
Deriving programs  using 
generic  algorithms 

We suggest  a new approach to the  derivation of 
programs  from  their  specifications. The formal 
derivation and  proof  of  programs  as is practiced 
today is a very powerful tool for  the  development 
of  high-quality  software. However, its application 
by  the  software  development  community  has 
been  slowed  by  the  amount  of  mathematical 
expertise  needed to apply  these  formal  methods 
to complex  projects and by  fhe lack  of  reuse 
within the  framework  of  program  derivation. 
To  address  these  problems,  we  have  developed 
an  approach to formal  derivation  that  employs 
the  new  concept  of  generic  algorithms. A 
generic  algorithm is one that has (1) a  formal 
specification, (2) a  proof  that it satisfies this 
specification, and (3) generic  identifiers 
representing  types  and  operations. It may  have 
embedded  program specifications or  pseudocode 
instructions describing  the  next  steps in the 
stepwise  refinement  process.  Using  generic 
algorithms,  most  software  developers need to 
know  only  how to pick and  adapt  them,  rather 
than  perform more technically  challenging  tasks 
such as finding  loop  invariants and deriving loop 
programs.  The  adaptation consists of  replacing 
the  generic  identifiers  by  concrete  types  and 
operations.  Since  each  generic  algorithm  can 
be  used in the  derivation  of many different 
programs, this new  methodology  provides  the 
developer with a  form  of reuse  of  program 
derivation  techniques,  correctness  proofs,  and 
formal  specifications. 

T he  use of formal  software  development  meth- 
ods,  such  as formal specification, program 

derivation,  and  proofs of correctness of algo- 
rithms,  has  been  advocated by  the academic com- 
puter  science  and  software engineering commu- 
nity for about  two  decades.  Yet,  even though this 
mathematical  approach  has  enormous  potential 
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for producing very high-quality software,  its  use 
so far within the  software  development commu- 
nity  has not been  commensurate  with  its  poten- 
tial. Although many  programmers  agree  that  the 
production of programs  that  are mathematically 
proved to be correct  is  a  desirable goal, it appears 
that  the  mathematical skill level required  of  the 
program development  team to produce  correct- 
ness  proofs may be  too high for their widespread 
acceptance. 

The original formal approach, called program ver- 
ification, was  to develop an algorithm by tradi- 
tional means and then  create  its  correctness 
proof, thereby revealing any  faults in the algo- 
rithm. It  soon  became  apparent  that  creating  the 
proof independently of creating  the algorithm 
made  the proof step much too  complex,  since  the 
formal logic structure of the algorithm had to  be 
extracted  before  the proof could be formulated. 
To  counter this problem, several  researchers  (see 
Dijkstra,'  Gries,2 K a l d e ~ a i j , ~  and  Cohen4)  pro- 
posed  a  technique in which the algorithm and the 
proof are developed  together,  with  elements of 
the proof actually  preceding  the  code.  In  this ap- 
proach,  both the algorithm and its proof are de- 
rived from its formal specification. 
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Although the program derivation approach ad- 
dressed  many difficulties in producing mathemat- 
ically correct  software, the mathematical skill 
level required was  not  appreciably reduced. 

b 

Our methodology is applicable to 
a vast segment of the program 

development process. 

” 

Therefore,  when  the IBM Glendale Programming 
Laboratory in Endicott,  New  York, began inves- 
tigating the  use of formal methods to help im- 
prove  the  quality of our commercial software 
products, we looked for  ways  to lower the level 
of mathematical skill required. Our  approach was 
to  “hide” most of the mathematical techniques 
involved in program derivation in a number of 
prederived program templates  that we call ge- 
neric algorithms. 

A generic algorithm has  the following features: 

It  has  a formal specification. 
It is formally proved to satisfy  this specifica- 
tion. 
It may have one  or more generic identifiers rep- 
resenting  data  types  or  operations. 
It may  have  embedded program specifications 
or pseudocode  instructions describing the  next 
steps in the  stepwise refinement process. 

1 

1 

Given a collection of generic algorithms, the sug- 
gested  process of developing a program from a 
formal specification could be informally de- 
scribed  as follows. Instead of directly using the 
program derivation techniques,  select  a  suitable 
generic algorithm from our collection and adapt it 
by replacing its  generic identifiers by conceptu- 
ally similar data  types and operations.  The  selec- 
tion is based  either  on  comparison  between  the 
logical structure of the given formal specification 
and  the specifications of the  generic algorithms, 
or intuitive comparison of the desired “behavior” 
of the algorithm being designed with the  “behav- 
iors” of the generic algorithms, or both.  Then 
check  the  correctness of certain logical assertions 
linking the original formal specification and the 

B 
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specification of the  generic algorithm modified by 
the aforementioned replacement of the  data  types 
and operations. 

These “linking” assertions  are discussed later in 
the  paper.  Their  correctness  ensures  that  the 
adapted  generic algorithm satisfies the original 
formal specification. We call this methodology 
“deriving programs using generic algorithms.” 
Just as with traditional program derivation tech- 
niques, our methodology is applicable to a  vast 
segment of the program development  process, 
from high-level design to coding. 

Within the  framework of our  approach, generic 
algorithms serve  as  reusable,  transformable 
building blocks in the formal derivation of pro- 
grams. They  extend  the paradigm of program re- 
use to  the  reuse of program correctness proofs, 
formal specifications, and design steps.  Generic 
algorithms alleviate the problem of mathematical 
skill levels by freeing the programmer from the 
search for loop  invariants and from providing re- 
spective interim proofs. Thus  they  enable  pro- 
grammers to derive mathematically correct  pro- 
grams from formal specifications with only  an 
occasional need to consult  experts in program 
derivation and program correctness proofs. 

Our experience  includes  the application of formal 
derivation with  generic algorithms in the  Conver- 
sational Monitor System (CMS) component of the 
Virtual Machine/Enterprise  Systems  Architec- 
ture* (VM/ESA*) operating  system. 

Prior to introducing generic algorithms, we de- 
scribe  the  basic  concepts of formal specification 
in the  next  section.  This is done  not  only  to  pro- 
vide  the  necessary  background,  but also to famil- 
iarize programmers with our  style of writing for- 
mal specifications, which is tailored to  the use of 
generic algorithms. After these preliminaries, we 
describe  the notion of generic algorithms and 
their use in the  succeeding  section. 

The main body of this  paper is intended to provide 
a  description of our methodology rigorous enough 
to  be  both convincing and  understandable  to  pro- 
gram developers.  The  appendices  contain  math- 
ematical details  necessary for proving the  validity 
of our  approach.  We  hope  that  both program de- 
velopers and computer  scientists  interested in 
program derivation will  find this  work useful. 
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Here  are  some of our  notation  conventions: 

Algorithms are  represented by cursive  capital 

Boolean expressions  are  represented by Greek 

Other  expressions  are  represented by capital 

Logical assertions  are  represented by either 

Sets  are represented by capital  letters  with  dou- 

letters like 9 or (3. 

letters like cp, $I, or y. 

letters in italic, like E .  

Greek  letters  or  capital  letters in italic. 

ble lines, like X, Y. 

Specifications  and  algorithms 

Informal,  rigorous,  and  formal  specifications. A 
specification for  an algorithm is a  statement  de- 
scribing  its  behavior during execution.  Usually 
this  description is limited to stating  under  what 
conditions the algorithm may begin its  execution 
and  also  what kind of results  are  expected after 
the algorithm terminates.  However,  a specifica- 
tion should avoid spelling out how to reach  those 
results, leaving the  “how”  open  to  various im- 
plementations.  Essentially  the  same specification 
may  be  represented in numerous  formats, which 
in turn may be  separated  into  three  broad  cate- 
gories: informal, rigorous (sometimes called in- 
formal rigorous6  or semiformal), and formal. 

Informal specifications use natural languages 
(English in our  case) with only  occasional usage 
of mathematical symbols. Rigorous specifications 
use  more or  less informal mathematical  notation 
with the usual  mathematical  conventions applied. 
They are  used, for example, by the  Dijkstra-Gries 
school of program derivation. ‘-13’ Finally, formal 
specifications require the use of a formal specifica- 
tion  language,  e.g., Z,&” VDM,’~  and various alge- 
braic specification languages such as  CLEAR,'^ 
Larch, l4 and many others. 

Since  our  purpose is to  create  very high-quality 
software,  every time we  create  an algorithm %we 
must  ensure  that it satisfies the specification. The 
only reliable way  to  ensure satisfaction is to  cre- 
ate a  correctness proof. Since  such  correctness 
proofs  require having either  a rigorous or a formal 
specification, our  approach  works  best in the 
frameworks of either rigorous or formal specifi- 
cations.  However,  the  generic algorithms ap- 
proach is so flexible that it also  permits  the  users 
to  create  quality  software  without  strictly confin- 
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ing them to either rigorous or formal specifica- 
tions. Indeed, since rigorous or formal specifica- 
tions and correctness proofs are implicitly  included 

A specification for an  algorithm 
is a  statement  describing its 
behavior  during execution. 

in generic algorithms, using them as software build- 
ing blocks will increase the software quality even if 
the overall specification is informal. 

In this  paper we use rigorous specifications in the 
Dijkstra-Gries manner. We also provide  several 
enhancements aimed at  accommodating generic 
algorithms. Since  the existing mathematical  con- 
ventions  sometimes do not provide standards for 
certain  elements of notation  and  since Z provides 
such  standards for most  notations  needed in pro- 
gram derivation,  we, similar to Morgan,”  often 
use  conventions from Z in addition to those used 
by the  Dijkstra-Gries  school. 

Finally, we feel that  such languages as CLEAR or 
Larch  may significantly enhance the effectiveness 
of our  approach, provided one  has  easy-to-use 
tools for checking  the syntax of specifications and 
verifying algorithm correctness  assertions.  We 
quote from Guttag  and  Homing:  “Are  formal 
specifications too  mathematical to  be used by  typ- 
ical programmers? No. Anyone  who  can  learn to 
read  and  write  programs  can  learn  to  read and 
write formal specifications. After all, each  pro- 
gramming language is a formal language.”14 

A style of writing  specifications  tailored  to  using 
generic  algorithms. In the following subsections 
we discuss  the  development of our  approach. 

The  precondition,  the  postcondition,  and  the  con- 
straint. Most of the  approaches  (whether  infor- 
mal, rigorous, or formal)  describe  specifications 
in two  layers. The first layer defines the algorithm 
states in terms of identiJiers16 and types, where 
identifiers are  placeholders for values and types 
are  “containers” having those  values  (usually 
with some  attached  operations  acting upon the 
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values). We define an algorithm state  as  a map 
from  the identifiers into  the  values  contained in 
the  respective types. In regard to its  states,  we 
think of an algorithm as a machine transforming 
these  states from one  into  another. 

The  second  layer defines the  desired algorithm 
behavior in terms of a pair of properties of the 
algorithm identifiers, say P and Q, where: 

The  property P is called the precondition. 
The  property Q is called the postcondition. 

The  precondition  describes  the possible values of 
the identifiers necessary  to initiate the algorithm, 
run it successfully, and  terminate.  The  postcon- 
dition describes  the allowable values of the algo- 
rithm identifiers after the algorithm successfully 
terminates.  In  other  words,  both  the  precondition 
and  the  postcondition  describe  subsets of the col- 
lection of all algorithm states. Using the  “state 
machine”  metaphor, we can think of the  behavior 
of an algorithm defined by a specification as a 
finite sequence of state  transitions  that begins in 
the  subset of algorithm states described  by  the 
precondition and ends in the  subset of algorithm 
states described by the  postcondition. 

In  the Dijkstra-Gries notation  the  assertion  “an 
algorithm 9 satisfies a specification with the  pre- 
condition P and the  postcondition Q” is written 
as {P} 9 {Q}. In other  words, {P} 9 {Q} holds if 
for  every  state satisfying the  property P:  

The algorithm 9 initiates, runs  successfully, 
and  terminates. 
After the termination of 9 the resulting state 
(also called the final state) satisfies the  property 
Q. 

In Figure 1 the  darker  trajectory  depicts  the  be- 
havior of an algorithm 9 with {P} 9 {Q} and the 
lighter trajectory  depicts  the  behavior of an algo- 
rithm % with l{P} % {Q} (recall that “l ” stands 
for ‘ k ~ t ” ) .  

Although intuitively simple, such  treatment  does 
not  provide  any  means  to  restrict  the  behavior of 
an algorithm in between  the initiation and termi- 
nation. We remedy this  situation  by adding to  the 
precondition  and  the  postcondition  a third prop- 
erty of the algorithm states called the constraint 
with the following meaning. We say  that an algo- 
rithm 9 satisfies a specification with the  precon- 
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Figure 1 An  algorithm  behavior  defined by a 
precondition  and  a  postcondition 

ALL ALGORITHM STATES 

Y 

dition P, postcondition Q, and a  constraint C (and 
write it as {P} 9 /C  {Q}) if for every  state  satis- 
fying both  the  properties P and C: 

The algorithm 8 initiates, runs successfully, 
and terminates. 
After the termination of 9 the final state  satis- 
fies both  the  properties Q and C.  
All the  states  reached  by 9 between  the initial 
state  and  the final state satisfy  the  property C. 

Recalling that “A” stands for “and,” it is easy  to 
notice  that {P} 9 / C  {Q} implies {P A C} % {Q A 
C}, whereas  the  opposite may not be  true. In Fig- 
ure 2 the  darker  trajectory  depicts  the behavior of 
an algorithm 9 with {P} 9 / C  {Q}, and  the lighter 
trajectory  depicts  the behavior of an algorithm % 
with l{P} %/C {Q}. Note,  however,  that  for  the 
algorithm %, {P A C }  % {Q A C} is satisfied. 

Some  approaches (Dijkstra-Gries, VDM) do  not 
have  a  direct analog of the notion of constraint. 
The  closest analog they employ is the notion of 
invariant, i.e., a  property  that must be satisfied by 
both  the initial and the final states  but, unlike con- 
straints, may be violated in between. Although 
we find invariants useful, they  cannot  serve  the 
same  purpose as constraints.  Other  approaches 
(like Z or algebraic specification languages) have 
analogs of constraints. In Z the notion has  the 
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Figure 2 An  algorithm  behavior  defined by a precondition,  a  postcondition,  and  a  constraint 

AU STATES 

same  name  (hence  our  name),  whereas in alge- 
braic specification languages the notion can  be 
represented as a  collection of axioms.  However, 
since  these  approaches  concentrate  on specifica- 
tion and verification issues  and  not on program 
derivation,  our exploiting of constraints within 
the  framework of sequential  approaches to pro- 
gram derivation  is new. Also, since we have  not 
seen in the  literature  a  convenient collection of 
proof rules  covering  the  notion of constraint, we 
give our own rules in Appendix B. 

We  deem  the  notion of constraint to  be conve- 
nient  for  the following reasons: 

1. It  may help to extend  sequential algorithm de- 
velopment  approaches  to  a  concurrent  setting. 
Indeed,  often all of the properties  needed to 
prevent  a  sequential algorithm from unduly in- 
fluencing other  concurrently running pro- 
cesses  can  be  incorporated in the  constraint. 
(For example, the Owicki and  Gries  notion of 
“interference freedom”l’ can  be  represented 
via  constraints.)  Then  a  sequential  develop- 
ment  approach using constraints  can  be em- 
ployed to  create  this algorithm. We have  done 
this while applying our methodology to  the 
multitasking component of CMS. 

2. The properties of constant identifiers (i.e., 

162 YAKHNIS,  FARRELL, AND  SHULTZ 

those  that  the algorithm is not allowed to 
change) are  the  same  throughout  the  execu- 
tion. Therefore, it is more  reasonable to in- 
clude  them in the  constraint  rather  than  (as 
usual) in the  precondition. 

3. Since  the  constraint  is  always  true,  the  asser- 
tions included in  it are convenient  to  use 
throughout  the algorithm structure in the local 
correctness proofs. 

The first specification layer: Defining the data 
structure. A statement establishing an  association 
between  an identifier and  a  data  type  is usually 
called a declaration. A  combination of several 
declarations  and  a  constraint  is called a data 
structure. The first layer of a specification de- 
scribes  the  data  structure  for  the algorithm being 
specified. This  data  structure  completely de- 
scribes  the  space of states upon which the algo- 
rithm  is allowed to  operate. We now give some 
technical details of how to describe the  data  struc- 
tures. 

First  note  that  some identifiers are standard, e.g., 
the symbol for addition “+” or  the symbol for the 
set of nonnegative  integers “N”, and thus  they 
may  be used but need not  be defined in the  data 
structure. We divide all the identifiers into object 
identifiers and type identifiers. Type identifiers 
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Figure 3 Data  structure  from the specification  of  an  algorithm  computing the factorial function 

[Factorial-Data-Structure 
/* ! is a function that takes a nonnegative integer value and creates a positive integer value. The function ! may not occur 
in the algorithm. *I 

spec  con ! : N + N I* Z = all integers, N = all nonnegative integers */ 

con zero  : Z /* input value */ 

var r : Z /* output value *I 

constraint 
/* Recall that “A” means “and,” “A j B” means “if A holds then B also holds,” and that “(Vn : N * . . .)” means “for 
all n from the set N the following holds . . . .” Identifiers with the scope limited to a formula  (like n here) are called bound 
variables. They are distinct from object identifiers. */ 

n z e r o ~ O A ( V n n : N - ( n = O j n ! = l ) A ( n # O j n ! = ( n - l ) ! * n ) )  
I 

are used to denote  collections of data  objects, 
whereas  object identifiers are  used to denote in- 
dividual data  objects.  Suppose  that x, f, and g 
are object identifiers and X and V are  type  iden- 
tifiers. We  use  the following declarations: 

9 x:X /* any  value  associated with name x 
must  be  taken from the  set X */ 

X and  returning  values from V */ 

from X and returning  values from 
v */ 

f:X + V /* f is a  function taking values from 

g:X -H V /* g is a partial function taking values 

Functions  with more than  one  variable  are  rep- 
resented using the  Cartesian  product “ X ” e.g., 
“f%xVxW+U” means  that  the first argument is 
taken from X, the  second from V, and  the third 
from W. The  construction describing the  types 
of the  arguments  and  the  type of the  returned 
value  for  a function is called the  signature of the 
function. For instance,  the  signature of f is 
X X V x W+U. The  same  is  true for partial func- 
tions, e.g., g:XxVxW-HU. 

We separate  object identifiers into algorithm 
identifers and specifcation  identifers.  The for- 
mer  can  be used either in specification, pseu- 
docode  instructions, or in standard  instructions of 
the algorithm being specified. The  latter  can  be 
used only in specification or pseudocode  instruc- 
tions of the algorithm being specified. We  discuss 
pseudocode  instructions and standard  instruc- 
tions  later. As usual, the algorithm identifiers are 
separated  into constants (designated as “con”) 
and variables (designated as “var”). The former 
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may  not  be  changed by  the algorithm, but  the 
latter  are allowed to  be  changed.  This  separation 
usually amounts to excluding constants from the 
left-hand parts of assignments while not placing 
such  restrictions on  the variables. 

Some of the  variables  may  be  marked as “input,” 
which means  that  they  are  considered to possess 
a  value in the initial state of any  computation on 
the  respective  data  structure. The variables  that 
are  not so marked  are  considered  to be uninitial- 
ized, Le., any algorithm trying to evaluate  an 
expression  with noninput variables  before  some 
values  are explicitly assigned to them will be 
forced to abort. 

We separate specification  identifiers into specifca- 
tion constants (designated as “spec con”) and 
specifcation variables  (designated as “spec var”). 
The former may not be changed by the pseudocode 
instructions, but the latter can be changed. The 
above notions (excepting specification variables) 
are illustrated in the data structure from the spec- 
ification of an algorithm computing the factorial 
function, shown in Figure 3. The usage of specifi- 
cation variables will be illustrated in the next sec- 
tion. 

Note  that  variable r is not  marked as input, and 
thus it is uninitialized. In  this example, the fac- 
torial  function “!” is declared  as  a specification 
constant  since we may  not  use it as a  function 
inside the program. However, we need this sym- 
bol in order  to  state our  intentions  (the  postcon- 
dition r = nzero!,  see  the full specification in the 
subsection  that  discusses  the  second specification 
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layer).  By declaring nzero as a  constant,  we for- 
bid changingnzero  by  any algorithm satisfying the 
specification. Finally, the constraint  is  essentially 
a definition of the  factorial function. 

In  most of the  literature,  for example, in Kal- 
dewaij3  and C ~ h e n , ~  specification constants  are 
not explicitly declared. In Morgan, l5 specification 
constants  are called logical constants,  and  they 
are explicitly declared,  whereas  what we call con- 
stants  are not explicitly declared.  By explicitly 
declaring all variables and keeping them classified 
by purpose, we have  the  advantage of clearly  see- 
ing what usage is legal for  each  variable. Finally, 
our notion of specification variables is new. We 
illustrate  their usage in the  next  section. 

Here  are  some additional notation  conventions: 

Specification identifiers are  represented  by 
words in nonitalic capital  letters like “BOUND” 
or special  symbols like “!”. 
Algorithm identifiers are  represented  by  words 
in lowercase italic, like “nzero”. 
Bound variables  are  represented by nonitalic 
letters in lower  case, like n, x, y. 

Constructions.  Constructions  are  convenient 
means  to  abbreviate  certain  lengthy  descriptions. 
We  illustrate  this notion by taking examples from 
the specification for Star-Recursion in the follow- 
ing section. We distinguish three  kinds of con- 
structions: 

Type constructions-Single type identifiers are 
the simplest type  constructions.  The  rest are the 
result of building sets  by  the usual means. For 
example, XxX-X is  the  set of all possible 
binary  operations on X. k:Vllowbound(y)} 
is  the  set of all such y from the  set V that 
Zowbound(y) is true. V-B is the  set of all Bool- 
ean-valued  functions caking values from V. 
Expressions  (also called terms)-They are  the 
object identifiers together  with  various combi- 
nations of applications of functions to  the object 
identifiers. For example, y ,  BOUND(tail(y)), 
G(tail(y)) head(y),  base(y), etc. 
Function constructions-They are  a useful 
technical tool for describing maps translating 
one  data  structure  into  another  data  structure, 
though they  are  not  crucial  for  understanding 
such maps. We describe  them in Appendix A. 

As  a  shorthand we permit using the  set  construc- 
tions in the  declarations in lieu of type identifiers. 

164 YAKHNIS, FARRELL, AND SHULTZ 

For example, suppose  that we would like to in- 
troduce  a  constant c from the  set Y satisfying the 
property lowbound(c) = true. The  standard way 
to  do so would be to add c:V to  the  declarations 
and to  add lowbound(c) to  the  constraint (recall 
that in logical assertions  Zowbound(c)  stands 
for  Zowbound(c) = true). However,  the  above 
permission means  that we could just add 
c:{y:V(Zowbound(y)} to the declarations  without 
explicitly adding anything to  the constraint. Im- 
plicitly, however, lowbound(c) = true would 
still be part of the  constraint. 

Generics. A crucial part of our algorithm develop- 
ment methodology  is the usage of generics, i.e., 
generic data types and data objects. Generics are 
not new.  Programming  languages such as Ada** 
and approaches such as Z or algebraic specification 
languages have used them for quite a while. How- 
ever, we feel that our approach utilizes the generics 
more fully because our usage of generics permits us 
to reuse the proofs and our specification variables 
constitute a new type of generics. 

A generic type identifier does  not  correspond to 
any  concrete  set  but  has  attached  to it a collection 
of axioms describing properties of its  abstract  el- 
ements. For a given specification, we list all of the 
required generic  type identifiers (if any) in the 
section designated “gen” in the beginning of the 
specification (e.g., gen X, V), and we add all their 
axioms (if any)  to  the  constraint. 

We define generic  object identifiers as those  ob- 
ject identifiers whose  type is a  type  expression 
containing a  generic  type identifier. In addition, 
we call a  construction  (see  Appendix A) generic 
if it contains  an  occurrence of a  generic identifier. 

Our experience  has convinced us that, while ei- 
ther  creating  the  generic algorithms or using them 
to  derive  other algorithms, it would be  very con- 
venient  to  have at the tip of one’s fingers an  ex- 
tensive collection of standard  generic  type  con- 
structions  (also called abstract  data  types),  such 
as linked lists, bags, sets,  etc. An excellent  such 
collection is in Guttag and Homing. l4 

The second  specification layer: Defining the in- 
variant, the  precondition, and the  postcondition. 
Given a  data  structure,  we  describe  the intended 
algorithm behavior by means of the  invariant,  the 
precondition, and the postcondition in terms of 
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Figure 4 A formal  specification for  an algorithm  computing faCtOrialS 

D 

/* The purpose of an algorithm satisfying Factorial-Spec is to compute z e r o !  for nonnegative z e r o  and  put the result 
into r.  Recall that the “factorial” function “!” could be defined as follows. For a positive integer n, n! = 1*2* . . . *n. 
Also, O! = 1. The factorial satisfies the following “star recursion” property: for a positive integer n,  n! = (n - l)! * n. */ 

Factorial-Data-Structure /* see earlier subsection on the first specification layer */ 
postcondition r = nzero!] 

the identifiers from the  data  structure.  Having dis- 
cussed  the  latter  two  at length, we repeat  the def- 
inition of the  former:  the  invariant  is  a  property 
that  must  be satisfied by both  the initial and the 
final states but may be violated in between.  We 
illustrate  these notions by giving a formal speci- 
fication for an algorithm computing factorials as 
presented in Figure 4. 

Note  that  we  consider  the  constraint,  the invari- 
ant,  and  the  precondition  sections of a specifica- 
tion to  be  optional,  and we may omit any of them 
if the  respective logical assertion is trivially true. 
Finally, following Wirsing, l9 we call a specifica- 
tion sensible if its data  structure  has  at  least  one 
state satisfying both  the  invariant  and  the  precon- 
dition. One should not  waste time by working 
with  a nonsensible specification. 

On the  basis of the specification concepts  we  have 
introduced, we summarize  what it means for an 
algorithm 9 to satisfy  a specification SPEC written 
in our  style. Let S C ,  SV, C, and V be,  respec- 
tively, the  collections of specification constants, 
specification variables,  constants, and variables 
from SPEC, and let Constr,  Inv,  Pre, and Post be, 
respectively,  the  constraint,  the  invariant,  the 
precondition, and the  postcondition from SPEC. 
We say that 9 satisfies SPEC if for  every initial 
state satisfying Constr A Inv A Pre, the following 
is true: 

B 

B 

1. The algorithm 9 successfully  terminates. 
2. The final state satisfies Constr A Inv A Post. 
3. During the  execution, Constr is always true. 
4. The  variables from SC and SVdo not occur in 

the algorithm 9. 
5.  During the  execution  the  value of each  vari- 

able from C is never changed. 
6. During the  execution,  the  values of all the  var- 

iables always belong to their respective  types. 

We denote  the first three  conditions  as {Inv A Pre} 
9/Constr {Inv A Post}. The Dijkstra-Gries nota- 

D 
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tion for  the first two  conditions is {Constr A Inv 
A Pre} 9 {Constr A Inv A Post}. 

Algorithms  and  programs. We now describe  as- 
pects of the algorithms and  programs involved in 
our  approach. 

Building algorithms from standard instructions 
and pseudocode instructions. Given a specifica- 
tion, our intuitive concept of an algorithm satis- 
fying it is  a  state machine transforming the  states 
defined by  the  data  structure of the specification. 
However,  besides  the  variables  declared in the 
data  structure of the specification, the algorithm 
may have  some additional variables  serving  an 
auxiliary purpose in the  sense  that  there  is  either 
no input or  output  associated  with  them (e.g., ar- 
ray indices, loop  counters, etc.). We call them 
work variables, and we designate their  scope by 
the additional algorithm brackets “I[,’ and “I(”. 
(As an example, see Star-Recursion in the  next 
section.) Finally, we call the union of the  data 
structure of the specification and  the  declarations 
of the  work  variables  the algorithm  data  struc- 
ture. 

We now describe how the algorithms transform 
the  states defined by  the algorithm data  structure. 
Since  a formal treatment  (see  Harel,” and 
Loeckx and Sieber”)  is beyond the  scope of this 
paper, we give an intuitive description of how the 
algorithms are built from the  atomic  parts and 
how these  atomic  parts  work  on  an imaginary 
computer. It will conceptualize  the notion of “ex- 
ecution” for the algorithms, even if,  in general, 
the algorithms are not executable by  any  real 
computer. 

We think of an algorithm as a combination of stan- 
dard  instructions  and  pseudocode  instructions. 
We describe  the  former by using the  concepts 
developed by Edsger Dijkstra in the 1970s and 
further developed in the 1980s by David Gries and 
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Table 1 Subset of Dijkstra-Gries  instructions 

instructions in Gries-Dijkstra  Behavior  During  Execution 
Notatlon 

skip Step 1. Do nothing; 
skip  Step 2. Terminate. 

Composition 
/* 9 and % are algorithms. */ 

9, %? 

Step 1. Execute 9, 
Step 2. Execute %, 

Step 3.  Terminate. 

Assignment Step 1. Compute the value of the expression E in the current program 
I* x is a variable and E is an state. If E is undefined then crash. Otherwise go to the next step; 
expression of the same type. */ Step 2. Get the new program state by replacing the value of the variable x 

x :  = E by the value of E and leaving the values of all other variables unchanged; 
Step 3. Terminate. 

Simple IF Step 1 .  Evaluate the guard y. If it is undefined then crash. Otherwise go to 
/* y is a Boolean expression and 9 and the next step; 
% are algorithms. */ Step 2. If y evaluates as true, execute 9. Otherwise execute %; 

i f y + $  Step 3. Terminate. 
O l Y + %  
B 

Simple  Loop Step 1. Evaluate the loop guard y. If y evaluates as false, then terminate. 
I* y is a Boolean expression and 8 is If y evaluates as true, then go to Step 2. If y is undefined, then crash; 
an algorithm. */ 
d o y - + 9  
od 

Step 2. Execute the loop body 9. When and if 9 terminates, go to Step 1. 

his students.  Since  the Dijkstra-Gries program- 
ming notation is very simple, we enjoy  the benefit 
of being free from the “language bias”  that would 
be  hard to avoid by using such programming lan- 
guages as PWI, C, or Pascal. 

The  subset of the Dijkstra-Gries  instructions in 
Table 1 that  we  are using without modifications 
consists of the skip, the composition,  the assign- 
ment,  the simple IF, and  the simple loop.  Note, 
however,  that  instead of using the simple loop 
directly, we use  its modification that we call the 
simple verifiable loop. Since all the  loops we use 
are “hidden” inside generic algorithms, it is not 
necessary  to understand simple verifiable loops in 
order  to  be proficient in using generic algorithms. 
Simple verifiable loops are described in Appendix 
A. 

Our  use of the  term  “pseudocode  instruction” 
given in Table 2 is  not  quite common. We  write 

pseudocode  instructions in the form of specifica- 
tions  with  the identifiers taken from the  data 
structure of the  overall algorithm (with new  spec- 
ification variables  possibly  added). ‘’ The  only al- 
lowable difference in the  treatment of the identi- 
fiers is that  some  variables from the  overall  data 
structure could be  redeclared as  constants within 
the  scope of the instruction.  It  means  that  the 
instruction  may  not  change  the  values of these 
variables during its  execution. As a  shorthand we 
assume  that all the  variables not explicitly occur- 
ring in the  invariant  and  the  postcondition of the 
instruction are regarded as  constants, and they 
need  not  be explicitly redeclared. 

On usage of terms ‘program ’’ and “algorithm. ’’ 
Within the program development  community  the 
term  “program7’ usually means  “something  that 
is written in a programming language and  that  can 
be  converted by a compiler into  executable 
code.”  The  term “algorithm” is understood in its 

166 YAKHNIS,  FARRELL, AND SHULTZ IBM SYSTEMS JOURNAL,  VOL 33, NO 1, 1994 



Table 2 Pseudocode  instruction 

Pseudocode  instruction  Behavlor  Durlng  Execution 

/* a, p, cp, + are logical assertions and 
CON is an  optional  clause of the form con V, 
where V is a possibly empty list of 
variables from the overall data  structure. 
The status of all the identifiers from V 
together with all variables not occurring in 
p A # is temporarily changed from 
“variable” to “constant” with the scope of 
the change limited to this instruction. After 
the instruction is completed, their former 
status is restored. */ 

/[CON, constr a; inv p; pre 9; post + ] I  

/* If any of constr a; inv p; pre p; or post + is omitted, the 
respective clause is defined to be true. For inheriting the 
constraint of the overall specification we write con&*. */ 

Step 1. Evaluate a A p A p in the initial state. If  it evaluates as 
false or is undefined, then crash. If  it evaluates as true, then go to 
Step 2; 

Step 2. If there is a state such that: 
(a) the values of all the constants, of the identifiers from V and 

of all the variables not occurring in /3 A +, are  the same as 
in the initial state; 

(b) the resulting state satisfies a A p A +, 
then choose any state satisfying (a) and (b)  as the final state and 
terminate. Otherwise crash. 

usual mathematical  sense, i.e., “a sequence of 
instructions  denoting  some meaningful actions.” 
An intermediate  product of program development 
(which could be thought of as a mixture of pro- 
gram instructions  and  pseudocode) is usually re- 
ferred to  as “design.” 

In  contrast, in the  literature  the  term  “program” 
is  sometimes used loosely  and  may include what 
program developers could regard as “design.” 
Recognizing this, we suggest calling all of the  con- 
structions  composed  from  standard  instructions 
and  pseudocode  instructions  “algorithms,” while 
reserving the term  “programs”  for algorithms 
that  do not include the  pseudocode  instructions. 
It  is  then  clear  that  “derivation of algorithms from 
specifications” refers to  the development  of  both 
programs  and design in the terminology of pro- 
gram developers. 

b 

Program  derivation  and  the  generic 
algorithms  approach 

The  Dijkstra-Gries  school of program  derivation. 
The  essence of the program development  ap- 
proach  taught  by  the  Dijkstra-Gries  school  con- 
sists of extracting a proved algorithm from a given 
specification in such a way that  both  the algorithm 
and  the proof are  developed in small increments 
with elements of the proof preceding the  corre- 
sponding elements of the algorithm. Despite  some 
more  recent publications, classical Gries’ is still 
the  most definitive book  on  the  subject,  contain- 

D 

ing not  only  numerous  techniques, examples, and 
anecdotes  but also such  advanced  topics as deal- 
ing with partiality (see  more  on it  in Appendix A). 
A later refinement of the methodology is  known 
as “ c a l ~ u l a t i o n a l . ” ~ ~ ~ , ~ ~  By adding more  tech- 
niques  for manipulation with formulas, it shows 
how programs could be calculated from the spec- 
ifications in a rigorous  and elegant way. 

Since  the DO-loop is the most difficult program- 
ming element to prove,  this  school  concentrates 
mostly on extracting  “candidates” for the  loop 
invariants from the specifications. Once a good 
“candidate”  is found, the loop guard and the loop 
body  are ‘‘calculated’’ around it. If the calculation 
is unsuccessful,  another  “candidate” will be 
sought.  This methodology is very powerful. How- 
ever, it is not  free of disadvantages: 

1. To efficiently utilize the methodology, one  has 
to have a high level of mathematical skill. An 
ability to prove simple logical assertions  may 
not  be enough. 

2. When reasoning about  the program on  the 
level of invariants, a great  deal of program- 
ming intuition is lost. For  instance, while look- 
ing into Kaldewaij’s elegant solution of the 
maxsegsum problem, one could have a feeling 
that  we  are dealing with a recursively defined 
function.  But it is not explicitly seen behind 
the manipulations with formulas. 

3. As presently taught, the methodology requires 
application of the  same  detailed  technique 

1 
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again and again, though for different programs. 
In deriving programs, one  can  often  see  that 
the  exact  same thing was already  done  before, 
but  there  is no way given to  “reuse” it. It is 
especially obvious  with  the  “tail recursion’’ 
and “search  by elimination” techniques dis- 
cussed in Kaldewaij. 

Recently  an  interesting  work by Bohorquez  and 
Cardoso”  addressed  the  second  disadvantage by 
providing intuitive motivation for some of the 
techniques  for  extracting  the  loop  invariants and 
by making them  more  general.  However,  this 
work did not  address  the first and third disadvan- 
tages. 

Generic algorithms. We now describe  the  generic 
algorithms of our  approach. 

The approach. Our  new methodology “deriving 
programs using generic algorithms” extends  the 
Dijkstra-Gries methodology and is designed to 
overcome  the  three  disadvantages listed above.  It 
is based on the  notion of a  generic algorithm. A 
generic algorithm has  the following features: 

A formal specification 
A formal proof that it satisfies this specification 
Generics 

Our methodology consists of 

Creating  a collection of generic algorithms that 
cover  most of the DO-loops occurring in pro- 
grams 
Applying this collection to  the program deriva- 
tion  process  as  described  later 

This methodology overcomes  the  previously men- 
tioned disadvantages as follows: 

1. Since  generic algorithms are supplied with 
loop  invariants  and bound functions,  the  prac- 
titioner  is  freed  from  either looking for the loop 
invariants or proving that  the  loops  terminate. 
Therefore, with the  generic algorithms an abil- 
ity  to prove simple logical assertions  may be 
sufficient. 

2. Generic algorithms enhance  the intuition. For 
instance,  the maxsegsum problem is easily 
solved by  an intuitively clear  generic algorithm 
for computing recursive  functions. 

3. Generic algorithms allow reuse of both  the  de- 
sign and the proofs. For instance,  “tail  recur- 
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sion” and “search  by elimination” techniques 
were converted  into  generic algorithms. 

Although the  features of a generic algorithm are 
not  new, their combination,  together with the way 
we apply the  generic algorithms to  the program 
derivation process, is new. 

However, we would like to acknowledge a  pre- 
vious  work  (see  Kieburtz  and S h ~ l t i s ~ ~ )  develop- 
ing an approach in some  aspects similar to  ours, 
though quite different overall. We discuss  the 
similarities and differences between  the  ap- 
proaches in Appendix A. 

Examples of generic algorithms. The first  ex- 
ample of a  generic algorithm is Star-Recursion 
shown in Figure 5. 

The  next  generic algorithm, shown in Figure 6, 
illustrates  the use of specification variables. 

A libraly of generic algorithms. We  have  created 
a  library of generic algorithms that implicitly con- 
tains  many  techniques of program derivation  con- 
verted  into  generic algorithms, as well as generic 
algorithms not corresponding to a single such 
technique.  Some of our  generic algorithms were 
developed using the  Dijkstra-Gries methodology, 
and the  rest  were derived using our  extension of 
the Dijkstra-Gries methodology. So far we have 
about 30 algorithms in our  library. On the  basis  of 
our  development  experience  and by working 
through numerous  examples in such classical 
textbooks as Gries,2 C ~ h e n , ~  and Kaldewaij, we 
became  convinced  that  our  library  covers most of 
the DO-loops  a  programmer could conceivably 
encounter in everyday  work. 

In Yakhnis,  Farrell,  and  ShultzZ6 we list the li- 
brary of generic algorithms in Dijkstra-Gries no- 
tation. The  work of converting  them  into  other 
languages is underway. We present below a  par- 
tial list of these generic algorithms: 

1.0 Computation of recursive  functions using 
DO-IOOPS 
1.1 Simple recursive  function 
1.2 Finite  memory  recursive  function 
1.3 Star  recursion 

2.0 Searches 
2.1 Search  by elimination 
2.2 Searches with quantifiers 
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Figure 5 Star recursion algorithm 

([Star-Recursion 
/* Compute G(yzero) and put the result into r .  G does not occur in the standard instructions. A function G takes  a V value 
and creates an X value. It satisfies the “star recursion” property: G(y) = G(tail(y)) head(y), where A is a binary 
associative operation and tail and head are functions declared below. *I 

spec G : V - + X  
BOUND : V -+ N /* N is the set of all nonnegative integers */ 

con base : {y: Vllow-bound(y)}+X /* computes the function G for y E V with low-bound(y) = true */ 
low-bound : V -+ B /* B = {true,  false} */ 

tail : (y: VI llow-bound(y)}-*V 
A : X x X - X  

idstar : X /* identity value for operation */ 
head : 6: VIllow-bound(y)}+X 

yzero : V /* input *I 
var r : X  /* output *I 
constraint 
A is a binary associative operation with an identity value 
A 
idstar is the identity value of A 
A 
p y : v  e /* star recursion properties */ 

low-bound(y) 3 G(y) = base(y) 
A 

A 
llow-bound(y) + G(y) = G(tail(y)) Q head(y) 

low-bound(y)o  BOUND(y) = 0 
A 
llow-bound(y) j BOUND(tail(y)) < BOUND(y)) 

postcondition r = G(yzero) 

algorithm 
I[ 
var Y : V /* work variable */ 

y : = yzero; 
r := idstar; 
do llow-bound(y) + 

/* initialize work variable *I 
/* initialize output value */ 

invariant G( yzero) = G ( y )  Q r 

bound  function BOUND(y) 
~ ~~ ~~ 

r := head(y) Q r;  

4 
y : = tail( y )  

r : = base(y) A r 
11 
11 

~ 

/* accumulate new r */ 
/* decrement loop counter */ 

/* complete accumulation of output value */ 

2.2.1 General quantifiers 
2.2.1.1 Unbounded 
2.2.1.2 Bounded 

2.2.2 Boolean quantifiers 
2.2.2.1 Unbounded 

2.2.2.2 Bounded 

3.0 Logarithmically efficient algorithms 
3.1 Binary search 
3.2 Binary iteration 
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Figure 6 Generic  algorithm  with  specification  variables 

[[Action-Unbounded-Linear-Search-Strict 
/* For every element x in a given nonempty ordered finite set SETAB, with the exception of the greatest element, we 
would like to “do something,” Le., perform unspecified actions making a property P(x) of the program variables true. 
Simultaneously, we would  like to find the greatest element in SETAB. We  will know that x is the greatest element when a 
given  Boolean function high-bound(x) returns “true.” */ 

SETAB /* set */ 

1 spec  con < : SETAB-SETAB 
B : SETAB 

/* e is the binary relation symbol. */ 

spec var P : {x: SETAB 1 x f B} ”* B /* P(x) is defined for all x such that x is in SETAB and x # B */ 

con a : SETAB 

high-bound : SETAB 4 B 
next : {x: SETAB 1 x f B} ”* SETAB /* next(x) is defined for all x f B */ 

var i : SETAB 

constraint 

SETAB is totally ordered by < 
A 
a is the smallest element of SETAB in respect to < 
A 
B is the greatest element of SETAB in respect to < 
A 
B is the unique element of SETAB satisfying high-bound(x) = true 
A 
next is the successor function on SETAB in respect to < 
/* If x is in SETAB and x f B then next(x) is the smallest element of SETAB that is greater than x in respect to <. */ 

postcondition 
I” If a and /3 are statements describing some properties of x, then “(Vx : X I a - p)” means “for all such x from the set X 
that a is satisfied, /3 is satisfied as well.” */ 

i = B A (Vx : SETAB I x < B P(x)) 

algorithm 
i :  = a ;  
do +zigh-bound(i)  -+ 

invariant i E SETAB A (Vx : SETAB 1 x < i * P(x)) 
bound  function #{x : SETAB I i < x 5 B} /* The number of elements in SETAB that are greater than i and less or 

I[hv (Vx : SETAB I x < i - P(x)); post P(i))]l; 
i := next(i); 

equal than B. */ 

od 
11 

Deriving  programs  using  generic  algorithms. The follows. Given a formal specification we must first 
following subsections  show  the  use of our ap- check  whether it is sensible. If it is, view it as  an 
proach in program development. algorithm consisting of a unique pseudocode in- 

struction.  The  process of derivation  consists of 
Theprogram derivationprocess. With the  advent  several  stages,  each resulting in an algorithm hav- 
of the  library of generic algorithms the program ing more detail than  the  previous  ones. We may 
derivation  process could be ideally represented as  stop  either  when  the algorithm becomes a pro- 
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Each of those  stages-consists of one  or more  it- 
erations of the following steps: 

B 1. Choose  a  pseudocode  instruction from the al- 
gorithm created in the  previous  stage. 

2. Choose  a  generic algorithm in the  library  that 
might be doing similar work. 

3. Adapt  the  generic algorithm by replacing some 
of its identifiers with the conceptually similar 
constructions  based on the identifiers of the 
pseudocode  instruction.  Adapt  the specifica- 
tion of the  generic algorithm by the  same  re- 
placement of identifiers. Below we explain this 
step in more detail. 

4. Justify  that  the  adapted specification from 
Step 3 correctly implements the specification 
of the  pseudocode  instruction.  We explain 
later how to  do it in a simple three-step  pro- 
cedure. If the justification fails, go back to 
Step 2. 

5 .  Replace the pseudocode  instruction in the al- 
gorithm created in the  previous  stage by  the 
algorithm from Step 3. 

D 

In  the following two  subsections we illustrate 
Steps 3 and 4 by deriving an algorithm factorial 
from the specification Factorial-Spec. We  can  ar- 
rive at  Step 3 with relative ease. It is easy  to  see 
that Factorial-Spec is  sensible (i.e., there is at 
least one initial state). Step 1 is trivial since we 
have  only  one  pseudocode  instruction, namely 
Factorial-Spec itself. At Step 2 we look  at  the 
formula n! = (n - l)! * n  and see a  resemblance 
to the star recursion formula G(y) = G(taiZ(y)) iK 
head(y)  from Star-Recursion. Thus  we  choose 
the  latter  for  Step 3. 

Replacing  identiJers in the  generic algorithm: 
Clarifying Step 3. As already  mentioned, we 
adapt  the generic algorithm by replacing some of 
its object identifiers by their analogs, Le., con- 
ceptually similar constructions  based on the  iden- 
tifiers of the  pseudocode  instruction. The adapted 
algorithm is  intended to  work with the  states de- 
fined by  the  data  structure of the  pseudocode in- 
struction (with, possibly, some  work  variables 
added as described below). As  we shall see,  some 
of the  adapted algorithms should be  rejected  even 
before going to  Step 4. We  start  from  the follow- 
ing two  questions: 

1. Which object identifiers must  have analogs? 

B 

D 

D 
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First, all the specification identifiers, constants, 
and input variables  must  have analogs, otherwise 
the  adapted algorithm should be  rejected. In our 
example, a  comparison  between  the  factorial for- 
mula and  the  star  recursion formula yields “!” as 
the analog of G and “*” as  the analog of “*”. A 
comparison  between  the  postconditions  yields r 
as  the analog of r and  nzero as  the analog ofyzero. 
We defer finding the analogs of the  rest of the 
identifiers until we answer the second  question. 

Second, some of the noninput variables may not 
have analogs. For example, the work variables 
never have analogs.  Recall that  the “work” varia- 
bles are those variables that do not appear in the 
specification of the algorithm but only in the body 
of the algorithm. In our example,y  is  the only work 
variable in Star-Recursion, and it does not have any 
obvious analog  in terms of Factorial-Spec. An- 
swering the second question, we  say that each non- 
input variable x not having an analog is retained in 
the adapted algorithm as a  workvariable. However, 
if the specification of the pseudocode instruction 
already has an identifier with the same name, x 
should be renamed in order to avoid the clash. Later 
we will discuss which types may be assigned to  the 
variables that we retain. 

We would like to introduce  the  notion of a data 
structure  translating map which is a  convenient 
tool for analyzing the  adaptation of generic algo- 
rithms. Such  a tool maps  every  object identifier of 
the  generic algorithm having an analog into  this 
analog, and it maps  every  other  object identifier 
into itself. In addition, it maps  the  generic  type 
identifiers into  some  type  constructions  based on 
the  type identifiers of the  pseudocode  instruction. 
Since  a formal discussion of how to map  the ge- 
neric  type identifiers is beyond  the  scope of this 
paper (it is  based on  the notion of “signature  mor- 
phism” [see  Appendix A] and is not  needed  for 
most  practical  applications), we illustrate the 
mapping of types  on  our example. 

Comparing the declarations !:N-tN and G:V+X, 
we guess  that it is  natural  to  map  both V and X into 
N. Designating the  data  structure translating map 
for  our example as h, we  see  that h(V) = N, h(X) 
= N, h(G) = !, h(&) = *, h(r) = r,  h(yzer0) = mer0 
and h(y) = y. The  data  structure  translating 
map could be easily extended to mapping formu- 
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las: if rp is a formula, then h(p) is the  result of 
replacing every identifier x in rp by h(x). Using this 
we can extend h  to all type constructions, e.g., the 
type of tail is ~:V17Zow-bound(y)} + V. Later 
we will learn that  the analog of -,low-bound(y) 
is y f 0. Thus, h(b:YIIZow-bound(y)}~V) is 
~.Nly#O}-+N, which is the  set of  all functions 
taking positive integers and returning nonnegative 
integers. 

As was already  mentioned, the adapted algorithm 
operates  on  the  states defined by  the  data  struc- 
ture of the  pseudocode  instruction augmented by 
some  workvariables.  Thus,  for  every identifier of 
the  generic algorithm x having analog h(x), the 
type of h(x) in the  adapted algorithm is  deter- 
mined by  the  pseudocode  instruction. Given an 
object identifier x:V in the  generic algorithm, the 
type of h(x) in the  adapted algorithm may be dis- 
tinct from h(V). For  example,yzero  is  declared  as 
yzero:V’, hkzero) = nzero, h(Y) = N but  nzero is 
declared as nzero: Z in Factorial-Spec. 

In the  adapted algorithm, we may assign any 
types  to the  workvariables  as long as the formula 
Keeping  the Variables within Types defined be- 
low is true.  This formula is designed in such  a way 
that if a  work  variable is assigned a  type W ac- 
cording to  the formula, it may be assigned any 
type containing W. The  other  restriction on types 
may be imposed by  the programming language. 
We  assume now that we assigned some  types  to 
the  work variables. Adding the corresponding dec- 
larations to  the data structure of the pseudocode 
instruction, we form the atended data structure. In 
our example, we assign t o y  the type E. 

Now,  suppose  that  h  is  a  data  structure  translat- 
ing map,  and  suppose  that  Constr,  Inv,  and Pre 
are, respectively, the  constraint,  the  invariant, 
and the  precondition of the  pseudocode  instruc- 
tion and CONSTR is  the constraint of the  generic 
algorithm. We designate the collection of all ob- 
ject identifiers of the generic algorithm aSALL, the 
collection of  all specification identifiers, con- 
stants, and input variables of the generic algo- 
rithm as INPUT, and the collection of all variables 
of the  generic algorithm as VAR. 

Also, for a collection S of object identifiers of the 
generic algorithm, let Gen-Type-offS) be  the  con- 
junction of all the  statements of the formx € X, 
where x is in S and X is  its  type in the  generic 
algorithm. Let Pseudo-Type-of(S) be  the  con- 
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junction of all the  statements of the form h(x) E 
Y, wherex is  in S and Y is the type of h(x) in terms 
of extended data structure of the pseudocode in- 
struction. We say that h “respects the  types” if the 
following two formulas are true: 

Initiating the Identifiers: 
(Constr A Znv A Pre A Pseudo-Type-of(ALL)) + h(Gen-Type-of(1NPUT)); 
Keeping the  Variables within Types: 
(h(C0NSTR) A h(Gen-Type-of(ALL))) + Pseudo-Type-of( VAR). 

Respecting the  types is a  necessary condition for 
correctness of our proof of the validity of the 
method  (see  Appendix A). Therefore, we reject 
an  adapted generic algorithm if the  corresponding 
data  structure translating map  does not respect 
the  types. 

Returning to  our  example, let us verify  that  the 
part of h  that we have defined so far  does  not 
violate the  “respecting  the  types”  property. As 
an example, to  check  the  property  foryzero, it is 
sufficient to show  that  (Constr A Inv A Pre A 
nzero E Z) 3 nzero E N. (Since  the identifiers 
may be interdependent, proving “respecting the 
types” in isolation may not always work.) This is 
trivial since Constr includes a conjunct nzero 2 0. 
In order  to  check the  property for Y, it is sufficient 
to show  that (h(C0NSTR) A r E N) 3 r E E .  This 
is trivial since N is a  subset of Z. Let us show  that 
the dec1arationy:Z does  not  violate  the  property 
of respecting  the  types.  It is sufficient to show  that 
(h(C0NSTR) A y E N) + y E E. Again, this is 
trivial. According to our experience, similar proofs 
are almost always trivial. 

The following shortcut  often could be used for 
variables. If  x:V is  the  declaration of a  variable in 
the  generic algorithm and if  h(x):VV is the decla- 
ration of h(x) in the  extended  data  structure of the 
pseudocode  instruction,  then Keeping the Vari- 
ables  within  Types  is satisfied for x if h(V) is a 
subset of W. 

Let  us consider now what will replace the identifier 
tail. Comparing the equations for G and !, the best 
candidate for the replacement is the function that 
takes an integer value n and  returns n - 1. How- 
ever, the data structure for Factorial-Spec does not 
have a name associated with this function. Though 
mathematically valid, adding a new identifier asso- 
ciated with this function to Factorial-Spec would 
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violate a programming  principle, formulated in 
Gries, stating that in the process of derivation one 
should not add new identifiers,  unless absolutely 
necessary. In our approach the only legitimate 
ways  to add new identifiers  is via “retaining vari- 
ables” from the generic algorithm. 

One way  to deal with the  situation is to  use  func- 
tion constructions  (see  Appendix A). However, 
since  their usage assumes  the knowledge of A-no- 
tation, we give here  an  alternative  method involv- 
ing the  use of abbreviations. An abbreviation is a 
temporary name assigned to a function with the 
agreement  that  instead of using this name directly 
in the algorithm, only  the  value it returns  when 
applied to arguments will be used. As an example, 
let us assign the name “minus-one” to  the func- 
tion that takes an integer value n and returns n - 1. 
We can define  now  h(tai1) = minus-one. However, 
when we replace an expression tail(y), instead of 
replacing it with minus-one(y), we replace it with 
y - 1. If there is another expression involving tail, 
say, tail(z), we replace it with z - 1. 

Similarly, we replace head(y)  byy . Now we have 
exhausted  the information we can extract from 
comparing n! = (n - l)! * n and G(y) = G(tail(y)) 
A head(y).  Consider l lowbound(y)  3 G(y) = 
G(tail(y)) A head(y). By replacing everything we 
can  replace so far, we get -dowbound(y) + y! = 
(y - l)! * y.  Since  the  formulay! = (y - l)! holds 
for all y > 0, l lowbound(y)  corresponds  to y > 
0, and thus lowbound corresponds  to  y = 0. Let 
us  check  the  “respecting  the  types”  property for 
tail.  We  must  show  (Constr A Inv A Pre A 
minuspne E (y: Zly > 0) + z’) 3 minus-one E 
(y:Nly > 0} -+ N. The  consequence of this impli- 
cation  directly follows from the definition of 
minus-one. We leave  the  rest  to  the  reader. 

Replacing the identifiers and expressions from 
Star-Recursion by  those from Factorial-Spec is 
illustrated in Figure 7. The more mathematically 
precise  data  structure  translating  map is illus- 
trated  later in Figure 8 in Appendix A. The  arrows 
point from the  objects being replaced to the  re- 
placing objects. 

Let SC,  SV, C, and V be,  respectively,  the col- 
lections of specification constants, specification 
variables,  constants,  and  variables from the 
pseudocode  instruction,  and let S C ’ ,  S V ,  C’, 
and I/‘ be their respective  counterparts from the 
specification of the  generic algorithm from Step 2. 
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Figure 7 Replacing the identifiers and expressions 
from Star-Recursion by those from 
Factorial-Spec 

Generic Objects Implementing Objects 
types types x b N  

V > N  

G 
spec con 

> !  
BOUND(y) - * Y  
con  con 

spec  con 

base ( Y )  5 1  

hea4Y) 

low-bound(y) , y = o  
tuif(y) + Y - 1  

A :-! 
idstar 
yzero nzero 

r b r  

var var 

We summarize now our  requirements  on  a  data 
structure  translating  map h: 

1. Each specification constant from SC’ must  be 
mapped to  a  construction  that may have  only 
occurrences of identifiers from SC or C. 

2. Each  constant from C’ must  be mapped to a 
construction  that may have  only  occurrences 
of identifiers from C. 

3. Each specification variable from SV’ must  be 
mapped to  a  construction with no occurrences 
of variables from h (V) .  

4. Each input variable from I/‘ must be mapped 
to an input variable from V. Noninput  varia- 

Figure 8 The data structure translating map h from 
Star-Recursion to Factorial-Spec 
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tail h , (hn:Nm-l) 

head h (An:Mn) 
A h’ * 

idstar h , 1 
yzero h , nzero 

var var 
r h 
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bles are mapped  into  noninput  variables. Dif- 
ferent  variables  must be mapped  into different 
variables. 

5. A  function  may  be  replaced  only by a  function 
with  the  same  number of arguments. 

6. h  respects  the  types. 

If any  one of the  conditions  is  not satisfied, we 
reject  h  and  the  corresponding  adapted algorithm. 
The  conditions  ensure  that  the  correctness proof 
for  the  generic algorithm is still valid after  replac- 
ing the identifiers via  a  data  structure translating 
map  (see  Appendix A). However, if partial func- 
tions  are  used,  the  data  structure  translating  map 
should  satisfy  an additional condition, formulated 
in Appendix A. Those  concerned with the  use of 
partial  functions should also  read  Appendix A. 

The  data  structure  translating  maps  are  related  to 
answering the following question: When is it pos- 
sible to implement a  collection of types  and  op- 
erations  by  another collection of types and oper- 
ations?  Such  an implementation is  sometimes 
called “data reification.” It is discussed in 
Jones, ’’ Clement,27  and  other  works.  However, 
there is a  subtle difference between  the  data  struc- 
ture  translating  maps and data reification. 
Whereas  the  latter starts from a  more  abstract 
structure  and  seeks  to implement it by a  more 
concrete  structure in order  to  take  advantage of 
the  more  concrete  types  and  operations,  the  for- 
mer starts from a  more  concrete  structure  and 
seeks  to  take advantage of the algorithm formu- 
lated in terms of a  more  abstract  structure.  Since 
the  data  structure  translating  maps  have  to  ac- 
commodate the separation of the identifiers into 
four  distinct  classes and since we  treat  the partial 
function differently, the notion of data reification 
from Jones” is not sufficient for  our  purposes. 

Implementing  one  specification  with  another 
specification: Clarijjhg  Step 4. With the  above 
clarification for  Step 3, we may explain the pro- 
cedure in Step 4. Suppose  that Constr,  Inv,  Pre, 
and Post are,  respectively,  the  constraint,  the in- 
variant,  the  precondition,  and  the  postcondition 
from the  pseudocode  instruction.  Assume  further 
that Constr’, Znv’, Pre’, and Post’ are their re- 
spective  counterparts from the  adapted specifi- 
cation of Step 3. 

In  order  to  be assured  that  the  adapted specifi- 
cation  from Step 3 correctly implements the  spec- 
ification of the  pseudocode  instruction, it is suf- 
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ficient to  verify  the  correctness of the following 
three formulas. Here  we refer to  the pseudocode 
instruction  as  “old”  and to  the adapted specifi- 
cation as “new”: 

1. Establishing  the  new initial extended  con- 
straint,  invariant,  and precondition: 

(Constr A Znv A Pre A Pseudo-Type-of(ALL)) 
3 (Constr’ A Inv’ A Pre‘) 

2. Maintaining the old extended  constraint: 

(Constr’ A h(Gen-Type-of(ALL)) 3 Constr 

3. Establishing  the old postcondition and rees- 
tablishing the old invariant: 

(Constr’ A Znv‘ A Post‘ A h(Gen-Type-of 
(ALL))) 3 (Inv A Post) 

The  data  structure  translating  maps  (together 
with the  above formulas) can  be used for mapping 
from any given specification, not  just from the 
specification of a  generic algorithm. Thus,  the ma- 
terial in this  section  is  related to answering the 
question: When does  one formal specification im- 
plement another?  Such  an implementation is 
sometimes called “refinement.” It  is  discussed in 
Gries,’ Morgan,”  Woodcockz8  and  many  other 
works.  Our  case differs from the traditional in- 
vestigations of these  questions in the  separation 
of the  object identifiers into four classes  and (for 
the sequential  case) usage of the  constraints. 

Derivation of Factorial. In  order  to finish the  der- 
ivation of Factorial, we have  to  prove  correctness 
of the  three  formulas  from  the  previous  discus- 
sion. We only do it for the third formula, leaving 
the  rest to  the reader. 

Let us  construct  the  adapted  constraint using the 
data  structure  translating  map  from  Figure 7: 

(* is  a  binary  associative  operation  with  an iden- 
tity) A (1 is the  identity  value of *) 

A 

(Vy:N * (y = 0 3 y! = 1) A (y f 0 * y! 
= (y - l)! * y) A (y = 0 e y  = 0) 
A ( Y # O * Y - 1 < Y ) )  

By throwing out all trivially true  conjuncts, we get 
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(vy:N*(y=O~y!=1)A(yfO~y!=(y-1)!*y))  

Finally, we  are required to  show that 

((Vy:N - (y = 0 j y! = 1) A (y f 0 3 y! 
= (y - l)! * y)) A r nzero!) =$ 
Vn:N - (n = 0 .$ n! = 1) A 
n f 0 j n! = (n - l)! * n)) A Y = nzero! 

This is obvious.  The  validity of the  other  two for- 
mulas is  just  as  easy  to establish.  Now we  can 
be  assured  that  the  adapted algorithm satisfies 
Factorial-Spec. We list the  adapted algorithm be- 
low. 

I 

I[Factorial 
Factorial-Spec 

var y:Z /* work  variable *I 

y : = nzero; /* initialize work  variable */ 
r := 1; /* initialize output  value */ 
doy  f 0 +. 

r: = y * r; /* accumulate new r */ 
y := y - 1; /* decrement  loop  counter */ 

od; 
/* r = 1 * r; when we inherited  this assignment 
from  the  respective  generic algorithm it became 
trivial. Thus  we may exclude it from the  code. */ 

I[ 

11 
]I/* end of Factorial */ 

Concluding  remarks 

The generic algorithm approach  presented  here 
contains  several  innovations in the application of 
formal methods  to  software  development.  The 
main advance is the notion and  use of generic 
algorithms, including their  properties  and  the 
rules  for how they  can  be applied. 

Generic algorithms are used in the program der- 
ivation process  rather  than  the  various  techniques 
for finding the  loop invariants. With the  generic 
algorithm method for deriving programs,  pro- 
grammers  have at their  disposal  a  library of re- 
usable building blocks  that  they  can  use to build 
a program whose  correctness is proved.  They 
must  understand  the  concepts of formal specifi- 
cation,  but  not  the difficult techniques of deriving 
loops. The use of generic algorithms enhances 
programming intuition and allows for  the  reuse of 
both design and proofs. Experience in our pilot 

efforts in VM development and teaching  classes in 
this  approach  support  our  contention  that  this 
method can  be  used  by  programmers  who  are  not 
experts  at program proofs  or formal derivation. 

We introduce  constraints and specification vari- 
ables within the  framework of program deriva- 
tion, and we extend Dijkstra’s “weakest  precon- 
dition”  predicate  transformer, enabling it to  work 
with constraints,  pseudocode  instructions,  and 
simple verifiable loops  (see  Appendix B). 
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Appendix  A:  Technical  details 

Function  constructions. Here  we define function 
constructions using the  standard  typed A-nota- 
tion. Let us give a brief definition of the A-nota- 
tion. Suppose  that E is an  expression of type X. 
The  notation Ay:V * E designates  the following 
function taking a V-value and  returning  an X-Val- 
ue: Given a  value  w from V, (Ay:V * E)(w) is com- 
puted by: a) replacing all occurrences of y in E by 
w;  and (b \ returning  the  value of the resulting 
expression. 

Our notation for replacing y in E by w is E(y + 

w).  Thus (Ay:V - E)(w) is defined as  E(y + w), 
e.g., (Ay: N * (y - 1))(2) = 1 and (Ay: N * (y = 0))(1) 
= false. 

Let  us  take  advantage of function  constructions in 
describing the  data  structure  translating  map from 
Star-Recursion to FactorialLSpec. This  map  is 
given in Figure 8. 

Conventions  for  partial  functions  and  uninitialized 
variables. Using expressions  that  may  be  unde- 
fined on some states  is  the  way of life for prac- 
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ticing programmers (and often  that  is  precisely 
what  makes  this life miserable). Undefined ex- 
pressions  stem from two distinct  reasons: usage 
of partial  functions and usage of uninitialized var- 
iables. Unfortunately, first order logic, the  easiest 
tool for program correctness proofs, does  not 
treat  either of these  subjects (e.g., see  Shoen- 
fiew9). 

Though some  works  treat  partiality at length 
(e.g., see Breu3’), very few discuss it  in the  con- 
text of program  correctness proofs. We distin- 
guish three influential approaches,  Tucker  and 
Z ~ c k e r , ~ ~  VDM (e.g., Jones”), and Gries.’ Tucker 
and Zucker31 may offer the first truly  exhaustive 
treatment of abstract  data  types  with  error  state 
semantics (i.e., allowing uninitialized variables), 
but it is not addressed to practicing programmers. 
VDM, while intended  for  practicing  programmers, 
introduces  a  three-valued logic and thus  goes  be- 
yond first order logic. Finally, the Gries ap- 
proach’  provides  a  treatment of partiality suffi- 
cient for our  purpose while remaining in the 
framework of first order logic. Our approach  be- 
low is based  on  Gries  with  some modifications. 

We eliminate the problem of undefined variables 
by assuming that algorithms assign values  to all 
variables  at  the beginning of execution.  This is 
true for our  generic algorithms. For dealing with 
undefined expressions we introduce  an  operator 
Def, converting  each  expression  into  a Boolean 
expression evaluating as true if the original 
expression is undefined and false otherwise. For 
an  expression consisting of a single identifier x, 
Def(x) is equal  to 

true, i fx  is a  constant 
x E X, if x is  a  variable  declared as  x:X 

Before defining Def for all expressions, we intro- 
duce explicit domains  for  functions. For a partial 
functionfix tf V the  domain  off is a  total Bool- 
ean-valued  function Dom( f ) : X + E8 such  that for 
every x in M Dom( f )(x) = true if f(x) is defined 
and Dom(f)(x) = false otherwise. We consider 
only  such  functions for which  there is a formula 
$(x) written in the language of the  data  structure 
but  without  occurrences of partial  functions and 
such  that (Vx:X - Dom(f)(x) * +(x)). We place 
(Vx:X * Dom(f)(x) e +(x))  in the  constraint.  As 
a  shortcut  we allow declaringfasf: {x:XJ+(x)} + 
V instead off:% tf V, while omitting the explicit 
definition of Dom(f) from the  constraint. If g is 
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a  total  function  declared  as g:X -+ V, then 
Dom(g)(x) = true for all x E X. 

For example, in the specification for Star-Recur- 
sion in Appendix B, the  function base  is declared 
as  base : (y:Vllowbound(y)} +- X. This  is 
an  abbreviation for declaring base  as  base : 
V t-f X and adding (Vy:V - Dom(base)(y) 
lowbound(y))  to  the constraint. 

A generalization of the  domains  for  functions  and 
partial functions of several  variables is straight- 
forward. Finally, we illustrate how the  operator 
Def is defined on  arbitrary  expressions by means 
of the following example. Letf be  a  binary func- 
tion or partial function  and A and B be  some 
expressions.  Then  Def(f(A,B)) is equal to 
Dom(f)(A,B) A Def(A) A Def(B). In addition, Def 
is used to explicitly  define domains of the A-expres- 
sions, e.g.,  Dom(Ay:V - E) = (Ay:V * Def(E)). 

Having explicitly defined the  operator  Def, it is 
possible for  a given algorithm to  write a  statement 
saying “the algorithm never  attempts  to  evaluate 
an undefined expression.”  A formal algorithm 
correctness  assertion  that implies the  above  state- 
ment is discussed in Appendix B. 

Using  simple  verifiable loops in  generic  algorithms. 
The simple verifiable loop is the Dijkstra-Gries 
simple loop augmented by  the  loop  invariant  and 
the  bound  function and is based  on  the  famous 
“checklist  for  understanding  a  loop” from Gries. 
Although the simple verifiable loop is widely used 
in the  framework of program derivation, it is not 
recognized as an  instruction in its  own right. We 
extend  the  ideas of Gries by recognizing that  the 
simple loop is needed mostly  as  a  stepping  stone 
for  understanding  the simple verifiable loop and 
that  the  latter  is an instruction  deserving  a  sepa- 
rate proof rule. We give such  a rule in Appendix 
B. In our  generic algorithms we use simple ver- 
ifiable loops  instead of simple loops  (see  Table 3). 

Comparing  generic  algorithms  with  schemes  from 
Kieburtz  and  Shultis. In  the pioneering work of 
Kieburtz  and Shulti~,’~ a  version of generic algo- 
rithms (called “schemes”)  was  used within the 
framework of functional programming. The  pur- 
pose was  to convert  a given recursive definition of 
a function into  an efficient DO-loop and  to  prove 
that  the  function and the DO-loop compute iden- 
tical values. 
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Table 3 Using  slmple  verltlable  loops 

Simple  Verifiable  LOOP  Behavlor  During  Executlon 
~ 

/* y is a Boolean expression, cp is a logical 
assertion, E is an integer-valued specification 
expression and 8 is an algorithm. It is established 
that cp is an invariant of 8 and that E is a bound 
function. *I 

doy-, 
invariant cp 
bound function E 
8 

od 

/* The following must be proved beforehand: 
{cp} 8{p} A (cp + Def(y)), i.e., cp is  an invariant of 8, and 
(cp + E e 0) A {E = X} 8 {E e X}, i.e., if cp is true, then E 
is nonnegative and every execution of 8 decreases E at 
least by 1, i.e., E is a bound function. *I 

Step I. Evaluate the invariant cp. If cp evaluates as false, 
then crash. If cp evaluates as true, then go to Step 2; 

Step 2. Evaluate the loop guard y. If y evaluates as false, 
then terminate. If y evaluates as true, then  go to Step 3, 
If y is  undefined, then crash; 

Step 3. Execute the loop body 8. When  and if 8 
terminates, go to Step 2. 

In  a  sense,  the aforementioned recursive defini- 
tion of a  function could be viewed as a form of 
specification for the loop. Since  they  were  proved 
to  be  computationally equivalent and  since  both 
contained  generics,  a degree of similarity with ge- 
neric algorithms exists.  Moreover,  one of the 
schemes  used in Kieburtz  and  Shultis  is  very sim- 
ilar to  our Star-Recursion, though not identical. 
This  scheme is both  more and less general than 
Star-Recursion. On one  hand,  its  constraint on A 
is more general than associativity; on the  other 
hand,  the  scheme  requires base to  be  a  constant 
function  equal to idstur. 

Nonetheless,  there  are significant differences be- 
tween  the  approaches: 

Our purpose is  finding algorithms satisfying 
specifications, whereas  the  purpose of Kieburtz 
and Shultis is finding an efficient way  to execute 
programs written in functional style. 
In many cases a specification does  not  have  an 
obvious rendition into  a  recursive definition. In 
fact,  converting  a specification into  a  recursive 
definition goes  a long way toward providing a 
solution. 
In contrast  to  our generic algorithms, the 
schemes from Kieburtz  and  Shultis  are not sup- 
plied with preconditions.  This  means  that  the 
question of termination was left open. 
Most of our generic algorithms are not covered 
by  the  schemes from Kieburtz and Shultis. 

In spite of the differences, Kieburtz and Shultis 
may be useful for us since in the  future  we  may 
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convert  some of their schemes  into generic algo- 
rithms by supplying their loops with loop invari- 
ants and bound functions. 

Partial  functions  and  data  structure  translating 
maps. Earlier in this  appendix we described the 
notion of an explicit domain Dom( f ) for a partial 
function f .  Assume that f is a  unary function. 
Then Dom( f)(x) is a Boolean expression  that 
may have  occurrences of some identifiers from 
the  data  structure. 1ff:X H Vis an identifier in the 
specification of the  generic algorithm and h is a 
data  structure translating map from the  generic 
algorithm to the specification of the  pseudocode 
instruction,  we may have  two distinct Boolean 
expressions, h(Dom(f)(x)) and Dom(h(f))(x). 
However,  the  “respecting  the  types”  property of 
h allows us to use h(Dom(f)(x)) instead of Dom- 
(h(f))(x).  Therefore, in terms of Wirsinglg and 
B r e ~ , ~ ’  h  can be regarded as  a  “signature mor- 
phism.” 

A sketch of proof  of  the  validity  of  the  approach. 
The  more difficult part of proving the  validity of 
the  approach is showing that  the  adapted  generic 
algorithm satisfies its  adapted specification. With 
this  out of the  way,  the formulas given earlier in 
the  subsection on implementing one specification 
with another specification make  the  rest  obvious. 
Here  we give a  sketch of this  more difficult part 
of the proof. 

Assume  that 9 is the generic algorithm and  h is 
the  data  structure translating map. Assume fur- 
ther  that CONSTR, Z N V ,  PRE, and POST are,  respec- 

YAKHNIS, FARRELL, AND SHULTZ 177 



tively, the  constraint,  the  invariant,  the  precon- 
dition, and the postcondition of 8. Since in the 
properties of generic algorithms we included a 
requirement  that  they  are  proved  to  be  correct, 
we can reformulate the problem as the  question: 
given a  true formula {INV A PRE} ~ K O N S T R  {ZNV 
A POST}, how can we  be  sure  that  {h(zw) A 
h(Pm)} h(8)/h(CONSTR)  {h(zNV) A h(POST)} is true 
as well? 

Using wpc  (“weakest  precondition  with  con- 
straints’,) (see  Appendix B) we can  transform 
{INV A PRE} ~JCONSTR {ZNV A POST} into  a first 
order formula (actually, several  formulas may be 
involved as explained in Appendix B, but it would 
not  change  the reasoning): 

I N V  A PRE j WpC(%/CONSTR, Z N V  A POST) 

In this formula all the identifiers that are variables 
are regarded as first order variables (and are closed 
under universal quantification),  and other identifi- 
ers are regarded as “nonlogical Let  us 
designate the formula as +. Replacing  all the iden- 
tifiers  in + using the map h, we get a formula  h(+). 
Properties 4 and 5 of h ensure that h( +) is  true when- 
ever tc, is true. The problem is that, in general, h($) 
may not be identical to 

h(zw) A h(Pm) j wpc(h(9)/h(coNsTR), h(zw) A 
h(P0ST)). 

Now, employing property 6 of h we can use 
h(Dom(f)(x)) in lieu of Dom(h(f))(x). With this 
in mind and  the  use of properties 4,5, and 6 of h, 
by induction on definition of wpc it is easy  to 
show  that h(tc,) is indeed identical to 

h(zw) A h ( p m ) J  wpc(h(S)lh(coNsTR), h(rw) A 
h(PosT)). 

This  completes  the proof. 

Appendix B: Extending Dijkstra’s weakest 
precondition to constraints and pseudocode 

Weakest  precondition  without  constraints. We first 
extend  the Dijkstra weakest  precondition wp  to 
simple verifiable loops  and  pseudocode  instruc- 
tions. We use  the  Gries  treatment of partiality2 
while relying on our definition of the  operator 
Def. Here “ A ”  means  “equal by definition.’’ We 
assume  that  the logical assertions (like Q or cp) are 

I 
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everywhere defined, whereas  the  expressions 
(like E or y) may be nontotal. 

1. Assignment: wp(x: = E ,  Q) A Q(x E )  A 

2. Composition: wp(8; (9, Q) A wp(8; wp(%, Q)) 
3. Simple IF: Let 9 be  the following program: 

Def(E) 

i f y + 9  

fi 
0 1 y + %  

then 

4. Simple verifiable loop: Let 8 be  the following 
program: 

do y 3 
invariant cp 
bound  function E 
9 

od 

Recall the  properties of y, cp, E ,  and 9. 

{cp} 8{p} A (cp j Def(y)), i.e., cp is an  invariant 
of 8, and (cp j E 2 0) A {E = X} 9 {E < X} 
(where X occurs  neither in B nor in E ) ,  i.e., if 
cp is true,  then E is nonnegative and  every  ex- 
ecution of 8 decreases E at least by 1, Le., E 
is a  bound function. 

Then 

W P P ,  Q) A cp i f c p A l y j Q  
A false otherwise. 

5. Pseudocode  instruction: Let a, p, p, +be log- 
ical assertions and CON be an optimal clause of 
the  form con V, where V is a possibly empty 
list of variables from the  overall  data  structure, 
and let 8 be  the following program: 

([CON; constr a; inv p; pre cp; post $11 
Then 

wp(9,Q) A a A p A c p  i f a A p A + * Q  
A false otherwise. 

Weakest  precondition  with  constraints. If C and 
Q  are  formulas  and 8 is  an algorithm, then 
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wpc(9/C, Q )  is the  weakest formula establishing 
the  constraint C and the postcondition Q. In other 
words, to show {P}  9 / C  {Q}, it is sufficient to 
show P 3 wpc(8/C, Q).  

b 
1. Assignment:  wpc(x: = E/C, Q )  A C + Q(x - 
2. Composition: wpc(9; %/C, Q )  A wpc(WC; 

3. Simple IF: Let 9 be  the following program: 

E )  A C(x - E )  A Def(E) 

wpc(%lC, Q ) )  

i f y - + 9  

fi 

then 

wpc( 9 / C ,  Q) A C 3 Def( y) A 

0 1 y - + %  

b 
(Y 3 WPC(~”~C, Q ) )  A (TY * WPCWC, Q ) )  

4. Simple verifiable loop: Let 9 be the following 
program: 

do y -+ 

invariant cp 
bound function E 
9 

od 

We have  to redefine the  properties of the in- 
variant cp in relation to C: 

{cp>9/C{cp) A (cp A C 3 Def(y)), i.e., cp is an 
invariant of 9 with constraint C. 

Then 

wpc(P/C, Q) A cp i f c p A C A l y 3 Q  

1 

A false otherwise. 

5 .  Pseudocode  instruction: Let a, p, cp, I) be log- 
ical assertions  and CON be an optional  clause 
of the form con V, where Vis a possible empty 
list of variables from the  overall  data  structure, 
and let 9 be  the following program: 

 CON; constr a; inv p; pre cp; post $11 
Then 

wpc(Y/C, Q) A a A p A cp if (a A p A I) + 
Q )  A (a  3 C) 

D 

2 false otherwise. 
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Appendix C: Proving correctness of star 
recursion 

Preliminaries. “A” means  “equal by definition,” 
‘‘e’’ means “if and  only if,” “A A B A C” is 
treated  as “A A B and B A C,” and finally, “A 
e B o C” is treated  as “A o B and B o C.” 
Each of “ A ”  or “0” has  a lower binding power 
than “=”. 

Since  the  constraint  does not have  occurrences of 
the  variable identifiers, we may use  the  predicate 
transformer  wp  (see  Appendix B). 

The loop is well-defined in  regard  to its invariant 
and its bound function. Let  us  denote  the  con- 
straint as C, the  above loop as 2, its  body as 9, 
the guard as y, the  invariant as cp, and its bound 
function as B. Note  that in this  case y, cp, and B 
are  everywhere defined and thus we may omit 
Def(y), Def(cp), and Def(B) from the  consider- 
ation. So, in order  to  show  that cp and B are  cor- 
rectly defined, we must  show 

(C A cp A y + wp(9, cp)) A (C A cp 3 B 2 0) A 
(C A cp A y B = X 3 wp(9, B < X)). 

Note  that C A cp + B 2 0 is trivially true  since B 
A BOUND().’) and BOUND is declared  to  be  a  total 
function returning nonnegative integers. Comput- 
ing W P P ,  cp): 

wp(9, cp) A wp(r := heud(y) ~ r ; y :  = tuil(y), cp) 
4 wp(r: = heud(y) A Y, wp(y: = tail(y), cp)) 

wpo, : = tuil(y), cp) A cpo, +“ tuil(y )) A 
Def(tuil(y))  G(yzero) = G(tuil(y)) A Y 

/* We have  omitted  Def(tuil(y))  since tuil(y)  ex- 
plicitly occurs in G(yzero) = G(tuil(y)) br. Sub- 
sequently, we will do  such simplifications without 
comments. */ 

wp(r: = heud(y) A r ,  G(yzero) = G(tuil(y)) A r )  
o G(yzero) = G(tail(y)) A (heud(y) A r )  

Thus wp(9, cp) e G(yzero) = G(tuil(y)) A 
(head(y) r )  

Showing C A cp A y 3 G(yzero) = G(tuil(y)) A 
(head( y ) A r):  

Assume C A cp A y to  be true in some algorithm 
state. We must show  that wp(8, cp) holds in the 
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same  state.  Since y P l l o w b o u n d ( y ) ,  by C both 
tuil(y) and heud(y) are defined. Since, by C, A is 
associative, get G(tuil(y)) A (head(y) A r )  = 
(G(tuil(y)) A heud(y)) A r .  Since we have  as- 
sumed  that llow_bound(y) holds, the  star re- 
cursion formula gives G ( y )  = G(tuil(y)) A 
heud(y). Replacing (G(tuil(y)) A heud(y))  by 
G ( y )  in the right side of the  equation  to  be  proved, 
get G(yzero) = G ( y )  A r .  The  latter  equation 
holds since cp is assumed  to hold and  since cp S 
G(yzero) = G ( y )  A r .  Done. 

ShowingthatCAcpA y A B = X X w p ( % , B <  
X) is  just as straightforward. So the  loop is cor- 
rectly defined. 

Correctness of the algorithm. By  the rule for wp on 
compositions, proving the algorithm correct is 
equivalent to showing C + w p b  := yzero; r := 
idstur, wp(2; r:  = buse(y) A r ,  r = Gbzero))). 
Let us find wp(2; r : = buse(y) Ar,  r = Gbzero)): 

wp(2; r:  = buse(y) A r ,  r = Gbzero)) 4 wp(2, 
wp(r: = base(y) A r ,  r = G(yzero))) 4 wp(2, 
buse(y) fi r = Gbzero)) 

We must find  wp(32, buse(y) A r = Gbzero)) in 
two steps: 

1. Showing C A cp A l y  + buse(y) A r = 
G(  yzero) : 

Since 1 y  low-bound(y), C implies that 
base(y) is defined and  that G ( y )  = buse(y).  
Thus it is sufficient to show G ( y )  A r = 
Gbzero) .  This follows from cp A G(yzero) = 
G(Y) r .  

2. wp(2,  buse(y) A r = G(yzero)) A cp S 
G(yzero) = G ( y )  A r .  

Therefore, to show  correctness of the whole al- 
gorithm we must  show 

C rS wp(y := yzero; r : = idstur, 9). 

This is straightforward. 
*Trademark or registered trademark of International Business 
Machines Corporation. 

**Trademark or registered trademark of the U.S. Department 
of Defense. 
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