Deriving programs using
generic algorithms

We suggest a new approach to the derivation of
programs from their specifications. The formal
derivation and proof of programs as is practiced
today is a very powerful tool for the development
of high-quality software. However, its application
by the software development community has
been slowed by the amount of mathematical
expertise needed to apply these formal methods
to complex projects and by the lack of reuse
within the framework of program derivation.

To address these problems, we have developed
an approach to formal derivation that employs
the new concept of generic algorithms. A
generic algorithm is one that has (1) a formal
specification, (2) a proof that it satisfies this
specification, and (3) generic identifiers
representing types and operations. It may have
embedded program specifications or pseudocode
instructions describing the next steps in the
stepwise refinement process. Using generic
algorithms, most software developers need to
know only how to pick and adapt them, rather
than perform more technically challenging tasks
such as finding loop invariants and deriving loop
programs. The adaptation consists of replacing
the generic identifiers by concrete types and
operations. Since each generic algorithm can

be used in the derivation of many different
programs, this new methodology provides the
developer with a form of reuse of program
derivation techniques, correctness proofs, and
formal specifications.

he use of formal software development meth-

ods, such as formal specification, program
derivation, and proofs of correctness of algo-
rithms, has been advocated by the academic com-
puter science and software engineering commu-
nity for about two decades. Yet, even though this
mathematical approach has enormous potential

158 YAKHNIS, FARRELL, AND SHULTZ

by V. R. Yakhnis
J. A. Farrell
S. S. Shultz

for producing very high-quality software, its use
so far within the software development commu-
nity has not been commensurate with its poten-
tial. Although many programmers agree that the
production of programs that are mathematically
proved to be correct is a desirable goal, it appears
that the mathematical skill level required of the
program development team to produce correct-
ness proofs may be too high for their widespread
acceptance.

The original formal approach, called program ver-
ification, was to develop an algorithm by tradi-
tional means and then create its correctness
proof, thereby revealing any faults in the algo-
rithm. It soon became apparent that creating the
proof independently of creating the algorithm
made the proof step much too complex, since the
formal logic structure of the algorithm had to be
extracted before the proof could be formulated.
To counter this problem, several researchers (see
Dijkstra,’ Gries,? Kaldewalij,> and Cohen*) pro-
posed a technique in which the algorithm and the
proof are developed together, with elements of
the proof actually preceding the code. In this ap-
proach, both the algorithm and its proof are de-
rived from its formal specification.

©Copyright 1994 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

Although the program derivation approach ad-
dressed many difficulties in producing mathemat-
ically correct software, the mathematical skill
level required was not appreciably reduced.

Our methodology is applicable to
a vast segment of the program
development process.

Therefore, when the 1BM Glendale Programming
Laboratory in Endicott, New York, began inves-
tigating the use of formal methods to help im-
prove the quality of our commercial software
products, we looked for ways to lower the level
of mathematical skill required. Our approach was
to “hide” most of the mathematical techniques
involved in program derivation in a number of
prederived program templates that we call ge-
neric algorithms.

A generic algorithm has the following features:

¢ It has a formal specification.

o It is formally proved to satisfy this specifica-
tion.

It may have one or more generic identifiers rep-
resenting data types or operations.

+ It may have embedded program specifications
or pseudocode instructions describing the next
steps in the stepwise refinement process.

Given a collection of generic algorithms, the sug-
gested process of developing a program from a
formal specification could be informally de-
scribed as follows. Instead of directly using the
program derivation techniques, select a suitable
generic algorithm from our collection and adapt it
by replacing its generic identifiers by conceptu-
ally similar data types and operations. The selec-
tion is based either on comparison between the
logical structure of the given formal specification
and the specifications of the generic algorithms,
or intuitive comparison of the desired “behavior”
of the algorithm being designed with the “behav-
iors” of the generic algorithms, or both. Then
check the correctness of certain logical assertions
linking the original formal specification and the

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

specification of the generic algorithm modified by
the aforementioned replacement of the data types
and operations.

These “linking” assertions are discussed later in
the paper. Their correctness ensures that the
adapted generic algorithm satisfies the original
formal specification. We call this methodology
“deriving programs using generic algorithms.”
Just as with traditional program derivation tech-
niques, our methodology is applicable to a vast
segment of the program development process,
from high-level design to coding.

Within the framework of our approach, generic
algorithms serve as reusable, transformable
building blocks in the formal derivation of pro-
grams. They extend the paradigm of program re-
use to the reuse of program correctness proofs,
formal specifications, and design steps. Generic
algorithms alleviate the problem of mathematical
skill levels by freeing the programmer from the
search for loop invariants and from providing re-
spective interim proofs. Thus they enable pro-
grammers to derive mathematically correct pro-
grams from formal specifications with only an
occasional need to consult experts in program
derivation and program correctness proofs.

Our experience includes the application of formal
derivation with generic algorithms in the Conver-
sational Monitor System (CMS) component of the
Virtual Machine/Enterprise Systems Architec-
ture* (VM/ESA*) operating system.’®

Prior to introducing generic algorithms, we de-
scribe the basic concepts of formal specification
in the next section. This is done not only to pro-
vide the necessary background, but also to famil-
iarize programmers with our style of writing for-
mal specifications, which is tailored to the use of
generic algorithms. After these preliminaries, we
describe the notion of generic algorithms and
their use in the succeeding section.

The main body of this paper is intended to provide
a description of our methodology rigorous enough
to be both convincing and understandable to pro-
gram developers. The appendices contain math-
ematical details necessary for proving the validity
of our approach. We hope that both program de-
velopers and computer scientists interested in
program derivation will find this work useful.

YAKHNIS, FARRELL, AND SHULTZ 159

Here are some of our notation conventions:

e Algorithms are represented by cursive capital
letters like & or 4.

* Boolean expressions are represented by Greek
letters like ¢, ¥, or .

* Other expressions are represented by capital
letters in italic, like E.

* Logical assertions are represented by either
Greek letters or capital letters in italic.

e Sets are represented by capital letters with dou-
ble lines, like X, Y.

Specifications and algorithms

Informal, rigorous, and formal specifications. A
specification for an algorithm is a statement de-
scribing its behavior during execution. Usually
this description is limited to stating under what
conditions the algorithm may begin its execution
and also what kind of results are expected after
the algorithm terminates. However, a specifica-
tion should avoid spelling out how to reach those
results, leaving the “how” open to various im-
plementations. Essentially the same specification
may be represented in numerous formats, which
in turn may be separated into three broad cate-
gories: informal, rigorous (sometimes called in-
formal rigorous® or semiformal), and formal.

Informal specifications use natural languages
(English in our case) with only occasional usage
of mathematical symbols. Rigorous specifications
use more or less informal mathematical notation
with the usual mathematical conventions applied.
They are used, for example, by the Dijkstra-Gries
school of program derivation.'*’ Finally, formal
specifications require the use of a formal specifica-
tion language, e.g., Z,*!' vDM,? and various alge-
braic specification languages such as CLEAR,”
Larch,™ and many others.

Since our purpose is to create very high-quality
software, every time we create an algorithm % we
must ensure that it satisfies the specification. The
only reliable way to ensure satisfaction is to cre-
ate a correctness proof. Since such correctness
proofs require having either a rigorous or a formal
specification, our approach works best in the
frameworks of either rigorous or formal specifi-
cations. However, the generic algorithms ap-
proach is so flexible that it also permits the users
to create quality software without strictly confin-

160 YAKHNIS, FARRELL, AND SHULTZ

ing them to either rigorous or formal specifica-
tions. Indeed, since rigorous or formal specifica-
tions and correctness proofs are implicitly included

A specification for an algorithm
is a statement describing its
behavior during execution.

in generic algorithms, using them as software build-
ing blocks will increase the software quality even if
the overall specification is informal.

In this paper we use rigorous specifications in the
Dijkstra-Gries manner. We also provide several
enhancements aimed at accommodating generic
algorithms. Since the existing mathematical con-
ventions sometimes do not provide standards for
certain elements of notation and since Z provides
such standards for most notations needed in pro-
gram derivation, we, similar to Morgan," often
use conventions from Z in addition to those used
by the Dijkstra-Gries school.

Finally, we feel that such languages as CLEAR or
Larch may significantly enhance the effectiveness
of our approach, provided one has easy-to-use
tools for checking the syntax of specifications and
verifying algorithm correctness assertions. We
quote from Guttag and Horning: “Are formal
specifications too mathematical to be used by typ-
ical programmers? No. Anyone who can learn to
read and write programs can learn to read and
write formal specifications. After all, each pro-
gramming language is a formal language.”™

A style of writing specifications tailored to using
generic algorithms. In the following subsections
we discuss the development of our approach.

The precondition, the postcondition, and the con-
straint. Most of the approaches (whether infor-
mal, rigorous, or formal) describe specifications
in two layers. The first layer defines the algorithm
states in terms of identifiers'® and types, where
identifiers are placeholders for values and types
are “containers” having those values (usually
with some attached operations acting upon the

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

values). We define an algorithm state as a map
from the identifiers into the values contained in
the respective types. In regard to its states, we
think of an algorithm as a machine transforming
these states from one into another.

The second layer defines the desired algorithm
behavior in terms of a pair of properties of the
algorithm identifiers, say P and Q, where:

» The property P is called the precondition.
» The property Q is called the postcondition.

The precondition describes the possible values of
the identifiers necessary to initiate the algorithm,
run it successfully, and terminate. The postcon-
dition describes the allowable values of the algo-
rithm identifiers after the algorithm successfully
terminates. In other words, both the precondition
and the postcondition describe subsets of the col-
lection of all algorithm states. Using the “state
machine” metaphor, we can think of the behavior
of an algorithm defined by a specification as a
finite sequence of state transitions that begins in
the subset of algorithm states described by the
precondition and ends in the subset of algorithm
states described by the postcondition.

In the Dijkstra-Gries notation the assertion “an
algorithm % satisfies a specification with the pre-
condition P and the postcondition Q” is written
as {P} ¥ {Q}. In other words, {P} F {Q} holds if
for every state satisfying the property P:

» The algorithm & initiates, runs successfully,
and terminates.

~ After the termination of & the resulting state
(also called the final state) satisfies the property

0.

In Figure 1 the darker trajectory depicts the be-
havior of an algorithm ¥ with {P} & {Q} and the
lighter trajectory depicts the behavior of an algo-
rithm 4 with —{P} 4 {Q} (recall that “— " stands
for “not™).

Although intuitively simple, such treatment does
not provide any means to restrict the behavior of
an algorithm in between the initiation and termi-
nation. We remedy this situation by adding to the
precondition and the postcondition a third prop-
erty of the algorithm states called the constraint
with the following meaning. We say that an algo-
rithm % satisfies a specification with the precon-

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

Figure 1 An algorithm behavior defined by a
precondition and a postcondition

ALL ALGORITHM STATES

dition P, postcondition Q, and a constraint C (and
write it as {P} F/C {Q}) if for every state satis-
fying both the properties P and C:

» The algorithm & initiates, runs successfully,
and terminates.

» After the termination of ¥ the final state satis-
fies both the properties Q and C.

» All the states reached by & between the initial
state and the final state satisfy the property C.

Recalling that “A” stands for “and,” it is easy to
notice that {P} F/C {Q} implies {P N\ C} 4 {Q N
C}, whereas the opposite may not be true. In Fig-
ure 2 the darker trajectory depicts the behavior of
an algorithm & with {P} %/C {Q}, and the lighter
trajectory depicts the behavior of an algorithm 4
with —{P} 4/C {Q}. Note, however, that for the
algorithm 4, {P A C} 4 {Q A C} is satisfied.

Some approaches (Dijkstra-Gries, VDM) do not
have a direct analog of the notion of constraint.
The closest analog they employ is the notion of
invariant, i.e., a property that must be satisfied by
both the initial and the final states but, unlike con-
straints, may be violated in between. Although
we find invariants useful, they cannot serve the
same purpose as constraints. Other approaches
(like Z or algebraic specification languages) have
analogs of constraints. In Z the notion has the

YAKHNIS, FARRELL, AND SHULTZ 161

Figure 2 An algorithm behavior defined by a precondition, a postcondition, and a constraint

ALL STATES

{PrFcial
—{Pl g /ciq}

STATES SATISFYING THE CONSTRAINT C

same name (hence our name), whereas in alge-
braic specification languages the notion can be
represented as a collection of axioms. However,
since these approaches concentrate on specifica-
tion and verification issues and not on program
derivation, our exploiting of constraints within
the framework of sequential approaches to pro-
gram derivation is new. Also, since we have not
seen in the literature a convenient collection of
proof rules covering the notion of constraint, we
give our own rules in Appendix B.

We deem the notion of constraint to be conve-
nient for the following reasons:

1. It may help to extend sequential algorithm de-
velopment approaches to a concurrent setting.
Indeed, often all of the properties needed to
prevent a sequential algorithm from unduly in-
fluencing other concurrently running pro-
cesses can be incorporated in the constraint.
(For example, the Owicki and Gries notion of
“interference freedom™'” can be represented
via constraints.) Then a sequential develop-
ment approach using constraints can be em-
ployed to create this algorithm. We have done
this while applying our methodology to the
multitasking component of cMS.>

2. The properties of constant identifiers (i.e.,

162 YAKHNIS, FARRELL, AND SHULTZ

those that the algorithm is not allowed to
change) are the same throughout the execu-
tion. Therefore, it is more reasonable to in-
clude them in the constraint rather than (as
usual) in the precondition.

3. Since the constraint is always true, the asser-
tions included in it are convenient to use
throughout the algorithm structure in the local
correctness proofs.

The first specification layer: Defining the data
structure. A statement establishing an association
between an identifier and a data type is usually
called a declaration. A combination of several
declarations and a constraint is called a data
structure. The first layer of a specification de-
scribes the data structure for the algorithm being
specified. This data structure completely de-
scribes the space of states upon which the algo-
rithm is allowed to operate. We now give some
technical details of how to describe the data struc-
tures.

First note that some identifiers are standard, e.g.,
the symbol for addition “+ " or the symbol for the
set of nonnegative integers “N”, and thus they
may be used but need not be defined in the data
structure. We divide all the identifiers into object
identifiers and type identifiers.”® Type identifiers

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

Figure 3 Data structure from the specification of an algorithm computing the factorial function

[Factorial_Data_Structure
in the algorithm. */

speccon !N >N

/* !is a function that takes a nonnegative integer value and creates a positive integer value. The function ! may not occur

/* Z = all integers, N = all nonnegative integers ¥/

con nzero:Z

/* input value */

var r:z

/* output value */

constraint

variables. They are distinct from object identifiers. */

]

/* Recall that “A” means “and,” “A = B’ means “if A holds then B also holds,” and that “(¥n : N - ...)” means “for
all n from the set N the following holds”” Identifiers with the scope limited to a formula (like n here) are called bound

nzero 20 ANMn:N-n=0=2>nl=1)An=0=>n!=(n-1)!*n))

are used to denote collections of data objects,

whereas object identifiers are used to denote in-

dividual data objects. Suppose that x, f, and g

are object identifiers and X and Y are type iden-

tifiers. We use the following declarations:

e x:X /* any value associated with name x

must be taken from the set X */

s X =Y /*fis a function taking values from
X and returning values from Y */

& g:X + Y /*gisapartial function taking values
from X and returning values from
Y */

Functions with more than one variable are rep-
resented using the Cartesian product “X” e.g.,
“fXXYXxW—U” means that the first argument is
taken from X, the second from Y, and the third
from W. The construction describing the types
of the arguments and the type of the returned
value for a function is called the signature of the
function. For instance, the signature of f is
XXxYxW-—U. The same is true for partial func-
tions, e.g., g:XXYXW+U.

We separate object identifiers into algorithm
identifiers and specification identifiers. The for-
mer can be used either in specification, pseu-
docode instructions, or in standard instructions of
the algorithm being specified. The latter can be
used only in specification or pseudocode instruc-
tions of the algorithm being specified. We discuss
pseudocode instructions and standard instruc-
tions later. As usual, the algorithm identifiers are
separated into constants (designated as “con”)
and variables (designated as “var”). The former

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

may not be changed by the algorithm, but the
latter are allowed to be changed. This separation
usually amounts to excluding constants from the
left-hand parts of assignments while not placing
such restrictions on the variables.

Some of the variables may be marked as “input,”
which means that they are considered to possess
a value in the initial state of any computation on
the respective data structure. The variables that
are not so marked are considered to be uninitial-
ized, i.e., any algorithm trying to evaluate an
expression with noninput variables before some
values are explicitly assigned to them will be
forced to abort.

We separate specification identifiers into specifica-
tion constants (designated as “spec con”) and
specification variables (designated as “spec var™).
The former may not be changed by the pseudocode
instructions, but the latter can be changed. The
above notions (excepting specification variables)
are illustrated in the data structure from the spec-
ification of an algorithm computing the factorial
function, shown in Figure 3. The usage of specifi-
cation variables will be illustrated in the next sec-
tion.

Note that variable r is not marked as input, and
thus it is uninitialized. In this example, the fac-
torial function “!” is declared as a specification
constant since we may not use it as a function
inside the program. However, we need this sym-
bol in order to state our intentions (the postcon-
dition » = nzero!, see the full specification in the
subsection that discusses the second specification

YAKHNIS, FARRELL, AND SHULTZ 163

layer). By declaring nzero as a constant, we for-
bid changing nzero by any algorithm satisfying the
specification. Finally, the constraint is essentially
a definition of the factorial function.

In most of the literature, for example, in Kal-
dewaij® and Cohen,* specification constants are
not explicitly declared. In Morgan, »* specification
constants are called logical constants, and they
are explicitly declared, whereas what we call con-
stants are not explicitly declared. By explicitly
declaring all variables and keeping them classified
by purpose, we have the advantage of clearly see-
ing what usage is legal for each variable. Finally,
our notion of specification variables is new. We
illustrate their usage in the next section.

Here are some additional notation conventions:

* Specification identifiers are represented by
words in nonitalic capital letters like “BOUND”
or special symbols like “!”.

* Algorithm identifiers are represented by words
in lowercase italic, like “nzero™.

* Bound variables are represented by nonitalic
letters in lower case, like n, x, y.

Constructions. Constructions are convenient
means to abbreviate certain lengthy descriptions.
We illustrate this notion by taking examples from
the specification for Star_Recursion in the follow-
ing section. We distinguish three kinds of con-
structions:

* Type constructions—Single type identifiers are
the simplest type constructions. The rest are the
result of building sets by the usual means. For
example, XXX—X is the set of all possible
binary operations on X. {y:Y|low_bound(y)}
is the set of all such y from the set Y that
low_bound(y) is true. Y—B is the set of all Bool-
ean-valued functions taking values from Y.

* Expressions (also called terms)—They are the
object identifiers together with various combi-
nations of applications of functions to the object
identifiers. For example, y, BOUND(tail(y)),
G(zail(y)) ¥ head(y), base(y), etc.

e Function constructions—They are a useful
technical tool for describing maps translating
one data structure into another data structure,
though they are not crucial for understanding
such maps. We describe them in Appendix A.

As a shorthand we permit using the set construc-
tions in the declarations in lieu of type identifiers.

164 YAKHNIS, FARRELL, AND SHULTZ

For example, suppose that we would like to in-
troduce a constant ¢ from the set Y satisfying the
property low_bound(c) = true. The standard way
to do so would be to add c:Y to the declarations
and to add low_bound(c) to the constraint (recall
that in logical assertions low_bound(c) stands
for low_bound(c) = true). However, the above
permission means that we could just add
c:{y:Y|low_bound(y)} to the declarations without
explicitly adding anything to the constraint. Im-
plicitly, however, low_bound(c) = true would
still be part of the constraint.

Generics. A crucial part of our algorithm develop-
ment methodology is the usage of generics, i.e.,
generic data types and data objects. Generics are
not new. Programming languages such as Ada**
and approaches such as Z or algebraic specification
languages have used them for quite a while. How-
ever, we feel that our approach utilizes the generics
more fully because our usage of generics permits us
to reuse the proofs and our specification variables
constitute a new type of generics.

A generic type identifier does not correspond to
any concrete set but has attached to it a collection
of axioms describing properties of its abstract el-
ements. For a given specification, we list all of the
required generic type identifiers (if any) in the
section designated “gen” in the beginning of the
specification (e.g., gen X, Y), and we add all their
axioms (if any) to the constraint.

We define generic object identifiers as those ob-
ject identifiers whose type is a type expression
containing a generic type identifier. In addition,
we call a construction (see Appendix A) generic
if it contains an occurrence of a generic identifier.

Our experience has convinced us that, while ei-
ther creating the generic algorithms or using them
to derive other algorithms, it would be very con-
venient to have at the tip of one’s fingers an ex-
tensive collection of standard generic type con-
structions (also called abstract data types), such
as linked lists, bags, sets, etc. An excellent such
collection is in Guttag and Horning. "

The second specification layer: Defining the in-
variant, the precondition, and the postcondition.
Given a data structure, we describe the intended
algorithm behavior by means of the invariant, the
precondition, and the postcondition in terms of

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

Figure 4 A formal specification for an algorithm computing factorials

[Factorial_Spec

Factorial_Data_Structure

/* The purpose of an algorithm satisfying Factorial_Spec is to compute nzero! for nonnegative nzero and put the result
into r. Recall that the “factorial” function “!” could be defined as follows. For a positive integer n, n! = 1*2* .., *n.
Also, 0! = 1. The factorial satisfies the following “star recursion” property: for a positive integer n, n! = (n — 1)! * n. ¥/

/* see earlier subsection on the first specification layer */

postcondition r = nzero!]

the identifiers from the data structure. Having dis-
cussed the latter two at length, we repeat the def-
inition of the former: the invariant is a property
that must be satisfied by both the initial and the
final states but may be violated in between. We
illustrate these notions by giving a formal speci-
fication for an algorithm computing factorials as
presented in Figure 4.

Note that we consider the constraint, the invari-
ant, and the precondition sections of a specifica-
tion to be optional, and we may omit any of them
if the respective logical assertion is trivially true.
Finally, following Wirsing,” we call a specifica-
tion sensible if its data structure has at least one
state satisfying both the invariant and the precon-
dition. One should not waste time by working
with a nonsensible specification.

On the basis of the specification concepts we have
introduced, we summarize what it means for an
algorithm % to satisfy a specification SPEC written
in our style. Let SC, SV, C, and V be, respec-
tively, the collections of specification constants,
specification variables, constants, and variables
from SPEC, and let Constr, Inv, Pre, and Post be,
respectively, the constraint, the invariant, the
precondition, and the postcondition from SPEC.
We say that & satisfies SPEC if for every initial
state satisfying Constr N\ Inv N\ Pre, the following
is true:

. The algorithm & successfully terminates.
The final state satisfies Constr A Inv N\ Post.
. During the execution, Constr is always true.
. The variables from SC and SV do not occur in
the algorithm %.

During the execution the value of each vari-
able from C is never changed.

6. During the execution, the values of all the var-
iables always belong to their respective types.

AW

W

We denote the first three conditions as {Inv A Pre}
F/Constr {Inv A\ Post}. The Dijkstra-Gries nota-

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

tion for the first two conditions is {Constr A Inv
N Pre} F {Constr A\ Inv A Post}.

Algorithms and programs. We now describe as-
pects of the algorithms and programs involved in
our approach.

Building algorithms from standard instructions
and pseudocode instructions. Given a specifica-
tion, our intuitive concept of an algorithm satis-
fying it is a state machine transforming the states
defined by the data structure of the specification.
However, besides the variables declared in the
data structure of the specification, the algorithm
may have some additional variables serving an
auxiliary purpose in the sense that there is either
no input or output associated with them (e.g., ar-
ray indices, loop counters, etc.). We call them
work variables, and we designate their scope by
the additional algorithm brackets “|[” and “]|”.
(As an example, see Star_Recursion in the next
section.) Finally, we call the union of the data
structure of the specification and the declarations
of the work variables the algorithm data struc-
ture.

We now describe how the algorithms transform
the states defined by the algorithm data structure.
Since a formal treatment (see Harel,” and
Loeckx and Sieber?) is beyond the scope of this
paper, we give an intuitive description of how the
algorithms are built from the atomic parts and
how these atomic parts work on an imaginary
computer. It will conceptualize the notion of “ex-
ecution” for the algorithms, even if, in general,
the algorithms are not executable by any real
computer.

We think of an algorithm as a combination of stan-
dard instructions and pseudocode instructions.
We describe the former by using the concepts
developed by Edsger Dijkstra in the 1970s and
further developed in the 1980s by David Gries and

YAKHNIS, FARRELL, AND SHULTZ 165

Table 1 Subset of Dijkstra-Grles Instructions

Instructions in Gries-Dijkstra

Behavlor During Execution

/* x is a variable and E is an
expression of the same type. */

x:=E

Simple IF
/* vy is a Boolean expression and & and
% are algorithms. */

fy->%
0=-y—>4§
fi

Simple Loop

/* v is a Boolean expression and ¥ is
an algorithm. */

Notation
Skip Step 1. Do nothing;
skip Step 2. Terminate.
Composition Step 1. Execute %,
/* F and % are algorithms. */ Step 2. Execute §,
F, % Step 3. Terminate.
Assignment Step 1. Compute the value of the expression E in the current program

state. If £ is undefined then crash. Otherwise go to the next step;

Step 2. Get the new program state by replacing the value of the variable x
by the value of E and leaving the values of all other variables unchanged;

Step 3. Terminate.

Step 1. Evaluate the guard v. If it is undefined then crash. Otherwise go to
the next step;

Step 2. 1f vy evaluates as true, execute F. Otherwise execute %;

Step 3. Terminate.

Step 1. Evaluate the loop guard y. If y evaluates as false, then terminate.
If y evaluates as true, then go to Step 2. If y is undefined, then crash;
Step 2. Execute the loop body . When and if ¥ terminates, go to Step 1.

doy—%F
od

his students. Since the Dijkstra-Gries program-
ming notation is very simple, we enjoy the benefit
of being free from the “language bias” that would
be hard to avoid by using such programming lan-
guages as PL/, C, or Pascal.

The subset of the Dijkstra-Gries instructions in
Table 1 that we are using without modifications
consists of the skip, the composition, the assign-
ment, the simple IF, and the simple loop. Note,
however, that instead of using the simple loop
directly, we use its modification that we call the
simple verifiable loop. Since all the loops we use
are “hidden” inside generic algorithms, it is not
necessary to understand simple verifiable loops in
order to be proficient in using generic algorithms.
Simple verifiable loops are described in Appendix
A.

Our use of the term “pseudocode instruction”
given in Table 2 is not quite common. We write

166 YAKHNIS, FARRELL, AND SHULTZ

pseudocode instructions in the form of specifica-
tions with the identifiers taken from the data
structure of the overall algorithm (with new spec-
ification variables possibly added). The only al-
lowable difference in the treatment of the identi-
fiers is that some variables from the overall data
structure could be redeclared as constants within
the scope of the instruction. It means that the
instruction may not change the values of these
variables during its execution. As a shorthand we
assume that all the variables not explicitly occur-
ring in the invariant and the postcondition of the
instruction are regarded as constants, and they
need not be explicitly redeclared.

On usage of terms “program” and “algorithm.”
Within the program development community the
term “program” usually means “something that
is written in a programming language and that can
be converted by a compiler into executable
code.” The term “algorithm” is understood in its

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

Table 2 Pseudocode instruction

Pseudocode Instruction

Behavior During Execution

/* a, B, ¢, ¥ are logical assertions and
CON is an optional clause of the form con V,
where V is a possibly empty list of
variables from the overall data structure.
The status of all the identifiers from ¥/
together with all variables not occurring in
B A ¢ is temporarily changed from
“variable” to “constant” with the scope of
the change limited to this instruction. After
the instruction is completed, their former
status is restored. */

|[CON; constr o; inv B; pre ¢; post ¢]|

/* If any of constr o; inv B; pre ¢; or post ¢ is omitted, the
respective clause is defined to be true. For inheriting the
constraint of the overall specification we write constr*. */

Step 1. Evaluate a A B A\ ¢ in the initial state. If it evaluates as
false or is undefined, then crash. If it evaluates as true, then go to
Step 2;

Step 2. If there is a state such that:

(a) the values of all the constants, of the identifiers from V" and
of all the variables not occurring in B A ¥, are the same as
in the initial state;

(b) the resulting state satisfies a A B A ¢,

then choose any state satisfying (a) and (b) as the final state and
terminate. Otherwise crash.

usual mathematical sense, i.e., “a sequence of
instructions denoting some meaningful actions.”
An intermediate product of program development
(which could be thought of as a mixture of pro-
gram instructions and pseudocode) is usually re-
ferred to as “design.”

In contrast, in the literature the term “program”
is sometimes used loosely and may include what
program developers could regard as “design.”
Recognizing this, we suggest calling all of the con-
structions composed from standard instructions
and pseudocode instructions “algorithms,” while
reserving the term ‘“‘programs” for algorithms
that do not include the pseudocode instructions.
It is then clear that “derivation of algorithms from
specifications™ refers to the development of both
programs and design in the terminology of pro-
gram developers.

Program derivation and the generic
algorithms approach

The Dijkstra-Gries school of program derivation.
The essence of the program development ap-
proach taught by the Dijkstra-Gries school con-
sists of extracting a proved algorithm from a given
specification in such a way that both the algorithm
and the proof are developed in small increments
with elements of the proof preceding the corre-
sponding elements of the algorithm. Despite some
more recent publications, classical Gries?® is still
the most definitive book on the subject, contain-

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

ing not only numerous techniques, examples, and
anecdotes but also such advanced topics as deal-
ing with partiality (see more on it in Appendix A).
A later refinement of the methodology is known
as “calculational.”*** By adding more tech-
niques for manipulation with formulas, it shows
how programs could be calculated from the spec-
ifications in a rigorous and elegant way.

Since the DO-loop is the most difficult program-
ming element to prove, this school concentrates
mostly on extracting “candidates” for the loop
invariants from the specifications. Once a good
“candidate” is found, the loop guard and the loop
body are “calculated” around it. If the calculation
is unsuccessful, another “candidate” will be
sought. This methodology is very powerful. How-
ever, it is not free of disadvantages:

1. To efficiently utilize the methodology, one has
to have a high level of mathematical skill. An
ability to prove simple logical assertions may
not be enough.

2. When reasoning about the program on the
level of invariants, a great deal of program-
ming intuition is lost. For instance, while look-
ing into Kaldewaij’s elegant solution of the
maxsegsum problem, one could have a feeling
that we are dealing with a recursively defined
function. But it is not explicitly seen behind
the manipulations with formulas.

3. As presently taught, the methodology requires
application of the same detailed technique

YAKHNIS, FARRELL, AND SHULTZ 167

again and again, though for different programs.
In deriving programs, one can often see that
the exact same thing was already done before,
but there is no way given to “reuse” it. It is
especially obvious with the “tail recursion”
and “search by elimination™ techniques dis-
cussed in Kaldewaij.’

Recently an interesting work by Bohorquez and
Cardoso® addressed the second disadvantage by
providing intuitive motivation for some of the
techniques for extracting the loop invariants and
by making them more general. However, this
work did not address the first and third disadvan-
tages.

Generic algorithms. We now describe the generic
algorithms of our approach.

The approach. Our new methodology ““deriving
programs using generic algorithms™ extends the
Dijkstra-Gries methodology and is designed to
overcome the three disadvantages listed above. It
is based on the notion of a generic algorithm. A
generic algorithm has the following features:

* A formal specification
* A formal proof that it satisfies this specification
* Generics

Our methodology consists of:

* Creating a collection of generic algorithms that
cover most of the DO-loops occurring in pro-
grams

* Applying this collection to the program deriva-
tion process as described later

This methodology overcomes the previously men-
tioned disadvantages as follows:

1. Since generic algorithms are supplied with
loop invariants and bound functions, the prac-
titioner is freed from either looking for the loop
invariants or proving that the loops terminate.
Therefore, with the generic algorithms an abil-
ity to prove simple logical assertions may be
sufficient.

2. Generic algorithms enhance the intuition. For
instance, the maxsegsum problem is easily
solved by an intuitively clear generic algorithm
for computing recursive functions.

3. Generic algorithms allow reuse of both the de-
sign and the proofs. For instance, “tail recur-

168 YAKHNIS, FARRELL, AND SHULTZ

sion” and “search by elimination™ techniques
were converted into generic algorithms.

Although the features of a generic algorithm are
not new, their combination, together with the way
we apply the generic algorithms to the program
derivation process, is new.

However, we would like to acknowledge a pre-
vious work (see Kieburtz and Shultis*) develop-
ing an approach in some aspects similar to ours,
though quite different overall. We discuss the
similarities and differences between the ap-
proaches in Appendix A.

Examples of generic algorithms. The first ex-
ample of a generic algorithm is Star_Recursion
shown in Figure 5.

The next generic algorithm, shown in Figure 6,
illustrates the use of specification variables.

A library of generic algorithms. We have created
a library of generic algorithms that implicitly con-
tains many techniques of program derivation con-
verted into generic algorithms, as well as generic
algorithms not corresponding to a single such
technique. Some of our generic algorithms were
developed using the Dijkstra-Gries methodology,
and the rest were derived using our extension of
the Dijkstra-Gries methodology. So far we have
about 30 algorithms in our library. On the basis of
our development experience and by working
through numerous examples in such classical
textbooks as Gries,? Cohen,* and Kaldewaij,* we
became convinced that our library covers most of
the DO-loops a programmer could conceivably
encounter in everyday work.

In Yakhnis, Farrell, and Shultz®* we list the li-
brary of generic algorithms in Dijkstra-Gries no-
tation. The work of converting them into other
languages is underway. We present below a par-
tial list of these generic algorithms:

1.0 Computation of recursive functions using
DO-loops
1.1 Simple recursive function
1.2 Finite memory recursive function
1.3 Star recursion

2.0 Searches

2.1 Search by elimination
2.2 Searches with quantifiers

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

Figure 5 Star recursion algorithm

|[Star_Recursion

/* Compute G{yzero) and put the result into r. G does not occur in the standard instructions. A function G takes a Y value
and creates an X value. It satisfies the “star recursion” property: G(y) = G(tail(y)) Yx head(y), where ¥ is a binary
associative operation and fail and head are functions declared below. */

low_bound(y) = G(y) = base(y)
A

low_bound(y) < BOUND(y) = 0

—low_bound(y) = G{y) = G(tail(y)) Yx head(y)
A

A
—low_bound(y) = BOUND(tail(y)) < BOUND(y))

gen Y, X /* sets */
spec G:Y-X
BOUND : Y - N /* N is the set of all nonnegative integers */
con base : {y: Y|low_bound(y)}—>X /* computes the function G for y € Y with low_bound(y) = true */
low_bound : Y — B /* B = {true, false} */
tail : {y: Y| ow_bound(y)}—Y
Fi X x X—> X
idstar : X J* identity value for Y% operation */
head : {y: Y| llow_bound(y)}—X
yzero : Y /* input */
var r:X /* output */
constraint
Yt is a binary associative operation with an identity value
A
idstar is the identity value of ¥y
A
(Vy:Y - /* star recursion properties */

postcondition r = G(yzero)

do —low_bound(y) —

algorithm

Il

var y:Y /* work variable */
y 1= yzero; /* initialize work variable */
r := idstar; /* initialize output value */

invariant G(yzero) = G(y) X r

bound function BOUND(y)

r := head(y) ¥ r;
y = tail(y)

od;
| r = base(y) Ycr
]
1l

/* accumulate new r */
/* decrement loop counter */

/* complete accumulation of output value */

2.2.1 General quantifiers
2.2.1.1 Unbounded
2.2.1.2 Bounded

2.2.2 Boolean quantifiers
2.2.2.1 Unbounded

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

2.2.2.2 Bounded

3.0 Logarithmically efficient algorithms
3.1 Binary search
3.2 Binary iteration

YAKHNIS, FARRELL, AND SHULTZ 169

Figure 6 Generic algorithm with specification variables

I[Action_Unbounded_Linear_Search_Strict

/* For every element x in a given nonempty ordered finite set SETAB, with the exception of the greatest element, we
would like to “do something,” i.e., perform unspecified actions making a property P(x) of the program variables true.
Simultaneously, we would like to find the greatest element in SETAB. We will know that x is the greatest element when a
given Boolean function high_bound(x) returns “true.” */

gen SETAB /* set */
spec con < : SETAB«-SETAB /* «> is the binary relation symbol. */
B : SETAB
spec var P: {x: SETAB |x = B} - B /* P(x) is defined for all x such that x is in SETAB and x = B */
con a : SETAB

next : {x: SETAB | x = B} - SETAB
high_bound : SETAB — B

/* next(x) is defined for all x = B */

var i : SETAB

constraint
SETAB is totally ordered by <

a is the smallest element of SETAB in respect to <

I/B\is the greatest element of SETAB in respect to <

]/B\is the unique element of SETAB satisfying high_bound(x) = true

r/z\ext is the successor function on SETAB in respect to <

/* If x is in SETAB and x # B then next(x) is the smallest element of SETAB that is greater than x in respect to <. */

postcondition
/* If o and B are statements describing some properties of x, then “(¥x : X | a - 8)”” means “for all such x from the set X
that o is satisfied, 8 is satisfied as well.” */

i =B A (Vx:SETAB |x < B P(x))

algorithm
i:=a;
do —high_bound(i) —
invariant ; € SETAB A (Vx : SETAB | x < i * P(x))
bound function #{x : SETAB |i < x < B} /* The number of elements in SETAB that are greater than i and less or
equal than B. */
[linv (¥x : SETAB | x < i - P(x)); post P(i))]|;
i 1= next(i);
od
1

Deriving programs using generic algorithms. The
following subsections show the use of our ap-
proach in program development.

The program derivation process. With the advent
of the library of generic algorithms the program
derivation process could be ideally represented as

170 YAKHNIS, FARRELL, AND SHULTZ

follows. Given a formal specification we must first
check whether it is sensible. If it is, view it as an
algorithm consisting of a unique pseudocode in-
struction. The process of derivation consists of
several stages, each resulting in an algorithm hav-
ing more detail than the previous ones. We may
stop either when the algorithm becomes a pro-

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

gram or before that. In either case the resuiting
algorithm will satisfy the initial specification.
Each of those stages consists of one or more it-
erations of the following steps:

1. Choose a pseudocode instruction from the al-
gorithm created in the previous stage.

2. Choose a generic algorithm in the library that
might be doing similar work.

3. Adapt the generic algorithm by replacing some
of its identifiers with the conceptually similar
constructions based on the identifiers of the
pseudocode instruction. Adapt the specifica-
tion of the generic algorithm by the same re-
placement of identifiers. Below we explain this
step in more detail.

4. Justify that the adapted specification from
Step 3 correctly implements the specification
of the pseudocode instruction. We explain
later how to do it in a simple three-step pro-
cedure. If the justification fails, go back to
Step 2.

5. Replace the pseudocode instruction in the al-
gorithm created in the previous stage by the
algorithm from Step 3.

In the following two subsections we illustrate
Steps 3 and 4 by deriving an algorithm factorial
from the specification Factorial_Spec. We can ar-
rive at Step 3 with relative ease. It is easy to see
that Factorial_Spec is sensible (i.e., there is at
least one initial state). Step 1 is trivial since we
have only one pseudocode instruction, namely
Factorial_Spec itself. At Step 2 we look at the
formula n! = (n — 1)! * n and see a resemblance
to the star recursion formula G(y) = G(tail(y)) ¥
head(y) from Star_Recursion. Thus we choose
the latter for Step 3.

Replacing identifiers in the generic algorithm:
Clarifying Step 3. As already mentioned, we
adapt the generic algorithm by replacing some of
its object identifiers by their analogs, i.e., con-
ceptually similar constructions based on the iden-
tifiers of the pseudocode instruction. The adapted
algorithm is intended to work with the states de-
fined by the data structure of the pseudocode in-
struction (with, possibly, some work variables
added as described below). As we shall see, some
of the adapted algorithms should be rejected even
before going to Step 4. We start from the follow-
ing two questions:

1. Which object identifiers must have analogs?

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

2. What is to be done with the identifiers that do
not have analogs?

First, all the specification identifiers, constants,
and input variables must have analogs, otherwise
the adapted algorithm should be rejected. In our
example, a comparison between the factorial for-
mula and the star recursion formula yields “!” as
the analog of G and “*” as the analog of “4”. A
comparison between the postconditions yields
as the analog of r and nzero as the analog of yzero.
We defer finding the analogs of the rest of the
identifiers until we answer the second question.

Second, some of the noninput variables may not
have analogs. For example, the work variables
never have analogs. Recall that the “work™ varia-
bles are those variables that do not appear in the
specification of the algorithm but only in the body
of the algorithm. In our example, y is the only work
variable in Star_Recursion, and it does not have any
obvious analog in terms of Factorial_Spec. An-
swering the second question, we say that each non-
input variable x not having an analog is retained in
the adapted algorithm as a work variable. However,
if the specification of the pseudocode instruction
already has an identifier with the same name, x
should be renamed in order to avoid the clash. Later
we will discuss which types may be assigned to the
variables that we retain.

We would like to introduce the notion of a data
structure translating map which is a convenient
tool for analyzing the adaptation of generic algo-
rithms. Such a tool maps every object identifier of
the generic algorithm having an analog into this
analog, and it maps every other object identifier
into itself. In addition, it maps the generic type
identifiers into some type constructions based on
the type identifiers of the pseudocode instruction.
Since a formal discussion of how to map the ge-
neric type identifiers is beyond the scope of this
paper (it is based on the notion of “signature mor-
phism” [see Appendix A] and is not needed for
most practical applications), we illustrate the
mapping of types on our example.

Comparing the declarations !:N—N and G:Y—X,
we guess that it is natural to map both Y and X into
N. Designating the data structure translating map
for our example as h, we see that h(Y) = N, h(X)
=N, h(G) =1, h(zx) = *, h(r) = r, h{yzero) = nzero
and h(y) = y. The data structure translating
map could be easily extended to mapping formu-

YAKHNIS, FARRELL, AND sHULTZ 171

las: if ¢ is a formula, then h(g) is the result of
replacing every identifier x in ¢ by h(x). Using this
we can extend h to all type constructions, e.g., the
type of tail is {y:Y|—low_bound(y)} — Y. Later
we will learn that the analog of —Jow_bound(y)
is y # 0. Thus, h({y:Y|—low_bound(y)} =Y) is
{y:Nly=0} >N, which is the set of all functions
taking positive integers and returning nonnegative
integers.

Aswas already mentioned, the adapted algorithm
operates on the states defined by the data struc-
ture of the pseudocode instruction augmented by
some work variables. Thus, for every identifier of
the generic algorithm x having analog h(x), the
type of h(x) in the adapted algorithm is deter-
mined by the pseudocode instruction. Given an
object identifier x:V in the generic algorithm, the
type of h(x) in the adapted algorithm may be dis-
tinct from h(V). For example, yzero is declared as
yzero:Y, h(yzero) = nzero, h(Y) = N but nzero is
declared as nzero: Z in Factorial_Spec.

In the adapted algorithm, we may assign any
types to the work variables as long as the formula
Keeping the Variables within Types defined be-
low is true. This formula is designed in such a way
that if a work variable is assigned a type W ac-
cording to the formula, it may be assigned any
type containing W. The other restriction on types
may be imposed by the programming language.
We assume now that we assigned some types to
the work variables. Adding the corresponding dec-
larations to the data structure of the pseudocode
instruction, we form the extended data structure. In
our example, we assign to y the type Z.

Now, suppose that h is a data structure translat-
ing map, and suppose that Constr, Inv, and Pre
are, respectively, the constraint, the invariant,
and the precondition of the pseudocode instruc-
tion and CONSTR is the coustraint of the generic
algorithm. We designate the collection of all ob-
ject identifiers of the generic algorithm as ALL, the
collection of all specification identifiers, con-
stants, and input variables of the generic algo-
rithm as INPUT, and the collection of all variables
of the generic algorithm as V4R.

Also, for a collection S of object identifiers of the
generic algorithm, let Gen_Type_of(S) be the con-
junction of all the statements of the formx € X,
where x is in S and X is its type in the generic
algorithm. Let Pseudo_Type_of(S) be the con-

172 VYAKHNIS, FARRELL, AND SHULTZ

junction of all the statements of the form h(x) €
Y, wherex is in S and Y is the type of h(x) in terms
of extended data structure of the pseudocode in-
struction. We say that h “respects the types” if the
following two formulas are true:

* Initiating the Identifiers:
(Constr N\ Inv N\ Pre N\ Pseudo_Type_of(ALL))
= h(Gen_Type_of(INPUT));
» Keeping the Variables within Types:
(h{CONSTR) N\ h(Gen_Type_of(ALL)))
= Pseudo_Type_of(VAR).

Respecting the types is a necessary condition for
correctness of our proof of the validity of the
method (see Appendix A). Therefore, we reject
an adapted generic algorithm if the corresponding
data structure translating map does not respect
the types.

Returning to our example, let us verify that the
part of h that we have defined so far does not
violate the “respecting the types™ property. As
an example, to check the property for yzero, it is
sufficient to show that (Constr N\ Inv N\ Pre A\
nzero € Z) = nzero € N. (Since the identifiers
may be interdependent, proving “respecting the
types” in isolation may not always work.) This is
trivial since Constr includes a conjunct nzero = 0.
In order to check the property forr, it is sufficient
to show that (h(CONSTR) A r € N) = r € Z. This
is trivial since N is a subset of Z. Let us show that
the declaration y:Z does not violate the property
of respecting the types. It is sufficient to show that
(h(consTR) ANy € N) > y € Z. Again, this is
trivial. According to our experience, similar proofs
are almost always trivial.

The following shortcut often could be used for
variables. If x:V is the declaration of a variable in
the generic algorithm and if h(x):W is the decla-
ration of h(x) in the extended data structure of the
pseudocode instruction, then Keeping the Vari-
ables within Types is satisfied for x if h(V) is a
subset of W.

Let us consider now what will replace the identifier
tail. Comparing the equations for G and !, the best
candidate for the replacement is the function that
takes an integer value n and returns n — 1. How-
ever, the data structure for Factorial_Spec does not
have a name associated with this function. Though
mathematically valid, adding a new identifier asso-
ciated with this function to Factorial_Spec would

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

violate a programming principle, formulated in
Gries,? stating that in the process of derivation one
should not add new identifiers, unless absolutely
necessary. In our approach the only legitimate
ways to add new identifiers is via “retaining vari-
ables” from the generic algorithm.

One way to deal with the situation is to use func-
tion constructions (see Appendix A). However,
since their usage assumes the knowledge of A-no-
tation, we give here an alternative method involv-
ing the use of abbreviations. An abbreviation is a
temporary name assigned to a function with the
agreement that instead of using this name directly
in the algorithm, only the value it returns when
applied to arguments will be used. As an example,
let us assign the name “minus_one” to the func-
tion that takes an integer value n and returns n — 1.
We can define now h(zail) = minus_one. However,
when we replace an expression tail(y), instead of
replacing it with minus_one(y), we replace it with
y — 1. If there is another expression involving tail,
say, tail(z), we replace it with z — 1.

Similarly, we replace head(y) byy. Now we have
exhausted the information we can extract from
comparing n! = (n — 1)! * n and G(y) = G(tail(y))
¢ head(y). Consider —low_bound(y) = G(y) =
G(zail(y)) +r head(y). By replacing everything we
can replace so far, we get —low_bound(y) > y! =
(y — 1)! *y. Since the formulay! = (y — 1)! holds
for all y > 0, —low_bound(y) corresponds toy >
0, and thus low_bound corresponds toy = 0. Let
us check the “respecting the types” property for
tail. We must show (Constr A\ Inv N\ Pre N
minus_one € {y: Zly > 0} — 7) = minus_one €
{v:N]y > 0} = N. The consequence of this impli-
cation directly follows from the definition of
minus_one. We leave the rest to the reader.

Replacing the identifiers and expressions from
Star_Recursion by those from Factorial_Spec is
illustrated in Figure 7. The more mathematically
precise data structure translating map is illus-
trated later in Figure 8 in Appendix A. The arrows
point from the objects being replaced to the re-
placing objects.

Let SC, SV, C, and V be, respectively, the col-
lections of specification constants, specification
variables, constants, and variables from the
pseudocode instruction, and let SC', SV’, C’,
and ' be their respective counterparts from the
specification of the generic algorithm from Step 2.

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

Figure 7 Replacing the identifiers and expressions
from Star_Recursion by those from
Factorial_Spec

Generic Objects Implementing Objects
types types
X N
Y N
spec con spec con
G !
BOUND(y) y
con con
base (y) 1
low_bound(y) y =0
tail(y) y -1
head(y) y
ﬁ(*
idstar 1
yzero » nzero
var var
r r

We summarize now our requirements on a data
structure translating map h:

1. Each specification constant from SC' must be
mapped to a construction that may have only
occurrences of identifiers from SC or C.

2. Each constant from C' must be mapped to a
construction that may have only occurrences
of identifiers from C.

3. Each specification variable from SV must be
mapped to a construction with no occurrences
of variables from h(}").

4. Each input variable from " must be mapped
to an input variable from V. Noninput varia-

Figure 8 The data structure translating map h from
Star_Recursion to Factorial_Spec

Generic Objects Implementing Objects
types types
X __ . h N
) Y h N
spec con
G ____h !
BOUND h , (Am:N'n)
con con
base h , {An:N-1)
low_bound h (An:N*n=0)
tail _____ h , (AuNn-1)
head (An:N-n)
w o h
idstar _____h 1
yzero __.__h _____, nzero

var var
r h r

spec con

YAKHNIS, FARRELL, AND SHULTZ 173

bles are mapped into noninput variables. Dif-
ferent variables must be mapped into different
variables.

5. A function may be replaced only by a function
with the same number of arguments.

6. h respects the types.

If any one of the conditions is not satisfied, we
reject h and the corresponding adapted algorithm.
The conditions ensure that the correctness proof
for the generic algorithm is still valid after replac-
ing the identifiers via a data structure translating
map (see Appendix A). However, if partial func-
tions are used, the data structure translating map
should satisfy an additional condition, formulated
in Appendix A. Those concerned with the use of
partial functions should also read Appendix A.

The data structure translating maps are related to
answering the following question: When is it pos-
sible to implement a collection of types and op-
erations by another collection of types and oper-
ations? Such an implementation is sometimes
called “data reification.” It is discussed in
Jones, ? Clement,? and other works. However,
there is a subtle difference between the data struc-
ture translating maps and data reification.
Whereas the latter starts from a more abstract
structure and seeks to implement it by a more
concrete structure in order to take advantage of
the more concrete types and operations, the for-
mer starts from a more concrete structure and
seeks to take advantage of the algorithm formu-
lated in terms of a more abstract structure. Since
the data structure translating maps have to ac-
commodate the separation of the identifiers into
four distinct classes and since we treat the partial
function differently, the notion of data reification
from Jones' is not sufficient for our purposes.

Implementing one specification with another
specification: Clarifying Step 4. With the above
clarification for Step 3, we may explain the pro-
cedure in Step 4. Suppose that Constr, Inv, Pre,
and Post are, respectively, the constraint, the in-
variant, the precondition, and the postcondition
from the pseudocode instruction. Assume further
that Constr', Inv', Pre’, and Post’ are their re-
spective counterparts from the adapted specifi-
cation of Step 3.

In order to be assured that the adapted specifi-
cation from Step 3 correctly implements the spec-
ification of the pseudocode instruction, it is suf-

174 YAKHNIS, FARRELL, AND SHULTZ

ficient to verify the correctness of the following
three formulas. Here we refer to the pseudocode
instruction as “old” and to the adapted specifi-
cation as “new”:

1. Establishing the new initial extended con-
straint, invariant, and precondition:

(Constr N\ Inv A\ Pre N\ Pseudo_Type_oftALL))
= (Constr' N\ Inv' N\ Pre’)

2. Maintaining the old extended constraint:
(Constr' N\ h(Gen_Type_of(ALL)) = Constr

3. Establishing the old postcondition and rees-
tablishing the old invariant:

(Constr' N\ Inv' N\ Post' N\ h(Gen_Type_of
(4LL))) = (Inv N\ Post)

The data structure translating maps (together
with the above formulas) can be used for mapping
from any given specification, not just from the
specification of a generic algorithm. Thus, the ma-
terial in this section is related to answering the
question: When does one formal specification im-
plement another? Such an implementation is
sometimes called “refinement.” It is discussed in
Gries,? Morgan,’® Woodcock® and many other
works. Our case differs from the traditional in-
vestigations of these questions in the separation
of the object identifiers into four classes and (for
the sequential case) usage of the constraints.

Derivation of Factorial. In order to finish the der-
ivation of Factorial, we have to prove correctness
of the three formulas from the previous discus-
sion. We only do it for the third formula, leaving
the rest to the reader.

Let us construct the adapted constraint using the
data structure translating map from Figure 7:

(* is a binary associative operation with an iden-
tity) A (1 is the identity value of #)

A
(Vy: y=0=>y! YA

“(= y =
=y-D*y)yA(y=0sy

0=>y!
(=
ANy=0=>y-1<y)

0)
By throwing out all trivially true conjuncts, we get

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

Vy:N-(y=0=>y!=D)A(y=0=>y! =(y - 1! *y))

Finally, we are required to show that

((Vy:N (y 0=>yl=1)A[y=0=>y!

= (y ~ 1)l +y)) A r nzerol) =
VN -(n=0=>n!=1)A
n#0=>n '=(1)'*n))/\r=nzero!

This is obvious. The validity of the other two for-
mulas is just as easy to establish. Now we can
be assured that the adapted algorithm satisfies
Factorial_Spec. We list the adapted algorithm be-
low.

|[Factorial
Factorial_Spec

I

var y:Z /* work variable */
y = nzero; /* initialize work variable */
r:=1; /* initialize output value */
doy # 0 —
Fi=y % /¥ accumulate new r */
y:i=y — 1 /* decrement loop counter */

od;

/¥ r = 1 = r; when we inherited this assignment
from the respective generic algorithm it became
trivial. Thus we may exclude it from the code. */

1l

]I/* end of Factorial */

Concluding remarks

The generic algorithm approach presented here
contains several innovations in the application of
formal methods to software development. The
main advance is the notion and use of generic
algorithms, including their properties and the
rules for how they can be applied.

Generic algorithms are used in the program der-
ivation process rather than the various techniques
for finding the loop invariants. With the generic
algorithm method for deriving programs, pro-
grammers have at their disposal a library of re-
usable building blocks that they can use to build
a program whose correctness is proved. They
must understand the concepts of formal specifi-
cation, but not the difficult techniques of deriving
loops. The use of generic algorithms enhances
programming intuition and allows for the reuse of
both design and proofs. Experience in our pilot

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

efforts in VM development and teaching classes in
this approach support our contention that this
method can be used by programmers who are not
experts at program proofs or formal derivation.

We introduce constraints and specification vari-
ables within the framework of program deriva-
tion, and we extend Dijkstra’s “weakest precon-
d1t10n predicate transformer, enabling it to work
with constraints, pseudocode instructions, and
simple verifiable loops (see Appendix B).

Acknowledgments

Vlad Yakhnis would like to express his gratitude
to Professor David Gries for teaching him the pro-
gram derivation methodology and for his encour-
agement and support. All the authors are deeply
grateful to Alex Yakhnis for suggesting numerous
improvements in the final draft of this paper. We
are indebted to Tom Vail for reading the first draft
of this paper and making many valuable sugges-
tions. Many thanks to Michael Walker for several
helpful suggestions. Finally, we are indebted to
the anonymous referees for their constructive
criticism of the first and second draft of this pa-

per.

Appendix A: Technical details

Function constructions. Here we define function
constructions using the standard typed A-nota-
tion. Let us give a brief definition of the A-nota-
tion. Suppose that E is an expression of type X.
The notation Ay:Y - E designates the following
function taking a Y-value and returning an X-val-
ue: Given a value w from Y, (Ay:Y - E£)(w} is com-
puted by: (a) replacing all occurrences of y in E by
w; and (bS returning the value of the resulting
expression.

Our notation for replacing y in E by w is E(y <
w). Thus (Ay Y * E)(w) is defined as E(y < w),

e.g., (Ay: N+ (y — 1))(2) = 1and (Ay: N - (y = 0))(1)
= fa se.

Let us take advantage of function constructions in
describing the data structure translating map from
Star_Recursion to Factorial_Spec. This map is
given in Figure 8.

Conventions for partial functions and uninitialized
variables. Using expressions that may be unde-
fined on some states is the way of life for prac-

YAKHNIS, FARRELL, AND SHULTZ 175

ticing programmers (and often that is precisely
what makes this life miserable). Undefined ex-
pressions stem from two distinct reasons: usage
of partial functions and usage of uninitialized var-
iables. Unfortunately, first order logic, the easiest
tool for program correctness proofs, does not
treat either of these subjects (e.g., see Shoen-
field”).

Though some works treat partiality at length
(e.g., see Breu™), very few discuss it in the con-
text of program correctness proofs. We distin-
guish three influential approaches, Tucker and
Zucker, VDM (e.g., Jones '), and Gries.? Tucker
and Zucker* may offer the first truly exhaustive
treatment of abstract data types with error state
semantics (i.e., allowing uninitialized variables),
but it is not addressed to practicing programmers.
VDM, while intended for practicing programmers,
introduces a three-valued logic and thus goes be-
yond first order logic. Finally, the Gries ap-
proach? provides a treatment of partiality suffi-
cient for our purpose while remaining in the
framework of first order logic. Our approach be-
low is based on Gries with some modifications.

We eliminate the problem of undefined variables
by assuming that algorithms assign values to all
variables at the beginning of execution. This is
true for our generic algorithms. For dealing with
undefined expressions we introduce an operator
Def, converting each expression into a Boolean
expression evaluating as true if the original
expression is undefined and false otherwise. For
an expression consisting of a single identifier x,
Def(x) is equal to

e true, if x is a constant
e x € X, if x is a variable declared as x:X

Before defining Def for all expressions, we intro-
duce explicit domains for functions. For a partial
function f:X +> Y the domain of f is a total Bool-
ean-valued function Dom(f): X - B such that for
every x in X Dom(f){x) = true if f(x) is defined
and Dom(f)(x) = false otherwise. We consider
only such functions for which there is a formula
¢(x) written in the language of the data structure
but without occurrences of partial functions and
such that (Vx:X * Dom(f)(x) < ¢(x)). We place
(Vx:X « Dom(f)(x) < #(x)) in the constraint. As
a shortcut we allow declaring f as f: {x:X|¢(x)} —
Y instead of f:X + Y, while omitting the explicit
definition of Dom(f) from the constraint. If g is

176 YAKHNIS, FARRELL, AND SHULTZ

a total function declared as g:X — Y, then
Dom(g)(x) = true for all x € X.

For example, in the specification for Star_Recur-
sion in Appendix B, the function base is declared
as base : {y:Y|low_bound(y)} — X. This is
an abbreviation for declaring base as base:
Y + X and adding (Vy:Y * Domfbase)(y) <
low_bound(y)) to the constraint.

A generalization of the domains for functions and
partial functions of several variables is straight-
forward. Finally, we illustrate how the operator
Def is defined on arbitrary expressions by means
of the following example. Let f be a binary func-
tion or partial function and 4 and B be some
expressions. Then Def(f(A4,B)) is equal to
Dom(f)4,B) N Def(4) A Def(B). In addition, Def
is used to explicitly define domains of the A-expres-
sions, e.g., Dom(Ay:Y - E) = (Ay:Y - Def(E)).

Having explicitly defined the operator Def, it is
possible for a given algorithm to write a statement
saying “the algorithm never attempts to evaluate
an undefined expression.” A formal algorithm
correctness assertion that implies the above state-
ment is discussed in Appendix B.

Using simple verifiable loops in generic algorithms.
The simple verifiable loop is the Dijkstra-Gries
simple loop augmented by the loop invariant and
the bound function and is based on the famous
“checklist for understanding a loop” from Gries.?
Although the simple verifiable loop is widely used
in the framework of program derivation, it is not
recognized as an instruction in its own right. We
extend the ideas of Gries by recognizing that the
simple loop is needed mostly as a stepping stone
for understanding the simple verifiable loop and
that the latter is an instruction deserving a sepa-
rate proof rule. We give such a rule in Appendix
B. In our generic algorithms we use simple ver-
ifiable loops instead of simple loops (see Table 3).

Comparing generic algorithms with schemes from
Kieburtz and Shultis. In the pioneering work of
Kieburtz and Shultis,? a version of generic algo-
rithms (called “schemes”) was used within the
framework of functional programming. The pur-
pose was to convert a given recursive definition of
a function into an efficient DO-loop and to prove
that the function and the DO-loop compute iden-
tical values.

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

Table 3 Using simple verlfiable loops

Simple Veriflable Loop

Behavlor During Execution

/* y is a Boolean expression, ¢ is a logical
assertion, E is an integer-valued specification
expression and & is an algorithm. It is established
that ¢ is an invariant of ¥ and that E is a bound
function. */

doy—
invariant ¢
bound function £
F

od

/* The following must be proved beforehand:

{¢} F{o} A (¢ = Def(y)), i.e., ¢ is an invariant of %, and
(p>Ez0OAN{E =X} FIE <X}, ie, if ¢is true, then E
is nonnegative and every execution of ¥ decreases E at
least by 1, i.e., E is a bound function. */

Step 1. Evaluate the invariant ¢. If ¢ evaluates as false,
then crash. If ¢ evaluates as true, then go to Step 2;

Step 2. Evaluate the loop guard y. If y evaluates as false,
then terminate. If y evaluates as true, then go to Step 3,
If v is undefined, then crash;

Step 3. Execute the loop body . When and if &
terminates, go to Step 2.

In a sense, the aforementioned recursive defini-
tion of a function could be viewed as a form of
specification for the loop. Since they were proved
to be computationally equivalent and since both
contained generics, a degree of similarity with ge-
neric algorithms exists. Moreover, one of the
schemes used in Kieburtz and Shultis is very sim-
ilar to our Star_Recursion, though not identical.
This scheme is both more and less general than
Star_Recursion. On one hand, its constraint on ¥
is more general than associativity; on the other
hand, the scheme requires base to be a constant
function equal to idstar.

Nonetheless, there are significant differences be-
tween the approaches:

¢ Qur purpose is finding algorithms satisfying
specifications, whereas the purpose of Kieburtz
and Shultis is finding an efficient way to execute
programs written in functional style.

* In many cases a specification does not have an
obvious rendition into a recursive definition. In
fact, converting a specification into a recursive
definition goes a long way toward providing a
solution.

s In contrast to our generic algorithms, the
schemes from Kieburtz and Shultis are not sup-
plied with preconditions. This means that the
question of termination was left open.

¢ Most of our generic algorithms are not covered
by the schemes from Kieburtz and Shultis.

In spite of the differences, Kieburtz and Shultis
may be useful for us since in the future we may

I8BM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

convert some of their schemes into generic algo-
rithms by supplying their loops with loop invari-
ants and bound functions.

Partial functions and data structure translating
maps. Earlier in this appendix we described the
notion of an explicit domain Dom(f') for a partial
function f. Assume that f is a unary function.
Then Dom(f)(x) is a Boolean expression that
may have occurrences of some identifiers from
the data structure. If f:X + Y is an identifier in the
specification of the generic algorithm and h is a
data structure translating map from the generic
algorithm to the specification of the pseudocode
instruction, we may have two distinct Boolean
expressions, h(Dom(f)(x)) and Dom{h(f))(x).
However, the “respecting the types” property of
h allows us to use h(Dom(f)(x)) instead of Dom-
(h(N)(x). Therefore, in terms of Wirsing”® and
Breu,* h can be regarded as a ‘“signature mor-
phism.”

A sketch of proof of the validity of the approach.
The more difficult part of proving the validity of
the approach is showing that the adapted generic
algorithm satisfies its adapted specification. With
this out of the way, the formulas given earlier in
the subsection on implementing one specification
with another specification make the rest obvious.
Here we give a sketch of this more difficult part
of the proof.

Assume that & is the generic algorithm and h is
the data structure translating map. Assume fur-
ther that CONSTR, INV, PRE, and POST are, respec-

YAKHNIS, FARRELL, AND SHULTZ 177

tively, the constraint, the invariant, the precon-
dition, and the postcondition of &. Since in the
properties of generic algorithms we included a
requirement that they are proved to be correct,
we can reformulate the problem as the question:
given a true formula {INV /A PRE} F/CONSTR {INV
A POST}, how can we be sure that {h(nV) A
h(PRE)} h(%F)/h(CONSTR) {h(INV) N\ h(POST)} is true
as well?

Using wpc (“weakest precondition with con-
straints”) (see Appendix B) we can transform
{INV A\ PRE} F/CONSTR {INV N\ POST} into a first
order formula (actually, several formulas may be
involved as explained in Appendix B, but it would
not change the reasoning):

INV A PRE = Wpc(F/CONSTR, INV /\ POST)

In this formula all the identifiers that are variables
are regarded as first order variables (and are closed
under universal quantification), and other identifi-
ers are regarded as “nonlogical symbols.”? Let us
designate the formula as . Replacing all the iden-
tifiers in ¢ using the map h, we get a formula h(y).
Properties 4 and 5 of h ensure that h() is true when-
ever i is true. The problem is that, in general, h(y)
may not be identical to

h(INV) A h(PRE) = wpc(h(F)/h(CONSTR), h(INV) A
h(POST)).

Now, employing property 6 of h we can use
h(Dom(f)(x)) in lieu of Dom(h(f))(x). With this
in mind and the use of properties 4, 5, and 6 of h,
by induction on definition of wpc it is easy to
show that h(y) is indeed identical to

h(InNv) A h(PRE)=> wpc(h(F)/h(CONSTR), h(INV) A\
h(PoSsT)).

This completes the proof.

Appendix B: Extending Dijkstra’s weakest
precondition to constraints and pseudocode

Weakest precondition without constraints. We first
extend the Dijkstra weakest precondition wp to
simple verifiable loops and pseudocode instruc-
tions. We use the Gries treatment of partiality?
while relying on our definition of the operator
Def. Here “A” means “equal by definition.” We
assume that the logical assertions (like Q or ¢) are

178 YAKHNIS, FARRELL, AND SHULTZ

everywhere defined, whereas the expressions
(like E or y) may be nontotal.

1. Assignment: wp(x: = E, Q) & Q(x < E) A
Def(E)

2. Composition: wp(%F; 9, O) & wp(F; wp(4, Q))

3. Simple IF: Let P be the following program:

ify—> %
Dﬁy—>‘@
fi

then

wp(®, Q) & Def(y) A (v = wp(&, Q) A
(—y=>wp (4, Q)

4. Simple verifiable loop: Let & be the following
program:

do y —
invariant ¢
bound function £
%

od

Recall the properties of vy, ¢, E, and F.

{e} F{¢} N (¢ > Def(y)), i.c., ¢is an invariant
of F and (¢ > E=2 0 AN{E =X} F{E <X}
(where X occurs neither in ¥ nor in £), i.e., if
¢ is true, then E is nonnegative and every ex-
ecution of F decreases E at least by 1, i.e., E
is a bound function.

Then

wp(?, Q) Lo ifeA—y=>0
A false otherwise.

5. Pseudocode instruction: Let a, B, ¢, ¢ be log-
ical assertions and CON be an optimal clause of
the form con V, where V is a possibly empty
list of variables from the overall data structure,
and let % be the following program:

l[cON; constr «; inv B; pre ¢; post ¥}
Then

wp(®, Q) AaABAe ifaABAY>Q

A false otherwise.

Weakest precondition with constraints. If C and
Q are formulas and & is an algorithm, then

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

wpc(F/C, Q) is the weakest formula establishing
the constraint C and the postcondition Q. In other
words, to show {P} F/C {Q}, it is sufficient to
show P = wpc(F/C, Q).

1. Assignment: wpc(x: = E/C, Q) &2 C = Q(x <
E) N\ C(x < E) N\ Def(E)

2. Composition: wpe(F; 9/C, Q) & wpc(F/C;
wpe(9/C, Q))

3. Simple 1F: Let P be the following program:

ify—>%
0-y—>%
fi

then

wpc(P/C, Q)2 C = Def(y) A
(y=> wpe(F/C, Q) A (—y = wpe(9/C, Q))

4. Simple verifiable loop: Let P be the following
program:

do y —
invariant ¢
bound function £
%

od

We have to redefine the properties of the in-
variant ¢ in relation to C:

{e}FIC{e} N (¢ A C > Def(y)), i.e., ¢ is an

invariant of & with constraint C.

Then

wpe(P/C, Q) Lo feANCNAN—y=>0Q

A false otherwise.

5. Pseudocode instruction: Let «, B, ¢, ¥ be log-
ical assertions and CON be an optional clause
of the form eon V, where V' is a possible empty
list of variables from the overall data structure,
and let & be the following program:

|[cON; constr a; inv B; pre ¢; post]|

Then
wpc(P/C, Q) L aABAeif(aNBANY=>
Q) N\ (a=C)
A false otherwise.

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

Appendix C: Proving correctness of star
recursion

Preliminaries. “2A” means “equal by definition,”
“«” means “if and only if,” “4 A B A C” is
treated as “4 A B and B & C,” and finally, “A4
< B < C” is treated as “4 < Band B < C.”
Each of “A” or ““«” has a lower binding power
than “=",

Since the constraint does not have occurrences of
the variable identifiers, we may use the predicate
transformer wp (see Appendix B).

The loop is well-defined in regard to its invariant
and its bound function. Let us denote the con-
straint as C, the above loop as &, its body as &,
the guard as v, the invariant as ¢, and its bound
function as B. Note that in this case vy, ¢, and B
are everywhere defined and thus we may omit
Def(y), Def(¢), and Def(B) from the consider-
ation, So, in order to show that ¢ and B are cor-
rectly defined, we must show

CAeNy=>wp(F,) AN(CAe=>Bz0)A
(CANeANyB=X=>wp%, B < X)).

Note that C A ¢ = B = 0 is trivially true since B
A BOUND(y) and BOUND is declared to be a total
function returning nonnegative integers. Comput-

ing wp(¥, ¢):

wp(F, @) & wp(r := head(y) v r;y: = tail(y), ¢)
A wp(r: = head(y) v r, wp(y: = tail(y), ¢))

wply: = ail(y), @) L ey < tailly)) A
Def(tail(y)) < G(yzero) = Gltail(y)) «r

/* We have omitted Def(zail(y)) since zail(y) ex-
plicitly occurs in G(yzero) = G(tail(y)) ¥cr. Sub-
sequently, we will do such simplifications without
comments. */

wp(r: = head(y) vcr, G(yzero) = G(tail(y)) < r)
< G(yzero) = G(tail(y)) ¥ (head(y) ¥ r)

Thus wp(%, ¢) < G(yzero) = Glrail(y)) *
(head(y) + r)

Showing C A\ ¢ A v = G(yzero) = G(tail(y)) ¥
(head(y) v r):

Assume C A ¢ A y to be true in some algorithm
state. We must show that wp(%, ¢) holds in the

YAKHNIS, FARRELL, AND SHULTZ 179

same state. Since y & —low_bound(y), by C both
tail(y) and head(y) are defined. Since, by C, v is
associative, get G(fail(y)) ¥ (head(y) vx r) =
(G(ail(y)) ¥x head(y)) ¥ r. Since we have as-
sumed that —low_bound(y) holds, the star re-
cursion formula gives G(y) = G(zail(y)) +
head(y). Replacing (G(tail(y)) ¢« head(y)) by
G(y) in the right side of the equation to be proved,
get G(yzero) = G(y) ¥ r. The latter equation
holds since ¢ is assumed to hold and since ¢ 2
G{yzero) = G(y) Yr r. Done.

Showingthat CA ¢ A y AB =X = wp(F, B <
X) is just as straightforward. So the loop is cor-
rectly defined.

Correctness of the algorithm. By the rule for wp on
compositions, proving the algorithm correct is
equivalent to showing C = wp(y := yzero; r :=
idstar, wp(£; r: = base(y) ¢ r, r = G(yzero))).
Let us find wp(&; r : = base(y) vrr, r = G(yzero)):

wp(&; r: = base(y) +c r, r = G(yzero)) & wp(<&£,
wp(r: = base(y) Yxr, r = G(yzero))) & wp(£,
base(y) vz r = G(yzero))

We must find wp(&£, base(y) v r = G(yzero)) in
two steps:

1. Showing C A ¢ A —y = base(y) «r =
G(yzero):

Since —y < low_bound(y), C implies that
base(y) is defined and that G(y) = base(y).
Thus it is sufficient to show G(y) + r =
G(yzero). This follows from ¢ A G(yzero) =
G(y) *r.

2. wp(&, base(y) ¥ r = G(yzero)) & ¢ £
G(yzero) = G(y) ¥ r.

Therefore, to show correctness of the whole al-
gorithm we must show

C = wply := yzero; r := idstar, ¢).

This is straightforward.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of the U.S. Department
of Defense.

Cited references and notes

1. E. W. Dijkstra, 4 Discipline of Programming, Prentice-
Hall, Inc., Englewood Cliffs, NJ (1976).

180 YAKHNIS, FARRELL, AND SHULTZ

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

. D. Gries, The Science of Programming, Springer-Verlag,
Inc., New York (1981).

. A. Kaldewaij, Programming: The Derivation of Algo-
rithms, Prenctice-Hall, Inc., Englewood Cliffs, NJ (1990).

. E. Cohen, Programming in the 90s: An Introduction to the
Calculation of Programs, Springer-Verlag, Inc., New
York (1990).

. V. Yakhnis, J. Farrell, and S. Shultz, “A Case Study in
Deriving Programs Using Generic Algorithms,” to be sub-
mitted for publication.

. In this context “rigorous” means ‘“mathematically pre-
cise” and thus pertains to semantics. In contrast, “infor-
mal” pertains only to syntax. Thus “informal rigorous” is
not self-contradictory.

. E. W. Dijkstra and C. S. Scholten, Predicate Calculus
and Program Semantics, Springer-Verlag, Inc., New
York (1990).

. J. M. Spivey, The Z-notation: A Reference Manual, Pren-
tice-Hall International, Englewood Cliffs, NJ (1989).

. J. M. Spivey, Understanding Z: A Specification Lan-

guage and Its Formal Semantics, Cambridge University

Press, Cambridge, England (1988).

D. C. Ince, An Introduction to Discrete Mathematics and

Formal System Specification, Oxford University Press,

Oxford (1988).

J. Woodcock and M. Loomes, Software Engineering

Mathematics, Pitman (1988).

C. B. Jones, Systematic Software Development Using

VDM, Prentice-Hall International, Englewood Cliffs, NJ

(1990).

R. M. Burstall and J. A. Goguen, “Putting Theories To-

gether to Make Specifications,” Proceedings of the Fifth

International Joint Conference on Artificial Intelligence

(1977), pp. 1045-1058.

J. V. Guttag and J. J. Horning, Larch: Languages and

Tools for Formal Specification, Springer-Verlag, Inc.,

New York (1993).

C. Morgan, Programming from Specifications, Oxford

University Press, Oxford (1991).

Usually in the literature the term variable is used instead.

However, it is just as usual to assign to the term variable

a more narrow meaning (i.e., something that may be

changed). This may cause confusion since some identifi-

ers may not be changed.

S. Owicki and D. Gries, “An Axiomatic Proof Technique

for Parallel Programs,” Acta Informatica, No. 6, 319-340

(1976).

This division may be artificial, but discussing this is be-

yond the scope of this paper.

M. Wirsing, “Algebraic Specification,” Handbook of

Theoretical Computer Science, Elsevier Science Publish-

ers B.V., Amsterdam (1990), pp. 675-788.

D. Harel, First-Order Dynamic Logic, Springer-Verlag,

Inc., New York (1979).

J. Loeckx and K. Sieber, The Foundations of Program

Verification, John Wiley & Sons, Inc., New York (1987).

We may use pseudocode instructions to override con-

straints and to specify instructions that are “atomic” in

respect to the overall constraint, but such discussion is
beyond the scope of the present paper.

E. W. Dijkstra and W. H. J. Feijen, A Method of Pro-

gramming, Addison-Wesley Publishing Co., Reading,

MA (1988).

J. Bohorquez and R. Cardoso, “Problem Solving Strate-

gies for the Derivation of Programs,” to appear in Logical

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

Methods, a collection of papers honoring A. Nerode’s
60th birthday.

25. R. B. Kieburtz and J. Shultis, “Transformations of FP
Program Schemes” Proceedings of the Conference on
Functional Programming and Architecture (1981), pp.
41-48.

26. V. Yakhnis, J. Farrell, and S. Shultz, “A Library of Ge-
neric Algorithms in Dijkstra-Gries Notation,” to appear.

27. T. Clement, “The Role of Data Reification in Program
Refinement: Origin, Synthesis and Appraisal,” The Com-
puter Journal 35, No. 5, 441-450 (October 1992).

28. J. C. P. Woodcock, “The Rudiments of Algorithm Re-
finement,” The Computer Journal 35, No. 5, 431-440 (Oc-
tober 1992).

29. J. R. Shoenfield, Mathematical Logic, Addison-Wesley
Publishing Co., Reading, MA (1967).

30. R. Breu, Algebraic Specification Techniques in Object
Oriented Programming Environments, Springer-Verlag,
Inc., New York (1991).

31. J. V. Tucker and J. 1. Zucker, Program Correctness over
Abstract Data Types with Error-State Semantics, North-
Holland, Amsterdam (1988).

General references

K. R. Apt, “Ten Years of Hoare’s Logic, a Survey,” ACM
Transactions on Programming Languages and Systems 3,
431-483 (1981).

K. R. Apt and E. R. Olderog, Verification of Sequential and
Concurrent Programs, Springer-Verlag, Inc., New York
(1991).

R. C. Backhouse, Program Construction and Verification,
Prentice-Hall, Inc., Englewood Cliffs, NJ (1986).

M. Dyer, The Cleanroom Approach to Quality Software De-
velopment, John Wiley & Sons, Inc., New York (1992).

D. Gumb, Programming Logics, John Wiley & Sons, Inc.,
New York (1989).

C. A. R. Hoare, “An Axiomatic Basis for Computer Pro-
gramming,” Communications of the ACM 12, No. 10, 576-
580, 583 (1969).

C. A. R. Hoare, “An Axiomatic Approach to Computer Pro-
gramming,” Essays in Computer Science, C. A. R. Hoare and
C. B. Jones, Editors, Prentice-Hall, Inc., Englewood Cliffs,
NJ (1989).

R. C. Linger, H. D. Mills, and B. L. Witt, Structured Pro-
gramming: Theory and Practice, Addison-Wesley Publishing
Co., Reading, MA (1979).

H. D. Mills, R. C. Linger, and A. R. Hevner, Principles of
Information Systems Analysis and Design, Academic Press,
Inc., New York (1986).

C. Reynolds, The Craft of Programming, Prentice-Hall, Inc.,
Englewood Cliffs, NJ (1981).

Accepted for publication September 20, 1993.

Viadimir R. Yakhnis IBM Large Scale Computing Division,
1701 North Street, Endicott, New York 13760. Dr. Yakhnis is
an advisory programmer. He received a Diploma in mathe-
matics from Moscow State University, Moscow, Russia, in
1975. He worked as a computer programmer in Moscow and
in Houston, Texas. Dr. Yakhnis received a Ph.D. in mathe-
matics and an M.S. in computer science from Cornell Uni-

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

versity in 1990. He worked as a Postdoctoral Fellow at the
Mathematical Sciences Institute, Cornell University, until
1991. His research was in program correctness for concurrent
and sequential programs, winning strategies for two-person
games, finite automata, and recursion theory. He joined IBM
in 1991 in Endicott.

Joel A. Farrell IBM Large Scale Computing Division, 1701
North Street, Endicott, New York 13760. Mr. Farrell is a sen-
ior programmer. He joined IBM in Endicott in 1981 in VM
Development where he has worked on such areas as I/O and
program management. Most recently he has been involved in
parallel and distributed computing and in formal methods for
software development. Mr. Farrell received his B.S. degree in
computer science from Kansas State University in 1980 and
his M.S. degree in 1985 from Syracuse University, also in
computer science. In 1992 he received an IBM Outstanding
Innovation Award for his work on parallel processing in CMS,
and an IBM First Level Invention Achievement Award. He is
a member of the Association for Computing Machinery.

Steven S. Shultz /BM Large Scale Computing Division, 1701
North Street, Endicott, New York 13760. Mr. Shultz is an
advisory programmer. He joined IBM in Endicott in 1981 in
VM Development where he has worked on such areas as I/O
and virtual storage management. Most recently he has been
involved in parallel and distributed computing and in formal
methods for software development. Mr. Shultz received his
B.S. degree in computer and information science from Ohio
State University in 1981. In 1992 he received an Outstanding
Innovation Award for his work on parallel processing in CMS
and an IBM First Level Invention Achievement Award.

Reprint Order No. G321-5537.

YAKHNIS, FARRELL, AND SHULTZ 181

