Adopting Cleanroom
software engineering
with a phased approach

Cleanroom software engineering is a theory-
based, team-oriented engineering process for
developing very high quality software under
statistical quality control. The Cleanroom process
combines formal methods of object-based box
structure specification and design, function-
theoretic correctness verification, and statistical
usage testing for reliability certification to produce
software approaching zero defects. Management of
the Cleanroom process is based on a life cycle of
development and certification of a pipeline of user-
function increments that accumulate into the final
product. Teams in IBM and other organizations
that use the process are achieving remarkable
quality results with high productivity. A phased
implementation of the Cleanroom process enables
quality and productivity improvements with an
increased control of change. An introductory
implementation involves the application of
Cleanroom principles without the full formality of
the process; full inplementation involves the
comprehensive use of formal Cleanroom methods;
and advanced implementation optimizes the
process through additional formal methods, reuse,
and continual improvement. The AOEXPERT/MVS
project, the largest IBM Cleanroom effort to date,
successfully applied an introductory level of
implementation. This paper presents both the
implementation strategy and the project results.

ero or near-zero defect software may seem

like an impossible goal. After all, the expe-
rience in the first generation of software devel-
opment has reinforced the seeming inevitability
of errors and persistence of human fallibility. To-
day, however, a new reality in software develop-
ment belies the first-generation experience.
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Cleanroom software engineering teams are able
to develop software at a level of quality and re-
liability that would have seemed impossible a few
years ago, and are doing so with high productiv-

ity.

Cleanroom software engineering is a managerial
and technical process for the development of soft-
ware approaching zero defects with certified re-
liability.'# The Cleanroom process spans the en-
tire software life cycle; it provides a complete
discipline within which software teams can plan,
specify, design, verify, code, test, and certify
software. The Cleanroom approach treats soft-
ware development as an engineering process
based on mathematical foundations, rather than
as a trial-and-error programming process,*”’ and
is intended to produce software with error-free
designs and failure-free executions.

In traditional, craft-based software development,
errors were accepted as inevitable, and program-
mers were encouraged to get software into testing
quickly in order to begin debugging. Programs
were subjected to unit testing and debugging by
their authors, then integrated into components,
subsystems, and systems for more debugging.
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Product use by customers resulted in still more
debugging to correct errors discovered in opera-
tional use. The most virulent errors were often the
result of fixes to other errors,® and it was not
unusual for software products to reach a steady-
state error population, with new errors introduced
as fast as old ones were fixed. Today, however,
craft-based processes that depend on testing and
debugging to improve reliability are understood
to be inefficient and ineffective. Experience has
shown that craft-based processes often fail to
achieve the level of reliability essential to a society
dependent on software for the conduct of human
affairs.

In the Cleanroom process, correctness is built
into the software by development teams through
a rigorous engineering process of specification,
design, and verification. The more powerful pro-
cess of team correctness verification replaces unit
testing and debugging, and software enters sys-
tem testing directly, with no execution by devel-
opment teams. All errors are accounted for from
first execution on, with no private unit testing
necessary or permitted. Experience shows that
Cleanroom software typically enters system test-
ing approaching zero defects and occasionally no
defects are found in all testing.

Certification (test) teams are not responsible for
“testing in” quality, which is an impossible task,
but rather for certifying the quality of software
with respect to its specification. Certification is
performed by statistical usage testing that pro-
duces objective assessments of product quality.
Errors, if any, found in testing are returned to the
development team for correction. If the quality is
not acceptable, the software is removed from
testing and returned to the development team for
reverification.

The process of Cleanroom development and cer-
tification is carried out in an incremental manner.
System functionality grows with the addition of
successive code increments in a stepwise integra-
tion process. When the final increment is added,
the system is complete. Because successive in-
crements are elaborating the top-down design of
increments already in execution, interface and
design errors are rare.

This paper describes key Cleanroom technologies
and sumrmarizes quality results achieved by
Cleanroom teams. It presents a phased approach
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to Cleanroom implementation based on the soft-
ware maturity level of an organization, and sum-
marizes the results of a substantial IBM Clean-
room project (AOEXPERT/MVS*) that successfully
applied a phased approach.

Cleanroom perspectives

The Cleanroom software engineering process
evolved from concepts developed and demon-
strated over the past 15 years by Harlan Mills and
colleagues.*>’ Cleanroom practices such as step-
wise refinement of procedure and object hierar-
chies, team verification of correctness, and sta-
tistical usage testing, have been successfully
applied in commercial and governmental soft-
ware projects over the past decade. Such prac-
tices may not be the rule in software development
today, but their use is growing as evidence of their
value continues to accumulate. In many cases,
software organizations considering a transition to
the Cleanroom process have operational prac-
tices in place, such as incremental development,
structured programming, and team reviews, that
support Cleanroom concepts. There are only a
few key concepts that must be understood and
accepted in a transition to the Cleanroom ap-
proach. !

Practice based on theory. To be effective, any en-
gineering discipline must be based on sound the-
oretical foundations. Cleanroom specification,
design, and correctness verification practices are
based on function theory, whereby programs are
treated as rules for mathematical functions sub-
ject to stepwise refinement and verification. *’
Cleanroom testing and quality certification prac-
tices are based on statistical theory, whereby pro-
gram executions are treated as populations sub-
ject to usage-based, stochastic sampling in formal
statistical designs.*%!! These theoretical founda-
tions form the basis of a comprehensive engineer-
ing process that has been reduced to practice for
commercial software development. A growing
number of successful, real-world Cleanroom
projects have demonstrated the practicality of
these methods.

Experienced Cleanroom practitioners and educa-
tors have developed comprehensive technology
transfer programs based on readily teachable,
time-efficient approaches to such Cleanroom
technologies as correctness verification and sta-
tistical testing. New practitioners will find that
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processes and tools exist that make the use of
these Cleanroom methods highly practical. 2

Right the first time. A primary objective of the
Cleanroom process is to prevent errors, rather than
accepting and accommodating errors through insti-
tutionalized debugging and rework. For this reason,
Cleanroom development teams do not unit test and
debug their code. Instead, they rely on rigorous
methods of specification and design combined with
team correctness verification. These Cleanroom
development practices, based on mathematical
foundations, yield quality approaching zero defects
prior to first execution by certification teams. The
purpose of testing in Cleanroom is the certification
of software quality with respect to specifications,
not the attempt to “debug in” quality.

Management understanding and acceptance of
this essential point—that quality will be achieved
by design and verification rather than by testing—
must be reflected in the development schedule.
Time spent in specification and design phases of
a Cleanroom development is greater than in tra-
ditional projects. Time spent in testing, however,
is likely to be less than traditionally required. The
manager who wanted to start coding immediately
because of the large amount of debugging ex-
pected was usually right, but would have diffi-
culty becoming part of a Cleanroom team.

Quality costs less. A principal justification for the
Cleanroom process is that built-in quality lowers
the overall cost to produce and maintain a prod-
uct. The exponential growth in the cost of error
correction in successive life-cycle phases is well
known. Errors found in operational use by cus-
tomers are typically several orders of magnitude
more costly to correct than errors found in the
specification phase.” The Cleanroom name,
taken from the semiconductor industry where a
literal cleanroom exists to prevent introduction of
defects during hardware fabrication, is a meta-
phor that reflects this understanding of the cost-
effectiveness of error prevention. In the Clean-
room process, incremental development and
extensive team review and verification permit er-
rors to be detected as early as possible in the life
cycle. By reducing the cost of errors during de-
velopment and the incidence of failures during
operation, the overall life-cycle cost of Clean-
room software can be expected to be far lower
than industry averages. For example, the IBM
COBOL Structuring Facility product, developed
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using Cleanroom techniques, has required only a
small fraction of its maintenance budget to be
consumed during years of field use.

Cleanroom project schedules have equaled or im-
proved upon traditional development sched-
ules.'*® In fact, productivity improvements of
factors ranging from one and one-half to five over

A primary objective
of the Cleanroom process
is to prevent errors.

traditional practices have been observed. > Ex-
perienced Cleanroom teams become remarkably
efficient at writing clear specifications, simplify-
ing and restricting designs to easily verifiable pat-
terns, and performing correctness verification.
Cleanroom is not a more time-consuming devel-
opment process, but it does place greater empha-
sis on design and verification to avoid waste of
resources in debugging and rework.

Cleanroom quality results

As summarized in Table 1, first-time Cleanroom
teams in 1BM and other industrial and governmen-
tal organizations have reported data on close to a
million lines of Cleanroom-developed software.
The code exhibits a weighted average of 2.3 er-
rors per thousand lines of code (errors/KLOC) in
testing. > This error rate represents all errors
found in all testing, measured from first-ever ex-
ecution through test completion. That is, it is a
measure of residual errors remaining following
correctness verification by development teams,
who do not execute the software. The projects
represent a variety of environments, including
batch, distributed, cooperative, and real-time
systems and system parts, and a variety of lan-
guages, including microcode, C, C++, JOVIAL,
FORTRAN, and PL/1.

Traditionally developed software does not un-
dergo correctness verification, but rather enters
unit testing and debugging directly, followed by
more debugging in function and system testing
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Table 1

Cleanroom project resuits

Year Project Quality and Productivity
1987 | IBM Flight Control: * Certification testing failure rate: 2.3 errors/KLOC
Helicopter Avionics System Component « Error-fix reduced 5X
33 KLOC (JOVIAL) » Completed ahead of schedule
1988 | IBM Cobol Structuring Facility: Product for « IBM’s first Cleanroom product '
automatically restructuring COBOL programs « Certification testing failure rate; 3.4 errors/KLOC
85 KLOC (PL/D) * Productivity 740 LOC/PM, 5X improvement
» 7 errors in first 3 years of use; all simple fixes
1989 | NASA Satellite Control Project 1 « Certification testing failure rate: 4.5 errors/KLOC
40 KLOC (FORTRAN) * 50% improvement in quality
* Productivity 780 LOC/PM
+ 80% improvement in productivity
1990 | Martin Marietta: « First compilation: no errors found
Automated documentation system » Certification testing failure rate: 0.0 errors/KLOC
1.8 KLOC (FOXBASE) (no errors found) .
1991 | IBM System Software » First compilation: no errors found
First increment 0.6 KLOC (C) * Certification testing failure rate: 0.0 errors/KLOC
(no errors found)
1991 |IBM AOEXPERT/MVS™ Product » Testing failure rate: 2.6 errors/KLOC
107 KLOC (mixed languages) « Productivity 486 LOC/PM
* No operational errors from Beta test sites
1991 |IBM Language Product « Testing failure rate: 2.1 errors/KLOC
First increment 21.9 KLOC (PL/X) )
1991 |IBM Image Product Component « First compilation: 5 syntax-errors
3.5KLOC(C) « Certification testing failure rate: 0.9 errors/KLOC
1992 | IBM Printer Application * Certification testing failure rate: 5.1 errors/KLOC
First increment 6.7 KLOC (C)
1992 |IBM Knowledge Based System Application * Testing failure rate: 3.5 errors/KLOC
17.8 KLOC (TIRS™) ‘
1992 | NASA Satellite Control Projects 2 and 3 « Testing failure rate: 4.2 errors/KLOC
170 KLOC (FORTRAN)
1993 | University of Tennessee: Cleanroom tool « Certification testing failure fate: 6.1 errors/KLOC
20 KLOC (C)
1993 | IBM 3490E Tape Drive « Certification testing failure rate: 1.2 errors/KLOC
86 KLOC (©)
1993 | IBM Database Transaction Processor « Testing failure rate: 2.4 errors/KLOC
First increment 21.5 KLOC (JOVIAL) * No design errors, all simple fixes
1993 |IBM LAN Software -1 » Testing failure rate: 0.8 errors/KLOC
First increment 4.8 KLOC (C) ‘
1993 | IBM Workstation Application Component * Testing failure rate: 4.1 errors/KLOC
3.0KLOC (JOVIAL)
1993 | Ericsson Telecom AB Switching Computer OS32 | » Testing failure rate; 1 error/KLOC
Operating System * 70% improvement in development productivity
350 KLOC (PLEX, C) * 100% improvement in testing productivity
NOTE: All testing failure rates are measured from first-ever KEY: KLOC = thousand lines of code
execution, P = person month ‘
X = (mathematical) times
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following. Measured from first execution, tradi-
tional software typically exhibits 25 to 35 or more
errors per thousand lines of code.” First-time
Cleanroom development teams can produce soft-
ware with quality levels at test entry at least an
order of magnitude better than traditionally de-
veloped software. The following summaries of
three selected projects from Table 1 illustrate the
results achieved.

IBM COBOL Structuring Facility. The COBOL
Structuring Facility, which consisted of 85 KLOC
of PL/I code, was the first Cleanroom product in
1BM. It employs proprietary, graph-theoretic al-
gorithms to automatically transform unstructured
COBOL programs into a functionally equivalent,
structured form for improved maintainability. Re-
lentless design simplification in the Cleanroom
process often results in systems that are small for
their functionality. For example, the Cleanroom-
developed prototype of the COBOL Structuring
Facility, independently estimated at 100 KLOC,
was developed using just 20 KLOC.

Comparable to a COBOL compiler in complexity,
the product experienced 3.4 errors/KLOC in all
statistical testing, measured from the first execu-
tion. Six months of intensive beta testing at a ma-
jor aerospace corporation resulted in no func-
tional equivalence errors ever found.* Just seven
minor errors were reported in the first three years
of field use, requiring only a small fraction of the
maintenance budget associated with traditionally
developed products of similar size and complex-
ity. The product was developed and certified by
a team averaging six members, with productivity
five times the IBM averages.'®

IBM 3490E tape drive. The 3490E tape drive is a
real-time, embedded software system developed
by a five-person team in three increments of C
design with a code total of 86 KLOC. It provides
high-performance tape cartridge support through
a multiple processor bus architecture that pro-
cesses multiple real-time input and output data
streams. The product experienced 1.2 errors/
KLOC in all statistical testing. To meet an urgent
business need, the third increment was shipped
straight from development to the hardware and
software integration team with no testing what-
soever. Customer evaluation testing with live
data by the integration team resulted in no errors
being found.
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In a comparison experiment, the project team
subjected a selected module to both unit testing
and correctness verification. Development of ex-
ecution scaffolding, definition and execution of
test cases, and checking of results required one-
and one-half person-weeks of effort and resulted
in the detection of seven errors. Correctness ver-
ification of the same program by the development
team required one and one-half hours, and re-
sulted in the detection of the same seven errors,
plus three additional errors.!

Ericsson 0S32 operating system. Ellemtel Tele-
communications Systems Laboratories is com-
pleting a 350 KLOC operating system for a new
family of switching computers for Ericsson Tele-
com AB. The code is written in PLEX and C. The
73-person, 33-month Cleanroom project experi-
enced productivity improvements of 70 percent
and 100 percent in development and testing, re-
spectively, and the product averaged under one
error/KLOC in all testing. Project management re-
ported that an average of less than one person-
hour was required to detect an error in team re-
views, compared to an average of 17.5 person-
hours to detect an error in testing. The project
allocated two days per week to prepare and con-
duct team reviews. The product team was hon-
ored by Ericsson as the single project that had
contributed the most to the company in 1993,

Cleanroom technologies

In the Cleanroom process, the objective of the
development team is to deliver software to the
test team that approaches zero defects; the ob-
jective of the test team is to scientifically certify
the quality of software, not to attempt to “testin”
quality. These objectives are achieved through
management and technical practices based on the
technologies of incremental development, box
structure specification and design, correctness
verification, and statistical quality certification.

Incremental development. Management planning
and control in Cleanroom is based on develop-
ment and certification of a pipeline of increments
that represent operational user function, accumu-
late top-down into the final product, and execute
in the system environment.? Following specifi-
cation of required external system behavior, an
incremental development plan is created to define
schedules, resources, and functional content of a
series of code increments to be developed and
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certified. The initial increment contains stubs
(small placeholder programs) that stand in for
later increments and permit early execution of the
code. The ultimate functionality of the code that
will replace the stubs is fully defined in subspeci-

When the final increment
is integrated, the
system is complete.

fications for team verification of each increment
prior to testing. As incremental development
progresses, stubs are replaced by corresponding
code increments, possibly containing stubs of
their own, in a stepwise system integration pro-
cess. When the final increment is integrated, the
system is complete and no stubs remain.

As each increment is integrated, the evolving sys-
tem of increments undergoes a new step in sta-
tistical usage testing for quality certification. Sta-
tistical measures of quality provide feedback for
reinforcement or improvement of the develop-
ment process as necessary. Early increments can
serve as system prototypes, providing an oppor-
tunity to elicit feedback from customers to vali-
date requirements and functionality. As inevita-
ble changes occur, incremental development
provides a framework for revising schedules, re-
sources, and function, and permits changes to be
incorporated in a systematic manner.

Box structure specification and design. Box struc-
tures provide a stepwise refinement and verifica-
tion process based on black box, state box, and
clear box forms for defining system behavior and
deriving and connecting objects comprising a sys-
tem architecture.>” Boxes are object-based, and
the box structure process provides a systematic
means for developing object-based systems.*
Specifically, the black box form is a specification
of required behavior of a system or system part in
all circumstances of use, defined in terms of stim-
uli, responses, and transition rules that map stim-
ulus histories to responses. The state box form is
refined from and verified against the black box,
and defines encapsulated state data required to
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satisfy black box behavior. The clear box form is
refined from and verified against the state box,
and defines procedural design of services on state
data to satisfy black box behavior, often intro-
ducing new black boxes at the next level of re-
finement. New black boxes (specifications) are
similarly refined into state boxes (state designs)
and clear boxes (procedure designs), continuing
in this manner until no new black boxes are re-
quired. Specification and design steps are inter-
leaved in a seamless, integrated hierarchy afford-
ing complete verifiability and traceability.

Box structures isolate and separate the creative
definition of behavior, data, and procedures at
each level of refinement. They incorporate the
essential property of referential transparency,
such that the information content of an abstrac-
tion, for example, a black box, is sufficient to
define and verify its refinement into state and
clear box forms without reference to other spec-
ification parts. Referential transparency is crucial
to maintaining intellectual control in complex sys-
tem developments. Box-structured systems are
developed as usage hierarchies of boxes, where
each box provides services on encapsulated state
data, and where its services may be used and re-
used in many places in the hierarchy as required.
Box-structured systems are developed according
to the following principles:® (1) all data to be de-
fined and retained in a design are encapsulated in
boxes, (2) all processing is defined by sequential
and concurrent use of boxes, and (3) each use of
a box occupies a distinct place in the usage hier-
archy of the system. Clear boxes play an impor-
tant role in the hierarchy by defining and control-
ling the correct operation of box services at the
next level of refinement.

Correctness verification. As noted, in the Clean-
room process, verification of program correct-
ness in team reviews replaces private unit testing
and debugging by individuals. Debugging is an
inefficient and error-prone process that under-
mines the mental discipline and concentration
that can achieve zero defects. The intellectual
control of software development afforded by
team verification is a strong incentive for the pro-
hibition against unit testing. “No unit testing”
does not, however, mean “no use of the ma-
chine.” It is essential to use the machine for ex-
perimentation, to evaluate algorithms, to bench-
mark performance, and to understand and
document the semantics of interfacing software.

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994




These exploratory activities are entirely consis-
tent with the Cleanroom objective of software
that is correct by design.

Elimination of unit testing motivates tremendous
determination in developers to ensure that the
code they deliver for independent testing is error-
free on first execution. But there is a deeper rea-
son to adopt correctness verification—it is more
efficient and effective than unit testing. Programs
of any size can contain an essentially infinite num-
ber of possible execution paths and states, but
only a minute fraction of those can be exercised
in unit testing. Correctness verification, however,
reduces the verification of programs to a finite and
complete process.

In more detail, all clear box programs are
composed of nested and sequenced control
structures, such as sequence, IF-THEN-ELSE,
WHILE-DO, and their variants. Each such control
structure is a rule for a mathematical function,”®
that is, a mapping from a domain or initial state to
a range or final state. The function mapping car-
ried out by each control structure can be docu-
mented in the design as an intended function. For
correctness, each control structure must imple-
ment the precise mapping defined by its intended
function. The Correctness Theorem* shows that
verification of sequence, IF-THEN-ELSE, and
WHILE-DO structures requires checking exactly
one, two, and three correctness conditions, re-
spectively. While programs can exhibit an essen-
tially infinite number of execution paths and
states, they are composed of a finite number of
control structures, and their verification can be
carried out in a finite number of steps by checking
each correctness condition in team reviews. Fur-
thermore, verification is complete, that is, it deals
with all possible program behavior at each level of
refinement. The verification process defined by
the Correctness Theorem accounts for all possi-
ble mappings from the domain to the range of
each control structure, not just a handful of map-
pings exercised by particular unit tests. For these
reasons, verification far surpasses unit testing in
effectiveness.

Statistical quality certification. In the Cleanroom
process, statistical usage testing for certification
replaces coverage testing for debugging. Testing
is carried out by the certification team based on
anticipated usage by customers. Usage probabil-
ity distributions are developed to define system

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

inputs for all aspects of usage, including nominal
scenarios as well as error and stress situations.
The distributions can be organized into probabi-

Debugging is an
inefficient and
error-prone process.

listic state transition matrices or formal gram-
mars. Test cases are generated based on random
sampling of usage distributions. The correct out-
put for each test input is specified with reference
to an oracle, that is, an independent authority on
correctness, typically the software specification.
System reliability is predicted based on analysis
of test results by a formal reliability model, and
the development process for each increment is
evaluated based on the extent to which the reli-
ability results attained objectives. In effect, sta-
tistical usage testing is based on a formal statis-
tical design, from which statistical inferences
of software quality and reliability can be de-
rived. 3,11,26

Coverage testing can provide no more than an-
ecdotal evidence of reliability. Thus, if many er-
rors are found, does that that mean that the code
is of poor quality and many errors remain, or that
most of the errors have been discovered? Con-
versely, if few errors are found, does that mean
that the code is of good quality, or that the testing
process is ineffective? Statistical testing provides
scientifically valid measures of reliability, such as
mean-time-to-failure (MTTF), as a basis for objec-
tive management decision-making regarding soft-
ware and development process quality.

Empirical studies have demonstrated enormous
variation in the failure rates of errors in opera-
tional use.® Correcting high-failure-rate errors
has a substantial effect on MTTF, while correcting
low-failure-rate errors hardly influences MTTF at
all. Because usage-based testing exercises soft-
ware the way users intend to use it, high-fre-
quency, virulent errors tend to be found early in
testing. For this reason, statistical usage testing is
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more effective at improving software reliability
than is coverage testing. Statistical testing also
provides new management flexibility to certify
software quality for varying conditions of use and
stress, by developing special usage probability
distributions for such situations. For example,
the reliability of infrequently used functions with
severe consequences of failure can be indepen-
dently measured and certified.

Adopting the Cleanroom process

Rigorous and complete Cleanroom implementa-
tion permits development of very high quality
software with scientific certification of reliability.
However, substantial gains in quality and pro-
ductivity have also occurred in partial Cleanroom
implementations. ® Evidence suggests that a
phased approach to implementation can produce
concrete benefits and afford increased manage-
ment control. The phased approach, combined
with initial Cleanroom use on selected demon-
stration projects, provides a systematic manage-
ment process for reducing risk in technology
transfer. Three implementation phases can be de-
fined and sequenced in a systematic technology
transfer process. The idea is to first introduce fun-
damental Cleanroom principles and several key
technologies in an introductory implementation.
As team experience and confidence grows, in-
creased precision and rigor can be achieved in a
full implementation of Cleanroom technology. Fi-
nally, an advanced implementation can be intro-
duced to optimize the Cleanroom process. Of
course, a particular Cleanroom implementation
can combine elements from various phases as
necessary and appropriate for the project envi-
ronment.

Introductory implementation. Key aspects of an in-
troductory implementation are summarized in the
first row of Table 2. The fundamental idea is to shift
from craft-based to engineering-based processes.
The development objective shifts from defect cor-
rection in unit testing to defect prevention in spec-
ification, design, and verification. As experience
grows, developers learn they can write software
that is right the first time, and a psychological
change occurs, from expecting errors to expecting
correctness. At the same time, the testing objective
shifts from debugging in coverage testing to reli-
ability certification in usage testing. Because Clean-
room code is of high quality at first execution,
testers learn that little debugging is required, and
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they can concentrate on evaluating quality. A man-
agement opportunity exists to leverage these tech-
nology shifts to develop systems on schedule with
substantial improvement in quality and reduction in
life-cycle costs.

All development and testing is accomplished by
small teams. Team operations provide opportu-
nities for cross-training and a ready forum for dis-
cussion, review, and improvement. All work
products undergo a team-based peer review to
ensure the highest level of quality. The size and
number of teams varies according to resource
availability, skill levels, and project size and com-
plexity. Teams are organized during project plan-
ning and their membership should remain stable
throughout development. Cooperative team be-
havior that leverages individual expertise is a key
factor in successful Cleanroom operations.

In any Cleanroom implementation, zero-defect
software is an explicit design goal, and measured
performance at a target level is an explicit reli-
ability goal. The Cleanroom practices necessary
to achieve these objectives require substantial
management commitment. Because compro-
mises in process inevitably lead to compromises
in quality, it is crucial for managers to understand
Cleanroom fundamentals—the philosophy, pro-
cess, and milestones— and demonstrate unequiv-
ocal support. Management commitment is essen-
tial to successful introduction of the Cleanroom
process.

A key aspect of customer interaction is to shift
from a technology-driven to a customer-driven
approach, whereby system functional and usage
requirements are subject to extensive analysis
and review with customers to clearly understand
their needs. Maintaining customer involvement in
specification and certification helps avoid devel-
oping a system that approaches zero defects but
provides the wrong functionality for the user.

Unlike the traditional life cycle of sequential
phases, the Cleanroom life cycle is based on in-
cremental development. In an introductory im-
plementation, a project is scheduled and managed
as a pipeline of increments for development and
testing. Functional content and sequencing of in-
crements is typically based on a natural subdivi-
sion of system functions and their expected us-
age. Successive increments should implement
user function, execute in the system environ-
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ment, and accumulate top down into the final
product. This incremental strategy supports test-
ing throughout development rather than at com-
pletion. It also integrates system increments in

Management commitment is
essential to successful
introduction.

multiple steps across the life cycle, to avoid risks
of single-step integration of all system compo-
nents late in a project when little time or re-
sources remain to deal with unforeseen problems.

In an introductory implementation, a black box
specification is written that precisely defines re-
quired system functionality in terms of inputs,
outputs, and behavior in all possible circum-
stances of use, including correct and incorrect
use. The specification focuses on required system
behavior from the user’s viewpoint and does not
describe implementation details. At this level,
specifications are generally expressed in an outer
syntax of specification structures, such as tabular
formats or variants of Box Description Language
(BDL),® and an inner syntax of natural language.
Cleanroom specifications are important working
documents that drive design and certification ac-
tivities, and they must be kept current for effec-
tive team operations. Definition of system user’s
guides is initiated in parallel with specifications,
for elaboration and refinement throughout the de-
velopment.

In the design process of an introductory imple-
mentation, state and clear box concepts are im-
plemented using sound software engineering
practices, including stepwise refinement, struc-
tured programming, modular design, information
hiding, and data abstraction. Successive incre-
ments are specified and designed top-down
through stepwise refinement, with frequent team
review and discussion of design strategies.® Step-
wise refinement requires substantial look-ahead
and analysis, as successive design versions are
developed and revised. In this process, a relent-
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less team drive for design simplification can result
in substantial reductions in the size and complex-
ity of systems, for more efficient correctness ver-
ification and subsequent maintenance.

Design with intended functions is a fundamental
practice at the introductory level. High-level in-
tended functions originate in system specifica-
tions, and are refined into control structures and
new intended functions. Expressed primarily in
natural language, intended functions are recorded
as comments attached to key control structures in
designs. Intended functions precisely define re-
quired behavior of their control structure refine-
ments. Behavior is defined in functional, non-
procedural descriptions of the derivation of
output data from input data. Intended function
refinements are expressed in a restricted set of
single-entry, single-exit control structures with
no side effects, such as sequence, IF-THEN-ELSE,
WHILE-DO, and their variants. Each control struc-
ture may contain additional intended functions
for further refinement. This stepwise specifica-
tion and design process continues until no further
intended functions remain to be elaborated. In-
tended functions provide a precise road map for
designers in refining design structures, and are
essential to team verification reviews.

The last intellectual pass through a design occurs
in team-based correctness verification, another
fundamental practice in an introductory imple-
mentation. At the design level, verification re-
views prove correctness of program control
structures, unlike traditional code inspections
that trace program flow paths to look for errors.
The verification process is based on reading and
abstracting the functionality of control structures
in designs and comparing the abstractions with
specified intended functions to assess correct-
ness. Team members read, discuss, evaluate, and
indicate agreement (or not) that designs are cor-
rect with respect to their intended behavior. If
changes are required, the team must review and
verify the modifications before the designs can be
considered finished. Verification reviews provide
team members with deep understandings of de-
signs and their correctness arguments. Reviews
are conducted with the understanding that the en-
tire team is responsible for correctness. Ultimate
successes are team successes, and failures are
team failures. All specifications and designs are
subject to team review, without exception. Fol-
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Table 2 A phased implementation for Cleanroom practice

Introductory
Implementation

Mal Customer. . System
interaction. Specification -

« Document an introductory « Shift from technology- | « Shift from a + Shift from informal,
Cleanroom process. driven to customer- sequential throwaway specifica-

« Shift from craft-based to driven development. (waterfall) to an tions to precise,
engineering-based processes. | ¢ Analyze and clarify incremental process. working specifications

+ Shift from defect correction functional requirements | ¢ Define increments kept current through
in unit testing to defect with customers to that implement user the project life cycle.
prevention in specification, develop functional function, execute in « Define specifications
design, and verification. specifications. the system of system boundaries,

« Shift from debugging in * Analyze and clarify environment, and interfaces, and required
coverage testing to quality usage requirements with | accumulate topdown | extemal behavior in all

certification in usage testing.
« Shift from individual to small

team operations with team

review of all work products.
» Establish Cleanroom projects

customers to develop
usage specifications.
* Review and validate
functional and usage
specifications with

into the final product.
* Define and evolve an
incremental
development plan for
schedules, resources,

possible circumstances
of use, including correct
and incorrect use,

* Express specifications
in systematic forms

and provide commitment, customers. and increment content. | such as tables that
education, and recognition » Revise functional and » Carry out scheduled define required behavior
to teams. usage specifications as incremental in natural language.

*» Develop to schedule with necessary for changing development and * Develop and evolve
substantial quality requirements. testing with stepwise system user’s guides in
improvement and life cycle integration of parallel with
cost reduction. increments. specifications.

Full *» Document a full Cleanroom | « Educate customers in ¢ Define increments to | » Develop prototypes
Implementation process. Cleanroom to increase incorporate early as necessary to

» Increase development rigor value, cooperation, availability of validate customer
with box structure and responsiveness to important functions requirements
specification, design, and customer needs. for customer feedback | and operating
correctness verification. * Review black box and use. environment

* Increase testing rigor functional specifications | » Rapidly revise characteristics.
with scientific measures of with customers to incremental plans for | » Define black box
reliability. support increased rigor new requirements specifications in

« Establish larger Cleanroom in specification. and actual team systematic structures
Pprojects as teams of small * Review usage performance, and such as transition
tearns with experienced specifications with respond to schedule tables expressed in
leaders from previous customers to support and budget changes. conditional rules
projects. increased rigor in and precise

* Develop to schedule with statistical usage testing. natural language.
substantial quality and * Provide customers
productivity improvement with prototypes
and life cycle cost reduction. and accumulating

increments for

evaluation and feedback.
Advanced * Document an advanced * Assist customers in * Incorporate * Incorporate advances
Implementation Cleanroom process. leveraging the quality comprehensive in formal specification

* Establish a Cleanroom of Cleanroom- reuse analysis and methods into local
Center of Competency to developed software for reliability planning practices.
monitor Cleanroom competitive advantage. | in incremental * Develop guidelines for
technology and train and « Contract with customer development plans. specification formats
consult with teams. for reliability warranties | Plan increment and conventions based

» Establish Cleanroom projects | based on certification content to manage on team experience.
across the organization led with agreed usage project risk by early | » Apply mathematical
by experienced Cleanroom distributions and development of techniques in black
practitioners. reliability models. interface box specifications

* Develop to schedule with « Establish cooperative dependencies, critical | to define complex
substantial quality and processes with functions, and behavior with precision.
productivity improvements customers for recording | performance-sensitive | « Express black box
and life cycle cost reduction, | operational system processes. specifications where
even in emergency and usage to calibrate and appropriate with
adverse circumstances. improve reliability specification functions

certification. and abstract models.

* Develop a specification
review protocol for
team reviews based
on team experience.
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- System Design
- and

plementation

" Correctness
Verification

Statistical Testing -

: and L b impr
Reliability Certification = |

Shift from programming by

aggregation of statements to
design by stepwise refinement
of specifications.

Refine specifications into
structured, modular designs
using good software engineering
practices with substantial look
ahead and analysis.

Express designs in control
structures and case-structured
intended functions expressed in
natural language.

Conduct frequent team
development reviews to
communicate, simplify, and
improve evolving designs.
Conduct execution experiments
to document the system
environment and semantics of
interfacing software.

Shift from unit testing by
individuals to correctness
verification by teams.
Shift from path tracing in
code inspections to
functional analysis in
verification reviews.
Conduct demonstration
verification reviews to set
expectations and train
teams.

Verify all control
structures in team reviews
by reading, function
abstraction, and
comparison to intended
functions.

Verify all design changes
in team reviews and
deliver verified
increments to testing for
first execution.

» Shift from coverage testing
to usage testing.

« Define high-level usage
distributions in systematic
structures such as hierarchical
decision trees.

« Develop/acquire test cases
from a user perspective
based on system specifications
and usage distributions.
Evaluate quality of each
increment through analysis
of measures such as failure
rates and severity levels.

« Return low-quality increments
to development for additional
design and reverification.

« Shift from informal review
of lessons learned to a
systematic, documented
improvement process.
Measure team productivity,
quality, and cost,
and analyze for process
improvements.

Document improvements
to the introductory
implementation based on
lessons learned from each
increment.

Improve or sustain the
development process based
on quality results of
increment testing.

Assess customer satisfaction
with Cleanroom-developed
systems for process
improvements.

Refine black boxes
(specifications) into state boxes
(data designs) and state boxes
into clear boxes (procedure
designs) and new black boxes.
Define state boxes in data
designs and systematic structures
such as transition tables
expressed in conditional rules
and precise natural language.
Define clear boxes in control
structures and intended functions
expressed in conditional rules
and precise natural language.
Encapsulate syster data in
boxes and define processing

by use of box services.

Identify opportunities for reuse
of system components.

Improve introductory
practices through
increased precision and
formality in verification
reviews.

Improve verification by
introducing mental proofs
of correctness based on
box structure theory and
Correctness Theorem
correctness conditions.
Document and reuse
proof arguments for
recurring design patterns.
Simplify and standardize
designs where possible to
reduce proof reasoning.

« Establish reliability targets
and conduct statistical
usage testing for reliability
certification.

Define usage probability
distributions for all
circumstances of use in
formal grammers or state
transition matrices.

* Define altemnative
distributions for special
environments and critical
and unusual usage.

+ Use automated generators
to create test cases randomized
against usage probability
distributions.

Use reliability models to
produce statistical
reliability measures based
on analysis of test results.

Document improvements to
the full implementation
based on team decisions in
process reviews after each
increment.

Use baseline measurements
from introductory projects
to set quality and
productivity objectives.

« Improve or sustain the
development process based
on reliability measurements
of each increment.

Conduct causal analysis of
failures found in testing and
use to identify process areas
for improvement.

Conduct surveys of customer
satisfaction with Cleanroom-
developed systems for
process improvement.

Incorporate advances in formal
design methods into local
practices.

Use box structures to document
the precise semantics of
interfacing software.

Develop guidelines for design
formats and conventions based
on team experience.

Apply mathematical techniques
in state and clear box designs to
define complex behavior with
precision.

Develop a design review
protocol for team development
reviews based on team
experience.

« Establish libraries of reusable,

certified designs.

Incorporate advances in
formal verification
methods into local
practices.

Use trace tables as
necessary to support
mental proofs of
correcness.

Document written proofs
of correctness as required
for critical system
functions.

Develop verification
protocols and extended
proof rules for
application-, language-,
and environment-specific
semantics.

» Incorporate advances in
scientific software certification
methods into local practices.
Apply experience of
prior Cleanroom projects
and customers in setting
reliability targets.

Employ usage analysis to
validate functional
specifications and plan
increment content.

Use automated tools to
generate self-checking test
cases.

Collect customer usage

data to track conformance of
usage distributions to actual
field use.

Apply and evaluate multiple
reliability models for best
prediction of system
reliability in the development
environment.

Use the full rigor of statistical
process control to analyze
team performance.
Compare team performance
with locally-defined process
control standards for
performance.

Use error classification
schemes to improve specific
Cleanroom practices in
specification, design,
verification, and testing.
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lowing verification, increments are delivered to
the test team for first execution.

In an introductory implementation, usage testing
based on external system behavior replaces cover-
age testing based on design internals. Usage infor-
mation is collected by analyzing functional specifi-
cations and surveying prospective users (where
users may be people or other programs). Based on
this information, a high-level usage profile is devel-
oped, including nominal scenarios of use, as well as
error and stress situations. A usage profile can be
recorded in systematic structures such as hierar-
chical decision trees that embody possible usage
patterns in compact form. Next, test scenarios are
defined based on the usage profile. The idea is that
the test cases represent realistic scenarios of user
interaction, including both correct and incorrect us-
age. For example, if particular system functions are
used frequently in particular patterns with occa-
sional user mistakes, this usage should be reflected
in the test suite. At this stage, the usage profile may
not be extremely precise or detailed, but it does
contain sufficient information for the test team to
generate realistic test cases.

The effectiveness of the development process is
measured by system performance in testing with
respect to predetermined quality standards, such
as failure rates and severity levels. (More precise
statistical measures, such as MTTF and improve-
ment ratio, are introduced in the full implemen-
tation.) If test results show that the development
process is not meeting quality objectives, testing
ceases and the code is removed from the machine
for redevelopment and reverification by the de-
velopment team.

Process improvement is a fundamental activity in
an introductory implementation. The idea is to
shift from informal discussions of lessons learned
to a systematic, documented improvement pro-
cess. Baseline measurements of fundamental
project characteristics, such as quality, produc-
tivity, and cost, provide a basis for assessing pro-
gress and making improvements. The quality re-
sults of usage testing can guide changes to the
development process. In addition, customer sat-
isfaction with Cleanroom-developed systems can
highlight process areas requiring improvements.

Full implementation. Introductory Cleanroom im-
plementation establishes a framework for matur-
ing the process to a full implementation. As sum-
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marized in the second row of Table 2, full
implementation adds rigor to practices estab-
lished in the introductory phase through formal
methods of box structure specification and de-
sign, correctness verification, statistical testing,
and reliability certification. For a Cleanroom pro-
ject of substantial size and complexity, a team-
of-teams approach can be applied, whereby the
hierarchical structure of the system under devel-
opment forms the basis for organizing, partition-
ing, and allocating work among a corresponding
hierarchy of small teams.

An opportunity exists for more extensive cus-
tomer interaction in a full Cleanroom implemen-
tation. Customers can be provided with education
on Cleanroom practices to improve the effective-
ness of functional and usage specification analysis
and review. In addition, prototypes and accumu-
lating increments can be provided to customers
for evaluation and feedback.

Managers and team leaders can leverage Clean-
room experience .into additional flexibility in in-
cremental development to accommodate chang-
ing requirements, and shortfalls and windfalls in
team performance within remaining schedule and
budget. Increment planning can emphasize early
development of useful system functionality for
customer feedback and operational use.

In specification and design, prototyping and ex-
perimentation are encouraged to clarify and val-
idate requirements, and to understand and doc-
ument semantics of interfacing software. The
formal syntax and semantics of box structures are
used for black, state, and clear box refinements.
Black boxes and state boxes are recorded in an
outer syntax of formal structures, such as tran-
sition tables, with inner syntax expressed in pre-
cise conditional rules, often given as conditional
concurrent assignments combined with precise
natural language. In clear box design, intended
functions are recorded at every level of refine-
ment, expressed in conditional concurrent assign-
ments and precise natural language.

A box-structured system is specified and de-
signed as a hierarchy of boxes, such that appro-
priate system data are encapsulated in boxes, pro-
cessing is defined by using box services, and
every use of a box service occupies a distinct
place in the hierarchy. Box structures promote
early identification of common services, that is,
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reusable objects, that can simplify development
and improve productivity. Duplication of effort is
avoided when team members have an early
awareness of opportunities for use and reuse of
common services. Rigorous team verification re-
views are conducted for all program structures,
using mental proofs of correctness based on box
structure theory and the correctness conditions of
the Correctness Theorem.

Statistical testing involves a more complete and
experimentally valid approach than in an intro-
ductory implementation. Reliability objectives
are established and extensive analysis of antici-
pated system usage is carried out. Comprehen-
sive specifications of the population of possible
system inputs are defined in usage probability dis-
tributions recorded in formal grammars or state
transition matrices. Automated tools are used to
randomly generate test cases from the distribu-
tions, and the correct output for each test input is
defined based on the system specification. For
example, the IBM Cleanroom Certification Assis-
tant (CCA)? automates elements of the statistical
testing process based on a formal grammar model
for usage probability distributions. It contains a
Statistical Testcase Generation Facility for com-
piling distributions (expressed in a Usage Distri-
bution Language) and creating randomized test
cases. Reliability models are employed to mea-
sure system reliability based on test results, and
the development process for each increment is
evaluated based on the extent to which reliability
results meet objectives. The CCA provides an au-
tomated reliability model, the Cleanroom Certi-
fication Model, that analyzes test results to com-
pute MTTF, improvement ratio, and other sta-
tistical measures. Alternative distributions are
often employed to certify the reliability of special
aspects of system behavior, for example, infre-
quently used functions that exhibit high conse-
quences of failure.

Process improvement is established through re-
views, following completion of each increment,
to incorporate team recommendations into the
documented Cleanroom process. Causal analysis
of failures and comprehensive customer surveys
can provide additional insight into process areas
requiring improvement.

Advanced implementation. Key elements of an ad-
vanced implementation are summarized in the
third row of Table 2. At this level of experience,
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the Cleanroom process is optimized for the local
environment and continually improved through
advances in the software engineering technology.
A Cleanroom center of competency can be es-
tablished, staffed by expert practitioners to mon-
itor advances in Cleanroom technology and pro-
vide training and consultation to project teams.
The Cleanroom process can be scaled up to ever
larger projects and applied across an organiza-
tion. An opportunity exists to achieve Cleanroom
quality, productivity, and cost improvements
even in emergency and adverse system develop-
ments.

Product warranties may be possible in customer
contracts, based on certification with usage dis-
tributions and reliability models agreed to by both
parties. In the future, a capability for developing
software with warranted reliability could become
a major differentiating characteristic of software
development organizations. Customers can ben-
efit by capturing actual usage from specially in-
strumented versions of Cleanroom-developed
systems, to permit test teams to improve the ac-
curacy of usage distributions employed in certi-
fication.

Incremental development can be used to manage
project risk through early development of key in-
terfaces with pre-existing software, important
user functions, and performance-sensitive com-
ponents. Increments can also be defined to isolate
and reduce dependence on areas of incomplete or
volatile requirements, and to focus on early ini-
tiation of complex, long-lead-time components.
Advanced incremental development also in-
cludes systematic reuse and reliability planning, %
facilitated by such tools as the Cleanroom Reli-
ability Manager.” In this approach, libraries of
reusable components are searched for functions
identified in specification and top-level design. If
the reliability of candidate components is not
known, statistically valid experiments are con-
ducted to estimate reliability. If reliability of a
candidate component has previously been certi-
fied, the usage profile used in that certification is
compared with the new usage profile to determine
if the previous certification is valid for the new
use. Once reliability estimates exist for new and
reused components, an estimate of total system
reliability is generated through calculations based
on top-level transition probabilities between sub-
systems. The results of this analysis are used to
set reliability requirements for components, eval-
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uate the viability of component reuse, and factor
reliability risks into increment planning.

An advanced use of box structure specification in-
volves formal mathematical and computer science
models appropriate to the application. Formal black
box and state box outer syntax used in full Clean-
room implementation is combined with formal in-
ner syntax expressed as propositional logic, pred-
icate calculus, algebraic function composition, BNF
(Backus Naur form) grammars, or other formal no-
tation that affords a clear and concise representa-
tion of function. Clear box designs are expressed in
design languages for which target language code
generators exist, or in restricted subsets of imple-
mentation languages, thereby eliminating opportu-
nities for new errors in translation.

In verification reviews, trace tables are employed
where appropriate for analysis of correctness,
and written proofs are recorded for critical func-
tions, particularly in life-, mission-, and enter-
prise-critical systems. Application-, language-,
and environment-specific proof rules and stan-
dards provide a more complete framework for
team verification. Locally-defined standards have
been shown to be more effective than generic
standards in producing consistent practitioner
judgment about software quality.* In an ad-
vanced implementation, the documented process
includes environment-specific protocols for spec-
ification, design, and verification based on team
experience.

In an advanced approach to statistical testing,
Markov- or grammar-based automated tools can
be used to improve efficiency and effectiveness.
For example, the 1BM Cleanroom Certification
Assistant permits generation of any required
number of unique, self-checking test cases. In ad-
dition, the rich body of theory, analytical results,
and computational algorithms associated with
Markov processes have important applications in
software development.®® Both formal grammar
and Markov usage models can reveal errors, in-
consistencies, ambiguities, and data dependen-
cies in specifications early in development, and
serve as test case generators for statistical testing.
Initial versions of systems can be instrumented to
record their own usage on command, as a base-
line for analysis and calibration of usage distri-
butions in certification of subsequent system ver-
sions.
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An advanced implementation can benefit from a
locally-validated reliability model for software
certification. Just as locally-validated standards
enable more consistent practitioner judgment
about software quality, a locally-validated reli-
ability model will enable more accurate predic-
tion of operational reliability from testing results.

In an advanced implementation, the full rigor of
statistical process control can be applied to pro-
cess improvement. Team accomplishments can
be compared to locally-defined process control
standards for performance. Errors can be cate-
gorized according to an error classification
scheme to target specific Cleanroom practices for
improvement.

Choosing an implementation approach

Cleanroom software engineering represents a
shift from a paradigm of traditional, craft-based
practices to rigorous, engineering-based prac-
tices, specifically as follow.

From: To:

Individual operations
Waterfall development
Informal specification
Informal design

Defect correction
Individual unit testing
Path-based inspection
Coverage testing
Indeterminate reliability

Team operations
Incremental development
Black box specification

Box structure refinement
Defect prevention

Team correctness verification
Function-based verification
Statistical usage testing
Certified reliability

N I I A R N

A phased approach to Cleanroom implementation
enables an organization to build confidence and
capability through gradual introduction of new
practices with corresponding growth in process
control. If organizational support and capability
is sufficient for full implementation, the highest
software quality and reliability afforded by Clean-
room practices can be achieved. Otherwise, a
phased implementation is recommended. In gen-
eral, a software organization that employs infor-
mal methods of specification and design, relies on
coverage testing and defect correction to achieve
quality, and has little experience with team-based
operations, can gain the most benefit through an
introductory implementation. This first phase in-
troduces a comprehensive set of practices span-
ning project management, development, and test-
ing, but without the full formality of Cleanroom
technology. Once an organization successfully
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completes a project using the introductory prac-
tices, it has prepared itself for a full implementa-
tion. Likewise, maturation from full to advanced
implementation can occur when the practices of
the second stage have been successfully demon-
strated.

Note that very few teams in reality will implement
the precise set of practices defined within each
implementation. Each team embodies unique
skills, processes, and experiences that must be
assessed when choosing an appropriate imple-
mentation. It is often the case that a team can best
utilize practices from more than one implemen-
tation level. For example, a team using an intro-
ductory implementation may have had prior
experience with inspections and code reviews.
Consequently, it may shift to a full or advanced
implementation of the system design and verifi-
cation practices. Perhaps another mature Clean-
room team, using primarily advanced practices,
will find the rigor of the second phase of system
specification to be sufficient.

The well-known Software Engineering Institute
Capability Maturity Model provides a useful as-
sessment technique to help define the best
Cleanroom approach.’*® In general, higher as-
sessment levels indicate that an organization can
successfully adopt a more complete Cleanroom
implementation. Organizations assessed at levels
1 and 2 will likely benefit from an introductory
implementation, at levels 2 and 3, a full imple-
mentation, and at levels 4 and 5, an advanced
implementation.

Phased implementation on the
AOEXPERT/MVS project

AOEXPERT/MVS is the largest completed Clean-
room project in IBM, both in terms of lines of code
and project staffing. The project adopted an in-
troductory implementation of the Cleanroom pro-
cess for development, and realized a defect rate
of 2.6 errors/KLOC, measured from the first exe-
cution of the code. This represents all errors ever
found in testing and installation at three field test
sites. Development productivity averaged 486
lines of code per person-month, including all de-
velopment labor expended in specification, de-
sign, and testing. In short, the AOEXPERT/MVS
team produced a complex systems software prod-
uct with an extraordinarily low error rate, while
maintaining high productivity. The following
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summary of the project is elaborated in Reference
15.

The AOEXPERT/MVS product. AOEXPERT/MVS is
a decision-support facility that uses artificial

Few teams will implement
the precise set of
practices defined within
each implementation.

intelligence (Al) for predicting and preventing com-
plex operating problems in an MVS environment.
Primarily a host-based product, it runs in a
NetView* environment on MVS with interfaces to
several other IBM program products. A workstation
component running under Operating System/2*
(0s/2*) in the Personal System/2* (ps/2*) environ-
ment provides the user interface for the definition
and management of the business policies for system
operation to be applied by AOEXPERT/MVS to avoid
and correct system problems.

The complex development environment required
expertise in MVS and its subsystems, expert sys-
tems technology, real-time tasking, message
passing, and windows-based programming for the
workstation component. The product was imple-
mented using PL/, TIRS* (an Al shell), PL/X (an
internal IBM system language), assembler, JCL,
and REXX for host software, and C and Presen-
tation Manager* for workstation software. The
environment was further complicated by two ma-
jor dependencies on IBM system management
products that were developed by other IBM lab-
oratories.

The project began in July 1989, with the first eigh-
teen months spent in the requirements phase. De-
velopment team staffing took place during this ini-
tial stage. Four departments were ultimately
established: one for requirements, two for devel-
opment, and one for testing. Various support orga-
nizations provided market development, quality
assurance, information development, usability
analysis, and business and legal services.
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Table 3 The AOEXPERT/MVS implementation of the
Cleanroom process

The project team was newly formed, with mem-
bers ranging from programmer retrainees to sen-
ior programmers with 25 years of development
experience. The project team averaged 50 people
throughout development. Experience in the prod-
uct domain was mixed, with considerable expe-
rience in application development and AI, but
very little in MVS and system programming. As it
turned out, AI skills were utilized about 10 percent
of the time during development, while Mvs and
system programming skills were needed 90 per-
cent of the time.

This was the first Cleanroom development experi-
ence for all participants, with the exception of one
development manager and two developers. Conse-
quently, extensive education and training were re-
quired to implement Cleanroom practices. The
overall project schedule had been established in late
1989, prior to the decision to use the Cleanroom
process. Given the schedule and mix of skills and
experience levels, the Cleanroom process was first
met with healthy skepticism. The team had to grap-
ple with three important factors at once: a new
team, little experience in the subject domain, and
the new Cleanroom development process.

Defining an introductory implementation. The deci-
sion to use the Cleanroom process was made in the
second quarter of 1990, a year after the project
started and six months prior to the beginning of
development. Due to the aggressive project sched-
ule, the large size of the organization, the lack of
prior Cleanroom experience, and the limited
amount of training time available, the management
and technical team decided on a phased implemen-
tation of the Cleanroom approach. As summarized
in Table 3, the team defined an introductory ap-
proach that included team-based operations, exter-
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nal specification of behavior using intended func-
tions, design expressed in a Process Design
Language (PDL) with automatic target translation
(for pL/1), and staged delivery of each increment to
independent testers for first execution. In addition
to the introductory practices, two full practices
were used: incremental development and team-
based correctness verification of every line of code.
While it was agreed that statistical testing would be
very effective, the test team did not believe it could
learn and apply the methodology in time for the first
increment. The greatest concern was the late start
on defining a usage probability distribution, a task
normally initiated as soon as the functional speci-
fication is available. The test team initially followed
the spirit if not the form of usage testing, with a
testing approach based on expected customer us-
age. Later, statistical usage testing was employed
for a significant subset of the product, the worksta-
tion component, which accounted for approxi-
mately 40 percent of total product code.

Getting started. Cleanroom education was pro-
vided to the entire project, with mandatory man-
agement participation. To further define the use
of Cleanroom process in the project environment,
a process working group was formed to document
the AOEXPERT/MVS Cleanroom development pro-
cess, to establish and maintain project proce-
dures, standards, and conventions, to establish
and maintain a measurement and improvement
subprocess, and to provide a formal mechanism
to resolve process issues and make improvements.
Each major project functional area, including ar-
chitecture, host development, workstation devel-
opment, test, configuration management, and qual-
ity assurance, was represented on the process
working group. The group documented a compre-
hensive set of procedures and standards for an in-
tegrated, Cleanroom-based software development
process. This document and its subsequent use by
the team was critical in achieving acceptance and
ownership of the process by the team. Changes to
the process required approval by the process work-
ing group and management. During the develop-
ment of AOEXPERT/MVS, a number of useful process
revisions resulted from suggestions by team mem-
bers in periodic meetings held to improve the de-
velopment process.

Applying the introductory implementation. The
decision to use the Cleanroom process was made
rather late in the project after the product func-
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tional specification (PFS) document was almost
completed. The PFS is required for IBM program
product development, but it is not an adequate
replacement for a Cleanroom specification, as it
contains only a subset of the information re-
quired. The AOEXPERT/MVS team decided to com-
plete the PFS, and then produce a more formal
black box, incremental specification. The formal
specification used precise English descriptions in
conjunction with intended functions to specify
the external behavior of the increments.

Following specification, project technical leaders
created an incremental development plan that de-
fined the functional content, development sched-
ule, and resource requirements for three software
increments. Although the project completion date
had been established earlier, substantial flexibil-
ity remained for scheduling increment develop-
ment and testing within the overall schedule of 12
months. Historical productivity and defect rates
from comparable traditionally-developed applica-
tions were reviewed and the schedules were ad-
justed based on historical Cleanroom data, personal
experience, and confidence. The first increment
was planned to contain the least function of the
three, in order to quickly familiarize the project
team with the new Cleanroom process and devel-
opment environment. Development of the first in-
crement required two and one-half months, with the
second and third increments requiring three and
one-half months each.

Eight principal functional components were de-
fined for AOEXPERT/MVS and organized into func-
tional content comprising the three increments.
Each component was assigned to a team com-
posed of from one to five developers, with each
team augmented by an architect and a tester.
Team membership remained stable throughout
development of all three increments, helping to
ensure continuity and growth of expertise and ca-
pability. A functional management approach was
adopted because each team consisted of people
from different departments. Since each team had
a designated team leader, management ownership
was assigned based on the team leader. Thus, a
manager was responsible for all teams led by
members of the manager’s department. This pro-
cess worked well, but required daily communi-
cation between managers, usually in the form of
morning status meetings where schedules, plans,
resources, and performance were addressed.
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Following increment planning, development began
for the first increment. It immediately became ob-
vious that the developers lacked a good understand-
ing of the entry criteria for team correctness veri-
fication reviews. Most understood how to perform
verification, but underestimated the level of rigor
and precision required in the design material. For
example, intended functions documented in many
of the early first increment designs precisely spec-
ified intended behavior for normal or steady-state
operation, but failed to specify intended behavior
for error conditions, exception processing, and un-
expected input. As a result, the designs could not be
verified for correctness.

To address this problem, project management de-
cided that a demonstration verification review of
an actual first increment design should be held as
early as possible. A senior-level programmer was
asked to prepare a design for the review. When
the design was ready, his five-member team con-
ducted a formal correctness verification review,
with the remainder of the AOEXPERT/MVS organi-
zation, numbering about 45 people, in attendance
as observers. Everyone in attendance had a copy
of the material and followed along with the review
team. The review lasted about three hours, with
the design failing to pass the verification process.
This outcome proved to be an invaluable teaching
tool for the project team. Most were surprised
that the design did not pass, and even more sur-
prised at the number of changes required to make
it verifiable. The demonstration clearly showed
the team what was actually expected in a Clean-
room review, and definitely saved a substantial
amount of time and frustration in the remainder of
the project. Since the first increment was rela-
tively small and straightforward, the team was
able to learn how to correctly apply the Clean-
room approach and still make the first delivery
date.

Cleanroom facilitators. The AGEXPERT/MVS proj-
ect benefited from people with prior Cleanroom
experience, who played dual roles as team mem-
bers and Cleanroom methodology consultants.
These people served as teachers and advisors,
providing guidance on how to write verifiable de-
signs and conduct effective verification reviews.
Equally important was the encouragement they
gave and confidence they instilled in their peers
through their example and coaching. During the
first increment of development, one of these ex-
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Table 4 AOEXPERT/MVS error rates measured from
first execution

AOEXPERT/MVS Industry AOEXPERT/MVS
Project Expectation Project Results
Incre- KLOC Errors Projected Actual Errors/
ment at 30/ Errors Software KLOC
KLOC Errors
1 16 480 64 43 2.7
2 50 1500 200 41 0.8
3 41 1230 164 97 2.4
Subtotal 107 3210 428 181 1.7
System
testing 107 93 0.9
Total 107 3210 535 274 2.6
Where

« Projected errors included increment testing projected
at 4 errors/KI.OC, and system testing at 1 error/KLOC

e Actual software errors were measured from the first
execution

* System testing included system, performance, and
field testing

perts was present at every verification review to
ensure the methodology was followed, especially
with respect to application of the correctness ver-
ification conditions. During development of the
second and third increments, other team mem-
bers, now with experience in the Cleanroom pro-
cess, joined with the original experts to form a
core group of five to six facilitators who served a
key role in acceptance, application, and improve-
ment of the Cleanroom process.

Team verification reviews. The Cleanroom cor-
rectness verification process was closely fol-
lowed. A check was made prior to every review
to ensure that the entry criteria were satisfied,
and a disciplined process of correctness condition
verification for every control structure was fol-
lowed during the review process. A moderator
was assigned, usually one of the Cleanroom fa-
cilitators, to ensure that the reviews were con-
ducted properly, and that all issues were recorded
and all changes reverified. The author of the de-
sign under verification typically led the team
through the review. Also present were a key re-
viewer, usually the component team leader who
had a broad understanding of the component
function, and other reviewers, typically members
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of other teams whose components interfaced with
the designs under review. Review materials were
required to be distributed to all reviewers at least
48 hours prior to the review, and all reviewers
were expected to have read the materials before
attending the review.

Quality results. The AOEXPERT/MVS testing pro-
cess was composed of two phases, increment
testing and system testing. (In a full implementa-
tion of the Cleanroom process, all testing would
be regarded as system testing.) After examining
data from prior Cleanroom projects, the test team
estimated expected defect rates in testing and
customer use of the product. Four errors/KLOC
were estimated for increment testing, an addi-
tional 1 error/KLOC for system testing, and an ad-
ditional 0.5 error/KLOC for customer use after the
product was shipped. These estimates were sig-
nificantly lower than those customarily found for
comparable products, but the team believed that
such aggressive goals should be set, even for a
first-time Cleanroom effort.

Table 4 summarizes error rates for the three prod-
uct increments, measured from the first execution
of the code. For comparison, projected errors
are shown based on an average industrial rate of
30 errors/KLOC® for traditional development
projects measured from the first execution of the
code, with a total of 3210 errors expected at this
rate. The test team estimate of 5 errors/KLOC (4 in
increment testing plus 1 in system testing) totaled
to 535 errors expected.

The AOEXPERT/MVS team produced the complex
systems software product with only 274 errors
found in all testing. This error rate of 2.6
errors/KLOC was over an order of magnitude bet-
ter than the industry average of 30 errors/KLOC,
and nearly halved the projected Cleanroom rate
of 5 errors/KLOC. A number of system compo-
nents completed testing with no errors found. For
example, five of the eight components in the first
16 KLOC increment proved to be error-free in all
testing. In addition, no operational errors what-
soever were found following product installation
at three customer test sites, and no post-ship cus-
tomer errors have been reported to date.

Productivity results. Productivity estimates for
AOEXPERT/MVS were based on rates for compa-
rable, traditionally-developed products, modified
by expected gains from the Cleanroom process
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and the belief that productivity would improve
with each successive increment. Productivity
was estimated at 300 lines of code per person-
month (LOC/PM) for the first increment, 350 for the
second increment, and 400 for the third incre-
ment. Table 5 shows actual productivity rates
achieved, based on total lines of code divided by
the person-months accumulated for formal spec-
ification through testing of the final increment.
The person-months include development staff
only. The project achieved very competitive pro-
ductivity rates, exceeding the projected rates by
36 percent overall. This substantial improvement
in productivity was a significant factor in enabling
the project to meet its schedule. The original code
size estimate was 72 KLOC, but the actual code
size was significantly larger (107 KLOC) due pri-
marily to unexpected growth in the workstation
software (from 10 to 42 KLOC). The growth re-
sulted from the lack of familiarity with 0S/2 Pre-
sentation Manager and unanticipated require-
ments. Thus, while actual productivity was a 36
percent improvement over the projected rate, ac-
tual code size was 49 percent larger than planned.
The increased productivity enabled the team to
stay on schedule during the development.

Observations. From the beginning of the project
through delivery and testing of the first incre-
ment, many developers and testers were some-
what skeptical about the Cleanroom approach.
The real turnaround in acceptance occurred after
the first increment was delivered and tested and
so few errors were found. In fact, several testers
were upset and worried when they failed to find
any errors; ironically, so were the developers.
But this soon changed for everyone—defects
quickly became the exception, not the rule, and a
“right the first time” psychology took hold.

The challenges facing a new team in an unfamiliar
environment were great, and schedules and re-
sources were extremely tight. Nevertheless, a
new methodology was introduced, taught, and
implemented with substantial success. The pri-
mary success factors in this implementation of
Cleanroom process were the use of an introduc-
tory implementation, early and ongoing manage-
ment commitment, incremental development of
system function, demonstration reviews for team
education, team-based peer review of all work
products, full application of correctness verifica-
tion, adherence to defect prevention practices, and
the use of Cleanroom consultants and facilitators.
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Table 5 AOEXPERT/MVS productivity rates

Incre- KLOC Projected  Actual % Actual
ment - ‘Productivity Productivity Exceeds
: ‘ LOC/PM LOC/PM = Projected
1 16 300 400 +33
2 50 - 35 500 +43
3 4 400 513 +28
Average 358 486 +36
Where the actual pioductivity was the LOC/PM
measured from formal specification through testing

The AOEXPERT/MVS experience is representative
of the new level of quality that is possible in soft-
ware development today. Cleanroom is a practi-
cal and proven alternative to the high cost and
poor quality frequently seen in traditional devel-
opment processes. As evidence of its effective-
ness continues to accumulate, the Cleanroom
process will be increasingly adopted by organi-
zations seeking competitive business advantage.
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