Preface

The acceptance of software, from the mundane to
the complex, depends fundamentally on the de-
gree of quality evidenced by that software. Low-
quality software is a burden to users and is even-
tually either discarded or, in the absence of
alternatives, tolerated. High-quality software is
accepted and promoted. Knowledge about soft-
ware quality and the ability to practice it have
been progressing slowly but inexorably through-
out the industry.

This issue presents a broad view of progress in
software quality, with a focus on IBM’s worldwide
efforts and results. There are eleven contribu-
tions, including an overview on software quality
and discussions of process, methods, tools, case
histories, management, and challenges for the fu-
ture. We are indebted to A. J. Montenegro of IBM
Canada Ltd. in Toronto, Ontario, for his note-
worthy efforts in soliciting and reviewing the con-
tributions and in planning and organizing the is-
sue.

The first contribution is a tutorial by Kan, Basili,
and Shapiro on software quality from the perspec-
tive of total quality management (TQM). Defini-
tions are given, a brief history is shown, TQM and
its philosophy are presented, and the specifics of
TQM as applied to software development are dis-
cussed. Remaining challenges are offered as areas
for further study and practice.

Fred Brooks and his work on mythology versus
reality in software development have become
part of our collective understanding of the soft-
ware arena. His work on the notion of a “silver
bullet” for the essential complexity of software
development is well known. Much of what has
been discovered about software seems to impede
progress toward improved software quality. In
the second paper, Mays proposes and explains
possible means for forging a silver bullet, based
on reducing the inherent difficulties seen by
Brooks in his essential attributes of software. The

2 PREFACE

collected means include such promising tech-
niques as design reabstraction.

It has long been understood that quality in com-
plex software cannot be achieved without atten-
tion to the software development process. Bill-
ings et al. provide a case study from a project that
has earned the highest rating in the Software En-
gineering Institute’s Capability Maturity Model:
the Space Shuttle Onboard Software project. The
focus of the paper is the process and the growth
in process maturity over time, building on inno-
vative ideas, practical experience, and the les-
sons of trial and error.

Software quality is also affected by the manage-
ment system under which it is developed. That
management system has a number of aspects, in-
cluding customer satisfaction, product quality,
continuous process improvement, and the people
involved. Kan et al. present a second case study,
on management systems, drawn from the devel-
opment of Application System/400* (As/400*). The
IBM Rochester site received the 1990 Malcolm
Baldrige National Quality Award for these ef-
forts.

One of the sophisticated tools that has been de-
veloped from new thinking about software quality
is Cleanroom software engineering with its re-
lated processes, methods, and tools. Hausler,
Linger, and Trammell describe the technological
and mathematical underpinnings of this approach
and show a staged implementation for Cleanroom
software development. They also provide results
of its use on one significant project in IBM and
summary results for 17 other projects, totaling
about one million lines of code.

One of the normal, expected events in the life of
a software product is the modification of code
written by someone else. It is also the source of
much frustration and many errors due to a lack of
understanding of the original author’s techniques

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994




and design. Resolving this problem effectively
would significantly aid in the immediate and long-
term quality of software. O’Hare and Troan
present their work on a system called RE-Ana-
lyzer and its related tools, which provide auto-
mated reverse engineering in a computer-aided
software engineering (CASE) milieu. The technol-
ogies they bring to bear on this significant prob-
lem include reabstraction of source code, control
partitioning for managing complexity, and struc-
tured analysis of constructed diagrams of data
flow and state transitions and of models of entity-
relationship data.

Capper et al. consider the impact of object-ori-
ented methods on software quality. They provide
three case studies that show how and when to use
object orientation to improve software quality by
taking adwantage of reuse and code modularity.
Defect rates for the three case studies demon-
strate the effect on quality of the combination of
object-oriented methods with standard software
processes and illustrate the resulting ability to add
function to existing software with high quality.

Looking at some of the latest results in software
development and their impact on quality, Yakh-
nis, Farrell, and Shuitz present possibilities for
deriving programs from their specifications
through generic algorithms, which are explained
at length in the paper. This approach offers the
opportunity to use formal methods for software
development, with their attendant high quality,
while avoiding the mathematical difficulty of for-
mal proofs done by people. Since each generic
algorithm can be used for a large class of potential
programs, the effect of high quality in the algo-
rithms is multiplied and reflected in the high qual-
ity of a number of resulting products.

Bhandari et al. provide examples and discussion
on how defect data, retrieved during software de-
velopment, can be effectively interpreted and
used to correct the process and the product. The
authors present the attribute focusing method,
which is an extension to earlier work on orthog-
onal defect classification. The paper shows broad
classes of projects that can benefit from this
method, and the paper can be used to learn how
the method is applied.

The next contribution to the discussion of soft-
ware quality is included in the Technical Forum,
a new section that was introduced in the last is-

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

sue. The subject is IBM’s current programming
principles and practices, resulting from the efforts
and experiences in improving software quality
during the last few years, as presented by
Bencher.

In a technical note, Watkins adds new insights to
the discussion of reliability models for software
development. He builds on work by Kan, pub-
lished three years ago in these pages, by focusing
on the variations of approach that are possible in
early stages of modeling.

The next issue of the Journal will be a special issue
on enterprise-wide database management and ac-
cess as envisaged by IBM’s Information Ware-
house* framework and related work.

Gene F. Hoffnagle
Editor

*Trademark or registered trademark of International Business
Machines Corporation.

PREFACE 3




