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Most  improvements in software  development 
technology  have  occurred  by  eliminating  the 
accidental  aspects  of  the  technology.  Further 
progress  now  depends  on  addressing  the 
essence  of  software.  Fred  Brooks  has 
characterized  the  essence  of  software  as  a 
complex construct of  interlocking  concepts. He 
concludes  that  no  silver  bullet will magically 
reduce the  essential  conceptual  complexity  of 
software.  This  paper  expands  on  Brooks’s 
definition to lay a  foundation  for  forging  a 
possible  silver  bullet.  Discussed are  the  three 
essential  attributes of  software  entities  from 
which  a number  of  consequences arise in 
software  development: (1) conceptual  content, 
(2) representation,  and (3) multlple  subdomains. 
Four  basic  approaches to develop  technologies 
are  roposed  that directly address the  essential 
attrgutes. Although some  of  these  technologies 
require  additional development  or testing, they 
present  the  most  promise  for  forging  a  silver 
bullet.  Among them, design feabStf8CtiOn 
addresses  the  most difflcult attribute, multlple 
subdomains,  and  the  most difficult consequence, 
enhancing  existing  code,  making it the  best 
prospect. 

I n his paper  on “no silver bullet,”  Fred  Brooks 
addresses  the problem of improving the  quality 

and  productivity of software  development. 
Brooks  contends  that  most of the  improvements 
in software  development  technology in the  past 
have  occurred by eliminating the  accidental or 
nonessential  aspects of the technology. For ex- 
ample, the  use of high-level languages removed 
much of the incidental complexity  associated 
with  the  hardware (internal data  representations, 
registers,  peripheral  interfaces, etc.). Time shar- 
ing removed  the incidental problems  associated 

with the need to compile programs in batch,  thus 
losing the immediacy of our thinking in the  ac- 
tivity of programming. 

Further  progress now depends  on  addressing  the 
essence of software.  After reviewing a  number of 
promising approaches,  Brooks  concludes  that 
there  is  no silver bullet that will by itself magically 
reduce  the  essential  conceptual  complexity of 
software  and allow an  order of magnitude im- 
provement in productivity and quality. 

Brooks’s arguments  and  conclusion,  presented 
nearly  seven  years ago, captured  the imagination 
of the  software  development  community  and 
have had a continuing influence on  its members’ 
thinking. Other  authors  have  recently  proposed 
additional technologies for  consideration,  for  ex- 
ample, design execution’ and knowledge-based 
software engineering. 

Brooks  has provided a  yardstick for technological 
breakthroughs, namely a tenfold improvement in 
quality or productivity, or both.  Such  a  yardstick 
has  engendered  a level of realism when consid- 
ering technological improvements. A given tech- 
nology may  not  be  a silver bullet. Therefore, we 
should not expect,  nor should providers imply, 
wildly dramatic  results.  Rather, we should go 
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with  what improvements can be obtained. The 
combined effect of several of these improvements 
may well be an order of magnitude improvement. 

More importantly, Brooks’s arguments have es- 
tablished a framework for thinking about  the na- 
ture of software and of programming: there  are 

If a silver bullet can improve 
software development, it can 

only  be  forged by addressing  the 
essential nature of software. 

essential aspects of software  that must be  ad- 
dressed  by  any  approach to improve the technol- 
ow. 
Brooks’s  paper in many ways  echoes  the  views 
set forth  by  Parnas4 in a  series of minipapers pub- 
lished a  year earlier. In them, Parnas  character- 
izes  software  systems as “discrete  state”  systems 
without repetitive  structures and having a large 
number of states.  For  Parnas,  the complexity of 
the  software  system  is  the result of the  very large 
number of states contained in it, which prohibit 
the developer from obtaining a complete under- 
standing of the behavior of the system. 

In this paper, I propose to examine the  ideas  pre- 
sented by both  Brooks and Parnas in more detail. 
If a “silver bullet” can possibly improve software 
development, it can only be forged’ by directly 
addressing the essential nature of software.  Thus, 
a more detailed look at  the  essence of software is 
warranted, which we hope will suggest ap- 
proaches for dealing with  the essential complex- 
ity of software.  Even if an  order of magnitude 
improvement in quality and productivity cannot 
be achieved, these  approaches will constitute  the 
most profitable and possibly the  only effective at- 
tack  on  the problem. 

What  constitutes the essence of software? 

What would the essence of software be like? The 
essence of a thing is  that which gives it its iden- 
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tity. It is the  inherent, unchanging nature of the 
thing. Essential  attributes  are  those  properties 
that  are intrinsic and indispensable, as opposed to 
coincidental or accidental. 

Thus, for those of us  who are intimately familiar 
with  software,  the  essence of software ought to be 
obvious: we should be able to recognize it in- 
stantly.  The  essence ought to  be simple and 
straightforward, rather  than  abstruse. And the  es- 
sential nature should be ubiquitous: if it is truly 
essential, it should apply to all forms of software, 
regardless of the specific problem domain, appli- 
cation,  or language representation. 

Given this  basic information, how do we charac- 
terize  the  essence of software?  Brooks calls the 
essence of a  software  entity  “a  construct of in- 
terlocking concepts,” consisting of such things as 
data  sets,  data items, algorithms, and functions. 
The  conceptual  construct  is  abstract, highly pre- 
cise, and richly detailed. 

Brooks distinguishes the  conceptual  construct it- 
self, which is abstract, from its  concrete repre- 
sentation in some programming language or 
other. The conceptual  construct  can  be repre- 
sented in any number of languages. The difficulty, 
Brooks  asserts, is more in specifying, designing, 
and testing the  conceptual  construct  than in cod- 
ing  it  in an implementation language. 

Parnas views software  systems as “discrete 
state”  systems with a large number of states.  The 
large number of states  results from the fact that 
software  systems  do not have repetitive struc- 
tures (which would reduce  the overall system 
complexity) such as are found in computer hard- 
ware, for example. The number of states in- 
creases  because of the conditional nature of the 
execution of the program: whatever  the program 
does  at  any given point depends  on  what hap- 
pened in the  past.  Each  step of the program gives 
rise to additional states on which subsequent 
steps depend, and so on. 

I  propose to take Brooks’s definition of the  es- 
sence and Parnas’s notion of discrete  states and 
expand on  these ideas. The  essence of a  software 
entity is a construct of interlocking  concepts with 
the following essential attributes: 

1. Conceptual  content: A software  entity is char- 
acterized by  concepts  that come from both  the 



problem domain and the  surrounding  software highest levels,  the problem domain concepts  are 
entities  with  which it interfaces. operant. 

entity  are  expressed  as  representations of both Within any given level only  the  concepts  that are 
the  data it uses and functions it performs. operant  at  that level have significance. The  con- 

3. Multiple subdomains: A software  entity  per- cepts of the  other levels, for example, those from 
forms  functions  that  consist of transforma- 

2. Representation:  The  concepts of a software 

tions on  its data,  based  on  conditions  present 
at  the time of execution.  The  presence of con- 
ditions  splits  the input domain into multiple 
subdomains of function. 

Conceptual  content. All software  contains  con- 
cepts  that come from itsproblem  domain,  that is, 
the domain of operation in which the function of 
the  software  has a useful purpose. For example, 
the problem domain of a payroll system  includes 
employee time records, payroll payments, pay- 
roll statements,  tax withholdings, tax reporting, 
tax  statements,  etc.  The problem domain of an 
automobile  microprocessor  includes engine op- 
erating  status, engine environment  conditions, 
engine controls,  dashboard  displays,  etc.  The 
problem domain concepts  are  the  same  as  the 
concepts stemming from our  ordinary human 
experience. 

In addition, all software  contains  concepts from 
the  surrounding  software  entities  with which it 
interfaces. The software  uses  the  constructs of 
the lower-level  entities  and in turn  is  used by high- 
er-level entities,  an  end  user, or an  external in- 
terface. We can call this  area of interaction  the 
environment, or milieu, of the  software. For ex- 
ample, a component of an airline reservation sys- 
tem  uses a database  subsystem. Thus its milieu 
includes  the  concepts  of the  database  interface: 
database  records,  keys  and fields, sequential  ac- 
cess,  access  by  index  key,  etc. 

As a result, a hierarchy of software  components 
develops having a unique conceptual  content  at 
each level on which still higher components  are 
based.  At the lowest level, the  software  interacts 
directly  with  hardware  features (e.g., channels, 
control  registers,  hardware  interrupts,  device 
buffers, etc.) and thus reflects the  concepts of 
those  features. Higher software levels are built 
upon  the lower levels  and  use  the  concepts from 
those levels (e.g., block I/O, device  protocols, dis- 
play 110, etc.). Still higher levels use the  concepts 
from the  levels below them.  Thus, a large net- 
work of interrelations  is built up from the con- 
cepts  operant  at  each level of software. At the 

Concepts of a software  entity are 
expressed as  representations in 

both the data it uses and the 
functions it performs. 

levels that  are  two or  more removed, are hidden 
and  are  not  part of the milieu of the  software  at 
that level. 

Part of the milieu of a software  entity is the  pro- 
gramming language in which it is written, which 
includes  concepts of the  syntactic  structures 

functions (e.g., SUBSTR, TRANSLATE), the  scope 
of variables,  etc. 

Representation. The  concepts of a software  entity 
are  expressed as representations in both  the data 
it uses and the  finctions it performs.  Data  usu- 
ally have  associated with them a name (e.g., 
GrossPay)  and a specific value (e.g.,  2715.50). 
This applies to simple data items, aggregates such 
as  arrays  and  structures,  abstract  data  types,  and 
objects. 

The  concept of a data item is suggested by its 
name. Frequently,  however,  more  explanation  is 
needed to specify the  details of the  data item, 
such as the detailed definition, its usage in differ- 
ent  contexts,  the meanings of different values, 
etc. The  value of a data item is the  instantiation 
of the  concept in a specific context (e.g.,  2715.50 
is  the  gross  pay for employee  number 143300). 

(e.g., IF-THEN-ELSE, DO WHILE-END), built-in 

The  functions of a software  entity usually have 
associated with them a name (e.g., SetEm- 
ployeeSalaryData)  and  other information about 
the  function performed (e.g., required input var- 
iables, functions  performed, possible output var- 

22 MAYS IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994 1 



iables, and  expected  values).  Functions  can be 
viewed as a  transformation of input data  values  to 
output  data  values provided by  one  or more  series 
of steps of the program (e.g., for a given Em- 
ployeeNumber  the steps of the program set  var- 
ious employee salary  data items, such as Gross- 
Pay,  Exemptions,  Filingstatus). 

The concept of the  function is suggested by its 
name,  but  the  details of the  transformation  that 
the function  performs are contained in other in- 
formation  and specifications of the function. 
Functions  can  be encapsulated, that is, defined 
within a  syntactic  structure,  such as a  procedure, 
function, or method definition, which  may  have 
associated formal parameters  that define the in- 
terface. The encapsulating  structure  separates 
those specific program steps from other  parts of 
the program that  use  those  steps. 

The representations in a  software program have  a 
correspondence with the  concepts for which  they 
stand. A variable named NetPay,  for example, is 
not  a  quantity of money; rather,  its  value repre- 
sents a  quantity of money, which is  the employ- 
ee’s net pay. A function named ComputeDeduc- 
tions,  for example, represents those  steps of the 
program that  take  the  representations  for  an em- 
ployee’s gross pay, exemptions, filing status, and 
so on  and  produce  representations for federal in- 
come  tax, social security  tax,  state  tax, and other 
deductions.  The  function  ComputeDeductions 
thus  represents  the  steps of the program that im- 
plement the concept of the  function, in this  case, 
computing payroll deductions. 

In evaluating the  representations of data  and 
function, we can  speak of their conceptual integ- 
rity, that is, how well the representation  matches 
the  concept behind it. The idea of conceptual in- 
tegrity is an  extension of the notion of the cohe- 
sion of a module that  deals with how well-related 
the  functions of the module are  to  one another, in 
other  words, how well they  relate to  the overall 
concept of the  function of the module. The idea of 
conceptual integrity also applies to  the related- 
ness of the representation of data  structures  and 
other functional structures  such  as  object  classes. 
Conceptual integrity is important  when dealing 
with the  representations of a  system  over time as 
modifications and enhancements  are  made  to  the 
system. 
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Multiple subdomains. A software  entity  performs 
functions  that  consist of transformations  on  its 
data,  based  on  conditions  that  are  present at the 
time of execution.  That is, what  the  software will 

Representations in a program 
have a correspondence with the 
concepts  for  which  they  stand. 

do in any given instance of execution  depends on 
the  conditions  that  are  present  as,  for example, in 
data  values in memory, console  switch  settings, 
and similar indications of the  state of the com- 
puter. Depending on  these  conditions,  the soft- 
ware will transform  its  data  values in a specific 
way. 

Thus,  a  software  entity will have  any number of 
different, discrete effects on  its  data depending on 
what  conditions are present. A particular  pro- 
gram fragment might, for example, compute  the 
square  root of a  number in all instances  where  the 
input  number  is  positive or zero,  and set an  error 
indicator  when  the input number is negative. The 
different conditions  that  govern the behavior of 
the  software  can be viewed as  those  sets of input 
data  values  that  cause  a different type of trans- 
formation. In  the  example given, the  set of neg- 
ative  numbers and the  set of nonnegative num- 
bers give rise to different behaviors in the 
program fragment. 

The different sets of input conditions  that define 
the different behaviors of an entity are called the 
subdomains of the  input domain. With inputs in 
one  subdomain,  the  software will have  one be- 
havior,  whereas  inputs in another  subdomain will 
result in a different behavior. The  process of di- 
viding the input domain into  its  subdomains  is 
called partitioning the  input  domain (see Refer- 
ences 7 and 8). 

The notion that  software  has multiple subdomains 
is  equivalent to Parnas’s notion of multiple states 
and to  the idea of multiple paths through a  pro- 
gram fragment. The concept of multiple subdo- 



mains  has  the  advantages of (1) the functional 
concept of a  subdomain  can  be  more readily iden- 
tified, (2) the subdomains in most  cases  can  be 
more  readily derived from the  syntax of the code, 

Multiple subdomains are an 
intrinsic property of all software. 

and (3) implicit conditions  can  be handled. For  the 
purpose of this  paper,  however,  the  reader  can 
substitute  the  concepts of multiple states  or mul- 
tiple paths. 

The  property of multiple subdomains  arises with 
the  use of programming language constructs  that 
cause conditional execution. The  best  example of 
this  situation is the IF-THEN-ELSE construct  that is 
present in some form or  other in most languages: 

i f  cond i t i on -A   t hen  do 
transform-X 

end 
e lse   t rans form-Y 

If condition-A  is  true,  then transform-X is  per- 
formed. If condition-A  is not true,  transform-Y  is 
performed. The IF-THEN-ELSE construct  creates 
two  distinct  paths of execution  for  the  program, 
depending on condition-A  at the time of the ex- 
ecution. 

The input domain of this program fragment has 
two possibilities (i.e., condition-A  and not con- 
dition-A) that give rise to two  distinct possible 
outcomes (i.e., transform-X or transform-Y). An- 
other  notation for this IF-THEN-ELSE construct 
that  expresses  the partitioning of the input do- 
main  into  its two subdomains might be: 

1. cond i t i on -A  
--* t ransform-X 

2 .  #NOT# condi  ti on-A 
+ transform-Y 

All language statements  create  at  least  one  sub- 
domain, namely the  function of that  statement. 
However,  many  constructs  create multiple sub- 
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domains. For example, the SELECT-END con- 
struct  creates  a  subdomain for each  nested WHEN 
and OTHERWISE statement.  Some  constructs  have 
implicit subdomains. For example, the  sequential 
read statement in many languages implicitly 
raises  a condition or  sets a  return  code  when  end- 
of-file occurs. In these languages the  sequential 
read  statement  has  two  subdomains,  the  success- 
ful read  and  the end-of-file condition. 

When statements follow one  another  sequentially 
in a program, the  subdomains of the combined 
statements  can  be  derived by combining the  sub- 
domains of each  sequential  statement.  In forming 
this  combination,  the different conditions  are 
“multiplied” together in their different permuta- 
tions, and  the  transformations are combined se- 
quentially. Similarly, the subdomains of nested 
statements (e.g., statements within a DO-END 
group) are combined in the same  way  with the 
subdomains of the nesting statements.  A  subrou- 
tine call or similar construct  acts  as  a single state- 
ment with multiple subdomains  inherited from the 
called routine. 

The  property of multiple subdomains,  each  with 
a  set of conditions  and  transformations,  arises 
from the conditional results  that  occur in the  ex- 
ecution of various language constructs.  How- 
ever, the conditional results  are  the  same regard- 
less of the language in which  the  software is 
written.  The implementation of equivalent func- 
tions in different languages has  the  same  subdo- 
mains even though different language constructs 
are used. 

Multiple subdomains are  thus  an  intrinsic  prop- 
erty of  all software,  regardless of language rep- 
resentation. All software  entities  have multiple 
subdomains in which  a different transformation 
will occur, depending on  which sets of conditions 
in the input domain are  present during execution. 
In  other  words,  the  behavior of all software  can 
be expressed abstractly in behavior specifications 
of the form: under  conditions A, transformation  X 
will occur;  under  conditions B, transformation  Y 
will occur;  under  conditions C, transformation 2 
will occur,  and so on. 

The essence of software. Thus,  a  software  entity  is 
in essence  a  construct of interlocking concepts 
characterized by a conceptual content derived 
from its problem domain and  the milieu of other 
software  entities with which it interfaces, by rep- 
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resentations of its concepts  both in the  data it 
uses and in the functions it performs,  and by  the 
multiple  subdomains of its input domain that 
characterize  the different transformations  that 
will occur, depending on  the  conditions  that  are 
present during execution. 

Consequences of three  essential  attributes 
of software 

A number of consequences necessarily follow 
from the  three  essential  attributes of software. 
Because  software  has  certain  inherent  attributes, 
other  conditions  and  properties follow. From 
these  consequences, still other  consequences 
arise. The  consequences  thus  further  elaborate 
what  is  basic  to  software.  Moreover,  they influ- 
ence  the  nature of software  development  and  de- 
fine the  bounds within which software technology 
can  be effective. 

I wish to propose 10 consequences,  shown in the 
diagram in Figure 1 with  their logical connections. 
For example, that  programs  are  objects in the 
world is a  consequence of the  fact  that  they  are  a 
“crystallization”  or encoding of the  conceptual 
construct of the  software, which in turn  is  a  con- 
sequence of the essential  attribute of representa- 
tion. Of course,  these  consequences  are not the 
only  ones  that may be  proposed.  Further,  the 
connections  shown in the diagram are  the  most 
direct  connections  but  clearly  there are  other  re- 
lations  between  these  consequences. 

In his paper,  Brooks cited four  inherent  proper- 
ties  that  arise from the  essential  nature of soft- 
ware: complexity, conformability, changeability, 
and invisibility. These  same  inherent  properties 
also  arise from the 10 consequences  I am propos- 
ing. A fifth inherent  property, namely that  soft- 
ware is developed primarily through incremental 
enhancements,  results as well. 

The  conceptual  construct of the  software  is  held  in 
the  developer’s  thinking (1). When we specify and 
design a  software  entity, we define the  conceptual 
construct (i.e., its  key  concepts) and refine those 
concepts  into  ever  more detailed data  and  func- 
tional representations until finally the  code is pro- 
duced.  The role of the developer’s thinking in this 
design process  has largely been ignored, yet it is 
the  primary  faculty we use in developing soft- 
ware. 
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As developers, we develop  the  concepts of the 
system  and  represent  them in specifications and 
designs. Our thinking is constantly engaged as  we 
mull over  the  details in our thoughts. We may 
make  notes and draw preliminary design nota- 
tions  on  paper or a  blackboard. We think through 
the  concepts in detail  before putting them  into  a 
formal representation.  Once we have  a design 
written  down we bring it up again and again in our 
thinking, reviewing details, exploring the impli- 
cations of new  concepts, refining our  conceptual 
constructs,  and finally recording the refinements 
and changes in the  representation. 

We develop  and refine the  concepts first in our 
thinking and  then  record  the  result in a design 
representation.  We  produce  ever  more detailed 
representations  and finally the implementation. 
During this  process,  the  conceptual  construct  or 
conceptual view is active in our thinking and  has 
a living quality. If we  are absorbed in this  process, 
our thinking activity  even  appears to continue in 
us unconsciously during periods of relaxation and 
sleep, as indicated by many  developers  who  re- 
port  that insights about the system  come to them 
after they  wake  up  or during times when  they  are 
relaxing. 

The  written  representations we develop of the  de- 
sign serve  two  purposes:  as  an aid to recall the 
conceptual  view and to direct our  attention to  one 
aspect or  other of it, and to communicate  the  con- 
ceptual  view  to  others so that  they  can include it 
in their  own thinking. A good design representa- 
tion accomplishes  these  two  purposes readily. 

Once  we  are  done with the  development effort, 
the  conceptual  constructs  that we developed in 
our thinking begin to  fade. No longer can we  as 
readily recall the  conceptual  view of the design. 
If we must go back to  the design or code to fix a 
bug or develop an enhancement, for example, we 
must  reconstruct  the  conceptual  view in our 
thinking. This  process  becomes  one of rediscov- 
ery: as  we look  at  the  code and whatever design 
documentation  exists,  various  concepts  are  re- 
called from memory, and we gradually build up 
the  conceptual view. If we  are looking at  someone 
else’s code,  the  process is one of pure  discovery 
of the  conceptual view. We must  discover and 
build up all of the  details of the  conceptual  view 
from scratch. We use whatever information is at 
hand: the  code,  the  names of data items, the  con- 
tents of data files, reports  and  screens,  comments 



Figure 1 Consequences of the  essential  attributes of software 
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in the  code,  and  any  other  documentation  that  is 
available. 

In  the  process of software design, we can  speak 
of the developer’s clarity of thinking. By  this we 
mean how clearly defined the  concept is in our 
thinking, how “concrete” it is, how familiar we 
are with it, how easily we  can consider different 
aspects of it, how readily we  detect  inconsisten- 
cies with it in what  is  presented to  us  by  others  or 
what  we  come  across in our design work. 

When the  conceptual  view of the  system is active 
in our thinking, it takes  on  a fluid character. We 
can  change it as readily as  we  can change  the 
concepts in our thinking. In this  way,  software is 
inherently malleable. Its  ease of change  arises 
from  its  conceptual  nature:  since  the  structure of 
software  is  purely  conceptual, “pure thought- 
stuff)’ as  Brooks  puts  it,  change  is accomplished 
by simply changing the  conceptual  structure. 
Software is malleable because it is  purely  con- 
ceptual:  there  are  no physical elements  whose 
properties  and limitations the  software engineer 
must  take  into  account. 

The  conditions  in  the  program  combine  multipli- 
catively (2). The  subdomains of each  part of a 
software  entity combine together to form a set of 
subdomains for the  entity as a  whole.  The  sub- 
domains  result from multiple internal  conditions 
and similar interactions in the  interfaces in the 
milieu of the  software.  In general, the  subdomains 
of any  two  software  segments  that  interact with 
one another  (whether by sequential  execution, by 
nesting, by looping, or  by  a call interface)  are  the 
cross  product of the  subdomains of each  segment. 

Typically, the  set of subdomains  for  a program is 
very large because  the  interactions of the condi- 
tions in each segment are  always multiplicative. 
Take  for  example  a 10 000-statement program in 
which every fifth statement  splits  the domain with 
some  sort of condition. Then  the program will 
have 2000 conditional statements  and could have 
anywhere from 2001 to 22000 (or  about 2x103 to 
loMw)) subdomains. (See the  Appendix  for  a  der- 
ivation of these relationships.) 

Moreover,  the  cases  that  favor  the lower estimate 
in this range (nested conditional statements)  are 
typically less likely than  the  cases  that  favor  the 
higher estimate (sequential conditional state- 
ments). Thus,  the  number of subdomains of a 
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10 000-statement program, a  “small” program by 
most  standards,  can  be literally astronomical. 

The  inherent  property of complexity  noted by 
both  Brooks  and  Parnas is a  direct  consequence 
of the multiple subdomains resulting from the 
conditional tests in the  code.  Each  subdomain  is 

The  subdomains of each part of 
a  software entity combine to 
form a set of subdomains for 

the  entity as a  whole. 

equivalent to  a  distinct  state  that  the  software  en- 
tity  can be in. Each  subdomain  arises from a  con- 
ditional structure,  such  as  an IF-THEN-ELSE, but 
has  a  conceptual  aspect as well. The interaction 
of multiple conditions  together  causes  a  complex 
conceptual  expression of conditions  for the  sub- 
domain. The transformation of the  subdomain 
likewise can  be  a  complex  sequence of transfor- 
mations  that accomplish a unique overall function 
or outcome. 

For Parnas,  the  use of structured  methods 
(whereby  the  software  function  is  encapsulated in 
smaller, simpler modules) does  not  reduce  the 
complexity of the  entity sufficiently because  even 
then  complex  interactions remain between  the  en- 
capsulated  components.  The  use of mathematical 
logic will likely not help because the mathemat- 
ical expressions  themselves  are  extremely com- 
plex. The complexity of software  is  beyond  the 
capacity of the human mind to  comprehend. 

Software  representations  are  a  “crystallization” of 
the  conceptual  construct (3). As  we develop the 
conceptual  view of the  software  entity,  we begin 
to  record  representations of the  concepts in some 
form as specifications and designs. We continue 
to refine these  representations as our thinking 
progresses and as changes  are  considered  and  de- 
cided upon. The  written  representations  come to 
embody the proposed  software in greater  and 
greater detail, until finally the  software is coded. 
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In  contrast  to  the fluid character of our thinking, 
the representations are fixed and rigid. They can 
be  viewed as a  “crystallization” of our thought 
activity, an embodiment of our thinking that 
serves  to remind us of what we have thought pre- 
viously,  much as  the writing on  a page calls  up in 
us the thoughts  that  were  present  when it was 
written. 

However,  because  they  are fixed, the represen- 
tations  become  less malleable. The  more  detail 
we have set down,  the  more difficult and  error 
prone it becomes to change  them.  Ultimately, 
when  the  software is coded, it becomes  an  object 
in the world. Thus, we have  transformed  what 
began as pure thought into  a fixed object  that  op- 
erates in the world. 

The  developer  must  anticipate  the  behavior  of the 
software  beforehand  under all cases  and  conditions 
(4). Because of its fixed nature  as  a  crystallization 
of the  conceptual  construct,  the  software  entity  is 
inflexible in responding to inputs in any  way other 
than  the  one in which it was programmed. Pro- 
grams will perform only within the limits of what 
the  developer  intended and had the foresight to 
include. Because of this inflexibility, the  devel- 
oper  must  anticipate  and explicitly handle all pos- 
sible  outcomes  and  responses of the  system.  This 
fact in turn gives rise to numerous  conditions in 
the code, resulting in a very detailed, complex 
construct. As Brooks  puts it, the  software  entity 
is “highly precise and richly detailed.’’ 

Conditions  occurring in the  operation of the  soft- 
ware  that  were not anticipated by  the  developer 
result in either  a limitation on  the  operation of the 
software  or  an  actual  defect in its  operation.  The 
developer  must  then  either  alter  and  extend  the 
function of the software or fix its  operation  under 
the  unanticipated  condition. 

Software  is  more  broadly  conceptual  than  mathe- 
matical  or  graphical (5). A  consequence of the 
purely  conceptual  nature of software  and  its com- 
plexity is that  the  use of graphical or visual meth- 
ods and the  use of mathematical  methods  have 
limitations. Let us  consider  each of these in turn. 

Graphical or visual methods. Brooks  contends 
that  software is invisible and unvisualizable. Soft- 
ware  cannot  be visualized because  geometric  or 
spatial  representations are inadequate  to  repre- 
sent  its  complex relationships. Of course, it is 

possible to produce  graphs of relationships  for 
flow of control, flow of data,  patterns of depen- 
dency, time sequence,  and  name-space relation- 
ships. However, we can  only  represent  these 

The  software entity is inflexible 
in responding to inputs in any 

way  other than the one in which 
it was programmed. 

relationships in a simple presentation (e.g., hier- 
archical) if we hide or  cut links. 

Part of the unvisualizability of software  arises 
from its  complexity as described earlier. The 
other  part  arises from its  conceptual  content.  It  is 
difficult to  represent  concepts generally, from all 
possible problem domains, except  through  tex- 
tual  descriptions.  The  concepts  themselves in 
general are not spatial or embedded in space. 
Even David Harel,  a  strong  proponent of visual- 
ization in software  development,  concedes  that 
the algorithmic operations of software will prob- 
ably remain textual. It  is  the structural relation- 
ships between  the  constructs of a  software  entity 
(e.g., calling structures,  data relationships) that 
lend themselves to graphical representation, as 
opposed to  the essential  conceptual  content. 

This is not  to  say  that graphical and other  visual 
methods  are  not useful in working with  software 
entities. On the  contrary,  they  are  quite useful. 
However,  they  do  not fully address  the  concep- 
tual  nature of software. 

Mathematical methods. A widely held view in 
computer  science (for example, References 10 
and 11) is that  programs  are  mathematical  ob- 
jects. According to this  view  programs  can  be 
treated  as  functions  operating  over  their domain 
of input, which can  be  expressed as formulas in 
discrete  mathematics describing the  transforma- 
tion of input data  into  output  data.  In taking ad- 
vantage of its  mathematical  nature we can  use 
simplifying concepts  to prove  the  correctness of 
a program. Programs  can  be  reasoned  about with 



mathematical rigor. A mathematical  treatment of 
programs helps deal with  their complexity, bring- 
ing the  developer  “intellectual control’’ and mas- 
tery  over  the complexity. Take for example  the 
following statement from E. W. Dijkstra: lo 

As soon  as programming emerges as a  battle 
against unmastered complexity, it is  quite  nat- 
ural that one turns  to  that  mental discipline 
whose main purpose has  been  for  centuries  to 
apply effective structuring  to  otherwise unmas- 
tered complexity. That mental discipline is 
more  or  less familiar to all of us, it is called 
Mathematics. If we  take  the  existence of the 
impressive  body of Mathematics as the  exper- 
imental evidence  for the opinion that  for the 
human mind the mathematical method  is in- 
deed the  most effective way to come  to grips 
with complexity, we have no choice  any longer: 
we should reshape  our field  of programming in 
such  a way  that,  the mathematician’s methods 
become equally applicable to  our programming 
problems, for  there  are  no  other  means. 

Although many hold the  view  that  programs  are 
mathematical  objects,  the  presumption  that the 
mathematical  treatment of programs simplifies or 
reduces  complexity  is  not as universally held. 
Parnas  holds  that  the  mathematical  functions  de- 
scribing the  behavior of programs  are  not  contin- 
uous  functions.  Neither traditional engineering 
mathematics  nor  other  mathematical  methods, 
such as formal methods  and verification, will help 
overcome the inherent  complexity of software. 
He asserts  that  “The large number of states  and 
lack of regularity in the software result in ex- 
tremely  complex  mathematical  expressions. Dis- 
ciplined use of these  expressions is beyond  the 
computational  capacity of both  the human pro- 
grammer and  current  computer  system^."^ 

Brooks  points out the  premise behind the  expec- 
tation that  mathematics will reduce complexity, 
namely that  mathematics  has  permitted  a  reduc- 
tion in complexity in the physical sciences  be- 
cause  there  are underlying unifying principles 
which in themselves  are simple. However,  there 
are  no  such underlying unifying principles in soft- 
ware:  the  complexity is there  because of the  ar- 
bitrary  complexity of human institutions to which 
the  software  must  conform. 

As we  have  seen,  the  complexity of software as 
measured by its  subdomains  results from its  con- 
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ditional nature. As a condition is added to  the 
program, the number of subdomains  can  increase 
either by  one  or by  double  its  current number. No 
unifying principles are involved in software  be- 
cause  the  conditions  that  are  tested are unique to 
the  particular  aspect of the problem being handled 
at  that point in the program. No simplifying prin- 
ciples will significantly reduce  the  number of sub- 
domains, if we assume  that  the normal design 
practice of factoring out common function into 
subroutines or similar structures  has  been fol- 
lowed. 

Thus,  the  mathematical  expression of the func- 
tion of a program fragment contains  the same 
complexity as the  software itself because it must 
express  the function of each of the  subdomains of 
the fragment. Yes, there  are  some  instances 
where  a  mathematical  expression  can hide the 
subdomains in a program fragment, as for  exam- 
ple: 

i f  x > y then a = x 
else a = y 

This  statement  contains  two  subdomains  but  can 
be replaced with a single functional expression 
containing only  one subdomain: 

a = MAX(x,y) 

However,  such  instances  tend  to  be confined to 
the use of mathematical expressions  that  happen 
not  to be available in the implementation lan- 
guage. Such mathematical expressions are sim- 
pler than  the program code  but  are  hardly  an  over- 
all simplifying principle that  can  be applied in all 
or even in many  instances to reduce complexity. 

The use of mathematical notation  also  attempts to 
summarize  the  function of a program fragment 
into  a single transformation,  that is, to take  a pro- 
cedural  expression of the  function  over  many  pro- 
gram statements  and  express it in a single “in- 
stantaneous,”  or  one-step, function. Although 
this  process  can result in a smaller expression of 
the  function,  the  expression  is  rarely  less  com- 
plex. In  some  instances,  the mathematical nota- 
tion may  actually  obscure  the meaning of the 
function because it focuses  on  the  mathematical 
structure of the  transformation  rather  than  the 
concept behind it. For example, a specialized sort 
routine  may  require  a very complex  mathematical 
structure  to  describe  its function. The concept 



inherent in the logic can  be simply stated  con- 
ceptually as  “sort using the xyz technique.” 

Because  software  entities  are  conceptual con- 
structs, it is  more  appropriate  to  view them as 
conceptual objects  rather  than more restrictively 
as mathematical objects. The mathematical treat- 
ment of programs is  one  way of working with 
them as conceptual  objects  because mathematical 
concepts  are  a  subset of all concepts.  However, 
the mathematical treatment of a program is fun- 
damentally limited in that it cannot  abstract  the 
function of the program beyond a  certain point 
and still remain mathematical. 

Any  abstraction of a function in mathematical 
terms (mapping inputs to  outputs via a functional 
transformation) cannot be further  abstracted 
without resorting to higher or broader  concepts 
that do not explicitly state  the functional trans- 
formation. Any  abstraction of the partition of the 
input domain in mathematical terms  (by listing the 
subdomains with their conditions and transfor- 
mations) cannot  be  further  abstracted  without re- 
sorting  to higher concepts  that  do not explicitly 
state  the subdomains. 

For example, the mathematical abstraction of a 
complex  search function can  be  expressed in 
mathematical transformations that apply across 
each of its subdomains. However,  the next higher 
abstraction of this function can  be  expressed  only 
in terms like “search  the  database for records  sat- 
isfying the  criteria,”  a nonmathematical concep- 
tual abstraction  that  encompasses  the details of 
both the transformation and the  subdomains of 
the function. 

The most common objection to this further  step of 
abstraction beyond the mathematical expression 
is loss of its precision. The  terms  “search” and 
“satisfying the  criteria” may be ambiguous and 
therefore  are unreliable. In addition, Brooks as- 
serts  “Descriptions of a  software  entity  that ab- 
stract  away  its complexity often abstract  away  its 
essence.”’ 

I disagree with both objections. To begin with, the 
higher abstraction in which we choose to express 
the function of the program fragment is the  very 
concept  that motivated us to construct  the func- 
tion in the first place. The precision of expression 
and degree of ambiguity that  we had at design 
time was no more or less. Yet from that  concept 
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we developed the detailed implementation. If the 
concept  (search for records satisfying the  criteria, 
in the example) was precise enough and clear 
enough at  that level, it should still serve  us  as an 
adequate  abstraction at that level. The  concept  is 
still valid at  its level of abstraction. If we need 
further clarification or precision, we  can simply 
look at the lower levels of abstraction  (the math- 
ematical expression or the  code itself). 

Furthermore,  abstraction using ever  broader  con- 
cepts  that  encompass more and more  parts of the 
software  entity  does not “abstract  away”  its  es- 
sence  because  its  essence  consists of these very 
concepts, provided they  are  the right concepts, of 
course.  The complexity of the  entity  arises from 
the details at  ever lower levels of abstraction. So 
long as these details are readily accessible, noth- 
ing is lost to  the developer. The  concepts  at  each 
level of abstraction  are available to the developer 
to  take up in his or her thinking activity. The  key 
is to  abstract  the function using concepts with 
sufficient detail so that  the  abstraction truly en- 
compasses  the function. 

The  use of mathematical expressions and proofs 
or  tests of equivalence are useful for refinement of 
designs and for verification of the implementa- 
tion. Though mathematical treatment of a  soft- 
ware  entity provides precise, unambiguous 
expression of the function of the  entity, it does 
not help remove complexity. Only the  use of 
broader, nonmathematical conceptual  abstrac- 
tions  can help the developer to encapsulate  the 
complexity of the  software entity. 

Software  development  is  an  intense  activity of 
thinking (6). Because of the  conceptual  character 
of software, software development is fundamen- 
tally an activity of thinking. Because of the com- 
plex conditional nature of software and the need 
to anticipate the behavior of the  software in  all 
circumstances, under all cases and conditions, 
the developer’s thinking must be precise and thor- 
ough. Because of the purely conceptual  nature of 
the  software, graphical or  visual  and  mathemat- 
ical methods  are limited in the degree to which 
they  can assist the  process of development. 

Thus  the  software developer must rely  on his or 
her thinking activity as the primary means of de- 
veloping the  conceptual  construct.  Any experi- 
enced developer will confirm the  intense mental 
activity that  is involved. We  become absorbed in 
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the conceptual view, in some  instances almost 
consumed in the  intensity of thinking. 

A higher-order  verification  occurs in the  develop- 
er’s  thinking;  formal  verification  is  done  relative  to 
the  software  representations (7). Verification is the 
process of comparing  a lower-level design repre- 
sentation  or the code  for  a  software  entity against 

Once coded, programs 
become  objects in the 

world. 

its higher-level design representation to deter- 
mine how well it matches. Verification frequently 
refers to a formal process comparing the specifi- 
cations  for  a program fragment and its  corre- 
sponding design or code. A very common com- 
plaint (see P a r n a ~ , ~  for example) is that  the 
specifications themselves  may  contain  errors  and 
thus  are  not  a reliable representation of the sys- 
tem. 

Specifications are  expressed  at  a higher level, 
usually giving only  the  expected  external  behav- 
ior of the  system.  They allow developers  to  spec- 
ify the  behavior of the  system  independent of and 
prior to its implementation. They  serve  a useful 
function in forcing a  more detailed definition of 
the  conceptual  construct.  They  can  thus  serve 
both  as  an individual reference  for  the  developer 
and for communication among developers. 

The specifications and  the design have  a relation- 
ship  with  a  third element, namely the  developers’ 
thinking. The  developers’ thinking really pre- 
cedes  the writing of the specifications and  the  de- 
sign. It is the common ground from which they 
are  both  derived.  Both  the specifications and the 
design embody  the  same  conceptual view be- 
cause  the  same  concepts  and  ideas  have moti- 
vated  each. 

With this  three-way relationship in mind, it is  no 
wonder  that  a number of things can go wrong: the 
developers’  conceptual  view  may be flawed; one 

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994 

or  more  developers  may  have  a  view  that differs 
from the others’; the specifications may reflect 
these flaws or  may  have  errors  that  misrepresent 
the  concepts;  the designs and code likewise may 
contain the conceptual flaws or  other  errors. 
Therefore, the  process of verification against 
specifications will catch  only  some of the  errors 
because  the verification is  essentially  a  mechan- 
ical process of comparing the  consistency of one 
representation  with  another. 

We should realize that flaws in our thinking are a 
natural  outcome of how we work: we may un- 
cover significant problems in our  conceptual  view 
as  we learn  more  about  the problem domain or  see 
more  clearly  the implications of our  current think- 
ing. In one  project I was involved with, we called 
these flaws in our thinking “major  conceptual  er- 
rors,”  or MCES. We were uncovering MCES still 
fairly late in the design process. 

Because  our thinking is involved, no formal ver- 
ification is possible that will detect flaws in our 
conceptual view. However,  because  our thinking 
is involved, we should realize  that  a higher-order 
verification is  always going on in which we com- 
pare  the information at hand with  our  conceptual 
view of the design. We verify  everything we en- 
counter  about  the  system  relative  to  our  under- 
standing of the problem domain. We apply what- 
ever knowledge we have, including our  common- 
sense  understanding of the world. Thus, the 
“real” verification occurs in our thinking, 
throughout  the  development  process,  even as  we 
perform, for example, the formal verification of 
the design relative to  the specifications. Robert 
Glass”  makes  a similar argument that  software 
design is in essence  a cognitive process  that is not 
susceptible to formal approaches. 

Programs  are  objects  in  the  world  and  operate  in 
the  world (8). Once  they  are  coded,  programs  be- 
come  objects in the  world,  that  is,  “things” we 
can  use, sell, teach  about, maintain, enhance,  etc. 
We also  come to rely  on  them as tools  to do our 
work. The software itself is indestructible,  that is, 
it does  not  deteriorate  or  wear out  over time. 
However,  because it is fixed, a  crystallization of 
our thinking at some point in time, it may become 
obsolete. As time goes  on,  conditions in the world 
change,  and  the  software  no longer quite “fits.” 

Thus  a  software  entity  needs  constantly to con- 
form and  change to  its changing environment, 



that is, to human institutions, practices,  and hu- 
man interfaces. Program modifications are  fre- 
quent  because  the  software of a  system  embodies 
its function, and  most  pressure for change  occurs 

Most  software  development  efforts 
involve  creating incremental 

enhancements to existing  code. 

in its  function. Also, software is the  preferred el- 
ement of a  system  to  change  because it is mal- 
leable and  more easily changed  compared to  other 
system  elements  such as the  hardware. 

The  property of conformity  arises  directly from 
the conditions imposed by the  external  require- 
ments and interfaces. For example, the  require- 
ments  for U.S. social security tax calculations 
have changed several  times in the  last  decade. 
Not  only  has  the tax  rate changed practically  ev- 
ery  year,  but  the  basic  structure of the tax 
changed from a single tax rate for both  employers 
and  employees, to a different rate for employers, 
back  to a single rate,  and  more  recently  to  a  sep- 
arate  tax  schedule and separate reporting for so- 
cial security tax and for  medicare  tax.  Each of 
these  changes  required  that payroll software  con- 
form to  the new  requirements  via  new  conditions 
in the code  for  separate tax rates,  a  separate tax 
calculation,  and  separate  reporting of the  taxes. 

Software will always be  an asset that  must  be  main- 
tained  and  enhanced (9). Because  programs  are 
objects in the world in which we have  invested 
time  and effort, they  become  assets  that we feel 
obligated to maintain and  enhance. We cannot 
afford to rewrite  software  every time we must 
alter it. In  fact,  only  when  there is great justifi- 
cation to rewrite,  for example, when  the existing 
or legacy code  can  no longer be maintained or 
enhanced,  do we undertake  to  completely  replace 
the program. Even when we  do  decide  to  re-en- 
gineer an existing system,  the resulting new  sys- 
tem  becomes new legacy code  that we then feel 
obliged to maintain and  enhance. 
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Thus,  most  software  development efforts, in ap- 
plications software,  systems  software,  and im- 
bedded (microcode) software, involve creating 
incremental  enhancements to  the existing, legacy 
code.  New  functions  and modifications to  exist- 
ing functions  are  added  to  the existing software 
base. Seldom do  we develop  completely  new 
code for a  new  product or system.  Many so-called 
“new  systems” in fact  turn  out to  be based  on 
existing code,  code  that  may  have  been  devel- 
oped as a  prototype,  an  internal tool, a field-de- 
veloped program, etc., and as a result many of 
these  “new  systems” involve enhancing existing 
code. 

This  fact of life of software  development  is  con- 
firmed by industry  estimates.  The  proportion of 
development effort devoted to software  enhance- 
ments, as opposed to totally new code,  is usually 
estimated at 80 percent or more.13 Despite  the 
overwhelming proportion of effort devoted  to  en- 
hancing existing code,  most  software develop- 
ment technologies address  only  the  new  devel- 
opment paradigm and  thus  are  not readily 
applicable to legacy software  enhancements.  This 
mismatch of technology to application is  an ap- 
parent blind spot in this  industry. 

The  first task of development  is  to  re-enliven  the 
conceptual  construct  in  the  developer’s  thinking 
(10). When the  software  developer  is faced with 
maintaining or enhancing an existing program, 
the first task is to  discover  the  relevant  parts of 
the  conceptual  construct  that  are  needed  for  the 
change. This  activity  is  the  opposite of the orig- 
inal task of setting  down  the  conceptual  construct 
into design representations and code. It involves 
looking through  the  code  (and  possibly  other  doc- 
umentation) and re-enlivening the  conceptual 
construct in our thinking. For  code that we have 
written  ourselves,  this  activity  becomes  a  process 
of rediscovery  and recalling from memory  the 
conceptual  view we had earlier. For  code  that  we 
have  not  written, it is  a  process of discovery of the 
conceptual  view from scratch, using whatever 
conceptual information is contained in the  code  or 
other  documentation. 

Only when we have the conceptual  construct  ac- 
tive again in our thinking can  we  properly  develop 
the  incremental  enhancement. We do not typi- 
cally need to  recapture  the  entire  conceptual  con- 
struct  (nor  for large software  systems  can  we)  but 
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only  those  parts of the design that are relevant to 3. Support  development of the  conceptual  con- 
the specific enhancement. l4 struct 

4. Support  incremental  steps during develop- 
The  process of recapturing  and re-enlivening the ment 
conceptual  view  uses program  understanding 
and design reabstraction. Program understanding  Each  approach is now described in some detail. 
is the  process of understanding  what  exists in the 

Support  intellectual  control  over  subdomain  com- 

b. 

plexity. The  thorniest problem we  have with soft- 
ware is its complexitv. By virtue of the  conditions 
in a program,. the  number of subdomains in- 
creases  dramatically as  the program increases in 

The  thorniest problem size. Developing the  conceptual  construct for a 
we have with software is new system, forward from the  requirements to 

its complexity. specifications to design to implementation, is rel- 
atively easy. When we proceed  forward  and  top- 
down, we  are developing and refining the  con- 
ceptual  construct in a natural  way, from the 
whole  to  its  parts, from overview to details. 

code. Design reabstraction is the  process of ab- 
stracting  the higher-level concepts from the  code, 
possibly building design representations. (I have 
chosen  the  term design  reabstraction rather  than 
a recommended  term, design recovery,  because 
the latter implies a process  that  uses  more  sources 
of information and results in a broader  scope of 
information about  the design.) 

Once we have  recaptured  the  conceptual  view, 
we incorporate  the  enhancement  into  the  concep- 
tual  construct. In doing this, we use a different 
design method  than  that  used for new function. 
The design of the  enhancement involves the de- 
sign of a delta to the existing function. The design 
must  specify how the existing function  is to  be 
altered. For many  enhancements  the design is not 
isolated design. The  new  function  can  be  scat- 
tered  throughout the existing structure. 

Approaches to forging  a  silver  bullet 

Where should we look  for a silver bullet? If we  are 
to forge a silver bullet, it will only be  by using 
those technologies that  directly  address  the  es- 
sential  attributes of software: conceptual  content, 
data  and  function  representation,  and multiple 
subdomains, and the  consequences of these  at- 
tributes. I propose  the following four  basic  ap- 
proaches, in order of decreasing  importance: 

1. Support intellectual control  over  subdomain 

2. Provide higher-order  constructs 

D 

c 

complexity 

However, when we are working with existing code, 
for example, to develop enhancements, the reverse 
process is very difficult. The many subdomains of 
the system present themselves with equal impor- 
tance; it is difficult to abstrxt from the  code  the 
relevant concepts and recover the conceptual con- 
struct for enhancements. It is difficult to maintain 
intellectual control over the existing complexity. 
Yet the fact is that 80 percent or more of our de- 
velopment deals with enhancing existing code. 
Above all we need solutions that will  allow us to 
reabstract the relevant concepts at  every level of 
component hierarchy. We need methods to handle 
the complexity rigorously, with intellectual control. 
The technologies I propose for this are design re- 
abstraction and formal  verification. 

Design  reabstraction. Design reabstraction is the 
process of recovering or rediscovering the higher- 
level concepts-the design-that motivated  an 
existing segment of code.  Generally we cannot 
rely on whatever existing detailed documentation 
may exist. The  documentation of the lower levels 
of design is almost invariably out of date  because 
it was not maintained as  the  software was fixed 
and  enhanced.  In  contrast,  the  documentation of 
the higher levels of design, if it is available, may 
be useful in establishing the basic  conceptual  con- 
structs of the  system. 

The basic approach to reabstraction is to abstract 
and represent the function of a program fragment 
from the code itself  in a stepwise reabstraction pro- 
cess. Work in  design reabstraction has been re- 
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ported for the Cleanroom meth~dology’~,~’ and the 
REDO Both approaches propose a po- 
tential automated abstraction system to derive the 
single-valued functional abstraction of a program 
fragment. Both approaches attempt to derive a for- 
mal, mathematical expression of the function. 

In light of the  conceptual  nature of software,  I 
propose  that it will be  more fruitful to  treat reab- 
straction as a  process of recovering  the concep- 
tual construct  rather  than  a  mathematical  repre- 
sentation.  Reabstraction is better  viewed as  the 
reverse of design, that is, recovering  the  inter- 
mediate  concepts  that  were  present  when  the 
software was designed. Such  a  process could 
never  be fully automated  because  the higher-level 
conceptual  content  is  absent  and  needs to  be sup- 
plied by  the  developer.  However,  tools  can  be 
developed to provide  automated  assistance in the 
process. 

The  conceptual  content  at  any level can be ab- 
stracted from the  constructs of the  software by 
identifying the  appropriate  concepts in a  stepwise 
manner.  Choices must be made as  to what  are  the 
“relevant”  details  for higher levels, that is, which 
conditions  have  conceptual  relevance  at  a higher 
level and which are merely implementation de- 
tails. Constructs  are  thus  encapsulated  by  gener- 
alizing concepts,  and intellectual control  over 
ever larger segments of the  code  can  be  achieved. 

The  process of reabstraction  needs  to  be tied to 
the  code so that  the  reabstracted  concepts  can  be 
traced  back to  the code  that  motivated them. The 
process also needs to  be rigorous to  the extent 
that  no segment of code  can  be  overlooked. 

Formal  verification. The proponents of the  math- 
ematical treatment of software  have long held out 
the  hope  that  programs  can be formally verified or 
proved.  Brooks  points out  that although formal 
verification is useful where  security  or  safety  are 
key considerations, it does  not promise to  save 
labor.  In  fact,  only  a  few  substantial  programs 
have  ever  been verified. Moreover, verification 
can  only  establish  that  the program meets  its 
specification, whereas  the  essential problem is to 
develop  the specification correctly in the first 
place. 

I  disagree  with  this  assessment. To begin with, 
there  are  methods of verification, perhaps  less 
rigorous  than  what  Brooks had in mind, that  can 

34 MAYS 

be applied to large systems. For example, the 
Cleanroom methodology2’ has  demonstrated  that 
program verification can  be  successfully  inte- 
grated  into  the  development of real-life systems 
with  no loss in productivity  and  a significant gain 
in quality. (The Cleanroom methodology includes 
the  methods of box  structure specification, func- 
tion theoretic  correctness verification, and  statis- 
tical usage testing. For  the  purposes of this dis- 
cussion, we will consider  just the verification 
portion of the methodology.) 

Furthermore, Brooks’s view  that program verifi- 
cation  is  no help to  us in developing a  complete 
and  consistent specification does  not  take  into  ac- 
count  the  fact  that building the specification pro- 
ceeds from the  same  thought  activity as the  de- 
velopment of the program. The  process of 
building the specification for the purpose of ver- 
ification does in fact  provide  a rigor that would 
not  otherwise be there. Yes, the  process of de- 
veloping the  conceptual  construct  is  potentially 
flawed because  we  must first form the  concepts 
out of our thinking activity  before we  can  produce 
either  the specification or the implementation. 
However, any amount of rigor that  we  introduce 
into  this  process will help. 

The  Cleanroom methodology uses specification 
of intended  function in the form of inputs,  out- 
puts,  transformation  and  state  data, using math- 
ematical proof arguments to  demonstrate  the  cor- 
rectness of the implementation or a lower-level 
design refinement during team reviews. Clean- 
room verification provides rigorous methods  dur- 
ing formal reviews  and  encourages  the  same level 
of rigor during individual work.  The methodology 
is powerful and provides  the  rigorous  methods 
needed  for intellectual control. 

However, in order  for  Cleanroom verification to 
be  broadly applicable, it will need to include spec- 
ifications and verification procedures for purely 
conceptual  representations of function. As we 
saw  earlier,  the  mathematical  treatment of pro- 
grams is limited in the  extent  to which it can  ab- 
stract  the  complex  subdomains of the function of 
the program and still remain mathematical. A 
mathematical  expression of the  function of the 
program will have  the equivalent complexity of 
the  code itself. Verification based  strictly on 
mathematically expressed  function specifications 
will necessarily  be  complex  and  tedious.  I believe 
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it is to this form of program verification that 
Brooks alluded. 

If we look more broadly at the process of  verifica- 
tion, we find that developers ultimately  rely on a 
higher order of verification  with their conceptual 
understanding of the system and the required func- 
tion, as was mentioned earlier. The determination 
of correctness thus relies on the thinking  ability of 
the reviewers to be convinced of the correctness, 
regardless of the form of the notation. Cleanroom 
proponents appear to be moving  in this direction. 
For example, Pleszkoch, et al.  recognize the use- 
fulness of simple  human concepts to represent com- 
plex functional expressions. 

Cleanroom also has restrictions on the use of cer- 
tain  language constructs, for  example,  multiple ex- 
its from a program fragment, loop ITERATE, and 
loop LEAVE. These appear to  be too restrictive, par- 
ticularly if methods, such as employing partition 

can be devised that adequately demon- 
strate  the validity of programs containing such con- 
structs. More work in this area is warranted. 

The  greatest limitation of the Cleanroom meth- 
odology, however, is  its  appropriateness for de- 
veloping enhancements to existing code. Clean- 
room relies on formal specifications of the 
intended function, but  such specifications are in- 
variably  absent for existing products not devel- 
oped using Cleanroom. There  are  no proven 
methods for developing the specification of ex- 
isting code, although the  work on design reab- 
straction  (previous  section)  shows promise. Thus 
the  success of the Cleanroom methodology for 
most development efforts is dependent  on  the de- 
velopment of a valid, usable design reabstraction 
methodology. 

Provide higher-order constructs. One attack  on 
subdomain complexity is to prevent  the  creation 
of new subdomains by eliminating or hiding the 
conditional logic that gives rise to them. This re- 
quires  constructs in the language and the  inter- 
faces to other softwave components  that will per- 
form higher-order transformations while hiding 
the conditional details of implementation. Such 
constructs  enable a complete encapsulation of 
function so that it can  be dealt with without regard 
to the conditions arising in its implementation. 

Higher-order constructs  also allow the developer 
to partition the problem into  the  part  that must be 
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developed and the part(s)  that  already  exists and 
can  be reused. Thus  the problem to be solved is 
smaller, and the scope of the development effort 
is reduced.  Such  constructs need to be both ge- 
neric and problem-domain-specific. 

The  solutions for this basic  approach enable us to 
reduce  the number of subdomains with which we 
must deal. 

Generic, higher-order language constructs and 
reuse. The  most useful approach will be to pro- 
vide higher-order generic constructs in several 
ways: 

Language extensions  supported by the compil- 
er-Extensions would include providing 
built-in functions not originally part of the lan- 
guage  (e.g., MAX and MIN functions, spread- 
sheet @ functions like @VLOOKUP, specialized 
mathematical or financial functions,  etc.).  It 
would also include incorporating built-in ab- 
stract  data types, for example, for stacks, 
queues, and maps, with  the  operations for these 
data  types (e.g., PUSH, POP, QUEUE, DEQUEUE) 
provided as part of the language. Other  lan- 
guage extensions would provide needed built-in 
transformations that  are used regularly in var- 
ious applications, such  as  the  support of vari- 
able nested  data  structures with self-referenc- 
ing lengths. 

More broadly, language extensions in our ex- 
isting languages can  support  better encapsula- 
tion, allow for (better)  type checking, and pro- 
vide for user-defined abstract  data  types and 
object-oriented constructs. 

Generic reuse-It would include providing ge- 
neric  constructs in the form of reuse building 
blocks and object class libraries. Such functions 
would provide a convenient packaging of com- 
plex function with an interface that hides the 
complexity, for example, reusable  parts  that 
provide a simple interface to the graphical user 
interface function of the  operating system. 

Other types of extensions-This would include 
extensions  that provide higher-level function, 
such as pipelines, compiler macros, and spread- 
sheet add-in packages. Any facility that  can en- 
capsulate  the  generic function needed will help 
reduce  the complexity of the program. For ex- 
ample, the following VM/CMS (Virtual Machine/ 



Conversational Monitor System) pipeline21 
construct  reads  the  records in a file, reformats 
them, sorts  the  reformatted  records,  eliminates 
duplicates, and stores  the  results in a stem  (ar- 
ray)  variable.  This single line of code  is  equiv- 
alent to about 25 lines of a language like REXX 
or P L ~ :  

PIPE e f i l e  I spec 73-80 1 I s o r t  I unique 
I stem t b l .  

There is no logical limit to  the level of higher- 
order  constructs  that  can  be provided. We  can 
develop still-higher-order constructs  from  the 
lower  ones.  However,  Brooks feels that  there  is 
a limit to  the  usefulness of higher-order con- 
structs.  They will ultimately create a “tools  mas- 
tery problem that  increases,  not  reduces  the in- 
tellectual  task of the  user  who  rarely  uses  the 
esoteric  constructs.”’  Brooks  may be right, but 
we  are far from that limit in most high-level lan- 
guages. Rather  than  discourage  the  creation of 
higher-level constructs, I would propose aggres- 
sive  selection  and  development of such  con- 
structs.  Indeed, it should  be  the  responsibility of 
language standards  bodies  and compiler develop- 
ers  to  seek  out and  provide  such  extensions as 
part of their language. The language should never 
be  viewed as complete  and fixed. Developers  also 
have a concomitant responsibility to  be aware of 
new language features  and  to  use  them. 

The selection of functions  for  generic  reuse  re- 
quires  that  the problem domain concepts,  func- 
tion, and data  representation all be  suitable  for 
general use. Most existing code in an application 
is  not  suitable  for  general  reuse  because of mis- 
matches in one  or more of these  areas.  In  partic- 
ular,  the problem domain concepts  or  the  data 
representation, or both,  may not be general 
enough. Finding reusable  parts  is difficult.22 

The  use of higher-order constructs  is applicable to 
developing enhancements  to existing code  prod- 
ucts because the new  constructs  can  be  intro- 
duced as  enhancements  are  added.  Indeed, de- 
velopers  should  be  constantly  seeking  ways  to 
upgrade their product by introducing such  fea- 
tures  as  part of an  overall  upgrade plan. 

Problem-domain-specific language  constructs 
and reuse. In addition to generic language con- 
structs and  reuse, it is also possible to develop 
and  useproblem-domain-specific  constructs,  that 

36 MAYS 

is, higher-order constructs for a specific problem 
domain. This would include the  use of reusable 
parts  or  object  class  libraries for a specific prob- 
lem area,  for example, reusable payroll tax cal- 

Reuse works in  problem-domain- 
specific applications  despite 

possible  mismatches in  problem 
domain concepts or data 

representation. 

culation  modules,  class  libraries of functions  to 
support  satellite  orbital calculations, or geologi- 
cal models for oil exploration. 

Reuse  works in problem-domain-specific applica- 
tions  despite possible mismatches in problem do- 
main concepts  or  data representation.  The  reus- 
ing application can  make  the  rest of the 
application conform to  the requirements and ca- 
pabilities of the  reused  parts. 

Higher-level  languages. CASE (computer-aided 
software engineering) tool  vendors hold out  great 
hope  for  generating code directly from the design 
representations in their tools. However, if such a 
capability is to be available, their designs will 
need to provide all of the details  that  currently go 
into  the  code.  The  conditions  that  must  be  tested 
and the  transformations  that  must  be performed, 
in short,  the  entire  set of subdomains  that would 
ordinarily be  produced in the  code, will need to  be 
specified in their designs. The  complexity of mul- 
tiple subdomains is an  essential  attribute,  and in- 
evitably  code  generators will need to  be able to 
specify all subdomains. 

In order  to specify such a level of detail,  the CASE 
tool must  provide  constructs  that  specify  trans- 
formations, conditional branching (IF-THEN- 
ELSE), and  repetitive  operations (loops), in other 
words, all of the  basic  features of a programming 
language. Thus,  code  generators will be nothing 
other  than higher-level languages. If we are  for- 
tunate,  they will also  provide  various higher- 
order  constructs  (see  previous  section). 
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Unfortunately,  such  tools will not  be readily us- 
able for existing code  products  because it  will be 
necessary  to  reabstract  the existing function  into 
the design representation of the tool in order  for 
it to  be generated again by  the tool. For most 
applications, such  reabstraction will not be prac- 
tical. 

Brooks  notes  the  recent  widespread  use of gen- 
eralized tools  such as databases,  spreadsheets, 
graphics  packages, and statistical  packages. 
These  tools  enable  nonprogrammers to develop 
their  own applications via simple programming 
(e.g., via  macros,  scripts, program generator 
specifications, etc.).  These  tools in effect provide 
higher-order constructs and the  appropriate  exe- 
cution  environment  (spreadsheet,  database, 
graphics) so that  the  nonprogrammer  user can de- 
velop specialized applications without much 
technical  expertise.  Yet  what is being done is still 
a form of programming. These languages usually 
still provide  the  standard  sequential, conditional, 
and looping constructs  that  are  present in pro- 
gramming languages. The  “developer”  must still 
develop the conceptual  construct,  and  the  result- 
ing “program” is still subject to all of the  essential 
characteristics of software: complexity, confor- 
mity, etc.  This  approach  works  because  the ap- 
plications tend  to be small and specialized such 
that their developers  can manage them. 

Support  development of the  conceptual  construct. 
Brooks holds that  the  hard  part of building soft- 
ware is the specification, design, and testing of its 
conceptual  construct,  not  the  labor of represent- 
ing it and testing  the fidelity of the  representation. 
The conceptual  components of the  task of soft- 
ware  development now take  most of the time. 
Thus, we should consider  those  attacks  that ad- 
dress  the formulation of the  conceptual  structure. 
Tools and  methods  are  needed  that readily enable 
development of specifications and designs, per- 
mitting clarity of thinking and  ease of communi- 
cating  the  conceptual view. 

Again, it is much  easier  to  develop  the  conceptual 
construct  the first time, in the first release of the 
product.  Yet  the  fact is that 80 percent or more of 
our designs are  enhancements  to  an existing de- 
sign. Thus  our  tools and methods need to  assist 
the design of enhancements to existing code. We 
must first understand  the existing function,  for- 
mulate the conceptual  construct of the  enhance- 
ment,  and  then  express  the design as an  incre- 
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mental enhancement on the  base function. Our 
tools  and  methods  must help formulate  the  con- 
ceptual  construct of the  enhancement. 

The  solutions  for  this  basic  approach  enable  us to 
address the  concepts and representation of the 
conceptual  construct, allowing easy development 
of specifications and designs and permitting clear 
thinking and communication of the  conceptual 
constructs.  Our  tools  and  methods  above a11 need 
to assist  the design of enhancements to existing 
code. 

The technologies that  address  this  area are: pro- 
gram understanding tools, incremental design 
tools,  object-oriented technology, great design- 
ers, design execution, and buy  versus build. 

Program  understanding  tools. Program under- 
standing is an additional step in the  process of 
design that is absent  from  new  code development. 
However, for enhancements to existing code, it is 
critical that  the  developer  investigate and under- 
stand how the existing structure  works  before  be- 
ginning the design of any  enhancements. Program 
understanding  function might ideally include nav- 
igation from high-level design representation 
through module call structures  to  the code itself, 
automatic identification of dependencies and in- 
terfaces, and automatic  creation of data dictio- 
nary  entries from existing structures. 

Program understanding  tools  are  intended to as- 
sist  the  developer in formulating a  complete  con- 
ceptual  view of the existing software. Ideally, 
their function is based  on  what information the 
developer  requires and in what  form.  These  items 
are in turn  dictated by  the  internal thought pro- 
cesses  the  developer  uses. Program understand- 
ing tools should provide  the  relevant information 
while hiding all other details. See  References 13 
and 23 for excellent summaries of this field. 

Program understanding  tools  are  under  develop- 
ment within IBM.” ,~~  New  approaches  to  the  pre- 
sentation of program information are also being 
studied inside and outside IBM, for example, pro- 
gram slicing. 

Design tools for incremental  enhancements. 
CASE design tools generally do  not  support  de- 
signs of incremental  enhancements to existing 
f u n c t i ~ n , ” , ~  despite the fact  that 80 percent or 
more of development is done on existing code 



products. What is needed is  the ability to  repre- 
sent  the design of the existing function and the 
design of the new function (the design delta) with 
highlighting. 

A methodology incorporating incremental design 
would provide program understanding and design 
reabstraction in an  appropriate design represen- 
tation (see  previous  sections),  redocumentation 
to  capture  ideas  uncovered during program un- 
derstanding and other investigation, and the  spec- 
ification and highlighting of the design delta 
within the  base design. 

Object-orientedtechnology. Object-orientedtech- 
nologies, that is, object-oriented analysis, design, 
and programming, define data in terms of object 
types, or classes. A class defines a logical collec- 
tion of data  with  its  associated  operations, or 
methods. For example, a Window in a graphical 
user interface may be a class with a number of 
methods  that maximize, minimize, and move the 
window on  the  screen. More restrictive  classes 
may be defined as subclasses of a class. The  sub- 
class inherits the  methods of its  superclass but 
may  have additional methods or slight variations 
on  the  methods of its  superclass.  For example, a 
ScrollableWindow might be a subclass of the 
class Window, with additional methods to display 
a scrolling bar and perform scrolling in the win- 
dow. It would inherit the  methods from its Win- 
dow  superclass  such as maximizing and moving 
but may have slightly different logic for its min- 
imizing method. 

Specific instances of a class  are called objects. 
Thus, a user might cause two Window objects and 
three ScrollableWindow objects to be  created 
during a particular session  at a terminal. Some 
object-oriented languages support multiple  inher- 
itance whereby a class may inherit methods from 
multiple different superclasses.  For example, the 
ScrollableWindow class might inherit a Mouse- 
ButtonHold method from a more general Mouse 
class to support scrolling with the mouse  button 
held down. 

The overall function of an application can  be com- 
pletely encompassed by  classes defined for the 
application and their methods. Alternatively, 
there may be functionally oriented  segments of 
code  that  use  the  classes and methods to accom- 
plish the overall tasks of the application. 
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Brooks  feels  that object-oriented programming is 
a promising new technology: “Many  students of 
the  art hold out  more  hope for object-oriented 
programming than for any of the other technical 

Object-oriented technologies 
define data in terms of object 

types, or classes. 

fads of the day. I am among them.” However, in 
Brooks’s view  object-oriented programming ad- 
dresses  only accidental aspects of development: 
it allows the developer to express  the  essence of 
the design without having to  express large 
amounts of syntax and allows a higher-order 
expression of the design. But the complexity of 
the design is the  essence, not its  expression. 
Thus,  Brooks  does not expect an order of mag- 
nitude improvement because  type specification is 
not nine-tenths of the  work of designing a soft- 
ware  entity. 

I disagree in part  with Brooks’s assessment. 
Brooks  overlooks  the  fact  that object-oriented 
technologies permit a completely different con- 
ceptual  approach to  the  conceptual  construct 
(structuring  via  its  data  rather  than  its function) 
and therefore do address  the  essence of the prob- 
lem: they provide a framework for a different, 
possibly more powerful expression of the design. 

More specifically, object-oriented technologies 
assist in two of the essential aspects of software: 
the  conceptual  content and representation. At 
least in some problem domains the  data  orienta- 
tion has  the advantage of a more natural  repre- 
sentation. I would expect designs based on data 
representations to exhibit more stability with 
change over time, greater  ease in maintaining the 
conceptual integrity of the design, and better 
overall encapsulation. Moreover, object-oriented 
technologies assist reuse  (see  previous  sections). 
Again, their naturalness of representation helps 
with problern-domain-specific reuse. I would ex- 
pect class libraries to be  easier to generalize for 
reuse  than function-oriented code. 
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Initial reports from studies of the  use of object- 
oriented technologies support  these  expecta- 
tions. In  three studies, object-oriented program- 
ming showed promise in increasing productivity 
because of the  ease of reuse and ease of mainte- 
n a n ~ e . ’ ~ ~ ~  The  ease of reuse  was  demonstrated 
by the amount of class  code  reused by inheri- 
tance. The  ease of maintenance was demon- 
strated in terms of less effort to implement a 
change, fewer lines needing to be added or 
changed, more localized changes, and fewer in- 
terface changes for enhancements and extensions 
to function. But the evidence  also  shows  that  ob- 
ject-oriented technologies are not a silver bullet: 
there  was  no tenfold improvement in quality or 
productivity. 

Moreover the  use of object-oriented technologies 
is not without  a price. A number of issues  are 
raised in the literature: 

D 

b 

Inhibits comprehension of overall function- 
The calling structure of object-oriented appli- 
cations  tends  to  be  deeper and more finely dif- 
ferentiated  (deeper hierarchies with larger 
fanout) than functional implementations. This 
condition leads to a  separation and dispersion of 
function across  classes. Wilde and Huitt 32 con- 
firm this result and add  that  the hierarchical 
class  structure multiplies the kinds of relation- 
ships  that  must  be considered when changing an 
object-oriented program. Although the  separa- 
tion of function increases  the possibility for re- 
use, it also  increases  the difficulty of tracing 
function and actually inhibits comprehension. 

D 

Hidden or unforeseen dependencies-In dis- 
cussing requirements for object-oriented test- 
ing, Perry and Kaiser33 point out  that  the  prop- 
erty of inheritance tends to make the effects of 
changes more difficult to determine and under- 
stand  because of dependencies. These depen- 
dencies  may be caused by coI;.plex inheritance 
structures,  methods  that  use  other  methods  at 
the  same or higher levels, and multiple inheri- 
tance. For example, when we modify an exist- 
ing subclass,  there may be hidden dependencies 
in the  methods inherited from a  superclass. A 
method may  use different subordinate  methods 
from different classes, depending on the class 
inheritance structure, causing hidden depen- 

based on  type also can  cause hidden dependen- 

B 

I dencies. In addition, late binding of methods 

I cies. 32 
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All  of these effects result in additional unfore- 
seen, unobvious dependencies  that  can  cause 
more complex rather than less complex and 
manageable designs. Rather  than simplifying 
and removing accidental difficulties, the  object- 
oriented paradigm appears to add accidental 
difficulties. 

. Need for object-oriented process and tools- 
G ~ y a l ~ ~  argues for a development process  spe- 
cifically tailored to object-oriented design that 
would include a domain analysis step in which 
objects  are defined, developed, and refined, as 
well as the more conventional function analysis 
and design steps. Also needed are supporting 
tools such  as for class browsing, cross-refer- 
encing, configuration management, and change 
control. 32,35 

Difficult to learn to use-The claim from pro- 
ponents  that object-oriented design is natural 
and therefore  easy to learn was refuted by at 
least one  researcher36  who found that program- 
mers experienced in functional programming 
had difficulty decomposing a problem, identi- 
fying classes and methods, and generally im- 
plementing a solution in an object-oriented lan- 
guage. 

With object-oriented development, as with func- 
tion-oriented development, it is necessary to be 
able to handle multiple simultaneous releases, 
large releases, and large teams. This type of de- 
velopment implies that tools are needed to coor- 
dinate the  class libraries across diverse projects 
and teams. 

Most importantly, techniques must be developed 
to  introduce object-oriented constructs  into ex- 
isting functionally oriented applications. To ac- 
complish this task, object-oriented extensions 
have to  be developed and supported in the exist- 
ing programming languages, and techniques have 
to  be developed for gradually converting existing 
data  structures and function into object classes 
and methods. Some promising work in this  area 
has begun. 37 

Until object-oriented technologies become more 
widely understood and used, and until a large set 
of products  have  been developed with them, ac- 
ceptance of this technology will be inhibited. De- 
velopers working on function-oriented products 
will continue to do so, whereas  developers  work- 
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ing on object-oriented  projects will use their own 
development methods. Until techniques  are 
available to allow object-oriented technology to 
be utilized in existing products,  the two orienta- 
tions will continue on separate  paths with little 
cross-fertilization or movement of expertise. 

Great designers. Brooks proposes that a great de- 
signer produces exemplary designs  primarily be- 
cause of inherent talent and this is something that 
cannot be taught but only cultivated in the talented 
designers that we may have. Therefore, we should 
use strategies to identify and cultivate our great de- 
signers so as  to obtain the most from their talent. 

Brooks may be right, but I would suggest that a 
deeper understanding of the  creative thought pro- 
cess and the essential nature of software may 
make it easier  to identify the faculties and abilities 
that  great designers seem  to have. Although many 
of the great designer’s thought processes and 
guiding principles are probably unspoken and 
some  are possibly ineffable, it should not be as- 
sumed that we cannot  understand  more  about 
how a great designer works. With such an under- 
standing it may  be possible to teach these prin- 
ciples and develop them in others. 

For example, it is clear that a great designer must 
have  extreme facility in handling the  conceptual 
construct of a system and a good sense of the 
conceptual principles that  went into the design. 
How  the great designer achieves this should be of 
use to us all. 

Design  execution. In response  to  Brooks’ and 
P a r n a ~ , ~  David Hare12 offers design execution  as 
an approach  that will assist  the developer in pro- 
totyping, simulating, and testing the design rep- 
resentation before it is committed to implemen- 
tation. Design execution  can  cause unforeseen 
situations to surface resulting from weaknesses, 
contradictions, and flaws  in the  conceptual  struc- 
ture (what I termed earlier “major conceptual  er- 
rors’,). 

This  approach  is useful because it allows the de- 
veloper  to  work  with  the  conceptual  construct of 
the  system while it is being developed, to clarify 
the thinking about  the  system, and to uncover 
unforeseen situations and interactions between 
the different parts of the system. 

However, this method does not handle the en- 
hancement of existing code well. It  requires us to 
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reabstract  the existing design in order to take  ad- 
vantage of design execution for enhancements  to 
the existing design. In some  cases  the new func- 
tion will be sufficiently isolated from the existing 

Iterative development needs  an 
overall structure  and 
development plan. 

function, and in some cases  the existing design 
can  be readily reabstracted,  but in many cases 
this will not be possible. But for new function, 
and cases  where  we  can  reabstract easily, design 
execution provides a powerful tool for developing 
the design. 

Buy versus build. Brooks  proposes  the  use of off- 
the-shelf products  to meet the  needs of the  orga- 
nization, rather than specialized, custom-built 
software  systems.  He  proposes  use of specialized 
packages, for example, for payroll, inventory 
control, accounting, etc. Many such  products  are 
available today  at  reasonable prices. 

Specialized packages eliminate the need to  de- 
velop  custom software. The  conceptual  construct 
has already  been developed and implemented. If 
there  are  instances  where  the package does not 
exactly  conform to  the  needs of the organization 
(for example, the payroll system  does not accom- 
modate different pay  rates for the  same employee 
for different types of work),  the organization con- 
forms to  the capabilities of the package and 
adapts  its  practices  to it. This  is a dramatic re- 
versal of requiring software to conform to human 
institutions, but  the  cost benefit to the organiza- 
tion to use a package rather  than build a custom 
system frequently justifies it. 

The  use of specialized packages  is valid for many 
software applications but  does  not  address  the 
more common problem of applications for which 
there  are no packages or  the problem where  we 
already  have existing software  that must be main- 
tained and enhanced. For  these  cases,  the more 
generalized approach of reuse of software  parts or 
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building blocks is a valid extension of Brooks’s 
idea. 

Support incremental steps during development. 
Software  development  is  a thinking activity, yet 
our thinking faculty  has limits both in breadth  and 
through time. We do not  generally  develop  the 
concepts of the system in  all their  clarity  and de- 
tail all at once, nor can  we hold them all  in mind 
at  one time. We  must  work  to  develop  the  con- 
ceptual  construct and its  representations  over 
time. We  must  consult  others’  viewpoints and re- 
actions  and  then  repeat  and refine our thinking 
through a number of iterations.  We  must  explore 
the implications of our thinking thus  far in various 
directions,  and again refine what we have  devel- 
oped in further  iterations.  This  process of itera- 
tive thought refinement proceeds from require- 
ments definition through implementation. 

We  cannot do this  development  process all at 
once for any  but  the smallest problems. For  most 
development  projects,  however, large efforts are 
a  fact of life. Thus, we need methods and tools 
that allow us  to partition  the problem into smaller 
pieces  and  iterate on each step of the  process until 
the refinement is complete  at  that level. 

The  solutions  for  this  basic  approach  are  those 
that  enable us to develop  and refine our thinking 
over time, and  to  partition  the problem into 
smaller, more manageable chunks.  This  enables 
us  to  make  use of the principle of divide and con- 
quer.  We accomplish these  ends  by  iterative  de- 
velopment  and refinement. The  notion of iterative 
development  and refinement apply in two places: 
requirements and design. 

Requirements refinement  and prototyping. 
Brooks  asserts  that  the  hardest single part of de- 
velopment  is deciding what  to build. To make  this 
decision he recommends  that we develop  the  re- 
quirements  and  external specifications of the  sys- 
tem by iteratively  extracting  and refining them 
with  the  client  or  customer. Without such  a  pro- 
cedure it is practically impossible to specify com- 
pletely, precisely, and  correctly  the  exact  re- 
quirements.  Prototyping  can  be used to simulate 
the  externals and important  interfaces and to 
present  the main functions of the  intended  system 
to  users for validation. 

Incremental (iterative)  development. Again, 
Brooks  proposes  that  a  better analogy for soft- 
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ware  development  is  the gradual growth  of  the 
system  rather  than  the  construction  and building 
of the  system. We should grow the  software  con- 
struct  gradually  rather  than build the entire large 
structure in one  step.  This  process allows a kind 
of prototyping  to  occur as  we grow each  incre- 
ment of the  system and add it to  the base. The 
system  evolves or grows gradually and we  are 
able to  take  stock of what  we  have  developed so 
far and make adjustments  where  needed.  An  ex- 
ample of the use of this  method in IBM is the Ex- 
perimental  Software Development Center. 38 

Iterative  development  needs  an  overall  structure 
and development plan: a high-level design and  an 
externals specification at least to  some level of 
detail. Also needed is a plan for partitioning the 
function into  increments with demonstrable  func- 
tion that  can  be  tested  as  a unit. Then  each team- 
usually they  are small teams-proceeds with  de- 
velopment and test of its  increment. When the 
increment  has  been  tested  to  a level of confi- 
dence, it is added  to  the  base  product.  Proponents 
of iterative  development claim that  code  can be 
developed in this way with high productivity  and 
good quality. 

One pitfall of this  method is the  potential to lose 
sight of the  fact  that we must  go through the  re- 
quired steps of development,  that is, through  the 
necessary intellectual steps and through the dif- 
ferent levels of detail in the definition of the  prod- 
uct structure. If we ignore these  steps,  we  end  up 
doing them informally, without  the  proper com- 
munication of critical design decisions, etc. 

Recommendations 
Does  a silver bullet exist in any of these  technol- 
ogies? At  this point we cannot tell. However, we 
can  say  that  the  most difficult essential  attribute 
of software is its multiple subdomains. And the 
most difficult consequence  is  the  need  to maintain 
and enhance existing code.  A  method  that di- 
rectly  attacks  both of these  areas  has  a  chance. 

When we develop  new function we go through 
elaborate steps  to develop  the  conceptual  con- 
struct,  to ever  greater levels of detail. We develop 
the  code, and then we gradually let go of our  con- 
ceptual view. What was  once vividly alive in our 
thinking fades.  Formal  documentation of the  sys- 
tem becomes  out of date. Low-level or module- 
level design documentation is generally dis- 
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carded, for example,  when  the  code  is  completed. 
We are left with incredibly detailed, complex 
code  and  not  much  else  that reliably presents  or 
explains  its  conceptual  elements. The higher lev- 
els of documentation  may  be lost or become so 
out of date  that  they  are  no longer trustworthy. 
Over time documentation in the  code itself, even 
the  comments  at  the  statement level, can  become 
suspect  as  the  code  is modified again and again. 

Thus,  we  are left with a gap between any  accurate 
conceptual  construct  and  the  code.  There are  no 
longer any  accurate intervening details of the de- 
sign between  whatever high-level concepts  we 
may  have  and  the  code. When we attempt  to 
tackle  any problem relative to  the system-be it 
developing fixes or adding new  function to  the 
code, we  are  faced with the  complexity of the 
code and precious little else. It is a  gap  that in 
practice  is impossible to close with accuracy  for 
any  but  the  simplest  programs.  Our  minds simply 
can  no longer encompass all of the  code.  We  are 
forced to rely  on  imperfect,  error-prone  methods. 
Our  mental  prowess  and  that of our colleagues are 
unequal to  the task. We make  mistakes  that  we 
cannot help. 

But if the  source of this problem is  the  combina- 
tion of the  essential  attributes of software:  con- 
ceptual  content,  representation,  and multiple 
subdomains,  and  the  fact  that we must deal with 
the existing code,  the solution lies in precisely 
those  areas:  the  reabstraction of the  conceptual 
construct  into higher-order conceptual abstrac- 
tions  that  encapsulate  the myriad subdomains. 
The  reabstraction  process  reverses  the  process of 
design. This  approach  seems to me to  be  the only 
one that will bridge the  gap facing almost all de- 
velopers,  between  the  code  and  a reliable repre- 
sentation of its  conceptual  construct. 

Thus,  my  recommendations  toward forging a sil- 
ver bullet for  software  development  technology 
are: 

1. Develop and deploy technologies for design 
reabstraction and program understanding- 
Design reabstraction is the  technology  that de- 
serves  the  greatest  focus, in my opinion. Not 
only  does it have significant promise in the 
most difficult essential  aspects of software,  but 
it is  also  the  key element or a significant de- 
pendency  for  a  number of other promising 
technologies if they  are  ever  successfully  to 
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deal with existing code: formal verification, 
object-oriented technology, design execution, 
and design tools  for  incremental  enhance- 
ments.  Once  adequate  reabstraction  technol- 
ogy is  developed,  these  other technologies be- 
come  much  more  viable for legacy systems. 

Likewise,  program  understanding  technology 
is a key element in enabling developers  to for- 
mulate the conceptual  view of the  system  eas- 
ily and  accurately. In many  ways, program un- 
derstanding technology is  a  prerequisite to 
design reabstraction  because  the  developer 
must first understand the existing  function in 
order  to  reabstract it. 

2. Develop and deploy those technologies that 
can readily be introduced into legacy  system 
processes”Severa1  other technologies offer 
the advantage of being readily  introducible 
into  our legacy system  processes,  that  is,  with- 
out needing to re-engineer  or  reabstract the 
existing logic. These technologies include 
higher-order language constructs,  generic  and 
problem-domain-specific reuse,  and  incremen- 
tal  (iterative)  development. With a plan for 
software revitalization and  process  improve- 
ment,  such technologies can  be  introduced 
gradually as  the  system  is enhanced. 

Conclusion 

To repeat  the  basic  proposal of this  paper: if a 
silver bullet is possible, it can  only  be forged by 
directly  addressing  the  essence of software. Even 
if we  are  not  able  to  achieve  an  order of magnitude 
improvement in quality  and  productivity,  these 
approaches will constitute  the  most profitable and 
possibly the  only effective attack  on  the problem. 

I believe a radical shift in our  approach to soft- 
ware  development  technology  is  warranted. We 
need  to recognize that  software  development is 
above all else  a human endeavor, one  that chal- 
lenges our thinking faculties to  the limit. The fo- 
cus of our technologies must  be  on the central role 
of the developer  who  uses  intense thinking activ- 
ity as an integral part of the  process.  In using our 
technologies we must realize that it is  the human 
understanding of the  concepts of the problem that 
is important and that all the  processes,  methods, 
notations,  and  syntax are really only  secondary  to 
that understanding. 
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Appendix:  Estimating  the  subdomains of a 
program 

Every program fragment can  be partitioned into  a 
number of subdomains from its conditional state- 
ments,  such as IF-THEN-ELSE, SELECT-END, and 
DO WHILE-END. Different statements split the 
subdomain of a program in varying amounts. 
Statements  with no conditions do not split the 
subdomain. The IF-THEN, IF-THEN-ELSE, and DO 
WHILE-END statements split the subdomain in 
two. The SELECT-END statement splits the  sub- 
domain by  the number of W E N  and OTHERWISE 
clauses. We can  estimate the lower and upper 
boundaries of the number of subdomains from the 
number of conditional statements. 

The conditional statements  interact in two  ways, 
sequentially and nested, to combine subdomains. 
Sequential  statements form a  cross  product of the 
subdomains of each statement to produce  the  sub- 
domains of the combined set of statements.  For 
example, two sequential IF-THEN-ELSE state- 
ments  each  have two subdomains. Together, they 
have  a  total of four subdomains formed by  the 
cross  product of the subdomains of each of them: 

i f  cond i t i on -A   t hen   t rans fo rm-#  
e lse   t rans form-X 

i f  condi  ti on-B then  t ransform-Y 
e l se   t rans fo rm-Z  

Subdomains: 

1. condi  t i on-A 
#AND# cond i   t ion-B 

+ transform-#,  t ransform-Y 

2. cond i t i on -A  
#NOT# cond i   t ion-B 

-+ t rans form-# ,   t rans form-Z 

3. #NOT# condi  ti on-A 
#AND# cond i t i on -B  

+ transform-X,  t ransform-Y 
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4. #NOT# cond i t i on -A  
#NOT# cond i t i on -B  

-+ transform-X,   t ransform-Z 

Nested  statements form a  cross  product of their 
subdomains with the condition of the  statement in 
which they  are  nested.  For example, an IF-THEN- 
ELSE nested within one leg of another IF-THEN- 
ELSE forms  a  cross  product  with  the  outer 
IF-THEN condition and produces  a  total of three 
subdomains: 

i f  cond i   t ion-A  then do 
i f  cond i   t ion-B  then  t rans form-X 
e lse   t rans form-Y 

end 
e l se   t rans fo rm-Z  

Subdomains: 

1. cond i t i on -A  
#AND# condi  ti on-B 

+ transform-X 

2. cond i t i on -A  
#NOT# condi  t i on-B 

+ transform-Y 

3. #NOT# cond i t i on -A  
4 t rans form-Z 

A program fragment has  any number of combi- 
nations of sequential and nested conditional state- 
ments. Thus the total number of subdomains falls 
between the total for  nested combinations and 
sequential combinations. 

For  the sequential combinations, all of the  sub- 
domains for all prior statements  are split as we 
add each new conditional statement. If we  take as 
an example a 10 000-statement program contain- 
ing 2000 conditional statements occurring se- 
quentially, and we assume that  each conditional 
statement  splits  the subdomain in two, as  we add 
the next conditional statement  we have the rela- 
tionship shown in Table 1. 

For combinations of nested conditional state- 
ments, as we add each new conditional statement 
we  nest it within a higher-level conditional state- 
ment. Thus  at each nesting level, we can add as 
many new conditional statements as there  are 
places available to put a nested statement.  The 
resulting structure is a completely filled binary 
tree. The number of subdomains is the number of 
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Table 1 Subdomalns for Sequential  conditional 
statements 

Added Total  Total 
Conditional  Conditional  Subdomalns 
Statements  Statements 

1 1 2 = 2’ 
1 2 
1 3 

4 = 22 

1 4 16 = 24 
8 = 23 

1 2000 22m 

n 2” 

Table 2 Subdomains for nested  conditional  statements 

Added  Total  Total 
Condltlonal  Conditional  Subdomains 
Statements  Statements 

1 1 = 2 l - 1  
2 

2 = 2l 
3 = 2 2 - 1  

4 
4 = 22 

8 
7 = 2 3 - 1  8 = 23 

15 = 24 - 1 16 = 24 

1024 2047 = 2’’ - 1 2048 2 ”  

- n n +  1 

leaves  on  the  tree. We can  represent  this as 
shown in Table 2. 

The  total  subdomains  for  nested conditional 
statements grow as n + 1, whereas  the  subdo- 
mains for sequential  conditional  statements grow 
as 2”. The  total  subdomains  for  a program frag- 
ment lies between  these  two  bounds.  Thus, for 
the 10 000-statement program with 2000 condi- 
tional statements,  the  total  subdomains would be 
somewhere  between 2001 and 2’Oo0. 
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