Journey to a mature
software process

Development process maturity is strongly linked
to the success or failure of software projects. As
the word “maturity” implies, time and effort are
necessary to gain it. The Space Shuttle Onboard
Software project has been in existence for nearly
20 years. In 1989 the project was rated at the
highest level of the Software Engineering
Institute’s Capability Maturity Model. The high-
quality software produced by the project is
directly linked to its maturity. This paper focuses
on the experiences of the Space Shuttle Onboard
Software project in the journey to process
maturity and the factors that have made it
successful.

here is currently much discussion in the soft-

ware industry and in the literature about soft-
ware process maturity and the correlation of pro-
cess maturity to software quality. At its site in
Houston, Texas, the 1BM Federal Systems Com-
pany (FSC) develops highly reliable software for
the federal government. One job, the Onboard
Shuttle project, has been evaluated at the highest
level on the Software Process Capability Maturity
Model® of the Software Engineering Institute at
Carnegie Mellon University. The FSC software
development organization in Houston consis-
tently produces high-quality software and re-
ceives accolades from audifing organizations
across the nation. This organization was the first
contractor to receive the prestigious NASA Ex-
cellence Award and is the only contractor to re-
ceive this award twice. The Houston site was
twice named the IBM Best Software Lab and was
twice awarded the Silver Level in an IBM internal

46 BILLINGS ET AL

by C. Billings
J. Clifton
B. Kolkhorst
E. Lee
W. B. Wingert

assessment matched against the Malcolm Bald-
rige National Quality Award criteria. It might be
assumed with such a consistent record of success,
that Houston has discovered the “silver bullet”
for software development. Of course, this is not
so. Indeed, Houston was only enacting process
principles that were known as early as 1960.2
Sound program management techniques, soft-
ware engineering principles, employee empower-
ment, and a culture dedicated to quality are the
basis of this software development process.
Houston’s success is the result of following these
processes with discipline and control. This disci-
pline and control evolved over a period of 25
years of service to the federal government and
prime contractors. Attention to customer require-
ments and extensive interaction with the cus-
tomer are also crucial to the evolution of this
mature software process.

Background of the Onboard Shuttle project

Focusing on project management, FSC developed
a comprehensive set of software development
standards in the early 1980s. Configuration man-
agement was rigorously practiced even before au-
tomated tools supported this activity. Configura-

©Copyright 1994 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

tion management of requirements is absolutely
essential for the development of large, complex
software systems. In the 1970s Houston main-
tained detailed manual lists of software require-
ments changes and their impact on software de-
velopment and testing.

A unique cultural heritage developed, fueled by
focusing on “doing things right,” accountability
to the customer, and the determination of the
National Aeronautics and Space Administration
(NASA) to develop a space program that is safe for
manned missions. Manned flight awareness was a
part of every programmer’s and engineer’s train-
ing and a daily emphasis of the management team.
Historically, employees were empowered to stop
the “software assembly line,” if quality issues
arose. High visibility and national awareness of
manned space flights contributed to this focus on

quality.

Building on experience with the early space sys-
tems, Houston pioneered the development of the
Space Shuttle Onboard Data Processing System.
IBM and NASA, the customer, developed a strong
relationship based on trust and a common mis-
sion. The 1BM and customer team consistently
produced software that was highly reliable and
almost error-free. Houston was ultimately ac-
countable for the operational performance of the
entire system. A description of the Space Shuttle
Onboard project is the key to understanding how
this software development process matured.?

Houston’s software development process pro-
duces highly reliable software for both the Shuttle
Onboard project and support systems. Improve-
ments to the development processes made during
this project built on development practices al-
ready in place in Houston. Disciplined applica-
tion of program management techniques, use of
team reviews, audits, systematic data collection,
and independent testing during the 1970s pre-
pared the project for more process advancements
in the 1980s.

The 1970s

The space shuttle program built the Primary Avi-
onics Software System from the ground up in the
1970s. All efforts were directed toward develop-
ing an architecture and design for the Onboard
Primary Avionics System. Major system deliver-

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

ies were required for approach and landing tests
and the orbital flight test software. Critical func-
tions combined in the two systems provided the
capability to fly the space shuttle ballistically into
orbit, support the orbiter while in space, and fly

The IBM and customer team
consistently produced software
that was highly reliable and
almost error-free.

it through re-entry to a safe landing on a dry lake
bed at Edwards Air Force Base in California. De-
livering major capabilities such as these while
preparing for an operational flight environment
presented serious challenges. According to plans
at that time, when the space shuttle became op-
erational, numerous software systems were to be
managed simultaneously to meet the needs of
the envisioned 30 flights a year. Strong software
management* through program management and
configuration control techniques was established
early and designed with an eye to the future needs
of the program.

A special focus on requirements used engineers
dedicated to requirements analysis. Engineers
serving as requirements analysts interpreted the
requirements. Each analyst worked closely with
the NASA engineering community. Requirements
analysts understood the intent of the require-
ments, helped to select the best implementation
option, and made certain that the intent was com-
municated in the approved version of the require-
ments document. The analysts became the 1BM
experts on the requirements throughout the de-
velopment of the software. Requirements analy-
sis was recognized as an essential part of the soft-
ware development life cycle.

With many parallel development activities under-
way, establishing and adhering to a system ar-
chitecture was a fundamental problem. Houston
formed a software architecture review board to ad-
dress this issue. Chaired by a senior engineer, the
board included representatives from each develop-

BILLINGS ET AL. 47

ment area of the project. The board established op-
erating procedures, and the project followed these
procedures whenever development affected the
systems architecture. For example, when a new
program module was created, its execution priority
had to be approved by the board. This procedure
assured a priority consistent with the critical nature
of the function. The board published standards for
coding certain operations to ensure correct syn-
chronization of the multiple computer environ-
ment. Any deviation from these standards had tobe
approved by the board after analysis had verified
that the change could be made without system deg-
radation.

Manual processes that implemented the proce-
dures of the board had no checks and balances to
ensure that procedures were followed. Engineers
and programmers understood the criticality of the
software being produced and did not want to
make a mistake in implementation. Review by the
board helped share the serious responsibility that
each engineer and programmer felt for the safe
execution of the final product. The developers’
acceptance of team review led to the use of re-
views as the technique of choice for ensuring
product quality. In addition, the enforcement of
discipline in following the process set the stage for
future success.

During the 1970s the project used measurements
to track schedules and costs but had only begun
to consider quality metrics. Houston monitored
the total numbers of open problem reports but
only as a program management indication of the
progress toward delivery. Although quality mea-
surement techniques were not advanced, a valu-
able activity was underway: data collection. Be-
cause of the necessity of total accountability on
product problems to NASA, data were collected on
all software problems for the project. Houston
systematically collected and retained data about
each problem. Every problem had to be explained
to NASA. NASA asked probing questions, such as
why was a mistake made, were there any other
similar problems in the software, and what ac-
tions would be taken to prevent the same type of
error in the future.

Gaining information on each software problem
required insight that could only be provided
by the software development team. The system-
atic analysis of each problem did more than

48 BILLINGS ET AL.

strengthen processes. Developers were key mem-
bers of the analysis team and felt accountable for
each error. The focus was always placed on the
error and never on the individual who made the
error. Nonetheless, professional pride made pro-

Gaining information on each
software problem required
insight that could only be
provided by the software

development team.

grammers feel responsible. From each problem
the developers learned to avoid that error in the
future. Each oversight reinforced the need to rely
on process to remove errors.

Systematic data collection on problems became
well-established with information retained in a
database, both electronically and on paper. This
repository made it possible to do trend analysis as
soon as a formal measurement program was es-
tablished in 1982. Database information became
the basis for sophisticated reliability estimates
and for research on software complexity metrics.

Data collection paid off quickly. Late additions to
requirements were disruptive to development ac-
tivities. Pressure to satisfy the customer’s needs
for software capabilities subverted project plan-
ning and development processes. Analysis of
problem data from released software revealed
that an out-of-control requirements management
process was the primary cause. Use of the data
convinced IBM management and the customer’s
requirements approval board to put more control
on the requirements approval process, eliminat-
ing over-commitment as a cause of problems.

Finding answers to customer questions also re-
quired an audit of the software product. Once a
problem was fully understood, the development
organization designed an audit to find similar in-
stances in the code, if they existed. Each instance
identified was analyzed to determine whether it

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

was also in error. The audit results allowed cus-
tomer questions to be answered with confidence.
Any new problems found by the audit could be
corrected before they caused the software to fail.
The audit, in addition to the error causal analysis
done for each problem, provided a basis for for-
mal defect prevention initiatives.

Design and code reviews were conducted during
those early days. Review participants included
the development programmer, the requirements
analyst for the area under review, and peer pro-
grammers. Reviews lacked a formal moderator,
rigorous documentation and follow-up on issues
identified, and a checklist of items to inspect. The
developer was the one who decided whether a
re-review was necessary. Configuration control
was informally tied to the reviews, since the basis
for the review was the approved requirements.
Most software products were reviewed during
this era. However, since a documented process
was lacking, the teams did not have a consistent
approach. Despite the lack of rigor, developers
shared the responsibility for the product under
review. This review method continued to rein-
force the culture of team oversight and procedural
discipline. Developers became accountable for
each product error and were inspired to share re-
sponsibility for the quality of their software.

In time, project processes formalized the cultural
acceptance of the need for procedural discipline.
This was demonstrated dramatically during the
flight of the Space Shuttle STS-49. Astronauts
struggled to capture a malfunctioning satellite.
NASA requested a change to the Remote Manip-
ulator Arm (RMS) software to improve astronaut
control of the RMS. This software update had to
work the first time and had to be delivered in a
matter of hours. With the astronauts waiting in
orbit, programmers developed and tested the
software change. They executed all required pro-
cess steps, including inspections of requirements,
design, and code before the update was released
to NASA. The STS-49 astronauts successfully used
the update with several other methods before the
satellite was finally captured. In a crisis, a mature
process is relied upon to produce the needed re-
sults, not ignored out of expediency.

During this era, an independent test organization
verified the software before delivery. Testing was
conducted with extensive use of simulation to
model the operating environment of the software.

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

Execution of the code was initially done on a sim-
ulated flight computer. When the Flight Elec-
tronic Interface Device became available, testing
was conducted on actual flight hardware.

The combination of error causal analysis, an
evolving focus on measurements, and a growing
formalization of processes brought about a grad-
ual decline in product errors. As shown in Figure
1, the software development process continued to
mature throughout the 1980s and into the 1990s,
based on the firm foundations that had been estab-
lished in the 1970s. A culture of shared responsi-
bility through team review, procedural discipline,
data collection and analysis, product audits, inde-
pendent testing, and controlled system architecture
was in place.

The 1980s

Project management. The shuttle program went
through first flight and became operational in the
1980s. Moving to an operational environment
with an increasing flight rate tested Houston’s re-
solve to stick to its processes, but strong project
management led to higher quality, reduced costs,
and increased productivity.

In the 1980s, project management strove to bal-
ance control and responsiveness. A system of
boards evolved to ensure configuration control of
the software, communication flow within the
project, and a single interface to NASA. These
boards dealt with all aspects of development and
continue to be critical to the success and disci-
pline of the project.

The original structure, illustrated in Figure 2, had
two main boards: the Project Control Board (IBM)
and the Customer Configuration Control Board.
Additionally, Houston established three key
subboards: the Discrepancy Report Board, the
Requirements Review Board, and the Support
Software Board. The Project Control Board, Dis-
crepancy Report Board, and the Requirements
Review Board controlled the three most impor-
tant aspects of the process.

The Project Control Board had a key role as the
clearinghouse for all project status and major
decisions. All boards were subordinate to the
Project Control Board. This board maintained the
configuration of the software and established

BILLINGS ET AL. 40

Figure 1 Product quality improvement based on process

focus

ERROR COUNTING, METRICS

FORMAL PROCESS

ERROR CAUSE ANALYSIS

PROCESS ANALYSIS

PRE-FIRST-FLIGHT DEVELOPMENT

——
~———
-
~—
-
-~
-

1976 | 1977 | 1978 | 1979 1980'1981]1982 1983 | 1984

1985 | 1986 | 1987 | 1988 { 1989 | 1990 | 1991 | 1992 | 1993

IBM’s position on proposed changes. During the
1980s, this board became the primary point of
contact with the customer. This board deter-
mined all schedules and milestones. Again, rep-
resentatives of each major function had a voice in
the decision.

The Discrepancy Report Board dealt with how
Houston would respond to a problem found in the
software. Problem reports came from internal
sources or from one of over 200 external NASA
user groups and external contractors. The board
met weekly or on demand to discuss current
discrepancies and their effect on the flight soft-
ware. The Discrepancy Report Board determined
Houston’s recommendation to fix or not fix a soft-
ware problem. A board representative presented
this recommendation to the NASA Configuration
Control Board where a final decision was made.
A single point of customer contact was provided

50 BILLINGS ET AL

by the board. Additionally, the board provided an
open forum for engineers to state their position on
a software problem in a nonthreatening environ-
ment, fostering an atmosphere of trust.

In determining how and when to implement a fix,
the Discrepancy Report Board coordinated in-
puts from many sources. A fix, for example,
could be applied to an incremental release or to
one or more specific flights. These decisions were
based on fix criticality and current schedules. A
representative of each stage of the development
process had a voice prior to the final IBM position
being determined.

The Requirements Review Board ensured that
project resources were fully utilized and sched-
ules could be met. This board closely coordinated
changes required with the resources available and
kept the customer informed. Changes to the soft-

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

Figure 2 Onboard Shuttle control boards

CUSTOMER CONFIGURATION
CONTROL BOARD

CUSTOMER LABS
AND SITES

»S

CONTRACTOR
COMMUNITY

CUSTOMER
INTERFACES

BOARD

P
Ly

PROJECT CONTROL

FIELD AND USER
INTERFACE

MANAGEMENT
INTERFACES

~PROJECT TECHNICAL MANAGEMENT
~PRODUCT CONTENT BASELINED

-~ PROJECT SCHEDULES

~MILESTONES AND DEPENDENCIES

~ PRIQRITIES FOR RESOURCE ALLOCATION

SUPPORT

DISCREPANCY

-1 REQUIREMENTS

SUBBOARDS

ware could not be approved by the customer
without inputs from this board. This was a key
step in eliminating errors early in the process that
were caused by poor requirements or over-com-
mitment of resources. Inputs to the board in-
cluded the readiness of the requirements for im-
plementation, the interactions with other changes
in process, and the development and verification
costs associated with the change. This board pro-
vided project management with the costs and
risks associated with each change to the flight
software. This information allowed schedules to
be developed, tracked, and coordinated with
other project activities. Costs to the customer
were reduced, since the earlier in a process that
defects are removed, the less expensive they are

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

to fix. For example, an error caught during the
requirements phase is fixed once and cheaply,
whereas the same error detected after delivery
may have to be fixed on several released systems,
escalating maintenance costs.

Key areas of the software project were brought
together regularly by these boards. Each board
provided an open forum to express concerns and
provide status. The board chairpersons were part
of an independent staff department, helping the
boards to keep the customer’s interests in focus.

Houston established other boards that dealt with
specific aspects of the development process as
shown in Figure 2. Parallel boards were estab-

BILLINGS ET AL 51

lished for the ground support software. A board
to track the development of user tools was estab-
lished to foster communication and reuse of soft-
ware among the various project elements.

Houston found that a strong customer-driven
board structure was a key item for maintain-
ing quality, delivering on schedule, and staying
within budget. Houston’s board structure mir-
rored the customer’s organization. This structure
provided each key customer process with a single
point of contact with the analogous function in
the development organization. All boards were
staffed and chaired by experienced nonmanage-
ment technical personnel who worked in the pro-
gram for years, some since its inception. This
method of project management has had quantifi-
able successful results:

* High-quality software

* An extremely satisfied customer (excellent cus-
tomer evaluations)

* No significant budget overruns

The board structure is in place to ensure that this
success continues.

Incremental release strategy. An incremental re-
lease strategy grew out of a need to isolate the
development process from the day-to-day oper-
ations of the space shuttle program. For the first
six flights of the shuttle, the flight software con-
sisted of the software for the previous flight plus
new capabilities. For example, the ability to abort
a shuttle mission to Africa or Spain did not exist
on the third flight but was added for the fourth
flight. As the flight rate increased, this method
would prove less manageable.

NASA and 1BM decided to support multiple flights
with one release of software called an operational
increment, or Ol. An OI would be reconfigured
prior to each flight to account for the mission-
specific parameters such as payload, orbit, time-
of-year, etc. This approach allowed the develop-
ment cycle to operate somewhat independently of
the flight operations.®

Operational increment testing focused on new
software capabilities rather than flight-specific
testing. A new level of testing was created to ad-
dress the flight-specific verification. The latter
dealt with mission or flight operations and the for-
mer with the longer-term development items and

B2 BILLINGS ET AL.

maintenance. This strategy reduced the potential
for resource conflicts and allowed optimization of
each process to meet its particular customer’s re-
quirements. Today, a typical release of software
is used for one year as shown in Figure 3.

This approach is more flexible than a traditional
waterfall process. It allows for new requirements
and other changes to the software at multiple
points along the way. This flexibility is demon-

An incremental release strategy
grew out of a need to isolate the
development process from the
day-to-day operations.

strated by the fact that the software that has flown
shuttle missions has undergone more than 3000
requirements changes. Since the late 1970s, the
software required more than 382 000 source lines
of code to be added, modified, or deleted. These
changes were implemented via more than 900
software builds and 175 patches. IBM has pro-
vided these evolutionary software versions to
NASA through 260 separate software releases.
Even though a typical development cycle is one
year, Houston’s incremental release process re-
sponds to the short-term needs of the customer as
well.

An incremental strategy was used as well to
produce prototype versions of the flight software.
Houston’s prototypes involved setting up a
“mock” incremental release and following the ex-
isting process in an expedited fashion. This tech-
nique dramatically improved final product qual-
ity. The development organization identified
additional requirements errors (5 percent) and de-
sign or coding errors (23 percent). If these errors
were discovered later, they would have been
more costly to fix.

It is important to note that when NASA approved
the final requirements, the prototype was retired,
and the defined process was followed for the real
implementation. This is a key step, since the pro-

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

Figure 3 Generic Onboard Shuttle operational increment

 FLIGHT RECONFIGURATION -~ L

FLIGHT RECONEIGURATION

S SNV S

cess is sound and should not be bypassed. The
advantages of prototyping are not lost, resulting
in less rework and maintenance costs.

Reguirements planning. With the introduction of
the incremental release strategy, NASA began tak-
ing a longer-term look at software development.
NASA focused on determining the strategic prior-
ity of candidate changes to the flight software.
1BM provided guidance as to what could be ac-
complished with the skills available. Together,
NASA and IBM planned the development of several
releases to be done in the future. NASA approved
all software changes affecting related areas to-
gether to simplify both the development and the
verification process.

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

At any given time, NASA planned two to four
years in advance. With this approach, all affected
areas could plan their activities, such as training,
with advance information. Of course, not all
changes could be anticipated, but software was
treated as a subsystem that could be improved
and upgraded much like hardware components
and often as a result of hardware upgrades.

Life-cycle changes—Independent verification. In
the 1970s, Houston established an independent
verification function as a separate line organiza-
tion without managerial or personnel ties to the
development organizations. Independent verifi-
cation analysts maintained a healthy adversarial

BILLINGS ET AL. 53

Figure 4 Onboard Shuttle test levels

¥
f 3

LOPMENT/ INTEGRATION .

i

b

i

¥

I

LEVEL 1 ot

TESTING |

LEVEL 2 i
| TesTing L RN
S |~ FUNCTIONAL INTERFACES |
LEVEL 3 | TMULTIBLEFUNCTIONS . 1
TESTING e iRk

~ ~MISSION PROFILE

e o o i i s i, e e i . s s R

- - REQUIRE

.| VERIFICATION

R
B
TESTING ’ < . 1
FUNCTIONAL TESTS - |
~ SYSTEM-LEVEL | .
»} LEVEL7 * PERFORMANCE . i o
.| TESTING o L
R | LeveLs
TESTING -ES’sj
“[peuvery To DELIVERY OF RELEASE OF
BASE SYSTEM . SYSTEM

| TONASA

FOR FLIGHT

relationship with the software developers. Mul-
tiple test phases were defined (Figure 4), and the
independent tests were based on an assumption
that the software was untested by the develop-
ment programmers. Verification analysts devel-
oped independent test plans for requirements-
based testing, independent functional testing, and
independent code desk checks and audits. Veri-
fication analysts were responsible for a system-
level test phase that emphasized customer-ori-
ented testing and shuttle community involvement
in test planning and in analysis of test results.

Verification staffing nearly equaled the develop-
ment levels, and verification personnel had re-
quirements analysis, software development, and

54 BILLINGS ET AL.

onboard systems experience. Configuration con-
trol of test products was a key element of test
quality and test documentation and analysis. Re-
sults were controlled and archived with the in-
cremental release software under test. This ar-
chive supplied reusable test components for
regression testing and retest of changed software.

During the early 1980s, Houston changed the soft-
ware process to improve early detection of soft-
ware errors. Resource allocation was shifted to
the front end of the software development life
cycle to support formalized inspections. These
inspections included mandatory involvement of
independent verification personnel in software
design and code inspections. This requirement

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

was initially resisted by verifiers, who felt it
would compromise their independence. A modi-
fication in the inspection process to separate in-
spections of the software from inspections of unit
and functional test plans and test cases satisfied
this concern. The result of this process change
was a dramatic increase in detection of software
errors during inspections. The decrease in rework
due to the early detection of errors more than paid
for the shift of resources, thus increasing overall
productivity.

Secondary benefits from the involvement of the
verification group in software inspections in-
clude:

* Verification analysts were more knowledgeable
of the implementation.

¢ Team fellowship and product ownership were
fostered.

The independence of the verification group was
not compromised for two reasons. First, verifi-
cation analysts did not have knowledge of devel-
opment testing and could continue to consider the
software untested. Second, the verification ana-
lysts inspected the software from a different per-
spective than developers. Verification analysts
considered inspections a “first test” and reviewed
design and code for weak spots, constraints, data
anomalies, and other characteristics that would typ-
ically be represented in test strategies. Verifiers
uniquely find approximately 20 percent of inspec-
tion errors—errors that might otherwise have to be
found through dynamic testing.

When the Onboard Shuttle flight system became
operational, the detail verification group adopted
a delta test strategy to concentrate testing activity
on only affected code statements and logic in new
or changed code. This strategy required detailed
tracking of software changes to test plans and
cases developed to test that software. Configura-
tion control and test documentation improved,
resulting in even tighter control over test prod-
ucts.

A process team was formed to improve perfor-
mance verification quality and effectiveness. The
system performance verification process began to
take shape in the early 1980s when performance
testing was designed and a review process was
established to improve the quality of the test
products. A system performance testing board re-

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

viewed and approved (1) preliminary verification
assessments (considerations on whether or not to
explicitly test a changed requirement, how much
to test, etc.); (2) test specifications (how to test,
what conditions will be tested, etc.); and (3) test
reports (actual results vs expected results, anal-
ysis of discrepancies, etc.). This board resolved
most technical disagreements and was the fore-
runner of the process teams, discussed in the next
section.

Process assessments. Throughout the 1980s, FSC
Houston sought out independent evaluations of
its processes. Applying for the NASA Excellence
Awards, Malcolm Baldrige Award, and internal
IBM quality awards, as well as internal IBM assess-
ments, provided measurements against widely ac-
cepted (and consistent) criteria. Houston used
these evaluations as a means to identify process
“weak spots.”

For example, in early 1984, a team working under
Watts Humphrey rated the two largest projects in
FSC Houston against a set of criteria that were to
become the Process Capability Maturity Model of
the Software Engineering Institute at Carnegie
Mellon University. A one-week independent re-
view of each project was conducted, concentrat-
ing on software development processes for each
life-cycle phase, as well as processes spanning the
life cycle: performance, information develop-
ment, quality assurance, and change control. Pro-
cess attributes were evaluated against 5 levels
(with 5 as the highest rating). The Onboard Shut-
tle project average across the 11 areas was 3.15,
and the system test phase scored 4.

The following areas were suggested for improve-
ment:

» Data collection, analysis, and feedback were
insufficient at the process level.

e Proven methodologies were not being consis-
tently used in inspections.

» Test process consistency, configuration man-
agement, and coverage measurement could be
improved.

* Documentation preparation was largely done
manually.

On the basis of the assessment recommendations,
a continuous focus on these items brought about
process and product improvement. In 1989, the
Onboard Shuttle project was evaluated by a NASA

BILLINGS ET AL §5§

team using the Software Engineering Institute
(SEI) Capability Maturity Model. The shuttle proj-
ect scored a “5,” the highest possible rating. A
review of these results by Humphrey confirmed
the NASA findings.’

Process improvements. Measurements and in-
spections were important in improving the pro-
cess.

Process and product measurements. To under-
stand processes and the effects of change, an or-
ganization must be able to measure its processes.
During the 1980s the Onboard Shuttle project
went from the “primitive” project measurements
of the 1970s to precise measurements of software
quality and the development process. Major proj-
ect measurements are:

e Software quality measurements monitored as a
group

Early detection percent

major inspection errors X 100
a total errors

Process error rate

valid errors pre-delivery

~ thousand source lines of code (KSLOC)
Product error rate

valid errors post-delivery

~ thousand source lines of code (KSLOC)

e Process measurement

Total inserted error rate

major inspection errors + all valid errors

thousand source lines of code (KSLOC)

Collecting measurements is not enough. It is nec-
essary to properly analyze and understand the
information. Trends in process errors, for exam-
ple, must be examined in conjunction with the
trends in early detection and product errors. If
early detection trends increase and both process
and product error trends decrease, the trends are
favorable. If, in contrast, process errors decrease

56 BILUNGS ET AL

and product errors increase, the software devel-
opment process must be examined to find the
weaknesses that allow errors to be delivered to
the customer.

Measurements of the subprocesses gauge their
effectiveness and the effect of process changes.
For example, concentration on the early detec-
tion measurement resulted in improvements to
the design and code inspection process discussed

To understand processes and
the effects of change, an
organization must be able to
measure its processes.

in the next subsection. Measurements demon-
strated the increased effectiveness of the process.

. As seen in Figure 5, process analysis through

measurement has demonstrated improved pro-
cesses that have resulted in improved software
products.

Inspections. In 1981, a mandatory inspection pro-
cess was formalized. This led to a significant in-
crease in early error detection. The formal inspec-
tion process required checklists for design and
code inspections, a formally trained moderator
team, and participation by the requirements an-
alysts and verification analysts. Later improve-
ments included assignment of specific responsi-
bilities for each inspection participant and further
refined procedures.

Checklist item responsibilities were assigned to
individual team members, but the team goal was
to detect all errors in the design and code. The
primary reason for conducting a meeting in addi-
tion to individual inspection activity is the syn-
ergy created through face-to-face interaction.
The moderator is a formally trained chairperson
of the inspection meeting and has overall respon-
sibility for the inspection activities.

Procedures were refined to define the contents of
the inspection packages; scheduling algorithms

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

Figure 5 Quality improvement in the 1980s

PRODUCT

PROCESS (TESTING)

EARLY DETECTION (PREBUILD)

were designed to allow adequate preparation time
for all participants; formal documentation of ac-
tion items were required; and waiver mechanisms
for process deviations were initiated.

The results were dramatic. Early detection im-
proved from the 50 percent levels of the 1970s to
above 80 percent in the 1980s.

This success caused the inspection process to be
propagated to requirements and test products.
The inspection process was modified for each de-
velopment stage. For example, the customer was
included in the requirements and test inspections
but excluded from the design and code inspec-
tions. Formal inspections dramatically improved
the quality of requirements, significantly reduced

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

verification test resource usage, and increased
test effectiveness.

Defect prevention process. The Onboard Shuttle
project defect prevention process is based on au-
dits and analyses. In the 1970s errors were clas-
sified and, if a particular error was severe, audits
were performed to detect other instances of that
error class. In one case, a critical error was de-
tected in multipass data usage. The symptoms
and characteristics of this error class were iden-
tified, and an intensive analysis effort was con-
ducted by the development and verification orga-
nizations to find other instances. Global variables
were another area of concern due to the complexity
of global data usage and computer synchronization.

BILLINGS ET AL. §7

Figure 6 Four-step defect prevention process

—
SR rodT ~, DEFECT ESCAPED DEFECTESCAPED -~ :
L CAUSE DETECTION DETECTION.
PROCESS . ~| PROCESS = PROCESS PROQCESS PRODUCT
ELEMENT A ELEMENT B ELEMENT C ELEMENT D
L e o B i 4 » P
G SIMILAR ADDITIONAL
DEFECT &) unoeTecTED DEFECTS
INTRODUGED SriiAL \
NS DEFECT
PROCESS IMPROVEMENT CONTINUOUSL Y ACHIEVED ‘
BY PERFORMING FEEDBACK STEPS (2)2(3) :

Tools were developed and a process established to
prevent insertion of global data errors.

The causal analysis and defect prevention pro-
cess consists of identifying classes of errors,
searching for their causes, and modifying the pro-
cesses to prevent the occurrence of those errors
in the future. Special teams investigate every er-
ror. These teams are composed of members from
all software development phases and are respon-
sible for determining how an error escaped de-
tection and for finding any similar errors.®

The teams use the following rigorous four-step
approach shown in Figure 6:

1. Find the error and fix it.

2. Find and eliminate the cause of the error.

3. Fix other faults in the process that allowed the
error to go undetected through the process.

4. Look for similar, as-yet-undetected, errors
and eliminate them too.

In addition to the four-step process, a periodic
analysis of error trends is conducted. If as a result
of this analysis it is concluded that the process
needs to be changed, changes are designed and
implemented. In this disciplined approach, both
improving the quality of the product through a

58 sBiLLINGS ET AL

systematic error search and improving the quality
of the processes to prevent future occurrences of
such errors have combined to produce the near-
zero product error rates in the software.

Applying the shuttle process. The Houston pro-
cess has been successfully tailored for use in
other projects. Tailoring reduces or modifies ac-
tivities that are not appropriate for the new ap-
plication. For example, without the requirement
to have a system able to support human life, the
large investment in independent testing can be
reduced. Although most Houston processes re-
late well to other projects, requirements analysis
is particularly applicable. In any development
project, understanding the customer’s require-
ments and documenting them correctly will re-
duce errors more than any other single step.
Houston applied the requirements process to a
small engineering lab upgrade. The resulting set
of requirements provided a clear picture of what
was needed to satisfy the users. Although the cus-
tomers and developers were frustrated at first by
slow progress, the actual implementation pro-
ceeded smoothly, and the end result clearly ben-
efited from the requirements effort.

Additionally, Houston transferred the code in-
spection and requirements analysis process to its

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

ground support software project during the 1980s.
The result has been a drop in product error rates
from 0.72 errors per 1000 lines of code in 1986 to
0.30 in 1993.°

Even on small software teams, most or all of the
process can be used effectively. A team can de-
cide the level of rigor they will impose on them-
selves based on the criticality of their application.
Aspects of the shuttle process are used today on
the space station program, the air traffic control
system, and others.

Reliability. During the 1980s, the shuttle project
began to use a large historical database to predict
the reliability of software. This gave Houston the
ability to redirect resources to reduce errors be-
fore the software was released. Using models,
Houston is able to predict when and how many
errors are likely to be found.® The analysis of the
data found several key points. First (and central
to Houston’s approach to defect elimination) is
that all software errors cannot be found by test-
ing. In fact, less than 10 percent are found in shut-
tle testing today (Figure 7). This outcome is due
to the emphasis placed on removing errors prior
to the test phase. Second, about half the errors
that escape the inspection process are found by
testing. The remaining errors are found by static
analysis (code audits, desk checks, etc.). Lastly,
reliability model data are used to decide when to
stop testing as opposed to waiting for time or
money to run out. Reliability measurements re-
quire access to historical data to be accurate.
These historical data, combined with the knowl-
edge of the planned software changes, allow re-
liability to be estimated.

The 1990s

The 1990s brought the need to be more compet-
itive through increased productivity, while main-
taining the software quality that the customer has
come to expect. Houston pursued a strategy of
selective insertion of new technology into the
software development process in combination
with actions to optimize the existing process.
Commercial off-the-shelf hardware and software
are used to enact the process. Process ownership
teams work to optimize the development pro-
cesses.

Enactment of the software development process.
Houston learned from experience and through

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

Figure 7 Where errors are found in the space shuttle
software

PREBUILD
INSPECTIONS
85.4%

OTHER
o INSPECTIONS
o 73%//

benchmarking with other companies that comput-
er-assisted software engineering (CASE) tools are,
at best, only a partial answer to productivity im-
provement. ! Since the shuttle software is written
in unique programming languages, a lack of com-
mercial products increases the challenge of tech-
nology insertion. Rather than focus on the use of
technology to design and code software, the On-
board Shuttle project has focused on enabling the
formal processes that govern the production of
the software. The objective is to free the software
developers from administering the process and to
focus their technical skills on producing software.

Process ownership teams applied. In 1990 it was
recognized that technical management of the soft-
ware development process needed to reside with
people who performed the processes. They knew
better than anyone what worked and what could
be improved. If the process could be optimized,
the development teams had the insight to make
the changes.

Following the model of the successful design and
code inspection teams, ownership teams were as-
signed to each of the processes: requirements

BILLINGS ET AL. §9

evaluation, development design and code, devel-
opment test, and independent test. Each team
monitored and controlled its process. The team’s
responsibilities were to:

* Document the process

¢ Collect process metrics

* Benchmark the process

¢ Analyze process metrics and optimize the pro-
cess

* Provide education to process users

Teams were encouraged to find new means of im-
proving process efficiency. They often included
both vendors and customers as part of their pro-
cess improvement activities. The team approach
has been ingrained in the Houston culture and is
considered to be a normal business routine.

One of the first successes involved the develop-
ment test team. Soon after they formed, the team
identified the inability of unit test to discover er-
rors. Inspection of the requirements, design, and
code left virtually no errors in the software de-
tectable by traditional unit testing. The few errors
that remained consisted of interface problems and
errors in rare execution scenarios that fell outside
the scope of unit testing. The team responsible for
the development testing process changed their
testing philosophy from that of unit and functional
test to scenario testing. Early results of this pro-
cess change are encouraging, with increased etror
detection in this development stage. Detection of
errors has been moved so that it is earlier in the
development life cycle, reducing the cost of re-
work.

Leaders of the process teams are members of a
Process Evaluation Team. The Process Evalua-
tion Team meets regularly to discuss cross-func-
tional process issues and to evaluate each pro-
cess.”? Improved communications has spread
process concepts from one process to another.
Ownership teams are accelerating the evolution-
ary optimization of the Houston processes.

Conclusion

Sophisticated processes to develop the space
shuttle software evolved over many years. Sev-
eral factors influenced the overall success of the
project. Maturity grew out of practical experience
and innovative ideas from industry and academia,
as well as through trial and error. Disciplined ap-

60 BILLINGS ET AL

plication of the resulting processes has produced
software systems that have been virtually error-
free. Although these processes were developed
for a complex aerospace application, many are
fundamental for any type of software develop-
ment. Strong program management, adherence to
the process even during times of pressure, and
procedural discipline have a significant positive
influence on project results. None requires so-
phisticated technology. They are organizational,
procedural, and cultural and can be implemented
by managers and software professionals who
have the desire to improve their development
environment.

Houston demonstrated that disciplined use of
program management, team inspections, inde-
pendent testing, incremental development, re-
quirements management, and measurement pro-
grams result in predictable product quality deliv-
ered on time and within budget. Additional im-
portant factors in attaining extremely low error
rates were the use of product audits when process
weaknesses were discovered, using independent
testers as inspectors in requirements, design, and
code inspections, and process evolution driven
by problem causal analysis.

The software development life cycle is an inte-
gration of all the processes necessary to produce
the software products. Process maturity comes
from focusing on each of these processes and en-
suring that all the steps are necessary, that the
process is followed, and that the door is open to
better ways of completing the activity. Maturity
develops in both the processes and in the atti-
tudes of those who must execute the processes.

Cited references and note

1. Capability Maturity Model for Software, CMU/SEI-91-
TR-24, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA 15213 (August 1991).

2. N. H. Madhaviji, K. Toubache, and E. Lynch, The IBM-
McGill Project on Software Process, Technical Report
74-077, Centre for Advanced Studies, IBM Canada Ltd.,
Toronto (October 1991).

3. J. F. Hanaway and R. W. Moorehead, Space Shuttle Avi-
onics System, National Aeronautics and Space Adminis-
tration Office of Management, Scientific and Technical
Information Division, Washington, DC.

4. C. P. Lecht, The Management of Computer Program-
ming Projects, American Management Association, New
York (1967).

5. W. Madden and K. Rone, “Shuttle Operational Incre-
ments: Design and Development of the Space Shuttle Pri-

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

mary Flight Software System,” Houston Technical Di-
rection, IBM Federal Systems Company (1979).

6. E. Lee, “Using Testing Resources for Defect Preven-
tion,” 5th International Software Quality Week, Software
Research, Inc., San Francisco (May 1992).

7. W. S. Humphrey, Director, Software Process Program,
Software Engineering Institute, Carnegie Mellon Univer-
sity, Pittsburgh, PA, stated, “We were delighted with the
degree to which your experiences reinforce the SEI ma-
turity framework and particularly by the way the contin-
uous improvement culture seems to pervade your orga-
nization. . . . Four-step process for defect prevention was
particularly impressive and represents a step beyond what
we had been considering.” (July 1990).

8. R. G. Mays, C. L. Jones, G. J. Holloway, and D. P.
Studinski, “Experiences with Defect Prevention,” IBM
Systems Journal 29, No. 1, 4-32 (1990).

9. “Use of Testing Resources for Early Defect Elimina-
tion,” E. Lee, Software Management News 11, No. 6
(November/December 1993).

10. N. F. Schniedewind and T. W. Keller, “Applying Reli-
ability Models to the Space Shuttle,” IEEE Software 9,
No. 4, 28-32 (July 1992).

11. F. P. Brooks, “No Silver Bullets ... The Essence and
Accidents of Software Engineering,” Computer 20, No.
4, 10 (April 1987).

12. E. Lee, “Process Evaluation Teams,” 8th Annual NASA/
Contractors Conference and 1991 Symposium on Quality
and Productivity, ISSN 1049-667X, NASA (April 1992),
Sec. 8.1.4, p. 127.

Accepted for publication September 8, 1993.

Note: At the time of publication, Federal Systems Company,
now a unit of Loral Corporation, was an IBM-owned com-
pany. Addresses for authors may still be considered valid.

Cyndy Billings IBM Federal Systems Company, 3700 Bay
Area Boulevard, Houston, Texas 77058-1199. Ms. Billings is
a consultant with the IBM Federal Application Development
Consulting Practice, specializing in test process and method-
ology for high-quality software. She has over a decade of
experience in the testing and verification of complex embed-
ded software systems, with five years of management expe-
rience in space station and Onboard Shuttle Software testing.

Jeanle Clifton IBM Federal Systems Company, 3700 Bay
Area Boulevard, Houston, Texas 77058-1199. Ms. Clifton be-
gan her career with IBM in 1981 in Tucson, Arizona, working
in a product reliability, availability, and serviceability group.
She later worked in the Tucson Customer Support Center, the
first of its kind within IBM, solving customer computing prob-
lems and instructing them in the use of many IBM software
and hardware products. Following the Space Shuttle Chal-
lenger accident in 1986, Ms. Clifton transferred to IBM’s Fed-
eral Sector Division and played a key role in revalidating the
Onboard Shuttle Software. She has been a technical lead
within the Onboard Shuttle Software project, being the chair-
person of the Development and Inspection Process group.
This process is recognized around the world as the key to
developing the “zero defect” shuttle software. She is cur-
rently a member of the IBM Federal Application Development

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

Consulting Practice, helping software development laborato-
ries both internal and external to IBM.

Barbara Kolkhorst IBM Federal Systems Company, 3700
Bay Area Boulevard, Houston, Texas 77058-1199. Ms. Kolk-
horst is a senior systems engineer with the IBM Federal Ap-
plication Development Consulting Practice. Her work has fo-
cused on evaluating and improving the software development
process to produce affordable, highly reliable software sys-
tems. Ms. Kolkhorst has extensive experience as both a soft-
ware development manager and a technical leader in the de-
velopment of software products for NASA’s space shuttle
program. She has over 30 years experience in all phases of the
software development life cycle, developing highly reliable
software for applications supporting manned space flight, nu-
clear energy, and modeling for business economics.

Earl Lee IBM Federal Systems Company, 3700 Bay Area Bou-
levard, Houston, Texas 77058-1199. Mr. Lee has 27 years of
experience on large, complex, data processing systems. These
have included the semi-automation of the FAA’s Nation Air
Space Enroute Air Traffic Control System and the Space Shut-
tle Onboard Data Processing System. He has been involved in
software development for 18 years in both technical and man-
agement roles, and his experience spans the entire software
development life cycle. As a manager, he led the establish-
ment of software process evaluation methods on the space
shuttle project. Mr. Lee is currently a member of the IBM
Consulting Group.

Willlam Bret Wingert IBM Federal Systems Company, 3700
Bay Area Boulevard, Houston, Texas 77058-1199. Mr. Wing-
ert joined IBM as an aerospace engineer in 1982 where he
worked in the Space Shuttle Onboard Flight Software Guid-
ance, Navigation, and Control (GN&C) Requirements Anal-
ysis and Performance Verification organization until 1988. In
1989, he worked on various upgrade strategies for onboard
avionics and ground systems. He also investigated ways to
reuse shuttle software technology on other manned and un-
manned launch systems. In 1991, he began managing the
Space Shuttle Onboard Flight Software GN&C organization.
He currently acts as a consultant to various internal and ex-
ternal organizations on testing and requirements analysis.

Reprint Order No. G321-5532.

BILLINGS ET AL 61

