RE-Analyzer: From
source code to
structured analysis

The RE-Analyzer is an automated, reverse
engineering system providing a high level of
integration with a computer-aided software
engineering (CASE) tool. Specifically, legacy
code is transformed into abstractions within a
structured analysis methodology. The
abstractions are based on data flow diagrams,
state transition diagrams, and entity-relationship
data models. Since the resulting abstractions can
be browsed and modified within a CASE tool
environment, a broad range of software
engineering activities are supported, including
program understanding, reengineering, and
redocumentation. In addition, diagram complexity
is reduced through the application of control
partitioning: an algorithmic technique for
managing complexity by partitioning source code
modules into smaller yet semantically coherent
units. This approach also preserves the
information content of the original source code.
It is in contrast to other reverse engineering
techniques that produce only structure charts
and thus suffer from loss of information,
unmanaged complexity, and a lack of corre-
spondence to structured analysis abstractions.
The RE-Analyzer has been implemented and
currently supports the reverse engineering of
software written in the C language. It has been
integraged with a CASE tool based on the VIEWS
method.

Ithough the use of terms such as reverse en-

gineering and reengineering is relatively re-
cent,' the types of activities they denote can be
traced back to the first time someone was re-
quired to change a program that someone else had
created. That part of the software development
life cycle commonly known as maintenance con-
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tinues to consume the majority of all resources,
time, and money spent on software production.
Most of us in the software industry are all too
familiar with statistics such as: for every dollar
spent on software development, nine dollars are
spent on maintenance;? 55 to 90 percent of the
total life-cycle workload is expended on mainte-
nance;’ and 47 to 62 percent of the total time
spent on maintenance activities involves efforts
to comprehend the original source code.*

As the size of the software increases, so does the
time required to comprehend it. As a result, the
cycle time and cost of making an enhancement
have less to do with the projected size of the mod-
ification than they do with the total size of the
software that is to be updated.

Although good documentation is undoubtedly
beneficial, the realities of the problem are that
even when design documentation does exist, it is
often hopelessly out of date with respect to mod-
ifications of the related source code. Even good
documentation will be missing details, the impor-
tance of which only becomes evident long after
the authors of a project have left it. With the de-
velopment of integrated computer-aided software
engineering (CASE) tools, it is possible to provide
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amore dynamic form of design documentation for
at least some classes of software applications.
However, these tools do not address the problem
of maintaining the mountains of legacy code with
little or no accurate documentation for it in ex-
istence today. Unfortunately, the significant ad-
vantages that can be achieved over conventional
development techniques by using CASE technol-
ogy are often precluded by this lack of support for
legacy code.

Clearly, there is a need for techniques and tools
that facilitate the task of understanding software
systems for which the most accurate, if not the
only, source of information is the original source
code.’ Such tools and techniques will lead to sub-
stantial reductions in the amount of time and
money spent on software maintenance as well as
significant improvements in software quality.

Within the world of CASE tools, the methodology
used to represent or model the software system
being developed is crucial to both the creation
and comprehension of software systems. If the
methodology supported by the CASE tool pro-
vides effective concepts and representations for
constructing a model or design of a software sys-
tem, it should be similarly effective in helping one
to understand that same model. Given this rather
basic premise, it seems reasonable to conclude
that it would be extremely useful if one could
produce a mechanism whereby source code could
be automatically transformed into an abstract
mode] using the same representational scheme as
that of a CASE tool methodology. Although many
researchers and CASE tool vendors have reached
the same conclusion, there is enormous variabil-
ity in the methodology chosen, the transforma-
tions made, and the level of integration with a
CASE tool.

Most CASE tools support a structured analysis
methodology such as those of Gane and Sarson,®
DeMarco,” Hatley and Pirbhai,® Ward,® or
ESML." Most of these methodologies also pro-
vide extensions to support the modeling of real-
time systems and thus fall within the class of
methodologies commonly called structured anal-
ysis for real-time systems (SA/RT). !>

SA/RT methodologies involve the modeling of
three different aspects of software, i.e., process,
control, and data. Each aspect represents a dif-
ferent view or dimension of the system being
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The following definitions (except for that of program
understanding) are from Chikofsky and Cross.!

Forward engineering

l is the traditional process
of moving from high-level

abstractions and logical, implementation-independent
designs to the physical implementation of a system.

Reverse engineering

' is the process of analyzing
a subject system to

(1) identify the system’s components and their
interrelationships,

{2) create representations of the system in
another form or at a higher level of abstraction.

Two subareas of reverse engineering are

redocumentation and design recovery.

Redocumentation

is the creation or revision
of a semantically equivalent

representation within the same relative abstraction
level. The resulting forms of representation are usually
considered aiternative views (for example, data flow,
data structure, and control flow) intended for a human
audience.

Design recovery

is a subset of reverse
engineering in which domain

knowledge, external information, and deduction or
fuzzy reasoning are added to the observations of the
subject system to identify meaningful higher-level
abstractions beyond those obtained directly by
examining the system itself.

Restructuring

I is the transformation from
one representation to

another at the same relative abstraction level, while
preserving the external behavior (functionality and
semantics) of the subject system.

Reengineering

also known as both
renovation and reclamation,

is the examination and alteration of a subject system
to reconstitute it in a new form and the subsequent
implementation of the new form. Reengineering
generally includes some form of reverse engineering
(to achieve a more abstract description) followed

by some form of forward engineering or restructuring.

Program understanding I

is the activity of examining
a software system for

the express purpose of comprehending all or part
of its construction. It is actually an objective rather
than a well-defined process and, as such,

it is supported by the various reverse engineering
processes described above.
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modeled. Specifically, processes are modeled us-
ing data flow diagrams (DFDs); state transition di-
agrams (STDs) are used to model control; and
entity-relationship (E-R) diagrams or similar no-
tations are used to model the data aspect of soft-
ware systems. Although these views are clearly
distinct with respect to their domains, they are
not strictly orthogonal. For example, part of the
process model involves both control and data.
Similarly, part of the control model involves pro-
cesses and data.

This paper describes the RE-Analyzer, which
was designed and implemented by the authors as
part of a larger software development methodol-
ogy project. The RE-Analyzer automatically re-
verse engineers source code into graphic and tex-
tual representations within a CASE tool supporting
an SA/RT methodology. That is, it transforms
source code into a set of data flow diagrams, state
transition diagrams, and entity-relationship data
models within the design database of a CASE
tool. Since the resulting representations can be
browsed and modified within the CASE too} envi-
ronment, a broad range of software engineering
activities are effectively supported, including pro-
gram understanding, reengineering, and redocu-
mentation.

Background

Because of the obvious importance of the main-
tenance problem and, therefore, the importance
of reverse engineering activities, a vast number of
techniques and tools have been developed
throughout the history of computing to aid these
activities. These efforts range from the early
cross-reference report generators to recent at-
tempts to provide more robust solutions.

A well-known class of reverse engineering aids,
commonly called program understanding tools,
typically provide on-line, graphic representations
of source code, i.e., a control flow graph, a pro-
cedure-calling structure graph, and possibly some
other dependency graphs. Examples of commer-
cially available tools of this type include Hind-
sight**, PROCASE**, and Logiscope**. The rep-
resentations generated by such tools simply filter
information and provide little or no abstraction of
the underlying source code. That is, analyzing
complex source code produces equally complex
graphs or other representations. The complexity
of the resulting representations is a result of the
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monolithic nature of the representations them-
selves. For example, a single control flow graph
will be produced for all of the source code being
analyzed. For large systems with dozens or even
hundreds of subroutines, the resulting graph will
be extremely dense. This problem is mitigated to
some extent by the use of graph zooming opera-
tions and hypertext-like traversals from a node on
a graph to the associated source code.

Another class of program understanding tools
(e.g., Refine**) constructs a database of informa-
tion from the source code and supports ad hoc
queries made to the database. The principal ad-
vantage of this approach is that the queries can be
saved and then reused on other software systems
to identify similar patterns (e.g., error-prone se-
quences of code). However, any abstraction of
the source code must be performed by manually
constructing the proper queries. Also, such tools
are usually text-based, i.e., they do not provide
any standard graphical representations of the
software that has been analyzed.

Perhaps the most serious drawback of most pro-
gram understanding tools is their failure to pre-
serve any of the knowledge or understanding ob-
tained while using the tool. Other than retaining
queries, there is no provision for automatically
preserving what the user has learned about the
subject system. Ironically, by failing to preserve
and maintain what is learned about a system dur-
ing their use, such tools perpetuate part of the
very problem they are designed to address.

Another disadvantage of these tools is that the rep-
resentations they support, if any, are not consistent
with those typically used to produce the source
code in the first place. Program understanding and
forward engineering activities are often treated as
separate and unrelated tasks that do not require the
same concepts and abstractions. How much better
it would be though, to allow both tasks to be carried
out using the same basic vocabulary and represen-
tational scheme. As suggested above, one clear way
to achieve this end would be to use a CASE tool and
the methodologies it supports as the primary envi-
ronment for both forward and reverse engineering
activities.

The most common approach to integrating re-
verse engineering with a CASE tool supporting an
SA/RT methodology is to generate a structure
chart (e.g., C/Rev** used with the Teamwork™*
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CASE tool). Structure charts represent the archi-
tecture of a software system by depicting the
modules in a system and their interactions, i.e.,
which modules are called by other modules, what
parameters are passed in a call, and what values,
if any, are returned. The basic concepts repre-
sented in a structure chart are: modules, call-re-
turn interactions among the modules, and param-
eters and return values associated with each call-
return interaction (referred to as a data or control
couple).'? Structure charts are particularly useful
in making design decisions about the modulariza-
tion of a system. However, they do not depict any
information about the internal structure of mod-
ules, the structure of the data, the shared or global
data used by the system, or the environment of
the system being modeled. Further, a single struc-
ture chart is used to represent an entire system
since the elements of a structure chart are not
decomposable. For any but the smallest software
systems, the resulting structure chart rapidly be-
comes so complex that it must be supplemented
with annotated connector symbols and tables to
explain their meaning so that the chart can be
spread across multiple pages.

A related approach involves producing a variant of
flowcharts in addition to structure charts from Pas-
cal code. ®® However, the resulting structure charts
provide only structural information (i.e., no data or
control couples are produced). Also, the flowcharts
provide little more than a one-to-one mapping of
source code statements to flowchart objects that
yields no significant abstractions.

There have also been some efforts to produce
some part of the SA/RT representations, i.e., DFDs,
from source code. In one case, a method has been
described for deriving DFDs from structure charts
of Pascal code.* This approach relies heavily on
the lexical scoping of nested procedures and is
not easily generalized to other procedural lan-
guages. In another case, a prototype of an auto-
mated system for representing Ada** tasks using
extended DFDs has been described.” However,
the focus is on modeling concurrency with DFDs,
and the bulk of the source code information is
thus ignored.

To date, systems that automatically generate all
three of the basic SA/RT views of a system, i.e.,
process, data, and control, are only proposals or
in the early stages of development (e.g., MAPR'

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

or the considerably more ambitious Desire sys-
tem'7).

Overview of the RE-Analyzer

The primary objective of the RE-Analyzer is to
support reverse engineering that is fully inte-
grated with the SA/RT constructs of the VIEWS
method. ™ As illustrated in Figure 1, VIEWS en-
compasses both SA/RT and object-oriented devel-
opment methodologies as well as a common re-
quirements modeling technique. The VIEWS SA/RT
methodology is referred to as the Real-Time
Structured Development Method (RTSDM)."
RTSDM was initially based on ESML!® and then
extended to allow for a more precise semantic
interpretation of models created with the meth-
odology. Such precision is critical not only for
reverse engineering but also in order to eliminate
the discontinuities between analysis and design in
traditional SA/RT.%

During the development of VIEWS, the RE-Ana-
lyzer was originally conceived of as a way to ex-
tend the life-cycle coverage of VIEWS to include
reverse engineering. In fact, the RE-Analyzer
was designed and developed after much of the
VIEWS method had been completed. Currently,
the RE-Analyzer supports the reverse engineer-
ing of American National Standards Institute
(ANsI) C source code on Operating System/2*
(0s/2*) and Advanced Interactive Executive*
(AIX*) environments.

Figure 2 shows the basic organization of the RE-
Analyzer system. The inputs to the RE-Analyzer
include the source code to be analyzed and data
on existing objects extracted from the current de-
sign database in the CASE tool. The source code
to be analyzed must be syntactically correct, and
the tool must have access to any libraries of in-
clude files or macro definitions that are refer-
enced. As a rule, the source code should be com-
pilable though it need not be linkable. The output
of the RE-Analyzer is a data set that, after being
entered into the CASE tool as input, constitutes a
comprehensive SART model of the source code
that was analyzed.

The first step in the reverse engineering process
involves accessing the repository of the CASE tool
to obtain information about previously defined
objects. The primary purpose of this information
is to avoid name conflicts with objects that al-
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Figure 1 The VIEWS method
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ready exist in the CASE tool. It is also necessary
in order to support incremental reverse engineer-
ing. Incremental reverse engineering is the ability
to process different modules of a software system
at different times (as opposed to all at the same
time). This ability also allows the user to apply the
RE-Analyzer to a subset of the source code.
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The next few stages of processing are analogous
to those used in conventional compilers, i.e., pre-
processing, syntactic, and semantic analysis of
the source code. At this point the system pro-
duces equivalent intermediate code in a canonical
form that is then analyzed for control partitions.
Control partitions are semantically coherent col-
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Figure 2 RE-Analyzer system organization
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lections of the source code based on an analysis
of control flow (including procedure calls). This
process is deterministic and successively ab-
stracts sequences of source code into new parti-
tions until a specific level of control flow com-
plexity is achieved for all partitions. This process
is carried out in a bottom-up fashion for each
function. It begins by grouping together simple
statements and expressions. Those base parti-
tions are then grouped into larger partitions ac-
cording to the control flow of the source code.
This grouping continues until a single parent con-
trol partition is created for each function. It is
important to note that the partitioning process
preserves the semantics of the original source
code. This process is described in more detail in
the next section.
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Control partitioning serves two critical purposes.
First, it reduces a large part of the task of repre-
senting source code within an SA/RT framework to
one of representing a control partition. That is,
most of the source code becomes encapsulated
within one or more hierarchies of control parti-
tions. By establishing a general technique for rep-
resenting a control partition in an SA/RT frame-
work, it is quite easy to apply that technique to
the more complex hierarchies. Second, it helps to
manage the complexity of the reverse engineering
result by decomposing large sequences of source
code into several smaller sequences. Although a
control partition is not guaranteed to conform to
the magic number seven plus or minus two,*
(e.g., there may be more than seven processes in
a DFD), it does effectively reduce the complexity
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of the resulting graphic representations. This is in
sharp contrast to other approaches to reverse en-
gineering (e.g., C/Rev or automated flowcharting
tools) that provide no automated decomposition
mechanism and yield only large, complex repre-
sentations.

Finally, the results are transformed into a data set
that is merged into the data repository of the CASE
tool. In effect, this data set contains all the infor-
mation that would have been produced by the
CASE tool if a user had entered the equivalent
diagrammatic and textual information. The only
exception is that no specifics on diagram layout
are produced by the RE-Analyzer. This informa-
tion is generated by the CASE tool itself using an
automated graph layout facility.

Although the RE-Analyzer does not require the
user to intervene during the reverse engineering
process, it is possible for the user to alter and
build upon the resulting models after they have
been loaded into the CASE tool. This feature offers
several distinct advantages over approaches that
require the user to interact with a reverse engi-
neering tool that is separate from the target CASE
tool. First, the reverse engineering results are re-
producible, i.e., they will be the same for any user
starting with the same source code. Second, the
user makes modifications within the framework
of a CASE tool using the same concepts and ab-
stractions that are employed during forward en-
gineering. Third, this approach allows users to
maintain revision histories of their modifications
to the SA/RT models created by the RE-Analyzer.
This history includes comments, notes, descrip-
tions, etc. that can be added by the users to reflect
the knowledge they gain as they strive to com-
prehend the software system.

The key characteristics of the RE-Analyzer in-
clude source code abstraction, a high level of in-
tegration with a CASE tool, fully automated gen-
eration of SA/RT-compatible representations, the
preservation of all source code information, and
incremental reverse engineering support.

Control partitions

Subroutine and function definitions containing hun-
dreds of lines of code are not unusual. Even rela-
tively small functions can contain such complex
control constructs that they defy efforts to compre-
hend their code. Representing such functions as a

116 OHARE AND TROAN

single DFD would be rather pointless simply be-
cause of the resulting diagram density. What is re-
quired is some way of mapping a flat function onto
a hierarchy of DFDs (with a single ancestor) while
avoiding tangles of control structures.

As with large function definitions, one of the more
difficult problems with representing complex con-
trol structures is how to decompose them into

The key characteristic of a
control partition is that all of its
control information is local.

manageable units. STDs and similar formalisms
have been criticized for just this reason. When a
single STD is used to represent the specification
for a very large and complex system, it is easy to
understand why a two-dimensional diagram could
be considered overly complex. Instead of at-
tempting to devise a formalism that supports
some concept of subspecifications for control, we
have capitalized on the existing decomposition
capabilities supported in DFDs to distribute con-
trol specifications across different levels of a data
process hierarchy.

The basis for our modeling of and decomposing
control constructs is the concept of a control par-
tition that can be recursively decomposed into
other control partitions (e.g., two or more nested
loops). Each function or subroutine definition
within the source code being analyzed will con-
tain a single control partition that may, in turn,
contain lower-level control partitions.

The key characteristic of a control partition is that
all of its control information is local, i.e., there
cannot be a branch operation with either a source
or destination that is outside the scope of the par-
tition. This restriction on the formation of control
partitions is important, allowing them to be
treated as black boxes that behave in a standard
way with respect to control. Thus, the execution
of the code within a control partition must begin
at the top, and, if they end at all, they end at the
bottom, though the route taken in between might
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vary. The primary purpose for this restriction is
to eliminate situations involving complex control
interactions among sibling partitions. Given the
restriction imposed by control partitions, it is pos-
sible to model the control interactions among par-
titions using a single control process and no direct
control flow among the data processes represent-
ing partitions.

Figure 3 illustrates the basic concept of control
partitions (indicated by open boxes). The code in
the example constitutes the body of a function
definition. The ellipses represent a sequence of
statements that contain no control constructs. A
single, top-level control partition, fn, contains
three subpartitions (fn.0, fn.1, and fn.2). The first
of these subpartitions is further decomposed into
lower-level control partitions, and, depending on
the actual code, these partitions might also be
decomposed into still lower-level control parti-
tions. Eventually, each control partition will be
represented as a separate data process. The top-
level control partition will be mapped to a DFD
representing the function definition from which it
was derived. If the control partition has subpar-
titions, its corresponding DFD will contain data
processes representing each of its immediate sub-
partitions. In this way the control partition hier-
archy is mapped to a data process hierarchy.

Unfortunately, the control partitioning process is
not as simple as the above example suggests. In
order to ensure that each control partition con-
forms to the restriction described above, it is nec-
essary to correctly handle all control constructs,
including goto, break, and continue statements.
Since such statements can cross the scope of one
or more control constructs, the control partition-
ing process must follow the entire flow of control
as it constructs each partition.

Reanalyzing source code

This section illustrates the results produced by
the RE-Analyzer. As noted earlier, the system
transforms a given source code module into a se-
ries of inputs to a CASE tool to yield an alternative
representation using concepts and abstractions
from structured analysis. Thus, three fundamen-
tally different views of the original source code
module are created to represent process structure
and data flow, control flow, and information or
data structure. For RTSDM, these different views
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Figure 3 Control partitions

IF CO THEN

(Y1) fn.0.0 fn.o
ELSE

voe ] fn.o.1

END fn

WHILE C1 DO
see fn.1
END

oo fn.2

are managed by distinct, yet highly integrated
modeling techniques called, respectively, data
flow diagramming, state transition diagramming,
and entity-relationship data modeling.

For each view, we will briefly describe only the
pertinent aspects of the associated modeling tech-
nique and discuss examples of some of the results
produced by the RE-Analyzer system. In addi-
tion, we will provide an example of a HyperViews
report that provides cross-reference information
spanning all of the modeling techniques and is
particularly useful for the task of program under-
standing. Note that the modeling technique de-
scriptions are necessarily cursory in nature and
are not intended to represent complete descrip-
tions of either RTSDM or SA/RT in general.

The examples are based on results produced by
reverse engineering source code for a projectin a
graduate software engineering class at North
Carolina State University. Briefly, the project
was to build a prototype of a software risk man-
agement tool. One of the function definitions from
this code is shown in the Appendix.

Process model. Figure 4 is an example of a DFD
produced by the RE-Analyzer system. Some
manual repositioning has been done on the nodes
and links to make the diagram more compact and
readable, but no information content has been
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Figure 4 A sample DFD produced using the RE-Analyzer

Data Flow Diagram: GenerateReport
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modified in any way from that produced by the
RE-Analyzer. The DFD represents the top level of
the function GenerateReport (see the Appendix).
There is no input to the function (i.e., no off-page
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connectors with data flows connecting them to a
process or store) other than an activation prompt
that indicates how the control process is itself
controlled. The single control process manages
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Figure 5 The decomposition of process "GenerateReport.2"
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the activation of nine different data processes.
The precise behavior of the control process is rep-
resented by its associated STD.

Four data stores represent variables that are local
to the top level of the function, and each variable
has its own associated type. For example, the
data store named CurrStage is of type Current-
Stage. The data store is both read and written by
one data process and just written by another data
process. In this particular example, most of the
data flows are neither named nor typed since they
are connected to data stores that determine their
type. The only exception is the data flow between
the GetProjectInformation and DisplayHeader data
processes at the bottom of the diagram. The data
flow represents the fact that one process is pro-
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ducing input for the other process. The name of
the data flow was synthesized by the RE-Ana-
lyzer since, in the source code, one function call
was an argument of the other.

The type, array.18, for the store named TempFile
is not a user-defined type, rather, it was an un-
named type for which the RE-Analyzer synthe-
sized a name. Data types are discussed below as
part of the section on data modeling.

Only some of the data processes were explicitly
defined by the user, i.e., NumberStages, GetDest-
File, DisplayHeader, GetProjectInformation, and
GetCurrentStage. The other data processes were
created by the RE-Analyzer as abstractions of a
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Figure 6 Minispec for the lower-level process “GenerateReport.3”

/* Process Name: GenerateReport.3 */

GenerateReport.3( )

system ( SystemCommand )
unlink ( TempFile )

sprintf ( SystemCommand , "clear ; more %s", TempFile )

Figure 7 Process instance hierarchy for the process
“SMerror”

PROCESS SMerror contains:

SMerror_Control { Ctrl }
SMerror.0
SMerror.8_Control { Ctrl }
SMerror.8.0
CloseProject
CloseProject_Control { Ctrl }
CloseProject.®
SMerror.8.1
SMerror. 1

collection of source code statements. By conven-
tion, such synthesized processes have names that
begin with that of their parent process and then a
decimal suffix that is unique within the process
hierarchy, e.g., GenerateReport.1.

Figure 5 shows the DFD for one of the synthesized
data processes, GenerateReport.2, which also con-
tains processes that are abstractions of source
code. In this DFD, the data flows from off-page
connectors represent process inputs and outputs.
By convention, a data store connected to an off-
page connector represents either an input param-
eter or a duplicate of one at a higher level in the
process hierarchy. An example of the latter can
be seen in Figure 5, where the data store FILE is
a duplicate of the one shown in Figure 4.

In some cases, a synthesized data process will
have no corresponding DFD. This occurs when the
source code abstracted by the data process con-
tains only simple sequential control information
and can be represented as a sequence of one or
more expressions. For example, the data process
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GenerateReport.3 decomposes into a sequence of
three expressions as shown in Figure 6. This code
sequence, or minispec, is a partition of source
code that was created by the RE-Analyzer and
that existed as part of a more complex collection
of statements in the original source code. Unlike
traditional SA/RT methodologies where only the
primitive processes have a minispec, the RE-An-
alyzer also provides a minispec for each top-level
process derived from a user-defined function.
This minispec is actually the original source code
defining the function, and it may be easily ac-
cessed within the CASE tool. Processes annotated
with an inverted tree symbol in the upper right
corner are primitive or ground processes (e.g.,
GenerateReport.3).

The RE-Analyzer only represents built-in func-
tions, such as sprintf or system, if so directed by
the user prior to analyzing the source code. In the
examples presented here, the representation of
built-in functions was suppressed so that they ap-
pear only within minispecs and not as data pro-
cesses in a DFD.

Figure 7 shows the process instance hierarchy for
SMerror. The hierarchy includes control processes
as well as data processes and uses indentation to
indicate levels within the hierarchy. The process
names furthest to the right are leaf nodes and are
defined only in terms of a minispec as shown
above. Note that there are lower-level synthetic
processes that were created within this one pro-
cess as an abstraction of some source code.

Figure 8 shows the process composition hierar-
chy for GenerateReport. This differs from the pro-
cess instance hierarchy shown above in that. all
synthetic processes are filtered out of the list so
that only those functions that appear explicitly in
the source code are shown.
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Data flow diagrams (DFDs) provide a functional model of a system. In their simplest form, they represent a system in
terms of a hierarchy of processes and their respective inputs and outputs. Although the fundamental concepts of data flow
diagrams are hardly new, their utility is reflected in their continued popularity.

NAME:
TYPE

- e ——————— |

NAME:
TYPE
DATA PROCESS DATA FLOW
P
/ > \
/
| NAME /\
\ /
N -
CONTROL PROCESS CONTROL FLOW

A data process represents a function that operates
on its inputs (represented by data flows) to produce
zero or more outputs (also represented by data
flows). A data process may be decomposed into its
own DFD to show how other data processes are used
in its construction. Decomposition is a powerful form
of abstraction identical in nature to the concept of
procedural abstraction present in all structured
programming languages. It is important to note that
each DFD represents a separate data process. Thus
a data process on the DFD is often referred to as

a child process and conversely, the process that is
the subject of the DFD is referred to as the parent
Process.

Unlike many SA/RT methodologies, data processes in
RTSDM are reusable. That is, instances of a given
data process may appear on more than one DFD. The
concept of reusable processes is important, not

only as a mechanism for supporting reuse, but also

as a crucial concept of a robust representation

of procedural abstraction. For example, a recursive
process can be effectively modeled by placing an
instance of a process on its own DFD.

A gata store represents passive data that may be
read and written by processes, for example, a simple
variable, an external file, or a data structure.

Data stores in RTSDM may be further qualified as
being static, static reference, dynamic, or global
which provide information about the scope of the store
and its persistence. In addition, a data store may

also have a type associated with it.

DATA STORE

OFF-PAGE CONNECTOR

A data flow represents an interaction between one data
process and another data process or a data store. As
with data stores, a data flow in RTSDM may be given a
type designation.

An off-page connector represents a connection to a
process or store at another level in a process
hierarchy. In RTSDM, an off-page connector is
analogous to a placehoider for a procedure parameter.
Since data processes in RTSDM are reusabie, a
single off-page connector may represent a connection
to more than one process or store in more than one
process hierarchy.

A control process represents the control portion of
data process. For example, control processes are
required to express sequential processing behavior
or the processing of events or interrupts. A control
process decomposes into a state transition diagram
where its precise behavior can be modeled.

A control flow represents the transmission of control
signals or events between control or data processes,

or both. A control prompt is similar to a control flow
except that it represents the communication of a specific
control imperative, e.g., activate, deactivate, suspend,
or resume. Each prompt is indicated by a different

letter in angle brackets near the control prompt, e.g.,
<A> denotes an activate prompt.
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Figure 8 Process composition hierarchy for the process
“GenerateReport”

PROCESS GenerateReport contains:

GetDestFile
SMerror

CloseProject
GetProjectInformation
DisplayHeader
GetCurrentStage
NumberStages
GetStagelInfo

Figure 9 The state transition diagram for
"GenerateReport"

State Transition Diagram: GenerateReport.2.1_Control

1 ActList_GenerateReport.2.1_0

i <« NumStages

In addition to the above, there are several other
types of information that can be readily accessed
by a user. Most of these types are in the form of
reports, but information can be entered or mod-
ified as well as viewed. They include the follow-
ing:

» Data process details—contains a process de-
scription, creation data, and details of stores
used in the process (e.g., type, storage class,
and initial value)

» Data process X-Ref—provides a general cross-
reference listing of data processes
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« Store visibility report—lists all of the stores that
appear on the DFD for a given process and then
all of the processes and stores that are above the
process in the process hierarchy

Various balance reports are also intended to be
used during forward engineering, to identify po-
tential errors in the number and type of process
inputs and outputs.

The CASE tool provides context-sensitive, hyper-
text-like facilities that allow the user to easily
move among the different diagrams and text-
based forms or reports. For example, from a DFD
a user may traverse to the associated minispec,
the DFD of a child process, the definition of a type
of a store or a data flow, the STD of a control
process, balance reports, or a cross-reference in-
dex. Clearly, such capabilities are not only of
value in forward engineering but for reverse en-
gineering as well.

Various reverse engineering activities are also
supported by allowing the user to add and modify
information. For example, higher-level DFDs may
be added to document how the system interacts
with other, external, systems. Textual descrip-
tions can be entered for key processes and other
objects, and notes and annotations can be added
to diagrams. Requirements can be entered and
linked to elements in the DFDs. Elements with
synthetic names may be given more meaningful
names. Unnecessary or inessential elements may
be deleted. All of these capabilities help to cap-
ture and preserve what users learn as they ad-
vance their understanding of the subject system.

Finally, restructuring is facilitated because the
synthesized processes may be used as recommen-
dations to the user on how to restructure the
source code using separate procedure definitions.
In addition, the DFD for each synthesized process
shows which local variables are accessed by the
corresponding source code.

Control model. Figure 9 shows the state transition
diagram (STD) generated by the RE-Analyzer tool
for a for loop in the bottom half of the source code
appearing in the Appendix. This STD contains only
two states—an initial state (_S_State_¢) and a final
state (_S_End). The transition contained within the
initial state indicates that the next state will be the
same as the current state, i.e., control remains
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A State Transition Diagram (STD) is a graphical representation of a finite automata® and is used to specify thbehavior
of its associated control process appearing on a DFD. As shown below, an STD is composed of states and transitions.

CONDITION/ACTION

- J

A slate symbol represents one possible state of the
system being modeled. In RTSDM, states may be
adorned with other symbols to denote an initial state,

an exit or final state, a transitory state, and a suspended
state. These state qualifiers serve to distinguish
different interpretations of an STD and help to establish
a precise semantic model. For example, the STDs
produced by the RE-Analyzer do not contain suspended
states. That is, control processes are assumed to be
continuously active until they pass control on to some
other process.

v

TRANSITION SPECIFICATION

A transition is used to indicate which states may
succeed a particular state. Transitions are typically
annotated with a condition/action specification which
specifies the conditions that must exist before a
transition to another state can occur and, optionally,
the actions that are to be taken when the transition
occurs. Initial actions may be associated with an initial
state. The condition in this case is omitted since it is,
by definition, the activation of the associated control
process.

within the same state as long as the indicated con-
dition is satisfied. The transition to the final state
occurs when the condition i < NumStages is no
longer true. Note that there is no action associated
with the transition to the final state.

Although states are used to represent points
where control flow branches to one or more dif-
ferent locations, the names of states are arbitrary
and have no mapping to any object in the original
source code. The user is responsible for supplying
meaningful state names.

The clock-shaped symbol that appears on the ini-
tial state indicates that it is also a transitory state.
That is, transitions can occur only after all actions
associated with the last transition in or into this
state have completed. This type of state is used to
model a single thread of control.

State _S_End has an arrow symbol (going from left
to right) instead of a clock symbol; it denotes an
exit or final state. For our purposes, a final state
indicates the point at which an STD releases con-
trol until it is reactivated.
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Figure 10 The action detalls from the
“GenerateReport.2.1” STD

Action Name: Actlist_GenerateReport.2.1_0

Description: (none)
Action Statements:

1 Prompt: <activate > GetStagelnfo
2 Prompt: <activate > GenerateReport.2.1.0

Figure 10 shows the activation list for the action
ActList_GenerateReport.2.1_6 that appears in the
initial state of the GenerateReport.2.1 STD. This list
simply enumerates the processes that are to be
activated when the transition occurs. Note that
the order is important since the second process is
not activated until after the first activated process
has completed. The transition is said to have com-
pleted when all of its actions have completed.

Other, more complex control structures can be
easily represented as an STD. One of the main
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Figure 11 Entity details for “CurrentStage”

Entity Name: CurrentStage

E-R Categories: prinfo.h
Description:  (none)
Structure connection type: and

Attributes:

ReasonLeft : array [255] of char

DateLeft : array [18] of char
DirectionMoved : enum_Delta
PrevAbstractStageName : array [255] of char
NextAbstractStageName : array [255] of char
StageName : array [255] of char
ToollnvocationString : array [255] of char
ToolName : array [255) of char

O~ O B WN

values of the STDs produced by the RE-Analyzer
is its integration with the process and data mod-
els. That is, the STD for each control process on
a DFD can be quickly accessed and viewed; the
conditions and actions of an STD similarly relate
to entity definitions and data processes. Also, in
spite of the great familiarity that most developers
have with common control idioms (e.g., if-then-
else, while-do, or repeat-until), the graphical rep-
resentation afforded by STDs can make complex
control structures easier to follow.

Data model. The entity-relationship (E-R) model*
is the basis of the data modeling technique sup-
ported in VIEWS. Each type definition found in the
source code is represented as an entity. This is in
keeping with the traditional notion of an entity as
representing a class of objects.

For each module processed by the RE-Analyzer,
a separate E-R diagram, referred to as an entity
category diagram, is produced containing one en-
tity for each type defined in the module. Since the
VIEWS E-R modeling technique represents entity
attributes as subordinate detail rather than as ob-
jects on an E-R diagram, most of the data model
produced by the RE-Analyzer does not appear in
graphic form. Thus, no relationships between
type definitions are modeled on the E-R diagrams.
However, one important relationship among type
definitions, i.e., type composition, is modeled as
will be shown below.
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Since the VIEWS E-R modeling technique supports
a form of lexical scoping for data store names,
variables appearing in the source code that have
the same name but different scopes can be easily
represgnted.

The subordinate detail generated by the RE-An-
alyzer for each entity includes a list of categories
that reference the entity (i.e., modules that ref-
erence the corresponding type) and a specifica-
tion. An entity specification may take any one of
three different forms: (a) simple specifications
represent a simple type equivalence or a simple
structure (e.g., an array or a pointer); (b) enu-
merated specifications represent enumerated
types; and (c) structured specifications represent
either compound types (e.g, records) or a union of
types. A structured specification contains one or
more attributes that are ANDed together to form
compound types or ORed together to form a union
of types. Attributes have a name and a type as
described above for entities. Figure 11 shows the
entity details text form for the compound type
CurrentStage referenced by a store in Figure 4.
This text form displays the immediate structure of
the entity and allows the user to enter or edit
information. These representations are taken di-
rectly from type declarations and structure spec-
ifications appearing in the source code.

Figure;12 shows the entity specification hierarchy
for Cur‘rentStage. This hierarchy shows the com-
plete composition of the entity, i.e., its immediate
structure and the structure of each of its compo-
nents. In this example, the entity has a structured
specification with eight attributes forming a com-
pound type as indicated by the structure connec-
tion type. The attribute DirectionMoved has a type
of enum_Delta that has an enumerated specification
as shown below the attribute entry. Indentation is
used to indicate levels in the type hierarchy. Re-
cursive type definitions are handled by displaying
a single cycle of the definitions and annotating the
first reference with two asterisks. The specifica-
tion hierarchies are inferred by the CASE tool from
the SA/RT model generated by the RE-Analyzer.

The RE-Analyzer must synthesize entity names
and specifications for certain classes of type dec-
larations found in source code. For example, the
type array.18 found in Figure 4 was defined as an
array of characters. This definition avoids the ne-
cessity for RTSDM to support arbitrary type dec-
laration syntax in DFDs and helps to minimize the

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994




diagram space needed to specify type informa-
tion. Similarly, the RE-Analyzer will synthesize
an entity and simple specification for pointers.
For example, the store type FILEPtr in Figure 5
was defined as a pointer to a file type.

In addition to allowing the user to easily view the
subordinate details of any entity or its complete
definition hierarchy, a cross-reference index and
a completeness report are provided. The latter
indicates incomplete or missing details, e.g., at-
tributes that were not assigned a type, arrays with
no bounds specification, or bit fields with size in-
formation.

Aside from completing the SA/RT model, there are
several other ways in which the data model pro-
duced by the RE-Analyzer can facilitate both for-
ward and reverse engineering. For example, the
data model is the basis for cross-reference reports
on both type definitions and variable declarations
as described in the next subsection. Also, the data
model simplifies reengineering efforts by elim-
inating the need to enter required type informa-
tion and making it readily available to users so
that they can easily view the associated type def-
inition for data stores and flows. Finally, the E-R
data model can be completed by simply adding
relationships among the entities already created
and placed on entity category diagrams by the
RE-Analyzer.

HyperViews. The HyperViews facility of VIEWS
provides an intelligent cross-reference capability
that spans all of the modeling techniques. Given

Figure 12 The entity specification hierarchy for
“CurrentStage”

Entity Name: CurrentStage
E-R Categories: prinfo.h
Description:  (none)
Specification Hierarchy:

Structure connection type: and

ReasonLeft : array [255] of char
DateLeft : array [18] of char
DirectionMoved : enum_Delta

{ Forward,

Backward,

First,

Current }
PrevAbstractStageName : array [255] of char
NextAbstractStageName : array [255] of char
StageName : array [255] of char
ToollnvocationString : array [255] of char
ToolName : array [255] of char

a particular object such as a data process, a store,
or an entity, it dynamically produces a report in-
dicating where the object is referenced in any of
the modeling techniques supported by VIEWS and
how it is used.

Figure 13 is an excerpt from the HyperViews re-
port for the entity CurrentStage. The report lists all
of the data stores and the processes whose DFD

Figure 13 HyperViews for the entity “CurrentStage”

CurrentStage has HyperView Links to:

Class or Entity

---------------

CurrentStage - member of Categories: prinfo.h
Component of:

Instances:
Store: Stage - Parent Process: RunTool .

Store: CurrStage - Parent Process: ChangeStage

Store: Stage - Parent Process: DisplayMenu

Store: ThisStage - Parent Process: GetStageinfo.®

Store: CurrStage - Parent Process: GenerateReport
Store: CurrStage - Parent Process: GenerateReport.2
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Figure 14 HyperViews for the data process
“GetCurrentStage”

GetCurrentStage has HyperView Links to:

Process

GetCurrentStage Parent: RunTool
GetCurrentStage Parent: GenerateReport
GetCurrentStage Parent: DisplayMenu

contains the store, i.e., the name and context for
every variable that is declared to be of type Cur-
rentStage.

Figure 14 is an excerpt from the HyperViews re-
port for the data process GetCurrentStage. The re-
port lists all of the processes whose DFD contains
the process, i.e., every place where that data pro-
cess is used. This particular example also illus-
trates how data processes are reused in different
DFDs.

Figure 15 is an excerpt from the HyperViews re-
port for the data store PrStore. The report lists all
of the processes whose DFD contains the store
and the child processes that read or write to the
store. Thus, it not only provides a cross-reference
indicating where the store is referenced, but it
also details how it is used in each case.

Similar reports are provided for every other basic
SA/RT element as well, e.g., data and control pro-
cesses, entities, conditions, and actions. This
type of intelligent, cross-reference capability is
valuable for both forward and reverse engineering
activities.

User experiences, limitations, and future
plans

Relatively large code sets have been successfully
processed, including one networking application
that had more than 26 000 lines of code and the
source code for the code analysis part of the RE-
Analyzer, which has over 17000 lines of code.

Beta test users of the RE-Analyzer have found it
to be useful in program understanding work. One
user was given a piece of monolithic, poorly
structured code to restructure so that it would be
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more reusable. The RE-Analyzer was used to
graphically view which code segments were suf-
ficiently isolated so that they could be moved
from in-line code to separate functions. The tool
also made it relatively easy to tell which global
variables a new function accessed so that they
could be passed as parameters instead of declared
as global variables. Another beta tester used RE-
Analyzer to locate dead code. In the data flow
diagrams produced, dead code appeared as pro-
cesses or clusters of processes with no data flows
representing inputs or outputs. Other, more sub-
tle cases (e.g., inputs but no outputs or side ef-
fects) were also identified with slightly more
effort. Also, an ongoing project is using the
RE-Analyzer to produce consistent and compre-
hensive documentation so that (a) recommenda-
tions can be made on how best to restructure the
system and (b) new developers can become pro-
ductive more rapidly.

Some limitations will be resolved in the near fu-
ture as enhancements are made to the existing
tool. One such limitation requires the input of the
RE-Analyzer to be preprocessed. Thus, the RE-
Analyzer is not able to capture and effectively
represent compiler directives that include other
files and defined constants and macros, or that
control conditional compilation. Because many
programmers use such constructs to effect a form
of abstraction, we consider it important to aug-
ment the system so that it can capture and pre-
serve these abstractions.

Another limitation stems from the fact that no
SA/RT methodology addresses the representation
of pointers. Although VIEWS provides a simple
representation of pointers within its E-R data mod-
eling technique, we hope to develop a more ro-
bust formalism that will address related issues
such as aliasing.

Finally, the RE-Analyzer does not attempt to rep-
resent the semantics of built-in functions found in
the source code. This limitation is not significant
in the context of sequential programs. However,
in cases where a program creates concurrent pro-
cesses, the RE-Analyzer does not make full use of
the SA/RT capabilities to model such behavior.

Other planned enhancements include support for
languages other than C, more extensive use of E-R
diagrams for representing relationships among
defined types, and some simplifications of the re-
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Figure 15 HyperViews for the data store “PrStore”

PrStore has HyperView Links to:

Data Store

Parent Data Process: GetStageinfo.®
Written-by:
Read-by: GetStageInfo.0.0

Parent Data Process: NewProject.l
Written-by: NewProject.l.1
Read-by: (off-page connector)

Parent Data Process: NewProject.4
Written-by: (off-page connector)
Read-by: NewProject.4.8

Parent Data Process: NewProject
Written-by: NewProject.l
Read-by: NewProject_Control, NewProject.4

Parent Data Process: OpenProject.2.2.2
Written-by: (off-page connector)
Read-by: OpenProject.2.2.2.8

Parent Data Process: OpenProject.2.2
Written-by: (off-page connector)

OpenProject.2.2.2

Read-by: OpenProject.2.2_Control, OpenProject.2.2.0, OpenProject.2.2.1,

sulting SA/RT representations such as removing
control processes that have no internal transi-
tions.

A separate type of enhancement involves the in-
tegration of the RE-Analyzer or the VIEWS
method, or both, with other types of tools. For
example, since the RE-Analyzer relies on static
analysis, it does not directly address those cases
where the reverse engineering process might be
enhanced by providing dynamic analysis capabil-
ities. However, a tool that provides such capa-
bilities could be used to complement the RE-An-
alyzer by annotating appropriate parts of the
SA/RT model with the information gleaned from
the dynamic analysis.

Conclusion

The reverse engineering system presented here
realizes the goal of automatically transforming
legacy code into data flow diagrams, state tran-
sition diagrams, and entity-relationship data mod-
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els within a CASE tool supporting structured anal-
ysis for real-time systems. This approach to
reverse engineering promises to have a significant
impact on software development since it greatly
facilitates a wide variety of maintenance and re-
engineering activities, including redocumenta-
tion, restructuring, program understanding, and
program enhancement. Even the conversion of
legacy code written in a structured language to an
object-oriented language can be made easier with
the use of this system in conjunction with the
VIEWS object-oriented analysis and design meth-
odology.

It was noted that the key characteristics of the
RE-Analyzer include source code abstraction, a
high level of integration with a CASE tool, fully
automated generation of SA/RT compatible repre-
sentations, incremental reverse engineering sup-
port, and the preservation of all source code in-
formation. These characteristics lead to several
other significant properties of the RE-Analyzer
system. Since the user enjoys a common set of
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modeling techniques and operations for both for-
ward and reverse engineering activities, only a
single vocabulary is required for both classes of
activities. The CASE tool supports the creation
and management of revision histories that facili-
tates the preservation of knowledge gained during
the reverse engineering process. And finally, the
system facilitates the injection of CASE technol-
ogy into a development organization by providing
a relatively easy way for users to move from the
source code with which they are familiar to the
SA/RT abstractions that can be used to model it
within a CASE tool.

Although the current implementation of the RE-
Analyzer system works for code written in the C
language, the underlying approach can be gener-
alized for any procedural programming language.

Finally, the results of this project have given us
considerable confidence that the goal of a coher-
ent, integrated reengineering environment can be

realized. Specifically, the other half of the reengi-
neering cycle, i.e., code generation, appears to be
quite tractable for the VIEWS structured analysis
methodology.
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Appendix: Source code for the function “GenerateReport”

void GenerateReport ( void )
{
int i3
int NumStages;
GeneralHeader Header;
CurrentStage CurrStage;
char DestFileName[200];
char TempFile[(sizeof("/tmp/'") + 15)] =""";

char SystemCommand[(sizeof("/tmp/") + 15) + 10];

FILE * File;

if ( I( File = GetDestFile() ) )

/* User entered file name */

/* Temporary filename */

/* Holds a system() command */
/* Output file for the report */

/* User wants it on the screen. Send it to a temporary file for now */

{
tmpnam(TempFile);
File = fopen{TempFile, "w");
t
if (IFile)

SMerror(*'Couldn't open file', NonFatal);

/* Now generate the file. The header is a piece of cake. */

DisplayHeader( GetProjectInformation() };
CurrStage = GetCurrentStage();
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/* Now step through the stages and print out info on each */
NumStages = NumberStages();

for (i=1; i<NumStages; i++)
{
CurrStage = GetStageInfo(i);
fprintf(File, "%s ', CurrStage.Dateleft);

/* This makes it "Moved into" or "Backtracked into'' depending on which
direction the user went at the time. Silly Tittle nicetie. */
if (CurrStage.DirectionMoved == Forward)
fprintf(File, "Project moved into %s stage\n",
CurrStage.NextAbstractStageName);
else
fprintf(File, "'Backtracked into %s stage\n",
CurrStage.PrevAbstractStageName);
fprintf(File, " - %s\n", CurrStage.Reasonleft);

}

fclose(File);
if (TempFile[0])

/* We used a temp file. Clear the screen and display the file through
more. Erase the temporary file when we're done */
sprintf(SystemCommand, '‘clear ; more %s', TempFile);

system(SystemCommand);
unlink(TempFile);
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