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Cleanroom software engineering is a theory- 
based,  team-oriented  engineering process for 
developing very high quality software under 
statistical quality control. The Cleanroom process 
combines formal methods of object-based box 
structure specification and design, function- 
theoretic correctness verification, and statistical 
usage testing  for  reliability certification to produce 
software  approaching  zero  defects.  Management  of 
the  Cleanroom  process Is based on a life cycle  of 
development  and certification of a  pipeline  of  user- 
function increments  that  accumulate into the  final 
product, Teams in ISM  and  other  organizations 
that  use  the  process  are  achieving remarkable 
quality results with high productivity. A phased 
implementation  of  the  Cleanroom  process  enables 
quality  and productivity improvements with an 
increased control of change. An introductory 
implementation  involves  the  application  of 
Cleanroom principles without the full formality  of 
the  process; full implementation  involves  the 
comprehensive  use  of  formal  Cleanroom  methods; 
and  advanced  implementation  optimizes  the 
process through additional  formal  methods, reuseA 
and continual  improvement,  The AOEXPERTIMVS 
project,  the  largest IBM  Cleanroom effort to date, 
successfully  applied  an introductory level  of 
implementation.  This  paper  presents both the 
implementation  strategy  and  the  project  results. 

Z ero  or near-zero defect software may seem 
like an impossible goal. After all, the  expe- 

rience in the first generation of software  devel- 
opment  has reinforced the seeming inevitability 
of errors  and  persistence of human fallibility. To- 
day,  however,  a new reality in software develop- 
ment belies the first-generation experience. 
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Cleanroom  software engineering teams  are  able 
to  develop  software at a level of quality and re- 
liability that would have  seemed impossible a few 
years ago, and are doing so with high productiv- 
ity. 

Cleanroom  software engineering is a managerial 
and technical process for the  development of soft- 
ware  approaching  zero  defects  with certified re- 
liability.’,* The  Cleanroom  process  spans  the  en- 
tire  software life cycle; it provides  a  complete 
discipline within which  software  teams  can plan, 
specify, design, verify, code,  test, and certify 
software.  The  Cleanroom  approach  treats  soft- 
ware  development as an engineering process 
based on mathematical  foundations,  rather  than 
as a  trial-and-error programming process, 3” and 
is intended  to  produce  software  with  error-free 
designs and failure-free executions. 

In traditional,  craft-based  software  development, 
errors  were  accepted  as inevitable, and program- 
mers  were  encouraged  to get software  into testing 
quickly in order  to begin debugging. Programs 
were  subjected to unit testing and debugging by 
their authors,  then integrated into  components, 
subsystems, and systems for more debugging. 
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Product  use by customers resulted in still more 
debugging to  correct  errors  discovered in opera- 
tional use. The most  virulent  errors  were  often  the 
result of fixes to  other  errors,8  and it was not 
unusual for software products to reach a  steady- 
state  error population, with new errors introduced 
as fast as old ones  were fixed. Today, however, 
craft-based processes that depend on testing and 
debugging to improve reliability are understood 
to  be inefficient  and  ineffective. Experience has 
shown that craft-based processes often fail to 
achieve the level of reliability essential to a society 
dependent on software for the conduct of human 
affairs. 

In  the  Cleanroom  process,  correctness is built 
into  the  software by development  teams  through 
a rigorous engineering process of specification, 
design, and verification. The  more powerful pro- 
cess of team  correctness verification replaces unit 
testing and debugging, and software  enters  sys- 
tem testing directly, with no execution by devel- 
opment  teams. All errors  are  accounted for from 
first execution on, with no private unit testing 
necessary  or permitted.  Experience  shows  that 
Cleanroom  software typically enters  system  test- 
ing approaching zero defects  and  occasionally no 
defects  are found in  all testing. 

Certification (test)  teams  are  not  responsible  for 
“testing  in”  quality, which is an impossible task, 
but  rather  for certifying the  quality of software 
with respect  to  its specification. Certification is 
performed by statistical usage testing that  pro- 
duces  objective  assessments of product quality. 
Errors, if any, found in testing  are  returned to  the 
development  team for correction. If the  quality is 
not  acceptable, the  software  is  removed  from 
testing and returned  to  the  development  team  for 
reverification. 

The  process of Cleanroom  development  and  cer- 
tification is carried  out in an  incremental  manner. 
System functionality grows  with  the addition of 
successive  code  increments in a  stepwise integra- 
tion process. When the final increment is added, 
the  system is complete.  Because  successive in- 
crements  are elaborating the  top-down design of 
increments  already in execution,  interface and 
design errors  are  rare. 

This  paper  describes  key Cleanroom technologies 
and  summarizes  quality  results achieved by 
Cleanroom teams. It  presents  a  phased  approach 
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to  Cleanroom implementation based on the  soft- 
ware  maturity level of an organization, and sum- 
marizes the results of a  substantial IBM Clean- 
room project (AOEXPERTMVS*) that  successfully 
applied a  phased  approach. 

Cleanroom perspectives 

The  Cleanroom  software engineering process 
evolved from concepts  developed and demon- 
strated  over  the past 15 years  by  Harlan Mills and 
colleagues. 3-5,9 Cleanroom  practices  such as step- 
wise refinement of procedure  and  object  hierar- 
chies,  team verification of correctness,  and  sta- 
tistical usage testing, have  been  successfully 
applied in commercial and governmental  soft- 
ware projects  over the  past  decade.  Such  prac- 
tices may not  be  the rule in software  development 
today,  but  their  use is growing as evidence of their 
value  continues to accumulate.  In  many  cases, 
software  organizations considering a  transition to 
the  Cleanroom  process  have  operational  prac- 
tices in place,  such as incremental  development, 
structured programming, and  team reviews, that 
support Cleanroom concepts.  There  are  only a 
few key  concepts  that  must be understood and 
accepted in a  transition  to  the  Cleanroom  ap- 
proach. lo 

Practice  based on theory. To  be effective, any  en- 
gineering discipline must  be  based on sound  the- 
oretical  foundations.  Cleanroom specification, 
design, and correctness verification practices  are 
based on function  theory,  whereby  programs are 
treated as rules for mathematical  functions  sub- 
ject  to stepwise refinement and verification.4’5 
Cleanroom testing and  quality certification prac- 
tices  are  based on statistical  theory,  whereby  pro- 
gram executions  are  treated  as  populations  sub- 
ject  to  usage-based,  stochastic sampling in formal 
statistical designs. 3,6*11 These  theoretical founda- 
tions form the  basis of a  comprehensive engineer- 
ing process  that  has  been  reduced  to  practice  for 
commercial software  development. A growing 
number of successful, real-world Cleanroom 
projects  have  demonstrated the practicality of 
these  methods. 

Experienced  Cleanroom  practitioners  and  educa- 
tors  have  developed  comprehensive  technology 
transfer  programs  based on readily  teachable, 
time-efficient approaches  to  such  Cleanroom 
technologies as  correctness verification and sta- 
tistical testing. New  practitioners will  find that 
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processes  and  tools  exist  that  make  the  use of 
these  Cleanroom  methods highly practical. 

Right the first  time. A primary objective of the 
Cleanroom process is to prevent errors, rather than 
accepting and accommodating errors through insti- 
tutionalized debugging  and rework. For this reason, 
Cleanroom development teams do not unit test and 
debug their code. Instead, they rely on rigorous 
methods of specification  and  design combined with 
team correctness verification. These Cleanroom 
development practices, based on mathematical 
foundations, yield quality approaching zero defects 
prior to first execution by certification teams. The 
purpose of testing in Cleanroom is the certification 
of software quality with respect to specifications, 
not the attempt to “debug in” quality. 

Management understanding and acceptance of 
this  essential point-that quality will be achieved 
by design and verification rather  than  by testing- 
must be reflected in the development schedule. 
Time spent in specification and design phases of 
a Cleanroom  development is greater  than in tra- 
ditional projects. Time spent in testing, however, 
is likely to be less than traditionally required. The 
manager who wanted to  start coding immediately 
because of the large amount of debugging ex- 
pected was usually right, but would have diffi- 
culty becoming part of a Cleanroom team. 

Quality costs less. A principal justification for the 
Cleanroom  process is that built-in quality  lowers 
the  overall  cost to produce and maintain a prod- 
uct. The exponential  growth in the  cost of error 
correction in successive life-cycle phases is well 
known. Errors found in operational  use  by  cus- 
tomers  are typically several  orders of magnitude 
more costly  to  correct than  errors  found in the 
specification phase. l3 The Cleanroom name, 
taken from the  semiconductor  industry  where a 
literal cleanroom  exists to prevent introduction of 
defects during hardware  fabrication, is a meta- 
phor that reflects this  understanding of the  cost- 
effectiveness of error  prevention. In the Clean- 
room process,  incremental  development and 
extensive  team review and verification permit er- 
rors to be detected as early  as  possible in the life 
cycle. By reducing the  cost of errors during de- 
velopment  and  the incidence of failures during 
operation,  the  overall life-cycle cost of Clean- 
room  software  can be expected  to be  far lower 
than industry averages. For example, the IBM 
COBOL Structuring  Facility  product, developed 
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using Cleanroom  techniques,  has  required  only a 
small fraction of its  maintenance budget to  be 
consumed during years of field use. 

Cleanroom  project  schedules  have  equaled or im- 
proved upon traditional development  sched- 
ules.l”16 In fact,  productivity  improvements of 
factors ranging from one and one-half to five over 

A primary objective 
of the Cleanroom process 

is to prevent  errors. 

traditional practices  have  been  observed. 15-’* Ex- 
perienced  Cleanroom  teams  become  remarkably 
efficient at writing clear specifications, simplify- 
ing and restricting designs to easily verifiable pat- 
terns, and performing correctness verification. 
Cleanroom is not a more time-consuming devel- 
opment  process,  but it does  place  greater  empha- 
sis on design and verification to avoid waste of 
resources in debugging and  rework. 

Cleanroom quality results 

As summarized in Table 1, first-time Cleanroom 
teams in IBM and other industrial and  governmen- 
tal organizations  have  reported  data on close to a 
million lines of Cleanroom-developed  software. 
The  code exhibits a weighted average of 2.3 er- 
rors per  thousand lines of code  (errors/KLoc) in 
te~ting.’ ,’~-~~ This  error  rate  represents all errors 
found in all testing, measured  from first-ever ex- 
ecution through test completion. That is, it is a 
measure of residual errors remaining following 
correctness verification by development  teams, 
who do not  execute  the  software.  The  projects 
represent a variety of environments, including 
batch,  distributed,  cooperative,  and real-time 
systems  and  system  parts,  and a variety of lan- 
guages, including microcode, C, C++,  JOVIAL, 
FORTRAN, and PWI. 

Traditionally developed  software  does  not un- 
dergo correctness verification, but  rather  enters 
unit testing and debugging directly, followed by 
more debugging in function  and  system testing 
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Table 1 Cleanroom  project  results 

Year Project Quality and Productivity 

Certification testing failure rate: 2.3 errors/KMC 
Error-fix reduced 5X 

9 Completed ahead of schedule 

IBM's first Cleanroom product 
Certification testing failure rate: 3.4 errors/KLOC 
Productivity 740 LOCPM, 5X improvement 
7 errors in first 3 years of use; all simple fixes 

Certification testing failure rate: 4.5 errors/KLOC 
50% improvement in quality 
Productivity 780 LOCPM 

9 80% improvement in productivity 

First compilation: RO errors found 
Certification testing failure rate: 0.0 errors/KLOC 
(no errors found) 

First compilation: no  errors found 
Certification testing failure rate: 0.0 errors/KLOC 
(no errors  found) 

Testing failure rate: 2.6 errorsflKLOC 
0 Productivity 486 LOCPM 

No operational errors from Beta test sites 

Testing failure rate: 2.1  errors/KLOC 

First compilation: 5 syntax errors 
Certification testing failure rate: 0.9 errors/KLOC 

Certification testing failure rate: 5.1 errors/KLOC 

Testing failure rate: 3.5 errorsMlLOC 

Testing failure rate: 4.2 errors/KLOC 

Certification testing failure rate: 6.1 errors/KLOC 

Certification testing failure rate: 1.2  errors/KLOC 

9 Testing failure rate: 2.4 errors/KLOC 
No design errors, all simple fixes 

Testing failure rate: 0.8 errors/KLOC 

Testing failure rate: 4.1 errors/KLOC 

Testing failure rate: 1 error/H,Oc 
70% improvement in development prodktivity 
100% improvement in testing productivity 

KEY: KLOC = thousand lines of code 
PM = personmonth 
X = (mathematical) times 

IBM Flight Control: 
Helicopter Avionics System Component 
33 KLOC  (JOVIAL) 

1987 

1988 

1989 

IBM Cobol Structuring Facility: Product for 
automatically restructuring COBOL programs 
85 KLOC  (PL/I) 

NASA Satellite Control Project 1 
40 KLOC (FORTRAN) 

1990 Martin Marietta: 
Automated documentation system 
1.8 KLOC (FOXBASE) 

1991 IBM System Software 
First increment 0.6 KLOC (C) 

1991 IBM AOEXPERTbIVS" Product 
107 KLOC (mixed languages) 

1991 IBM Language Product 
First increment 21.9 KLOC  (PL/X) 

1991 IBM Image Product Component 
3.5 KLOC (C) 

IBM Printer Application 
First increment 6.7 KLOC (C) 

IBM Knowledge Based System Application 
17.8 KLOC (TIRSm) 

1992 

1992 

1992 NASA Satellite Control Projects 2 and 3 
170 KLOC (FORTRAN) 

1993 University of Tennessee: Cleanroom tool 
20 KLOC (C) 

IBM 3490E Tape  Drive 
86 KLOC (C) 

IBM Database Transaction Processor 
First increment 2 1 .5 KLOC  (JOVIAL) 

~~ ~ ~ 

1993 

1993 

1993 IBM  LAN Software 
First increment 4.8 KLOC (C) 

1993 IBM Workstation Application Component 
3.0 KLOC (JOVIAL) 

1993 Ericsson Telecom AB Switching Computer OS32 
Operating  System 
350 KLOC  (PLEX, C) 

NOTE; All testing failure  rates are measured from fust-ever 
execuoon. 
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following. Measured from first execution, tradi- 
tional software typically exhibits 25 to 35 or  more 
errors  per  thousand lines of code.”  First-time 
Cleanroom  development  teams  can  produce  soft- 
ware with quality levels at  test  entry at least  an 
order of magnitude better than traditionally de- 
veloped  software.  The following summaries of 
three  selected  projects from Table 1 illustrate  the 
results  achieved. 

IBM COBOL Structuring Facility. The COBOL 
Structuring Facility, which  consisted of 85 KLOC 
of PWI code, was the first Cleanroom  product in 
IBM. It employs  proprietary,  graph-theoretic al- 
gorithms  to automatically transform  unstructured 
COBOL programs  into  a functionally equivalent, 
structured form for improved maintainability. Re- 
lentless design simplification in the  Cleanroom 
process  often  results in systems  that  are small for 
their functionality. For example, the Cleanroom- 
developed  prototype of the COBOL Structuring 
Facility, independently  estimated at 100 KLOC, 
was developed using just 20 KLOC. 

Comparable  to  a COBOL compiler in complexity, 
the  product  experienced 3.4 errors/KLoc in  all 
statistical testing, measured from the first execu- 
tion. Six months of intensive  beta testing at  a ma- 
jor  aerospace  corporation  resulted in no  func- 
tional equivalence  errors  ever found. 21 Just  seven 
minor errors  were  reported in the first three  years 
of  field use, requiring only  a small fraction of the 
maintenance budget associated with traditionally 
developed  products of similar size and complex- 
ity. The  product  was  developed and certified by 
a  team averaging six members, with productivity 
five times the IBM averages.16 

IBM 34903 tape drive. The 3490E tape  drive is a 
real-time, embedded  software  system  developed 
by a five-person team in three  increments of C 
design with a  code  total of 86 KLOC. It provides 
high-performance tape  cartridge  support through 
a multiple processor  bus  architecture  that  pro- 
cesses multiple real-time input and  output  data 
streams. The product  experienced 1.2 errors/ 
KLOC in all statistical testing. To meet an urgent 
business  need,  the third increment  was shipped 
straight from development to  the hardware and 
software integration team with no testing what- 
soever.  Customer  evaluation  testing with live 
data  by  the integration team  resulted in no  errors 
being found. 
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In a  comparison  experiment,  the project team 
subjected  a  selected module to both unit testing 
and  correctness verification. Development of ex- 
ecution scaffolding, definition and  execution of 
test  cases, and checking of results  required  one- 
and one-half person-weeks of effort and resulted 
in the  detection of seven  errors.  Correctness ver- 
ification of the  same program by  the  development 
team required  one  and one-half hours,  and  re- 
sulted in the  detection of the  same  seven  errors, 
plus three additional errors. 

Ericsson OS32 operating system. Ellemtel Tele- 
communications  Systems  Laboratories is com- 
pleting a 350 KLOC operating  system for a  new 
family of switching computers  for  Ericsson Tele- 
com AB. The  code is written in PLEX and C. The 
73-person7 33-month Cleanroom project  experi- 
enced  productivity  improvements of 70 percent 
and 100 percent in development and testing, re- 
spectively, and the  product averaged under  one 
error/KLoc in all testing. Project management re- 
ported  that an average of Iess than  one  person- 
hour was required to  detect an  error in team  re- 
views,  compared  to  an  average of 17.5 person- 
hours to detect  an  error in testing. The  project 
allocated two  days  per  week  to  prepare and con- 
duct  team reviews. The  product  team was hon- 
ored by Ericsson  as  the single project  that had 
contributed  the most to  the company in  1993. 

Cleanroom  technologies 

In  the  Cleanroom  process,  the  objective of the 
development team is to deliver software  to  the 
test team that  approaches  zero  defects;  the  ob- 
jective of the  test  team is to scientifically certify 
the  quality of software,  not  to  attempt to  “test in” 
quality. These  objectives  are achieved through 
management and technical practices  based  on  the 
technologies of incremental  development,  box 
structure specification and design, correctness 
verification, and statistical  quality certification. 

Incremental development. Management planning 
and control in Cleanroom is based  on develop- 
ment and certification of apipeline of increments 
that  represent  operational  user  function,  accumu- 
late top-down into  the final product, and execute 
in the  system  environment.” Following specifi- 
cation of required  external  system  behavior, an 
incremental  development plan is  created  to define 
schedules,  resources, and functional content of a 
series of code  increments  to  be  developed  and 
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certified. The initial increment  contains  stubs 
(small placeholder programs) that  stand in for 
later  increments  and permit early  execution of the 
code.  The  ultimate  functionality of the  code  that 
will replace the  stubs is fully defined in subspeci- 

When the final  increment 
is integrated, the 

system is complete. 

fications for  team verification of each  increment 
prior  to testing. As incremental  development 
progresses, stubs  are replaced by corresponding 
code  increments,  possibly  containing stubs of 
their own, in a  stepwise  system integration pro- 
cess. When the final increment  is  integrated,  the 
system is complete and no  stubs remain. 

As each  increment is integrated,  the evolving sys- 
tem of increments  undergoes  a  new step in sta- 
tistical usage testing for  quality certification. Sta- 
tistical measures of quality  provide  feedback for 
reinforcement or improvement of the  develop- 
ment  process  as  necessary.  Early  increments  can 
serve as system  prototypes, providing an  oppor- 
tunity to elicit feedback from customers  to vali- 
date requirements  and  functionality. As inevita- 
ble changes  occur,  incremental  development 
provides  a  framework for revising schedules,  re- 
sources,  and  function,  and  permits  changes to  be 
incorporated in a  systematic  manner. 

Box  structure  specification  and  design. Box  struc- 
tures  provide  a  stepwise refinement and verifica- 
tion process  based  on black box,  state  box, and 
clear box forms for defining system  behavior and 
deriving and connecting  objects comprising a sys- 
tem architecture. 5,23 Boxes  are  object-based,  and 
the  box  structure  process  provides  a  systematic 
means for developing object-based  systems.24 
Specifically, the  black  box form is a specification 
of required  behavior of a  system  or  system  part in 
all circumstances of use, defined in terms of stim- 
uli, responses,  and  transition  rules  that  map stim- 
ulus histories to responses.  The  state box form is 
refined from and verified against the black  box, 
and defines encapsulated state data  required  to 

~ 

satisfy  black box behavior.  The  clear  box form is 
refined from and verified against the  state  box, 
and defines procedural design of services on state 
data  to  satisfy  black  box  behavior,  often  intro- 
ducing new black boxes at the  next level of re- 
finement. New  black  boxes (specifications) are 
similarly refined into  state  boxes  (state designs) 
and  clear  boxes  (procedure  designs), continuing 
in this  manner until no  new  black  boxes  are  re- 
quired. Specification and design steps  are inter- 
leaved in a  seamless, integrated hierarchy afford- 
ing complete verifiability and traceability. 

Box  structures isolate and  separate  the  creative 
definition of behavior,  data, and procedures  at 
each level of refinement. They  incorporate  the 
essential  property of referential transparency, 
such  that  the information content of an abstrac- 
tion, for example, a  black  box, is sufficient to 
define and verify  its refinement into  state  and 
clear box forms  without  reference to  other spec- 
ification parts. Referential transparency is crucial 
to maintaining intellectual control in complex  sys- 
tem developments.  Box-structured  systems  are 
developed as usage hierarchies of boxes,  where 
each  box  provides  services  on  encapsulated  state 
data, and where  its  services  may  be used and re- 
used in many  places in the  hierarchy as required. 
Box-structured  systems  are  developed according 
to  the following principles: 25 (1) all data to  be de- 
fined and retained in a design are  encapsulated in 
boxes, (2) all processing is defined by  sequential 
and  concurrent use of boxes, and (3) each use of 
a box occupies  a  distinct  place in the usage hier- 
archy of the  system.  Clear  boxes  play  an impor- 
tant role in the  hierarchy by defining and control- 
ling the  correct  operation of box  services  at  the 
next level of refinement. 

Correctness  verification. As noted, in the Clean- 
room process, verification of program correct- 
ness in team  reviews  replaces  private unit testing 
and debugging by individuals. Debugging is an 
inefficient and  error-prone  process  that  under- 
mines the mental discipline and concentration 
that  can  achieve zero defects. The intellectual 
control of software  development afforded by 
team verification is a  strong  incentive  for  the pro- 
hibition against unit testing. “NO unit testing” 
does  not,  however,  mean “no use of the ma- 
chine.’’ It  is  essential  to  use  the machine for ex- 
perimentation,  to  evaluate algorithms, to  bench- 
mark  performance,  and to understand and 
document  the  semantics of interfacing software. 
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These  exploratory  activities  are  entirely  consis- 
tent  with the Cleanroom  objective of software 
that is correct by design. 

Elimination of unit testing motivates  tremendous 
determination in developers to ensure  that  the 
code  they deliver for independent  testing is error- 
free  on first execution.  But  there is a  deeper  rea- 
son  to  adopt  correctness verification-it is more 
efficient and effective than unit testing. Programs 
of any  size  can  contain  an  essentially infinite num- 
ber of possible  execution  paths  and  states,  but 
only a minute fraction of those  can  be  exercised 
in unit testing. Correctness verification, however, 
reduces  the verification of programs  to  a finite and 
complete  process. 

In more detail, all clear  box  programs  are 
composed of nested and sequenced  control 
structures,  such  as  sequence, IF-THEN-ELSE, 
WHILE-Do, and their variants.  Each  such  control 
structure  is  a rule for  a mathematical function,’ 
that is, a mapping from a domain or initial state  to 
a range or final state.  The function mapping car- 
ried out  by  each  control  structure  can be docu- 
mented in the design as an intendedfunction. For 
correctness,  each  control  structure  must imple- 
ment the  precise mapping defined by  its  intended 
function. The  Correctness  Theorem4  shows  that 
verification of sequence, IF-THEN-ELSE, and 
WHILE-Do structures  requires checking exactly 
one, two, and  three correctness  conditions, re- 
spectively. While programs  can  exhibit  an  essen- 
tially infinite number of execution  paths  and 
states,  they  are  composed of a finite number of 
control  structures, and their verification can be 
carried  out in a finite number of steps  by checking 
each  correctness condition in team reviews. Fur- 
thermore, verification is  complete,  that  is, it deals 
with all possible program behavior  at  each level of 
refinement. The verification process defined by 
the  Correctness  Theorem  accounts for all possi- 
ble mappings from the domain to  the range of 
each  control  structure,  not  just  a handful of map- 
pings exercised by particular unit tests.  For  these 
reasons, verification far  surpasses unit testing in 
effectiveness. 

Statistical quality certification. In the Cleanroom 
process,  statistical usage testing for certification 
replaces  coverage  testing  for debugging. Testing 
is carried  out by the certification team based on 
anticipated usage by customers. Usageprobabil- 
i t y  distributions are developed to define system 
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inputs for all aspects of usage, including nominal 
scenarios as well as  error  and  stress  situations. 
The  distributions  can be organized into probabi- 

Debugging is an 
inefficient and 

error-prone process. 

listic state transition  matrices  or formal gram- 
mars. Test cases  are generated  based on random 
sampling of usage distributions.  The  correct  out- 
put  for  each  test input is specified with reference 
to an  oracle,  that  is,  an  independent  authority  on 
correctness, typically the software specification. 
System reliability is predicted  based  on  analysis 
of test  results by a formal  reliability model, and 
the  development  process for each  increment is 
evaluated  based  on  the  extent  to which the reli- 
ability results  attained  objectives.  In effect, sta- 
tistical usage testing  is  based on a formal  statis- 
tical design, from which statistical  inferences 
of software  quality and reliability can be  de- 
rived. 3,11,26 

Coverage testing can  provide  no  more  than  an- 
ecdotal  evidence of reliability. Thus, if many  er- 
rors are found,  does  that  that mean that  the  code 
is of poor  quality and many  errors remain, or  that 
most of the  errors  have  been  discovered?  Con- 
versely, if few errors  are found, does  that mean 
that  the  code is of good quality, or  that the  testing 
process  is ineffective? Statistical  testing  provides 
scientifically valid measures of reliability, such  as 
mean-time-to-failure (MTTF), as a  basis for objec- 
tive management decision-making regarding soft- 
ware and development process quality. 

Empirical studies  have  demonstrated  enormous 
variation in the failure rates of errors in opera- 
tional use. s Correcting high-failure-rate errors 
has  a  substantial effect on MTTF, while correcting 
low-failure-rate errors  hardly influences MTTF at 
all. Because  usage-based testing exercises  soft- 
ware the way  users  intend  to use it, high-fre- 
quency,  virulent  errors  tend to  be found early in 
testing. For this  reason,  statistical usage testing  is 

HAUSLER, LINGER, AND TRAMMELL 95 



more effective at improving software reliability 
than  is  coverage testing. Statistical testing also 
provides  new management flexibility to certify 
software  quality  for  varying  conditions of use and 
stress,  by developing special usage probability 
distributions for such  situations. For example, 
the reliability of infrequently used functions with 
severe  consequences of failure can  be  indepen- 
dently  measured and certified. 

Adopting the Cleanroom process 

Rigorous and  complete  Cleanroom implementa- 
tion permits  development of very high quality 
software with scientific certification of reliability. 
However,  substantial gains in quality  and  pro- 
ductivity  have  also  occurred in partial Cleanroom 
implementations. ''J' Evidence  suggests  that  a 
phased  approach to implementation can  produce 
concrete benefits and afford increased manage- 
ment control.  The  phased  approach, combined 
with initial Cleanroom  use  on  selected  demon- 
stration  projects,  provides  a  systematic manage- 
ment process for reducing risk in technology 
transfer.  Three implementation phases  can  be de- 
fined and  sequenced in a  systematic technology 
transfer  process.  The idea is to first introduce fun- 
damental  Cleanroom principles and several  key 
technologies in an introductory  implementation. 
As  team  experience  and confidence grows, in- 
creased  precision and rigor can be achieved in a 
f i l l  implementation of Cleanroom technology. Fi- 
nally, an advanced  implementation can be intro- 
duced  to  optimize  the  Cleanroom  process. Of 
course,  a  particular  Cleanroom implementation 
can combine  elements  from  various  phases as 
necessary  and  appropriate for the  project envi- 
ronment. 

Introductory  implementation. Key  aspects of an in- 
troductory implementation are summarized in the 
first row of Table 2. The fundamental idea is to shift 
from craft-based to engineering-based processes. 
The development objective shifts from defect cor- 
rection in  unit testing to defect prevention in spec- 
ification, design, and verification. As experience 
grows, developers learn they can write software 
that is right the first time, and a psychological 
change occurs, from expecting errors to expecting 
correctness. At the same time, the testing objective 
shifts from debugging  in coverage testing to reli- 
ability certification in usage testing. Because Clean- 
room code is of high quality at first execution, 
testers learn that little  debugging is required, and 
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they can concentrate on evaluating quality. A man- 
agement opportunity exists to leverage these tech- 
nology shifts to develop systems on schedule with 
substantial improvement in quality and reduction in 
life-cycle costs. 

All development  and  testing is accomplished by 
small teams.  Team  operations  provide  opportu- 
nities for  cross-training and a  ready  forum  for dis- 
cussion, review, and  improvement. All work 
products undergo a  team-based  peer review to 
ensure  the highest level of quality. The  size and 
number of teams  varies  according  to  resource 
availability, skill levels, and project size  and com- 
plexity. Teams  are  organized during project plan- 
ning and their  membership  should remain stable 
throughout  development.  Cooperative  team  be- 
havior that  leverages individual expertise is a  key 
factor in successful  Cleanroom  operations. 

In any  Cleanroom implementation, zero-defect 
software  is an explicit design goal, and measured 
performance at a target level is an explicit reli- 
ability goal. The  Cleanroom  practices  necessary 
to achieve  these  objectives  require  substantial 
management commitment.  Because  compro- 
mises in process  inevitably lead to  compromises 
in quality, it is crucial for managers to  understand 
Cleanroom fundamentals--the philosophy, pro- 
cess,  and milestones- and demonstrate unequiv- 
ocal support. Management commitment is essen- 
tial to  successful  introduction of the  Cleanroom 
process. 

A key  aspect of customer  interaction is to shift 
from  a technology-driven to a  customer-driven 
approach,  whereby  system functional and usage 
requirements  are  subject  to  extensive analysis 
and review with customers  to  clearly  understand 
their needs. Maintaining customer involvement in 
specification and certification helps avoid devel- 
oping a  system  that  approaches  zero  defects  but 
provides  the  wrong  functionality  for  the  user. 

Unlike the traditional life cycle of sequential 
phases, the Cleanroom life cycle is based on in- 
cremental  development. In an introductory im- 
plementation,  a  project is scheduled and managed 
as a pipeline of increments for development  and 
testing. Functional  content and sequencing  of in- 
crements is typically based  on  a  natural subdivi- 
sion of system  functions  and their expected us- 
age. Successive  increments should implement 
user  function,  execute in the  system  environ- 
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ment,  and  accumulate  top down into  the final 
product.  This  incremental  strategy  supports  test- 
ing throughout  development  rather  than at com- 
pletion. It also integrates  system  increments in 

Management  commitment  is 
essential to successful 

introduction. 

multiple steps  across  the life cycle, to avoid risks 
of single-step integration of all system  compo- 
nents  late in a  project  when little time or  re- 
sources remain to deal with unforeseen problems. 

In an introductory implementation, a  black  box 
specification is written  that  precisely defines re- 
quired  system functionality in terms of inputs, 
outputs, and behavior in all possible circum- 
stances of use, including correct and incorrect 
use. The specification focuses on required  system 
behavior from the user’s viewpoint and does  not 
describe implementation details. At this level, 
specifications are generally expressed in an outer 
syntax of specification structures,  such  as  tabular 
formats or  variants of Box Description Language 
(BDL),’ and  an inner syntax of natural language. 
Cleanroom specifications are  important working 
documents  that drive design and certification ac- 
tivities, and  they  must  be  kept  current for effec- 
tive  team  operations. Definition of system user’s 
guides is initiated in parallel with specifications, 
for  elaboration and refinement throughout  the  de- 
velopment. 

In  the design process of an  introductory imple- 
mentation,  state and clear  box  concepts  are im- 
plemented using sound  software engineering 
practices, including stepwise refinement, struc- 
tured programming, modular design, information 
hiding, and data  abstraction.  Successive  incre- 
ments  are specified and designed top-down 
through stepwise refinement, with frequent team 
review and discussion of design strategies.  Step- 
wise refinement requires  substantial look-ahead 
and analysis, as  successive design versions  are 
developed and revised. In this  process,  a relent- 

less  team  drive  for design simplification can result 
in substantial  reductions in the  size and complex- 
ity of systems,  for  more efficient correctness  ver- 
ification and subsequent  maintenance. 

Design with  intended  functions is a  fundamental 
practice at the  introductory level. High-level in- 
tended  functions originate in system specifica- 
tions, and  are refined into  control  structures and 
new intended functions. Expressed primarily in 
natural language, intended  functions  are  recorded 
as comments  attached to  key control  structures in 
designs. Intended  functions  precisely define re- 
quired  behavior of their control  structure refine- 
ments. Behavior is defined  in functional, non- 
procedural  descriptions of the derivation of 
output  data from input data.  Intended function 
refinements are  expressed in a  restricted  set of 
single-entry, single-exit control  structures with 
no side effects, such as sequence, IF-THEN-ELSE, 
WILE-DO, and theirvariants.  Each  control  struc- 
ture  may  contain additional intended  functions 
for further refinement. This stepwise specifica- 
tion and design process  continues until no further 
intended functions remain to be elaborated.  In- 
tended  functions  provide  a  precise road map for 
designers in  refining design structures, and are 
essential  to  team verification reviews. 

The last  intellectualpass through a design occurs 
in team-based  correctness verification, another 
fundamental  practice in an introductory imple- 
mentation. At the design level, verification re- 
views  prove  correctness of program control 
structures, unlike traditional code  inspections 
that  trace program flow paths  to  look for errors. 
The verification process is based on reading and 
abstracting  the functionality of control  structures 
in designs and comparing the  abstractions with 
specified intended functions to  assess  correct- 
ness. Team members  read,  discuss,  evaluate,  and 
indicate agreement (or  not)  that designs are  cor- 
rect with respect  to their intended behavior. If 
changes  are  required,  the team must review and 
verify  the modifications before  the designs can  be 
considered finished. Verification reviews provide 
team members  with  deep  understandings of de- 
signs and their correctness  arguments. Reviews 
are  conducted with the  understanding  that  the  en- 
tire team is responsible for correctness.  Ultimate 
successes  are  team  successes, and failures are 
team failures. All specifications and designs are 
subject to team review, without  exception.  Fol- 

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994 HAUSLER, LINGER, AND TRAMMELL 97 



Table 2 A phased il 
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>lementation  for  Cleanroon 
~~~~~~ _ '  ' 
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."T*@nt ~ ~ ~ ~ t ~ ~ ~ , , .  ; 

Document an introductory 
Cleanroom  process. 
Shift  from  craft-based to 
engineering-based  processes. 

e Shift from defect  correction 
in  unit  testing  to  defect 
prevention in specification, 
design, and  verification. 
Shift  from  debugging in 
coverage testing to quality 
certification in usage  testing. 

9 Shift  from  individual to small 
team  operations  with  team 
review  of all work  products. 
Establish  Cleanroom  projects 
and  provide commitment, 
education,  and  recognition 
to  teams. 

substantial  quality 
improvement  and life cycle 
cost  reduction. 

1 Develop to schedule  with 

1 Document  a  full  Cleanroom 
process. 

1 Increase  development  rigor 
with  box  structure 
specification,  design,  and 
correctness  verification. 

with  scientific  measures  of 
reliability. 

1 Establish  larger  Cleanroom 
projects as teams  of  small 
teams  with  experienced 
leaders  from  previous 
projects. 

I Develop to schedule with 
substantial quality and 
productivity  improvement 
and life cycle cost reduction. 

~~ 

1 Increase  testing  rigor 

Document an advanced 
Cleanroom process. 
Establish  a  Cleanroom 
Center of  Competency  to 
monitor Cleanrmm 
technology  and train and 
consult with  teams. 
Establish  Cleanroom projects 
across the  organization  led 
by experienced Cleanroom 
practitioners. 
Develop to schedule with 
substantial  quality  and 
productivity  improvements 
and  life cycle cost reduction, 
even in emergency and 
adverse  circumstances. 

practice 
Customer 
Interaction 

Shift  from  technology- 
driven to customer- 

* Analyze  and  clarify 
driven  development. 

functional  requirements 
with  customers to 
develop functional 
specifications. 

9 Analyze  and  clarify 
usage  requirements  with 
customers  to  develop 
usage  specifications. 

9 Review  and  validate 
functional  and usage 
specifications  with 
customers. 
Revise  functional  and 
usage  specifications as 
necessary for changing 
requirements. 

Educate customers in 
Cleanroom to increase 
value,  cooperation, 
and  responsiveness  to 
customer  needs. 
Review  black  box 
functional  specifications 
with  customers to 
support  increased  rigor 
in specification. 

specifications  with 
customers  to support 
increased  rigor in 
statistical  usage  testing. 

1 Provide customers 
with  prototypes 
and  accumulating 
increments for 
evaluation  and  feedback. 

1 Review  usage 

Assist customers in 
leveraging the quality 
of Cleanroom- 
developed software for 
competitive advantage. 
Contract with  customer 
for reliability  warranties 
based on certification 
with  agreed  usage 
distributions  and 
reliability models. 
Establish  cooperative 
processes  with 
customers for recording 
operational  system 
usage to calibrate  and 
improve  reliability 
certification. 

lmremental 
Development 

Shift  from  a 
sequential 
(waterfall) to an 
incremental  process. 
Define  increments 
that  implement  user 
function, execute in 
the  system 
environment,  and 
accumulate top down 
into the final product. 
Defiie and evolve an 
incremental 
development  plan for 
schedules,  resources, 
and  increment  content. 
Carry out scheduled 
incremental 
development  and 
testing  with stepwise 
integration  of 
increments. 
Define  increments to 
incorporate  early 
availability  of 
important functions 
for customer feedback 
and  use. 
Rapidly  revise 
incremental  plans for 
new  requirements 
and actual  team 
performance,  and 
respond to schedule 
and  budget  changes. 

1 Incorporate 
comprehensive 
reuse  analysis  and 
reliability  planning 
in  incremental 
development  plans. 

b Plan  increment 
content to manage 
project  risk by early 
development of 
interface 
dependencies, critical 
functions, and 
perfonnance-sensitive 
processes. 

IBM SYSTEMS JO1 

System 
Specification 

Shift  from  informal, 
throwaway  specifica- I 
tions to precise, 
working  specifications 
kept current  through 
the  project  life  cycle. 
)efiie specifications 

ICU 

of system ouunaanes, 
interfaces,  and q u i -  A 
external  behavior  in au 
possible  circumstances 
of use,  including  correct 
and  incorrect use. 
Express specifications 
in  systematic  forms 

I 

uch as tables  that I . .. . . define requlrea Denavlor 
in natural  language. 
Develop and evolve 
system user's guides in 
parallel  with 
specifications. I 
Develop prototypes 
as necessary to 
validate  customer 
requirements 
and  operating 
environment 
characteristics. 
Define  black box 

pecifications in 
systematic  structures 
such as transition 
tables  expressed  in 
conditional rules 
and  precise 
natural  language. 

I 

I 

I 

in formal specification 
methods into local 

Lpguidelines  for 
fication formats . .  and convennons Dam 

on team  experience. 
Apply mathematical 
techniques  in  black 
box specifications 
to define complex 
behavior with  precision. 
Express black box 
specifications where 
appropriate  with 
specification . .  functions . .  

and abstract mmels. 
Develop a specificat -- 
review  protocol for 
eam reviews  based 

lUI1 
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and 
lmplsmentation 

1 Shift from  programming by 
aggregation of statements  to 
design by stepwise  refinement 
of specifications. 

structured,  modular  designs 
using  good  software  engineering 
practices  with  substantial  look 
ahead  and analysis. 

structures  and  case-structured 
intended functions expressed  in 
natural  language. 

development  reviews to 
communicate,  simplify,  and 
improve evolving designs. 
Conduct execution  experiments 
to  document the system 
environment  and  semantics  of 
interfacing  software. 

1 Refine  specifications into 

1 Express designs in control 

9 Conduct frequent team 

9 Refine  black boxes 
(specifications) into state boxes 
(data designs) and  state boxes 
into clear boxes (procedure 
designs)  and  new  black  boxes. 
Defiie state boxes in data 
designs and  systematic  structures 
such as transition  tables 
expressed in conditional  rules 
and  precise  natural  language. 
Define clear boxes in  control 
structures and intended  functions 
expressed  in  conditional  rules 
and  precise  natural  language. 

boxes  and define processing 
by  use  of  box  services. 

1 Identify opportunities for reuse 
of  system  components. 

Encapsulate  system  data  in 

Incorporate advances in formal 
design methods into local 
practices. 

the  precise  semantics  of 
interfacing  software. 
Develop  guidelines for design 
formats and conventions  based 

Apply  mathematical  techniques 
on team experience. 

in state  and clear box  designs to 
defiie complex behavior  with 
precision. 

* Develop  a  design  review 
protocol for team  development 
reviews  based on team 
experience. 

certified designs. 

1 Use box structures to document 

Establish  libraries of reusable, 

Correctnew 
Verification 

Shift from unit  testing by 
individuals to correctness 
verification by teams. 
Shift  from  path  tracing  in 
code inspections to 
functional  analysis in 
verification  reviews. 

9 Conduct demonstration 
verification  reviews to set 
expectations  and  train 
teams. 

structures in team  reviews 
by reading, function 
abstraction,  and 
comparison  to  intended 
functions. 
Verify  all  design  changes 
in  team  reviews  and 
deliver  verified 
increments to testing for 
first execution. 

Verify all control 

Improve intmductory 
practices  through 
increased  precision  and 
formality  in  verification 

Improve  verification by 
reviews. 

introducing  mental  proofs 
of  correctness  based on 
box  structure  theory  and 
Correctness  Theorem 
correctness  conditions. 
Document  and  reuse 
proof arguments for 
recurring  design  patterns. 
Simplify  and standardize 
designs  where  possible to 
reduce  proof  reasoning. 

~~~ 

Incorporate advances in 
formal verification 
methods into local 
practices. 
Use  trace  tables as 
necessary to support 
mental  proofs  of 
correctness. 
Document  written p f s  
of  correctness as required 
for critical  system 
functions. 
Develop  verification 
protocols  and  extended 
proof  rules for 
application-, language-, 
and  environment-specific 
semantics. 

e Shift from coverage testing 

Define  high-level usage 
to  usage  testing. 

distributions in systematic 
structures  such as hierarchical 
decision  trees. 
Develop/acquire  test  cases 
from  a  user  perspective 
based on system specifications 
and  usage  distributions. 
Evaluate quality of each 
increment  through  analysis 
of measures  such as failure 
rates  and  severity  levels. 
Return  low-quality  increments 
to development for additional 
design  and  reverification. 

Establish  reliability  targets 
and  conduct  statistical 
usage  testing for reliability 
certification. 
Defiie usage probability 
distributions for all 
circumstances  of  use  in 
formal  grammers or state 
transition  matrices. 

distributions for special 
environments  and critical 
and  unusual  usage. 
Use  automated  generators 
to  create  test  cases  randomized 
against  usage  probability 
distributions. 
Use  reliability  models  to 
produce  statistical 
reliability  measures  based 
on analysis  of  test  results. 

Defiie alternative 

Incorporate advances in 
scientific  software  certification 
methods into local  practices. 

prior  Cleanroom  projects 
and customers in  setting 
reliability  targets. 
Employ usage analysis to 
validate functional 
specifications  and plan 
increment  content. 
Use  automated  tools  to 
generate  self-checking  test 
cases. 

data to track conformance of 
usage distributions to actual 
field  use. 
Apply  and evaluate multiple 
reliability  models for best 
prediction  of  system 
reliability in the  development 
environment. 

Apply experience of 

Collect customer usage 

P t k e i s ~  " 

lmpravement 

' Shift from informal  review 
of lessons leamed to a 
systematic,  documented 
improvement  process. 

b Measure  team  productivity, 
quality,  and  cost, 
and  analyze for process 
improvements. 

1 Document  improvements 
to the  introductory 
implementation  based on 
lessons  learned  from  each 
increment. 

1 Improve or sustain the 
development  process  based 
on quality  results of 
increment  testing. 

1 Assess customer satisfaction 
with  Cleanroom-developed 
systems for process 
improvements. 

D Document  improvements  to 
the  full  implementation 
based on team  decisions in 
process  reviews  after  each 
increment. 

9 Use baseline measurements 
from  introductory  projects 
to set  quality  and 
productivity  objectives. 

development  process  based 
on  reliability  measurements 
of each  increment. 

failures found in testing  and 
use  to  identify  process  areas 
for  improvement. 

' Conduct surveys of  customer 
satisfaction  with Cleanroom- 
developed  systems for 
process  improvement. 

process  control to analyze 
teamperformance. 

I Compare team  performance 
with  locally-defined  process 
control standards for 
performance. 

1 Use error classification 
schemes to improve  specific 
Cleanroom  practices  in 
specification, design, 
verification,  and  testing. 

9 Improve or sustain the 

Conduct causal analysis of 

1 Use  the full rigor of statistical 
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lowing verification, increments  are delivered to 
the  test  team for first execution. 

In an introductory implementation, usage testing 
based on external system behavior replaces cover- 
age testing based on design internals. Usage infor- 
mation is collected by analyzing functional specif- 
cations and surveying prospective users (where 
users may be people or other programs). Based on 
this information, a high-level  usage  profile is devel- 
oped, including  nominal scenarios of use, as well as 
error and stress situations. A usage profile can be 
recorded in systematic structures  such  as hierar- 
chical decision trees  that embody possible usage 
patterns in compact form. Next, test scenarios are 
defined based on the usage  profile. The idea is that 
the  test  cases represent realistic scenarios of user 
interaction, including both correct and incorrect us- 
age. For example, if particular system functions are 
used frequently in particular patterns with occa- 
sional user mistakes, this usage should be reflected 
in the test suite. At this stage, the usage  profile may 
not be extremely precise or detailed, but it does 
contain sufficient information for the test team to 
generate realistic test cases. 

The effectiveness of the  development  process is 
measured by system  performance in testing with 
respect  to  predetermined  quality  standards,  such 
as failure rates and severity levels. (More  precise 
statistical  measures,  such as MTTF and improve- 
ment ratio, are introduced in the full implemen- 
tation.) If test  results  show  that  the  development 
process is not meeting quality  objectives, testing 
ceases  and  the  code is removed from the machine 
for  redevelopment and reverification by  the de- 
velopment team. 

Process  improvement is a  fundamental  activity in 
an  introductory implementation. The idea is to 
shift from informal discussions of lessons  learned 
to  a  systematic,  documented  improvement  pro- 
cess. Baseline measurements  of  fundamental 
project  characteristics,  such as quality, produc- 
tivity, and cost,  provide  a  basis  for  assessing  pro- 
gress and making improvements. The quality  re- 
sults of usage testing  can guide changes to  the 
development  process.  In addition, customer  sat- 
isfaction with Cleanroom-developed systems  can 
highlight process  areas requiring improvements. 

Full implementation. Introductory  Cleanroom im- 
plementation establishes  a  framework  for  matur- 
ing the  process  to  a full implementation. As sum- 
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marized in the  second row of Table 2, full 
implementation adds rigor to practices  estab- 
lished in the  introductory  phase through formal 
methods of box  structure specification and de- 
sign, correctness verification, statistical testing, 
and reliability certification. For a Cleanroom pro- 
ject of substantial  size  and complexity, a team- 
ofteams approach  can  be applied, whereby  the 
hierarchical structure of the  system  under devel- 
opment  forms  the  basis  for organizing, partition- 
ing, and allocating work among a  corresponding 
hierarchy of small teams. 

An opportunity  exists  for  more  extensive  cus- 
tomer  interaction in a full Cleanroom implemen- 
tation. Customers  can  be provided with education 
on Cleanroom  practices to improve the effective- 
ness of functional and usage specification analysis 
and review. In addition, prototypes  and  accumu- 
lating increments  can  be provided to  customers 
for  evaluation and feedback. 

Managers and team leaders  can  leverage Clean- 
room experience  into additional flexibility in in- 
cremental  development to accommodate chang- 
ing requirements,  and shortfalls and windfalls in 
team  performance within remaining schedule  and 
budget.  Increment planning can  emphasize  early 
development of useful system functionality for 
customer  feedback  and  operational  use. 

In specification and design, prototyping  and  ex- 
perimentation  are  encouraged  to clarify and val- 
idate  requirements,  and to understand and doc- 
ument semantics of interfacing software.  The 
formal syntax and semantics of box  structures  are 
used  for  black,  state, and clear box refinements. 
Black boxes and state  boxes  are  recorded in an 
outer  syntax of formal structures,  such  as  tran- 
sition tables, with inner syntax  expressed in pre- 
cise conditional rules, often given as conditional 
concurrent assignments combined with precise 
natural language. In clear  box design, intended 
functions  are  recorded  at  every level of refine- 
ment,  expressed in conditional  concurrent assign- 
ments and precise  natural language. 

A  box-structured  system  is specified and de- 
signed as a  hierarchy of boxes,  such  that  appro- 
priate  system  data  are  encapsulated in boxes,  pro- 
cessing is defined by using box services,  and 
every use of a  box  service  occupies  a  distinct 
place in the  hierarchy.  Box  structures  promote 
early identification of common services,  that  is, 
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reusable  objects,  that  can simplify development 
and  improve  productivity. Duplication of effort is 
avoided when  team  members  have  an  early 
awareness of opportunities for use and reuse of 
common services. Rigorous team verification re- 
views  are  conducted for all program structures, 
using mentalproofs of correctness based on box 
structure  theory and the  correctness  conditions of 
the  Correctness  Theorem. 

Statistical testing involves a  more  complete  and 
experimentally valid approach  than in an  intro- 
ductory implementation. Reliability objectives 
are  established  and  extensive  analysis of antici- 
pated  system usage is  carried  out.  Comprehen- 
sive specifications of the population of possible 
system  inputs  are defined in usage probability dis- 
tributions  recorded in formal grammars or  state 
transition  matrices.  Automated  tools  are used to 
randomly  generate  test  cases from the  distribu- 
tions,  and  the  correct  output for each  test input is 
defined based on the  system specification. For 
example, the IBM Cleanroom Certification Assis- 
tant (CCA)*’ automates  elements of the  statistical 
testing process  based on a formal grammar model 
for usage probability distributions. It  contains  a 
Statistical  Testcase  Generation  Facility for com- 
piling distributions  (expressed in a Usage Distri- 
bution  Language) and creating randomized test 
cases. Reliability models are employed to  mea- 
sure  system reliability based on test  results, and 
the development process for each  increment is 
evaluated  based on the  extent  to which reliability 
results  meet  objectives.  The CCA provides  an  au- 
tomated reliability model, the  Cleanroom  Certi- 
fication Model, that  analyzes  test  results to com- 
pute M m ,  improvement ratio, and other sta- 
tistical measures.  Alternative  distributions  are 
often employed to  certify  the reliability of special 
aspects of system  behavior, for example, infre- 
quently  used  functions  that exhibit high conse- 
quences of failure. 

Process improvement is established through re- 
views, following completion of each  increment, 
to  incorporate  team  recommendations  into  the 
documented Cleanroom process. Causal analysis 
of failures  and  comprehensive  customer  surveys 
can  provide additional insight into  process  areas 
requiring improvement. 

Advanced implementation. Key  elements of an ad- 
vanced implementation are  summarized in the 
third row of Table 2. At  this level of experience, 
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the  Cleanroom  process is optimized for  the local 
environment  and continually improved through 
advances in the  software engineering technology. 
A  Cleanroom  center of competency  can  be  es- 
tablished, staffed by expert  practitioners to mon- 
itor  advances in Cleanroom technology and pro- 
vide training and consultation to project teams. 
The Cleanroom process  can  be  scaled up to  ever 
larger projects and applied across  an organiza- 
tion. An opportunity  exists to achieve  Cleanroom 
quality, productivity, and cost  improvements 
even in emergency  and  adverse  system develop- 
ments. 

Product  warranties  may  be possible in customer 
contracts,  based on certification with usage dis- 
tributions  and reliability models agreed to  by both 
parties. In the  future,  a capability for developing 
software with warranted reliability could become 
a major differentiating characteristic of software 
development organizations. Customers  can  ben- 
efit by capturing  actual usage from specially in- 
strumented  versions of Cleanroom-developed 
systems,  to  permit  test  teams  to  improve  the  ac- 
curacy of usage distributions employed in certi- 
fication. 

Incremental  development can be used to manage 
project risk through early  development of key in- 
terfaces with pre-existing software,  important 
user  functions,  and  performance-sensitive com- 
ponents.  Increments  can also be defined to  isolate 
and reduce  dependence on areas of incomplete or 
volatile requirements,  and  to  focus on early ini- 
tiation of complex, long-lead-time components. 
Advanced  incremental  development  also in- 
cludes  systematic  reuse and reliability planning, ’’ 
facilitated by  such  tools  as  the  Cleanroom Reli- 
ability Manager.’9 In  this  approach, libraries of 
reusable  components  are  searched for functions 
identified in specification and top-level design. If 
the reliability of candidate  components is not 
known, statistically valid experiments are con- 
ducted  to  estimate reliability. If reliability of a 
candidate  component  has  previously  been  certi- 
fied, the usage profile used in that certification is 
compared with the  new usage profile to  determine 
if the  previous certification is valid for the new 
use.  Once reliability estimates  exist  for new and 
reused  components,  an  estimate of total  system 
reliability is generated through calculations based 
on top-level transition probabilities between  sub- 
systems.  The  results of this  analysis  are used to 
set reliability requirements for components, eval- 
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uate  the viability of component  reuse, and factor 
reliability risks  into  increment planning. 

An advanced use of box  structure specification  in- 
volves formal mathematical and computer science 
models appropriate to  the application. Formal black 
box and state  box  outer  syntax used in full Clean- 
room implementation is combined with formal in- 
ner syntax expressed as propositional logic, pred- 
icate calculus, algebraic function composition, BNF 
(Backus Naur form) grammars, or  other formal no- 
tation that affords a clear and concise representa- 
tion of function. Clear box designs are expressed in 
design languages for which target language code 
generators exist, or in restricted subsets of imple- 
mentation languages, thereby eliminating opportu- 
nities for new errors in translation. 

In verification reviews, trace  tables  are employed 
where  appropriate for analysis of correctness, 
and  written  proofs  are  recorded  for critical func- 
tions,  particularly in life-, mission-, and enter- 
prise-critical systems. Application-, language-, 
and environment-specific proof rules  and  stan- 
dards  provide a more  complete  framework for 
team verification. Locally-defined standards  have 
been  shown  to  be  more effective than  generic 
standards in producing consistent  practitioner 
judgment  about  software quality.30 In  an  ad- 
vanced implementation, the  documented  process 
includes environment-specific protocols  for  spec- 
ification, design, and verification based on team 
experience. 

In  an  advanced  approach to statistical testing, 
Markov-  or  grammar-based  automated  tools  can 
be used to  improve efficiency and effectiveness. 
For example, the IBM Cleanroom Certification 
Assistant  permits  generation of any  required 
number of unique, self-checking test  cases. In ad- 
dition, the rich body of theory, analytical results, 
and  computational algorithms associated with 
Markov  processes  have  important  applications in 
software development. 31 Both formal grammar 
and Markov usage models can  reveal  errors, in- 
consistencies, ambiguities, and  data  dependen- 
cies in specifications early in development,  and 
serve  as  test  case  generators for statistical testing. 
Initial versions of systems  can  be  instrumented  to 
record  their  own usage on command, as a base- 
line for analysis and calibration of usage distri- 
butions in certification of subsequent  system  ver- 
sions. 
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An advanced implementation can benefit from a 
locally-validated reliability model for software 
certification. Just  as locally-validated standards 
enable  more  consistent  practitioner judgment 
about  software quality, a locally-validated reli- 
ability model will enable  more  accurate  predic- 
tion of operational reliability from testing results. 

In an advanced implementation, the full rigor of 
statistical  process  control  can  be applied to  pro- 
cess improvement.  Team  accomplishments  can 
be  compared to locally-defined process  control 
standards for performance. Errors can  be  cate- 
gorized according to an  error classification 
scheme  to target specific Cleanroom practices  for 
improvement. 

Choosing  an  implementation  approach 

Cleanroom  software engineering represents a 
shift from a paradigm of traditional, craft-based 
practices  to rigorous, engineering-based prac- 
tices, specifically as follow. 

From: To: 

Individual operations + Team operations 
Waterfall development + Incremental development 
Informal specification + Black box specification 
Informal design + Box structure refinement 
Defect correction + Defect prevention 
Individual unit testing + Team correctness verification 
Path-based inspection + Function-based  verification 
Coverage testing Statistical  usage  testing 
Indeterminate reliability + Certified  reliability 

A phased  approach to Cleanroom implementation 
enables  an  organization  to build confidence and 
capability through gradual introduction of new 
practices with corresponding  growth in process 
control. If organizational support and capability 
is sufficient for full implementation, the highest 
software  quality  and reliability afforded by Clean- 
room practices  can  be achieved. Otherwise, a 
phased implementation is recommended. In gen- 
eral, a software organization that  employs infor- 
mal methods of specification and design, relies on 
coverage testing and defect  correction to achieve 
quality,  and  has little experience  with  team-based 
operations,  can gain the  most benefit through an 
introductory implementation. This first phase in- 
troduces a comprehensive  set of practices  span- 
ning project management, development, and test- 
ing, but  without  the full formality of Cleanroom 
technology. Once  an organization successfully 
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completes a project using the  introductory  prac- 
tices, it has  prepared itself for a full implementa- 
tion. Likewise,  maturation from full to  advanced 
implementation can  occur  when  the  practices of 
the second  stage  have  been  successfully  demon- 
strated. 

Note that very few teams in reality will implement 
the  precise  set of practices defined within each 
implementation. Each  team  embodies unique 
skills, processes,  and  experiences  that  must be 
assessed  when choosing an  appropriate imple- 
mentation. It  is  often  the  case  that a team  can  best 
utilize practices from more  than one implemen- 
tation level. For example, a team using an  intro- 
ductory implementation may  have had prior 
experience  with  inspections  and  code reviews. 
Consequently, it may shift to a full or advanced 
implementation of the  system design and verifi- 
cation  practices.  Perhaps  another  mature Clean- 
room  team, using primarily advanced  practices, 
will  find the rigor of the  second  phase of system 
specification to  be sufficient. 

The well-known Software Engineering Institute 
Capability  Maturity Model provides a useful as- 
sessment  technique to help define the  best 
Cleanroom approach.32,33 In general, higher as- 
sessment  levels  indicate  that  an organization can 
successfully  adopt a more  complete  Cleanroom 
implementation. Organizations assessed at levels 
1 and 2 will likely benefit from an  introductory 
implementation, at levels 2 and 3, a full imple- 
mentation,  and at levels 4 and 5 ,  an  advanced 
implementation. 

Phased  implementation  on  the 
AOEXPERT/MVS  project 

AOEXPERT/MVS is the largest completed Clean- 
room  project in IBM, both in terms of lines of code 
and  project staffing. The project  adopted  an in- 
troductory implementation of the Cleanroom pro- 
cess for  development, and realized a defect  rate 
of 2.6 errorshuoc, measured  from  the first exe- 
cution of the code.  This  represents all errors  ever 
found in testing and installation at  three field test 
sites. Development productivity averaged 486 
lines of code  per  person-month, including all de- 
velopment  labor  expended in specification, de- 
sign, and testing. In  short,  the AOEXPERT/MVS 
team  produced a complex  systems  software  prod- 
uct with an  extraordinarily low error  rate, while 
maintaining high productivity.  The following 
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summary of the  project  is  elaborated in Reference 
15. 

The AOEXPERT/MVS product. AOEXPERT/MVS is 
a decision-support facility that  uses artificial 

Few teams will implement 
the precise set of 

practices defined within 
each implementation. 

intelligence (AI) for predicting and preventing com- 
plex operating problems in an MVS environment. 
Primarily a host-based product, it runs in a 
Netview* environment on MVS with interfaces to 
several other IBM program products. A workstation 
component running under Operating  System/2* 
(0s/2*) in the Personal System/2* (PS/~*)  environ- 
ment provides the user interface for the definition 
and management of the business policies for system 
operation to  be applied by AOEXPERTMVS to avoid 
and correct system problems. 

The  complex development environment required 
expertise in MvS and its  subsystems,  expert  sys- 
tems technology, real-time tasking, message 
passing, and  windows-based programming for  the 
workstation  component.  The  product  was imple- 
mented using PL/I, TIRS* (an AI shell), PL/X (an 
internal IBM system language), assembler, JCL, 
and REXX for host software,  and C and Presen- 
tation Manager* for workstation  software.  The 
environment  was  further complicated by  two ma- 
jor  dependencies on IBM system management 
products  that  were developed by  other IBM lab- 
oratories. 

The  project began in July 1989, with the first eigh- 
teen months spent in the requirements phase. De- 
velopment team staffing took place during this ini- 
tial stage. Four departments were ultimately 
established: one for requirements, two for devel- 
opment, and one for testing. Various support orga- 
nizations provided market development, quality 
assurance, information development, usability 
analysis, and business and legal services. 
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Table 3 The AOEXPERT/MVS implementation of the 
Cleanroom process 

The project team was newly formed, with mem- 
bers ranging from programmer retrainees to  sen- 
ior programmers with 25 years of development 
experience. The project team averaged 50 people 
throughout development. Experience in the  prod- 
uct domain was mixed, with considerable  expe- 
rience in application development and AI, but 
very little in MVS and system programming. As it 
turned  out, AI skills were utilized about 10 percent 
of the time during development, while MVS and 
system programming skills were needed 90 per- 
cent of the time. 

This was the first Cleanroom development experi- 
ence for all participants, with the exception of one 
development manager and two developers. Conse- 
quently, extensive education and  training were re- 
quired to implement Cleanroom practices. The 
overall project schedule had been established in late 
1989, prior to  the decision to use the Cleanroom 
process. Given the schedule and  mix of skills  and 
experience levels, the Cleanroom process was first 
met with healthy skepticism. The team had to grap- 
ple with three important factors at once: a new 
team, little experience in the subject domain,  and 
the new Cleanroom development process. 

Defining an introductory  implementation. The deci- 
sion to use the Cleanroom process was made in the 
second quarter of 1990, a year after the project 
started and six months prior to the beginning of 
development. Due to the aggressive project sched- 
ule, the large size of the organization, the lack of 
prior Cleanroom experience, and the limited 
amount of training  time  available, the management 
and technical team decided on a phased implemen- 
tation of the Cleanroom approach. As summarized 
in Table 3, the team defined an introductory ap- 
proach that included team-based operations, exter- 
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nal  specification of behavior using intended func- 
tions, design expressed in a Process Design 
Language (PDL) with automatic target translation 
(for PWI), and staged delivery of each increment to 
independent testers for first execution. In addition 
to the introductory practices, two full practices 
were used: incremental development and team- 
based correctness verification of every line of code. 
While  it was agreed that statistical testing would be 
very effective, the  test team did not believe it could 
learn and apply the methodology in  time for the first 
increment. The greatest concern was the late start 
on defining a usage probability distribution, a task 
normally initiated as soon as  the functional speci- 
fication is available. The  test team initially  followed 
the spirit if not the form of usage  testing, with a 
testing approach based on expected customer us- 
age. Later, statistical usage testing was employed 
for a significant subset of the product, the worksta- 
tion component, which accounted for approxi- 
mately 40 percent of total product code. 

Getting started. Cleanroom  education  was  pro- 
vided  to  the  entire  project, with mandatory man- 
agement participation. To  further define the use 
of Cleanroom process in the project environment, 
a process working group  was formed to document 
the AOEXPERTiMVS Cleanroom development pro- 
cess, to establish and maintain project  proce- 
dures,  standards,  and  conventions,  to  establish 
and maintain a measurement and improvement 
subprocess, and to  provide a formal mechanism 
to resolve process issues and make improvements. 
Each major project functional area, including ar- 
chitecture, host development, workstation devel- 
opment, test, configuration management, and qual- 
ity assurance, was represented on the process 
working group. The group documented a compre- 
hensive set of procedures and standards for an in- 
tegrated, Cleanroom-based software development 
process. This document and its subsequent use by 
the team was critical in  achieving acceptance and 
ownership of the process by the team. Changes to 
the process required approval by  the process work- 
ing group and management. During the develop- 
ment of AOEXPERT~VS, a number of useful process 
revisions resulted from suggestions by team mem- 
bers in periodic meetings  held to improve the de- 
velopment process. 

Applying the introductory implementation. The 
decision to use  the  Cleanroom  process  was  made 
rather  late in the  project after the  product  func- 
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tional specification (PFS) document was almost 
completed.  The PFS is required for IBM program 
product  development,  but it is not  an  adequate 
replacement for a Cleanroom specification, as it 
contains  only a subset of the information re- 
quired. The AOExPERT/MVS team decided to com- 
plete the PFS, and then  produce a more formal 
black  box,  incremental specification. The formal 
specification used precise English descriptions in 
conjunction with intended  functions to specify 
the external  behavior of the  increments. 

Following specification, project technical leaders 
created  an  incremental  development plan that  de- 
fined the functional content,  development  sched- 
ule, and resource  requirements  for  three  software 
increments. Although the project completion date 
had been established earlier,  substantial flexibil- 
ity remained for scheduling increment develop- 
ment and testing within the  overall  schedule of 12 
months.  Historical  productivity  and  defect  rates 
from comparable traditionally-developed applica- 
tions were reviewed and the schedules were ad- 
justed based on historical Cleanroom data, personal 
experience, and  confidence. The first increment 
was planned to contain the least function of the 
three, in order to quickly familiarize the project 
team with the new Cleanroom process and devel- 
opment environment. Development of the first in- 
crement required two and  one-half months, with the 
second and  third increments requiring three and 
one-half months each. 

Eight principal functional components  were  de- 
fined for AOEXPERT/MVS and organized into  func- 
tional content comprising the  three  increments. 
Each  component was assigned to a team  com- 
posed of from one  to five developers, with each 
team augmented by an  architect  and a tester. 
Team  membership remained stable  throughout 
development of all three  increments, helping to 
ensure  continuity  and  growth of expertise  and  ca- 
pability. A functional management approach was 
adopted  because  each  team  consisted of people 
from different departments.  Since  each  team had 
a designated team leader, management ownership 
was assigned based on the team  leader.  Thus, a 
manager was  responsible  for all teams led by 
members of the manager’s department.  This  pro- 
cess worked well, but  required daily communi- 
cation  between managers, usually in the form of 
morning status meetings where  schedules,  plans, 
resources,  and  performance  were  addressed. 
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Following increment planning, development began 
for the first increment. It immediately became ob- 
vious that the developers lacked a good understand- 
ing of the  entry criteria for team correctness veri- 
fication reviews. Most understood how to perform 
verification, but underestimated the level of rigor 
and precision required in the design material. For 
example, intended functions documented in many 
of the early first increment designs precisely spec- 
ified intended behavior for normal or steady-state 
operation, but failed to specify intended behavior 
for error conditions, exception processing, and un- 
expected input. As a result, the designs could not be 
verified for correctness. 

To address  this problem, project management de- 
cided  that a demonstration verification review of 
an  actual first increment design should  be held as 
early as possible. A senior-level programmer was 
asked to prepare a design for the review. When 
the design was ready, his five-member team  con- 
ducted a formal correctness verification review, 
with the remainder of the AOEXPERT/MVS organi- 
zation, numbering about 45 people, in attendance 
as  observers.  Everyone in attendance had a copy 
of the  material and followed along with  the review 
team. The  review  lasted  about  three  hours, with 
the design failing to pass  the verification process. 
This  outcome  proved to  be an invaluable teaching 
tool for the  project team. Most were  surprised 
that  the design did not  pass, and even  more  sur- 
prised at  the  number of changes  required to make 
it verifiable. The demonstration  clearly  showed 
the  team  what was actually  expected in a Clean- 
room review, and definitely saved a substantial 
amount of time and frustration in the remainder of 
the project. Since  the first increment  was rela- 
tively small and  straightfonvard,  the team was 
able to  learn how to correctly apply the Clean- 
room  approach  and still make the first delivery 
date. 

Cleanroom facilitators. The AOEXPERT/MVS proj- 
ect benefited from people with prior  Cleanroom 
experience,  who played dual roles as team mem- 
bers and Cleanroom methodology consultants. 
These  people  served as  teachers and advisors, 
providing guidance on how to write verifiable de- 
signs and  conduct effective verification reviews. 
Equally  important  was  the  encouragement  they 
gave and confidence they instilled in their peers 
through their example and coaching. During the 
first increment of development,  one of these  ex- 



AOEXPERT/MVS  Industry  AOEXPERT/MVS 1 
Project  Expectation  Project  Results 

Incre-  KLOC  Errors  Projected  Actual  Errors/ 
ment 

KLOC 
at 30/ Errors  Software  KLOC 

Errors 

1 16 480 64 43 
2 50 1500 200 41  0.8 

2.7 

3  41  1230  164  97  2.4 

Subtotal 107 3210  428 181 1.7 

System 
testing 107  93  0.9 

Total 107 3210  535  274  2.6 

" - - - 

- - - 

Where I 
Projected errors included increment testing projected 
at 4 errors/KLOC,  and system testing at 1 error/KLOC 
Actual  software errors were measured  from the first 
execution 
System testing  included system, performance,  and 

perts  was  present at every verification review  to 
ensure  the methodology was followed, especially 
with respect  to application of the  correctness  ver- 
ification conditions. During development of the 
second and third increments,  other  team mem- 
bers, now with  experience in the Cleanroom pro- 
cess, joined with  the original experts  to form  a 
core  group of five to six facilitators  who  served  a 
key role in acceptance, application, and  improve- 
ment of the Cleanroom  process. 

Team  verification  reviews. The  Cleanroom  cor- 
rectness verification process  was  closely fol- 
lowed. A check  was  made prior to  every review 
to  ensure  that  the  entry criteria  were satisfied, 
and a disciplined process of correctness condition 
verification for  every  control  structure  was fol- 
lowed during the  review  process. A moderator 
was assigned, usually one of the  Cleanroom fa- 
cilitators, to  ensure  that  the reviews were con- 
ducted  properly, and that all issues  were  recorded 
and all changes reverified. The  author of the  de- 
sign under verification typically led the  team 
through the review. Also present  were  a  key  re- 
viewer, usually the  component team leader  who 
had a  broad  understanding of the  component 
function,  and  other  reviewers, typically members 
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required  to  be distributed to all reviewers  at  least 
48 hours prior to  the review, and all reviewers 
were  expected to have  read  the  materials  before 
attending the review. 

Quality  results. The AOEXPERT/MVS testing  pro- 
cess  was  composed of two  phases,  increment 
testing and  system testing. (In a full implementa- 
tion of the Cleanroom  process, all testing would 
be regarded as system testing.) After examining 
data from prior Cleanroom projects,  the  test  team 
estimated  expected  defect  rates in testing and 
customer  use of the  product.  Four  errors/KLoc 
were estimated for increment testing, an addi- 
tional 1 error/KLoc for system testing, and  an  ad- 
ditional 0.5 error/KLoc  for  customer use after  the 
product  was  shipped.  These  estimates  were sig- 
nificantly lower than  those  customarily found for 
comparable  products,  but the team believed that 
such aggressive goals should be  set,  even for a 
first-time Cleanroom effort. 

Table 4 summarizes  error  rates  for  the  three  prod- 
uct increments,  measured from the first execution 
of the  code. For comparison,  projected  errors 
are  shown  based  on an average industrial rate of 
30 errors/nocz0 for traditional  development 
projects  measured from the first execution of the 
code, with a  total of  3210 errors  expected  at  this 
rate.  The  test team estimate of 5 errors/KLoc (4 in 
increment testing plus 1 in system testing) totaled 
to 535 errors  expected. 

The AOEXPERTIMVS team  produced  the  complex 
systems  software  product with only 274 errors 
found in  all testing. This  error  rate of  2.6 
errors luoc was  over  an  order of magnitude bet- 
ter  than  the  industry  average of 30 errors/moc, 
and  nearly halved the  projected  Cleanroom  rate 
of 5 errors/KLoc. A number of system  compo- 
nents  completed testing with no errors found. For 
example, five of the eight components in the first 
16 KLOC increment  proved  to be error-free in all 
testing. In addition, no  operational  errors  what- 
soever were found following product installation 
at  three  customer  test  sites, and no post-ship  cus- 
tomer  errors  have  been  reported  to  date. 

Productivity  results. Productivity  estimates  for 
AOEXPERTMVS were  based on rates for compa- 
rable, traditionally-developed products, modified 
by expected gains from the Cleanroom process 
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and  the belief that  productivity would improve 
with each  successive  increment.  Productivity 
was estimated  at 300 lines of code  per  person- 
month (LOCPM) for  the first increment, 350 for the 
second  increment,  and 400 for the third incre- 
ment.  Table 5 shows  actual  productivity  rates 
achieved,  based  on  total lines of code divided by 
the  person-months  accumulated  for formal spec- 
ification through testing of the final increment. 
The  person-months include development staff 
only. The  project achieved very competitive  pro- 
ductivity  rates,  exceeding  the  projected  rates by 
36 percent overall. This  substantial improvement 
in productivity  was  a significant factor in enabling 
the project to meet its  schedule. The original code 
size  estimate was 72 KLOC, but  the  actual  code 
size  was significantly larger (107 KLOC) due pri- 
marily to unexpected  growth in the  workstation 
software  (from 10 to 42 KLOC). The growth re- 
sulted from the lack of familiarity with 0s/2 Pre- 
sentation Manager and unanticipated  require- 
ments.  Thus, while actual  productivity  was  a 36 
percent improvement over  the  projected  rate,  ac- 
tual  code  size was 49 percent larger than  planned. 
The increased  productivity enabled the team to 
stay on schedule during the development. 

Observations. From  the beginning of the  project 
through  delivery  and  testing of the first incre- 
ment,  many  developers  and  testers  were  some- 
what  skeptical  about  the  Cleanroom  approach. 
The  real  turnaround in acceptance  occurred  after 
the first increment was delivered and tested and 
so few errors  were  found. In fact,  several  testers 
were  upset  and  worried  when  they failed to find 
any  errors; ironically, so were  the  developers. 
But  this soon changed for everyone-defects 
quickly  became  the  exception,  not  the rule, and  a 
“right the first time” psychology took hold. 

The challenges facing a  new  team in an unfamiliar 
environment  were  great,  and  schedules and re- 
sources  were  extremely tight. Nevertheless,  a 
new methodology was introduced,  taught, and 
implemented with substantial  success.  The pri- 
mary  success  factors in this implementation of 
Cleanroom  process  were  the use of an  introduc- 
tory implementation, early and ongoing manage- 
ment commitment,  incremental  development of 
system  function,  demonstration reviews for team 
education,  team-based  peer review of  all work 
products, full application of correctness verifica- 
tion, adherence to defect prevention practices, and 
the use of Cleanroom consultants and facilitators. 
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Table 5 AOEXPERVMVS productivity rates 

l ~ m -  KLQC Pr@Wed Aetuel %Actual 
m m  ProductlvDty  ProductlvDty Exceeds 

LOC/PM LOClPM Projected 

”~ . 

1 16 300 400 +33 
2 50 350 500 + 43 
3 41 400 513 + 28 

358 486 +36 
- 

AQerage 
- - 

Where the actual  productivity was the LOGEM 
measured from formal specification through testing 

The AOEXPERT/MVS experience is representative 
of the new level of quality  that is possible in soft- 
ware  development  today.  Cleanroom is a  practi- 
cal and  proven  alternative to  the high cost  and 
poor quality  frequently  seen in traditional devel- 
opment  processes.  As  evidence of its effective- 
ness  continues to accumulate,  the Cleanroom 
process will be increasingly adopted by organi- 
zations seeking competitive  business advantage. 
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