
Software quality: An
overview from the
perspective of total
quality management

by S. H. Kan
V. R. Basili
L. N. Shapiro

This essay presents a tutorial that discusses
software quality in the context of total quality
management (TOM). Beginning with a historical
perspective of software engineering, the tutorial
examines the definition of software quality and
discusses TOM as a management philosophy
along with its key elements: customer focus,
process improvement, the human side of quality,
and data, measurement, and analysis. It then
focuses on the software-development specifics
and the advancements made on many fronts that
are related to each of the TOM elements. In
conclusion, key directions for software quality
improvements are summarized.

F rom a historical perspective, the 1960s and
the years prior to that decade could be

viewed as the functional era of software engineer-
ing, the 1970s as the schedule era, and the 1980s
as the cost era. In the 1960s, we learned how to
exploit information technology to meet institu-
tional needs, and began to link software with the
daily operations of institutions in society. In the
1970s, when software development was charac-
terized by massive schedule delays and cost over-
runs, the focus was on planning and control of
software projects. Phase-based life-cycle models
were introduced, and analyses like the mythical
man-month' emerged. In the 1980s, hardware
costs continued to decline. Information technol-
ogy permeated every facet of our institutions, and
at the same time it became available to individ-

4 KAN, EASILI, AND SHAPIRO

uals. As competition in the computer industry be-
came keen and low-cost applications became
widely implemented, the importance of produc-
tivity in software development increased signifi-
cantly. Various cost models in software engineer-
ing were developed and used. In the late 1980s,
the importance of quality was also recognized.

The 1990s and beyond is certainly the quality era.
As state-of-the-art technology is now able to pro-
vide abundant functionality, customers demand
high quality. Demand for quality is further inten-
sified by the ever-increasing dependence of our
society on software. Billing errors, large-scale
disruptions of telephone services, and even a mis-
sile failure during the recent Gulf War3 can all be
traced to the issue of software quality. In this era,
quality has been brought to the center of the soft-
ware development process. From the standpoint
of software vendors, quality has become a nec-
essary condition to compete in the marketplace.

This essay provides a high-level tutorial on soft-
ware quality and total quality management (TQM).
In the following sections, we discuss the defini-

"Copyright 1994 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

IEM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

tion of software quality, the TQM philosophy, and
the progress on many fronts of software engineer-
ing as they relate to the key TQM elements: cus-
tomer focus, process improvement, the human
side of quality, and data, measurement, and anal-
ysis. Because the subject is very broad, in this
tutorial we take a concise, high-level approach.
For in-depth information related to specific top-
ics, the reader is encouraged to peruse the refer-
ences.

Meaning and definition of software quality
Quality must be defined and measured for im-
provement to be achieved. Yet, a major problem
in quality engineering is that the word quality
lacks a commonly recognized operational defini-
tion. Perhaps the confusion is because quality is
not a single idea, but a multidimensional concept.
The dimensions of quality include the entity of
interest, the viewpoint on that entity, and the
quality attributes of that entity. A popular view of
quality is that it is an intangible trait and that it can
be discussed and judged, but cannot be weighed
or measured. To many people, quality is similar
to what a federal judge once observed about ob-
scenity: “I know it when I see it.” From a cus-
tomer’s standpoint, quality is the customer’s per-
ceived value of the product he or she purchased,
based on a number of variables, such as price,
performance, reliability, overall satisfaction, and
others. In Guaspari’s book I Know It When 1 See

the author discusses quality in the customers’
context as follows:

Your customers are in a perfect position to tell
you about Quality, because that’s all they’re
really buying. They’re not buying a product.
They’re buying your assurances that their ex-
pectations for that product will be met.

And you haven’t really got anything else to sell
them but those assurances. You haven’t really
got anything else to sell but Quality.

It is clear that the concept of quality must involve
customers or, simply put, quality is conformance
to customers’ expectations and requirements. In-
terestingly, the definitions of quality by quality
professionals are congruent with the implications
of the popular views. For instance, Crosby’s
“conformance to requirement^"^ and Juran’s
“fitness for use”6 both implied the customers’
perspective.

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

From a high-level definition of a concept, to a
product being operationally defined, many steps
are involved, each of which may be exposed to
possible shortcomings. For example, to achieve
the state of conformance to requirements, cus-
tomers’ requirements must first be gathered and

Quality is conformance to
customers’ expectations

and requirements.

analyzed, then specifications from those require-
ments must be developed, and the product must
be developed and manufactured appropriately. In
each phase of the process, errors may have oc-
curred that will negatively affect the quality of the
finished product. The requirements may be erro-
neous (especially in the case of software devel-
opment), the development and manufacturing
process may be subject to variables that induce
defects, and so forth. From the customer’s per-
spective, satisfaction after the purchase of the
product is the ultimate validation that the product
conforms to requirements and is fit to use. From
the producer’s perspective, once requirements
are specified, developing and producing the prod-
uct in accordance with the specifications is the
basic step to achieving quality. Usually, for prod-
uct quality, lack of functional defects and good
reliability are the most basic measures. In order
to be “fit for use,” the product first has to be
reliably functional.

Because of the two perspectives on quality (i.e.,
customer satisfaction as the ultimate validation of
quality, and the producer’s adherence to require-
ments to achieve quality), the de facto definition
of quality consists of two levels. The first is the
intrinsic product quality, often operationally lim-
ited to product defect rate and reliability; this nar-
row definition is referred to as the “small” q (q for
quality). The broader level of the definition of
quality includes both product quality and cus-
tomer satisfaction; it is referred to as the “big” Q.
One can observe that this two-level approach to

KAN, BASILI, AND SHAPIRO 5

(both software and hardware), the consumer elec-
tronics industry, and many others.

In software, the narrowest sense of product qual-
ity is commonly recognized as lack of “bugs” in
the product. This definition is usually expressed
in two ways: defect rate (e.g., number of defects
per million lines of source code, or per function
point), and reliability (e.g., number of failures per
n hours of operation, mean time to failure, or the
probability of failure-free operation in a specified
time). Customer satisfaction is usually measured
by the percentage of those satisfied or non-
satisfied (neutral and dissatisfied) on customer
satisfaction surveys. To reduce bias, usually
techniques such as double-blind surveys (the in-
terviewer not knowing who the customer is, and
the customer not knowing what company the in-.
terviewer represents) are used. In addition to
overall customer satisfaction with the software
product, satisfaction toward specific attributes is
also gauged. For instance, IBM monitors the
CUPRIMDSO satisfaction levels of its software
products (i.e., capability [functionality], usabil-
ity, performance, reliability, installability, main-
tainability, documentation/information, service,
and overall satisfaction). The Hewlett-Packard
Co. focuses on FURPS (functionality, usability, re-
liability, performance, and supportability). ’ Sim-
ilar dimensions of software customer satisfaction
are used by other companies.

The two-level concept of quality is supposed to
form a closed-loop cycle: customers’ wants and
needs ”* requirements and specifications + prod-
ucts designed, developed, and manufactured in
accordance with the requirements + excellent
product quality plus good distribution and service
processes + total customer satisfaction. How-
ever, this concept had not always been present in
many industries, especially before the late 1980s
when the modern quality era began. Product re-
quirements were often generated without custom-
ers’ input, and customer satisfaction was not
always a factor in business decision-making. Al-
though the final products conformed to require-

ers wanted. Therefore, we think that the role of
customers should be explicitly spelled out in the

requirements. This updated definition is espe-
cially relevant to the software industry, since re-

I

I ments, they may not have been what the custom-

I definition of quality: conformance to customers’

6 KAN, BASILI, AND SHAPIRO

4 I~ ~ -~ ~~~~- J ~” ”

percent of defect totals. a A development process
that does not address requirements quality is
bound to produce poor quality software.

Yet another view of software quality is that of
process quality versus end-product quality. From
requirements to the delivery of software prod-
ucts, the development process is complex. It of-
ten involves a series of stages, each with feedback
paths. In each stage, an intermediate deliverable
is produced for an intermediate user-the next
stage. Each stage also receives an intermediate
deliverable from the preceding stage. Each inter-
mediate deliverable has certain quality attributes
that affect the quality of the end product. Intrigu-
ingly, if we extend the concept of customer in the
definition of quality to include both external and
internal customers, the definition also applies to
process quality. If each stage of the development
process meets the requirements of its intermedi-
ate user (the next stage), the end product thus
developed and produced will meet the specified
requirements. This statement, of course, is an
oversimplification of reality, because in each
stage numerous factors exist that will affect the
ability of the stage to fulfill its requirements com-
pletely. However, if each person performing an
activity thought about the customers of the inter-
mediate product being developed, and applied the
concepts discussed above, we would come a long
way toward improving the final product quality,

Another view of process quality is aimed at im-
proving the processes themselves, i.e., defining a
set of ideal processes and measuring the existing
processes of organizations against these ideals.
This concept has become very popular in the last
decade and provides a mechanism for companies
to be related with regard to process.’

To improve quality during development, we need
models of the development process, and within
the process we need to select and deploy specific
methods and approaches and employ proper tools
and technologies. We need measures of the char-
acteristics and quality parameters of the devel-
opment process and its stages. We need metrics
and quality models to help ensure that the devel-
opment process is under control to meet the qual-
ity objectives of the product.

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

Total quality management

Total quality management (TQM) is a term that
was originally coined in 1985 by the Naval Air
Systems Command to describe its Japanese-style
management approach to quality improvement. It
has taken on a number of meanings, depending on

To improve quality during
development, we need

models of the development
process.

who is interpreting the phrase and how they are
applying it, but in general, it represents a style of
management that is aimed at achieving long-term
success by linking quality with customer satis-
faction. Basic to the approach is the creation of a
culture in which all members of the organization
participate in the improvement of processes,
products, and services. Various specific methods
for implementing the TQM philosophy are found
in the works of Philip Crosby,’ W. Edwards
Deming, lo Armand V. Feigenbaum, ‘‘J’ Koru
I~hikawa,’~ and J. M. Juran.6

Since the 1980s, many companies in the United
States have begun adopting the TQM approach to
quality. The Malcolm Baldrige National Quality
Award (MBNQA), established by the U.S. govern-
ment in 1988, highlighted the embracement of
such a philosophy and management style. In the
computer and electronic industry, examples of
successful implementation include Hewlett-Pack-
ard CO.’S total quality control (TQC), Motorola
Inc.’s six sigma strategy, IBM’s market-driven
quality, and others. In fact, Motorola won the first
MBNQA award in 1988, and IBM’S AS/400 Division in
Rochester, Minnesota, was one of the winners in
1990.

Hewlett-Packard’s TQC focuses on key areas such
as management commitment, leadership, cus-
tomer focus, total participation, and systematic
analysis. There are strategies and plans in each
area to drive the improvement of quality, effi-
ciency, and responsiveness. The final objective is

IEM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

to achieve success through customer satisfac-
tion.14 In software development, the Software
Quality and Productivity Analysis (SQPA) pro-
gram’ is one of the approaches taken to improve
quality.

Motorola’s six sigma strategy focuses on achiev-
ing stringent quality levels to obtain total cus-
tomer satisfaction. Cycle time reduction and
participative management are among the key in-
itiatives of the strategy.16 Six sigma is not just a
measure of the quality level; inherent in the con-
cept are product design improvements and reduc-
tions in process variations. ’’ Six sigma is applied
to product quality as well as to everything that
can be supported by data and measurement.

“The customer is the final arbiter” is the key
theme of IBM’S market-driven quality strategy.
The strategy consists of four initiatives: defect
elimination, cycle time reduction, customer and
Business Partner satisfaction, and adherence to
the Baldrige assessment discipline.

Despite variations in its implementation, the key
elements of a TQM system can be summarized as
follows:

Customer focus: the objective is to achieve total
customer satisfaction. Customer focus includes
studying customers’ wants and needs, gather-
ing customer requirements, and measuring and
managing customer satisfaction.
Process: the objective is to reduce process vari-
ations and to achieve continuous process im-
provement. Process includes both the business
process and the product development process.
Through process improvement, product quality
will be enhanced.
Human side of quality: the objective is to create
a company-wide quality culture. Focus areas
include management commitment, total partic-
ipation, employee empowerment, and other so-
cial, psychological, and human factors.
Measurement and analysis: the objective is to
drive continuous improvement in all quality
parameters by the goal-oriented measurement
system.

A variety of organizational frameworks that have
been proposed to improve quality can be used to
substantiate the TQM philosophy. Specific exam-
ples include Plan-Do-Check-Act, ‘ O J ~ Quality Im-
provement Paradigmfiperience Factory Orga-

KAN, EASILI. AND SHAPIRO 7

nization, 19-23 the Software Engineering Institute
(SEI) Capability Maturi M ~ d e l , ~ , ’ ~ and Lean En-
terprise Management. 231
Plan-Do-Check-Act is a quality improvement pro-
cess based on a feedback cycle for optimizing a
single process or production line. It uses such
techniques as feedback loops and statistical qual-

To achieve good quality
all TQM elements need to

be focused.

ity control to experiment with methods for im-
provement and to build predictive models of the
product. A basic assumption is that a process is
repeated multiple times so that data models can
be built that allow one to predict results of the
process.

The Quality Improvement Paradigm (QIP)/Expe-
rience Factory (EF) Organization aims at building
a continually improving organization based on its
evolving goals and an assessment of its status rel-
ative to those goals. The approach uses internal
assessments against the organization’s own goals
and status (rather than process areas) and such
techniques as Goal/Question/Metric (GQM), model
building, and qualitative/quantitative analysis to
improve the product through the process. The six
fundamental steps of the QIP are (1) characterize
the project and its environment, (2) set the goals,
(3) choose the appropriate processes, (4) execute
the processes, (5) analyze the data, and (6) pack-
age the experience for reuse. The Experience
Factory Organization separates the product de-
velopment from the experience packaging activ-
ities. A main element of the QIP/EF is the need to
learn across multiple project developments.

The SEI Capability Maturity Model is a staged
process improvement based on assessment with
regard to a set of key process areas until a level
5 is reached, which represents a continuous pro-
cess improvement. The approach is based on

8 KAN. BASILI, AND SHAPIRO

organizational and quality management maturity
models developed by LikertZ6 and Crosby,’ re-
spectively. The goal of the approach is to achieve
continuous process improvement via defect
prevention, technology innovation, and process
change management.

As part of the approach, a five-level process ma-
turity model is defined based on repeated assess-
ments of the capability of an organization in key
process areas. Improvement is achieved by ac-
tion plans for poor areas. Basic to this approach
is the idea that there are key process areas that
will improve software development.

Lean Enterprise Management is based on the
principle of concentration of production on “val-
ue added” activities and the elimination or reduc-
tion of “not value added” activities. The ap-
proach has been used to improve factory output.
The goal is to build software using the minimal set
of activities needed and tailoring the process to
the product needs. The approach uses such con-
cepts as technology management, human-cen-
tered management, decentralized organization,
quality management, supplier and customer inte-
gration, and internationalization/regionalization.
A key point of this approach is that the process
can be tailored to classes of problems.

It is not surprising that our discussion of the def-
inition of software quality in the previous section
fits perfectly in the TQM context. That definition
correlates closely with the first two of the TQM
elements listed above. And to achieve good qual-
ity, definitely all TQM elements need to be fo-
cused, with the aid of some organizational frame-
works. In the following sections, we discuss
software specifics in terms of the TQM elements.
We first discuss the customer focus activities in
software development. Then we discuss: process
improvements and technology advancements as
they relate to development quality; the human
factors that are relevant to software engineering;
and the role of data, measurement, and models in
software development.

Customer focus in software development

As discussed earlier, requirements defects con-
stitute a large portion of software defects. Gaug-
ing customers’ wants and needs and gathering
customers’ requirements have become increas-
ingly important in the software industry. Prac-

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

tices like customer advisory councils, formal
requirements gathering processes, and develop-
ment of line items to address specific dimensions
of customer satisfaction have become common

When customer requirements are
verified, the challenge is to
reflect them in the product

quality development process.

among large developers. To verify requirements
with customers, fast feedback is often needed. To
accomplish this task, tools and methods in quality
engineering, in combination with computer-aided
software engineering (CASE) technology, could
prove to be very beneficial. For instance, a large
software developer implemented the seven new
quality management tools (the Affinity Diagram,
the Interrelationship Diagram, the Tree Diagram,
the Matrix Chart, the Matrix Data Analysis
Chart, the Process Decision Program Chart, and
the Arrow Diagram) in the CASE tool set for its
customer requirements gathering and verification
process, and obtained positive results with sig-
nificant cycle time reduction. 27

When customer requirements are verified, the
challenge is to reflect them in the product devel-
opment process. The quality function deploy-
ment (QFD) approach has been used in other in-
dustries. In software, QFD has found its use in
application development (for instance, in IBM
Japan and some divisions in IBM United States).
For system software, the application of QFD in
bridging customer requirements with product de-
velopment may take more ingenuity. The QFD
approach was originally developed for manufac-
turing in order to better define and understand
customer requirements and map them into the
various characteristics of the product design.
QFD uses models and metrics to plan the control
and engineering of the product to satisfy custom-
ers’ needs.

Various software process models have been de-
fined that attempt to deal with customer feedback

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

on the product to ensure that it satisfies the re-
quirements. Each of these models provides some
form of prototyping, either of a part or all of the
system. Some developers build prototypes to be
thrown away, others have the prototype evolve
over time, based on customer needs.

The rapid throwaway prototyping approach of soft-
ware development, made popular by Gomaa,” is
now widely used in the industry, especially in ap-
plication development. A prototype is a partial im-
plementation of the product, expressed either log-
ically or physically, with all external interfaces
presented. Potential customers use the prototype
and provide feedback to the development team be-
fore full-scale development starts. An old saying is,
“Seeing is believing,” and that is really what pro-
totyping intends to achieve. Using this approach,
the customers and the development team can clar-
ify both their requirements and their interpretation.
An extension of this approach uses a series of
throwaway prototypes that escalate into full-scale
development. Such a process is known as the spiral
model. 30

The iterative enhancement (E) approach31 was
defined to begin with a subset of the requirements
and to develop a subset of the product that sat-
isfies the essential needs of the users, provides a
vehicle for analysis and training for the custom-
ers, and provides a learning experience for the
developer. With the analysis of each intermediate
product as a foundation, the design and the re-
quirements are modified over a series of iterations
to provide users with a system that meets evolv-
ing customer needs with improved design, based
on feedback and learning.

The iterative enhancement approach, or the iter-
ative development process (IDP), combines the
strength of the classical waterfall model with pro-
totyping. Other methods, such as domain analysis
and risk analysis, can also be incorporated into
the process model. For instance, the IDP imple-
mented by IBM Owego contains eight major steps:
domain analysis, requirements definition, soft-
ware architecture, risk analysis, prototype, test
suite and environment development, integration
with previous iterations, and iteration relea~e.~’
With the purpose of “build a system by evolving
an architectural prototype through a series of ex-
ecutable versions, with each successive iteration
incorporating experience and more system func-

KAN. BASILI, AND SHAPIRO 9

tionality,” IBM Owego’s IDP fits well with the IE
framework defined by Basili and Turner.31

The development of IBM’s Operating System/2*
(OW*) 2.0 is a combination of the iterative de-
velopment process and the small team approach.
Somewhat different from the last example, the
0s/2 2.0 iterative development process involved
large-scale early customer feedback instead of
just prototyping. The iterative part of the process
involved the steps of subsystem design, sub-
system code and test, system integration, and
customer feedback. Within the one-year devel-
opment cycle, five iterations took place before the
final completion of the system, each with in-
creased functionality. A total of more than 30 000
copies of the software was distributed, with over
100 000 users having installed the product during
the iteration feedback process. Supporting the it-
erative process was the small team approach, in
which each team assumed full responsibility for a
particular function of the system. Each team
“owned” its project, functionality, and quality,
as well as customer satisfaction, and was held
totally responsible. 33 The os12 2.0 development
process and approach, although not necessarily
universally applicable to other products and sys-
tems, were apparently a true success, as attested
to by customers’ acceptance of the product and
positive responses.

Customer focus at the back end of the develop-
ment process, in the form of early customer feed-
back and customer burn-in programs, is widely
adopted regardless of the development process.
For example, in the modified waterfall develop-
ment process used for large-scale projects by ma-
jor developers, early customer programs are of-
ten a well-defined phase in the process. During
the phase of early customer programs, the order,
distribution, install, and service processes are
verified with selected customers. The customers’
feedback on product characteristics is also gath-
ered. Process and product problems uncovered in
the verification and feedback processes are cor-
rected before the product becomes available to
the general market.

Customer burn-in programs are a special type of
early customer program, with the specific pur-
pose of achieving further defect reduction and in-
creased reliability of the software product. In tra-
ditional quality engineering, customer burn-in is a
well-known approach to quality improvement. In

I 10 KAN, BASILI, AND SHAPIRO

software, customer burn-in programs can be used
to accelerate the field aging process. Customers
with a history of high defect discovery and those
who will exercise the new functions are good can-
didates for the program (when the product devel-
opment is complete but the product is not yet
available to the general market). Usually, extra
technical support from the developer is provided
to minimize customers’ risks, and customers are
requested to exercise the functions in their pro-
duction scenarios in order to flush out latent de-
fects. Defects found by the program are fixed im-
mediately; therefore, quality is improved and
reliability grows when the product becomes gen-
erally available. The Customer Quality Partner-
ship (CQP) program of IBM’s AS400 Division (IBM
Rochester) and the Quality Partnership Program
(QPP) of IBM’s Software Solutions Division are ex-
amples of use of burn-in programs in large-scale
software development.

Process, technology, and development
quality

Given the customers’ requirements, the central
question is how to develop the software effec-
tively so that it can meet the criterion of “con-
formance to customers’ requirements.” In past
years, advancements have been made on many
fronts of software engineering, and these ad-
vancements are leading to more efficiency and
effectiveness, and better quality.

Defect prevention process. The defect prevention
process (DPP) is one of the process improvement
approaches that originated in software develop-
ment. It was modeled on similar techniques used
in manufacturing for many decades (for example,
quality circles) and is in agreement with Deming’s
principles. The formal process, first used at the
IBM Communications Programming Laboratory
at Research Triangle Park, North Carolina, con-
sists of four key element^:^^,^'

Formal causal analysis meetings-These are
brainstorming sessions conducted by technical
members at the end of each stage of the devel-
opment process. Members analyze defects that
occurred at each stage, trace the root causes,
and brainstorm possible actions to prevent sim-
ilar errors from recurring.
Action team-Being the engine of the process,
the action team is responsible for screening, pri-
oritizing, and implementing suggested actions

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

from causal analysis meetings. The team is also
involved in providing feedback to the organi-
zation, reports to management on the status of
its activities, publicizing success stories, and
taking the lead in various aspects of the pro-
cess.
Stage kickoff meetings-These meetings are
conducted by the technical members at the be-
ginning of each development stage. They serve
as the key preventive measure as well as a pri-
mary feedback mechanism of progress made.
The emphasis is on the technical aspect of the
development process as well as on quality:
“What is the right process? How do we do
things more effectively? What are the tools and
methods that can help? What are the common
errors to avoid? What improvements and ac-
tions have been implemented?”
Action tracking and data collection-An action
database is needed to track action status, to fa-
cilitate implementation, to prevent action items
from being lost over time, and to enhance com-
munications among groups.

B

I

Different from postmortem analysis, the DPP is a
real-time process, integrated into every stage of
the development process. Through the action
teams and action tracking tools and methodology,
DPP provides a systematic, objective, data-based
mechanism for action implementation. It injects
intelligence into the development process and en-
ables the development process to refine itself. De-
veloped and first used by IBM Research Triangle
Park in the mid-l980s, it is now being used by
many other IBM development organizations and
by other companies in the software industry. DPP
can be applied regardless of the type of develop-
ment process.

Design reviews. Design reviews, code inspection,
and code walk-through or code reading are the
classical techniques to ensure in-process quality.
When used in the waterfall process, they are usu-
ally part of the exit criteria for development
phases. For instance, when the high-level design
is done, a formal review is held; design defects
found by the review must be fixed before exiting
the phase (to the low-level design phase). Recent
improvements in reviews and inspections in-
clude: the phased inspection method, in which
specific tasks are assigned to specific inspectors
and two or more phases of inspection (of different
complexity levels) are c ~ n d u c t e d ; ~ ~ various on-
line review tools (for example, REVUFILE, used at

t

1

the IBM Santa Teresa laboratory); and the use of
multimedia technology (for example, the Santa
Teresa laboratory’s multimedia approach that in-
cludes large-screen projector, BARCO machine,

Software reviews and
inspections are distinctly

different from manufacturing
inspections.

Personal System/2* computers, intelligent source
code editor, and other tools). Improvements in
these techniques will lead to better quality of the
front-end development process.

It should be cautioned that software reviews and
inspections are distinctly different from manufac-
turing inspections. The latter are at the back end
of the production process and are known to be a
poor method for quality assurance. TQM teachings
often call for the abandonment of manufacturing
inspections in favor of acceptance sampling (with
the front-end focus on design quality). Software
reviews and inspections, on the contrary, are the
vital techniques at the front end of the software
development process. To have reviews and in-
spections by peers on software design and imple-
mentation is beneficial. As new languages emerge
that can make the mundane task of code imple-
mentation a lot simpler (for example, languages
with strong typing), the burden of code inspection
can be lessened. However, design reviews or
inspections will become ever more important,
regardless of the development process.

Formal methods. In computation theory, com-
puter scientists have developed models based on
mathematical formalisms. These formalisms in-
clude, for example, predicate calculus, functional
verification, and state machines. Because of the
difficulty in scaling up to reasonable-sized sys-
tems and the mathematical training required,
these models have not been used effectively in
practice.

The last several years have seen the initial appli-
cations of formal methods in software develop-

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994 KAN, BASILI. AND SHAPIRO 11

ment. Examples include the Vienna Development
Method (VDM), Z notation, Input/Output Re-
quirements Langua e (IORL),~’,~~ and the Clean-
room methodology!941 It appears that Z notation
and VDM have primarily been used by developers
in Europe, whereas Cleanroom projects have
taken place mostly in the United States.

The Cleanroom methodology involves box struc-
ture specification of user function and system ob-
ject architecture, function-theoretic design and
correctness verification, and statistical usage
testing for quality certification. Cleanroom proj-
ect development is based on incremental devel-
opment and certification of the pipeline of user-
function increments that accumulate into the final

Since the early pilot projects in 1987
and 1988, more than a dozen projects have been
completed with a total size of more than half a
million lines of code. The average defect rate
found in first-time execution was 2.9 defects per
thousand lines of code (KLOC), which is si nifi-
cantly better than the industry a ~ e r a g e . ~ P To
facilitate the adoption of Cleanroom, a phased
implementation approach has recently been pro-
posed. 43

Design paradigms. The object-oriented approach
to design and programming, which was intro-
duced in the 1980s, represented a major paradigm
shift in software development. This approach will
continue to have a major effect in producing soft-
ware for many years to come. Like the paradigm
of structural design and functional decomposi-
tion, the object-oriented approach will become a
major cornerstone in software engineering. Its in-
fluence on software reuse and productivity has
already proven to be profound. To date, a number
of object-oriented development projects have
been successfully completed in the industry (for
example, see Basili et al.23). Several of the fin-
ished products are integrated support environ-
ments for object-oriented development. After the
initial learning curve, these projects showed sig-
nificant increases in productivity and quality.

Programming languages. Good programming
practices and programming languages that sup-
port the object-oriented paradigm continue to
evolve. Object-oriented languages such as Ada**,
Objective-C**, C+ +, and Smalltalk usually have
strong typing and can enable object coherence
checks. The object-based language Modula-2 has
similar characteristics in terms of pre- and post-

12 KAN, BASILI, AND SHAPIRO

condition checking. These characteristics will
lead to better development quality. Our limited
experience so far (for example, projects at the IBM
Rochester development laboratory) has lent sup-
port to this argument.

Automated software synthesis is a term now used
to describe the translation of very-high-level lan-
guages (VHLL) into machine code. Current re-
search in this area could bring a breakthrough in
software development in terms of both produc-
tivity and quality. In software development, the
higher the level of the programming language
used, the more true productivity achieved (the
more functionality implemented by the same
amount of source code). When the automated
software synthesis technology is mature and
transferred, very-high-level languages can be
used as the development languages.

Development environments. The last decade has
also seen a significant improvement in develop-
ment environments and tools. Integrated support
systems have enabled configuration management,
complex library systems, and change control for
large-scale development. For large developers most
of these support systems are developed internally,
but support-system products are available in the
industry for different software platforms.

With the advent of powerful workstations, soft-
ware development is shifting to distributed envi-
ronments. With ample processing power on the
individual developer’s desk and the availability of
CASE tools, the outcome is more efficiency, higher
productivity, and better quality.

Software reuse. The software industry had been
continuously “reinventing the wheel” in terms of
code development. During the past several years,
code reuse has been receiving the attention for
which it was long overdue. Some developers have
been systematically stepping up their efforts in
reuse. By using proven design and code in new
software projects, both productivity and quality
can be increased. Reusable parts, however, must
meet pre-established criteria and must be of ex-
cellent quality. Parts with latent defects, and
which are reused widely, can have a disastrous
effect on new products. Software reusable parts
should be certified.

The object-oriented approach should make reuse
easier. Low-level object-oriented reusable com-

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

ponents are available in the industry in the form
of class libraries.

In software development, reuse should not be
limited to code. Project experience, defect mod-
els, process models, and so forth, should be
reused to the extent possible for effective devel-
opment. In this broader sense of reuse, the Expe-
rience Factory approach established by the NASA
Software Engineering Laboratory (SEL) can pro-
vide a good solution. As discussed earlier, the
Experience Factory is a logical or physical orga-
nization that undertakes systematic learning and
packaging of reusable experiences. It supports
project development by acting as a repository for
experience, analyzing and synthesizing the expe-
rience, and supplying the experience to various
projects on demand. It evaluates experience and
builds models and measures of software pro-
cesses, products, and other forms of knowledge.
It uses people, documents, and automated sup-
port to do s ~ . ~ ~ , ~ ~ Other than use by NASA SEL, the
Experience Factory approach is being experi-
mented with and used by some developers. For
instance, the software development laboratory of
IBM Toronto for the past three years has estab-
lished an experience warehouse, an early form of
the Experience Factory, to facilitate the reuse of
software experiences.

Human side of software quality

In the TQM philosophy, the human side of quality
includes factors such as total participation, man-
agement commitment and leadership, employee
buy-in and empowerment, and other social and
cultural factors. Of these factors, perhaps com-
mitment, both from bottom-up and top-down, is
the most important. Without commitment from
the entire organization, the chance for success is
slim. Commitment can best be measured by in-
dividual behavioral changes. Townsend and
GebhardtU developed self-evaluation criteria for
an organization to assess whether it is truly prac-
ticing TQM. The first question is on the behavioral
changes of management. Specifically, if the deci-
sions made to improve quality expect behavioral
changes of the employees but not of the execu-
tives and management, the organization is prac-
ticing quality by proclamation instead of TQM.

In software development at the operational level,
TQM can be viewed as the integration of project,
process, and quality management. During the

IBM SYSTEMS JOURNAL, VOL 33, NO 1. 1994

past few decades, management teams of success-
ful software developers have accumulated vast
experience in project and schedule management.
To avoid cost and schedule overruns, schedule

In software development,
reuse should not be limited

to code.

progress is often managed at the microscopic
level. In contrast, there is much less experience
in process and quality management, especially
during the development cycle. Product and de-
velopment managers must manage in-process
quality in the way in which they manage schedule
for quality improvement to happen. Quality, pro-
cess, and schedule management must be totally
integrated for software development to be effec-
tive. Some developers in the industry have
started doing so. It may take some time, however,
for this integrated software project management
style to be ingrained in practice.

There are also social, psychological, and cogni-
tive factors in software engineering that are re-
lated to quality improvement. Most software
projects are group activities, involving all the
complexities of group dynamics, communication
networks, and organizational politics. The study
of group behavior in software development is in
its infancy, but it promises to improve our un-
derstanding of the development process, partic-
ularly at the front end (for instance, in require-
ments and design). From theory and experience,
front-end improvement is vital to software quality
and productivity.

For instance, requirements errors in software
projects are well recognized as a deficiency area.
One reason is because customers' requirements
evolve over time. However, poor communication
accounts for much of the problem. Research has
shown that successful software development is a
joint process in which the developer learns the
application domain and user operations and the

KAN, BASILI, AND SHAPIRO 13

user learns the design realities and available
choices.45

Communication plays a significant role not only
between users and developers, but also among
members of the development teams. Improved
communications will lead to reduction of error
injection in various phases in the development
cycle. Our experience indicated that as high as 20
percent of software defects are related to inter-
face problems; causal analysis of these defects
pinpoints communications, or the the lack of it, as
the root cause. As a second example, it is not
infrequent that inadequate documentation is
blamed for project problems, whereas the real
culprit is poor communication.45 Many develop-
ers do not consider it possible to maintain internal
documentation that is sufficiently current to meet
their needs. They obtain their information through
informal networks. This fact suggests that en-
couraging, cultivating, maintaining, and support-
ing such networks may be more effective for
problem-solving.

A myth exists in software development that some
super developers’ productivity and performance
could be as high as 20 to 1, compared to an “av-
erage” developer. Such super developers, how-
ever, are of a rare breed and perhaps can only be
found in a ratio of one in two to three hundred (for
example, see B e r n ~ t e i n ~ ~) . Nonetheless, individ-
uals’ differences have long been recognized by
development managers as a significant factor af-
fecting productivity and quality of the product.

indicated that application domain
knowledge is a principal factor in the wide per-
formance differences among individual develop-
ers. This finding tends to refute the frequently
held concept that software development is a do-
main-independent activity that can be abstracted
and taught totally by itself. It argues for a certain
degree of specialization among programmers and
that education must be provided in terms of do-
main-specific knowledge.

A study of expert debuggers showed that the ste-
reotype of these people as isolated software
“freaks” is not true.47 The best debuggers have
excellent communication, negotiation, team-
building, and other social skills. They generally
have a clear vision of the purpose and architec-
ture of the system. They typically cultivate an
extensive network of experts upon whom they
can call.

14 KAN. BASILI, AND SHAPIRO

It is apparent that the sociology of software and
cognitive psychological studies in the context of
software development indicate the strong possi-
bility of more effectiveness. This research area is

What is measured
is improved.

still in its infancy. The challenge to the software
industry is how to systematically develop knowl-
edge in this area, package the knowledge and
findings, and then transfer the knowledge to de-
velopment organizations and put it into practice.
The task is not easy, but the benefits could be
invaluable.

Data, measurement, and model

What is measured is improved. Data and mea-
surements are the most basic prerequisites for the
improvement and maturity of any scientific or en-
gineering discipline. Yet, in the discipline of soft-
ware engineering, this area is perhaps one that
has many critical problems and one that needs
concerted effort for improvement.

The use of measurements, metrics, and models in
software development assumes the availability of
good data. In fact, the poor quality of data is a
large obstacle in quality improvement. In general,
data gathered during the formal machine testing
phases are more accurate than those collected at
the front end, such as requirements analysis and
design reviews. Some companies do not even col-
lect data at the front end of the development pro-
cess, and for them in-process quality manage-
ment means only monitoring data during the
formal testing phases. To enhance data accuracy,
a good tracking system for the entire development
process must be in place, and the system must
address the data validation issue. Such a system
enables data-based decision-making for project
and quality management. The amount of data to

IBM SYSTEMS JOURNAL, VOL 33, NO 1. 1994

be collected and the number of metrics to be used
need not be overwhelming. It is more important
that the information extracted from the data be
focused, accurate, and useful.

Measurements for software projects, therefore,
should be well thought through before being put
in use. Metrics that are arbitrarily established
could be harmful to the quality improvement ef-
fort of a company, and there are numerous ex-
amples of this sort in the industry. Each metric
used should be subjected to the examination of
basic principles of measurement theory; for ex-
ample, the measurement scale, the operational
definition, and validity and reliability issues
should be well thought out. Validity refers to the
ability of the metric to measure the parameter it
is intended to measure, and reliability refers to the
consistency of the measurement in operation.
The draft of the IEEE standard for a software qual-
ity metrics m e t h o d ~ l o g y ~ ~ even includes factors
in addition to validity and reliability (for example,
correlation, tracking, consistency, predictability,
and discriminative power).

Measurement is associated with modeling. We
must base measures on models to determine if the
process or project is performing as planned. If
multiple metrics are used, they must be in support
of or an integral part of the model(s) used. Only
an integrated approach, in the context of models,
can effectively translate the piecemeal informa-
tion from each metric to a coherent body of
knowledge about the quality of the product or the
progress of the project. In the past, measurement
has been metric-oriented, rather than model-ori-
ented. In other words, it has involved collecting
data without an explicit goal, model, and context.

One such integrated approach is the Goal/Ques-
tionlMetric (GQM) GQM is a mech-
anism for defining and evaluating a set of opera-
tional goals, using measurement. It represents a
systematic approach for tailoring and integrating
goals with models of the software processes,
products, and quality perspectives of interest,
based on the specific needs of the project, the
customer, and the organization. The goals are de-
fined in an operational, tractable way by refining
them into a set of quantifiable questions that are
used to extract the appropriate information from
the models. The questions and models, in turn,
define a specific set of metrics and data for col-

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

lection and provide a framework for interpreta-
tion.

For example, when analyzing the effectiveness of
the front-end defect removal of a project, devel-
opment managers may collect defect data from
design reviews and code inspections and obtain
estimates of the size of the project. Defect rates
can then be calculated. But they may be unable to
interpret the data in a meaningful way because
high defect rates could indicate effective reviews
and inspections or high error injections, and low
defect rates may indicate poor reviews and in-
spections or low error injection. However, if in-
spection process quality data are also collected
and the two metrics (defect rate and process con-
formance) are looked at together within the con-
text of a defect model, we can extract useful in-
formation. For instance, the best-case scenario
occurs if inspection process quality increases and
defect rate decreases, when compared with the
model or with the previous release of the same
product. In contrast, if inspection process quality
decreases and defect rate increases, that would be
the worst-case scenario, indicating the error in-
jection may be higher and yet not enough rigor
was put into the review process.

As another example, most product managers col-
lect weekly defect arrival data during the formal
machine testing phase. However, to interpret the
data properly and to determine if the quality of the
current project is really improving, a model with
sufficient contextual information needs to be in
place. The model should include information such
as the size and defect measures, the normalized
(to size) desirable model curve that is empirically
validated by previous products, the actual defect
arrival pattern of the predecessor product, as-
sumptions and information about test effective-
ness, and so forth.

We have begun to see more organized approaches
to measurement-approaches based on models
and driven by goals. For example, Motorola,
Inc. 50 and Hewlett-Packard Co. ’ use GQM as the
basis for their measurement approaches. Other
mechanisms for defining measurable goals are
also in use, for example, the software quality met-
rics approach. ” The application of tools and tech-
niques from traditional quality engineering in
software development has also emerged (for
example, see Kan”). We believe that when the
organized approach to measurement and model-

KAN, BASILI, AND SHAPIRO 15

ing is widely used, the resultant quality impact
will be highly significant.

With regard to models in software engineering,
cost and schedule models have moved from re-
search and development into application. Models
on software quality have also emerged. They can
be broadly classified into three categories, each
for a separate purpose: the reliability models, for
reliability assessment and projection; the quality
management models, for managing quality during
the development process; and the complexity
models and metrics, which can be used by soft-
ware engineers for quality improvement in their
work. 53

Software reliability modeling is more mature than
the other two types, and numerous software re-
liability models exist. Simply put, reliability mod-
els treat the software product as a black box,
monitor its external behavior, and use sophisti-
cated statistical extrapolation methods to predict
its reliability.

Quality management models, which are still in
their development and maturing phase, emerged
from the practical needs of large-scale develop-
ment projects. Examples include the Rayleigh
model, the Remus-Zilles model, the phase-based
defect removal model, and several tracking mod-
els during the testing phases.53-’’

In contrast to reliability models, the complexity
models tend to explain quality (or defects) from
the internal structure and complexity of the soft-
ware. Examples of complexity models and met-
rics include the lines of code count metric,56 Hal-
stead’s software science, ” McCabe’s cyclomatic
~omplexity,~’ and several structural metrics and
models. In addition to these module complexity
models, recently structural models have also
been developed and used. For instance, the sys-
tem complexity model developed by Card and
Gla~s , ’~ which defines system complexity as an
additive sum of structure complexity (intermod-
ule) and data complexity (intramodule), is quite
promising.

These models, when properly selected and used,
can yield tremendous benefits in software devel-
opment quality. When the discipline of software
engineering becomes more mature, we expect to
see increased use of measurements and models,
with increased benefits as a result.

16 KAN, BASILI, AND SHAPIRO

Conclusion

We have discussed the definition of software
quality, the total quality management (TQM) ap-
proach to quality improvement, and the advance-
ments on many fronts of software engineering as
they relate to the key TQM elements: customer
focus, process, the human side of quality, and
data, measurements, and analysis. In this modern
quality era, TQM is widely embraced by numerous
industries. However, the gap between TQM as a
management style and the operational quality im-
provements in specific engineering disciplines is
seldom understood and often ignored. We have
tried to show the relevance of TQM in software
development by discussing software-specific top-
ics and their progress in the TQM framework.

Process, product, and quality models and other
forms of structured experience have been de-
fined, used, or accumulated, and will continue
to aid in the practical engineering of software.
New technologies (object-oriented paradigm, au-
tomated software synthesis, etc.) have emerged.
Existing technologies are becoming better fo-
cused (customer feedback process, prototyping,
DPP), more disciplined (reuse, design reviews,
measurement approach), and more practical (for-
mal development methods). The new advance-
ments in social psychology and software sociol-
ogy will enrich software engineering. However,
significant challenges remain. Transferring soft-
ware technologies into development organiza-
tions and bridging the gap between the state of the
art and the state of practice needs concerted ef-
forts by both researchers and practitioners. The
use of quantitative approaches in software devel-
opment, with feedback and learning through mod-
el-based measurements, needs to become in-
grained in practice.

To bring about TQM in software development, we
must take a systematic engineering approach to
address the improvements of the numerous ele-
ments of software engineering, many of which we
briefly covered in this tutorial. In contrast, the
holistic TQM framework will aid software engi-
neering to mature. Software engineering must
move in this direction to become a true engineer-
ing discipline and to meet the increasing demands
from society for effective development with high-
level quality.

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

Finally, like software development, software
quality is a domain-specific expertise. Software
management and software developers are respon-
sible for the implementation of software quality
techniques and quality process. Software quality
engineers play a very important role in process
improvement, measurement, analysis, evalua-
tion, and recommendation. Upper management
leads the quality improvement direction and en-
sures a constant focus on continuous improve-
ment. Significant improvement in software qual-
ity can be realized and sustained only through the
total participation of all who are involved.

Acknowledgments

The authors wish to thank A. J. Montenegro for
the invitation to write this tutorial and the referees
for their comments.
*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of the U.S. Department
of Defense or Stepstone, Inc.

Cited references
1. V. R. Basili and J. D. Musa, “The Future Engineering of

Software: A Management Perspective,” in Computer 24,
No. 9, 90-96 (September 1991).

2. F. P. Brooks, The Mythical Man-Month, Addison-Wes-
ley Publishing Co., Reading, MA (1975).

3. B. Littlewood and L. Strigini, “The Risks of Software,”
Scientific American (November 1992), pp. 62-75.

4. J. Guaspari, I Know It When I See It: A Modern Fable
About Quality, American Management Association, New
York (1985).

5. P. B. Crosby, Quality Is Free: The Art ofMaking Quality
Certain, McGraw-Hill Book Co., New York (1979).

6. J. M. Juran and F. M. Gryna, Jr., Quality Planning and
Analysis: From Product Development Through Use, Mc-
Graw-Hill Book Co., New York (1970).

7. R. B. Grady and D. L. Caswell, Software Metrics: Es-
tablishinga Company-wideProgram, Prentice-Hall, Inc.,
Englewood Cliffs, NJ (1986).

8. C. Jones, “Critical Problems in Software Measurement,”
Version 1.0, Software Productivity Research (SPR), Inc.,
Burlington, MA (August 1992).

9. W. S. Humphrey, Managing the Software Process, Ad-
dison-Wesley Publishing Co., Reading, MA (1989).

10. W. E. Deming, Out of the Crisis, Center for Advanced
Study, Massachusetts Institute of Technology, Cam-
bridge, MA (1986).

11. A. V. Feigenbaum, Total Quality Control: Engineering
and Management, McGraw-Hill Book Co., New York
(1961).

12. A. V. Feigenbaum, Total Quality Control, McGraw-Hill
Book Co., New York (1991).

13. K. Ishikawa, What Is Total Quality Control? The Japa-
nese Way, Prentice-Hall, Inc., Englewood Cliffs, NJ
(1985).

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

14. D. Shores, “TQC: Science, Not Witchcraft,” Quality
Progress, 42-45 (April 1989).

15. B. Zimmer, “Software Quality and Productivity at
Hewlett-Packard,” Proceedings of the IEEE Computer
Software and Applications Conference (1989), pp. 628-
632.

16. W. B. Smith, “Six Sigma: TQC, American Style,” pre-
sented at the National Technological University televi-
sion series (October 31, 1989).

17. M. J. Harry and J. R. Lawson, Six Sigma Producibility
Analysis and Process Characterization, Addison-Wesley
Publishing Co., Reading, MA (1992).

18. W. A. Shewhart, Economic Control of Quality of Man-
ufactured Product, D. Van Nostrand Company, Inc.,
New York (1931).

19. V. R. Basili, “Quantitative Evaluation of Software En-
gineering Methodology,” Proceedings of the First Pan
Pacific Computer Conference, Melbourne, Australia
(September 1985), pp. 379-398; also available as Techni-
cal Report TR-1519, Department of Computer Science,
University of Maryland, College Park, MD (July 1985).

20. V. R. Basili, “Software Development: A Paradigm for the
Future,” Proceedings 13th International Computer Sop-
ware and Applications Conference (COMPSAC), Key-
note Address, Orlando, FL (September 1989), pp. 471-
485.

21. V. R. Basili and H. D. Rombach, “Tailoring the Software
Process to Project Goals and Environments,” Proceed-
ings of the Ninth International Conference on Software
Engineering, Monterey, CA (March 30-April 2,1987), pp.
345-357.

22. V. R. Basili and H. D. Rombach, “The TAME Project:
Towards Improvement-Oriented Software Environments,”
IEEE Transactions on Software Engineering SE-14, No. 6,
758-773 (June 1988).

23. V. R. Basili, G. Caldiera, F. McGarry, R. Pajersky,
G. Page, and S . Waligora, “The Software Engineering
Laboratory: An Operational Software Experience Facto-
ry,” International Conference on Software Engineering
(May 1992), pp. 370-381.

24. R. A. Radice, J. T. Harding, P. E. Munnis, and R. W.
Phillips, “A Programming Process Study,” IBM Systems
Journal 24, No. 2, 91-101 (1985).

25. J. P. Womack, D. T. Jones, and D. Roos, The Machine
That Changed the World: Based on the Massachusetts
Institute of Technology 5-Million-Dollar 5-Year Study of
the Future of the Automobile, Rawson Associates, New
York (1990).

26. R. Likert, The Human Organization: Its Management
and Value, McGraw-Hill Book Co., New York (1967).

27. R. Rudisill, “QCASE: A New Paradigm for Computer
Aided Software Engineering,” Proceedings of the Inter-
national Software Quality Exchange, 1992, Juran Insti-
tute, Inc., Wilton, CT (1992), pp. 4A-19-4A-34.

28. J. R. Hauser and D. Clawing, “The House of Quality,”
Harvard Business Review 66, No. 3, 63-73 (May-June
1988).

29. H. Gomaa and D. Scott, “Prototyping as a Tool in the
Specification of User Requirements,” Proceedings 5th
IEEE International Conference of Software Engineering
(March 1981), pp. 333-342.

30. B. W. Boehm, “A Spiral Model of Software Development
and Enhancement,” Computer 21, No. 5, 61-72 (May
1988).

31. V. R. Basili and A. J. Turner, “Iterative Enhancement: A

KAN, BASILI, AND SHAPIRO 17

Practical Technique for Software Development,” IEEE
Transactions on Sofmare Engineering SE-1, No. 4,390-
396 (December 1975).

32. P. H. Luckey, R. M. Pittman, and A. Q. LeVan, Iterative
Development Process with Proposed Applications, Tech-
nical Report, IBM Corporation, Owego, NY (1992).

33. P. Jenkins, IBM Boca Raton, personal communications
(1992).

34. C. L. Jones, “A Process-Integrated Approach to Defect
Prevention,” IBM Systems Journal 24, No. 2, 150-167
(1985).

35. R. G. Mays, C. L. Jones, G. J. Holloway, and D. P.
Studinski, “Experiences with Defect Prevention,” IBM
Systems Journal 29, No. 1, 4-32 (1990).

36. J. C. Knight and E. A. Myers, “Phased Inspections and
Their Implementation,” ACM SIGSOFT Software Engi-
neering Notes 16, No. 3, 29-35 (July 1991).

37. D. J. Smith and K. B. Wood, Engineering Quality Sop-
ware: A Review of Current Practices, Standards and
GuideIines Including New Methods and Development
Tools, Second Edition, Elsevier Applied Science, New
York (1989).

38. J. M. Wing, “A Specifier’s Introduction to Formal Meth-
ods,” Computer 23, No. 9, 8-24 (September 1990).

39. H. D. Mills, M. Dyer, and R. C. Linger, “Cleanroom
Software Engineering,” IEEE Software 4, No. 5, 19-25
(September 1987).

40. R. W. Selby, Jr., V. R. Basili, and T. Baker, “Cleanroom
Software Development: An Empirical Evaluation,” IEEE
Transactions on Software Engineering 13, No. 9, 1027-
1037 (September 1987).

41. M. Dyer, The Cleanroom Approach to Quality Software
Development, John Wiley & Sons, Inc., New York (1992).

42. R. C. Linger, Cleanroom Software Engineering for Zero-
Defect Software, IBM Cleanroom Software Technology
Center Technical Paper, IBM Corporation, Gaithersburg,
MD (1992).

43. P. A. Hausler, R. C. Linger, and C. J. Trammell, “Adopt-
ing Cleanroom Software Engineering with a Phased Ap-
proach,” IBM Systems Journal 33, No. 1, 89-109 (1994,
this issue).

44. P. L. Townsend and J. E. Gebhardt, Commit to Quality,
John Wiley & Sons, Inc., New York (1990).

45. B. Curtis, H. Krasner, and N. Iscoe, “A Field Study of
the Software Design Process for Large Systems,” Com-
munications ofthe ACM 31, No. 11, 1268-1287 (1989).

46. L. Bernstein, “Notes on Software Quality Management,”
presented at the International Software Quality Ex-
change, San Francisco (sponsored by the Juran Institute),
(March 10-11, 1992). Mr. Bernstein, Vice President of
Operations Systems at AT&T, commented specifically on
the ratio of super developers from his experience.

47. T. R. Riedl, “Application of a Knowledge Elicitation
Method to Software Debugging Expertise,” presented at
the Fifh Conference of Software Engineering Education,
Software Engineering Institute, Carnegie Mellon Univer-
sity, Pittsburgh, PA (October 1991).

48. N. F. Schneidewind, “Report on the IEEE Standard for
a Software Quality Metrics Methodology (Draft) P1061,
with Discussion of Metrics Validation,” Proceedings of
the IEEE Fourth Software Engineering Standards Appli-
cation Workshop (1991), pp. 155-157.

49. V. R. Basili and D. M. Weiss, “A Methodology for Col-
lecting Valid Software Engineering Data,” IEEE Trans-

actions on Software Engineering SE-10, No. 6 , 728-738
(November 1984).

50. M. K. Daskalantonakis, “A Practical View of Software
Measurement and Implementation Experiences within
Motorola,” IEEE Transactions on Software Engineering

51. B. W. Boehm, J. R. Brown, and M. Lipow, “Quantitative
Evaluation of Software Quality,” Proceedings Second In-
ternational Conference of Software Engineering, IEEE
Computer Society Press, Los Alamitos, CA (1976), pp.
592-605.

52. S. H. Kan, “Applying the Seven Basic Quality Tools in
Software Development,” Proceedings of the Intema-
tional Soffware Quality Exchange, Juran Institute, Inc.,
Wilton, CT (1992), pp. 4A-35-4A-52.

53. S. H. Kan, “Software Quality Engineering Models,” En-
cyclopedia of Computer Science and Technology,
A. Kent and J. G. Williams, Editors (forthcoming, Marcel
Dekker, Inc., 1994).

54. S. H. Kan, “Modeling and Software Development Qual-
ity,” IBM Systems Journal 30, No. 3, 351-362 (1991).

55. H. Remus and S. Zilles, “Prediction and Management of
Program Quality,” Proceedings of the Fourth Interna-
tional Conference on Software Engineering, Munich
(1979), pp. 341-350.

56. C. Withrow, “Error Density and Size in Ada Software,”
IEEE Sofmare 7, No. 1, 26-30 (January 1990).

57. M. H. Halstead, Elements of Software Science, Elsevier
North Holland, New York (1977).

58. T. J. McCabe, “A Complexity Measure,” IEEE Trans-
actions on Sofmare Engineering SE-2, No. 4, 308-320
(1976).

59. D. N. Card and R. L. Glass, Measuring Software Design
Quality, Prentice-Hall, Inc., Englewood Cliffs, NJ (1990).

SE-18, NO. 11, 998-1010 (1992).

Accepted for publication August 12, 1993.

Stephen H. Kan IBMASl.100 Division, Highway 52 and N W
37th Street, Rochester, Minnesota 55901. Dr. Kan is an ad-
visory programmer in IBM Rochester’s Development Quality
and Process Technology department. He holds B.S. degrees
in sociology and computer science, M.S. degrees in statistics
and sociology, and a Ph.D. degree in demography from Utah
State University. He joined IBM in 1987 and prior to that had
been working as a computer programmer, statistician, and
research scientist for eight years in academia and industry. He
is a Certified Quality Engineer by the American Society for
Quality Control. In his current assignment, his focuses are
software quality strategy, software quality plans, supplier
quality requirements, defect removal models and in-process
quality, and software statistical analysis.

Victor R. Basill Department of Computer Science, A . K
Williams Building, University of Maryland, College Park,
Maryland 20742. Dr. Basili is a professor in the Institute for
Advanced Computer Studies and the Computer Science de-
partment at the University of Maryland, where he served as
chairman for six years. He is currently measuring and eval-
uating software development in industrial and government
settings and has consulted with many agencies and organiza-
tions. He is one of the founders and principals in the Software
Engineering Laboratory, a joint venture between NASA God-
dard Space Flight Center, the University of Maryland, and
Computer Sciences Corporation, established in 1976. He

18 KAN, BASILI, AND SHAPIRO IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

serves on the editorial board of the Journal of Systems and
Software and is an IEEE Fellow. He has been editor-in-chief
of the IEEE Transactions on Software Engineering, general
chairman of the 15th International Conference on Software
Engineering, program chairman for several conferences, in-
cluding the 6th International Conference on Software Engi-
neering in Japan, a member of the Computing Research
Board, and a Governing Board member of the IEEE Com-
puter Society.

Larry N. Shaplro IBM Software Solutions Division, 555 Bai-
ley Ave., Sun Jose, California 95141. Mr. Shapiro is a program
manager in the IBM Santa Teresa laboratoly’s Market-Driven
Quality Strategy department. He holds a B.S. degree in math-
ematics from the University of Southern California. He joined
IBM in 1960 in Applied Science and has held numerous man-
agement and technical positions in marketing, development,
planning, and site management. In his current assignment, his
focus is on the Santa Teresa laboratory’s total quality progress
and continuous improvement programs.

Reprint Order No. G321-5530.

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1094 KAN, BASILI. AND SHAPIRO 19

