Forging a silver bullet
from the essence of
software

Most improvements in software development
technology have occurred by eliminating the
accidental aspects of the technology. Further
progress now depends on addressing the
essence of software. Fred Brooks has
characterized the essence of sofiware as a
complex construct of interlocking concepts. He
concludes that no silver bullet will magically
reduce the essential conceptual complexity of
software. This paper expands on Brooks’s
definition to lay a foundation for forging a
possible silver bullet. Discussed are the three
essential atiributes of software entities from
which a number of consequences arise in
software development: (1) conceptual content,
(2) representation, and (3) multiple subdomains.
Four basic approaches to develop technologies
are proposed that directly address the essential
attributes. Although some of these technologies
require additional development or testing, they
present the most promise for forging a silver
bullet. Among them, design reabstraction
addresses the most difficult atiribute, multiple
subdomains, and the most difficult consequence,
enhancing existing code, making it the best
prospect.

In his paper on “no silver bullet,”! Fred Brooks
addresses the problem of improving the quality
and productivity of software development.
Brooks contends that most of the improvements
in software development technology in the past
have occurred by eliminating the accidental or
nonessential aspects of the technology. For ex-
ample, the use of high-level languages removed
much of the incidental complexity associated
with the hardware (internal data representations,
registers, peripheral interfaces, etc.). Time shar-
ing removed the incidental problems associated
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with the need to compile programs in batch, thus
losing the immediacy of our thinking in the ac-
tivity of programming.

Further progress now depends on addressing the
essence of software. After reviewing a number of
promising approaches, Brooks concludes that
there is no silver bullet that will by itself magically
reduce the essential conceptual complexity of
software and allow an order of magnitude im-
provement in productivity and quality.

Brooks’s arguments and conclusion, presented
nearly seven years ago, captured the imagination
of the software development community and
have had a continuing influence on its members’
thinking. Other authors have recently proposed
additional technologies for consideration, for ex-
ample, design execution? and knowledge-based
software engineering.?

Brooks has provided a yardstick for technological
breakthroughs, namely a tenfold improvement in
quality or productivity, or both. Such a yardstick
has engendered a level of realism when consid-
ering technological improvements. A given tech-
nology may not be a silver bullet. Therefore, we
should not expect, nor should providers imply,
wildly dramatic results. Rather, we should go
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with what improvements can be obtained. The
combined effect of several of these improvements
may well be an order of magnitude improvement.

More importantly, Brooks’s arguments have es-

tablished a framework for thinking about the na-
ture of software and of programming: there are

If a silver bullet can improve
software development, it can
only be forged by addressing the
essential nature of software.

essential aspects of software that must be ad-
dressed by any approach to improve the technol-

ogy.

Brooks’s paper in many ways echoes the views
set forth by Parnas* in a series of minipapers pub-
lished a year earlier. In them, Parnas character-
izes software systems as “discrete state” systems
without repetitive structures and having a large
number of states. For Parnas, the complexity of
the software system is the result of the very large
number of states contained in it, which prohibit
the developer from obtaining a complete under-
standing of the behavior of the system.

In this paper, I propose to examine the ideas pre-
sented by both Brooks and Parnas in more detail.
If a “silver bullet” can possibly improve software
development, it can only be forged® by directly
addressing the essential nature of software. Thus,
a more detailed look at the essence of software is
warranted, which we hope will suggest ap-
proaches for dealing with the essential complex-
ity of software. Even if an order of magnitude
improvement in quality and productivity cannot
be achieved, these approaches will constitute the
most profitable and possibly the only effective at-
tack on the problem.

What constitutes the essence of software?

What would the essence of software be like? The
essence of a thing is that which gives it its iden-
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tity. It is the inherent, unchanging nature of the
thing. Essential attributes are those properties
that are intrinsic and indispensable, as opposed to
coincidental or accidental.

Thus, for those of us who are intimately familiar
with software, the essence of software ought to be
obvious: we should be able to recognize it in-
stantly. The essence ought to be simple and
straightforward, rather than abstruse. And the es-
sential nature should be ubiquitous: if it is truly
essential, it should apply to all forms of software,
regardless of the specific problem domain, appli-
cation, or language representation.

Given this basic information, how do we charac-
terize the essence of software? Brooks calls the
essence of a software entity “a construct of in-
terlocking concepts,” consisting of such things as
data sets, data items, algorithms, and functions.
The conceptual construct is abstract, highly pre-
cise, and richly detailed.

Brooks distinguishes the conceptual construct it-
self, which is abstract, from its concrete repre-
sentation in some programming language or
other. The conceptual construct can be repre-
sented in any number of languages. The difficulty,
Brooks asserts, is more in specifying, designing,
and testing the conceptual construct than in cod-
ing it in an implementation language.

Parnas views software systems as “discrete
state” systems with a large number of states. The
large number of states results from the fact that
software systems do not have repetitive struc-
tures (which would reduce the overall system
complexity) such as are found in computer hard-
ware, for example. The number of states in-
creases because of the conditional nature of the
execution of the program: whatever the program
does at any given point depends on what hap-
pened in the past. Each step of the program gives
rise to additional states on which subsequent
steps depend, and so on.

I propose to take Brooks’s definition of the es-
sence and Parnas’s notion of discrete states and
expand on these ideas. The essence of a software
entity is a construct of interlocking concepts with
the following essential attributes:

1. Conceptual content: A software entity is char-
acterized by concepts that come from both the
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problem domain and the surrounding software
entities with which it interfaces.

2. Representation: The concepts of a software
entity are expressed as representations of both
the data it uses and functions it performs.

3. Multiple subdomains: A software entity per-
forms functions that consist of transforma-
tions on its data, based on conditions present
at the time of execution. The presence of con-
ditions splits the input domain into multiple
subdomains of function.

Conceptual content. All software contains con-
cepts that come from its problem domain, that is,
the domain of operation in which the function of
the software has a useful purpose. For example,
the problem domain of a payroll system includes
employee time records, payroll payments, pay-
roll statements, tax withholdings, tax reporting,
tax statements, etc. The problem domain of an
automobile microprocessor includes engine op-
erating status, engine environment conditions,
engine controls, dashboard displays, etc. The
problem domain concepts are the same as the
concepts stemming from our ordinary human
experience.

In addition, all software contains concepts from
the surrounding software entities with which it
interfaces. The software uses the constructs of
the lower-level entities and in turn is used by high-
er-level entities, an end user, or an external in-
terface. We can call this area of interaction the
environment, or milieu, of the software. For ex-
ample, a component of an airline reservation sys-
tem uses a database subsystem. Thus its milieu
includes the concepts of the database interface:
database records, keys and fields, sequential ac-
cess, access by index key, etc.

As a result, a hierarchy of software components
develops having a unique conceptual content at
each level on which still higher components are
based. At the lowest level, the software interacts
directly with hardware features (e.g., channels,
control registers, hardware interrupts, device
buffers, etc.) and thus reflects the concepts of
those features. Higher software levels are built
upon the lower levels and use the concepts from
those levels (e.g., block 1/0, device protocols, dis-
play 1/0, etc.). Still higher levels use the concepts
from the levels below them. Thus, a large net-
work of interrelations is built up from the con-
cepts operant at each level of software. At the
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highest levels, the problem domain concepts are
operant.

Within any given level only the concepts that are

operant at that level have significance. The con-
cepts of the other levels, for example, those from

Concepts of a software entity are
expressed as representations in
both the data it uses and the
functions it performs.

levels that are two or more removed, are hidden
and are not part of the milieu of the software at
that level.

Part of the milieu of a software entity is the pro-
gramming language in which it is written, which
includes concepts of the syntactic structures
(e.g., IF-THEN-ELSE, DO WHILE-END), built-in
functions (e.g., SUBSTR, TRANSLATE), the scope
of variables, etc.

Representation. The concepts of a software entity
are expressed as representations in both the data
it uses and the functions it performs.® Data usu-
ally have associated with them a name (e.g.,
GrossPay) and a specific value (e.g., 2715.50).
This applies to simple data items, aggregates such
as arrays and structures, abstract data types, and
objects.

The concept of a data item is suggested by its
name. Frequently, however, more explanation is
needed to specify the details of the data item,
such as the detailed definition, its usage in differ-
ent contexts, the meanings of different values,
etc. The value of a data item is the instantiation
of the concept in a specific context (e.g., 2715.50
is the gross pay for employee number 143300).

The functions of a software entity usually have
associated with them a name (e.g., SetEm-
ployeeSalaryData) and other information about
the function performed (e.g., required input var-
iables, functions performed, possible output var-
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iables, and expected values). Functions can be
viewed as a transformation of input data values to
output data values provided by one or more series
of steps of the program (e.g., for a given Em-
ployeeNumber the steps of the program set var-
ious employee salary data items, such as Gross-
Pay, Exemptions, FilingStatus).

The concept of the function is suggested by its
name, but the details of the transformation that
the function performs are contained in other in-
formation and specifications of the function.
Functions can be encapsulated, that is, defined
within a syntactic structure, such as a procedure,
function, or method definition, which may have
associated formal parameters that define the in-
terface. The encapsulating structure separates
those specific program steps from other parts of
the program that use those steps.

The representations in a software program have a
correspondence with the concepts for which they
stand. A variable named NetPay, for example, is
not a quantity of money; rather, its value repre-
sents a quantity of money, which is the employ-
ee’s net pay. A function named ComputeDeduc-
tions, for example, represents those steps of the
program that take the representations for an em-
ployee’s gross pay, exemptions, filing status, and
so on and produce representations for federal in-
come tax, social security tax, state tax, and other
deductions. The function ComputeDeductions
thus represents the steps of the program that im-
plement the concept of the function, in this case,
computing payroll deductions.

In evaluating the representations of data and
function, we can speak of their conceprual integ-
rity, that is, how well the representation matches
the concept behind it. The idea of conceptual in-
tegrity is an extension of the notion of the cohe-
sion of a module that deals with how well-related
the functions of the module are to one another, in
other words, how well they relate to the overall
concept of the function of the module. The idea of
conceptual integrity also applies to the related-
ness of the representation of data structures and
other functional structures such as object classes.
Conceptual integrity is important when dealing
with the representations of a system over time as
modifications and enhancements are made to the
system.
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Multiple subdomains. A software entity performs
functions that consist of transformations on its
data, based on conditions that are present at the
time of execution. That is, what the software will

Representations in a program
have a correspondence with the
concepts for which they stand.

do in any given instance of execution depends on
the conditions that are present as, for example, in
data values in memory, console switch settings,
and similar indications of the state of the com-
puter. Depending on these conditions, the soft-
ware will transform its data values in a specific
way.

Thus, a software entity will have any number of
different, discrete effects on its data depending on
what conditions are present. A particular pro-
gram fragment might, for example, compute the
square root of a number in all instances where the
input number is positive or zero, and set an error
indicator when the input number is negative. The
different conditions that govern the behavior of
the software can be viewed as those sets of input
data values that cause a different type of trans-
formation. In the example given, the set of neg-
ative numbers and the set of nonnegative num-
bers give rise to different behaviors in the
program fragment.

The different sets of input conditions that define
the different behaviors of an entity are called the
subdomains of the input domain. With inputs in
one subdomain, the software will have one be-
havior, whereas inputs in another subdomain will
result in a different behavior. The process of di-
viding the input domain into its subdomains is
called partitioning the input domain (see Refer-
ences 7 and 8).

The notion that software has multiple subdomains
is equivalent to Parnas’s notion of multiple states
and to the idea of multiple paths through a pro-
gram fragment. The concept of multiple subdo-
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mains has the advantages of (1) the functional
concept of a subdomain can be more readily iden-
tified, (2) the subdomains in most cases can be
more readily derived from the syntax of the code,

Multiple subdomains are an
intrinsic property of all software.

and (3) implicit conditions can be handled. For the
purpose of this paper, however, the reader can
substitute the concepts of multiple states or mul-
tiple paths.

The property of multiple subdomains arises with
the use of programming language constructs that
cause conditional execution. The best example of
this situation is the IF-THEN-ELSE construct that is
present in some form or other in most languages:

if condition-A then do
transform-X

end

else transform-Y

If condition-A is true, then transform-X is per-
formed. If condition-A is not true, transform-Y is
performed. The IF-THEN-ELSE construct creates
two distinct paths of execution for the program,
depending on condition-A at the time of the ex-
ecution.

The input domain of this program fragment has
two possibilities (i.e., condition-A and not con-
dition-A) that give rise to two distinct possible
outcomes (i.e., transform-X or transform-Y). An-
other notation for this IF-THEN-ELSE construct
that expresses the partitioning of the input do-
main into its two subdomains might be:

1. condition-A
— transform-X

2. #NOT# condition-A
- transform-Y

All language statements create at least one sub-
domain, namely the function of that statement.
However, many constructs create multiple sub-
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domains. For example, the SELECT-END con-
struct creates a subdomain for each nested WHEN
and OTHERWISE statement. Some constructs have
implicit subdomains. For example, the sequential
read statement in many languages implicitly
raises a condition or sets a return code when end-
of-file occurs. In these languages the sequential
read statement has two subdomains, the success-
ful read and the end-of-file condition.

When statements follow one another sequentially
in a program, the subdomains of the combined
statements can be derived by combining the sub-
domains of each sequential statement. In forming
this combination, the different conditions are
“multiplied” together in their different permuta-
tions, and the transformations are combined se-
quentially. Similarly, the subdomains of nested
statements (e.g., statements within a DO-END
group) are combined in the same way with the
subdomains of the nesting statements. A subrou-
tine call or similar construct acts as a single state-
ment with multiple subdomains inherited from the
called routine.’

The property of multiple subdomains, each with
a set of conditions and transformations, arises
from the conditional results that occur in the ex-
ecution of various language constructs. How-
ever, the conditional results are the same regard-
less of the language in which the software is
written. The implementation of equivalent func-
tions in different languages has the same subdo-
mains even though different language constructs
are used.

Multiple subdomains are thus an intrinsic prop-
erty of all software, regardless of language rep-
resentation. All software entities have multiple
subdomains in which a different transformation
will occur, depending on which sets of conditions
in the input domain are present during execution.
In other words, the behavior of all software can
be expressed abstractly in behavior specifications
of the form: under conditions A, transformation X
will occur; under conditions B, transformation Y
will occur; under conditions C, transformation Z
will occur, and so on.

The essence of software. Thus, a software entity is
in essence a construct of interlocking concepts
characterized by a conceptual content derived
from its problem domain and the milieu of other
software entities with which it interfaces, by rep-
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resentations of its concepts both in the data it
uses and in the functions it performs, and by the
multiple subdomains of its input domain that
characterize the different transformations that
will occur, depending on the conditions that are
present during execution.

Consequences of three essential attributes
of software

A number of consequences necessarily follow
from the three essential attributes of software.
Because software has certain inherent attributes,
other conditions and properties follow. From
these consequences, still other consequences
arise. The consequences thus further elaborate
what is basic to software. Moreover, they influ-
ence the nature of software development and de-
fine the bounds within which software technology
can be effective.

I wish to propose 10 consequences, shown in the
diagram in Figure 1 with their logical connections.
For example, that programs are objects in the
world is a consequence of the fact that they are a
“crystallization” or encoding of the conceptual
construct of the software, which in turn is a con-
sequence of the essential attribute of representa-
tion. Of course, these consequences are not the
only ones that may be proposed. Further, the
connections shown in the diagram are the most
direct connections but clearly there are other re-
lations between these consequences.

In his paper, Brooks cited four inherent proper-
ties that arise from the essential nature of soft-
ware: complexity, conformability, changeability,
and invisibility. These same inherent properties
also arise from the 10 consequences I am propos-
ing. A fifth inherent property, namely that soft-
ware is developed primarily through incremental
enhancements, results as well.

The conceptual construct of the software is held in
the developer’s thinking (1). When we specify and
design a software entity, we define the conceptual
construct (i.e., its key concepts) and refine those
concepts into ever more detailed data and func-
tional representations until finally the code is pro-
duced. The role of the developer’s thinking in this
design process has largely been ignored, yet it is
the primary faculty we use in developing soft-
ware.
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As developers, we develop the concepts of the
system and represent them in specifications and
designs. Our thinking is constantly engaged as we
mull over the details in our thoughts. We may
make notes and draw preliminary design nota-
tions on paper or a blackboard. We think through
the concepts in detail before putting them into a
formal representation. Once we have a design
written down we bring it up again and again in our
thinking, reviewing details, exploring the impli-
cations of new concepts, refining our conceptual
constructs, and finally recording the refinements
and changes in the representation.

We develop and refine the concepts first in our
thinking and then record the result in a design
representation. We produce ever more detailed
representations and finally the implementation.
During this process, the conceptual construct or
conceptual view is active in our thinking and has
aliving quality. If we are absorbed in this process,
our thinking activity even appears to continue in
us unconsciously during periods of relaxation and
sleep, as indicated by many developers who re-
port that insights about the system come to them
after they wake up or during times when they are
relaxing.

The written representations we develop of the de-
sign serve two purposes: as an aid to recall the
conceptual view and to direct our attention to one
aspect or other of it, and to communicate the con-
ceptual view to others so that they can include it
in their own thinking. A good design representa-
tion accomplishes these two purposes readily.

Once we are done with the development effort,
the conceptual constructs that we developed in
our thinking begin to fade. No longer can we as
readily recall the conceptual view of the design.
If we must go back to the design or code to fix a
bug or develop an enhancement, for example, we
must reconstruct the conceptual view in our
thinking. This process becomes one of rediscov-
ery: as we look at the code and whatever design
documentation exists, various concepts are re-
called from memory, and we gradually build up
the conceptual view. If we are looking at someone
else’s code, the process is one of pure discovery
of the conceptual view. We must discover and
build up all of the details of the conceptual view
from scratch. We use whatever information is at
hand: the code, the names of data items, the con-
tents of data files, reports and screens, comments
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Figure 1 Consequences of the essential attributes of software

THE ESSENCE OF SOFTWARE

< CONCEPTUAL CONTENT > < MULTIPLE SUBDOMAINS > < REPRESENTATION >

THE CONCEPTUAL CONSTRUCT THE CONDITIONS IN THE SOFTWARE SOFTWARE REPRESENTATIONS
OF THE SOFTWARE IS HELD IN THE COMBINE MULTIPLICATIVELY ARE A "CRYSTALLIZATION" OF
DEVELOPER'S THINKING THE CONCEPTUAL CONSTRUCT

4
SOFTWARE IS MORE BROADLY THE DEVELOPER MUST ANTICIPATE
CONCEPTUAL THAN THE BEHAVIOR OF THE SOFTWARE
MATHEMATICAL OR GRAPHICAL BEFOREHAND UNDER ALL CASES
AND CONDITIONS
PROGRAMS ARE OBJECTS
IN THE WORLD AND OPERATE
IN THE WORLD
6

SOFTWARE DEVELOPMENT IS AN
INTENSE ACTIVITY OF THINKING

+
A HIGHER-ORDER VERIFICATION SOFTWARE WILL ALWAYS BE
OCCURS IN THE DEVELOPER'S AN ASSET THAT MUST BE
THINKING; FORMAL VERIFICATION MAINTAINED AND ENHANCED
IS DONE RELATIVE TO THE
SOFTWARE REPRESENTATIONS

10

THE FIRST TASK OF DEVELOPMENT
IS TO RE-ENLIVEN THE CONCEPTUAL
CONSTRUCT IN THE DEVELOPER'S

THINKING INHERENT

PROPERTIES
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in the code, and any other documentation that is
available.

In the process of software design, we can speak
of the developer’s clarity of thinking. By this we
mean how clearly defined the concept is in our
thinking, how “concrete” it is, how familiar we
are with it, how easily we can consider different
aspects of it, how readily we detect inconsisten-
cies with it in what is presented to us by others or
what we come across in our design work.

When the conceptual view of the system is active
in our thinking, it takes on a fluid character. We
can change it as readily as we can change the
concepts in our thinking. In this way, software is
inherently malleable. Its ease of change arises
from its conceptual nature: since the structure of
software is purely conceptual, “pure thought-
stuff” as Brooks puts it, change is accomplished
by simply changing the conceptual structure.
Software is malleable because it is purely con-
ceptual: there are no physical elements whose
properties and limitations the software engineer
must take into account.

The conditions in the program combine multipli-
catively (2). The subdomains of each part of a
software entity combine together to form a set of
subdomains for the entity as a whole. The sub-
domains result from multiple internal conditions
and similar interactions in the interfaces in the
milieu of the software. In general, the subdomains
of any two software segments that interact with
one another (whether by sequential execution, by
nesting, by looping, or by a call interface) are the
cross product of the subdomains of each segment.

Typically, the set of subdomains for a program is
very large because the interactions of the condi-
tions in each segment are always multiplicative.
Take for example a 10 000-statement program in
which every fifth statement splits the domain with
some sort of condition. Then the program will
have 2000 conditional statements and could have
anywhere from 2001 to 2*® (or about 2x10° to
10°®) subdomains. (See the Appendix for a der-
ivation of these relationships.)

Moreover, the cases that favor the lower estimate
in this range (nested conditional statements) are
typically less likely than the cases that favor the
higher estimate (sequential conditional state-
ments). Thus, the number of subdomains of a
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10 000-statement program, a “small” program by
most standards, can be literally astronomical.

The inherent property of complexity noted by
both Brooks and Parnas is a direct consequence
of the multiple subdomains resulting from the
conditional tests in the code. Each subdomain is

The subdomains of each part of
a software entity combine to
form a set of subdomains for

the entity as a whole.

equivalent to a distinct state that the software en-
tity can be in. Each subdomain arises from a con-
ditional structure, such as an IF-THEN-ELSE, but
has a conceptual aspect as well. The interaction
of multiple conditions together causes a complex
conceptual expression of conditions for the sub-
domain. The transformation of the subdomain
likewise can be a complex sequence of transfor-
mations that accomplish a unique overall function
or outcome.

For Parnas, the use of structured methods
(whereby the software function is encapsulated in
smaller, simpler modules) does not reduce the
complexity of the entity sufficiently because even
then complex interactions remain between the en-
capsulated components. The use of mathematical
logic will likely not help because the mathemat-
ical expressions themselves are extremely com-
plex. The complexity of software is beyond the
capacity of the human mind to comprehend.

Software representations are a “crystallization” of
the conceptual construct (3). As we develop the
conceptual view of the software entity, we begin
to record representations of the concepts in some
form as specifications and designs. We continue
to refine these representations as our thinking
progresses and as changes are considered and de-
cided upon. The written representations come to
embody the proposed software in greater and
greater detail, until finally the software is coded.
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In contrast to the fluid character of our thinking,
the representations are fixed and rigid. They can
be viewed as a “crystallization” of our thought
activity, an embodiment of our thinking that
serves to remind us of what we have thought pre-
viously, much as the writing on a page calls up in
us the thoughts that were present when it was
written.

However, because they are fixed, the represen-
tations become less malleable. The more detail
we have set down, the more difficult and error
prone it becomes to change them. Ultimately,
when the software is coded, it becomes an object
in the world. Thus, we have transformed what
began as pure thought into a fixed object that op-
erates in the world.

The developer must anticipate the behavior of the
software beforehand under all cases and conditions
(4). Because of its fixed nature as a crystallization
of the conceptual construct, the software entity is
inflexible in responding to inputs in any way other
than the one in which it was programmed. Pro-
grams will perform only within the limits of what
the developer intended and had the foresight to
include. Because of this inflexibility, the devel-
oper must anticipate and explicitly handle all pos-
sible outcomes and responses of the system. This
fact in turn gives rise to numerous conditions in
the code, resulting in a very detailed, complex
construct. As Brooks puts it, the software entity
is “highly precise and richly detailed.”

Conditions occurring in the operation of the soft-
ware that were not anticipated by the developer
result in either a limitation on the operation of the
software or an actual defect in its operation. The
developer must then either alter and extend the
function of the software or fix its operation under
the unanticipated condition.

Software is more broadly conceptual than mathe-
matical or graphical (5). A consequence of the
purely conceptual nature of software and its com-
plexity is that the use of graphical or visual meth-
ods and the use of mathematical methods have
limitations. Let us consider each of these in turn.

Graphical or visual methods. Brooks contends
that software is invisible and unvisualizable. Soft-
ware cannot be visualized because geometric or
spatial representations are inadequate to repre-
sent its complex relationships. Of course, it is
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possible to produce graphs of relationships for
flow of control, flow of data, patterns of depen-
dency, time sequence, and name-space relation-
ships. However, we can only represent these

The software entity is inflexible
in responding to inputs in any
way other than the one in which
it was programmed.

relationships in a simple presentation (e.g., hier-
archical) if we hide or cut links.

Part of the unvisualizability of software arises
from its complexity as described earlier. The
other part arises from its conceptual content. It is
difficult to represent concepts generally, from all
possible problem domains, except through tex-
tual descriptions. The concepts themselves in
general are not spatial or embedded in space.
Even David Harel, a strong proponent of visual-
ization in software development, concedes that
the algorithmic operations of software will prob-
ably remain textual.? It is the structural relation-
ships between the constructs of a software entity
(e.g., calling structures, data relationships) that
lend themselves to graphical representation, as
opposed to the essential conceptual content.

This is not to say that graphical and other visual
methods are not useful in working with software
entities. On the contrary, they are quite useful.
However, they do not fully address the concep-
tual nature of software.

Mathematical methods. A widely held view in
computer science (for example, References 10
and 11) is that programs are mathematical ob-
jects. According to this view programs can be
treated as functions operating over their domain
of input, which can be expressed as formulas in
discrete mathematics describing the transforma-
tion of input data into output data. In taking ad-
vantage of its mathematical nature we can use
simplifying concepts to prove the correctness of
a program. Programs can be reasoned about with
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mathematical rigor. A mathematical treatment of
programs helps deal with their complexity, bring-
ing the developer “intellectual control” and mas-
tery over the complexity. Take for example the
following statement from E. W. Dijkstra:*°

As soon as programming emerges as a battle
against unmastered complexity, it is quite nat-
ural that one turns to that mental discipline
whose main purpose has been for centuries to
apply effective structuring to otherwise unmas-
tered complexity. That mental discipline is
more or less familiar to all of us, it is called
Mathematics. If we take the existence of the
impressive body of Mathematics as the exper-
imental evidence for the opinion that for the
human mind the mathematical method is in-
deed the most effective way to come to grips
with complexity, we have no choice any longer:
we should reshape our field of programming in
such a way that, the mathematician’s methods
become equally applicable to our programming
problems, for there are no other means.

Although many hold the view that programs are
mathematical objects, the presumption that the
mathematical treatment of programs simplifies or
reduces complexity is not as universally held.
Parnas holds that the mathematical functions de-
scribing the behavior of programs are not contin-
uous functions. Neither traditional engineering
mathematics nor other mathematical methods,
such as formal methods and verification, will help
overcome the inherent complexity of software.
He asserts that “The large number of states and
lack of regularity in the software result in ex-
tremely complex mathematical expressions. Dis-
ciplined use of these expressions is beyond the
computational capacity of both the human pro-
grammer and current computer systems.”*

Brooks points out the premise behind the expec-
tation that mathematics will reduce complexity,
namely that mathematics has permitted a reduc-
tion in complexity in the physical sciences be-
cause there are underlying unifying principles
which in themselves are simple. However, there
are no such underlying unifying principles in soft-
ware: the complexity is there because of the ar-
bitrary complexity of human institutions to which
the software must conform.

As we have seen, the complexity of software as
measured by its subdomains results from its con-
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ditional nature. As a condition is added to the
program, the number of subdomains can increase
either by one or by double its current number. No
unifying principles are involved in software be-
cause the conditions that are tested are unique to
the particular aspect of the problem being handled
at that point in the program. No simplifying prin-
ciples will significantly reduce the number of sub-
domains, if we assume that the normal design
practice of factoring out common function into
subroutines or similar structures has been fol-
lowed.

Thus, the mathematical expression of the func-
tion of a program fragment contains the same
complexity as the software itself because it must
express the function of each of the subdomains of
the fragment. Yes, there are some instances
where a mathematical expression can hide the
subdomains in a program fragment, as for exam-
ple:

if x > y then a
else a

X
y

This statement contains two subdomains but can
be replaced with a single functional expression
containing only one subdomain:

a = MAX(x,y)

However, such instances tend to be confined to
the use of mathematical expressions that happen
not to be available in the implementation lan-
guage. Such mathematical expressions are sim-
pler than the program code but are hardly an over-
all simplifying principle that can be applied in all
or even in many instances to reduce complexity.

The use of mathematical notation also attempts to
summarize the function of a program fragment
into a single transformation, that is, to take a pro-
cedural expression of the function over many pro-
gram statements and express it in a single “in-
stantaneous,” or one-step, function. Although
this process can result in a smaller expression of
the function, the expression is rarely less com-
plex. In some instances, the mathematical nota-
tion may actually obscure the meaning of the
function because it focuses on the mathematical
structure of the transformation rather than the
concept behind it. For example, a specialized sort
routine may require a very complex mathematical
structure to describe its function. The concept
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inherent in the logic can be simply stated con-
ceptually as “sort using the xyz technique.”

Because software entities are conceptual con-
structs, it is more appropriate to view them as
conceptual objects rather than more restrictively
as mathematical objects. The mathematical treat-
ment of programs is one way of working with
them as conceptual objects because mathematical
concepts are a subset of all concepts. However,
the mathematical treatment of a program is fun-
damentally limited in that it cannot abstract the
function of the program beyond a certain point
and still remain mathematical.

Any abstraction of a function in mathematical
terms (mapping inputs to outputs via a functional
transformation) cannot be further abstracted
without resorting to higher or broader concepts
that do not explicitly state the functional trans-
formation. Any abstraction of the partition of the
input domain in mathematical terms (by listing the
subdomains with their conditions and transfor-
mations) cannot be further abstracted without re-
sorting to higher concepts that do not explicitly
state the subdomains.

For example, the mathematical abstraction of a
complex search function can be expressed in
mathematical transformations that apply across
each of its subdomains. However, the next higher
abstraction of this function can be expressed only
in terms like ““search the database for records sat-
isfying the criteria,” a nonmathematical concep-
tual abstraction that encompasses the details of
both the transformation and the subdomains of
the function.

The most common objection to this further step of
abstraction beyond the mathematical expression
is loss of its precision. The terms “search” and
“satisfying the criteria” may be ambiguous and
therefore are unreliable. In addition, Brooks as-
serts “Descriptions of a software entity that ab-
stract away its complexity often abstract away its
essence.”!

I disagree with both objections. To begin with, the
higher abstraction in which we choose to express
the function of the program fragment is the very
concept that motivated us to construct the func-
tion in the first place. The precision of expression
and degree of ambiguity that we had at design
time was no more or less. Yet from that concept
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we developed the detailed implementation. If the
concept (search for records satisfying the criteria,
in the example) was precise enough and clear
enough at that level, it should still serve us as an
adequate abstraction at that level. The concept is
still valid at its level of abstraction. If we need
further clarification or precision, we can simply
look at the lower levels of abstraction (the math-
ematical expression or the code itself).

Furthermore, abstraction using ever broader con-
cepts that encompass more and more parts of the
software entity does not “abstract away” its es-
sence because its essence consists of these very
concepts, provided they are the right concepts, of
course. The complexity of the entity arises from
the details at ever lower levels of abstraction. So
long as these details are readily accessible, noth-
ing is lost to the developer. The concepts at each
level of abstraction are available to the developer
to take up in his or her thinking activity. The key
is to abstract the function using concepts with
sufficient detail so that the abstraction truly en-
compasses the function.

The use of mathematical expressions and proofs
or tests of equivalence are useful for refinement of
designs and for verification of the implementa-
tion. Though mathematical treatment of a soft-
ware entity provides precise, unambiguous
expression of the function of the entity, it does
not help remove complexity. Only the use of
broader, nonmathematical conceptual abstrac-
tions can help the developer to encapsulate the
complexity of the software entity.

Software development is an intense activity of
thinking (6). Because of the conceptual character
of software, software development is fundamen-
tally an activity of thinking. Because of the com-
plex conditional nature of software and the need
to anticipate the behavior of the software in all
circumstances, under all cases and conditions,
the developer’s thinking must be precise and thor-
ough. Because of the purely conceptual nature of
the software, graphical or visual and mathemat-
ical methods are limited in the degree to which
they can assist the process of development.

Thus the software developer must rely on his or
her thinking activity as the primary means of de-
veloping the conceptual construct. Any experi-
enced developer will confirm the intense mental
activity that is involved. We become absorbed in
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the conceptual view, in some instances almost
consumed in the intensity of thinking.

A higher-order verification occurs in the develop-
er’s thinking; formal verification is done relative to
the software representations (7). Verification is the
process of comparing a lower-level design repre-
sentation or the code for a software entity against

Once coded, programs
become objects in the
world.

its higher-level design representation to deter-
mine how well it matches. Verification frequently
refers to a formal process comparing the specifi-
cations for a program fragment and its corre-
sponding design or code. A very common com-
plaint (see Parnas,® for example) is that the
specifications themselves may contain errors and
thus are not a reliable representation of the sys-
tem.

Specifications are expressed at a higher level,
usually giving only the expected external behav-
ior of the system. They allow developers to spec-
ify the behavior of the system independent of and
prior to its implementation. They serve a useful
function in forcing a more detailed definition of
the conceptual construct. They can thus serve
both as an individual reference for the developer
and for communication among developers.

The specifications and the design have a relation-
ship with a third element, namely the developers’
thinking. The developers’ thinking really pre-
cedes the writing of the specifications and the de-
sign. It is the common ground from which they
are both derived. Both the specifications and the
design embody the same conceptual view be-
cause the same concepts and ideas have moti-
vated each.

With this three-way relationship in mind, it is no
wonder that a number of things can go wrong: the
developers’ conceptual view may be flawed; one
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or more developers may have a view that differs
from the others’; the specifications may reflect
these flaws or may have errors that misrepresent
the concepts; the designs and code likewise may
contain the conceptual flaws or other errors.
Therefore, the process of verification against
specifications will catch only some of the errors
because the verification is essentially a mechan-
ical process of comparing the consistency of one
representation with another.

We should realize that flaws in our thinking are a
natural outcome of how we work: we may un-
cover significant problems in our conceptual view
as we learn more about the problem domain or see
more clearly the implications of our current think-
ing. In one project I was involved with, we called
these flaws in our thinking “major conceptual er-
rors,” or MCEs. We were uncovering MCEs still
fairly late in the design process.

Because our thinking is involved, no formal ver-
ification is possible that will detect flaws in our
conceptual view. However, because our thinking
is involved, we should realize that a higher-order
verification is always going on in which we com-
pare the information at hand with our conceptual
view of the design. We verify everything we en-
counter about the system relative to our under-
standing of the problem domain. We apply what-
ever knowledge we have, including our common-
sense understanding of the world. Thus, the
“real” wverification occurs in our thinking,
throughout the development process, even as we
perform, for example, the formal verification of
the design relative to the specifications. Robert
Glass'> makes a similar argument that software
design is in essence a cognitive process that is not
susceptible to formal approaches.

Programs are objects in the world and operate in
the world (8). Once they are coded, programs be-
come objects in the world, that is, “things” we
can use, sell, teach about, maintain, enhance, etc.
We also come to rely on them as tools to do our
work. The software itself is indestructible, that is,
it does not deteriorate or wear out over time.
However, because it is fixed, a crystallization of
our thinking at some point in time, it may become
obsolete. As time goes on, conditions in the world
change, and the software no longer quite “fits.”

Thus a software entity needs constantly to con-
form and change to its changing environment,
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that is, to human institutions, practices, and hu-
man interfaces. Program modifications are fre-
quent because the software of a system embodies
its function, and most pressure for change occurs

Most software development efforts
involve creating incremental
enhancements to existing code.

in its function. Also, software is the preferred el-
ement of a system to change because it is mal-
leable and more easily changed compared to other
system clements such as the hardware.

The property of conformity arises directly from
the conditions imposed by the external require-
ments and interfaces. For example, the require-
ments for U.S. social security tax calculations
have changed several times in the last decade.
Not only has the tax rate changed practically ev-
ery year, but the basic structure of the tax
changed from a single tax rate for both employers
and employees, to a different rate for employers,
back to a single rate, and more recently to a sep-
arate tax schedule and separate reporting for so-
cial security tax and for medicare tax. Each of
these changes required that payroll software con-
form to the new requirements via new conditions
in the code for separate tax rates, a separate tax
calculation, and separate reporting of the taxes.

Software will always be an asset that must be main-
tained and enhanced (9). Because programs are
objects in the world in which we have invested
time and effort, they become assets that we feel
obligated to maintain and enhance. We cannot
afford to rewrite software every time we must
alter it. In fact, only when there is great justifi-
cation to rewrite, for example, when the existing
or legacy code can no longer be maintained or
enhanced, do we undertake to completely replace
the program. Even when we do decide to re-en-
gineer an existing system, the resulting new sys-
tem becomes new legacy code that we then feel
obliged to maintain and enhance.
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Thus, most software development efforts, in ap-
plications software, systems software, and im-
bedded (microcode) software, involve creating
incremental enhancements to the existing, legacy
code. New functions and modifications to exist-
ing functions are added to the existing software
base. Seldom do we develop completely new
code for a new product or system. Many so-called
“new systems” in fact turn out to be based on
existing code, code that may have been devel-
oped as a prototype, an internal tool, a field-de-
veloped program, etc., and as a result many of
these “new systems” involve enhancing existing
code.

This fact of life of software development is con-
firmed by industry estimates. The proportion of
development effort devoted to software enhance-
ments, as opposed to totally new code, is usually
estimated at 80 percent or more.” Despite the
overwhelming proportion of effort devoted to en-
hancing existing code, most software develop-
ment technologies address only the new devel-
opment paradigm and thus are not readily
applicable to legacy software enhancements. This
mismatch of technology to application is an ap-
parent blind spot in this industry.

The first task of development is to re-enliven the
conceptual construct in the developer’s thinking
(10). When the software developer is faced with
maintaining or enhancing an existing program,
the first task is to discover the relevant parts of
the conceptual construct that are needed for the
change. This activity is the opposite of the orig-
inal task of setting down the conceptual construct
into design representations and code. It involves
looking through the code (and possibly other doc-
umentation) and re-enlivening the conceptual
construct in our thinking. For code that we have
written ourselves, this activity becomes a process
of rediscovery and recalling from memory the
conceptual view we had earlier. For code that we
have not written, it is a process of discovery of the
conceptual view from scratch, using whatever
conceptual information is contained in the code or
other documentation.

Only when we have the conceptual construct ac-
tive again in our thinking can we properly develop
the incremental enhancement. We do not typi-
cally need to recapture the entire conceptual con-
struct (nor for large software systems can we) but

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994




only those parts of the design that are relevant to
the specific enhancement.™

The process of recapturing and re-enlivening the
conceptual view uses program understanding
and design reabstraction. Program understanding
is the process of understanding what exists in the

The thorniest problem
we have with software is
its complexity.

code. Design reabstraction is the process of ab-
stracting the higher-level concepts from the code,
possibly building design representations. (I have
chosen the term design reabstraction rather than
arecommended term, design recovery, ® because
the latter implies a process that uses more sources
of information and results in a broader scope of
information about the design.)

Once we have recaptured the conceptual view,
we incorporate the enhancement into the concep-
tual construct. In doing this, we use a different
design method than that used for new function.
The design of the enhancement involves the de-
sign of a delta to the existing function. The design
must specify how the existing function is to be
altered. For many enhancements the design is not
isolated design. The new function can be scat-
tered throughout the existing structure.

Approaches to forging a silver bullet

Where should we look for a silver bullet? If we are
to forge a silver bullet, it will only be by using
those technologies that directly address the es-
sential attributes of software: conceptual content,
data and function representation, and multiple
subdomains, and the consequences of these at-
tributes. I propose the following four basic ap-
proaches, in order of decreasing importance:

1. Support intellectual control over subdomain
complexity
2. Provide higher-order constructs
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3. Support development of the conceptual con-
struct

4. Support incremental steps during develop-
ment

Each approach is now described in some detail.

Support intellectual control over subdomain com-
plexity. The thorniest problem we have with soft-
ware is its complexity. By virtue of the conditions
in a program, the number of subdomains in-
creases dramatically as the program increases in
size. Developing the conceptual construct for a
new system, forward from the requirements to
specifications to design to implementation, is rel-
atively easy. When we proceed forward and top-
down, we are developing and refining the con-
ceptual construct in a natural way, from the
whole to its parts, from overview to details.

However, when we are working with existing code,
for example, to develop enhancements, the reverse
process is very difficult. The many subdomains of
the system present themselves with equal impor-
tance; it is difficult to abstract from the code the
relevant concepts and recover the conceptual con-
struct for enhancements. It is difficult to maintain
intellectual control over the existing complexity.
Yet the fact is that 80 percent or more of our de-
velopment deals with enhancing existing code.
Above all we need solutions that will allow us to
reabstract the relevant concepts at every level of
component hierarchy. We need methods to handle
the complexity rigorously, with intellectual control.
The technologies I propose for this are design re-
abstraction and formal verification.

Design reabstraction. Design reabstraction is the
process of recovering or rediscovering the higher-
level concepts—the design—that motivated an
existing segment of code. Generally we cannot
rely on whatever existing detailed documentation
may exist. The documentation of the lower levels
of design is almost invariably out of date because
it was not maintained as the software was fixed
and enhanced. In contrast, the documentation of
the higher levels of design, if it is available, may
be useful in establishing the basic conceptual con-
structs of the system.

The basic approach to reabstraction is to abstract
and represent the function of a program fragment
from the code itself in a stepwise reabstraction pro-
cess. Work in design reabstraction has been re-
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ported for the Cleanroom methodology'*!” and the
REDO project.'®” Both approaches propose a po-
tential automated abstraction system to derive the
single-valued functional abstraction of a program
fragment. Both approaches attempt to derive a for-
mal, mathematical expression of the function.

In light of the conceptual nature of software, 1
propose that it will be more fruitful to treat reab-
straction as a process of recovering the concep-
tual construct rather than a mathematical repre-
sentation. Reabstraction is better viewed as the
reverse of design, that is, recovering the inter-
mediate concepts that were present when the
software was designed. Such a process could
never be fully automated because the higher-level
conceptual content is absent and needs to be sup-
plied by the developer. However, tools can be
developed to provide automated assistance in the
process.

The conceptual content at any level can be ab-
stracted from the constructs of the software by
identifying the appropriate concepts in a stepwise
manner. Choices must be made as to what are the
“relevant” details for higher levels, that is, which
conditions have conceptual relevance at a higher
level and which are merely implementation de-
tails. Constructs are thus encapsulated by gener-
alizing concepts, and intellectual control over
ever larger segments of the code can be achieved.

The process of reabstraction needs to be tied to
the code so that the reabstracted concepts can be
traced back to the code that motivated them. The
process also needs to be rigorous to the extent
that no segment of code can be overlooked.

Formal verification. The proponents of the math-
ematical treatment of software have long held out
the hope that programs can be formally verified or
proved. Brooks points out that although formal
verification is useful where security or safety are
key considerations, it does not promise to save
labor. In fact, only a few substantial programs
have ever been verified. Moreover, verification
can only establish that the program meets its
specification, whereas the essential problem is to
develop the specification correctly in the first
place.

I disagree with this assessment. To begin with,
there are methods of verification, perhaps less
rigorous than what Brooks had in mind, that can
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be applied to large systems. For example, the
Cleanroom methodology® has demonstrated that
program verification can be successfully inte-
grated into the development of real-life systems
with no loss in productivity and a significant gain
in quality. (The Cleanroom methodology includes
the methods of box structure specification, func-
tion theoretic correctness verification, and statis-
tical usage testing. For the purposes of this dis-
cussion, we will consider just the verification
portion of the methodology.)

Furthermore, Brooks’s view that program verifi-
cation is no help to us in developing a complete
and consistent specification does not take into ac-
count the fact that building the specification pro-
ceeds from the same thought activity as the de-
velopment of the program. The process of
building the specification for the purpose of ver-
ification does in fact provide a rigor that would
not otherwise be there. Yes, the process of de-
veloping the conceptual construct is potentially
flawed because we must first form the concepts
out of our thinking activity before we can produce
either the specification or the implementation.
However, any amount of rigor that we introduce
into this process will help.

The Cleanroom methodology uses specification
of intended function in the form of inputs, out-
puts, transformation and state data, using math-
ematical proof arguments to demonstrate the cor-
rectness of the implementation or a lower-level
design refinement during team reviews. Clean-
room verification provides rigorous methods dur-
ing formal reviews and encourages the same level
of rigor during individual work. The methodology
is powerful and provides the rigorous methods
needed for intellectual control.

However, in order for Cleanroom verification to
be broadly applicable, it will need to include spec-
ifications and verification procedures for purely
conceptual representations of function. As we
saw earlier, the mathematical treatment of pro-
grams is limited in the extent to which it can ab-
stract the complex subdomains of the function of
the program and still remain mathematical. A
mathematical expression of the function of the
program will have the equivalent complexity of
the code itself. Verification based strictly on
mathematically expressed function specifications
will necessarily be complex and tedious. I believe
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it is to this form of program verification that
Brooks alluded.

If we look more broadly at the process of verifica-
tion, we find that developers ultimately rely on a
higher order of verification with their conceptual
understanding of the system and the required func-
tion, as was mentioned earlier. The determination
of correctness thus relies on the thinking ability of
the reviewers to be convinced of the correctness,
regardless of the form of the notation. Cleanroom
proponents appear to be moving in this direction.
For example, Pleszkoch, et al.!” recognize the use-
fulness of simple human concepts to represent com-
plex functional expressions.

Cleanroom also has restrictions on the use of cer-
tain language constructs, for example, multiple ex-
its from a program fragment, loop ITERATE, and
loop LEAVE. These appear to be too restrictive, par-
ticularly if methods, such as employing partition
analysis,”® can be devised that adequately demon-
strate the validity of programs containing such con-
structs. More woik in this area is warranted.

The greatest limitation of the Cleanroom meth-
odology, however, is its appropriateness for de-
veloping enhancements to existing code. Clean-
room relies on formal specifications of the
intended function, but such specifications are in-
variably absent for existing products not devel-
oped using Cleanroom. There are no proven
methods for developing the specification of ex-
isting code, although the work on design reab-
straction (previous section) shows promise. Thus
the success of the Cleanroom methodology for
most development efforts is dependent on the de-
velopment of a valid, usable design reabstraction
methodology.

Provide higher-order constructs. One attack on
subdomain complexity is to prevent the creation
of new subdomains by eliminating or hiding the
conditional logic that gives rise to them. This re-
quires constructs in the language and the inter-
faces to other softwave components that will per-
form higher-order transformations while hiding
the conditional details of implementation. Such
constructs enable a complete encapsulation of
function so that it can be dealt with without regard
to the conditions arising in its implementation.

Higher-order constructs also allow the developer
to partition the problem into the part that must be
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developed and the part(s) that already exists and
can be reused. Thus the problem to be solved is
smaller, and the scope of the development effort
is reduced. Such constructs need to be both ge-
neric and problem-domain-specific.

The solutions for this basic approach enable us to
reduce the number of subdomains with which we
must deal.

Generic, higher-order language constructs and
reuse. The most useful approach will be to pro-
vide higher-order generic constructs in several
ways:

¢ Language extensions supported by the compil-
er—Extensions would include providing
built-in functions not originally part of the lan-
guage (e.g., MAX and MIN functions, spread-
sheet @ functions like @VLOOKUP, specialized
mathematical or financial functions, etc.). It
would also include incorporating built-in ab-
stract data types, for example, for stacks,
queues, and maps, with the operations for these
data types (e.g., PUSH, POP, QUEUE, DEQUEUE)
provided as part of the language. Other lan-
guage extensions would provide needed built-in
transformations that are used regularly in var-
ious applications, such as the support of vari-
able nested data structures with self-referenc-
ing lengths.
More broadly, language extensions in our ex-
isting languages can support better encapsula-
tion, allow for (better) type checking, and pro-
vide for user-defined abstract data types and
object-oriented constructs.

* Generic reuse—It would include providing ge-
neric constructs in the form of reuse building
blocks and object class libraries. Such functions
would provide a convenient packaging of com-
plex function with an interface that hides the
complexity, for example, reusable parts that
provide a simple interface to the graphical user
interface function of the operating system.

Other types of extensions—This would include
extensions that provide higher-level function,
such as pipelines, compiler macros, and spread-
sheet add-in packages. Any facility that can en-
capsulate the generic function needed will help
reduce the complexity of the program. For ex-
ample, the following vM/CMS (Virtual Machine/
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Conversational Monitor System) pipeline?
construct reads the records in a file, reformats
them, sorts the reformatted records, eliminates
duplicates, and stores the results in a stem (ar-
ray) variable. This single line of code is equiv-
alent to about 25 lines of a language like REXX
or PL/I:

PIPE < file | spec 73-80 1 | sort | unique
| stem tb1.

There is no logical limit to the level of higher-
order constructs that can be provided. We can
develop still-higher-order constructs from the
lower ones. However, Brooks feels that there is
a limit to the usefulness of higher-order con-
structs. They will ultimately create a “tools mas-
tery problem that increases, not reduces the in-
tellectual task of the user who rarely uses the
esoteric constructs.”! Brooks may be right, but
we are far from that limit in most high-level lan-
guages. Rather than discourage the creation of
higher-level constructs, I would propose aggres-
sive selection and development of such con-
structs. Indeed, it should be the responsibility of
language standards bodies and compiler develop-
ers to seek out and provide such extensions as
part of their language. The language should never
be viewed as complete and fixed. Developers also
have a concomitant responsibility to be aware of
new language features and to use them.

The selection of functions for generic reuse re-
quires that the problem domain concepts, func-
tion, and data representation all be suitable for
general use. Most existing code in an application
is not suitable for general reuse because of mis-
matches in one or more of these areas. In partic-
ular, the problem domain concepts or the data
representation, or both, may not be general
enough. Finding reusable parts is difficult.?

The use of higher-order constructs is applicable to
developing enhancements to existing code prod-
ucts because the new constructs can be intro-
duced as enhancements are added. Indeed, de-
velopers should be constantly seeking ways to
upgrade their product by introducing such fea-
tures as part of an overall upgrade plan.

Problem-domain-specific language constructs
and reuse. In addition to generic language con-
structs and reuse, it is also possible to develop
and use problem-domain-specific constructs, that
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is, higher-order constructs for a specific problem
domain. This would include the use of reusable
parts or object class libraries for a specific prob-
lem area, for example, reusable payroll tax cal-

Reuse works in problem-domain-
specific applications despite
possible mismatches in problem
domain concepts or data
representation.

culation modules, class libraries of functions to
support satellite orbital calculations, or geologi-
cal models for oil exploration.

Reuse works in problem-domain-specific applica-
tions despite possible mismatches in problem do-
main concepts or data representation. The reus-
ing application can make the rest of the
application conform to the requirements and ca-
pabilities of the reused parts.

Higher-level languages. CASE (computer-aided
software engineering) tool vendors hold out great
hope for generating code directly from the design
representations in their tools. However, if such a
capability is to be available, their designs will
need to provide all of the details that currently go
into the code. The conditions that must be tested
and the transformations that must be performed,
in short, the entire set of subdomains that would
ordinarily be produced in the code, will need to be
specified in their designs. The complexity of mul-
tiple subdomains is an essential attribute, and in-
evitably code generators will need to be able to
specify all subdomains.

In order to specify such a level of detail, the CASE
tool must provide constructs that specify trans-
formations, conditional branching (IF-THEN-
ELSE), and repetitive operations (loops), in other
words, all of the basic features of a programming
language. Thus, code generators will be nothing
other than higher-level languages. If we are for-
tunate, they will also provide various higher-
order constructs (see previous section).
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Unfortunately, such tools will not be readily us-
able for existing code products because it will be
necessary to reabstract the existing function into
the design representation of the tool in order for
it to be generated again by the tool. For most
applications, such reabstraction will not be prac-
tical.

Brooks notes the recent widespread use of gen-
eralized tools such as databases, spreadsheets,
graphics packages, and statistical packages.
These tools enable nonprogrammers to develop
their own applications via simple programming
(e.g., via macros, scripts, program generator
specifications, etc.). These tools in effect provide
higher-order constructs and the appropriate exe-
cution environment (spreadsheet, database,
graphics) so that the nonprogrammer user can de-
velop specialized applications without much
technical expertise. Yet what is being done is still
a form of programming. These languages usually
still provide the standard sequential, conditional,
and looping constructs that are present in pro-
gramming languages. The “developer” must still
develop the conceptual construct, and the result-
ing “program” is still subject to all of the essential
characteristics of software: complexity, confor-
mity, etc. This approach works because the ap-
plications tend to be small and specialized such
that their developers can manage them.

Support development of the conceptual construct.
Brooks holds that the hard part of building soft-
ware is the specification, design, and testing of its
conceptual construct, not the labor of represent-
ing it and testing the fidelity of the representation.
The conceptual components of the task of soft-
ware development now take most of the time.
Thus, we should consider those attacks that ad-
dress the formulation of the conceptual structure.
Tools and methods are needed that readily enable
development of specifications and designs, per-
mitting clarity of thinking and ease of communi-
cating the conceptual view.

Again, it is much easier to develop the conceptual
construct the first time, in the first release of the
product. Yet the fact is that 80 percent or more of
our designs are enhancements to an existing de-
sign. Thus our tools and methods need to assist
the design of enhancements to existing code. We
must first understand the existing function, for-
mulate the conceptual construct of the enhance-
ment, and then express the design as an incre-
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mental enhancement on the base function. Our
tools and methods must help formulate the con-
ceptual construct of the enhancement.

The solutions for this basic approach enable us to
address the concepts and representation of the
conceptual construct, allowing easy development
of specifications and designs and permitting clear
thinking and communication of the conceptual
constructs. Our tools and methods above all need
to assist the design of enhancements to existing
code.

The technologies that address this area are: pro-
gram understanding tools, incremental design
tools, object-oriented technology, great design-
ers, design execution, and buy versus build.

Program understanding tools. Program under-
standing is an additional step in the process of
design that is absent from new code development.
However, for enhancements to existing code, it is
critical that the developer investigate and under-
stand how the existing structure works before be-
ginning the design of any enhancements. Program
understanding function might ideally include nav-
igation from high-level design representation
through module call structures to the code itself,
automatic identification of dependencies and in-
terfaces, and automatic creation of data dictio-
nary entries from existing structures.

Program understanding tools are intended to as-
sist the developer in formulating a complete con-
ceptual view of the existing software. Ideally,
their function is based on what information the
developer requires and in what form. These items
are in turn dictated by the internal thought pro-
cesses the developer uses. Program understand-
ing tools should provide the relevant information
while hiding all other details. See References 13
and 23 for excellent summaries of this field.

Program understanding tools are under develop-
ment within 1BM.?** New approaches to the pre-
sentation of program information are also being
studied inside and outside 1BM, for example, pro-
gram slicing. *

Design tools for incremental enhancements.
CASE design tools generally do not support de-
signs of incremental enhancements to existing
function,”® despite the fact that 80 percent or
more of development is done on existing code
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products. What is needed is the ability to repre-
sent the design of the existing function and the
design of the new function (the design delta) with
highlighting.

A methodology incorporating incremental design
would provide program understanding and design
reabstraction in an appropriate design represen-
tation (see previous sections), redocumentation
to capture ideas uncovered during program un-
derstanding and other investigation, and the spec-
ification and highlighting of the design delta
within the base design.

Object-orientedtechnology. Object-oriented tech-
nologies, that is, object-oriented analysis, design,
and programming, define data in terms of object
types, or classes. A class defines a logical collec-
tion of data with its associated operations, or
methods. For example, a Window in a graphical
user interface may be a class with a number of
methods that maximize, minimize, and move the
window on the screen. More restrictive classes
may be defined as subclasses of a class. The sub-
class inherits the methods of its superclass but
may have additional methods or slight variations
on the methods of its superclass. For example, a
ScrollableWindow might be a subclass of the
class Window, with additional methods to display
a scrolling bar and perform scrolling in the win-
dow. It would inherit the methods from its Win-
dow superclass such as maximizing and moving
but may have slightly different logic for its min-
imizing method.

Specific instances of a class are called objects.
Thus, a user might cause two Window objects and
three ScrollableWindow objects to be created
during a particular session at a terminal. Some
object-oriented languages support multiple inher-
itance whereby a class may inherit methods from
multiple different superclasses. For example, the
ScrollableWindow class might inherit a Mouse-
ButtonHold method from a more general Mouse
class to support scrolling with the mouse button
held down.

The overall function of an application can be com-
pletely encompassed by classes defined for the
application and their methods. Alternatively,
there may be functionally oriented segments of
code that use the classes and methods to accom-
plish the overall tasks of the application.
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Brooks feels that object-oriented programming is
a promising new technology: “Many students of
the art hold out more hope for object-oriented
programming than for any of the other technical

Object-oriented technologies
define data in terms of object
types, or classes.

fads of the day. I am among them.”! However, in
Brooks’s view object-oriented programming ad-
dresses only accidental aspects of development:
it allows the developer to express the essence of
the design without having to express large
amounts of syntax and allows a higher-order
expression of the design. But the complexity of
the design is the essence, not its expression.
Thus, Brooks does not expect an order of mag-
nitude improvement because type specification is
not nine-tenths of the work of designing a soft-
ware entity.

I disagree in part with Brooks’s assessment.
Brooks overlooks the fact that object-oriented
technologies permit a completely different con-
ceptual approach to the conceptual construct
(structuring via its data rather than its function)
and therefore do address the essence of the prob-
lem: they provide a framework for a different,
possibly more powerful expression of the design.

More specifically, object-oriented technologies
assist in two of the essential aspects of software:
the conceptual content and representation. At
least in some problem domains the data orienta-
tion has the advantage of a more natural repre-
sentation. I would expect designs based on data
representations to exhibit more stability with
change over time, greater ease in maintaining the
conceptual integrity of the design, and better
overall encapsulation. Moreover, object-oriented
technologies assist reuse (see previous sections).
Again, their naturalness of representation helps
with problem-domain-specific reuse. I would ex-
pect class libraries to be easier to generalize for
reuse than function-oriented code.

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994




Initial reports from studies of the use of object-
oriented technologies support these expecta-
tions. In three studies, object-oriented program-
ming showed promise in increasing productivity
because of the ease of reuse and ease of mainte-
nance. ' The ease of reuse was demonstrated
by the amount of class code reused by inheri-
tance. The ease of maintenance was demon-
strated in terms of less effort to implement a
change, fewer lines needing to be added or
changed, more localized changes, and fewer in-
terface changes for enhancements and extensions
to function. But the evidence also shows that ob-
ject-oriented technologies are not a silver bullet:
there was no tenfold improvement in quality or
productivity.

Moreover the use of object-oriented technologies
is not without a price. A number of issues are
raised in the literature:

¢ Inhibits comprehension of overall function—
The calling structure of object-oriented appli-
cations tends to be deeper and more finely dif-
ferentiated (deeper hierarchies with larger
fanout) than functional implementations. This
condition leads to a separation and dispersion of
function across classes. Wilde and Huitt* con-
firm this result and add that the hierarchical
class structure multiplies the kinds of relation-
ships that must be considered when changing an
object-oriented program. Although the separa-
tion of function increases the possibility for re-
use, it also increases the difficulty of tracing
function and actually inhibits comprehension.

¢ Hidden or unforeseen dependencies—In dis-
cussing requirements for object-oriented test-
ing, Perry and Kaiser® point out that the prop-
erty of inheritance tends to make the effects of
changes more difficult to determine and under-
stand because of dependencies. These depen-
dencies may be caused by complex inheritance
structures, methods that use other methods at
the same or higher levels, and multiple inheri-
tance. For example, when we modify an exist-
ing subclass, there may be hidden dependencies
in the methods inherited from a superclass. A
method may use different subordinate methods
from different classes, depending on the class
inheritance structure, causing hidden depen-
dencies. In addition, late binding of methods
basec3120n type also can cause hidden dependen-
cies.
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All of these effects result in additional unfore-
seen, unobvious dependencies that can cause
more complex rather than less complex and
manageable designs. Rather than simplifying
and removing accidental difficulties, the object-
oriented paradigm appears to add accidental
difficulties.

* Need for object-oriented process and tools—
Goyal* argues for a development process spe-
cifically tailored to object-oriented design that
would include a domain analysis step in which
objects are defined, developed, and refined, as
well as the more conventional function analysis
and design steps. Also needed are supporting
tools such as for class browsing, cross-refer-
encing, configuration management, and change
control. *>%

* Difficult to learn to use—The claim from pro-
ponents that object-oriented design is natural
and therefore easy to learn was refuted by at
least one researcher® who found that program-
mers experienced in functional programming
had difficulty decomposing a problem, identi-
fying classes and methods, and generally im-
plementing a solution in an object-oriented lan-
guage.

With object-oriented development, as with func-
tion-oriented development, it is necessary to be
able to handle multiple simultaneous releases,
large releases, and large teams. This type of de-
velopment implies that tools are needed to coor-
dinate the class libraries across diverse projects
and teams.

Most importantly, techniques must be developed
to introduce object-oriented constructs into ex-
isting functionally oriented applications. To ac-
complish this task, object-oriented extensions
have to be developed and supported in the exist-
ing programming languages, and techniques have
to be developed for gradually converting existing
data structures and function into object classes
and methods. Some promising work in this area
has begun.?’

Until object-oriented technologies become more
widely understood and used, and until a large set
of products have been developed with them, ac-
ceptance of this technology will be inhibited. De-
velopers working on function-oriented products
will continue to do so, whereas developers work-
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ing on object-oriented projects will use their own
development methods. Until techniques are
available to allow object-oriented technology to
be utilized in existing products, the two orienta-
tions will continue on separate paths with little
cross-fertilization or movement of expertise.

Great designers. Brooks proposes that a great de-
signer produces exemplary designs primarily be-
cause of inherent talent and this is something that
cannot be taught but only cultivated in the talented
designers that we may have. Therefore, we should
use strategies to identify and cultivate our great de-
signers so as to obtain the most from their talent.

Brooks may be right, but I would suggest that a
deeper understanding of the creative thought pro-
cess and the essential nature of software may
make it easier to identify the faculties and abilities
that great designers seem to have. Although many
of the great designer’s thought processes and
guiding principles are probably unspoken and
some are possibly ineffable, it should not be as-
sumed that we cannot understand more about
how a great designer works. With such an under-
standing it may be possible to teach these prin-
ciples and develop them in others.

For example, it is clear that a great designer must
have extreme facility in handling the conceptual
construct of a system and a good sense of the
conceptual principles that went into the design.
How the great designer achieves this should be of
use to us all.

Design execution. In response to Brooks' and
Parnas,* David Harel? offers design execution as
an approach that will assist the developer in pro-
totyping, simulating, and testing the design rep-
resentation before it is committed to implemen-
tation. Design execution can cause unforeseen
situations to surface resulting from weaknesses,
contradictions, and flaws in the conceptual struc-
ture (what I termed earlier “major conceptual er-
rors™).

This approach is useful because it allows the de-
veloper to work with the conceptual construct of
the system while it is being developed, to clarify
the thinking about the system, and to uncover
unforeseen situations and interactions between
the different parts of the system.

However, this method does not handle the en-
hancement of existing code well. It requires us to
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reabstract the existing design in order to take ad-
vantage of design execution for enhancements to
the existing design. In some cases the new func-
tion will be sufficiently isolated from the existing

lterative development needs an
overall structure and
development plan.

function, and in some cases the existing design
can be readily reabstracted, but in many cases
this will not be possible. But for new function,
and cases where we can reabstract easily, design
execution provides a powerful tool for developing
the design.

Buy versus build. Brooks proposes the use of off-
the-shelf products to meet the needs of the orga-
nization, rather than specialized, custom-built
software systems. He proposes use of specialized
packages, for example, for payroll, inventory
control, accounting, etc. Many such products are
available today at reasonable prices.

Specialized packages eliminate the need to de-
velop custom software. The conceptual construct
has already been developed and implemented. If
there are instances where the package does not
exactly conform to the needs of the organization
(for example, the payroll system does not accom-
modate different pay rates for the same employee
for different types of work), the organization con-
forms to the capabilities of the package and
adapts its practices to it. This is a dramatic re-
versal of requiring software to conform to human
institutions, but the cost benefit to the organiza-
tion to use a package rather than build a custom
system frequently justifies it.

The use of specialized packages is valid for many
software applications but does not address the
more common problem of applications for which
there are no packages or the problem where we
already have existing software that must be main-
tained and enhanced. For these cases, the more
generalized approach of reuse of software parts or
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building blocks is a valid extension of Brooks’s
idea.

Support incremental steps during development.
Software development is a thinking activity, yet
our thinking faculty has limits both in breadth and
through time. We do not generally develop the
concepts of the system in all their clarity and de-
tail all at once, nor can we hold them all in mind
at one time. We must work to develop the con-
ceptual construct and its representations over
time. We must consult others’ viewpoints and re-
actions and then repeat and refine our thinking
through a number of iterations. We must explore
the implications of our thinking thus far in various
directions, and again refine what we have devel-
oped in further iterations. This process of itera-
tive thought refinement proceeds from require-
ments definition through implementation.

We cannot do this development process all at
once for any but the smallest problems. For most
development projects, however, large efforts are
a fact of life. Thus, we need methods and tools
that allow us to partition the problem into smaller
pieces and iterate on each step of the process until
the refinement is complete at that level.

The solutions for this basic approach are those
that enable us to develop and refine our thinking
over time, and to partition the problem into
smaller, more manageable chunks. This enables
us to make use of the principle of divide and con-
quer. We accomplish these ends by iterative de-
velopment and refinement. The notion of iterative
development and refinement apply in two places:
requirements and design.

Requirements refinement and prototyping.
Brooks asserts that the hardest single part of de-
velopment is deciding what to build. To make this
decision he recommends that we develop the re-
quirements and external specifications of the sys-
tem by iteratively extracting and refining them
with the client or customer. Without such a pro-
cedure it is practically impossible to specify com-
pletely, precisely, and correctly the exact re-
quirements. Prototyping can be used to simulate
the externals and important interfaces and to
present the main functions of the intended system
to users for validation.

Incremental (iterative) development. Again,
Brooks proposes that a better analogy for soft-
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ware development is the gradual growth of the
system rather than the construction and building
of the system. We should grow the software con-
struct gradually rather than build the entire large
structure in one step. This process allows a kind
of prototyping to occur as we grow each incre-
ment of the system and add it to the base. The
system evolves or grows gradually and we are
able to take stock of what we have developed so
far and make adjustments where needed. An ex-
ample of the use of this method in IBM is the Ex-
perimental Software Development Center. *

Iterative development needs an overall structure
and development plan: a high-level design and an
externals specification at least to some level of
detail. Also needed is a plan for partitioning the
function into increments with demonstrable func-
tion that can be tested as a unit. Then each team—
usually they are small teams—proceeds with de-
velopment and test of its increment. When the
increment has been tested to a level of confi-
dence, it is added to the base product. Proponents
of iterative development claim that code can be
developed in this way with high productivity and
good quality.

One pitfall of this method is the potential to lose
sight of the fact that we must go through the re-
quired steps of development, that is, through the
necessary intellectual steps and through the dif-
ferent levels of detail in the definition of the prod-
uct structure. If we ignore these steps, we end up
doing them informally, without the proper com-
munication of critical design decisions, etc.

Recommendations

Does a silver bullet exist in any of these technol-
ogies? At this point we cannot tell. However, we
can say that the most difficult essential attribute
of software is its multiple subdomains. And the
most difficult consequence is the need to maintain
and enhance existing code. A method that di-
rectly attacks both of these areas has a chance.

When we develop new function we go through
elaborate steps to develop the conceptual con-
struct, to ever greater levels of detail. We develop
the code, and then we gradually let go of our con-
ceptual view. What was once vividly alive in our
thinking fades. Formal documentation of the sys-
tem becomes out of date. Low-level or module-
level design documentation is generally dis-
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carded, for example, when the code is completed.
We are left with incredibly detailed, complex
code and not much else that reliably presents or
explains its conceptual elements. The higher lev-
els of documentation may be lost or become so
out of date that they are no longer trustworthy.
Over time documentation in the code itself, even
the comments at the statement level, can become
suspect as the code is modified again and again.

Thus, we are left with a gap between any accurate
conceptual construct and the code. There are no
longer any accurate intervening details of the de-
sign between whatever high-level concepts we
may have and the code. When we attempt to
tackle any problem relative to the system—be it
developing fixes or adding new function to the
code, we are faced with the complexity of the
code and precious little else. It is a gap that in
practice is impossible to close with accuracy for
any but the simplest programs. Our minds simply
can no longer encompass all of the code. We are
forced to rely on imperfect, error-prone methods.
Our mental prowess and that of our colleagues are
unequal to the task. We make mistakes that we
cannot help.

But if the source of this problem is the combina-
tion of the essential attributes of software: con-
ceptual content, representation, and multiple
subdomains, and the fact that we must deal with
the existing code, the solution lies in precisely
those areas: the reabstraction of the conceptual
construct into higher-order conceptual abstrac-
tions that encapsulate the myriad subdomains.
The reabstraction process reverses the process of
design. This approach seems to me to be the only
one that will bridge the gap facing almost all de-
velopers, between the code and a reliable repre-
sentation of its conceptual construct.

Thus, my recommendations toward forging a sil-
ver bullet for software development technology
are:

1. Develop and deploy technologies for design
reabstraction and program understanding—
Design reabstraction is the technology that de-
serves the greatest focus, in my opinion. Not
only does it have significant promise in the
most difficult essential aspects of software, but
it is also the key element or a significant de-
pendency for a number of other promising
technologies if they are ever successfully to

42 wavs

deal with existing code: formal verification,
object-oriented technology, design execution,
and design tools for incremental enhance-
ments. Once adequate reabstraction technol-
ogy is developed, these other technologies be-
come much more viable for legacy systems.

Likewise, program understanding technology
is a key element in enabling developers to for-
mulate the conceptual view of the system eas-
ily and accurately. In many ways, program un-
derstanding technology is a prerequisite to
design reabstraction because the developer
must first understand the existing function in
order to reabstract it.

2. Develop and deploy those technologies that
can readily be introduced into legacy system
processes—Several other technologies offer
the advantage of being readily introducible
into our legacy system processes, that is, with-
out needing to re-engineer or reabstract the
existing logic. These technologies include
higher-order language constructs, generic and
problem-domain-specific reuse, and incremen-
tal (iterative) development. With a plan for
software revitalization and process improve-
ment, such technologies can be introduced
gradually as the system is enhanced.

Conclusion

To repeat the basic proposal of this paper: if a
silver bullet is possible, it can only be forged by
directly addressing the essence of software. Even
if we are not able to achieve an order of magnitude
improvement in quality and productivity, these
approaches will constitute the most profitable and
possibly the only effective attack on the problem.

I believe a radical shift in our approach to soft-
ware development technology is warranted. We
need to recognize that software development is
above all else a human endeavor, one that chal-
lenges our thinking faculties to the limit. The fo-
cus of our technologies must be on the central role
of the developer who uses intense thinking activ-
ity as an integral part of the process. In using our
technologies we must realize that it is the human
understanding of the concepts of the problem that
is important and that all the processes, methods,
notations, and syntax are really only secondary to
that understanding.
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Appendix: Estimating the subdomains of a
program

Every program fragment can be partitioned into a
number of subdomains from its conditional state-
ments, such as IF-THEN-ELSE, SELECT-END, and
DO WHILE-END. Different statements split the
subdomain of a program in varying amounts.
Statements with no conditions do not split the
subdomain. The IF-THEN, IF-THEN-ELSE, and DO
WHILE-END statements split the subdomain in
two. The SELECT-END statement splits the sub-
domain by the number of WHEN and OTHERWISE
clauses. We can estimate the lower and upper
boundaries of the number of subdomains from the
number of conditional statements.

The conditional statements interact in two ways,
sequentially and nested, to combine subdomains.
Sequential statements form a cross product of the
subdomains of each statement to produce the sub-
domains of the combined set of statements. For
example, two sequential IF-THEN-ELSE state-
ments each have two subdomains. Together, they
have a total of four subdomains formed by the
cross product of the subdomains of each of them:

if condition-A then transform-W
else transform-X

if condition-B then transform-Y
else transform-Z

Subdomains:

1. condition-A
#AND# condition-B
— transform-W, transform-Y

2. condition-A
#NOT# condition-B
— transform-W, transform-Z

3. #NOT# condition-A
#AND# condition-B
— transform-X, transform-Y
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4, #NOT# condition-A
#NOT# condition-B
— transform-X, transform-Z

Nested statements form a cross product of their
subdomains with the condition of the statement in
which they are nested. For example, an IF-THEN-
ELSE nested within one leg of another IF-THEN-
ELSE forms a cross product with the outer
IF-THEN condition and produces a total of three
subdomains:

if condition-A then do
if condition-B then transform-X
else transform-Y

end

else transform-Z

Subdomains:

1. condition-A
#AND# condition-B
- transform-X

2. condition-A
#NOT# condition-B
— transform-Y

3. #NOT# condition-A
- transform-Z

A program fragment has any number of combi-
nations of sequential and nested conditional state-
ments. Thus the total number of subdomains falls
between the total for nested combinations and
sequential combinations.

For the sequential combinations, all of the sub-
domains for all prior statements are split as we
add each new conditional statement. If we take as
an example a 10 000-statement program contain-
ing 2000 conditional statements occurring se-
quentially, and we assume that each conditional
statement splits the subdomain in two, as we add
the next conditional statement we have the rela-
tionship shown in Table 1.

For combinations of nested conditional state-
ments, as we add each new conditional statement
we nest it within a higher-level conditional state-
ment. Thus at each nesting level, we can add as
many new conditional statements as there are
places available to put a nested statement. The
resulting structure is a completely filled binary
tree. The number of subdomains is the number of
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Table 1 Subdomains for sequential conditional

statements
Added Total Total
Condltional Conditional Subdomains
Statements Statements
1 1 2 =2
1 2 4 =22
1 3 8§ =2%
1 4 16 = 2¢
1 2000 220
— n 20

Table 2 Subdomains for nested conditional statements

Added Total Total
Conditional Conditional Subdomains
Statements Statements

1 1=2'-1 2=2!
2 3=22-1 4=2
4 7=2%-1 g =27
8 15=24-1 16 = 2*
1024 2047 =211—1 2048 = 2"
_ n n+1

leaves on the tree. We can represent this as
shown in Table 2.

The total subdomains for nested conditional
statements grow as n + 1, whereas the subdo-
mains for sequential conditional statements grow
as 2". The total subdomains for a program frag-
ment lies between these two bounds. Thus, for
the 10000-statement program with 2000 condi-
tional statements, the total subdomains would be
somewhere between 2001 and 27%%,
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