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The  RE-Analyzer is an  automated,  reverse 
engineering  system  providing  a  high  level  of 
integration with a  computer-aided  software 
engineering (CASE) tool.  Specifically, legacy 
code is transformed into abstractions within a 
structured  analysis  methodology. The 
abstractions are  based on data flow diagrams, 
state transition diagrams,  and entity-relationship 
data  models.  Since  the  resulting  abstractions  can 
be  browsed  and modified within a CASE tool 
environment,  a  broad  range  of  software 
engineering activities are  supported,  including 
program  understanding,  reengineering,  and 
redocumentation. In addition, diagram complexity 
is reduced through  the  application  of control 
partitioning: an  algorithmic  technique  for 
managing complexity  by partitioning source  code 
modules into smaller  yet  semantically  coherent 
units. This  approach also preserves  the 
information  content of  the  original  source  code. 
It is in contrast to other  reverse  engineering 
techniques  that  produce  only structure charts 
and thus  suffer  from loss of  information, 
unmanaged complexity, and a lack  of  corre- 
spondence to structured  analysis  abstractions. 
The  RE-Analyzer  has  been  implemented  and 
currently  supports  the reverse  engineering  of 
software written in the  C  language. It has  been 
integrated with a CASE tool based on the VIEWS 
method. 

A lthough the  use of terms  such as reverse  en- 
gineering and reengineering is relatively re- 

cent,'  the  types of activities  they  denote  can  be 
traced  back to  the first time  someone  was  re- 
quired to change  a program that  someone  else had 
created.  That  part of the  software  development 
life cycle  commonly known as maintenance  con- 
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tinues to consume  the  majority of all resources, 
time, and money  spent on software  production. 
Most of us in the  software  industry are all too 
familiar with statistics  such as: for  every dollar 
spent on software  development, nine dollars  are 
spent on maintenance;' 55 to 90 percent of the 
total life-cycle workload is expended on mainte- 

and 47 to 62 percent of the  total time 
spent on maintenance  activities  involves efforts 
to  comprehend  the original source  code.4 

As the  size of the  software  increases, so does  the 
time required to comprehend it. As a  result,  the 
cycle time and  cost of making an  enhancement 
have  less to  do with the  projected  size of the  mod- 
ification than  they do with the  total  size of the 
software  that  is  to  be  updated. 

Although good documentation  is  undoubtedly 
beneficial, the  realities of the problem are  that 
even  when design documentation  does  exist, it is 
often  hopelessly  out of date with respect  to  mod- 
ifications of the related source  code.  Even good 
documentation will be missing details,  the impor- 
tance of which only  becomes  evident long after 
the  authors of a  project  have left it. With the  de- 
velopment of integrated computer-aided  software 
engineering (CASE) tools, it is possible to provide 
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a  more  dynamic  form of design documentation for 
at least  some  classes of software applications. 
However,  these  tools  do  not  address  the problem 
of maintaining the  mountains of legacy code with 
little or no accurate  documentation for it in ex- 
istence  today.  Unfortunately,  the significant ad- 
vantages  that  can be achieved over  conventional 
development  techniques by using CASE technol- 
ogy are  often precluded by this  lack of support  for 
legacy code. 

Clearly, there is a  need for techniques  and  tools 
that facilitate the  task of understanding  software 
systems  for which the most accurate, if not  the 
only, source of information is  the original source 
code.  Such  tools and techniques will lead to sub- 
stantial  reductions in the  amount of time and 
money  spent on software  maintenance as well as 
significant improvements in software quality. 

Within the  world of CASE tools, the methodology 
used to  represent or model the  software  system 
being developed is crucial to both  the  creation 
and comprehension of software  systems. If the 
methodology supported by  the CASE tool pro- 
vides effective concepts and representations for 
constructing  a model or design of a  software  sys- 
tem, it should be similarly effective in helping one 
to understand  that  same model. Given this  rather 
basic  premise, it seems  reasonable to conclude 
that it would be  extremely useful if one could 
produce  a mechanism whereby  source  code could 
be automatically transformed  into  an  abstract 
model using the  same  representational  scheme as 
that of a CASE tool methodology. Although many 
researchers and CASE tool vendors  have reached 
the  same conclusion, there is enormous variabil- 
ity in the methodology chosen,  the  transforma- 
tions  made, and the level of integration with a 
CASE tool. 

Most CASE tools  support  a  structured analysis 
methodology such as those of Gane  and  Sarson,6 
D e M a r ~ o , ~  Hatley  and Pirbhai,' Ward,' or 
ESML." Most of  these methodologies also  pro- 
vide  extensions to support  the modeling of real- 
time systems and thus fall within the  class of 
methodologies commonly called structured anal- 
ysis for real-time systems (SNRT). '*,12 

SNRT methodologies involve the modeling of 
three different aspects of software, i.e., process, 
control,  and  data.  Each  aspect  represents  a dif- 
ferent  view  or dimension of the  system being 
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TERMINOLOGY 

The following definitions (except  for  that of program 
understanding)  are  from  Chikofsky  and  Cross! 

I 

Forward  engineering is the traditional process 
of moving  from high-level 

abstractions and logical,  implementation-independent 
designs to the physical implementation of a  system. 

is the process of analyzing 
a  subject  system to 

(1) identify  the  system's  components and their 

(2) create representations  of  the  system in 

Two  subareas of reverse  engineering  are 
redocumentation and des@n recovey. 

interrelationships, 

another  form  or  at  a  higher level of abstraction. 

is the creation or revision 
of a  semantically  equivalent 

representation  within the same relative abstraction 
level. The resulting  forms of representation  are  usually 
considered  alternative  views  (for  example, data flow, 
data structure,  and control flow) intended  for  a  human 
audience. 

Design  recovery is a  subset of reverse 
engineering in which  domain 

knowledge, external information, and deduction or 
fuzzy  reasoning  are  added to the  observations of the 
subject  system to identify  meaningful higher-level 
abstractions beyond those  obtained directly by 
examining the system itself. 

Restructuring is the  transformation  from 
one  representation to 

another  at the same relative abstraction  level,  while 
preserving the external behavior  (functionality  and 
semantics) of the subject  system. 

I 

Reengineering also known  as both 
renovation and reclamation, 

is the examination and alteration of a  subject  system 
to reconstitute it in a  new  form  and the subsequent 
implementation of the new  form.  Reengineering 
generally includes some  form of reverse engineering 
(to  achieve  a  more  abstract  description) followed 
by some  form  of forward engineering  or  restructuring. 

L 

the express  purpose of comprehending all or part 
of its construction. It is actually  an objective rather 
than  a  well-defined process and, as such, 
it is supported by the various  reverse  engineering 
processes described above. 

I 

1 program  understanding 
is the activity of examining 
a  software  svstem  for 

- 
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modeled. Specifically, processes  are modeled us- 
ing data flow diagrams (DFDS); state  transition  di- 
agrams (STDS) are used to model control; and 
entity-relationship (E-R) diagrams or similar no- 
tations are used to model the  data  aspect of soft- 
ware systems. Although these  views  are  clearly 
distinct with respect  to  their domains, they  are 
not  strictly orthogonal. For example, part of the 
process model involves  both  control  and  data. 
Similarly, part of the  control model involves  pro- 
cesses  and  data. 

This  paper  describes  the  RE-Analyzer, which 
was designed and implemented by  the  authors as 
part of a larger software  development  methodol- 
ogy project. The RE-Analyzer  automatically  re- 
verse engineers  source  code  into  graphic  and tex- 
tual representations within a CASE tool supporting 
an SNRT methodology. That is, it transforms 
source  code  into  a  set of data flow diagrams, state 
transition diagrams, and  entity-relationship  data 
models within the design database of a CASE 
tool. Since  the resulting representations  can  be 
browsed  and modified within the CASE tool envi- 
ronment,  a  broad range of software engineering 
activities are effectively supported, including pro- 
gram understanding, reengineering, and  redocu- 
mentation. 

Background 

Because of the  obvious  importance of the main- 
tenance problem and,  therefore,  the  importance 
of reverse engineering activities, a  vast  number of 
techniques and tools  have  been  developed 
throughout  the  history of computing  to aid these 
activities. These efforts range from the  early 
cross-reference  report  generators to recent  at- 
tempts  to provide  more  robust solutions. 

A well-known class of reverse engineering aids, 
commonly called program  understanding tools, 
typically provide on-line, graphic  representations 
of source  code, Le., a  control flow graph,  a pro- 
cedure-calling structure  graph, and possibly some 
other  dependency  graphs.  Examples of commer- 
cially available tools of this  type include Hind- 
sight**, PROCASE**, and  Logiscope**.  The  rep- 
resentations  generated by  such  tools simply filter 
information and  provide little or no abstraction of 
the underlying source  code.  That  is, analyzing 
complex  source  code  produces equally complex 
graphs  or  other  representations.  The  complexity 
of the resulting representations is a  result of the 
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monolithic nature of the  representations  them- 
selves. For example, a single control flow graph 
will be produced for all of the  source  code being 
analyzed. For large systems  with  dozens  or  even 
hundreds of subroutines,  the resulting graph will 
be  extremely  dense.  This problem is mitigated to 
some  extent  by  the  use of graph zooming opera- 
tions  and  hypertext-like  traversals  from  a  node on 
a  graph to  the associated  source  code. 

Another  class of program understanding  tools 
(e.g., Refine**) constructs  a  database of informa- 
tion from the  source  code  and  supports ad hoc 
queries  made  to  the  database.  The principal ad- 
vantage of this  approach is that  the  queries  can be 
saved  and  then  reused  on  other  software  systems 
to identify similar patterns (e.g., error-prone  se- 
quences of code). However, any abstraction of 
the  source  code must be performed by manually 
constructing  the  proper  queries. Also, such  tools 
are usually text-based, i.e., they  do  not  provide 
any  standard graphical representations of the 
software  that  has  been analyzed. 

Perhaps  the most serious  drawback of most pro- 
gram understanding  tools is their failure to  pre- 
serve  any of the knowledge or  understanding  ob- 
tained while using the tool. Other  than retaining 
queries,  there is no provision for  automatically 
preserving  what  the  user  has  learned  about  the 
subject  system. Ironically, by failing to preserve 
and maintain what is learned  about  a  system  dur- 
ing their use,  such  tools  perpetuate  part of the 
very problem they  are designed to address. 

Another disadvantage of these tools is that the rep- 
resentations they support, if any, are not consistent 
with those typically used to produce the source 
code in the first  place. Program understanding and 
forward engineering activities are often treated as 
separate and unrelated tasks that do not require the 
same concepts and abstractions. How much better 
it  would be though, to allow both tasks  to be carried 
out using the same basic vocabulary and represen- 
tational scheme. As suggested above, one clear way 
to achieve this end would be to use a CASE tool  and 
the methodologies it supports as the primary envi- 
ronment for both forward and reverse engineering 
activities. 

The  most common approach to integrating re- 
verse engineering with  a CASE tool supporting  an 
SNRT methodology is  to  generate  a structure 
chart (e.g., C/Rev** used with the  Teamwork** 
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CASE tool).  Structure  charts  represent  the  archi- 
tecture of a  software  system by depicting the 
modules in a  system and their interactions, i.e., 
which modules  are called by  other modules, what 
parameters  are passed in a call, and  what  values, 
if any, are returned.  The  basic  concepts  repre- 
sented in a  structure  chart are: modules, call-re- 
turn  interactions among the modules, and  param- 
eters and return  values  associated with each call- 
return  interaction  (referred to  as a  data  or control 
couple). l2 Structure  charts  are  particularly useful 
in making design decisions  about  the modulariza- 
tion of a  system.  However,  they  do  not  depict  any 
information about  the  internal  structure of mod- 
ules, the  structure of the  data,  the  shared or global 
data used by  the  system, or the  environment of 
the  system being modeled. Further,  a single struc- 
ture  chart  is used to  represent  an  entire  system 
since  the  elements of a  structure  chart  are  not 
decomposable.  For any but  the smallest software 
systems,  the resulting structure  chart rapidly be- 
comes so complex  that it must  be  supplemented 
with  annotated  connector  symbols  and  tables to 
explain their meaning so that  the  chart  can  be 
spread  across multiple pages. 

A related approach involves producing a variant of 
flowcharts in addition to structure charts from Pas- 
cal code. l3 However, the resulting structure  charts 
provide only structural information  (i.e., no data or 
control couples are produced). Also, the flowcharts 
provide little more than a one-to-one mapping of 
source code statements to flowchart objects that 
yields no significant abstractions. 

There  have  also  been  some efforts to produce 
some  part of the SNRT representations, i.e., DFDs, 
from source  code. In one  case,  a  method  has  been 
described  for deriving DFDS from structure  charts 
of Pascal  code. l4 This approach  relies heavily on 
the lexical scoping of nested  procedures and is 
not easily generalized to  other procedural lan- 
guages. In another  case,  a  prototype of an auto- 
mated  system for representing  Ada**  tasks using 
extended DFDs has  been described.15 However, 
the  focus  is on modeling concurrency with DFDs, 
and  the bulk of the  source  code information is 
thus ignored. 

To  date,  systems  that  automatically  generate all 
three of the  basic SNRT views of a  system, i.e., 
process,  data,  and  control,  are  only  proposals or 
in the  early  stages of development (e.g., M A P R ' ~  
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or  the considerably  more ambitious Desire sys- 
tem l'). 

Overview of the RE-Analyzer 

The  primary  objective of the  RE-Analyzer  is to 
support  reverse engineering that is fully inte- 
grated with the SNRT constructs of the VIEWS 
method.'' As illustrated in Figure 1, VIEWS en- 
compasses  both SNRT and  object-oriented  devel- 
opment methodologies as well as  a common re- 
quirements modeling technique. The VIEWS SNRT 
methodology is referred to  as  the Real-Time 
Structured Development Method (RTSDM). l9 

RTSDM was initially based on ESML" and then 
extended  to allow for a more precise  semantic 
interpretation of models created with the  meth- 
odology. Such precision is critical not only  for 
reverse engineering but also in order  to eliminate 
the discontinuities between analysis and design in 
traditional SNRT. 2o 

During the  development of VIEWS, the  RE-Ana- 
lyzer  was originally conceived of as a way  to ex- 
tend the life-cycle coverage of VIEWS to include 
reverse engineering. In fact,  the  RE-Analyzer 
was designed and  developed  after much of the 
VIEWS method had been  completed.  Currently, 
the  RE-Analyzer  supports  the  reverse engineer- 
ing of American National  Standards  Institute 
(ANSI) C source  code on Operating System/2* 
  OS/^*) and  Advanced  Interactive  Executive* 
(AIX*) environments. 

Figure 2 shows  the  basic organization of the  RE- 
Analyzer system.  The  inputs  to  the  RE-Analyzer 
include the  source  code  to  be analyzed and data 
on existing objects  extracted from the  current de- 
sign database in the CASE tool. The  source  code 
to  be analyzed must  be  syntactically  correct,  and 
the tool must  have  access  to  any  libraries of in- 
clude files or  macro definitions that  are refer- 
enced.  As  a rule, the  source  code should be com- 
pilable though it need not  be linkable. The  output 
of the  RE-Analyzer is a  data  set  that, after being 
entered  into  the CASE tool as input, constitutes  a 
comprehensive SNRT model of the  source  code 
that  was analyzed. 

The first step in the  reverse engineering process 
involves accessing  the  repository of the CASE tool 
to  obtain information about  previously defined 
objects.  The  primary  purpose of this information 
is to avoid name conflicts with objects  that al- 
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Figure 1 The VIEWS method 

r 
OBJECT-ORIENTED  MODELING 

REQUIREMENTS  MODELING I -  - 
b 

CODE  GENERATION 

I 
I 

I J 

: :  
4 
REVERSE  ENGINEERING 

I STRUCTURED  MODELING 

DOCUMENT  GENERATION CONFIGURATION  MANAGEMENT 

ready exist in the CASE tool. It is also  necessary 
in order  to  support incremental reverse engineer- 
ing. Incremental  reverse engineering is the ability 
to process different modules of a software  system 
at different times (as  opposed  to all at  the  same 
time). This ability also allows the  user to apply the 
RE-Analyzer to a subset of the  source  code. 

The  next few stages of processing are analogous 
to those used in conventional compilers, i.e., pre- 
processing, syntactic, and semantic analysis of 
the  source  code. At this point the  system pro- 
duces equivalent intermediate code in a canonical 
form that  is  then analyzed for control partitions. 
Control partitions  are semantically coherent col- 
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Figure 2 RE-Analyzer  system  organization 
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lections of the  source  code  based on an analysis 
of control flow (including procedure  calls).  This 
process  is  deterministic and successively ab- 
stracts  sequences of source  code  into  new parti- 
tions until a specific level of control flow com- 
plexity is achieved for all partitions. This  process 
is carried  out in a  bottom-up  fashion  for  each 
function. It begins by grouping together simple 
statements  and  expressions.  Those  base parti- 
tions  are  then grouped into larger partitions  ac- 
cording to  the  control flow of the  source  code. 
This grouping continues until a single parent  con- 
trol partition is created for each function. It  is 
important to note  that  the partitioning process 
preserves  the  semantics of the original source 
code.  This  process is described in more detail in 
the  next  section. 

Control partitioning serves two critical purposes. 
First, it reduces  a large part of the  task of repre- 
senting source  code within an SNRT framework to 
one of representing  a  control partition. That  is, 
most of the  source  code  becomes  encapsulated 
within one  or  more  hierarchies of control  parti- 
tions. By establishing a  general  technique for rep- 
resenting  a  control  partition in an SNRT frame- 
work, it is quite  easy to apply that  technique to 
the  more  complex  hierarchies.  Second, it helps to 
manage the  complexity of the  reverse engineering 
result by decomposing large sequences of source 
code  into  several smaller sequences. Although a 
control partition is not guaranteed to conform to 
the magic number seven plus or minus two,21 
(e.g., there  may  be  more  than  seven  processes in 
a DFD), it does effectively reduce  the  complexity 
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of the resulting graphic  representations.  This is in 
sharp  contrast  to  other  approaches  to  reverse  en- 
gineering (e.g., C/Rev or automated flowcharting 
tools)  that  provide no automated  decomposition 
mechanism and yield only large, complex  repre- 
sentations. 

Finally, the  results  are  transformed  into  a  data  set 
that is merged into  the  data  repository of the CASE 
tool. In effect, this  data  set  contains all the infor- 
mation that would have  been  produced by  the 
CASE tool if a  user had entered  the equivalent 
diagrammatic and  textual information. The  only 
exception is that no specifics on diagram layout 
are  produced by  the  RE-Analyzer.  This informa- 
tion is generated by  the CASE tool itself using an 
automated  graph  layout facility. 

Although the  RE-Analyzer  does  not  require  the 
user to intervene during the  reverse engineering 
process, it is  possible  for  the  user to alter and 
build upon  the resulting models after  they  have 
been  loaded  into  the CASE tool.  This  feature offers 
several  distinct  advantages  over  approaches  that 
require  the  user  to  interact with a  reverse engi- 
neering tool  that is separate from the  target CASE 
tool. First,  the  reverse engineering results  are  re- 
producible, i.e., they will be  the  same  for  any  user 
starting with the  same  source  code.  Second,  the 
user  makes modifications within the framework 
of a CASE tool using the  same  concepts  and  ab- 
stractions  that  are employed during forward  en- 
gineering. Third,  this  approach allows users  to 
maintain revision histories of their modifications 
to  the SNRT models created by  the  RE-Analyzer. 
This  history  includes  comments,  notes,  descrip- 
tions,  etc.  that  can  be  added by  the  users  to reflect 
the knowledge they gain as  they  strive  to  com- 
prehend  the  software  system. 

The  key  characteristics of the  RE-Analyzer in- 
clude  source  code  abstraction,  a high level of in- 
tegration  with  a CASE tool, fully automated gen- 
eration of SNRT-compatible representations,  the 
preservation of all source  code information, and 
incremental  reverse engineering support. 

Control  partitions 

Subroutine and function definitions containing hun- 
dreds of lines of code  are not unusual. Even rela- 
tively small functions can contain such complex 
control constructs that they defy efforts to compre- 
hend their code. Representing such functions as a 
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single DFD would be rather pointless simply be- 
cause of the resulting  diagram density. What is re- 
quired is some way of mapping a flat function onto 
a hierarchy of DFDS (with a single ancestor) while 
avoiding tangles of control structures. 

As with large function definitions, one of the  more 
difficult problems with representing  complex  con- 
trol  structures is how to decompose  them  into 

The  key  characteristic of a 
control partition is that all of its 

control information is  local. 

manageable units. STDs and similar formalisms 
have  been criticized for  just  this  reason. When a 
single STD is used to represent  the specification 
for  a very large and complex  system, it is easy  to 
understand  why  a two-dimensional diagram could 
be  considered  overly complex. Instead of at- 
tempting to devise  a formalism that  supports 
some  concept of subspecifications for control, we 
have capitalized on the existing decomposition 
capabilities supported in DFDs to  distribute  con- 
trol specifications across different levels of a  data 
process  hierarchy. 

The  basis for our modeling of and decomposing 
control  constructs  is  the  concept of a  control  par- 
tition that  can  be  recursively  decomposed  into 
other  control  partitions (e.g., two  or more  nested 
loops).  Each  function or subroutine definition 
within the  source  code being analyzed will con- 
tain a single control partition that  may, in turn, 
contain lower-level control partitions. 

The  key  characteristic of a  control  partition is that 
all of its  control information is local, Le., there 
cannot be a  branch  operation with either  a  source 
or destination  that is outside  the  scope of the  par- 
tition. This  restriction on the  formation of control 
partitions is important, allowing them  to  be 
treated as black  boxes  that  behave in a  standard 
way with respect to control.  Thus,  the  execution 
of the  code within a  control  partition must begin 
at the  top,  and, if they  end  at all, they  end at the 
bottom, though the  route  taken in between might 
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vary.  The  primary  purpose for this  restriction  is 
to eliminate situations involving complex  control 
interactions among sibling partitions. Given the 
restriction imposed by control  partitions, it  is pos- 
sible to model the  control  interactions among par- 
titions using a single control  process and no direct 
control flow among the  data  processes  represent- 
ing partitions. 

Figure 3 illustrates  the  basic  concept of control 
partitions (indicated by open  boxes).  The  code in 
the example constitutes  the  body of a  function 
definition. The ellipses represent  a  sequence of 
statements  that  contain no control  constructs.  A 
single, top-level control  partition, fn, contains 
three  subpartitions (fn.0,  fn.1, and fn.2). The first 
of these  subpartitions is further  decomposed  into 
lower-level control  partitions,  and, depending on 
the actual code,  these  partitions might also be 
decomposed  into still lower-level control  parti- 
tions. Eventually,  each  control  partition will be 
represented as a  separate  data  process.  The  top- 
level control partition will be mapped to a DFD 
representing  the function definition from which it 
was derived. If the  control partition has  subpar- 
titions, its  corresponding DFD will contain  data 
processes  representing  each of its immediate sub- 
partitions. In this  way  the  control partition hier- 
archy is mapped to  a  data  process hierarchy. 

Unfortunately,  the  control partitioning process is 
not  as simple as  the  above  example suggests. In 
order  to  ensure that  each  control  partition  con- 
forms  to  the  restriction  described  above, it is nec- 
essary  to  correctly handle all control  constructs, 
including goto,  break, and continue  statements. 
Since  such  statements  can  cross  the  scope of one 
or more control  constructs,  the  control  partition- 
ing process  must follow the  entire flow of control 
as it constructs  each partition. 

Reanalyzing source code 

This  section  illustrates  the  results  produced by 
the RE-Analyzer. As  noted  earlier,  the  system 
transforms  a given source  code module into  a  se- 
ries of inputs  to  a CASE tool to yield an  alternative 
representation using concepts  and  abstractions 
from structured analysis. Thus,  three  fundamen- 
tally different views of the original source  code 
module are  created to represent  process  structure 
and  data flow, control flow, and information or 
data  structure.  For RTSDM, these different views 
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Figure 3 Control partitions 

IF CO THEN 

-1 fn.tr,o fn.0 

7 1  fn.o.1 
END 

WHILE C1 DO 

fn.1 
END 

fn.:! 

fn 

are managed by distinct,  yet highly integrated 
modeling techniques called, respectively,  data 
flow.diagramming, state  transition diagramming, 
and entity-relationship  data modeling. 

For  each  view,  we will briefly describe  only  the 
pertinent  aspects of the  associated modeling tech- 
nique and  discuss  examples of some of the  results 
produced by  the  RE-Analyzer  system. In addi- 
tion, we will provide  an example of a Hyperviews 
report  that  provides  cross-reference information 
spanning all of the modeling techniques  and is 
particularly useful for the  task of program under- 
standing. Note  that  the modeling technique  de- 
scriptions  are  necessarily  cursory in nature and 
are  not  intended  to  represent  complete  descrip- 
tions of either RTSDM or SNRT in general. 

The  examples  are  based on results  produced by 
reverse engineering source  code for a  project in a 
graduate  software engineering class at North 
Carolina State  University. Briefly, the  project 
was  to build a  prototype of a  software risk man- 
agement tool. One of the  function definitions from 
this code is shown in the Appendix. 

Process model. Figure 4 is an example of a DFD 
produced by the RE-Analyzer system.  Some 
manual repositioning has  been  done on the  nodes 
and links to make  the diagram more  compact and 
readable, but no information content  has  been 



Figure 4 A  sample  DFD  produced  using  the  RE-Analyzer 

Data Flow  Diagram:  GenerateReport 

S FILE 

1" FlLERr 

NumStages I \ TempFile 
WALbl  GenerateReport-Control 14- 

: int \ I : array.18 

I 
I 

\","""""" """""""_ 

modified  in any  way  from  that  produced  by  the connectors with data flows connecting  them  to  a 
RE-Analyzer. The DFD represents  the  top level of process  or store)  other  than an activation  prompt 
the  function GenerateReport (see  the Appendix). that  indicates how the  control  process is itself 
There is no input to  the function (Le., no off-page controlled.  The single control  process  manages 
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Figure 5 The  decomposition of process  "GenerateReport.2" 

Data Flow Diagram: GenerateReport.2 

0 

: FILE& : int : CurrentStage 

b 

the activation of nine different data  processes. 
The precise behavior of the  control  process  is rep- 
resented  by  its  associated STD. 

Four  data  stores  represent  variables  that  are local 
to the  top level of the function, and each variable 
has  its  own associated type. For example, the 
data  store named CurrStage is of type Current- 
Stage. The  data  store  is both read and written  by 
one  data  process and just  written  by  another  data 
process.  In  this particular example, most of the 
data flows are neither named nor typed since  they 
are connected to data  stores  that determine their 
type. The  only  exception is the  data flow between 
the GetProjectInformation and DisplayHeader data 
processes  at  the  bottom of the diagram. The  data 
flow represents the fact that  one  process  is pro- 

ducing input for the  other  process.  The name of 
the  data flow was synthesized by  the RE-Ana- 
lyzer since, in the  source code, one function call 
was an argument of the  other. 

The  type, array. 18, for the  store named TempFi 1 e 
is not a user-defined type,  rather, it was  an un- 
named type for which the RE-Analyzer synthe- 
sized a name. Data types  are discussed below as 
part of the  section on  data modeling. 

Only some of the  data  processes  were explicitly 
defined by the  user, i.e., Numberstages,  GetDest- 
File, DisplayHeader,  GetProjectInformation, and 
GetCurrentStage. The  other  data  processes  were 
created by  the RE-Analyzer as abstractions of a 
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Figure 6 Minispec for the lower-level process "GenerateReport.3" 

/* Process Name: GenerateReport.3 *I 

GenerateReport.3( ) 
{ 

sprintf ( SystemComnand , "clear ; more %si', TempFile ) 
system ( SystemConnnand ) 
unlink ( TempFile ) 

1 

Figure 7 Process instance hierarchy  for the process 
"SMerror" 

PROCESS SMerror contains: 

SMerror-Control { Ctrl } 
SMerror . B 

SMerror.8-Control { Ctrl } 
SMerror.8.B 
CloseProject 

Closeproject-Control { Ctrl } 
C1oseProject.B 

SMerror , e. 1 
SMerror . I 

collection of source  code  statements.  By  conven- 
tion, such  synthesized  processes  have  names  that 
begin with that of their parent  process and then  a 
decimal suffix that is unique within the  process 
hierarchy, e.g., GenerateReport. 1. 

Figure 5 shows  the DFD for one of the  synthesized 
data  processes, GenerateReport .2 ,  which  also  con- 
tains  processes  that are abstractions of source 
code. In this DFD, the  data flows from off-page 
connectors  represent  process  inputs  and  outputs. 
By  convention,  a  data  store  connected to an off- 
page connector  represents  either  an input param- 
eter  or a  duplicate of one  at  a higher level in the 
process  hierarchy. An example of the  latter  can 
be  seen in Figure 5 ,  where  the  data  store FILE is 
a duplicate of the  one  shown in Figure 4. 

In some  cases,  a  synthesized  data  process will 
have no corresponding DFD. This  occurs  when  the 
source  code  abstracted  by  the  data  process  con- 
tains  only simple sequential  control information 
and can  be  represented  as  a  sequence of one  or 
more  expressions. For example, the  data  process 
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GenerateReport .3 decomposes  into  a  sequence of 
three  expressions as shown in Figure 6. This  code 
sequence,  or minispec, is a  partition of source 
code  that was created by the  RE-Analyzer  and 
that  existed as part of a  more  complex collection 
of statements in the original source  code. Unlike 
traditional SNRT methodologies where  only  the 
primitive processes  have  a minispec, the  RE-An- 
alyzer  also  provides  a minispec for each top-level 
process  derived from a user-defined function. 
This minispec is actually  the original source  code 
defining the  function, and it may  be easily ac- 
cessed within the CASE tool. Processes  annotated 
with an  inverted  tree symbol in the  upper right 
corner  are primitive or ground processes (e.g., 
GenerateReport.3). 

The  RE-Analyzer  only  represents built-in func- 
tions, such  as sprintf or system, if so directed by 
the  user prior to analyzing the  source  code. In the 
examples  presented  here,  the  representation of 
built-in functions  was  suppressed so that  they ap- 
pear  only within minispecs and not as data  pro- 
cesses in a DFD. 

Figure 7 shows  the  process  instance  hierarchy  for 
SMerror. The  hierarchy  includes  control  processes 
as well as  data  processes  and  uses  indentation to 
indicate levels within the  hierarchy. The  process 
names  furthest  to  the right are leaf nodes and are 
defined only in terms of a minispec as shown 
above. Note that  there  are lower-level synthetic 
processes  that  were  created within this  one  pro- 
cess  as an  abstraction of some  source  code. 

Figure 8 shows  the  process composition hierar- 
chy  for GenerateReport. This differs from the  pro- 
cess instance  hierarchy  shown  above in that all 
synthetic  processes  are filtered out of the list so 
that  only  those  functions  that  appear explicitly in 
the  source  code  are  shown. 
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Data  flow  diagrams  (DFDs)  provide a  functional  model of a system.  In  their  simplest  form,  they  represent a  system in 
terms  of a hierarchy  of  processes  and  their  respective  inputs  and  outputs.  Although  the  fundamental  concepts  of  data  flow 
diagrams  are  hardly  new,  their utility  is  reflected  in  their  continued  popularity. 

DATA PROCESS 

I 
\ NAME 

\ i 
'"0 

CONTROL PROCESS 

NAME: 
TYPE 

b 
DATA FLOW 

-""""""I"""-, 

CONTROL FLOW 

A data process represents  a  function  that  operates 
on its  inputs  (represented  by  data  flows) to produce 
zero  or  more  outputs  (also  represented  by  data 
flows). A  data  process  may  be decomposed into  its 
own  DFD  to  show  how  other  data  processes  are  used 
in  its  construction.  Decomposition  is  a  powerful  form 
of  abstraction  identical in  nature to the  concept  of 
procedural  abstraction  present  in  all  structured 
programming  languages. It is  important  to  note  that 
each  DFD  represents a separate  data  process.  Thus 
a  data  process  on  the  DFD  is  often  referred to as 
a childprocess and  conversely,  the  process  that  is 
the  subject  of the DFD is  referred  to  as  the parent 
process. 

Unlike  many  SAJRT  methodologies,  data  processes in 
RTSDM  are reusable. That is, instances of a  given 
data  process  may  appear  on  more  than  one  DFD.  The 
concept  of  reusable  processes is important,  not 
only  as  a  mechanism  for  supporting  reuse,  but  also 
as a  crucial  concept  of a  robust  representation 
of  procedural  abstraction.  For  example, a  recursive 
process  can be effectively  modeled  by  placing  an 
instance  of a  process  on  its  own  DFD. 

A data store represents  passive  data  that  may  be 
read  and  written  by  processes,  for  example, a simple 
variable,  an  external file, or a  data  structure. 
Data  stores in RTSDM  may  be  further  qualified  as 
being static,  static  reference,  dynamic, or global 
which  provide  information  about  the  scope  of  the  store 
and its  persistence.  In  addition,  a  data  store  may 
also  have a  type  associated  with  it. 

NAME: 
TYPE 

~~ 

DATA STORE 

0 
OFF-PAGE  CONNECTOR 

A data flow represents  an  interaction  between  one data 
process  and  another  data  process or a  data  store. As 
with  data  stores,  a  data  flow  in  RTSDM  may  be  given  a 
type  designation. 

An off-page  connector represents  a  connection to a 
process  or  store  at  another  level in  a  process 
hierarchy.  In  RTSDM,  an off-page  connector  is 
analogous  to a  placeholder  for  a  procedure  parameter. 
Since data  processes  in RTSDM  are  reusable, a 
single  off-page  connector  may  represent  a  connection 
to more  than  one  process  or  store in more  than  one 
process  hierarchy. 

A controlprocess represents  the  control  portion  of 
data  process.  For  example, control  processes  are 
required  to  express  sequential  processing  behavior 
or  the  processing  of  events  or  interrupts. A  control 
process  decomposes  into a  state  transition  diagram 
where its  precise  behavior  can be modeled. 

A control  flow represents  the  transmission  of  control 
signals  or  events  between  control  or data  processes, 
or  both. A controlprompt is similar to a  control  flow 
except  that  it  represents  the  communication  of a  specific 
control  imperative,  e.g.,  activate,  deactivate,  suspend, 
or  resume.  Each  prompt is  indicated  by  a  different 
letter  in  angle  brackets  near  the  control  prompt,  e.g., 
<As denotes  an  activate  prompt. 
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Figure 8 Process  composition  hierarchy  for  the  process 
"GenerateReport" 

PROCESS GenerateReport contains: 

GetDestFile 
SMerror 

GetProjectInformation 
D i  spl ayHeader 
GetCurrentStage 
Numberstages 
GetStageInfo 

CloseProject 

Figure 9 The state transition diagram for 
"GenerateReport" 

State  Transition  Diagram: G8n~rateReport.2.l-Canttol 

1 

In addition to the  above,  there  are  several  other 
types of information that  can be readily accessed 
by  a user. Most of these  types  are in the form of 
reports,  but information can  be  entered or mod- 
ified as well as viewed. They include the follow- 
ing: 

Data process details-contains a  process  de- 
scription, creation  data, and details of stores 
used in the  process (e.g., type,  storage  class, 
and initial value) 
Data process X-Ref-provides a general cross- 
reference listing of data  processes 

122 O'HARE AND TROAN 

Store visibility  report-lists  all of the  stores  that 
appear  on  the DFD for a given process and then 
all of the  processes and stores  that  are  above  the 
process in the  process  hierarchy 

Various balance reports  are also intended to  be 
used during forward engineering, to identify po- 
tential errors in the number and type of process 
inputs  and  outputs. 

The CASE tool provides  context-sensitive, hyper- 
text-like facilities that allow the  user to easily 
move among the different diagrams and text- 
based forms or reports.  For example, from a DFD 
a  user may traverse to the  associated minispec, 
the DFD of a child process,  the definition of a  type 
of a  store  or  a  data flow, the STD of a  control 
process, balance reports, or a  cross-reference in- 
dex. Clearly, such capabilities are  not  only of 
value in forward engineering but for reverse  en- 
gineering as well. 

Various reverse engineering activities are  also 
supported  by allowing the  user  to  add and modify 
information. For example, higher-level DFDS may 
be added to document how the  system  interacts 
with  other,  external,  systems.  Textual descrip- 
tions can  be  entered for key  processes and other 
objects, and notes and annotations  can  be added 
to diagrams. Requirements can  be  entered and 
linked to elements in the DFDs. Elements  with 
synthetic names may be given more meaningful 
names. Unnecessary or inessential elements may 
be deleted. All of these capabilities help to  cap- 
ture and preserve  what  users  learn as they ad- 
vance their understanding of the subject system. 

Finally, restructuring is facilitated because  the 
synthesized  processes may be used as recommen- 
dations to the  user  on how to restructure  the 
source  code using separate  procedure definitions. 
In addition, the DFD for each  synthesized  process 
shows which local variables  are  accessed  by  the 
corresponding  source  code. 

Control model. Figure 9 shows the state transition 
diagram (STD) generated by the RE-Analyzer tool 
for a for loop in the bottom half  of the source code 
appearing  in the Appendix. This STD contains only 
two states-an  initial state (3-State-0) and a final 
state ( A E n d ) .  The transition contained within the 
initial state indicates that the next state will be the 
same as the current state, i.e., control remains 
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A State  Transition  Diagram  (STD)  is  a  graphical  representation  of a finite  automataz3  and is  used to specify th behavior 
of its associated  control  process  appearing  on  a  DFD.  As  shown  below,  an  STD  is  composed  of  states  and  transitions. 

TRANSITION 
CONDITION/ACTION 
SPECIFICATION 

A state symbol  represents  one  possible  state of the 
system  being  modeled. In RTSDM,  states  may  be 
adorned  with  other  symbols to denote  an initial state, 
an  exit  or final state, a  transitory  state,  and  a  suspended 
state.  These  state  qualifiers  serve to distinguish 
different  interpretations  of  an  STD  and  help  to  establish 
a  precise  semantic  model.  For  example,  the  STDs 
produced  by  the  RE-Analyzer  do  not  contain  suspended 
states.  That  is,  control  processes  are  assumed to be 
continuously  active  until  they  pass  control  on to some 
other  process. 

A transition is  used to indicate  which  states  may 
succeed a  particular  state.  Transitions  are  typically 
annotated  with a conditionhction specification which 
specifies  the  conditions  that  must  exist  before a 
transition to another  state  can  occur  and,  optionally, 
the  actions  that  are to be  taken  when  the  transition 
occurs. Initial  actions may  be  associated  with  an initial 
state.  The  condition  in  this  case  is  omitted  since  it  is, 
by  definition, the  activation of  the  associated  control 
process. 

within the same state  as long as the indicated con- 
dition is satisfied. The transition to  the final state 
occurs  when the condition i < NumStages is no 
longer true. Note that there is no action associated 
with the transition to  the final state. 

Although states  are used to represent  points 
where  control flow branches  to  one  or  more dif- 
ferent  locations,  the  names of states  are arbitrary 
and  have no mapping to  any  object in the original 
source  code.  The  user is responsible  for supplying 
meaningful state names. 

The  clock-shaped  symbol  that  appears on the ini- 
tial state  indicates  that it is also a transitory state. 
That  is,  transitions  can  occur  only after all actions 
associated  with  the  last  transition in or into  this 
state  have  completed.  This  type of state  is used to 
model a single thread of control. 

State L E n d  has  an  arrow symbol (going from left 
to right) instead of a clock  symbol; it denotes  an 
exit or final state.  For  our  purposes, a final state 
indicates the point at which an STD releases  con- 
trol until it is reactivated. 

Figure 10 The action details from the 
“GenerateReport.2.1” STD 

Ac t ion  Name: ActLi  st-GenerateReport .2.1-9 

Descr ip t ion:  (none) 

Action  Statements: 
1 Prompt: e a c t i v a t e  > GetStageInfo 
2  Prompt: < a c t i v a t e  >GenerateReport.2.1.9 

Figure 10 shows  the  activation list for  the  action 
ActList-GenerateReport .2.1-0 that  appears in the 
initial state of the GenerateReport .2 .1  STD. This list 
simply enumerates  the  processes  that  are  to  be 
activated  when  the  transition  occurs. Note  that 
the  order is important  since  the  second  process  is 
not  activated until after  the first activated  process 
has completed. The  transition  is said to have com- 
pleted when all  of its  actions  have  completed. 

Other,  more  complex  control  structures  can  be 
easily represented as  an STD. One of the main 
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Figure 11 Entity  details  for “CurrentStage” 

E n t i t y  Name: CurrentStage 

E-R Categor ies:   pr inf0.h 

Descr ip t ion:  (none) 

St ructure  connect ion  type:  and 

A t t r i b u t e s :  
1 ReasonLeft : array [255] o f   c h a r  
2  DateLeft  : a r ray  [le] o f   c h a r  
3 DirectionMoved : enum-Delta 
4 PrevAbstractStageName : ar ray  [255] o f   cha r  
5  NextAbstractStageName : ar ray  [255] o f   c h a r  
6 StageName : ar ray  [255] o f   c h a r  
7 Tool Invocat ionStr ing : ar ray  [255] o f   c h a r  
8 ToolName : a r ray  [255] o f   c h a r  

values of the STDs produced by  the  RE-Analyzer 
is its integration with  the  process and data mod- 
els. That is, the STD for each  control  process on 
a DFD can be quickly accessed and viewed;  the 
conditions and actions of an STD similarly relate 
to  entity definitions and  data  processes. Also, in 
spite of the  great familiarity that  most  developers 
have with common  control idioms (e.g., if-then- 
else, while-do, or repeat-until),  the graphical rep- 
resentation afforded by STDs can  make  complex 
control  structures  easier  to follow. 

Data model. The  entity-relationship (E-R) modelz2 
is the  basis of the  data modeling technique  sup- 
ported in VIEWS. Each  type definition found in the 
source  code is represented as an entity. This is in 
keeping with the traditional notion of an  entity  as 
representing  a  class of objects. 

For  each module processed by the  RE-Analyzer, 
a  separate E-R diagram, referred  to as an entity 
category  diagram, is produced containing one  en- 
tity for each  type defined in the module. Since  the 
VIEWS E-R modeling technique  represents  entity 
attributes  as  subordinate  detail  rather  than as ob- 
jects on an E-R diagram, most of the  data model 
produced by  the  RE-Analyzer  does  not  appear in 
graphic form. Thus, no relationships  between 
type definitions are modeled on the E-R diagrams. 
However,  one  important  relationship among type 
definitions, i.e., type  composition,  is modeled as 
will be shown below. 
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Since  the VIEWS E-R modeling technique  supports 
a form of lexical scoping for data  store  names, 
variables  appearing in the  source  code  that  have 
the  same name but different scopes  can  be easily 
represented. 

The  subordinate detail generated by  the RE-An- 
alyzer for each  entity  includes  a list of categories 
that  reference  the  entity (i.e., modules  that ref- 
erence  the  corresponding  type)  and  a specifica- 
tion. An entity specification may take  any  one of 
three different forms: (a) simple specifications 
represent  a simple type  equivalence  or  a simple 
structure (e.g., an array  or a  pointer);  (b) enu- 
merated specifications represent  enumerated 
types;  and (c) structured specifications represent 
either  compound  types (e.g, records) or a union of 
types.  A  structured specification contains  one or 
more  attributes  that  are ANDed together  to form 
compound types  or ORed together  to form a union 
of types.  Attributes  have  a name and  a  type  as 
described  above for entities.  Figure 11 shows  the 
entity  details  text form for the  compound  type 
C u r r e n t S t a g e  referenced by a  store in Figure 4. 
This  text form displays the immediate structure of 
the  entity and allows the  user to  enter  or edit 
information. These  representations  are  taken di- 
rectly from type  declarations and structure  spec- 
ifications appearing in the  source  code. 

Figure, 12 shows  the  entity specification hierarchy 
for Cuh-entStage.  This  hierarchy  shows  the  com- 
plete composition of the  entity, i.e., its immediate 
structure  and  the  structure of each of its  compo- 
nents. In this example, the  entity  has  a  structured 
specification with eight attributes forming a com- 
pound type  as indicated by  the  structure  connec- 
tion type.  The  attribute D i   r e c t i  onMoved has  a  type 
of enum-Del t a  that  has an enumerated specification 
as shown below the  attribute  entry.  Indentation is 
used to indicate levels in the  type  hierarchy. Re- 
cursive  type definitions are handled by displaying 
a single cycle of the definitions and annotating  the 
first reference with two asterisks.  The specifica- 
tion hierarchies  are inferred by the CASE tool from 
the SNRT model generated by the  RE-Analyzer. 

The  RE-Analyzer  must  synthesize  entity  names 
and specifications for certain  classes of type  dec- 
larations found in source  code.  For example, the 
type a r r a y .  18 found in Figure 4 was defined as an 
array of characters.  This definition avoids  the ne- 
cessity for RTSDM to support  arbitrary  type  dec- 
laration  syntax in DFDs and helps to minimize the 
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diagram space needed to specify type informa- 
tion. Similarly, the  RE-Analyzer will synthesize 
an entity and simple specification for pointers. 
For example, the  store  type F I L E P t r  in Figure 5 
was defined as a pointer to  a file type. 

In addition to allowing the  user to easily view the 
subordinate  details of any  entity or its  complete 
definition hierarchy,  a  cross-reference  index and 
a  completeness  report  are  provided.  The  latter 
indicates incomplete or missing details, e.g., at- 
tributes  that  were not assigned a  type,  arrays with 
no  bounds specification, or bit fields with size in- 
formation. 

Aside from completing the SNRT model, there  are 
several  other  ways in which the  data model pro- 
duced by  the  RE-Analyzer  can facilitate both  for- 
ward  and  reverse engineering. For example, the 
data model is  the  basis for cross-reference  reports 
on  both  type definitions and variable  declarations 
as described in the  next  subsection. Also, the  data 
model simplifies reengineering efforts by elim- 
inating the need to  enter required type informa- 
tion and making it readily available to  users so 
that  they  can easily view the  associated  type def- 
inition for data  stores  and flows. Finally, the E-R 
data model can be completed by simply adding 
relationships among the  entities  already  created 
and placed on  entity  category diagrams by  the 
RE-Analyzer. 

HyperViews. The  HyperViews facility of VIEWS 
provides  an intelligent cross-reference capability 
that  spans all of the modeling techniques. Given 

Figure 12 The entit specification hierarchy  for 
Currentitage" 

E n t i t y  Name: Currentstage 

E-R Categor ies:   pr in f0 .h 

Descr ip t ion:  (none) 

Spec i f i ca t ion   H ie rarchy :  

St ructure  connect ion  type:  and 
ReasonLeft : a r ray  [255] of  char 
DateLef t  : a r ray  [le] o f  char 
D i  rectionMoved : enum-Del t a  

{ Forward, 
Backward, 
F i r s t ,  
Current } 

PrevAbstractStageName : array [255] o f  char 
NextAbstractStageName : ar ray  [255] o f   c h a r  
StageName : ar ray  [255] of  char 
Tool I nvoca t ionS t r i ng  : a r ray  [255] o f   c h a r  
ToolName : ar ray  [255]  of char 

a  particular  object  such  as  a  data  process,  a  store, 
or an  entity, it dynamically produces  a  report in- 
dicating where  the  object is referenced in any of 
the modeling techniques  supported by VIEWS and 
how it is used. 

Figure 13 is an  excerpt from the  HyperViews  re- 
port for the  entity C u r r e n t s t a g e .  The  report  lists all 
of the  data  stores  and  the  processes  whose DFD 

Figure 13 HyperViews for the entity "CurrentStage" 

Currentstage has  Hyperview  Links  to: 

Class o r   E n t i t y  """"""-" 
Currentstage - member o f  Categor ies:   pr info.   h 

Component o f :  

Instances: 
Store:  Stage - Parent  Process: RunTool 
Store:  ThisStage - Parent  Process:  GetStageInfo.0 
Store:  CurrStage - Parent  Process: Changestage 
Store:  CurrStage - Parent  Process:  GenerateReport 
Store:  CurrStage - Parent  Process:  GenerateReport.2 
Store:  Stage - Parent  Process:  DisplayMenu 
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Figure 14 Hyperviews  for the data process 
“GetCurrentStage” 

GetCurrentStage has Hyperview Links to: 

Process 
”””_ 

GetCurrentStage Parent: RunTool 
GetCurrentStage Parent: GenerateReport 
GetCurrentStage Parent: Di  spl ayMenu 

contains  the  store, i.e., the name and  context for 
every  variable  that  is  declared  to  be of type Cur- 
rentstage. 

Figure 14 is an  excerpt from the  Hyperviews re- 
port for the  data  process GetCurrentStage. The re- 
port  lists all of the  processes  whose DFD contains 
the process, i.e., every place where  that  data  pro- 
cess is used.  This  particular  example also illus- 
trates how data  processes  are  reused in different 
DFDs. 

Figure 15 is an  excerpt from the  Hyperviews re- 
port  for  the  data  store PrStore. The  report  lists all 
of the  processes  whose DFD contains  the  store 
and the child processes  that  read or write to  the 
store.  Thus, it not  only  provides  a  cross-reference 
indicating where  the  store  is  referenced,  but it 
also  details how it is used in each  case. 

Similar reports  are provided for  every  other  basic 
S m T  element as well, e.g., data  and  control pro- 
cesses,  entities,  conditions,  and actions. This 
type of intelligent, cross-reference  capability is 
valuable  for  both  forward and reverse engineering 
activities. 

User  experiences,  limitations,  and  future 
plans 

Relatively large code  sets  have  been  successfully 
processed, including one networking application 
that had more  than 26000 lines of code  and  the 
source  code  for  the  code  analysis  part of the RE- 
Analyzer, which has  over 17000 lines of code. 

Beta  test users of the  RE-Analyzer  have found it 
to  be useful in program understanding  work.  One 
user was given a  piece of monolithic, poorly 
structured  code  to  restructure so that it would be 
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more reusable. The  RE-Analyzer was used to 
graphically view which code  segments  were suf- 
ficiently isolated so that  they could be moved 
from in-line code  to  separate  functions.  The tool 
also made it relatively easy  to tell which global 
variables  a new function  accessed so that  they 
could be  passed as  parameters  instead of declared 
as global variables.  Another  beta  tester used RE- 
Analyzer to locate  dead  code. In the  data flow 
diagrams produced,  dead  code  appeared as pro- 
cesses  or  clusters of processes  with no data flows 
representing  inputs or outputs.  Other,  more  sub- 
tle cases (e.g., inputs  but no outputs  or side ef- 
fects)  were  also identified with slightly more 
effort. Also, an ongoing project is using the 
RE-Analyzer  to  produce  consistent  and  compre- 
hensive documentation so that  (a)  recommenda- 
tions can  be made on how best to  restructure  the 
system  and  (b) new developers  can  become  pro- 
ductive  more rapidly. 

Some limitations will be resolved in the near fu- 
ture  as  enhancements are made to  the existing 
tool. One  such limitation requires  the input of the 
RE-Analyzer to  be preprocessed.  Thus,  the  RE- 
Analyzer  is  not able to  capture and effectively 
represent compiler directives  that include other 
files and defined constants and macros, or that 
control conditional compilation. Because  many 
programmers  use  such  constructs  to effect a form 
of abstraction,  we  consider it important to aug- 
ment the  system so that it can  capture and pre- 
serve  these  abstractions. 

Another limitation stems from the  fact  that no 
SNRT methodology addresses  the  representation 
of pointers. Although VIEWS provides  a simple 
representation of pointers within its E-R data mod- 
eling technique, we hope to develop  a  more ro- 
bust formalism that will address related issues 
such as aliasing. 

Finally, the  RE-Analyzer  does  not  attempt to rep- 
resent  the  semantics of built-in functions found in 
the  source  code.  This limitation is  not significant 
in the  context of sequential programs. However, 
in cases  where  a program creates  concurrent  pro- 
cesses,  the  RE-Analyzer  does  not  make full use of 
the SNRT capabilities  to model such  behavior. 

Other planned enhancements include support  for 
languages other  than C, more  extensive  use of E-R 
diagrams for  representing relationships among 
defined types,  and  some simplifications of the  re- 
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Figure 15 Hyperviews for the data store “PrStore” 

PrStore has  Hyperview  Links  to: 

Data  Store 

Parent  Data  Process:  GetStageInfo.8 
Written-by: 
Read-by: GetStageInfo.8.8 

Parent  Data  Process:  NewProject.1 
Written-by:  NewProject.l.1 
Read-by: (off-page  connector) 

Parent  Data  Process:  NewProject.4 
Written-by:  (off-page  connector) 
Read-by: NewProject.4.8 

Parent  Data  Process:  NewProject 
Written-by:  NewProject.1 
Read-by: Newproject-Control,  NewProject.4 

Parent  Data  Process:  OpenProject.2.2.2 
Written-by:  (off-page  connector) 
Read-by: OpenProject.2.2.2.B 

Parent  Data  Process:  OpenProject.2.2 
Written-by:  (off-page  connector) 
Read-by: OpenProject.2.2-Control. OpenProject.2.2.8,  OpenProject.2.2.1, 

OpenProject.2.2.2 

sulting SNRT representations  such as removing 
control  processes  that  have no internal  transi- 
tions. 

A separate  type of enhancement  involves  the in- 
tegration of the RE-Analyzer or  the VIEWS 
method, or both, with other  types of tools. For 
example,  since  the  RE-Analyzer relies on static 
analysis, it does  not  directly  address  those  cases 
where  the  reverse engineering process might be 
enhanced by providing dynamic  analysis capabil- 
ities. However,  a tool that  provides  such  capa- 
bilities could be used to complement the  RE-An- 
alyzer by annotating  appropriate  parts of the 
SNRT model with the information gleaned €rom 
the  dynamic analysis. 

Conclusion 

The  reverse engineering system  presented  here 
realizes  the goal of automatically transforming 
legacy code  into  data flow diagrams, state tran- 
sition diagrams, and entity-relationship  data mod- 

els within a CASE tool supporting  structured anal. 
ysis for real-time systems.  This  approach  to 
reverse engineering promises to have  a significant 
impact on  software  development  since it greatly 
facilitates a  wide  variety of maintenance  and  re- 
engineering activities, including redocumenta- 
tion, restructuring, program understanding,  and 
program enhancement.  Even  the  conversion of 
legacy code  written in a  structured language to an 
object-oriented language can  be  made  easier with 
the  use of this  system in conjunction  with  the 
VIEWS object-oriented  analysis  and design meth- 
odology. 

It  was  noted  that  the  key  characteristics of the 
RE-Analyzer include source  code  abstraction,  a 
high level of integration with a CASE tool, fully 
automated  generation of sNRT compatible repre- 
sentations,  incremental  reverse engineering sup- 
port, and the  preservation of all source  code in- 
formation. These  characteristics lead to  several 
other significant properties of the  RE-Analyzer 
system.  Since  the  user  enjoys  a  common  set of 
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modeling techniques  and  operations for both for- 
ward  and  reverse engineering activities,  only  a 
single vocabulary is required  for  both  classes of 
activities. The CASE tool supports  the  creation 
and management of revision histories  that facili- 
tates  the  preservation of knowledge gained during 
the  reverse engineering process. And finally, the 
system  facilitates  the injection of CASE technol- 
ogy into  a  development organization by providing 
a  relatively easy  way for users  to move from the 
source  code with which they  are familiar to  the 
SNRT abstractions  that  can be used to model it 
within a CASE tool. 

Although the  current implementation of the  RE- 
Analyzer  system  works  for  code  written in the C 
language, the underlying approach  can  be  gener- 
alized for any  procedural programming language. 

Finally, the  results of this  project  have given us 
considerable confidence that  the goal of a  coher- 
ent,  integrated reengineering environment  can  be 

realized. Specifically, the  other half  of the reengi- 
neering cycle, i.e., code  generation,  appears to  be 
quite  tractable for the VIEWS structured analysis 
methodology. 
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Appendix:  Source  code  for  the  function  "GenerateReport" 

void  GenerateReport  ( v o i d  ) 
{ 

i n t  i; 
i n t  NumStages; 
General  Header  Header; 
Currentstage  CurrStage; 
char  DestFileName[200]; /* User  entered f i l e  name */ 
char  TempFi le[(s izeof(" / tmp/")  + 15)] = ""; /* Temporary f i  1 ename */ 
char  SystemComnand[(sizeof("/tmp/") + 15) + 161; /* Holds  a  system() command */ 
FILE * F i l e ;  /* Output f i l e   f o r   t h e   r e p o r t  */ 

i f  ( I (  F i l e  = Ge tDes tF i l eO ) ) 
{ 

/* User  wants 
tmpnam(TempFi 
F i l e  = fopen( 

1 
i f  ( ! F i l e )  

SMerror("Cou1 

1 
T 

d 

i t  on the  screen. Send i t  t o  a  temporary f i l e   f o r  now */ 
e) ; 
empFi 1 e, "w" ) ; 

n i t  open f i l e " ,   N o n F a t a l ) ;  

/*  Now g e n e r a t e   t h e   f i l e .  The header i s  a   p iece   o f   cake .  */ 
D isp layHeader (   GetPro jec t In fo rmat ion( )  ) ;  
CurrStage = Getcur ren ts tage( ) ;  
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/* Now  step  through  the  stages  and  print  out  info  on  each */ 
NumStages = NumberStages () ; 

for  (i=l; i e NumStages; i++) 
{ 

CurrStage = GetStageInfo(i) ; 
fprintf(File, “%s ‘I, CurrStage.DateLeft); 

/*  This  makes it “Moved  into”  or  “Backtracked  into”  depending  on  which 

if  (CurrStage.Di  rectionMoved = = Forward) 
direction  the  user  went  at  the  time.  Silly  little  nicetie. */ 

fprintf(File,  “Project  moved  into %s stage\n”, 
CurrStage.NextAbstractStageName) ; 

else 
fprintf(File,  “Backtracked  into %s stage\n”, 

CurrStage.PrevAbstractStageName); 
fprintf(File, ‘I - %s\n”, CurrStage.ReasonLeft) ; 

I 
fclose(Fi1e); 

if (TempFile[Q]) 
{ 

/* We  used  a  temp  file.  Clear  the  screen  and  display  the  file  through 
more. Erase  the  temporary  file  when  we’re  done */ 

sprintf  (Systemcommand,  “clear ; more %s”, TempFi 1 e) ; 
system(SystemCommand) ; 
unlink(TempFi1e); 

I 
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