
Technical forum

Programming quality improvement
in IBM
A management system was established in IBM to
improve the quality of its software products. It
represents a nontraditional approach to quality
improvement. The approach is based on empow-
ering programming development teams, guided
by a set of principles that were defined by the
programming community and driven by aggres-
sive goals established to improve quality and en-
hance customer satisfaction. In turn the experi-
ences of the newly empowered teams led to a set
of good programming practices that were shared
across the programming community in IBM. The
result has not only been a dramatic improvement
in the quality of IBM’s program products, but also
the fostering of a work environment based on cre-
ativity and excellence that engenders pride of
ownership for work performed.

Not unique to IBM, problems in software devel-
opment, and the approaches taken to address
them, existed throughout the data processing in-
dustry in its earlier days. Traditionally, program-
ming development used a system of centralized
control,’ but it was not very adaptive, it con-

tained few feedback mechanisms, and it did not
account for developments that occurred outside
of the company. Under this system the environ-
ment, or work culture, tended to stifle creativity,
cause product cost and development cycle time to
suffer, and fail to reward risk-taking. Programmers
in many areas in IBM had to rigidly follow rules
and procedures for development, documented in a
guidebook.

Through the years, the number of program de-
fects in IBM products declined, but by 1988 the
rate had only improved by a factor of two from
what it was 10 years before, and that was on a
relative basis. Because of continuous growth in
the number of lines of code in many installations,
a customer was apt to see more defects in spite of
the improvement in the relative defect rate.

During the latter part of the 1980s several pro-
gramming projects in IBM achieved high levels of
quality and productivity by focusing on require-
ments to attain them. Then in 1990 a program
instituted in response to IBM’s commitment to
market-driven quality (MDQ) established goals to
improve defect quality throughout all of the soft-
ware development organizations. To reach these
goals, a system was set up to obtain commitments
and measure results without dictating the imple-
mentation, which led to the establishment of prin-
ciples to guide the IBM programming community.

The principles. A set of principles evolved based
on benchmarking, consultant studies, and long-
used internal processes and practices. Although
some studies had been done about programming
development in IBM, two studies were the pri-
mary source of the principles. The first, called the
“best of breed” study, was performed internally
and completed in April 1989. It looked at 35
projects from 19 different IBM laboratories. Char-
acteristics of these projects were short cycle

@Copyright 1994 by International Business Machines Corpo-
ration.

TECHNICAL FORUM 215 IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

times, high productivity, large amounts of code re-
use or porting, excellent reliability or performance,
improved usability, etc.

The second was a consultant study, completed in
June 1989, that looked at development processes,
methods, and tools of 11 other companie~.~ The
conclusions of this study were essentially identi-
cal to those of the first one. A consultant study of
six Japanese computer manufacturers completed
later confirmed the results of the first two stud-
i e ~ , ~ as did a number of “benchmarks” performed
by IBM programming teams.

From these findings a list of 12 “principles” was
published in August 1990 and serves as the pri-
mary guidance for programming development in
IBM. Programming teams are empowered to apply
these principles in ways that are best suited for
their own use.

The principles represent nothing new. Most of
them have been employed by all programmers at
one time or another. However, taken collectively
they provide an effective framework for program-
ming development. Each is briefly described be-
low.

A rigorous product development process. The
process used by each development group must be
defined and documented. It must be amenable to
inspection to the point where definite checkpoints
are established and the status of a project can be
measured against these checkpoints. Status re-
porting and measurements must be an integral
part of the process. The process must not be so
rigid that it does not allow changes at the end of
each product cycle or as the needs of the labo-
ratory or product change, or both. Kickoff meet-
ings for each stage of the process introduce the
most recent modifications to the developers.
Postmortems can determine what should be
added to or deleted from the process for the next
cycle.

Total customer satisfaction. The foundation of
this principle is based on understanding and ad-
dressing the wants and needs of customers. This
principle has to become an integral part of all soft-
ware development processes.

Verification by simulation, analysis, and early
protoqping and continuous validation. Products
under development must be continuously refined

216 TECHNICAL FORUM

to ensure that they meet customers’ wants and
needs. Customers and members of the marketing
and service organization should be part of this
activity. In addition, experts or consultants
should be used where appropriate. Verification
can take such forms as: customer advisory coun-
cils, making prototypes available for customer
use, early support programs, and beta tests. This
principle must be applied much earlier in the
product development cycle than at the point of
the traditional test period and early shipments to
some customers.

Early sofnvare manufacturing involvement for all
products. The distribution and support plan must
be at the forefront of the product development
and planning processes. Distribution and service
of products are fast becoming key inhibitors to
growth. We no longer live in the era of the host
environment in which all program products were
installed on a single CPU. Personal computers and
workstations, along with distributed systems and
client/server computing, have shown the impor-
tance and complexity of distribution and service.
In addition, new ways for distributing products
and providing service are now being used, i.e.,
CD-ROMS, electronic documentation and help,
electronic publications, hypertext, etc.

Benchmarking. For products to attain world-
class status, they have to be compared against
their best competitors, externally and internally.
A comparison implies some form of benchmark-
ing for process, results, tools, techniques, etc. In
addition, developers should be aware of technical
activities within the internal programming com-
munity and participate in on-line bulletin boards
and internal and external technical conferences
on process and quality.

Dependency management. This principle applies
to all dependencies-those upon which the de-
veloping group depends as well as those that are
dependent on the group. In every case studied,
successful projects exhibited strong dependency
management characteristics. Ownership and com-
mitment were present from the beginning and so
was a clear definition of the expected deliverables.
Closely related is good communication of the true
status of dependencies to avoid surprises or late
decommitments.

In-process measurements and ratings. This prin-
ciple is primarily for products under develop-

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

ment. To predict the quality of a product when
it ships, it is necessary to do some amount of
defect tracking throughout the development cy-
cle. Tracking should start as early in the cycle as
possible, and historical records should be kept for
cycle-to-cycle comparisons. In addition, some
formal methodology (conforming to standards for
the Malcolm Baldrige National Quality Award,
ISO 9000, the Carnegie Mellon Software Engi-
neering Institute’s Capability Maturity Model,
etc.) should be used by an organization and pro-
cess, respectively, so that there is a consistent
basis for comparisons and improvement. The
methodology can provide a set of key measures to
predict what the quality of a product will be when
it is shipped.

Defect causal analysis and prevention. A very
powerful technique, this principle systemati-
cally eliminates defects and continuously im-
proves products and processes. It can be applied
to all aspects of development and not just to code
or test. Basically defects are analyzed until their
root cause has been identified. Then it is neces-
sary to determine what changes must be made in
the processes to prevent these types of defects
from happening again.

Robust change control and problem manage-
ment. All successful projects exhibited this at-
tribute. Managing requirements and the associ-
ated change process are important. If not
managed, they lead to constant change in plans,
long development cycles, and low productivity. A
related key success factor keeps data up to date
so that real-time decisions on resource alloca-
tions, priorities, etc., can be made with confi-
dence.

Tools, use of personal computers and worksta-
tions, technical education. Programmers should
have the latest in both CASE (computer-aided sys-
tems engineering) tools technology (external as
well as internal) and the hardware platforms nec-
essary to run them at their full potential. High-
speed connectivity is also needed to permit local
and remote teams to work together efficiently.
Programmers should know how to best use their
development environment and also have an un-
derstanding of the latest advances in software en-
gineering and process technology. Continuing
technical education is required to best achieve
that end.

IBM SYSTEMS JOURNAL, VOL 33, NO 1. 1994

Reuse of code or design and also of knowledge
and experience. The intent here is to develop a
means for sharing as much as possible across the
programming community and as a result to achieve
improvements in productivity, quality, and cycle
time. Common libraries for code, on-line bulletin
boards, and technical conferences aimed at gaining
knowledge or experience are also part of this
means. Design, test, and documentation should
also be included to gain further leverage.

Linkage of customer value analysis to product
content and investment. It is important to estab-
lish a clear linkage between customer satisfaction
for a product, as determined by surveys and other
customer interactions, and the investment in a
product. From this linkage we determine what
value new products or enhancements have for
customers. By analyzing the effects that product
offerings will have on customers’ costs, produc-
tivity, and overall business effectiveness, we can
deliver those solutions that are of greatest value.

We have standardized a methodology for mea-
suring customer satisfaction so that we can dis-
cuss it on a community-wide basis and better tar-
get our improvement efforts. The methodology is
based on customer satisfaction surveys (many
different types of surveys are used depending on
the product, target audience, etc.) in which we
ask customers to rate our products and services
on eight different attributes, and to give an overall
rating. Additionally they are asked to identify the
attribute that is most important to them and the
one that most needs improvement. The method-
ology is called CUPRIMDSO, a term composed of
the initial letters from each of the following
words: capability, usability, performance, reli-
ability, installability, maintainability, documen-
tation, service, and overall satisfaction.

We use surveys with a five-point scale for an-
swers-very satisfied, satisfied, neutral, dissatis-
fied, and very dissatisfied. We also focus on the
percentage of nonsatisfied responses to our sur-
veys-the number of those that are neutral, plus
dissatisfied, plus very dissatisfied, divided by the
total number of responses. Previously, neutral re-
spondents were included with the satisfied and
very satisfied customers to produce a satisfied in-
dex. However, the approach used today under-
stands neutral customers as not really satisfied;
accordingly they should be treated the same as
dissatisfied or very dissatisfied customers.

TECHNICAL FORUM 217

Although this methodology is connected to the
principles of customer satisfaction and the link-
age of customer value analysis, it is also con-
nected to good programming practices.

Good programming practices. In late 1990 the IBM
programming community began to develop a set
of good programming practices (GPPs) to go with
the principles. The focus was on process items
and techniques that had demonstrated improved
MDQ results. They were generic in nature, rather
than laboratory- or product-specific, and could be
used to augment any development process. In es-
sence they were specific implementations of the
principles. Three of the more widely used GPPS
are: Six Sigma Module Analysis, Statistical Pro-
cess Control for S ~ f t w a r e , ~ ’ ~ and Orthogonal De-
fect Classification.’ Defect causal analysis’ is at
the root of several of the GPPS.

Six Sigma Module Analysis is a technique that
can be used to determine “error-prone” modules.
All the modules in a product are classified ac-
cording to the number of defects found in cus-
tomer use, and are grouped into categories based
on the results. Within categories some may re-
quire complete redesign and recoding, others may
be candidates for more intense inspection and
testing, and still others may require that the pro-
grammers responsible for them receive more ed-
ucation. As a refinement of this technique, Sta-
tistical Process Control for Software (SPCS) tries
to identify error-prone modules before they are
delivered to customers. Essentially, profiles are
developed on several characteristics of modules
that have exhibited a high number of defects after
being shipped. Some sample characteristics are
module size, number of unique operands refer-
enced, number of unique operators executed,
number of defects found in component test, and
number of defects found in system test. From this
information, control charts can be developed to
track modules while they are under development.
In this way, when a module exceeds one of the
control limits it can be checked before it is re-
leased, thus avoiding potential problems for cus-
tomers. With such use SPCS is a proactive tech-
nique, whereas Six Sigma Module Analysis is a
reactive technique.

A still further refinement is Orthogonal Defect
Classification (ODC). This technique’ looks at all

218 TECHNICAL FORUM

the defects and categorizes them as to type and
when they should be found in the development
process. Profiles can then be constructed on the
strengths and weaknesses of the processes being
used to develop the product. For example, with
ODC it is possible to find out whether the initial
specifications are sufficiently detailed. ODC al-
lows a proactive posture to be taken on the de-
velopment processes while products are being de-
veloped. It permits the fine-tuning of processes
while they are being used rather than having to
wait for defect feedback from customers.

The purpose of all the programming practices is to
increase the product manager’s knowledge of pre-
cise customer “wants and needs” so that subse-
quent releases of a product can overcome specific
areas of weakness. Although some of these prac-
tices were followed in the past, they were not
done with this level of thoroughness and rigor.

Results to date. The three primary measures that
the IBM programming community has focused on
during the past four years as part of IBM’s MDQ
efforts are: product defects, service defects, and
customer satisfaction. In general, the following
results have been achieved up to the present
time: *
For over 25 years the IBM programming commu-
nity has measured product defects by taking the
number of defects found in a product after it ships
and dividing it by the size of the product in terms
of the number of lines of code. The only variable
has been the product life span. Until 1988 we used
a four-year life span, but since 1989 we have used
a three-year life span because our shorter cycle
times make previous product releases obsolete on
a faster time scale. The base year is 1989, and our
initial goal for product defects was to be 10 times
better by 1991. By the end of 1991 we had
achieved an improvement of approximately 4 to 5
times across the board, and by the end of 1992 we
had become 10 to 12 times better. Although we
were about a year behind our original goal, we
greatly accelerated the pace of improvement. By
far the most important result from a customer per-
spective is a reduction in the absolute number of
defects in products. The number increased from
1989 to 1990, but it was flat from 1990 to 1991, and
it declined slightly from 1991 to 1992.

Service defects are measured by the absolute
number of defective fixes shipped to customers.

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

In 1988 15 to 20 percent of our fkes were defec-
tive. Today the number is a fraction of 1 percent,
and in 1992 the majority of our product teams
shipped “zero” defective fixes. By the end of
1993 a defective fix was expected to be the ex-
ception rather than the norm for all but a very
small number of products. The improvement was
accomplished by focusing attention on basic pro-
cess work, on defect causal analysis, and espe-
cially on communicating and sharing ideas across
all laboratories.

Customer satisfaction has proved to be our big-
gest challenge. Our latest product releases have
scored about 10 to 15 percent better than their
predecessors. Although encouraging, this rating
is difficult to improve because customer expec-
tations are increasing each year.

Summary. The transition of the IBM programming
community from an environment of classical
mechanistic management to one based on em-
powerment provided programming developers
with the opportunity to effectively achieve IBM’S
MDQ goals in software products.’ A framework
based on proven principles was developed, and it
led to a number of good programming practices
being shared across the community. As a result,
there has been a renewed spirit of pride in own-
ership as well as a marked improvement in key
measurements of product quality. The papers in
this issue of the ZBM Systems Journal describe
some of the ways and the projects in which the
new environment has fostered improved program
quality.

Cited references and note

1. W. S . Humphrey, Managing the Software Process, Add-
ison-Wesley Publishing Co., Reading, MA (1989).

2. A. G. Ganek, presentation to GUIDE Board of Directors,
Anaheim, CA (March 9, 1993).

3. IBM-funded study by SRI International of 11 U.S. data
processing companies completed June 1989. Results not
published externally.

4. IBM-funded study by SRI International of six Japanese
data processing companies, completed October 1990. Re-
sults not published externally.

5. R. G. Mays, C. L. Jones, G. J. Holloway, and D. P. Stu-
dinski, “Experiences with Defect Prevention,” ZBM Sys-
tems Journal 29, No. 1, 4-32 (1990).

6. K. Tang and J. B. Lo, “Determination of the Optimal Pro-
cess Mean When Inspection Is Based on a Correlated Vari-
able,” ZZE Transactions 25, No. 3, 66-72 (May 1993).

7. J. B. Lo, “A Quantitative Approach for Software Devel-
opment Process Control,” presented at 34th JointNutional
Conference of ORSAITZMS (November 1-4, 1992).

IBM SYSTEMS JOURNAL, VOL 33, NO 1, 1994

8. R. Chillarege, I. Bhandari, J. Chaar, M. Halliday, D. Moe-
bus, B. Ray, and W. Wong, “Orthogonal Defect Classifi-
cation-A Concept for In-Process Measurements,” ZEEE
Transactions on Software Engineering 18, No. 11,943-956
(November 1992).

9. More extensive information is available from the author.

D. L. Bencher
Software Solutions Division
Somers
New York

TECHNICAL FORUM 219

