database model. A resultant practical
advantage is that relationships between objects
can be established dynamically, based on at-
tribute values, Le., interobject relationships do
not have to be predefined. When users search and
collect information, they can dynamically define
their own folders to meet the needs of a given
situation. This method contrasts to alternative ap-

260 SCHLA~TER ET AL.

proaches requiring static folders, in which docu-
ments are put into folders when they are stored,
often using hard-coded links. Because the BOMS
folders are orthogonal to the BOMS object fami-
lies, they can be defined independently by each
user, according to the criteria that are relevant at
the time the information is needed, rather than
according to the criteria that appear to be impor-
tant at the time when the information is stored.
Thus, BOMS eliminates the dilemma of trying to
guess in advance the contexts in which informa-
tion could become useful in the future-a futile
task indeed when one considers that information
stored in BOMS has a useful lifetime of ten or more
years.

Because the profile of an object contains only de-
scriptors that are time-invariant and unique to the
object, BOMS has a fundamental advantage over
more simplistic approaches not having the con-
cept of a separate environment store. The envi-
ronment store allows us to maintain, redundancy-
free, multiple historic versions of time-varying
information potentially relating to multiple ob-
jects. We can, therefore, join infogmation about
individual object instances with information
about the environment in which an object was
created. Joining allows queries to arise that would
otherwise be impossible to answer in collections
of the size we envision.

Because of a clear separation between the BOMS
application and system layers, based on client/
server and resource manager principles, all im-
plementation complexities are hidden from the
users. Despite the inevitable underlying complex-
ity and heterogeneity, users are provided with a
single-system view.

The workstation provides a single point of access
to what appears (to the user) to be an integrated
set of information and processing resources.
However, these resources can actually reside on
a variety of platforms. Users are given a concep-
tual view of information objects, without having
to know where and how these objects are stored.

BOMS is designed to provide the flexibility to ex-
ploit and introduce any convenient storage tech-
nology whenever it is cost-effective, without dis-
turbing the single-libraryview. BOMS can act as an
integrator of different library types, different (het-
erogeneous) database management systems, and
different hardware and systems software plat-

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

forms. In particular, it removes most dependen-
cies from the capability of a database manage-
ment system to transparently manage the vast
amount of information that will inevitably accu-
mulate over the years. By transparently splitting
object families into logical units of data, which
can be held in separate DBMS instances, BOMS
circumvents any potential limitation on the max-
imum amount of data that a given database man-
agement system can accommodate.

BOMS is a conceptual platform with a pragmatic
implementation that can transform organizational
structures and support new ways of making deci-
sions. Because BOMS requires, or at least encour-
ages, an enterprise to define a common, unified
terminology to describe its information assets, it
can be a catalyst and enabling platform to inte-
grate otherwise isolated parts of an enterprise.
The common terminology with BOMS as a pow-
erful means to share common information can
help to bridge potential semantic gaps that pre-
vent effective communication and mutual under-
standing in a large enterprise. By adopting the
BOMS concepts, enterprises can prepare to be able
to filter and interpret ever increasing amounts of
heterogeneous information in new ways that re-
flect new and changed situations. In that sense,
we hope that BOMS is a contribution toward one
of the most urgent mandates of our time, i.e.,
learning to thrive on chaos.62

In the future, we plan to further investigate pos-
sibilities to integrate different library types, in-
cluding ImagePlus, and ways to provide users
with a single-system view of ODA (office docu-
ment architecture) and SGML (standard general-
ized markup language) document collections.

Acknowledgments

For many years, Henry Gladney from IBM Re-
search has always been a stimulating discussion
partner. We also acknowledge the feedback from
Hans Keller; his questions have helped us to
more clearly articulate what we believe to be
unique to BOMS.

*Trademark or registered trademark of International Business
Machines Corporation.

Cited references

1. C. J. Date, An Introduction to Database Systems, Vol-
ume I, Addison-Wesley Publishing Co., Reading, MA
(1981).

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

2. C. J. Date, An Introduction to Database Systems, Vol-
ume 11, Addison-Wesley Publishing Co., Reading, MA
(1983).

3. D. J. Haderle and R. D. Jackson, “IBM Database 2 Over-
view,” IBM Systems Journal 23, No. 2, 112-125 (1984).

4. P. P. S. Chen, “The Entity-Relationship Model-Toward
a Unified View of Data,”ACM Transactions on Database
Systems, No. 1, 9-36 (March 1976).

5 . Entity Relationship Approach to Systems Analysis and
Design, P. P. Chen, Editor, North-Holland, Amsterdam
(1980).

6. Entity Relationship Approach to Information Modeling
and Analysis, P. P. Chen, Editor, ER Institute, Saugus,
California 91350 (1981).

7. M. L. Brodie, “On the Development of Data Models,” in
On Conceptual Modeling: Perspectives from Artificial In-
telligence, Databases and Programming Languages,
M. L. Brodie, J. Mylopoulos, and J. W. Schmidt, Editors,
Springer, New York (1984), pp. 19-48.

8. R. W. Matthews and W. C. McGee, “Data Modeling for
Software Development,” IBMSystems Journal 29, No. 2,
228-235 (1990).

9. J. E. Gessford, How to Build Business-Wide Databases,
John Wiley & Sons, Inc., New York (1991).

10. V. Linnemann, K. Kiispert, P. Dadam, P. Pistor, R. Erbe,
A. Kemper, N. Siidkamp, G. Walch, and M. Wallrath,
“Design and Implementation of an Extensible Database
Management System,” Proceedings of the 14th K D B
Conference, Los Angeles (1988), pp. 294-305.

11. G. Gardarin, J. P. Cheiney, G. Kiernan, D. Pastre, and
H. Stora, “Managing Complex Objects in an Extensible
Relational DBMS,” Proceedings of the Fifteenth Inter-
national Conference on Very Large Databases, Amster-
dam (1989), pp. 55-65.

12. M. Stonebraker, “Future Trends in Database Systems,”
IEEE Transactions on Knowledge and Data Engineering
1, No. 1, 3 3 4 4 (1989).

13. L. M. Haas, W. Chang, G. M. Lohmann, J. McPherson,
P. F. Wilms, G. Lapis, B. Lindsay, H. Pirahesh,
M. Carey, and E. Shekita, “Starburst Mid-Flight: As the
Dust Clears,” IEEE Transactions on Knowledge and
Data Engineering 2, No. 1, 143-160 (March 1990).

14. D. C. Blair, “The Data-Document Distinction in Infor-
mation Retrieval,” Communications of the ACM 27,
No. 4, 369-374 (April 1984).

15. C. D. Blair, Language and Representation in Information
Retrieval, Elsevier, Amsterdam (1990).

16. N. J. Belkin and W. B. Croft, “Information Filtering and
Retrieval: Two Sides of the Same Coin?” Communica-
tions of the ACM 35, No. 12, 29-38 (December 1992).

17. F. W. McFarlan, “Information Technology Changes the
Way You Compete,” Harvard Business Review, 98-103
(May-June 1984).

18. M. E. Porter and V. E. Millar, “How Information Gives
You Competitive Advantage,” Harvard Business Review,
149-160 (July-August 1985).

19. Information Management: The Strategic Dimension,
M. Earl, Editor, Clarendon Press, Oxford (1989).

20. E. K. Clemons, “Strategic Investments in Information
Technology,” Communications of the ACM 34, No. 1,
22-36 (January 1991).

21. J. M. Kerr, The IRMImperative: Strategies forManaging
Information Resources, John Wiley & Sons, Inc., New
York (1991).

SCHLATER ET AL. 261

22. S. Loeb and D. Terry, “Information Filtering,” Commu-
nications of theACM35, No. 12,26-28 (December 1992).

23. C. Stevens, “Automating the Creation of Information Fil-
ters,” Communications of the ACM 35, No. 12, 48 (De-
cember 1992).

24. I. Stadnyk and R. Kass, “Modeling Users’ Interests in
Information Filters,” Communications of the ACM 35,
No. 12, 49-50 (December 1992).

25. P. E. Baclace, “Competitive Agents for Information Fil-
tering,” Communications of theACM35, No. 12,50 (De-
cember 1992).

26. P. W. Foltz and S. T. Dumais, “Personalized Information
Delivery: An Analysis of Information-Filtering Meth-
ods,” Communications of the ACM 35, No. 12, 51-60
(December 1992).

27. D. Goldberg, D. Nichols, T. Hickey, K. C. Lee, W. H.
Mansfield, J. Ratz, and A. Weinrib, “Using Collaborative
Filtering to Weave an Information Tapestry,” Commu-
nications of theACM35, No. 12,61-70 (December 1992).

28. Information Warehouse Architecture I , SC26-3244, IBM
Corporation (1993); available through IBM branch offices.

29. S. Khoshafian, Object-Oriented Databases, John Wiley
& Sons, Inc., New York (1993).

30. W. Kim and F. H. Lochovsky, Object-Oriented Con-
cepts, Databases, and Applications, Addison-Wesley
Publishing Co., Reading, MA (1989).

31. W. Kim, F. Garza, N. Ballou, and D. Woelk, “Architec-
ture of the ORION Next-Generation Database System,”
ZEEE Transactions on Knowledge and Data Engineering
2, No. 1, 109-124 (March 1990).

32. W. Kim, Introduction to Object-Oriented Databases, The
MIT Press, Cambridge, MA (1991).

33. A. Otis and J. Stein, “The Gemstone Object Database
Management System,”AIXpert, 54-58 (May 1992); avail-
able through IBM branch offices as Order No. G580-0010-
00.

34. T. A. Andrews, “ONTOS DB: An ODBMS for Distrib-
uted AIX Applications,” AIXpert, 5 9 4 2 (May 1992);
available through IBM branch offices as Order No. G580-
0010-00.

35. D. K. Barry, “ITASCA Distributed ODBMS,”AIXpert,
6 3 4 7 (May 1992); available through IBM branch offices
as Order No. G580-0010-00.

36. G. Landis, “Overview of the ObjectStore ODBMS,”
AIXpert, 68-72 (May 1992); available through IBM
branch offices as Order No. G580-0010-00.

37. M. E. S. Loomis, “The VERSANT ODBMS,”AIXpert,
73-76 (May 1992); available through IBM branch offices
as Order No. G580-0010-00.

38. K. Parsaye, M. Chignell, S. Khoshafian, and H. Wong,
Intelligent Databases: Object-Oriented, Deductive Hy-
permedia Technologies, John Wiley & Sons, Inc., New
York (1989).

39. M. Stonebraker, L. A. Rowe, and M. Hirohama, “The
Implementation of POSTGRES,” ZEEE Transactions on
Knowledge and Data Engineering 2, No. 1, 125-142
(1990).

40. E. McKenzie and R. Snodgrass, “Schema Evolution and
the Relational Algebra,” Information Systems 15, No. 2,
207-232 (1990).

41. R. Maiocchi and B. Pernici, “Temporal Data Manage-
ment Systems: A Comparative View,” IEEE Transac-
tions on Knowledge and Data Engineering 3, No. 4,504-
524 (December 1991).

42. J. F. Roddick and J. D. Patrick, “Temporal Semantics in

262 SCHLAITER ET AL.

Information Systems: A Survey,” Information Systems
(UK) 17, No. 3, 249-267 (May 1992).

43. L. Cabrera, L. Haas, J. Richardson, P. Schwarz, and
J. Samos, “The Melampus Project: Towards an Omni-
scient Computing System,” Research Report RJ7.515,
IBM Corporation, San Jose, CA (June 1990).

44. E. Messinger, K. Shoens, J. Thomas, and A. Luniewski,
“Rufus: The Information Sponge,” Research Report
RJ8294, IBM Corporation, San Jose, CA (August 1991).

45. G. P. Michalski, “The World of Documents,” Byte 16,
No. 4, 159-170 (April 1991).

46. D. A. Harvey, “Catch the Wave of DIP,”Byte 16, No. 4,
173-182 (April 1991).

47. D. A. Harvey and B. Ryan, “Practically Paperless,” Byte
16, No. 4, 185-190 (April 1991).

48. C. Locke, “The Dark Side of DIP,” Byte 16, No. 4,
193-204 (April 1991).

49. S. Diehl and H. Eglowstein, “Tame the Paper Tiger,”
Byte 16, No. 4, 220-243 (April 1991).

50. L. C. Kingman 111, R. E. Lambert, and R. P. Steen, “Op-
erational Image Systems: ANew Opportunity,”ZBMSys-
tems Journal 29, No. 3, 304-312 (1990).

51. B. Trammell, “Too Little, Too Late? Not at USAA,”
Inform 3, No. 8, 24-52, Association for Information and
Image Management (AIIM), AIIM, 110 Wayne Avenue,
Suite 1100, Silver Spring, MD 20910 (August 1989).

52. C. D. Avers and R. E. Probst, “ImagePlus as a Model for
Application Solution Development,” ZBM Systems Jour-
nal 29, No. 3, 356-370 (1990).

53. H. M. Gladney, “Requirements Analysis for a Document
Storage Subsystem,” Research Report RJ7085, IBM Cor-
poration, San Jose, CA (1989).

54. H. M. Gladney, R. M. Cubert, D. B. Hildebrand,
J. Kleck, R. W. Schmiedeskamp, J. Antognini, and S. F.
Horne, “Architecture and Design of a Document Storage
Subsystem,” Research Report RJ7223, IBM Corporation,
San Jose, CA (1989).

55. H. M. Gladney, D. B. Hildebrand, and R. W.
Schmiedeskamp, “External .Design of a Document Stor-
age Subsystem,” Research Report RJ8267, IBM Corpo-
ration, San Jose, CA (1991).

56. H. M. Gladney, “A Storage Subsystem for Image and
Records Management,” Research Report RJ8626, IBM
Corporation, San Jose, CA (February 1992).

57. H. M. Gladney, “A Storage Subsystem for Image and
Records Management,” IBM Systems Journal 32, No. 3,
512-540 (1993).

58. Image and Records Management (Z R M) General Infor-
mation Guide, GC22-0027, IBM Corporation (1992);
available through IBM branch offices.

59. Image and Records Management (ZRM) Planning and
Installation Guide, GC22-0029, IBM Corporation (1992);
available through IBM branch offices.

60. IBM SAA Zmage and Records Management (Z R M) Base-
line User’s Guide, SC22-0031, IBM Corporation (1992);
available through IBM branch offices.

61. D. Erickson, “Hacking the Genome,” Scientific Ameri-
can, 98-105 (April 1992).

62. T. Peters, Thriving on Chaos, Alfred A. Knopf, New
York (1988).

Accepted for publication January 31, 1994.

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

Marcel Schlatter IBM Switzerland, Hohlstrasse 600, CH-
8048 Zurich, Switzerland (electronic mail: Internet:
CHIBMT69@IBMMAIL. COM; Inter-enterprise: CHIBMT69
at IBMMAIL). Dr. Schlatter is a solution development spe-
cialist in the Field Business Unit “Banking and Insurance” of
IBM Switzerland. Since he joined IBM in 1982, he has spent
most of his time working with various financial institutions,
covering a broad spectrum of information technology issues.
During 1988-89, he was assigned to the IBM European head-
quarters in Paris. In that capacity, he worked with a diverse
set of customers to define and articulate the information se-
curity requirements of the banking and insurance sectors, the
manufacturing, and the defense industry sectors. In addition
to document management systems, his current professional
interests include client/server application architectures and
message-driven processing. Prior to joining IBM, his research
focused on communication technology. He published papers
in the IEEE Transactions on Communications and in theZEEE
Transactions on Information Theory. Dr. Schlatter received
an M.Sc. in electrical engineering in 1974 and a Ph.D. (Dr. sc.
techn.) in 1981 from the Swiss Federal Institute of Technology
in Zurich (ETH), Switzerland. He is a member of the IEEE.

Ren6 Furegati IBM Switzerland, Hohlstrasse 600, CH-
8048 Zurich, Switzerland (electronic mail: Internet:
CHIBMVMP@IBMMAIL. COM; Inter-enterprise: CHIBM-
W P at IBMMZL). Mr. Furegati is a solutions architect in
the Field Business Unit “Banking and Insurance” of IBM
Switzerland. He joined IBM Switzerland in 1966. Having ac-
companied Credit Suisse’s and other large Swiss banks’ highly
integrated transaction systems along their entire development
cycle, beginning in the late 1960s, he shifted interests toward
handling documents with the help of information technology
in the mid-1980s. Emphasis has been on the interaction of
short-term local solutions with long-term corporate document
management aspects in environments with potentially tens of
thousands of users and billions of documents to be kept and
reproduced or reworked over many decades.

Franz J. K. Jeger IBM Switzerland, Hohlstrasse 600, CH-
8048 Zurich, Switzerland (electronic mail: Internet:
CHIBMSJP@IBMMIL.COM). Dr. Jeger is a solution de-
velopment specialist in the Field Business Unit “Banking and
Insurance” of IBM Switzerland. He joined IBM Switzerland
in 1978. His recent work includes the development of a meth-
odology to define user requirements for document manage-
ment systems. He received an M.A. in mathematics in 1973
and a Ph.D. (Dr. sc. math.) in 1977 from the Swiss Federal
Institute of Technology in Zurich (ETH), Switzerland.

Heinrich Schneider Credit Suisse, 098, CH-8070 Zurich,

der@cs. csh. com; Inter-enterprise: CHSKARF9 at IBM-
Switzerland (electronic mail: Internet: heinrich.schnei-

MAIL). Mr. Schneider is responsible for the architecture of
middleware software at Credit Suisse and is consultant for
application development projects. Since he joined Credit
Suisse in 1982, he has spent his time working on different
projects, covering a broad spectrum of information technol-
ogy issues. He is experienced in different areas, among them
system programming, system-/application-analysis and de-
sign, office automation, application architecture issues, data
and function modeling, and project management. He was proj-
ect leader for the development of the enterprise-wide Business
Object Management System at Credit Suisse. His current pro-

fessional interests include application design based on mes-
saging technology and object-oriented development combined
with the client/server model. Recently he worked for several
months in the Santa Teresa Laboratory of IBM. Prior to join-
ing Credit Suisse, he graduated from the Swiss Federal Insti-
tute of Technology in Zurich (ETH) and received an M.Sc. in
physics. He is currently working toward an M.B.A. from the
City University Zurich.

Heinrich A. A. Streckeisen ZBM Switzerland, Hohl-
strasse 600, CH-8048 Zurich, Switzerland (electronic mail:
Internet: CHIBMLLKQIBMMAIL. COM; Inter-enterprfse:
CHIBMLLK at IBMMAIL). Mr. Streckeisen is a senior sys-
tems engineer and works as a solution development specialist
in the Field Business Unit “Banking and Insurance” of IBM
Switzerland. He joined IBM in 1964, first working with cus-
tomers in the manufacturing, distribution, and insurance in-
dustries. Since 1986 he has worked in the ongoing BOMS
project of Credit Suisse and is the lead designer from the IBM
side, concentrating on overall design and CICS as well as DB2
implementation aspects.

Reprint Order No. G321-5541.

IBM SYSTEMS JOURNAL, VOL 33, NO 2, 1994

I
SCHLATER ET AL. 263

