
AS/400 software quality
management

by S. H. Kan
S. D. Dull
D. N. Amundson
R. J. Lindner
R. J. Hedger

This paper describes the software quality
management system for the Application
System/400@ (AS/400@) computer system. Key
elements of the quality management system
such as customer satisfaction, product quality,
continuous process improvement, and people are
discussed. Based on empirical data, recent
progress in several quality parameters of the
AS/400 software system are examined. The
quality action road map that describes the
various quality actions that were deployed is
presented, as are the other elements that enabled
the implementation of the quality management
system.

I BM develops and manufactures the Application
System/400* (AS/400*) computer system at its

Rochester, Minnesota, site. Generally available
to customers since August 1988, the initial release
of the AS/400 had 7.1 million lines of source code
in its software system-the base operating system
and licensed program products. Since then, many
new functions and enhancements have been
added with at least one new release each year.
The customer base has been expanding, with
more than 225 000 licenses at mid-year 1993. The
typical release usually has about two million lines
of new and changed source code. With such a
large development effort and so many customers,
continuous quality improvement is a necessity.
Indeed, focusing on quality has always been one
of the top priorities at IBM Rochester. The con-
cern of the site about quality can best be indicated
by its winning of the Malcolm Baldrige National
Quality Award in 1990, and its obtaining ISO 9000
registration for the entire site at the end of 1992.

In early 1990, IBM began deploying the corporate
strategy of market-driven quality (MDQ) to its di-
visions and business units. Capitalizing on the
new MDQ momentum and the ongoing effort, the
software development laboratory at IBM Roches-
ter quickly undertook several important activi-
ties: benchmarking studies of quality leaders such
as Motorola, Inc., and IBM Houston (which devel-
ops the NASA Onboard Shuttle flight software sys-
tem and has achieved defect-free quality’); assess-
ment of the AS/m development process; analysis of
in-process and field defect data to guide improve-
ment efforts; and development of a long-term qual-
ity improvement strategy. A quality action road
map was soon established, and deployment of key
action items followed immediately. These key
items included: the laboratory-wide implementa-
tion of the defect prevention process (DPP),2,3 a
strong focus on the design review and code inspec-
tion (DWCI) process (referred to as the “back to the
basics” focus in the laboratory), component test
improvement, departmental 5-UP measurements,
quality recognition based on peer nomination, and
others. Strong management commitment, the entire
team’s passion for quality, and the anticipation of
what the MDQ vision could bring about formed the
best climate for improvement actions.

OCopyright 1994 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

62 KAN ET AL. IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

Since the initial MDQ deployment, the AS/400 soft-
ware quality management system of IBM Roch-
ester has evolved significantly; it now encom-
passes all aspects of software quality. This paper
describes the key elements of the system: people,
product quality management (both in-process and
post-general availability [GA]), continuous pro-

There are five elements
of the AS/400 software

quality management system.

cess improvement, and customer satisfaction
management. Presented is the AS/400 quality road
map that describes the goals and key action items
that drive these elements. Included are examples
of the results achieved as described through em-
pirical data. Where appropriate, the climate for
quality improvement (such as management com-
mitment and the mind-set change of the entire
team) is also discussed.

It should be noted that discussions in the follow-
ing sections are about the AS/400 software quality
management system, and there are no “silver bul-
lets.” Many quality improvement techniques and
recommended solutions exist in the literature.
Putting these techniques into practice systemat-
ically and persistently makes the difference. It is
important to continue to look for new technology
for quality breakthroughs; it is equally important
to focus on implementation and to bridge the gap
between state of the art and state of practice.

Furthermore, we confine our discussions to the
two key ingredients of quality: reducing product
defects and improving customer satisfaction. The
lack of functional defects, or reliability, is the
most basic measure of quality. Customer satis-
faction, in contrast, represents the final evalua-
tion of the product and service by the customer,
based on all variables. Other quality attributes
such as performance, installability, usability, and
so forth are discussed only in the context of cus-
tomer satisfaction. Improving those quality at-

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

tributes is important. In IBM Rochester software
development, specialized groups address each of
those key attributes. However, detailed discus-
sions of them are beyond the scope of this paper.

AS/400 software quality management
system

After customers receive and use a product they
have chosen, they grade the product based on their
personal usage experience. If they experience
many problems or frustrations in using the prod-
uct, their opinion of the product will be negative.
If the product is essentially defect-free or solves
a key problem for their business, their opinion of
the product may be very positive. A quality man-
agement system must focus on reducing the num-
ber of defects that a customer experiences with a
product, and if a customer does experience a
problem, the quality management system must
ensure that the customer receives a quality “fk”
in an acceptable amount of time. In other words,
the end result of a quality management system is
to reduce defects and increase customer satisfac-
tion. These results are the key objectives of the
various elements of the AS/400 software quality
management system (SQMS), depicted in Figure 1.

There are five elements of the AS/400 SQMS: (1)
people, (2) in-process product quality manage-
ment, (3) continuous process improvement, (4)
post-GA product quality management, and (5) cus-
tomer satisfaction management.

As shown in Figure 1, before development begins,
competition, marketing, and customer require-
ments are analyzed, prioritized, and selected for
implementation on the basis of resources. These
analyses and activities provide direction for the
system and form the release definition for devel-
opment. A release plan is developed that defines
the detailed contents and schedules of a release.
The AS/400 sQMs also requires a quality plan. This
plan documents the specific quality actions from
the quality road map that will be leveraged in this
release. The quality road map describes the qual-
ity technologies that can be deployed across
many releases of ASBOO that will help achieve the
quality goals. During the development of a re-
lease, the people factor, the in-process quality
management element, the continuous process im-
provement element (which encompasses tools
and technology used in the development pro-
cess), and the overall release management are

KAN ET AL. 63

Figure 1 AS1400 software quality management system

CUSTOML

A C T I W
FOCUS

QUALITY
ROAD MAP

L

1
f

=KEY OBJECTIVES
COMPETITION

'i
SYSTEM

RELEASE
DEFINITION

SATISFACTION
MANAGEMENT

QUALITY
PRODUCT

MANAGEMENT
RELEASE CONTINUOUS

PROCESS
IMPROVEMENT

(POST-GA)

QUALITY
TOOLS/
TECHNOLOGY

1 (IN PROCESS)

PRODUCTQUALITY MANAGEMENT

DESIGN DEVELOP TEST DELIVER

RELEASE MANAGEMENT
(QUALITY, SCHEDULE, CONTENT)

I V J
the significant pieces affecting the deliverables.
When the release development is complete and
the product is delivered to customers, the post-GA
product quality management element and the cus-
tomer satisfaction management element are in full
operation. Feedback from customers is then in-
corporated into the customer requirements anal-
ysis, which influences the definition for future re-
leases.

The most important element of the quality man-
agement system is people. People must be highly
motivated and talented to execute and improve
the development processes to deliver a high-qual-
ity product to customers release after release,
with each release quality goal more challenging
than the previous one.

In-process product quality management is an-
other important element of the AS/400 SQMS. The
objective of this element is to measure the results

of the various process steps used in developing a
product. These in-process measurements help to
determine if the product is on target for achieving
product quality goals. Action plans are created to
improve the quality of functions that are not
meeting the quality plan goals. The release man-
agement process uses the in-process quality mea-
surements at checkpoints during the release to
assess the overall quality of the release. Content
and schedule are also critical parts of this assess-
ment.

Another very important element of the AS/400
SQMS is continuous process improvement. This
element provides a foundation for improving the
processes used in the development cycle. Process
improvement is triggered by defects found by cus-
tomers using the product; by the defect preven-
tion process (DPP), which is a mechanism for pre-
venting defects from recurring that are found
while developing the product; and by use of tools

64 KAN ET AL. IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

and technology that enable process automation,
increase defect discovery, or reduce defect injec-
tion. Process owners continually look for ways to
improve their processes and communicate im-
provements to their users.

The pOSt-GA product quality management ele-
ment addresses the problems that AS/400 custom-
ers may experience with software products, both
defect-oriented (requiring a fix) and non-defect-
oriented (user errors, usability problems, etc.).
The key objectives of this element are to fix cus-
tomer problems quickly, with quality, and to
learn from the errors that were made. The number
of problems customers report, defects found in
the product, defective fixes that impacted cus-
tomers, and the response time to problems are
measured. Some problems reported by customers
may become new requirements that in turn are
fed into the software planning process. Others
may result in suggested improvements to the soft-
ware development processes.

The objective of the customer satisfaction man-
agement element is to improve customer satis-
faction via a closed loop process. To understand
overall customer satisfaction and customer satis-
faction in different parameters of the product,
large-scale surveys are conducted. Analysis of
survey data identifies areas of the product that are
deficient. As a result, a set of new product re-
quirements is defined that can lead to improving
the product and hopefully to improving customer
satisfaction. Customer satisfaction management
also addresses critical problems that customers
are experiencing, problems that need immediate
and high-priority attention by developers, mar-
keting, and service teams. A team of people mon-
itors critical situations and reacts to quickly re-
solve problems before they seriously impact the
customer’s business. Such quick responsive ac-
tion can turn a dissatisfied customer into a satis-
fied one.

In the following subsections, each of these ele-
ments is described in more detail. Real examples
of results achieved from the AW400 SQMS are in-
cluded. For a better flow of the information, we
realign the order of discussion as follows:

Customer satisfaction
Product quality
- In-process
- Post-GA

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

Continuous process improvement
People

Customer satisfaction management. The ultimate
goal of IBM’S MDQ is to satisfy customers totally
with the products and services provided. The goal
for the AS/400 in customer satisfaction is to be the

The goal for the AS/400 in
customer satisfaction is to
be the undisputed leader

worldwide.

undisputed leader worldwide. To work toward
this goal, a customer satisfaction management
process is in place (Figure 2), and, in addition to
overall satisfaction, specific categories called
CUPRIMDA are monitored and measured for im-
provement:

Capability (function)
Usability (ease of use)
Performance (response time and throughput)
Reliability (defect-free)
Installability (ease of upgrade)
Maintainability (ease of maintenance)
Documentation (information)
Availability (nonoutage time)

Each of these categories has been assigned to an
owner and is measured at the system and product
level by continuous surveys. As Figure 2 indi-
cates, each CUPRIMDA owner is responsible for
gathering and analyzing customer satisfaction in-
formation from various sources (such as surveys,
problems reported, critical situations, competi-
tive analysis, and customer calls), identifying in-
hibitors for improvement, and recommending so-
lutions to improve customer satisfaction. When
the recommended solutions call for specific items
to be added or changed in the development plan,
formal plan change requests (PCRs) are created.
These solutions (PCRS) are reviewed by a core
team of category owners and chaired by a devel-
opment director. The director is also a member of
the system plan team and provides the necessary

KAN ET E

Figure 2 Customer satisfaction management process

CUSTOMER SURVEY COMMENTS
CUSTOMER PROBLEMS
CRITICAL SlTUATlONS
CALL-BACK INFORMATION
COMPETITIVE ANALYSIS

CUPRIMDA OWNERS
-INHIBITORS
-ACTIONS

CUSTOMER SATISFACTION CORE TEAM
-CUPRIMOA OWNERS
-CUSTOMER SATISFACTION MANAGER

I
PUBLISH

SYSTEM PLAN EVALUATION

focus in the plan change process. The core team
becomes the champion of customer satisfaction
line items for inclusion in the software planning
process. These line items are presented to the
system plan team for consideration in the official
plan. The plan team evaluates the line items
against other customer wants and needs and the
resources available to develop them.

In addition to initiating line items that address
improvement in their parameters, the CUPRIMDA
owners are responsible for (a) coordinating and
driving other actions to improve their parameters,
and (b) monitoring and projecting customer sat-
isfaction levels for their parameters.

On rare occasions, a customer may run into a
critical AS/400 problem. The causes of these prob-
lems vary and are often unique situations. When
they occur, the critical situation management pro-
cess goes to work. The primary focus of the team

assigned to use this process is to resolve the crit-
ical situation as fast as possible, and to turn a
dissatisfied customer into a satisfied customer.
This process enables people from development,
manufacturing, marketing, and service to imme-
diately address the critical problems. On-site
assistance may be required to understand the
problem or provide the fix. Causal analysis is
performed on these problems to prevent future
recurrences.

Figure 3 shows an example of customer satisfac-
tion in each of the CUPRIMDA categories based on
the IBM marketing and services (M&s) surveys. It
compares customer nonsatisfaction in each of the
CUPRIMDA categories as well as for the overall
operating system for the baseline (year-end 1989)
and two recent releases. Customer nonsatisfac-
tion is the percentage of customers that are either
neutral, dissatisfied, or very dissatisfied. Analyz-
ing customer satisfaction in terms of the nonsat-

66 KAN ET AL IBM SYSTEMS JOURNAL, VOL 33. NO 1, 1994

- RELEASE M r RELEASE N DISSATISFIED + VERY DISSATISFIED

n n

satisfied and very dissatisfied responses had
dropped to a very low level; however, additional
improvement is needed as the percentage of neu-
tral responses was still relatively high. For us-
ability, documentation, and availability, some im-
provement was observed. For performance, no
clear perceived improvement was observed; this
parameter is clearly a continuing challenge to our
improvement effort. (It should be noted that the
data pertain to customers’ satisfaction with soft-
ware based on surveys. We have been continually
focusing on performance improvement of the
software system. Furthermore, compared to the
original hardware models in 1988, at this writing
[mid-19931, AS/400s are 2 to 10 times more pow-
erful. Performance of the high-end AS/400 models
has increased an average of 60 to 70 percent a
year.)

In Figure 4, the quarterly trend of percentage of
nonsatisfied responses with the overall operating
system quality is shown for the AS/400 system and
a major U.S. competitor. The data are also from
the IBM M&S surveys. Data are shown starting
from the second quarter of 1990; earlier data on
the competitor are not available. For AS/400, the
data are based on the latest release in the field.

The M&S data show that AS/400 lagged behind the
competitor in overall satisfaction with the oper-

KAN ET AL. 67

Figure 4 Trend of overall customer satisfaction with
operating system: AS/400 and competitor

A COMPETITOR - 1

I AS/400 I
1

2Q90 4Q90 2Q91 4Q91 2Q92 4892 2Q93
QUARTER-YEAR

ating system before 1991. Since then, AS/400 has
gained substantially and had a lower percentage
of nonsatisfied responses than the competitor.
However, AS/400 lost this advantage in the second
half of 1992, only to be back on the improvement
trend again in 1993.

The data in Figure 4 show the volatile nature of
customer satisfaction, which needs constant at-
tention. Our analysis also indicated that overall
customer satisfaction is affected not only by prod-
uct quality, but also by factors such as marketing,
distribution, support, and very importantly, how
the company is perceived by the customers. Re-
cently, the AS/400 Division Director of Develop-
ment commissioned a special task force on cus-
tomer satisfaction, which is now evaluating all
possible factors affecting satisfaction from the
customer’sview and studying the mechanisms for
improvement.

Figure 5 shows the customer satisfaction data for
the AS/400 software system and the products of
three Japanese computer manufacturers (JCM).
The data are based on a survey conducted by IBM
Japan in 1992. In the figure, the first bar in each
group represents the percentage of nonsatisfied
AS/400 customers. The other three bars represent
data for three JCM products: A, B, and C, respec-

tively. AS/400 had the best customer satisfaction
overall and for specific categories except reliabil-
ity, which was ranked second. It should be noted
that the scale is the same for Figure 5 and Figure
3. The difference between the data in the two fig-
ures is intriguing. However, we cannot validly
compare data across the two figures because the
sources of data are two entirely different surveys.

Product quality management. To reduce defects
and improve reliability in all aspects, the dynam-
ics of software reliability must be understood.
Figure 6 shows a schematic representation of the
software reliability dynamics. When a software
product is developed and becomes available to
the marketplace, there is a certain level of latent
defects (defects that have not manifested them-
selves earlier). Customers use the product, detect
the defects, and report them. As defects are dis-
covered, reported, and fixed, the latent defect
rate in the system decreases. Over time, the sys-
tem becomes more and more stable, and its reli-
ability grows. This process is known as aging or
reliability growth. Fix quality and old code im-
provement are pertinent factors for a smooth aging
process. If fix quality is not perfect (for instance,
incorrect or with unintended consequences that
may or may not be found immediately), new errors
are injected into the system. Perhaps even more
significant is that defective fixes are detrimental to
customer satisfaction. From the customer’s per-
spective, encountering defects while using the
product is bad enough; if a fix turns out to be de-
fective, frustration will only multiply.

Theoretically, with aging, the reliability of the
software system can only get better, and the
curve will be a monotonic decreasing function.
This pattern of software reliability is different
from the hardware “bathtub” reliability pattern in
which reliability deteriorates at the end of the
product life when hardware components begin to
wear out (hence, the defect rate curves up again
at the tail). If fix quality is good, through normal
aging a software product could reach the six
sigma quality level4 within a few years. In reality,
after the first release of a software product, en-
hancements and new functions are made, and
new releases of the product become available at
regular intervals. The latent defect rate of the new
and changed source instructions (CSI) is usually
higher than that of the base system that has been
undergoing aging. Therefore, when a new release
is available, the overall system latent defect rate

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

Figure 5 Customer satisfaction: AS/400 and three Japanese computer manufacturers

n w
U

z

AS1400
JAPANESE COMPUTER MANUFACTURER A
JAPANESECOMPUTERMANUFACTURERB DISSATISFIED + VERY DISSATISFIED
JAPANESE COMPUTER MANUFACTURER C

NEUTRAL

CAPABILITY USABILITY PERFORMANCE RELIABILITY DOCUMENTATION OVERALL SYSTEM
SOFTWARE

will increase, and the reliability worsens slightly.
This phenomenon is represented by the spikes in
Figure 6, The more CSI a new release contains,
the higher a spike will become. If the base system
has been aging for many years and CSI quality has
not improved, the gap between the two (base
code quality and CSI quality) will continue to
widen. As a result, the overall latent-defect-rate
function may curve up again at the tail, resem-
bling the hardware “bathtub curve.”

Therefore, continuous improvement in CSI qual-
ity is necessary to minimize the impact of new
releases on system quality. CSI quality is the gen-
uine indicator of the quality of the development
process. It must be tracked separately using in-
process measurements and dealt with specifically
in quality road maps and plans. The following
subsection on in-process product quality manage-
ment describes how we manage CSI quality indi-
cators.

Figure 6 Software reliability dynamics

NEW RELEASES
(NEW AND CHANGED CODE)

I I
L ACCELERATED AGING

PROGRAMS)
(CUSTOMER BURN-IN

L- NORMAL AGING (FIX QUALITY)
- OLD CODE IMPROVEMENTS

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

Figure 7 Development quality improvement directions

8 30
8 REDUCE ERROR INJECTION - PROCESS

fE
E 25

- (DPP/TOOLS/COMMUNICATIONS/ -)

I
- PEOPLE
- TECHNOLOGYlTOOLS

8 20

15

10

5

0

f” REMOVE DEFECTS EARLY
DWCl FOCUS
IN-PROCESS METRICS

I // \ \ EARLY (IO)INTERFACE RESOLUTION

f” REMOVE DEFECTS EARLY
DWCl FOCUS

EARLY (IO) INTERFACE RESOLUTION
IN-PROCESS METRICS

10 UT CT GA

DEVELOPMENT PHASE

Another way to improve reliability (reduce de-
fects) relies on the concept of accelerated aging
(similar to accelerated testing of hardware). Many
customer burn-in programs are based on this con-
cept. In such programs, high-defect-finding cus-
tomers are invited to participate in special pro-
grams to accelerate the defect discovery process.
Customer burn-in programs are conducted when
programming development is complete and be-
fore the general availability of the product. Cus-
tomers are encouraged to move their production
applications over to the new release so that defect
discovery is effective. At the same time, the de-
velopment organization provides special techni-
cal support to these customers so that potential
risks to their businesses are minimized. The de-
fects found are fixed as quickly as possible with
excellent quality. Therefore, when the majority of
customers receives the new release after the
burn-in program(s), they will benefit from better
quality. The customer burn-in program for the
AS/400 is called the Customer Quality Partnership
(CQP) program (discussed later in this paper).

By understanding the software reliability dynam-
ics, we can address all possible aspects for better
reliability from the customers’ perspectives.

In-process product quality management. The in-
process product quality management element fo-

70 KAN ET AL.

c u e s on improving code quality, particularly CSI
quality. Two key directions must be followed to
improve CSI quality: (1) reduce the number of er-
rors injected during the development process,
and (2) remove defects as early as possible. Fig-
ure 7 illustrates these directions in relation to the
defect removal model. The upper curve is the de-
fect removal model derived from an actual defect
removal pattern by phase of development: high-
level design review (IO), low-level design review
(Il), code inspections (E), unit test (UT), compo-
nent test (CT), system test (ST), and general avail-
ability (GA). The lower curves are the intermedi-
ate and final goals that are to be achieved. They
represent more efficiency and effectiveness in the
development process (much lower error injection
and very early defect removal). The purpose is to
shift the peak of the curves in two directions
simultaneously: move to the left as much as pos-
sible and at the same time push the curve down-
ward. A key intermediate goal is to minimize the
defect rate during formal machine testing, there-
fore leading to low field-defect rates. In formu-
lating the AS/400 quality road map (see the sub-
section about the quality road map within the next
section), improvement actions for both directions
were addressed. For example, the pre-IO inspec-
tion process was developed to specifically reduce
error injection. Minibuilds, which provide the de-
veloper with a preintegration test environment,

IBM SYSTEMS JOURNAL, VOL 33, NO 1. 1994

Figure 8 AS/400 defect removal patterns
~~~ ~ ~ 

0 IO I1 12 UT  CT  ST  GA 

DEVELOPMENT  PHASE 

are a good example of an early-defect-removal- 
type action item that  was implemented. 

The two key directions expressed  by  the  above 
model are  also closely related to the axiom: do it 
right the first time. In  the  context of the model, 
this axiom has a threefold interpretation: 

The  best  scenario is to prevent  errors in the first 
place (i.e., reducing the  error injection in the 
process). 
When errors are introduced, improve the  front 
end of the development process to remove as 
many of them  as  soon as possible. Specifically, 
in the  context of the waterfall development pro- 
cess, rigorous design reviews and code inspec- 
tions are needed. 
If the project is beyond the design and code 
phases,  before  the  code  is integrated into  the 
system library, unit test  or  any additional tests 
by  the  developers  serve as the gatekeeper for 
defects  that  escaped  the  front-end  process.  In 
other  words,  the  phase of unit test or preformal 
test  (the development phase prior to system 
integration) is the last chance for the do-it-right- 
the-first-time  axiom. If  high defect rates are found 

IBM  SYSTEMS JOURNAL,  VOL 3 3 ,  NO 1. 1994 

after integration  (during  formal  machine testing 
phases), clearly the axiom is not achieved by the 
project. Failure to reduce the errors injected or to 
remove defects early results in higher  mainte- 
nance costs and negatively impacts customer sat- 
isfaction. 

We have made significant progress in AS/400 soft- 
ware quality since  year-end 1989. Because of the 
systematic implementation of improvement ac- 
tions within the  context of the quality road map, 
improvements in development effectiveness have 
been made. For  instance, overall error injection 
during the development process  was reduced by 
more than one-fourth. The front-end phases  (be- 
fore  system integration and build) were  executed 
better.  Because of the front-end improvement, a 
30 percent reduction in the overall formal ma- 
chine testing defect rate and a reduction in the 
system  test defect rate by more than 60 percent 
have  been achieved. Our overall strategy of push- 
ing for earlier defect removal and reducing error 
injection is being realized. Figure 8 shows a con- 
cise summary of the shifting of the defect removal 
patterns for the AS/400 development. The  patterns 
compared are  the 1989 baseline measurement,  the 

KAN ET AL. 71 



Figure 9 AS400 defect arrivals during  system  test  time 
frame 

I E l  SYSTEM TEST - 
I 7 s l l l l l l l l l l l l l l l l l l l l - l l l l l l l l l l l l l l l l l l l l l l l l l , '  I 

WEEK 

~ ~ ~~~ 

Figure 10 Reductions in AS/400 field defect rate 

YE89 4Q90 2Q91 1092 4Q93 4Q94 
QUARTER-YEAR 

most  recent  release  shipped,  the  projected model 
for  the  current  release  (under  development),  and 
the  current  release  results through the  I2  (code) 
inspection  phase.  Compared to the  baseline  pat- 
tern,  substantial  reduction in error injection has 
occurred at both  the  front-end  inspection  phases 
(IO, 11,12) and  the back-end formal testing phases 
(CT, ST). Also, the  peak of defect removal has 
been shifting from the  I2  phase  toward  the  I1 
phase.  The  defect removal pattern of the  current 
release  (under  development)  seems to  be quite 
close to  the model curve. 

72 KAN ET AL. 

Figure 9 shows  a  more detailed picture of the  de- 
fect  reduction during the last  phase of the  devel- 
opment cycle: system  test.  The  baseline model 
was derived  with  actual 1989 data  as  the basis. 
The  data  are  expressed  as  weekly  defect arrival 
rates  per  thousand  new  and changed source in- 
structions (KCSI). Data  points  denoted by trian- 
gles and  circles  represent two recent  releases; 
significant release-to-release  decreases  are  ob- 
served. Before testing is  concluded  for  each new 
release, the  defect  arrival  rates  must stabilize at 
an  extremely low level. And, as mentioned be- 
fore,  the C a p  customer burn-in program follows 
system  test to further  reduce  latent  defects. 

Not surprisingly, the field defect  rates of the 
AS/400 software  system  have  decreased signifi- 
cantly  over  the  past  several  years. As Figure 10 
shows,  the CSI defect  rate improved by about  two 
times, and  the  defect  rate  for  the  entire  system 
(SSI: total  shipped  source  instructions)  improved 
much more. In the figure, the Y-axis is expressed 
in terms of defects  per million lines of code 
(MLOC), either CSI or SSI; the X-axis shows  the 
year  and  quarter in which new AS/400 releases  be- 
came available to  the general market.  The  defect 
rates  are  based on actual  defect  arrivals after gen- 
eral availability (GA) of the  releases and have  been 
normalized to  a  four-year life-of-product (LOP). 
Therefore, valid release-to-release  comparisons 
can  be  made. The SSI defect  rates  are much lower 
than the CSI defect  rates  because SSI defect  rates 
are  a  function of several  variables: 

The  size of CSI for  each  release 
A reduction in CSI defect  rates 
Defect reduction  due to aging 
Defect reduction  through  customer burn-in pro- 
grams 

It should be  noted  that  not  only  the  defect  rates 
have declined, the  absolute number of product 
defects  has  also  been declining. In  summary, 
through  the  attention applied to improving CSI 
quality and because of accelerated aging, the 
number of product  defects  customers  experience 
has  decreased  substantially from release  to  re- 
lease. 

Post-GA product quality  management. The post-GA 
product quality management element tracks the 
quality of the product after it has been shipped. 
Tracking is done to  ensure  that AS/400 customers are 
receiving timely answers and fixes to their product 
problems. 

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994 



Figure 11 AS1400 non-defect-oriented  problems  per  user  month (PUM) 

5 
2 - 
- 
- 
- 
- 
- 
- 
- 
- 

I I I I I I I I  I I I I I I I  I I I I I I I  I I I l l 1 1  I 1  I 1  I 1  I l l  I 
1 /90 6/90 12/90 6/91 12/91 6/92 12/92 

MONTH-YEAR 

The problems customers  encounter when using 
the  software product can be classified into  three 
categories. The first are  the functional defects in 
the product. At IBM, when  a  customer problem 
appears to be  a defect in the  product, an APAR 
(authorized program analysis report)  is written. 
In  the  previous  subsection  (as well as in Figure 
lo), we  have described the reduction in the prod- 
uct defect rates (and defects) for  the AS/400 soft- 
ware  system for the past several  years.  Because 
the defect rate is low, the overwhelming majority 
of AS/400 customers  have  never  written an APAR. 
The  second  category of customer problems, and 
by far the most common, is the  case  where  the 
product  does not do  what  was  expected,  but  the 
solution does not require  a change to  the product. 
Those in this category  are called non-defect-ori- 
ented problems. When these problems occur, IBM 
provides information to the customers to resolve 
them. The third category of problems is a defec- 
tive fix to  a  customer problem. Defective fixes 
have a significant negative impact on customer 
satisfaction. That is why  the goal is always zero 
defective fixes. 

Each of these categories of problems is measured 
weekly and reviewed monthly in order to under- 

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994 

stand progress toward achieving specific goals for 
each release, and to be able to  take immediate and 
appropriate action if any of these  measurements 
get out of control. 

Figure 11 shows the results of tracking non-de- 
fect-oriented problems over a  three-year period. 
Presented is the trend for problems per user 
month (PUM): the average number of problems 
that  a  customer  encountered monthly. The PUM 
rate peaked in early 1990, and soon after started 
to decline through September 1990. It  then fluc- 
tuated at  a more or less consistent level. From 
October 1991 to  February 1992, another  drop  was 
observed  but  was less significant than  the first 
one. 

Although significant improvement in the PUM rate 
was  observed compared to the baseline (early 
1990), the bigger challenge is to  curb  or  even  re- 
duce  the absolute number of problems. We have 
begun to address  this challenge. In  cases  where 
many customers call service for the  same non- 
defect-oriented problem, an analysis is done  by 
the development and service  teams to determine 
if a change can be made to the  software  product 
or  to documentation that would eliminate repet- 

KAN ET AL. 73 



Figure 12 AS/400 fix quality improvement - number of 
defective fixes  by  year 

itive service calls. It is too  early to  see  the  results 
of this effort, but  the goal is to reduce  the PUM rate 
further and to  curb  the growth of the raw number 
of non-defect-oriented problems while continuing 
to expand  the  customer base. 

Significant improvement in fix quality has  been 
observed.  It is summarized in Figure 12, which 
shows  the  year-to-year number of defective fixes. 
In 1992, the  percent of correct fixes exceeded 
99.99 percent;  the  absolute number of defective 
fixes is  close to zero (in single digit). Of the 32 
AS/400 licensed program products, 30 had no de- 
fective fixes for a year  or more. Again, the goal is 
to achieve  zero defective fixes. 

Key  factors  that  contributed to the improvement 
of fix quality include the rigorous practice of DPP, 
use of the formal inspection process on fixes, and 
an  expert  system  that  was developed internally 
and used to enhance  the fix process.  For  instance, 
stage kickoff sessions  are  conducted weekly so 
that  developers  who  have an MAR to fix are  kept 
up to  date with the fix process and the  various 
ways  to prevent defects. When a defective fix is 
discovered, a proactive  approach is taken to de- 
termine which customers  ordered  the fix so that 
they may be alerted in advance. Experience 
shows  that this customer call-back process with 

74 KAN ET AL 

regard to a defective fix has  enhanced  customer 
satisfaction. 

Continuous  process  improvement. The  continuous 
process improvement element of the AS/400 soft- 
ware quality management system  provides  the 
basic foundation for improving any  software  de- 
velopment process.  The foundation consists of 
process ownership, definition, documentation, 
measurements (including baseline measure- 
ments),  yearly goals, maturity  assessments, and 
corrective  actions for improvement. Having all 
development processes laid across  this founda- 
tion enables effective and efficient process im- 
provement. The team for development quality 
and  process technology keeps  the  process  foun- 
dation strong through ongoing process owner ed- 
ucation, establishing documentation consistency, 
performing yearly  maturity  assessments,  estab- 
lishing measurement and tracking guidelines, en- 
abling cross-process  synergy, and enabling com- 
pliance with standards  such as ISO 9000. 

Process optimization through data and analysis, 
strong  process discipline, process benchmarking, 
and the introduction of object-oriented technol- 
ogy are  the major process improvement activities 
that have been deployed. 

The main AS/400 software development process 
(modified  waterfall process) was analyzed based on 
objective data, resulting  in recommendations for 
improvement. For instance, we found  significantly 
high defect rates associated with interfaces and 
small changes. Therefore, the high-level  design  and 
review subprocess (IO) and the design  change re- 
quest (DCR) subprocess were modified so that in- 
terface issues are resolved  early.  We  recommended 
that development managers use top-notch develop- 
ers to fix defects reported from the field  (small 
changes are highly error-prone activities).  Based on 
defect  origin data, the highest error injection was 
found  in the code development phase (not surpris- 
ing since the transition from  low-level  design to ac- 
tual code involves an explosion of details that pro- 
vides numerous chances for  injecting  defects). 
Thus, a renewed focus on front-end inspection was 
initiated. 

For significant quality improvement in a large- 
scale development environment, and for complex 
system  software  with  numerous  interdependen- 
cies  such as the AS/400, strong  process discipline 
is required. A back-to-the-basics program (de- 

IBM SYSTEMS JOURNAL, VOL 33, NO l ,  1994 



scribed  later)  was initiated to emphasize  strong 
process discipline. The benefits of process disci- 
pline have  been  demonstrated by Japanese com- 
puter companies. The formula for  success in ad- 

People are the  most important 
element of the AS/400 

software quality management 
system. 

vancements in development  productivity and 
quality by some  Japanese  computer  manufactur- 
ers is a combination of continuous refinement of 
the classical development methodology, wide- 
scale  use of quality  control  techniques, and de- 
velopment  and use of CASE (computer-aided  soft- 
ware engineering) tools. 

Benchmarking other  companies in the  industry 
and  other IBM locations was also used to  assess 
and implement various  approaches  for  process 
improvement.  For  instance, a benchmark  ex- 
change  took place in 1991 between IBM Rochester 
and  Hewlett-Packard Commercial Systems  (the 
HP 3000** computer  system).  By examining the 
“IBM Rochester  way”  and  the “HP way” in areas 
such as product development process,  release  cy- 
cle,  process  and quality management, and human 
resources,  both  sites  were able to  institute im- 
provements.  Another  example of wide-scale im- 
plementation is  the  defect  prevention  process 
(DPP) from IBM Networking Systems in Research 
Triangle Park,  North C a r ~ l i n a . ~  DPP adds intelli- 
gence to  the  process  and  makes it more  iterative. 
After a successful pilot in  1989, DPP was imple- 
mented  throughout  the  entire  Rochester  software 
development  laboratory.  Other  approaches  eval- 
uated included the Cleanroom meth~dology,~ the 
experience  factory,6  the small team  approach,  the 
object-oriented  desigdobject-oriented program- 
ming (OOD/OOP) process  and technology, and var- 
ious modeling and metrics  approaches. 

Continuous  process improvement also requires 
equipping people with the  proper  tools and tech- 
nology that lead to  quality  improvements.  Long- 

IBM  SYSTEMS JOURNAL,  VOL 33, NO 1, 1994 

term  investment  for technology transfer (such as 
powerful workstations and the  support  for  the 
OOD/OOP process) was necessary.  However,  the 
learning curve for new processes  and technology 
is long; continuous  incremental  tools improve- 
ments  were  needed  for  the immediate needs  when 
optimizing the  current  process. DPP and the  net- 
work of technical process owners  were the key 
identifiers of requirements for tools improvement. 
Through causal analysis and the assessment by ac- 
tion teams and technical process owners, the  cost 
and benefits of any tools improvement were well 
understood and prioritized. 

To date, powerful workstations have been installed 
according to plan, several large-scale OOD/OOP 
projects are in progress, and numerous tools-re- 
lated DPP items have been implemented to improve 
the  current process. Significant progress was made 
in developing an environment and a library system 
for distributed development. 

Our  continuous  process  improvement  can  be 
summarized as: continually optimize the  current 
process for effectiveness and efficiency; selec- 
tively use  the  small-team  approach  for flexibility 
and innovations;  use benchmarking to apply  both 
IBM and nOn-IBM knowledge and  experience  for 
process  improvement; and continue  to  move 
toward the OOD/OOP process with related tech- 
nology. 

People. People  are  the  most  important element of 
the AS/400 software  quality management system. 
The  human  side of quality and productivity, al- 
though less tangible, is  more  important  than  pro- 
cess and technology. Given a certain  process and 
technology, it is  people  who  make  the difference. 
A “conscientious  programmer” is our  key  as- 
sumption in terms of the people aspect of quality 
improvement. According to Maslow,’ it is human 
nature to strive  for self-actualization when  basic 
needs  are fulfilled. 

This  assumption  has significant implications. It 
means  that to formulate specific plans  for  quality 
and process  improvement,  the programmer’s per- 
spective  must be taken  into  account, especially in 
terms of feasibility. In fact,  many  actions in the 
quality road map originated from the  develop- 
ment teams.  The  assumption  also  means  that  pro- 
cess improvement does not always  consist of add- 
ing more requirements, checklists, and process 
steps.  The optimization effort must  continuously 

KAN ET AL. 75 



look  for  ways  to simplify the  process.  A good 
example is the simplification made to  the inspec- 
tion defect  gathering  process. Two old inspection 
defect  databases  were merged into  a single new 
database  that  was tightly integrated with the  cur- 
rent  project management process.  At  the  same 
time, inspection  defect  reports were improved. 

We must  ask  what  motivates individuals and 
teams to perform  the  necessary  tasks  that will 
result in excellent  product quality. Although the 
answers  may  vary,  a  well-accepted  one is that 
people  are  motivated by incentives,  awards,  pub- 
lic recognition, peer  respect, and so forth.  In  fact, 
having incentives  together  with public recogni- 
tion is a  key principle in quality management. 
Public recognition takes  many  forms  and  does  not 
always involve monetary  awards.  Incentive  pro- 
grams could be difficult to formulate  and imple- 
ment.  However, it would be  remiss if quality road 
maps  and  plans fail to include this  positive and 
powerful approach.  A good program should be 
based on measurable  product  quality  outcome 
and  targeted to the  teams  and  groups  that  directly 
influence product quality. 

Several  quality  incentive programs, in addition to 
the regular IBM award  programs,  have  been im- 
plemented at IBM Rochester.  The AS/400 Division 
General Manager’s MDQ Award is a  team award 
that is designed to promote MDQ initiatives and 
foster  teamwork. It  runs  three  cycles per year, 
and  its  scoring guidelines include assessments on 
approach,  deployment,  and  results.  It  includes 
quality  contributions in all areas in the AS/400 Di- 
vision  such as planning, engineering, program- 
ming, production,  market  support,  site  support, 
and so forth. 

In  software  development,  there is a  monthly qual- 
ity award in all functional areas.  The  award, first 
presented in 1990, is based on peer nomination. It 
is well received  and widely used by team mem- 
bers  to recognize their peers  for  quality  contri- 
butions in terms of process,  product,  and  support 
of the AS/400 software  development. It is  an indi- 
vidual  award.  Compared to  the MDQ award, this 
award  is  less formal and is given out  monthly 
within  each  third-level  area of management in the 
software  community. 

The third award,  recently  announced in a large 
development  area,  focuses on development qual- 
ity. It is specifically targeted  for  innovative  suc- 

76 WIN ET AL. 

cesses  that  enable  the  product  to  achieve  excel- 
lent quality. It focuses on good development 
characteristics  such as good design, less  rework, 
meeting key  dates, low amounts of testing  de- 

A quality management system 
cannot  exist  without  some 
structure  that enables its 

implementation. 

fects,  and minimum amounts of field defects. A 
key  feature of this award is  that  improvements 
must be measurable.  There  are two tiers  to  the 
award: the  in-process award relies on indicators 
such  as  driver stability, low numbers of testing 
defects,  and client satisfaction  (the  other  teams 
that  use  the  candidate’s  code);  the long-term 
award relies on the  actual field defect rate  after GA 
and customer  feedback. In addition to  the objec- 
tive criteria,  a  peer  review  board  also  considers 
factors  such  as  code  complexity,  usage,  previous 
history of code quality, and relative  improve- 
ment.  The award program is funded from the  sav- 
ings derived from having less  maintenance  costs 
due  to  reductions in product  defect  rates.  Sub- 
missions can  be self-nominated or nominated by 
management and can be for teams or individuals. 

AS/400 SQMS structure, deployment, and 
measurement 

A  quality management system  cannot  exist with- 
out  some  structure  that  enables  its implementa- 
tion. At IBM Rochester we devised a key  struc- 
tural  element called a  quality  road  map that 
defines the goals the  system is to achieve  for  each 
release of ASI400 and the  key  actions  that must be 
deployed to achieve  those  results.  Details of what 
actions  are deployed are  documented in a  quality 
plan for each  release. Metrics, measurements, 
and analysis are used to  track implementation 
progress and to guide the improvement effort. 
The following subsections  describe  the AS/400 
software  quality road map, give examples of key 
actions  that  were  deployed,  describe how a  de- 
tailed quality plan for  each  release  was  devel- 

IBM SYSTEMS JOURNAL, VOL 33, NO 1,  1994 



Figure 13 AS1400 software  quality  road map 

I YEAR 

1991 RELEASE 

1992 RELEASE 

I- 1993 RELEASE 

1994 RELEASE 

L 

GOAL MSSl 

QI-91A 

QI-92A 

QI-93A 

QI-94A 

GOAL MCSl 

QI-916 

Ql-928 

Ql-938 

QI-94B 

DEVELOPMENT LINE ITEM CUT-OFF DATE 
IMPROVED DR/CI EFFECTIVENESS 
-1NCREASEDCOVERAGE 
- BElTER REVIEWS 
PHASE-BASED DEFECT REMOVAL MODEL 

INTEGRATION/BUILD DEFECT FEEDBACK LOOP 
DOUBLE BYTE CHARACTERS SET TESTING FOCUS 

MINIBUILDS 

IMPROVED CT- NETWORK OF COMPONENT TEAM LEADERS 
EXPERIMENTAL PRE-ST CODE FREEZE 
ENFORCED ST ENTRY CRITERIA 

PROTOTYPING PROJECTS-USER-CENTERED DESIGN (UCD) 
CQP (CUSTOMER BURN-IN) 

DPP LAB-WIDE ROLL-OUT 
3RD-LINE AREAS MONTHLY QUALITY AWARDS-PEER NOMINATIONS 

5' COMPONENT ACTIONS 

CUPRIMDA ACTIONS 

DEPARTMENTAL 5-UP 

RELEASE KICK-OFF SESSIONS 
IMPROVED FRONT-END CHANGE CONTROL PROCESS 
SIMPLIFIED DR/CI AND UT DEFECT DATA COLLECTION 
IN-PROCESS MEASUREMENTS 
ST- RAISE TESTING 

COMPILER IMPROVEMENTS 
DPP LAB-WIDE IMPLEMENTATION 

SPECIAL QUALITY LINE ITEMS IN DEVELOPMENT PLAN 

PRE-ST CODE FREEZE (DEVELOPMENT COMPLETE) 

NON-DEFECT-ORIENTED CUSTOMERS PROBLEMS CLOSED LOOP PROCESS 

INTEGRATION ARCHITECT 
BUILD/INTEGRATION QUALITY IMPROVEMENT 
TEST COVERAGE FOCUS 
OPTIMIZATION OF FIELD TEST PARTNERSHIP (FTP) AND COP 
WORKSTATIONS AND DISTRIBUTED ENVIRONMENT 
OBJECT-BASED DEVELOPMENT PROJECTS 

*CUPRIMDA TEST DRIVE REQUIREMENTS SPECIFICATIONS VALIDATION 
*PRE-IO PROCESS 

-SYSTEM ARCHITECTURE INSPECTION (SAI) 
-COMPONENT ARCHITECTURE INSPECTION (CAI) 
00DtOOP DEVELOPMENT PROJECTS . ct+ 
IMPLEMENT REUSE STRATEGY 
FORMAL TOOL-BASED DEPENDENCY MANAGEMENT 
DEVELOPMENT QUALITY INCENTIVES PROGRAM 

b oped,  discuss  the  deployment of key quality prac- 
tices in the  software  development community, 
and  describe  the tracking, measurement, and 
analysis in the AS1400 SQMS. 

Quality road map. A quality road map  describes 
the  various quality technologies and  actions  that 
will be used over  a long period of time to leverage 
improvements  to  overall  software  product qual- 
ity. In  the road map the  quality goals are specified 

D IBM SYSTEMS  JOURNAL, VOL 33, NO 1, 1994 

by  each  year and each  release of ~ ~ 4 0 0 ,  along with 
the  actions  to  achieve  the goals. Detailed descrip- 
tions of these  actions  are  documented in the qual- 
ity plan for each  release. A simplified version of 
the AS/400 software  quality road map is shown in 
Figure 13. Symbols such  as QI-91a and QI-91b 
represent  the specific system  quality goals for CSI 
and SSI (shipped source  instructions)  for  each  re- 
lease.  The road map  has  been revised several 
times since  the initial MDQ deployment in early 

KAN ET AL. 77 



1990. It  is  updated  continuously  on  the  basis of 
accumulated  experiences  and knowledge, making 
it a living document. The action  items in the  road 
map  cover all elements of the AS/400 software 
quality management system. Its purpose is to 
achieve  defect elimination and customer  satisfac- 
tion goals. For  each product  release,  the  action 
list is cumulative. For instance,  actions imple- 
mented  for the 1992 release  include  those listed 
under  both  the first and  second panels. For the 
1993 and 1994 releases,  the  items  are  subject  to 
change  since the releases  are  under  development. 
We continuously  assess the effectiveness  and  fea- 
sibility of each  action. 

It should be  noted  that  a  number of actions  on  the 
quality road map were originated by development 
teams. An example is the  use of minibuilds by the 
database  development  team. A minibuild is a pro- 
cess that  creates  an isolated test  environment for 
testing new function.  This  test  environment gives 
developers  an  opportunity to remove  defects 
prior to integrating function with the remaining 
parts of the  system.  This  improvement is signif- 
icant  because integration and build are on the  crit- 
ical path of the development  process  and  driver 
problems  can  cause  schedule  delays  and signifi- 
cant  quality  and  productivity  loss (especially 
drivers  for  external  development locations). 
From  this  positive  experience,  many  areas  are 
now taking advantage of this  approach.  The build 
and  integration  team took this  approach  one step 
further  and  established  the buildhntegration de- 
fect  feedback  (to  development  teams)  closed-loop 
process, so as  to reduce  the  chance of similar 
problems  recurring in the future. 

Another instance is the adoption of test cover- 
age measurement and the development of a new 
test coverage measurement tool by  a developer. 
These examples attest  to  the importance of the peo- 
ple aspect of software development and to a trans- 
formation taking place in a quality-oriented culture. 

It is worth noting that  the position of release in- 
tegration architect was established  recently as a 
result of a  benchmarking  exchange  with the HP 
3000 system  and  a  continuous  focus  on integra- 
tion quality. The integration architect  oversees 
the  interdependent  nature of the release line items 
and  serves  as  the  gatekeeper  for integration and 
build quality. This  architect  develops detailed 
code integration plans and schedules; defines and 
manages  code integration procedures;  and  en- 

78 KAN ET AL. 

sures  that  cross-product  and  cross-component 
dependencies  are met. 

Examples of key  quality road  map  actions. De- 
scribed below in more  detail  are  some  examples 
of quality  actions  that  were  deployed. 

Defect  prevention process. The  merits of DPP 
were first recognized at  an IBM Software Engi- 
neering Interdivisional Technical Liaison (ITL) 
conference. A pilot program was  started  shortly 
afterwards in mid-1989. With positive experience 
from the pilot and with  the  developers’  enthusi- 
asm, DPP was positioned as a  strategic action in 
the MDQ deployment in early 1990. Robert  Mays 
of IBM Research Triangle Park,  co-founder of 
DPP, was invited to  Rochester  to give two special 
seminars, to which the  responses  were  over- 
whelming. One session  was  videotaped,  and 
eventually  the  entire programming community 
saw it. A mind-set change to a  prevention-ori- 
ented  focus was under  way. With strong manage- 
ment commitment,  a deployment team was 
formed  that  developed  and delivered DPP semi- 
nars  and formulated a long-term strategy of self- 
sufficiency of DPP education.  Rochester develop- 
ers  were trained to deliver the formal education. 
An action  team  structure and a  network of tech- 
nical process  owners  were  established. An action 
tracking tool was also  developed. To date,  most 
programmers  and  managers  have  been formally 
trained in the DPP process.  Figure 14 shows  the 
number of DPP actions  that  have  been imple- 
mented and closed through the first quarter of 
1993. The graph indicates  that  more  than 3400 
suggested actions  were  closed, of which  more 
than 2000 have been implemented since  the  cre- 
ation of the DPP program. Many of the  proposed 
actions  are  extensive in the  amount of effort re- 
quired to implement them; all cannot  be imple- 
mented  because of resource limitations. 

The  scope of the DPP actions  that  were imple- 
mented varies.  Many  are small items, such as 
adding entries  to  the common  error  lists  and  to 
stage kickoff meetings. Other items, such  as  the 
post-compiler module checker  and the release 
kickoff sessions,  are fairly significant. Regardless 
of the  scope, all items  are  pertinent  to  the im- 
provement of the  development  process and to 
quality. The following example  perhaps is better 
in  giving a flavor of the DPP actions.  From  statis- 
tical analysis at the  system level as well as from 
the  causal analysis sessions of development 

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994 



Figure 14 DPP actions  implemented 

5 3000 

2500 

2000 

1500 

1000 

500 

0 

1991 1992 1993 

ACTIONS  IMPLEMENTED 

ACTIONS  CLOSED - 

3405 

21 62 

teams,  defects related to interface problems 
needed to  be dealt with. Interface  defects  consti- 
tute  a large percentage of the total  defects during 
all phases of development and from the field 
(MARS). Interface  problems  are to a large extent 
human communications  problems  that  are  pre- 
ventable.  One action proposed  and implemented 
was  to add  a new command in the AS/400 devel- 
opment  support  environment  that would allow 
developers to subscribe to  the modules their code 
depends upon. If the modules change,  the tool 
automatically notifies the  subscribers.  Therefore, 
developers are  better able to manage dependen- 
cies  and  reduce  interface  defects. 

There  are  several  key  characteristics of Roches- 
ter’s DPP deployment: strong buy-in from both 
management and nonmanagement,  developers as 
DPP instructors  (after training), and  the integra- 
tion of DPP and  process improvement (action 
teams  and  the  network of technical process own- 
ers). 

“Back to the basics” design  reviewlcode  inspec- 
tion focus. The  “back  to the  basics”  focus  refers 
to executing  the design reviewlcode inspection 
(DR/CI) process in a much better  way. Bench- 
marking analysis of the IBM Houston  Space  Shut- 
tle Onboard  Software  system  project indicated 
that rigorous implementation of the  process  can 
make an  order of magnitude difference in devel- 
opment quality. Furthermore,  causal analysis of 
MAR data indicated that  often  the bugs could 
have  been caught early in the  development cycle. 
Analysis of defect origin data  indicated  that  the 
code  development  phase had the highest defect 
injection. Hence,  a renewed focus on the  front- 
end  reviews and inspections  was initiated, and a 
series of actions  related to DR/CI was then  under- 
taken. 

This  strong DRKI focus led to significantly higher 
inspection  coverage and better  execution. The re- 
sult is that  the  front-end  execution  becomes  much 

IBM  SYSTEMS  JOURNAL,  VOL 33, NO 1. 1994 KAN ET AL. 79 



better and fewer  defects  escape  to  the  testing 
phases, as described in earlier  sections. 

It is worth noting that  software  reviews  and in- 
spections  are  distinctly different from manufac- 
turing inspections, which are  at  the  back end of 
the  production  process  and  are known to  be a 
poor  method  for  quality  assurance. Quality im- 
provement  teachings  often call for  the  abandon- 
ment of manufacturing inspections in favor of ac- 
ceptance sampling (with the  front-end  focus on 
design quality).  Software  reviews  and  inspec- 
tions, on the  contrary,  are  the  vital  techniques at 
the  front  end of the  software  development  pro- 
cess. 

Furthermore,  software design reviews  and  code 
inspections  are  more efficient in defect removal, 
as Fagan’s study* showed. In our analysis, the 
ratio of the  cost of finding and fixing a defect  dur- 
ing design, test,  and field use is: 1 to 13 to 92. This 
ratio,  interestingly, is very similar to  the  ratio  re- 
ported by  the IBM Santa  Teresa  laboratory  some 
years ago: 1 to 20 to 82.9 

Customer Quality Partnership Program. The cus- 
tomer  quality  partnership (CQP) program was de- 
signed to  accelerate  the normal field  aging process 
to achieve  further  reductions in defects  before 
GA. It  was based on the  concept of accelerated 
aging in quality engineering and the  results of the 
analysis of the AS/400 customers in terms of their 
defect  discovery  patterns. For AS/400, the domi- 
nant  majority of APARs are  reported by a very 
small percentage of customers.  These  customers 
and  those  who will exercise  the new release  func- 
tions  are,  hence, good candidates for customer 
burn-in programs.  The cQP program works  as fol- 
lows: 

Motivate a group of high APm-writing custom- 
ers and  customers  who  use specific new  release 
functions to move  their  production to  the new 
release as soon as possible. Defect discovery is 
thus  accelerated.  The program starts  at  the end 
of the  development  cycle  after  code  freeze 
(when  code  quality  has  reached a satisfactory 
level) but  before  general availability. 
Provide a streamlined  process and additional 
technical  support to facilitate  the installation of 
the new release and for problem-solving. The 
bottom line is to minimize customers’  business 
risk and  to  enhance  their  satisfaction. 

80 KAN ET AL. 

Fix the  defects as quickly as possible with un- 
surpassed  quality  focus. 
When sufficient defects  are  detected and fixed, 
integrate  the fixes into  the  system  library so that 
the  defects  are eliminated before GA to AS/400 
customers. 

The AS/400 cQP program was conceived and pro- 
posed  at  the  end of  1990. With strong manage- 
ment support and intensive planning and  prepa- 
ration,  the program moved  into implementation in 
early 1991. Now it is being implemented for each 
new AS/400 release.  Defects found by  the program 
are subject  to DPP causal analysis, and findings are 
used to improve  the  development  process. For 
each implementation, a postmortem analysis is 
done  to improve  the  next implementation. At the 
end of each implementation, customers  are  sur- 
veyed. Their responses  have  been very positive. 

5* component quality analysis.  This  analysis  was 
done  to identify error-prone  components in the 
system. A component in the AS/400 software sys- 
tem is a group of program modules  that perform 
specific functions,  for example, workstation man- 
ager, print function, spooling, storage manage- 
ment, message-handling, and so forth.  The anal- 
ysis  has  been  done  for  each  release of the AS/400 
software  system  since 1989. A composite  index  is 
formed based on CSI defect  rate, SSI defect rate, 
and the raw number of APARs (customers do  not 
care  about  the normalized rate). The  composite 
index gives a more balanced view of component 
quality  than any of the individual indicators. 
Components  are  ranked  based on the  composite 
index from 00 to 9*  (9* being the  most  error- 
prone).  Components obtaining 5* or  more  are  re- 
quired to take  special  improvement actions. Over 
the  past  several  years,  the 5* component  analysis 
has  become a key driving force  for  code  quality 
improvement.  Components  have  taken  various 
approaches  for  improvement: involve customers 
in early  requirements and design phases, place a 
rigorous focus on front-end design and reviews, 
conduct  causal  analysis  on  defects, invite exter- 
nal experts for early testing during development, 
test  coverage  measurement, initiate selective 
module break-up for error-prone modules, con- 
duct  special  customer testing via  the Field Test 
Partnership program, recommend their high- 
M A R  customers  to  join  the CQP program, and so 
forth. 

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994 



Quality plan. At  the beginning of each  release  cy- 
cle,  a  system  quality plan is established in which 
the  committed quality goals are defined and im- 
provement  actions  to  achieve  the goals are  de- 
scribed. To make  the  quality plan effective, a  bot- 
tom-up commitment approach is used.  The 

The  system quality plan 
represents  the overall system 

approach to quality 
improvement. 

development  quality  and  process technology 
team first develops  a  proposal.  After  a  series of 
brainstorming  sessions with groups of develop- 
ers,  the  proposal is revised. The  proposal is then 
reviewed with upper management in the  software 
laboratory.  The  agreed-to  proposal  becomes  the 
basis of the  bottom-up commitment process  to  be 
conducted in each  development  area from the 
component level upward.  The  committed  quality 
goals and  actions from all areas,  together with 
system-level  actions, form the  system  quality 
plan. The final written  document,  after  review 
and approval by management, is then  made avail- 
able to  the  entire  software  development commu- 
nity. 

Note  that  the  system  quality plan represents  the 
overall  system  approach  to  quality  improvement. 
Quality improvement is everyone's responsibil- 
ity. It is made  clear  that  each  component,  depart- 
ment, area, and product manager owns  its  quality 
activities, including planning, implementation, 
and  outcome.  Indeed,  each  department  and  area 
in the  software  development  community  has  es- 
tablished its quality improvement plan. For  each 
department,  the committed quality goals and ac- 
tions are described in the  quality  control  book 
(QCB) of the  department.  This on-line QCB, to- 
gether  with  other on-line repositories in which the 
process  documents  and  system  quality  plans  re- 
side,  are available to all members  at IBM Roch- 
ester  via IBM Rochester's Quality Management 
System (RQMS) tool. This tool basically provides 
a single user  interface to important  quality man- 

IBM SYSTEMS JOURNAL, VOL 33, NO 1,  1994 

agement system information, which is also essen- 
tial for meeting ISO 9000 certification require- 
ments. 

Moreover, to make efforts in quality improve- 
ment a  part of the  overall  development effort, 
quality  investment is also included in the  devel- 
opment plan process.  Several plan line items  have 
been used to address  the  resources  needed  for  the 
deployment of several major quality  practices. 
Good examples of quality line items include the 
funding of the formal action  teams of DPP, 5* com- 
ponent  improvement,  and  the  work  and  resources 
needed to  improve  the  products so as  to  reduce 
the  problems  customers  encounter,  even though 
such  problems may not be defect-related  (non- 
defect-oriented  problems). 

Deployment. Thus  far,  quality road maps  and 
quality  plans  have  been  presented. We now dis- 
cuss  the  approach  to implementing key  quality 
practices in the  software  development commu- 
nity. Note  that  for  quality improvement to hap- 
pen, bottom-up commitment is the  most impor- 
tant  factor.  Indeed,  the improvement of software 
quality  for AS/400, discussed in earlier sections, is 
due  to  the efforts by everyone  on  the  entire soft- 
ware team. Many improvement actions  were  also 
self-initiated by development teams. In the fol- 
lowing discussion on deployment of pervasive 
quality  practices,  the  importance of individual 
commitment should not be forgotten. 

Management commitment is equally important. 
According to Townsend and Gebhardt,"  upper 
management participation is a  prerequisite  to 
practicing total  quality management (TQM). With- 
out management participation,  the  organization 
practices  quality by proclamation instead of TQM. 
In Rochester,  active management participation is 
one of the  key  factors  that  makes  the  quality man- 
agement system  work  and  the deployment of ac- 
tions  successful.  Each  month  the AS/400 Division 
General Manager reviews  the  overall  quality of 
the AS/400. Separately,  the  Director of Develop- 
ment reviews  the  progress and status of develop- 
ment quality. For software  development,  there is 
also a  monthly  quality meeting in which the di- 
rectors and third-line managers review  status and 
make operational decisions. 

Perhaps  the  strong  top-down management com- 
mitment to  quality in Rochester  can  best  be illus- 
trated by  the  establishment of the  Rochester  De- 



velopment  Quality Council by the  Director of 
Development. Its focus  is  on  the  use of the  mar- 
ket-driven  quality  techniques and practices in de- 
velopment programs. Several  times  a  year high- 
leverage  development  programs  are reviewed by 
Rochester  senior management, technical  profes- 
sionals, and development managers. The  review 
meetings provide  a  communications link between 
the  various program teams  and facilitate the  ex- 
change of good quality  practices  across  develop- 
ment.  The  scope of influence of this  program  cov- 
ers  the entire AS/400 development  laboratory, not 
just  the software community. 

Bottom-up  and  top-down commitment together 
ensure  success.  In deploying key  quality  prac- 
tices to  the entire  software  community,  this two- 
way approach is used as much as possible. For 
instance,  the  successful  laboratory-wide imple- 
mentation of DPP clearly  is  a result of strong com- 
mitment and effort from both management and all 
members of the programming community along 
with  the mind-set change of all. On some  occa- 
sions,  either  the  bottom-up  or  the  top-down  ap- 
proach  has  been  observed  to  play  a  more signif- 
icant role than  the  other. For instance,  the 
minibuild approach is clearly  a developer’s own 
initiative. The customer  quality  partnership  pro- 
gram (cQP) represents  a well-planned approach 
with  strong management support  and  resource 
commitment. 

Deployment model. Deployment of quality  prac- 
tices differs between large organizations and 
small groups. In small groups new practices  can 
be  experimented with anytime. Large organiza- 
tions,  however,  cannot afford broad  experiments. 
A regular deployment  pattern  has  been  observed 
from Rochester’s  experience  with deploying DPP, 
DR/CI focus, CQP, and  other  quality  practices. 
From  this  experience  the following deployment 
model  was developed: 

1. Given a  new  practice or innovative  process, 
and  after  study  and  evaluation,  the first step is 
to develop  an informal proposal  for small-scale 
implementation and to obtain management’s 
initial approval.  This step  can  be done by any- 
one. 

2. The most  important step is to obtain  the com- 
mitment of developers  and  to  start  a small- 
scale pilot project. If the pilot is voluntary  and 
does not require management funding, the 
chance for success is better.  It  is  vital  to  have 

82 KAN ET AL. 

the  developers’ commitment because  without 
it, the  chance for future  success is minimal. 

3. Upon completion of the pilot project(s), anal- 
ysis is conducted in terms of empirical data as 
well as causal  analysis  sessions. 

(a) If the  results  are overwhelmingly positive, 
proceed to  the next  step. 

(b) If the  results  are  moderate, or  the buy-in is 
not  enthusiastic, refine the  process  or  prac- 
tice  and  its implementation procedures  and 
loop  back to  step 2. 

(c) If the results  are  neutral  or negative and  the 
pilot members’ buy-in is lukewarm,  pursue 
another  approach. 

4. A formal proposal  is  prepared.  It  is  presented 
to management whose formal commitment is 
sought,  especially if resources  are required. 

5. Upon formal management approval,  a detailed 
implementation plan is prepared for the  entire 
organization, and the implementation is be- 
gun. Aggressive schedules with highly inten- 
sive effort have  the  best  chance of success.  A 
comfortable  deployment  schedule  may run the 
risk of losing momentum. 

Supplier  quality  requirements. Because  the  devel- 
opment of AS/400 involves many  other IBM loca- 
tions  and  suppliers, the quality of products  de- 
veloped by  other  sites  and nOn-IBM suppliers is 
reviewed. Their product  quality  must not ad- 
versely affect the AS/400 system quality. For each 
release, specific goals are  set. All suppliers are 
required to meet  these goals. In  terms of out- 
come,  their  product  quality  must  be as good or 
better  than  the  quality of Rochester-developed 
products. In this  respect,  the  Rochester  team  has 
the challenge to  demonstrate its ability to achieve 
the aggressive quality goals. 

Supplier quality  requirements  are  documented in 
the  product management plan (PMP) for  each  sup- 
plier or  external-site  product.  The PMP is part of 
the  contractual  agreement  between IBM Roches- 
ter and its suppliers. 

For supplier  products,  quality  plans are required 
by  the  release commit checkpoint. Quality as- 
sessment  and certification must be  conducted  for 
each  product. To  be consistent  with  Rochester 
development,  in-process  measurements  are  re- 
quired. Suppliers  that use the IBM Rochester  de- 
velopment  process  must  provide  the  same indi- 

IBM SYSTEMS JOURNAL, VOL 33, NO 1. 1994 



cators  that IBM Rochester  development  uses. For 
those  that  have their own development  process, 
whatever  data  that  are indicative of in-process 
quality  must  be  provided to Rochester.  This  re- 
quirement  reduces  the  risk of project failure. 

IBM Rochester  provides  the AS/400 system  quality 
plan to all suppliers and IBM sites  that  develop 
AS/400 licensed  products  and  provides input to 
their product quality plans when  needed. To the 
extent possible, Rochester also provides  consul- 
tation to  other IBM sites  and  suppliers in the  areas 
of quality improvement actions,  metrics,  defect 
models, and  quality  projections. 

The product  quality goal of defect  rate,  expressed 
in terms of numbers of defects per thousand 
source lines of instructions, is a life-of-product 
requirement.  Therefore,  before  a  supplier prod- 
uct is accepted  by  Rochester,  the  quality level 
must  meet  a  certain  defect  rate  criterion  that in- 
dicates  that  the life-of-product quality goal is 
likely to  be met. A  defect  rate  criterion is estab- 
lished for an  acceptance  test (just prior  to  system 
test)  that is based on the  system  defect removal 
model. This methodology is  consistent with the 
literature  and  actual ASI400 experience.  By  accep- 
tance  test time, product  development is com- 
plete.  The  defect  rate  detected during this period 
is a good indicator of the  projected field quality. 

Myers"  has  a  counter-intuitive principle in soft- 
ware testing that basically states that  the  more 
defects found during formal testing, the more will 
be found later.  For AS/400, actual  data confirmed 
the positive relationship between formal machine 
test  defect  rate and field defect  rate.  The  reason 
for  the relationship is that at the  late  stage of for- 
mal testing, error injection in the  product is al- 
ready formed. Greater  amounts of testing defects 
are  an  indicator of high error injection in the  prod- 
uct. An analogy can  be  drawn  between  the  total 
defect  rate  since formal test (formal test  defects 
and field defects) and an iceberg: the tip of the 
iceberg being the formal test  defects and the  sub- 
merged part  the field defects.  Therefore, high de- 
fect  rate during acceptance  test  means  more  de- 
fects will escape  to  the field unless extraordinary 
actions  (extra testing, customer burn-in, and so 
forth)  are implemented. 

Tracking,  measurement,  and  analysis. Tracking, 
measurement, and analysis  together form an 
important element of the  structure of the 

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994 

AS/400 SQMS. l2 We believe that  software  develop- 
ment must  move in the direction of quantitative 
approach  to  become  a  true engineering discipline 
and to  be more efficient and effective. Such  an 
approach  is especially important for complex 

Quality management 
measurements and tracking are 

an  integral part of IBM Rochester's 
business checkpoint process. 

large development  projects with numerous  inter- 
dependencies  such as  the AS/400 software  system. 
It is important to note  that  the  data  collected,  and 
the  metrics used and analyzed, need not  be  over- 
whelming; it is more  important to have  the infor- 
mation from these  activities  focused,  accurate, 
and useful. Such information enables  data-based 
decision-making for project  and  quality manage- 
ment. 

Quality management measurements and tracking 
are  an integral part of IBM Rochester's  business 
checkpoint  process  when developing a new prod- 
uct or enhancing an existing product.  The four 
major business  checkpoints  that  our  products 
must achieve prior to shipping to  customers are: 
commit, announce  readiness,  announcement, 
and general availability. Each  checkpoint  re- 
quires  a specific quality  activity to  be completed. 
For example, a  quality plan is required for  the 
release commit checkpoint. An interim  quality  as- 
sessment is required at the midrelease announce- 
ment checkpoint.  At  the general availability 
checkpoint we conduct  the final quality  assess- 
ment and projection. By merging quality manage- 
ment with  the  business  checkpoint  process, qual- 
ity  becomes  a  key  factor in business decision- 
making. 

In addition to  the  in-process  metrics  that  are used 
for  quality management during the  development 
process, pOSt-GA metrics and customer  satisfac- 
tion survey  results  are examined to  assess prod- 
uct quality in the field. In-process  and post-GA 



Figure 15 Inspection  effort  and  defect  report 

SUMMARY  INSPECTION  REPORT-  DEFECT  RATE  AND  INSPECTION  EFFORT 

*'* AREAIDEPT  A  RELEASE N 

Type 

IO 57  321  90  38150  363  492.9  416.5 

12 117  35099 

lnsp # lnsp DCR  Prep  lnsp 
lnsps LOCS  LOCS Defs  Hours  Hours  Hours  Hours AT 

52 
909.4  487.3 

25045  38150 430 328.9 
412 

407.5  736.4  357.7 
38150  597 

271 
647.8 61 1.7  1259.5  410.8  490 

Total Rwrk # 

" "" "- 
I1 

*** AREAIDEPT  A  RELEASE  N 

lnsp %Imp Defs 
Type  CVG /Kloc IKloc fKloc lKloc /Insp 

IO 84.4 11.3  7.0 

12 92.0 17.0  13.0  18.5  26.0  11.7 

SYS 
Model Kloc 

15.3  12.9  28.3  19.6  15.1  7.2 
15.0  13.1 16.3 

17.4 
29.4 
35.9 

22.8 14.3  5.2 
4.2 

PrepHr  InspHr  TotHrs SYS 
Std 

RwrkHr  #AT 

" "" - ~ -  
I1 65.6  17.2 

measurements and customer  satisfaction  survey 
results  are reviewed monthly by executives. 

In-process  measurements. In-process quality mea- 
surements  enable  one  to implement real-time 
quality management. To achieve  this  task we use 
a  defect  tracking  system for the  entire  develop- 
ment cycle. It is integrated with the  change  con- 
trol  process of the AS/400 software  development 
process.  Metrics,  such as  the  phase-based  defect 
removal  pattern,  phase effectiveness, l3 inspec- 
tion effort and  coverage,  in-process  escape  rate, 
percentage  of  interface  defects,  integrationbuild 
defect  arrivals,  number of unit test  defects found 
before  and  after  code  integration,  testing  defect 
arrivals  and  defect  rates by phase,  severity dis- 
tribution of defects,  late  performance  changes, 
and so forth  are used and  interpreted in the  con- 
text of an  overall  defect removal model. 14,15 These 
metrics, combined with the  standard  project  sta- 
tus  metrics (for example,  the  cumulative  curves 
of actual versus plan for  various  phase  activities 
such  as  the  completion  of design reviews  and  the 
execution of test  cases),  provide  a  sound  basis for 
informed decision-making with regard to  project 
and  quality management. 

We have  been using in-process  metrics at the  sys- 
tem  and  product  levels  for AS/400 since  the  devel- 
opment of its first release. For  each  release  we 
continue  to refine our  metrics  and  improve  our 
analysis.  Currently we  are deploying the  use of 
in-process  metrics  to  more  granular levels: com- 
ponents  and  first-line  departments.  The major ve- 

84 KAN ET AL. 

hicle being used is a  set of standard  reports  under 
a common report  interface. 

Figure 15 and Figure 16 show two examples of 
in-process  metrics  reports.  In  Figure 15 the num- 
ber of inspections  completed so far by stage (IO- 
high-level design inspection, 11-low-level design 
inspection, 12-code inspection)  are  shown.  In- 
formation  on  actual lines of code  inspected (in- 
spection LOCS), total lines of code in the  current 
plan for  the  department (DCR LOC), number of 
defects found (Defs),  inspection effort in terms of 
preparation  hours  (Prep  Hours) and actual in- 
spection  hours  (Insp  Hours),  rework  hours  (Rwrk 
Hours), and the  number of attendees at inspection 
meetings (# AT) are  presented in the  upper panel. 
Shown in the lower panel are  the normalized met- 
rics  such as  the  percentage of inspection  coverage 
(%Insp CVG), defects per KLOC (1000 lines of 
code),  total  inspection  hours  per KLOC (TotHrs/ 
Kloc),  etc.  The  system model in terms of inspec- 
tion defect  rates  (Sys Model) and  inspection effort 
(Sys  Std) is also  presented for comparison. 

In  Figure 16, the  defect  rate is classified in terms 
of defect origin (RQ-reqUirementS,  SD-System 
defects, IO-high-level design, 11-low-level de- 
sign, 12-code development) and defect type 
(LO-logic, IF-interface,  DO-documentation). 
Classification by defect origin allows us  to  calcu- 
late and monitor  in-process  escape  rate  and  the 
percentage of interface  defects.  Since specific tar- 
gets  are  set for escape  rates  and  interface  defect 
reduction,  the  reports  also indicate target  excep- 

IBM  SYSTEMS  JOURNAL,  VOL 33, NO 1, 1994 



Figure 16 Inspection  defect  origin  report 

SUMMARY  INSPECTION  REPORT-  DEFECT  ORIGIN  AND  DEFECT  TYPE 

I** ARENDEPT  A RELEASE  N 

lnsp # 
Type - lnsp 

IO 
I1 52 

57 

12 117 

lnsp # 
TYPE lnsp 

IO 57 
I1 
12 

52 
117 

* 
Defs RQ SD IO I1 12 RQ SD IO I1 12 Total 

363  24  13  326 
430  3 

0 0 
9  56  362 

6.6 3.6  89.8 100% 
0 

597  3 
0.7  2.1  13.0'  84.2 

0 19  34  541  0.5 0.0 3.2  5.7 90.6  100% 
100% 

- Defect  Origin + 7 % Distribution 

"""""- - 

lnsp 
LOCs  Defs 

- Defect  Type - c-" Defect  Type (a) 
LO IF DO  %LO %IF %DO  Total - 

32190 363 59  228  76.3  20.9  62.8  100% 
25045 430 

76 
263 

35099  597 
61 

361 
106 

57 
61.2 14.2Q 24.7 100% 

179  60.5  9.5  30.0  100% 

*** IN-PROCESS  ESCAPE  RATE  SYSTEM  TARGET 

12 DEFECTS : <= 2% ARE  ESCAPES  FROM  HLD (IO) 
I1 DEFECTS : <= 5% ARE  ESCAPES  FROM  HLD (IO) 

12 DEFECTS : <= 6% ARE  ESCAPES  FROM  LLD (11) 

*** INTERFACE  DEFECT  REDUCTION 

I f  & 12 : GOAL IS TO  REDUCE  INTERFACE  DEFECTS  TO 
IO : INTERFACE  ISSUES  FINALIZED AT IO EXIT 

<= 5% OF TOTAL  DEFECTS 

(*) : EXCEEDS  SYSTEM  TARGET  SIGNIFICANTLY (2x+). 
CONSIDER  RE-INSPECTION  AND  OTHER  ACTIONS. 

(@) : EXCEEDS  SYSTEM  TARGET  SIGNIFICANTLY (2x+). 
CONSIDER  RE-INSPECTION  AND  OTHER  ACTIONS. 
MAKE  SURE  INTERFACE  ISSUES  ARE  FINALIZED  AT IO EXIT. 

NOTE:  WHEN  INTERPRETING *AND Q, BE  CAREFUL  WITH  SMALL  NUMBERS 

tions, such as those  shown in Figure 16 (indicated 
by  the * and @ symbols). 

These  in-process  metric  reports  are available at 
the component and product level, and  for  various 
organizational units. It should be  noted  that in- 
process  metrics  cannot  be used in a piecemeal 
fashion. An integrated approach  must  be used in 
order  to yield useful information; the  metrics 
must  be  interpreted within the  context of the  de- 
fect models used (described earlier and in Kan14), 
and compared with one's  history.  For example, 
the single metric of inspection  defect  rate  does 
not tell much about  the  quality of the  front-end 
process.  However,  when combined with the in- 
spection-effort metric and compared with the  tar- 
gets of a  defect model (or  one's  inspection effort/ 
defect  rate in the  previous release), we can form 
a 2 X 2 inspection effort/defect rate matrix. If 

inspection effort increased  and  defect  rate  de- 
creased,  that is the  best  case  scenario (indicating 
low error injection and sufficient effort on  the 
front  end). If effort decreased  but  defect  rate in- 
creased,  that is the  worst  case  scenario. If there 
is both low effort and low defect  rate,  that  is  an 
unsure  situation.  The  scenario of significantly 
higher effort and higher defect  rate, from our 
experience, is a good, not  bad,  scenario. 

As another example, one of the  exit  criteria of 
high-level design inspection (IO) is that all inter- 
face  issues  are finalized. Therefore, it is not 
surprising to  see a high percentage of interface 
problems among IO defects.  However, if the  per- 
centage of interface  defects  remains high (com- 
pared with the model targets or with one's his- 
tory) at subsequent inspection phases, it indicates 

IBM SYSTEMS  JOURNAL,  VOL 33, NO 1,  1994 KAN ET AL. 85 



that  interface  issues  can  be  a problem and should 
receive  greater  attention. 

Post-GA measurements. Post-GA measurements 
are used to examine  the  quality of software  prod- 
ucts  (that  have  been  shipped  to  customers) as 
compared to product  quality goals. An analysis of 
the post-GA measurements  results in actions to 
improve  the  overall  software  development  pro- 
cess so that  the  next  software  release will be  bet- 
ter  than  the  previous  release. As discussed  ear- 
lier, the 5* component  analysis  has  been  a  key 
driving force for the improvement of component 
quality during the  past  several  years.  Another 
form of analysis  that is performed regularly is  the 
root  cause  analysis of APARS. 

The  key post-GA measurements  that  are  tracked 
monthly are: product  defects  (APARS)  and  defect 
rates  by  release,  number of defective fixes, total 
number of problems  reported by customers, and 
average problem fix time. Other  indicators  that 
are tracked include number of APARS by severity, 
number of valid versus invalid APARs, number of 
APARs that  are  delinquent in providing a fix, and 
the number of non-defect-oriented problems. 
Each metric  serves specific purposes.  The num- 
ber of defects  and problems, and  defect or prob- 
lem rates  for  that  matter,  indicate  the  quality of 
the product  that is being used by customers.  Av- 
erage problem fix time, number of delinquent 
APARs, and number of defective fixes measure  the 
efficiency and  quality of the fix process. The ratio 
of valid versus invalid APARS reflects the effec- 
tiveness  and efficiency of problem determination 
and  the skill level of the  service team. 

Customer  satisfaction measurements. The fol- 
lowing data  are used to gauge customer  satisfac- 
tion of the AS/400 and  provide input to  the product 
improvement plans: 

IBM Marketing and  Service (M&S) survey  data 
and  questions, as discussed earlier 
AS/400 customer  feedback  survey  data,  ques- 
tions,  and  comments  sorted by CUPRIMDA cat- 
egory 
Customer  critical  situation  data  sorted by  cat- 
egory 
Customer  partnership call comments  sorted by 
category (a 90-day-after-install customer  con- 
tact call) 
Customer  problems  sorted by category 

86 KAN ET AL. 

This information is presented regularly to soft- 
ware  development  executives.  Like  the in-pro- 
cess  and post-GA metrics, analysis is an insepa- 
rable part  of  the  tracking and reporting  system. 
Our experience  indicated  that good analysis is 
paramount in transforming data  into useful infor- 
mation and knowledge. For example, as shown 
earlier, survey  data indicated that among the 
CUPRIMDA categories,  documentation (D) has  the 
highest level of  customer  nonsatisfaction.  How- 
ever,  these  data  do not mean that improving doc- 
umentation is the first priority in order  to improve 
overall  customer  satisfaction.  To  answer  such 
questions,  one  needs to examine  the  correlation 
between CUPRIMDA categories  and  overall  satis- 
faction,  and  customers’  purchase decisions. In- 
terestingly, from in-depth analysis  based  on  ad- 
vanced  statistical  techniques, we found that 
reliability is  the  most significant factor affecting 
overall  customer  satisfaction with regard to  soft- 
ware  quality, and reliability is one of the  param- 
eters  with  the highest customer  satisfaction.  After 
further analysis, this finding is not surprising, 
given the mission-critical applications that  are  run 
on  the AS/400 system by customers. We certainly 
need to continue to  strive for higher levels of qual- 
ity  to  achieve  total  satisfaction in all CUPRIMDA 
categories. 

Summary 

We have  described  the  various  elements of the 
AS/400 software  quality management system:  cus- 
tomer  satisfaction management, product  quality 
management (in-process  and  post-general avail- 
ability), continuous  process  improvement, and 
people. The  structure of the  quality management 
system:  quality road maps, quality plans, deploy- 
ment,  supplier  quality  requirements, tracking, 
measurement,  and  analysis  were explained. Ex- 
amination of real data  indicates we have achieved 
substantial  quality  improvement. 

It  is  absolutely  essential  to  establish goals and to 
use  those goals to  drive  continuous  improvement. 
Establishing  a  quality plan makes  sure  that goals 
are  documented and are used to  drive  change and 
innovation in the  development of each  new  re- 
lease. 

Continuous improvement of process  and  tools  re- 
quires  an ongoing focus  and  a  closed  feedback 
loop so that  changes  are  made as a result of past 
mistakes. It is important  that  the  focus is placed 

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994 



both  on  defect  prevention and on  defect  detec- 
tion. The advantage of prevention  and  early  de- 
fect removal is  very clear. 

Once  a  quality plan has  been  established by  the 
development  team, it becomes very important 
that  quality  be  measured as the  release is being 
developed. In-process quality management is the 
key to being able to recognize quality problems 
early, in enough time to  take  actions before  the 
product  is  made available to customers. 

After  a  product is made generally available, it re- 
mains essential  that  measurements  and  analyses 
continue so that problem areas  are identified early 
and  that  a closed-loop system be used to feed 
back  those  problems in order  to prevent  them in 
the  future. 

All of the  above  requires  a  dedicated team-a 
team that is committed  to making improvements 
happen  and delighting every  customer. A dedi- 
cated  team  makes  the  quality management sys- 
tem function. 

With a  systematic  approach, we continue to refine 
the AS/400 software  quality management system 
based on feedback and learning through  measure- 
ment and analysis. With the  total participation of 
the  entire  team,  and  based on process,  technol- 
ogy, and  measurements  and  analyses, we contin- 
ually strive  for  further improvement in the  quality 
of AS/400 and in customer  satisfaction. 

Acknowledgment 

The  authors wish to  thank  the entire AS/400 soft- 
ware  team. The  authors  are  merely  catalysts.  It  is 
the dedication and overwhelming commitment by 
the AS/400 software  team  that is responsible for 
AS1400 software  quality  improvement. 

*Trademark or registered trademark of International  Business 
Machines  Corporation. 

**Trademark or registered trademark of Hewlett-Packard 
Corporation. 

Cited references 

1. C. Billings, J. Clifton, B.  Kolkhorst, E. Lee,  and W. B. 
Wingert, “Journey  to a Mature  Software  Process,” IBM 
Systems Journal 33, No. 1, 46-61 (1994, this issue). 

2. C. L. Jones,  “A  Process-Integrated Approach to Defect 
Prevention,” IBM Systems Journal 24, No. 2, 15&167 
(1985). 

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994 

3. R. G. Mays, C. L. Jones, G. J.  Holloway,  and D. P. 
Studinski, “Experiences with  Defect  Prevention,” IBM 
Systems Journal 29, No. 1, 4-32 (1990). 

4.  M. J. Harry and  J. R. Lawson, Six Sigma Producibility 
Analysis and Process Characterization, Addison-Wesley 
Publishing Co., Reading, MA (1992). 

5. H. D. Mills, M. Dyer,  and R. C. Linger,  “Cleanroom 
Software Engineering,” IEEE Software 4, No. 5, 19-25 
(September 1987). 

6.  V.  R. Basili, G. Caldiera, F. McCarry, R. Pajersky, 
G. Page, and S. Waligora, “The Software Engineering 
Laboratory: An  Operational Software  Experience  Facto- 
ry,” International Conference on Software Engineering 
(May 1992), pp. 370-381. 

7.  A. H. Maslow, Motivation and Personality, 2nd edition, 
Harper & Row Publishers, New York (1970). 

8.  M. E. Fagan, “Design and  Code  Inspections  to  Reduce 
Errors in Program  Development,” IBM Systems Journal 
15, No. 3, 182-211 (1976). 

9. H. Remus, “Integrated  Software Validation in the View 
of Inspections Review,” Proceedings of the Symposium 
on Software Validation, Darmstadt,  Germany, North 
Holland,  Amsterdam, The  Netherlands (1983), pp. 341- 
350. 

10. P. L. Townsend and J. E. Gebhardt, Commit to Quality, 
John Wiley & Sons, Inc., New  York (1990). 

11. G.  J.  Myers, The Art of Software Testing, John Wiley & 
Sons, Inc., New York (1979). 

12. S. H. Kan, R. J.  Lindner, and R. J. Hedger,  “In-Process 
Metrics of the AS/400 Software Development Process,” 
presented  at the 38th Annual ASQC Minnesota Qua& 
Workshops and Conference, Minneapolis, MN (March 
5-6, 1991). 

13. S. H. Kan, “Determining  the Phase Effectiveness of the 
AS/400 Software Development  Process,” presented  at the 
First International Conference on Applications on Soft- 
ware Measurement, sponsored by the American Society 
for  Quality Control  and  Software Quality  Engineering, 
Inc., San Diego (November 1990). 

14. S. H. Kan, “Modeling  and Software Development  Qual- 
ity,” IBM Systems Journal 30, No. 3, 351-362  (1991). 

15. S. H. Kan,  “Software Quality  Engineering  Models,” 
Encyclopedia of Computer Science and Technology, 
A.  Kent and J. G. Williams, Editors (forthcoming,  Marcel 
Dekker, Inc., 1994). 

Accepted for publication September 16, 1993. 

Stephen H. Kan IBMASI400 Division, Highway 52 and NW 
37th Street, Rochester, Minnesota 55901. Dr. Kan is an  ad- 
visory programmer in IBM  Rochester’s  Development  Quality 
and  Process Technology department.  He received B.S. de- 
grees in sociology and  computer  science, M.S. degrees in 
statistics  and  sociology, and a Ph.D. in demography  from 
Utah  State University. He joined IBM in 1987. Prior to  that, 
he was a  programmer,  statistician, and  research scientist  for 
eight years in academia  and  industry. He is a Certified Quality 
Engineer by the  American Society for  Quality  Control. In his 
current assignment,  his interests  focus  on  software quality 
strategy  and  software quality  plans,  supplier  quality  require- 
ments, defect  removal  models,  and software quality  statistical 
analysis. 

KAN ET AL. 87 



Samuel  D.  Dull IBM AS/400 Division, Highway 52  and Nw 
37th Street, Rochester, Minnesota 55901. Mr. Dull is a  senior 
programmer in the  Development  Quality and  Process Tech- 
nology department,  IBM  Rochester, responsible for  the 
AS/400 software quality  management  system. He received  a 
B.S. in electrical engineering from  the Pennsylvania State Uni- 
versity. He joined IBM in  1970  in Poughkeepsie, New  York,  and 
was assigned responsibilities related to  Systed370 Models 158 
and 168 hardware performance measurements  on different op- 
erating system platforms. In 1976, he transferred to Rochester 
and has held various technical and managerial assignments on 
Systed34,  Systed36, and AS/400 software development and 
support. He has also managed internal development tool 
pro~ects and, prior to his current assignment, was the release 
manager for ASI400 Version 2 Release 1. He is currently  con- 
centrating on total quality management for software develop- 
ment. 

David N. Amundson ZBMASl400 Division, Highway 52 and 
hW37th Street, Rochester, Minnesota 55901. Mr. Amundson 
is a  manager in IBM Rochester development software.  He  has 
an M.S. degree in computer  science from the  University of 
Minnesota and  a  bachelor’s  degree from the  University of 
Wisconsin-Eau Claire. He began  his IBM career  as a  devel- 
opment programmer  and has held first- and  second-line  man- 
agement  positions in systems  assurance. During 1983 and 
1984, he  was on the staff of the  Director of Quality and As- 
surance in the  System  Products Division headquarters. Since 
returning  to  Rochester,  he  has  been a first- and  second-line 
manager in systems  support,  development quality,  and  pro- 
gramming  development. 

Richard J. Lindner ZBM AS/400 Division, Highway 52  and 
NW37th Street, Rochester, Minnesota 55901. Mr. Lindner is 
a  senior  programmer in software quality  consulting at IBM 
Rochester.  He joined IBM in 1966 and  has held various tech- 
nical and managerial  assignments in product,  tools,  and  pro- 
cess  development.  He  became a  professional  engineer 
through  training in the IBM Undergraduate Engineering Ed- 
ucation  program in conjunction  with  the University of Min- 
nesota.  He held both engineering and programming  assign- 
ments for Systemn development,  and held both programming 
development  and managerial  assignments  for the develop- 
ment of System/38. Since then he  has focused on development 
of support tools and  processes  for  software development. 

Richard J. Hedger 2453 Northern Hills Court, N. E., Roch- 
ester, Minnesota 55906. Mr. Hedger  has retired from IBM. He 
was a  program  manager  responsible  for the quality  technology 
area in the IBM Rochester laboratory. He received  a  B.E.E. 
degree in 1962 and  an M.S.E.E. degree in  1968, both  from the 
University of Minnesota. He joined  IBM in June 1962 and  has 
held various technical and management  assignments in prod- 
uct and tools  development, process and support for  System/3, 
System/38, and AS/400 products in the  Rochester laboratory. 
He was on assignment in White  Plains, New York, in the 
System  Products Division  and in the  Information Systems and 
Components  Group  headquarters,  where he was responsible 
for  software  process,  measurements, and tools. 

Reprint Order  No. G321-5533. 

IBM SYSTEMS JOURNAL,  VOL 33, NO 1, 1994 


