Application reference
designs for distributed
systems

This paper is based on the findings and
conclusions of a client/server work group that
was commissioned in 1991 to report IBM’s
technical strategy for client/server computing.
Although there are countless variations for
designing applications and interconnecting
components in a distributed environment, there
seems to be a finite number of variations that
represent what a large majority of customers
want to build. The intent of the work group was
to explore the possibility of defining a set of
application “reference designs,” which would
represent the distributed designs that customers
are building today or want to build in the near
future. This paper documents the customer
scenarios, the reference designs that represent
them, and the requirements that were generated
for the underlying system software. The work
group concluded that the reference designs
described herein represent our best working
assumption about “where customers are going”
with distributed application designs. The
discussion should give those who have not yet
begun to exploit distributed systems a starting
point and considerations for their design work.

Customers are increasingly viewing their di-
verse collections of computing resources as
a single enterprise-wide asset. Business impera-
tives such as global reach, operational efficiency,
better customer service, or competitive advan-
tage have led to solutions that require an increas-
ing number of connections between these com-
puting resources. Users may need access to data
located in more than one database to accomplish
a business task. Different databases may exist on
computers from different vendors and in remote
locations. New applications must interact with

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

by J. J. Shedletsky
J. J. Rofrano

old applications as increasing levels of cross-
enterprise integration are required. And users
may need to access applications and data from
different locations as they move around, or, con-
versely, applications and data may be moved to
geographically dispersed users. Computing solu-
tions in the 1990s will require unprecedented lev-
els of interoperability between both hardware and
software products of computer vendors.

In addition, the increased spectrum of computing
choices, ranging from mainframes, down through
minis, servers, workstations, and personal com-
puters, has introduced new models for construct-
ing these solutions. Encouraged by the lower cost
of storage and computing power, customers are
seeking to “off-load” CPU cycles and data storage
from centralized mainframes.

Terms such as client/server, cooperative process-
ing, and open network computing have been used
to characterize alternatives to solutions based on
a centralized model. These terms have a variety
of meanings to different people, depending on
their frame of reference. For the purpose of this
paper, they are variations on a more generic de-
sign point called distributed systems.

©Copyright 1993 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

SHEDLETSKY AND ROFRANC §25

These new distributed models are aimed at solu-
tions where the user, the application logic, and
the data are no longer constrained to be on the
same system, thus permitting the customer more
flexibility in selecting platforms suited for a par-
ticular mission.

Computer vendors face the challenge of providing
solutions that offer the flexibility of a distributed
model while at the same time accomplishing the
increased cross-enterprise integration required
by customers. Although these goals are not to-
tally contradictory, they do tend to counterbal-
ance each other. Distribution carried to a total
dispersion of computing resources would dimin-
ish the ability to provide cross-enterprise solu-
tions.

Likewise, a concentration of all computing re-
sources into one centralized platform would elim-
inate the option of utilizing advanced worksta-
tions and increase the communication burden of
connecting users to that resource. Computer ven-
dors who fail to identify and provide system so-
lutions that strike an appropriate balance will be
at a competitive disadvantage in the 1990s.

The objective of this paper is to define a set of
application models that represent these emerging
solutions and the environment that is necessary to
support them.

Our approach examines some leading-edge solu-
tions that do seem to strike an appropriate bal-
ance between the considerations of decentraliza-
tion and cross-system integration. Analyses of
these examples identify the kinds of enabling soft-
ware functions required and suggest the basis for
a “building block™ architecture of distributed
software services.

We use the term distributed system to refer to a
distributed collection of users, data, software,
and hardware whose purpose is to meet some de-
fined business objective. The design of a distrib-
uted system describes how the users, data, and
software are placed in relation to one another in
a distributed network of more than one hardware
platform. The customer designs we have exam-
ined exhibit definite structures that come about
because of specific requirements. More impor-
tantly, we have observed that these structures
seem to occur repeatedly, even across applica-
tions of different industries such as banking and

626 SHEDLETSKY AND ROFRANO

manufacturing, and across different choices of
underlying hardware platforms.

Reference designs

A complete description of a distributed solution
design requires three levels of specification:

» Physical network
» System services infrastructure
» Applications software

The lowest layer is the physical network, which
describes the hardware platforms and the net-
work connections between them. The system
services infrastructure is the collection of system
software services installed on the hardware nodes.
It provides a distributed execution environment
for the applications that support the enterprise-
specific business tasks.

The physical network is often dictated by geo-
graphical, organizational, or corporate strategic
considerations. For example, a global banking en-
terprise may have several data centers spread
across different time zones. A large insurance
company or retail bank may have branch offices
with a central office. A manufacturing enterprise
may provide advanced workstations and servers
for engineering work groups, whereas a large
retailer may seek to increase staff productivity
by providing a workstation on every desk. Large
organizations may have separate systems de-
signed to support functional organizations like fi-
nance, billing, plant floor, and inventory control.
A large hospital or a university may have diverse
systems in largely independent departments. Fi-
nally, merged enterprises may be forced to deal
with installed bases of completely independent
computing systems. Each of the considerations in
these examples will have a primary effect on the
design of the physical network.

Each node in the physical network requires sys-
tem-level software to support the role it will play
in the distributed solution. Most nodes require
an operating system and a collection of enabling
services such as communications, file systems,
database managers, and presentation services.
The enabling services may stand alone or be dis-
tributed. For example, a file system may support
local files only, or it may provide access to both
local and remote files. The specific services re-
quired depend on the overall design of the dis-

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

tributed system. It is the purpose of this paper to
identify these services.

The application software implements the enter-
prise-specific business tasks supported by the dis-
tributed solution. The application programs in-
stalled on each node define the role that node will
play in the distributed system. For example, a
workstation may play a front-end role to multiple
back-end transaction servers. The front-end ap-
plication would manage a dialog with the user and
coordinate requests to back-end transaction ap-
plications. The needs of the application programs
dictate the enabling services required in the un-
derlying system software. Applications them-
selves may be broken into parts and distributed or
simply rely on underlying distributed system serv-
ices, such as a distributed file system.

Figure 1 depicts different ways in which an ap-
plication and the system services it uses may be
broken into parts to run on different hardware
platforms.! Considerations of communications
cost, performance, support staff availability, se-
curity, and protection of mission-critical data of-
ten determine the approach chosen.

With the wide range of choices and consider-
ations, it would seem that there could be a the-
oretically infinite number of possible designs for
a given distributed system. How then, can we
hope to gain any insights into the future direction
of distributed systems or the services required?

Our approach was to survey a number of real-
world solutions being designed or implemented
by customers. Approximately 50 solutions were
surveyed from enterprises in the banking and fi-
nance, securities, insurance, manufacturing, pro-
cess, retail, transportation, and health care in-
dustries. “Leading edge” distributed projects
were chosen under the assumption that the pio-
neering designs of today would be the routine de-
signs of tomorrow. Many of the customers were
large enough to develop or contract for their own
distributed services if none were available from
vendors.

It was observed that the designs chosen for these
distributed systems were not infinite in variety. In
fact, certain designs seemed to occur repeatedly
in the survey, across industries studied, and on
varying hardware platforms. It is convenient to
categorize these designs into classes of distrib-

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

Figure 1 Points for distribution

POTENTIAL
DISTRIBUTION
POINTS

uted systems that we refer to as reference de-
signs. Figure 2 summarizes the seven classes of
distributed systems observed. An eighth class,
the nondistributed case, is included for contrast.

Each reference design in Figure 2 depicts a phys-
ical network in which each node plays a defined
role. The shaded areas represent application soft-
ware, and the unshaded areas represent the sys-
tem software. Stored data are represented by the
disk symbol. The reference designs are distin-
guished by differences in the placement of ap-
plication software, system software, and data
in relation to one another. Descriptive names
were chosen to characterize the design approach
used in each reference design. The “front-end-

SHEDLETSKY AND ROFRANO §27

Figure 2 Classes of distributed systems observed

2 REMOTE PRESENTATION DESIGN 3 FRONT-ENDING DESIGN

1 NONDISTRIBUTED DESIGN

APPLICATION, APPLICATION, DATA FRONT END (NEW)

DATA, USER ON ON SAME SYSTEM LAYERED BUSINES!

SAME SYSTEM . ; LOGIC

s, USER ON S s

DIFFERENT SYSTEM BACK END (OLD)
TRANSACTION LO!
MANAGED DATA

USER MAY ACCESS
SEVERAL SYSTEMS
SIMULTANEOUSLY
PRESENTATION
DONE TWICE

ROUTERS

5 STAGED DATA DESIGN 6 RESOURCE-CENTRIC DESIGN 7 PROCESS:-DRIVEN DESIGN

PROCES!
STEPWIS
EXECUTI
APPLICA

LOCAL SERVER
STAGE DATA
TRANSACTION

APPLICATION,
USER ON SAME

SYSTEM %

DATA/RESOURCE
ON DIFFERENT
SYSTEMS

ROUTER
EACH ST
MAY BE (
DIFFERE
SYSTEM

REGIONAL. SERVER
"TRUE" DATA
TRANSACTION

DATA MAY BE
DISTRIBUTED

WORKFL{

TRANSPARENT API MANAGE

DATA STAGING
POLICIES

ing” reference design, for example, is used to
layer value-added application logic on the work-
station in front of existing back-end systems and
databases.

The reference designs are described in detail in
the following section. The factors and trade-offs
customers consider in selecting these designs are
also discussed. Included with the description of
each reference design is an analysis of the system
service infrastructure needed to build it. The re-
quired services were identified by observing
those in the customer-devised solutions.

The classification system presented here should
not be considered the only correct way to classify
distributed systems. Rather, it is a useful device
to help us understand why real-world distributed

628 SHEDLETSKY AND ROFRANO

systems assume the structures they do. By taking
the perspective of the application program writer,
it helps us to understand the system services
required to build these distributed systems. It
should be further noted that a typical enterprise is
likely to utilize more than just one kind of refer-
ence design. Mixtures were often observed.

Reference design descriptions

Each of the following subsections describes one
of eight types of reference designs.

Nondistributed design. The nondistributed refer-
ence design in Figure 3 is included for contrast
with the distributed reference designs that follow.

In this design, the physical network consists of a
single node with an application program, system

IBM SYSTEMS JOURNAL, VOL 32, NC 4, 1993

4 DISTRIBUTED LOGIC DESIGN

FRONT END
PRESENTATION
BUSINESS LOGIC

BACK END
TRANSACTION LOGIC
MANAGED DATA

PROGRAM-TO-PROGRAM

ASYNCHRONISM

ROUTERS

8 MULTIAPPLICATION DESIGN

APPLICATION

" LOGIC IS
COLLECTION OF
COMPONENTS WITH
SIMULTANEOUS
INTERACTION

PARTITIONED DATA

services, and data. The node may be a main-
frame, midrange, or workstation computer. The
user interacts with this node via an integrated dis-
play or an attached display terminal. System serv-
ices include presentation services for the display
and access services for data.

This traditional stand-alone model has generated
trillions of dollars in computer industry revenue
over the past 30 years.

Remote presentation design. The remote presen-
tation reference design in Figure 4 distributes the
presentation service to a remote workstation. The
application drives the remote display via an ap-
plication programming interface. System services
produce the protocol and data streams to trans-
port the application commands to the presenta-
tion service in the workstation. No application

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

code or “stored data” is in the workstation. The
presentation service may be a distributed user in-
terface management system such as the X Win-
dow System**, a terminal emulator program, or
a distributed dialog manager that renders host di-
alog screens in a graphical user interface (GUI)
format on a programmable workstation.

In this design, the physical network is a worksta-
tion connected to one or more back-end systems.
The connection may be across a wide area or local
area network (WAN or LAN). If the presentation
service is a distributed user interface manage-
ment system, the connection is likely to be limited
to a LAN for performance reasons.

The application program runs entirely on the
back-end system. The programming interface to
the presentation services is invariant, whether the
display is local or remote. For this reason, the
application in this reference design has the same
view of its system environment as the application
in the nondistributed reference design.

The system services identified to support this ref-
erence design are listed in Figure 4. The nondis-
tributed services required on the back-end sys-
tems are local to those systems only. Traditional
services such as dialog management, data access,
transaction processing, security, and application
management are typical. Distributed services re-
quire coordination between system software on
two or more nodes. The X Window System is an

Figure 3 Nondistributed

REFERENCE DESIGN 1: NONDISTRIBUTED

SHEDLETSKY AND ROFRANO 629

Figure 4 Remote presentation

REFERENCE DESIGN 2: REMOTE PRESENTATION

DISTRIBUTED SERVICES

PRESENTATION WORKSTATION

NONDISTRIBUTED SERVICES

— EMULATORS
3270
5250
ASCII

OR
— PRESENTATION

- DIALOG/HELP
-FILE
— DATABASE

—FONT
- CODE PAGE/NLS
— TRANSLATE PM-TO-X

PROGRAM
INTERFACE

- DATA BACKUP
~ TRANSACTION
- CHECKPOINT/

RESTART/LOG

LOGIC

APPLICATION

- SINGLE LOG-ON/
AUTHENTICATION
~ ACCESS CONTROL

e

—PRINT

SERVICE

TRANSACTION/DATA

~ APPLICATION
MANAGER

BACK-END SYSTEMS

example of a distributed presentation service.
Distributed fonts and code pages are the capabil-
ities to download font generators or code page
tables as required.

Remote presentation is often used as the easiest
way to attach a workstation to a host. With ter-
minal emulators, the host applications need not
be changed. Also, terminal-emulating worksta-
tions and display terminals can coexist without
requiring two different versions of application
software on the host.

In our survey, aretail enterprise and an insurance
enterprise improved headquarters staff produc--
tivity by providing workstations on every desk.
Users ran personal productivity applications on
the workstations (nondistributed) and used ter-
minal emulation (remote presentation) to access
the office applications on the host. A graphical
user interface adds cut and paste functions to the
terminal emulator, giving existing host applica-
tions additional functions that the end users never
had before. This alone was a productivity aid in
some cases.

630 SHEDLETSKY AND ROFRANO

Remote presentation services like the X Window
System are attractive because they support inter-
actions with several back-end systems concur-
rently. Each session is displayed in a separate
“window” on the screen. The X Window System
also supports a graphical user interface style,
which can improve operator productivity.

A desktop publishing vendor selected the remote
presentation design, using a large Advanced In-
teractive Executive/6000* (A1X/6000*) as the back-
end system. The document-editing application re-
quired a graphical user interface. By using the X
Window System on less expensive AIX/6000 mod-
els and X-terminals, the vendor was able to have
the cost of the back-end system shared among a
work group of users. Also, because of the popu-
larity of the X Window System, the editing ap-
plication was accessible from a variety of ven-
dors’ workstations.

Front-ending design. The front-ending design in
Figure 5 is different from the remote presentation
design because the workstation has “front-end”
application logic. This design is often used to

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

Figure 5 Front-ending

REFERENCE DESIGN 3: FRONT-ENDING

DISTRIBUTED SERVICES NONDISTRIBUTED SERVICES

WORKSTATION FRONT END

-~ PRESENTATION

- FONT

~ CODE PAGE/NLS

- DIALOG/HELP
—PRESENTATION INSULATION
~BUSINESS

— DATA STREAM PROCESS MANAGER

- INTERCEPTOR U it rropisiraer . !
3270 2L /rr{f e ’,.f'
5250 PROGRAM i
ASCIi INTERFACE

~PRINT

INTERMEDIATE
NODE

USER/ -
PROGRAM ROUTER

-~ USER-TO-PROGRAM
ROUTER

~ SINGLE LOG-ON/
AUTHENTICATION

— ACCESS CONTROL

- DIRECTORY

— SESSION
CONCENTRATION

~PRESENTATION

-~ CODE PAGE/NLS
g - - DIALOG/HELP

PRESENTATION . - FILE

SERVICE { ~ DATABASE

- DATA BACKUP

= TRANSACTION

~ CHECKPOINT/
RESTART/LOG

- = APPLICATION

L MANAGER

TRANSACTION/DATA
SERVICE

APPLICATION
LOGIC

BACK-END SYSTEMS

layer new application function in front of existing
back-end applications. In this way, value can be
added to extend the existing application inven-

tory.

The front-end application intercepts and interprets
the display data stream generated by the back-
end systems. The front-end application logic then
re-presents information on the workstation display.
The user interface is written twice: once on the back
end, and once again on the workstation.

The front-end application logic may be used to
simply transform the user interfaces of each back-

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

end system into consistent and more modern
graphical user interfaces. The options available
on the back-end systems may be presented as a
menu, thus producing an easier-to-use, single sys-
tem image to the user.

For example, a user might correct an error in a
customer billing by following these steps:

1. Verify bill was issued in the amount claimed.

2. Apply credit to customer’s account.

3. Confirm correction and print acknowledgment
for mailing.

SHEDLETSKY AND ROFRANO §31

Back-end transaction programs to query the bill-
ing data, update the customer account data, and
log the corrections would be selected from the
user’s menu. This sequenced transaction sce-
nario consists of short interactions with transac-
tion programs on (possibly different) back-end
systems. Customers have evolved several serv-
ices to support this model.

The first service required is a router function that
connects the workstation to each back-end sys-
tem as needed. The router uses a directory to
locate the desired system and then routes the
LU 2 (3270), LU 7 (5250), or ASCII (TTY) protocols
and data streams accordingly.

Response time considerations may require the
router service to maintain continuous sessions
with the back-end systems, even though the ses-
sions may be used only intermittently. In this
case, an intermediate router node can be used to
provide session concentration. The router main-
tains one session with each back-end system and
temporarily allocates that session to a worksta-
tion wishing to make a request. If the router func-
tion is placed in an intermediate concentrator
node, session concentration reduces the overall
number of standing sessions required.

Single log-on eliminates the need for the user to
provide a separate password to each back-end
system. The user logs on once to a single log-on
service. An access control service checks to see
if the user is authorized to access the desired
back-end system. An authorized user can be au-
thenticated to the back-end system, thus avoiding
another log-on or password interaction with that
system. The router, directory, single log-on, ac-
cess control, and authentication services may be
supported on the workstation node or (optionally)
on an intermediate node. These services can be
designed on an intermediate node in such a way

as to support limited function display terminals as

well as workstations.

In the customer billing example above, the user
selected each step in the process. More sophis-
ticated front-end applications can actually auto-
mate this process. A business process manage-
ment service provides support by which the
application is constructed as a sequence of
scripted business steps. Recovery support may
be automatically provided if one of the steps in a
sequence fails to complete.

632 SHEDLETSKY AND ROFRANO

Finally, as the usefulness of the front-end appli-
cation grows, software developers seek to “port”
these applications to many different workstation
platforms. Some have devised presentation ser-
vice insulation layers that isolate the application
logic from variations in the presentation services
provided on different workstations.

Customers use the front-ending reference design
to provide users easier access to many different
existing back-end systems. A large hospital used
Easel for 0s2** to provide a consistent, win-
dowed user interface to Information Management
System (IMS*), DATABASE 2* (DB2*), and Digital
Equipment Corporation VMS** back-end sys-
tems.

A telephone service center is replacing display
terminals connected to multiple IMS back-end
systems with AIX/6000 workstations. The front-
end application will automate 36 different opera-
tor activities. Depending on the caller’s com-
plaint, the operator selects an activity and follows
a dialog through to completion. All interactions
with the back-end transaction programs are han-
dled automatically. The telephone service center
expects this front-end application logic to reduce
training time for these high-turnover positions, as
well as to improve customer service and reduce
transcription errors.

A large insurance enterprise needed to provide
access for thousands of users to hundreds of dif-
ferent back-end systems. Agents and claims ad-
justers in the field would use reduced-function
terminals to dial into a central processor, whereas
office staff would use more capable workstations.
An intermediate node provided the router, ses-
sion concentration, directory, single log-on, ac-
cess control, and authentication services so both
types of users could be supported. The resulting
concentration of directory and access control files
on the intermediate node simplified administra-
tion. The users enjoyed menu-driven, single log-on
access to all the back-end systems for which they
were authorized.

Distributed logic design. The distributed logic ref-
erence design in Figure 6 is similar to the front-
ending reference design. The difference is that the
front-end and back-end application components
interact with each other directly via a program-
to-program communication service. The style of

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

Figure 6 Distributed logic

REFERENCE DESIGN 4: DISTRIBUTED LOGIC

DISTRIBUTED SERVICES WORKSTATION FRONT END NONDISTRIBUTED SERVICES

— PRESENTATION
~FONT
— CODE PAGE/NLS
— DIALOG/HELP
~ PROGRAM-TO-PROGRAM - ;SglsNEENs?ﬂON INSULATION
'éfg RSQSSAZOENVERS'ON' PROCESS MANAGER
~ APPLICATION MANAGER
~ EVENT NOTIFICATION
~ DATA CONVERSION SERVICE
~ DEFINE MESSAGE FORMATS
~ FILE TRANSFER
~ PRINT
—JOB SCHEDULING INTERMEDIATE
- WORKFLOW STATUS NODE

- COMPOSITE UNIT OF WORK

— PROGRAM-TO-PROGRAM
ROUTER
- RELIABLE MESSAGE
DELIVERY
~ STORE/FORWARD —FILE
— SINGLE LOG-ON/ ~ DATABASE
AUTHENTICATION 3 R — DATA BACKUP
- ACCESS CONTROL PROGRAM-TO- — LARGE OBJECT
- DIRECTORY PROGRAM - FOLDERS
- SESSION — TRANSACTION
CONCENTRATION ~ CHECKPOINT/
APPLICATION _ ggg&iﬁoe
Loaic ENCAPSULATION
77
TRANSACTION/DATA
SERVICE

BACK-END SYSTEMS

this service varies, from conversations, to remote An important constraint is that the stored data are
procedure calls (RPC), to queued messages. still centralized on the back-end system. This dis-
tinguishes the distributed logic design from other
designs to follow. The business needs of the en-
terprise may dictate this constraint for several

In the front-ending design, the back-end applica-
tion is usually an existing application designed to

drive a display terminal. In the distributed logic reasons. Enterprises like finance, insurance, and
design, the back-end application does not have retail companies may be organized in a hierarchi-
any user interface component, and so it cannot cal fashion, with a central database and branches.
function as a stand-alone application. It is usually Such data are usually considered mission-critical,
a new application, using a programming interface where integrity and security are essential. Well-
supported by the program-to-program communi- established recovery services on the back-end
cation service. systems like archiving, checkpoint image copy,

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993 SHEDLETSKY AND ROFRANO $33

restore utilities, and alternative-site disaster re-
covery cannot be easily applied if the database is
distributed and the branches lack computer op-
erations staffing. Also, branch offices usually can-

An important constraint is that
the stored data are still
centralized on the
back-end system.

not provide the degree of physical security re-
quired for these data. And finally, the database
may be large and not easily partitioned because of
the transaction reference patterns.

Given these constraints, the distributed logic de-
sign seeks to strike an appropriate balance be-
tween the front-end and back-end applications.
The program-to-program interface allows more
flexibility in selecting this balance point than the
front-ending design. For example, all presenta-
tion services, including dialog management and
help services, can be off-loaded to the worksta-
tion. On the other hand, communications band-
width and latency force any application logic re-
quiring high-bandwidth access to the data to
remain on the back-end system. Performing a
high-bandwidth transaction such as sorting data
across a network should be avoided in favor of
performing the sort local to where the data reside
and shipping only the results across the network.
Typically, the back-end systems become trans-
action servers.

The message style of program-to-program inter-
face introduces another degree of flexibility. Un-
like the synchronous connection-oriented rela-
tionship in the front-ending design, the queued
messaging model supports connectionless asyn-
chronism. That is, the front-end application can
send a message to a back-end application and
continue to do additional work while waiting for
a reply. In fact, it may not even expect a reply.
Because messaging is connectionless, the server
does not need to be running at the same time as
the application (i.e., there is no need for an es-

634 SHEDLETSKY AND ROFRANO

tablished connection at run time). This style of
designing asynchronous, cooperating applications
generally requires an event service to notify a
designated application of both expected and un-
expected events and exceptions. Also, the front-
end application is no longer limited to sending its
requests to back-end applications one at a time.
Several request messages may be sent to different
back-end systems concurrently, enhancing user-
response time over a synchronous mode of exe-
cution.

Any business process management service in the
workstation must consequently support scripts with
asynchronous and possibly concurrent steps. In
addition to event notification, services such as
data or time-dependent job scheduling and work-
flow status monitoring may be used. There may
be sets of concurrent steps that must all partici-
pate in the same unit of work. These sets are re-
ferred to as a “composite unit of work.” An au-
tomatic recovery service is needed to perform the
necessary rollback if one of a set of concurrent
steps in a composite unit of work should fail to
complete.

Messages and remote procedure calls emphasize
even more the short interactive nature of the re-
quest from front-end to back-end applications.
The role of the intermediate node takes on more
importance in this reference design. Compared to
the user-to-program router in the front-ending ref-
erence design, the router service to support dis-
tributed logic must route an increasing number of
short program-to-program requests. It may be re-
quired to accomplish this routing over existing
conversation networks like Systems Network Ar-
chitecture (SNA) with either a limited number of
available sessions or high overhead for establish-
ing and relinquishing a session, thus making ses-
sion concentration essential. Also, customers may
need support for storing messages when the recip-
ient system is not available. A reliable message de-
livery service guarantees that a routed message will
never be lost in the event of delivery service failure.
This guarantee is usually accomplished via trans-
action processing techniques such as cascaded
units of work.

The use of program-to-program interfaces intro-
duces the need for a set of associated services. An
incoming request to start a conversation, run a
remote procedure, or receive a message means
that an application must be dispatched to handle

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

the necessary interaction. The application manager
does this job and also terminates the application
when the request is completed. Data conversion
services alleviate the application’s burden of trans-
lating the data passed from a dissimilar system.
Methods to define data formats are necessary for
automatic data conversion and useful for appli-
cation-to-application consistency. Services to
support encapsulation would enable old back-end
applications to interact with new front-end appli-
cations via the program-to-program interfaces.

The distributed logic designs selected by custom-
ers and vendors in our survey started with the
assumption that the data will remain on the back-
end system. An application vendor to the insur-
ance industry established a framework of services
to support a distributed logic design. Worksta-
tions replaced display terminals in the offices of
agents. Message services connect the worksta-
tions to back-end Customer Information Control
Systems (CICSs*) or DB2 systems, where the da-
tabases are maintained. The back-end applica-
tions were rewritten as message-driven transac-
tion programs.

A manufacturing enterprise is off-loading engi-
neering design applications to Operating Sys-
tem/2* (0S/2*) workstations. The bill-of-material
data will remain in the back-end IMS systems,
where it can be shared and secured. The front-end
application interacts with the designer to query
and update the bill of material. The connection
from front end to back end in this case is LU 6.2,
a conversation model. Prototype implementa-
tions have been instrumented to ascertain splits
between the front-end and back-end application
logic so as to minimize communication bandwidth
and maximize performance.

Because of the shared nature of the information
between engineers, plant floor operators, and
managers, this customer also required that AIX
users have access to the same front-end applica-
tions. Porting the applications from the 0s72
(Presentation Manager*, or PM) environment to
the AIX (X Windows System) environment was
avoided in this case by providing a specialized
PM-to-X protocol converter on the 0s/2 worksta-
tion, thus supporting indirect access from AIX
users.

For both the manufacturer and the insurance ap-
plication vendor, the data on the back-end sys-

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

tems will consist of collections of different kinds
of data, including documents, structured data,
and image data. The insurance applications will
use a folder model to collect all of the policy

A reliable message delivery
service guarantees that a routed
message will never be lost in the
event of delivery service failure.

information for a given customer, whereas the
manufacturer’s part designs include application
design files, graphics, and such structured infor-
mation as a bill of materials. In both cases the
back-end data storage systems are required to
support these collections of dissimilar data.

A national retail enterprise connected a CICS 0572
workstation in every store to a back-end Cus-
tomer Information Control System/Multiple Vir-
tual Storage (CICS/MVS) system. The customer
records are consolidated and shared in a back-end
system so that a customer need not return to the
same store of purchase for service. The front-end
application supports an easy-to-use dialog inter-
face with the clerk and automates the steps in-
volved in a given customer service transaction. A
CICS program-to-program interface is used by the
front-end application to invoke transaction pro-
grams on the back end. This interface was chosen
for its economical use of communications band-
width.

The telephone service center application that
used the front-ending reference design will even-
tually be replaced by a distributed logic reference
design. The requirement is for new back-end
transactions to use a program-to-program mes-
sage interface rather than the IMS presentation
services for display terminals. All presentation
services support will be off-loaded to the front-end
AIX workstations. Furthermore, the customer re-
quires a message router for session concentration
and to add flexibility in routing messages to alter-
nate back-end systems.

SHEDLETSKY AND ROFRANO B35

Data staging design. The front-ending and distrib-
uted logic reference designs may have drawbacks
if the number of workstations puts a heavy load
on the back-end databases or if the distance be-
tween the workstation and back end increases the
communication latency and cost. Communica-
tion breakdowns can put the workstation out of
business until communications are re-established.

The data staging reference design in Figure 7
solves these problems by moving the required
data closer to the front-end workstations. With
data staging, the “true” data remain on a regional
back-end system while snapshots of portions of
the data are staged (i.e., downloaded) to local
back-end systems. The regional and local back-
end systems are often called regional and local
servers. Data staging solves the problems noted
above but still preserves the security and integrity
of the “true” database by keeping it under the
protection of a central back-end system where it
can be backed up and consistently recovered.

Data staging maintains the availability of some
operational data even if the regional server is
down. It can improve access time to the local
server, reduce communications cost to the re-
gional server, and reduce load on the regional
server. In contrast, it involves additional design
complexity to devise the staging policies and ad-
ditional operations complexity to periodically
stage the data snapshots to the local servers.

Various data staging policies have been devised,
depending on the characteristics and expected
uses of the business data. The simplest policy in
our customer survey is to periodically stage read-
only data to the local servers. In this one-way
flow of information, the frequency of refresh de-
pends on the requirement for data currency of the
front-end application. Securities trading applica-
tions require frequent refreshes of rates and price
quotes. This policy is referred to as a “data feed”
and may be implemented using periodic network
broadcasts of data. Interest rate tables used by
finance applications may only require daily re-
fresh.

Another policy is to identify a subset of a data-
base to be staged to each local server. Application
reads are satisfied by the local server if possible
or routed to the regional server if necessary. Ap-
plication updates are always “write-through” to
both the local and regional servers. This policy is

636 SHEDLETSKY AND ROFRANO

referred to as “contingent staging” and may be
used to stage data that tend to be affiliated with
each branch office, with a low requirement for
currency. A nightly refresh rate is typical for this
type of data. The write-through of any update
maintains the moment-to-moment accuracy of
the regional database. Obviously, care must be
taken when the update of another branch invali-
dates the staged data!

A “consolidation policy” relaxes the condition
that the regional database be accurate from mo-
ment to moment. With this policy, the data are
staged to each local server, and reads and updates
are satisfied locally. The updated local data are
consolidated to the regional database periodi-
cally. This policy may be used when the regional
database can be partitioned for each branch with
no sharing between branches. If sharing does oc-
cur, out-of-date data must be tolerated. The re-
gional database might be used for daily or weekly
report generation.

Other variations of data staging policies are pos-
sible, and more than one policy may be used by
a customer. Our survey identified various serv-
ices customers have devised to implement these
policies. A broadcast message service was used
to implement the data feed policy. A snapshot
download (with version control) is required by the
contingent data and consolidation policies. The
consolidation policy also requires a regional data
update consolidation service.

The local server node in Figure 7 plays a sub-
stantially larger role than the intermediate nodes
in the previous reference designs. In general, the
local server must have the same database char-
acteristics as the regional server. The local server
also has application programs to access the staged
data. Finally, the program-to-program router ser-
vice must route requests from the front-end ap-
plication to the appropriate local or regional
server applications. Depending on the staging
policies in effect, the request may be routed to the
local or remote server or both.

A large bank with many branch offices had im-
plemented a distributed logic design using the IBM
Financial Branch System Services (FBSS) product
on DOS workstations connected to IMS back ends
via an IBM 4702 financial controller. The bank
plans to have the current design evolve into a data
staging design by adding an 0S/2 local database

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

Figure 7 Data staging

REFERENCE DESIGN 5: STAGED DATA

DISTRIBUTED SERVICES

NONDISTRIBUTED SERVICES

- PROGRAM-TO-PROGRAM
INTERFACE CONVERSION,
RPC, MESSAGE

~ APPLICATION MANAGER

— EVENT NOTIFICATION

— DATA CONVERSION SERVICE

— DEFINE MESSAGE FORMATS

~ PRESENTATION
—FONT
— CODE PAGE/NLS

— DIALOG/HELP
— PRESENTATION INSULATION
- BUSINESS

PROCESS MANAGER

— FILE TRANSFER
—- PRINT
- JOB SCHEDULING

~ WORKFLOW STATUS

- COMPOSITE UNIT OF WORK

— SINGLE LOG-ON/
AUTHENTICATION

~FILE
— DATABASE
- LARGE OBJECT

- ACCESS CONTROL
-~ DIRECTORY

- FOLDERS
— TRANSACTION
~ CHECKPOINT/RESTART/LOG

~ PROGRAM-TO-PROGRAM
ROUTER

~ RELIABLE MESSAGE
DELIVERY

REGIONAL
SERVER

~ STORE/FORWARD

— DATA FEED BROADCAST
—~ DOWNLOAD SNAPSHOTS
— READ/WRITE THROUGH

'PROGRAM-TO-
| PROGRAM

—-FILE
- DATABASE
STAGED ~ DATA BACKUP

ALIIIEIIEY,

DATA — LARGE OBJECT

— REGIONAL CONSOLIDATION
-~ SESSION CONCENTRATION

/| APPLICATION -

~ FOLDERS
— TRANSACTION
— CHECKPOINT/RESTART/LOG

~ PROGRAM ENCAPSULATION

server in each branch. A study has identified a
subset of the regional database that will be down-
loaded to each branch nightly. This contingent
data policy is expected to improve customer ser-
vice availability in the event of failure to access
the regional server.

A semiconductor manufacturer plans to use a
data staging design to run as much work as pos-
sible on local work group servers. An analysis of
the shared data characteristics determined that a
distributed logic design was required for some

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

data but that contingent staging and consolidation
policies could be used for other data. This cus-
tomer also required the option to support asyn-
chronous write-throughs to the regional server,
so the front-end application could continue to
work while waiting for the update to complete.

Resource-centric design. The resource-centric ref-
erence design in Figure 8 supports direct, remote
access from an application to some system re-
source, usually data. The application accesses the
remote resource via the same programming in-

SHEDLETSKY AND ROFRANO

Figure 8 Resource centric

REFERENCE DESIGN 6: RESOURCE CENTRIC

DISTRIBUTED SERVICES

APPLICATION SYSTEM

NONDISTRIBUTED SERVICES

—FILE

— DATABASE

~ DATA REPOSITORY

~ CHECK-IN/CHECK-OUT

~ PROGRAM-TO-PROGRAM
INTERFACE CONVERSION,
RPC, MESSAGE

— PRESENTATION

- FONT

~ CODE PAGE/NLS

~ DIALOG/HELP

— PRESENTATION INSULATION
—PRINT

— APPLICATION MANAGER

— DATA CONVERSION SERVICE
~ DEFINE MESSAGE FORMATS
~ SINGLE LOG-ON/
AUTHENTICATION
—ACCESS CONTROL
— DATA BACKUP
— TRANSACTION

RESOURCE SYSTEMS

—DIRECTORY
* — CHECKPOINT/
RESTART/LOG

DATA/FILE
SERVICE

terface used to access the local resource. Exam-
ples include the local file system interface for
files, a Structured Query Language (SQL) inter-
face for relational databases, or a check-in/check-
out interface for data repositories. Different files
or relational tables may be located at different
remote nodes. Underlying system services do the
job of locating, accessing, and returning the re-
sulting data.

This reference design is the only one in which an
application has direct access to remote data. In
the front-ending, distributed logic, and data stag-
ing reference designs, the front-end application
talks to a remote application, which in turn ac-
cesses the data.

Well-known products such as Novell NetWare**
and Sun Network File System** have popular-
ized this reference design. In addition to file serv-
ers, database vendors like Oracle and IBM support

638 SHEDLETSKY AND ROFRANO

remote access to database servers. The resource-
centric reference design is probably the most com-
mercially successful distributed reference design to
date. It has probably enjoyed early success be-
cause it is an easy way for separate users to share
a resource. Workstation users can easily ex-
change data through a shared file or database
server. Since the application accesses both local
and remote data as if all data were local, remote
file and database servers can be introduced with-
out modification to existing applications. Users
may also share such devices as printers or plotters
to lower the cost of the device per user.

A resource-centric reference design works best
when the amount of data accessed is easily sup-
ported by the communication bandwidth avail-
able. A low-latency network environment such as
a high-speed local area network is desirable.
When communication delays are intolerable, or
when additional path lengths due to the commu-

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

nication protocols become a significant computa-
tional consideration, it is often more efficient to
place part of the application logic local to the
data. As hard as it may seem to believe that a LAN

The process-driven reference
design is the first where both
application logic and data are
permanently split apart and
distributed in paired pieces.

may not have enough bandwidth, we observed
one insurance company that wrote a LAN system
in which every transaction created thousands of
file I/0 requests. They could not understand why
they where getting a response time of two minutes
per transaction. In short, the message traffic cre-
ated by their application was too much for redi-
rected file /O activity to handle. In these cases,
the previous reference designs are preferable.

In the resource-centric reference design, system
services such as file, database, repository, and
print must be extended to support remote access.
If the data are spread across multiple nodes,
additional care must be taken by the system to
ensure integrity and recoverability. Underlying
services such as unit-of-work, backup, check-
point or restart, and logging must now work in a
coordinated fashion against the distributed pieces
of data.

Popular file, database, and print servers are now
widely used and were observed in our survey.
One manufacturing customer also created a re-
pository for engineering design files. Worksta-
tions can check in or check out design files from
the remote repository via a programming inter-
face on the workstation. Once checked out, the
design files are transferred to a file server, where
they are shared by the work group.

Process-driven design. The process-driven refer-
ence design is the first design where both appli-
cation logic and data are permanently split apart
and distributed in paired pieces. Each node in

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

Figure 9 supports both application code and its
own stored data. The data are private to the ap-
plication and are not directly accessible by appli-
cations on other nodes. Each application-data
combination accomplishes a discrete task.

The process-driven reference design is character-
ized by a stepwise execution of the applications.
Each application may be viewed as a job step in
a higher-level process, which is designed to ac-
complish a business-oriented task.

The simplest process is a set of sequential steps.
Each application in the sequence must complete
before the next begins. More complex processes
define parallel sequences of steps that may exe-
cute concurrently.

The applications do not engage in simultaneous
communication with each other. Exchanges of in-
formation between applications usually occur via
a prepared data handoff. The handoff may be im-
plemented with /O files, or locking and trigger
conventions in a shared data repository.

A simple process may be executed by manual
convention. An example of this is the process fol-
lowed to prepare large-scale scientific simulation
jobs. The first step is to prepare the model de-
scription on a workstation. The second step is to
submit the simulation run to a high-performance
supercomputer. The final step is to review the
results of the simulation using visualization ap-
plications on the workstation.

Another example from the banking industry is
check processing. A check drawn on bank A and
submitted for deposit to bank B will be consoli-
dated into a debit summary for bank A. Accounts
are debited in bank A, and funds are transferred
to bank B, where the appropriate accounts are
credited. The steps in this process are followed by
established business convention. Some system
services such as job control languages are useful
in this highly repetitious scenario.

Many customers are carefully defining their busi-
ness-oriented processes to capture them for au-
tomatic execution. Computer-integrated manu-
facturing is an example of where the processes
are more complicated than the previous exam-
ples. In this case, additional services are required
to support the process-driven reference design.
The workflow manager is a facility that regulates

SHEDLETSKY AND ROFRANO §39

Figure 9 Process driven

REFERENCE DESIGN 7: PROCESS DRIVEN

DISTRIBUTED SERVICES

>

NONDISTRIBUTED SERVICES

~ PRESENTATION

- FONT

~ CODE PAGE/NLS

— DIALOG/HELP

- FILE

-~ DATABASE

— TRANSACTION

- CHECKPOINT/RESTART/LOG
~ PRINT

— PROGRAM ENCAPSULATION

— WORKFLOW MANAGER

-~ DATA REPOSITORY

~ CHECK-IN/CHECK-OUT

— LARGE OBJECT

-~ FOLDERS

— EVENT NOTIFICATION/
TRIGGERS

~ JOB SCHEDULING

— WORKFLOW STATUS

- EDI

— ACCESS TO SPECIAL-

— PRESENTATION

- FONT

- CODE PAGE/NLS

~ DIALOG/HELP

~FILE

— DATABASE

— TRANSACTION

— CHECKPOINT/RESTART/LOG
~ PRINT

~ PROGRAM ENCAPSULATION

PURPOSE HARDWARE
~ PROGRAM-TO-PROGRAM
(MESSAGE)
~ FILE TRANSFER

— APPLICATION MANAGER

— DATA CONVERSION

~ DEFINE MESSAGE FORMAT

— SINGLE LOG-ON/
AUTHENTICATION

—ACCESS CONTROL

~ DIRECTORY

~ DATA BACKUP

~ PRESENTATION
- FONT
— CODE PAGE/NLS
— DIALOG/HELP
- FILE
— DATABASE
— TRANSACTION
— CHECKPQINT/RESTART/LOG
-~ PRINT
" — PROGRAM ENCAPSULATION

the overall execution of the business process. The
process may be defined to the workflow manager
by an explicit script language or a defined set of
events and triggers. The workflow manager im-
plementation may be centralized or distributed.

640 SHEDLETSKY AND ROFRANO

In addition to the job control language, file transfer,
and shared repository services mentioned above,
the workflow manager may also require applica-
tion manager, event notification, job scheduling,
and workflow status services. The workflow man-

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

ager function may be implemented as part of a
data repository design. In this case, events are
defined as changes to data values. Data triggers
invoke application code or send messages to ex-
ecute the next step in the process.

The workflow manager may appear to be similar
to the business process manager defined in the
front-ending reference design. We have chosen to
use these different terms to allow for the differ-
ences in emphasis we have observed. The front-
end business process manager is located on a
front-end workstation and serves as an agent for
one user. It translates high-level user commands
into multiple back-end transaction requests. The
workflow manager is an autonomous monitor of
defined workflow processes. Its scope may extend
to the activities of hundreds of users. It will initiate
action based on events other than human com-
mands. It is often implemented on a host system
and sometimes integrated with a data repository.

In the process-driven reference design, a message
style service often seems to be preferred over
conversations or remote procedure calls. Mes-
sages are used to transmit events, status, job step
commands, and hand off data. Many business
processes such as ordering and billing involve in-
teractions with entities outside of the enterprise.
Automating these processes requires support for
message standards such as EDI (electronic docu-
ment interchange). The automated process may
require coordination with special-purpose hard-
ware such as a robot controller or an ATM (auto-
matic teller machine). Messages and other serv-
ices must be supported on these platforms also.

Multiapplication design. The multiapplication ref-
erence design in Figure 10 also has application
logic and stored data split apart and distributed in
paired pieces. The data are private to the appli-
cation and are not directly accessible by applica-
tions on other nodes.

The multiapplication reference design is different
from the process-driven reference design because
the applications are active at the same time and
engage in simultaneous communications with one
another. Each application works as part of a team
of applications to finish a given business task.
Since the stored data of each application are not
directly accessible by other applications, this ref-
erence design is suggestive of an object-oriented
design style in which each application encapsu-

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

lates its data. It is often referred to as the “most
distributed” reference design or ““most general”
reference design. It would appear to offer the
most freedom in distributing application logic and
stored data. In fact, it seemed to be used only in
environments where the constraints left no other
choices!

For example, a large hospital had different vendor
systems in place for each department. The hos-
pital wanted to tie these systems together so that
information would flow easily from the applica-
tion of one department to another. The goal is to
make all information about a patient easily ac-
cessible to doctors, nurses, and administrators.
Transcription errors from copying data by hand
will be eliminated, and patients will receive better
quality care.

In this environment, the hospital requires tech-
niques to encapsulate the old applications with
new software so they can respond to requests
from other programs as well as from terminal op-
erators. Because of the existing framework, there
is little opportunity to make the kind of distribu-
tion trade-offs discussed in previous reference de-
signs.

Customers in transaction environments occasion-
ally find that they must run applications against
databases that are separated but must remain co-
ordinated. The databases may be in different de-
partments or even different enterprises. They
may have been implemented separately before
there was a need for accessing both together. The
data access bandwidth requirements may be such
that a resource-centric reference design would
perform poorly. The only alternative is a multi-
application design, where applications in each
node access their databases and interact with one
another to update them in a coordinated fashion.

Coordination requirements make these applica-
tions more complicated to design. Data integrity
requires that if one application fails to update its
database, the other application’s updates to its
database must be undone to restore consistency
between the two databases. Such designs require
a distributed transaction management service to
maintain database coordination. The technology
is called distributed unit of work and is usually
implemented with two-phase commit protocols.
Furthermore, larger-scale recovery procedures
such as backup, logging, and checkpoint or re-

SHEDLETSKY AND ROFRANO 641

Figure 10 Multiapplication

REFERENCE DESIGN 8: MULTIAPPLICATION

DISTRIBUTED SERVICES

- PROGRAM-TO-PROGRAM
INTERFACE CONVERSION,
RPC, MESSAGE

- TRANSACTION

— APPLICATION MANAGER

APPLICATION SYSTEM

' PRESENTATION
"SERVICE

ZIIILIELILEIIEEY,

7] APPLICATION’
] Locic

P

TRANSACTION/

NONDISTRIBUTED SERVICES

- PRESENTATION

-~ FONT

- CODE PAGE/NLS

- DIALOG/MHELP

- FILE

-~ PRINT

—~ PROGRAM ENCAPSULATION

— DATA CONVERSION

_ DATA SERVICE

SERVICES
~ DEFINE MESSAGE FORMATS
— SINGLE LOG-ON/

APPLICATION SYSTEM

AUTHENTICATION
~ ACCESS CONTROL

~ DATA BACKUP

PRESENTATION
- DIRECTORY | -SERVICE

— PRESENTATION
- FONT
- CODE PAGE/NLS

- CHECKPOINT/RESTART/LOG T

- DIALOG/HELP

7 fgg}é“?‘@” ' ~ PRINT

~FILE

- PROGRAM ENCAPSULATION

 TRANSACTION/
'DATA SERVICE

start must be distributed to support recovering
each database to a point where it is coordinated
with the others.

System management and application
development

The requirements described in Figures 4 through
10 and summarized in Table 1 concentrate only on
the services necessary to support an operational
reference design.

Application development tools and system man-
agement support are equally important require-
ments for the successful deployment of a refer-
ence design. For each reference design there must
be tools to design, code, test, and debug the var-
ious application components targeted for each
hardware platform. Efficient management of the
increased complexity of these multiplatform so-
lutions is also needed. Although these require-
ments are beyond the scope of this paper, we can
make the following observations.

642 SHEDLETSKY AND ROFRANO

Application development. Since the distribution in
the remote presentation and resource-centric de-
signs is transparent to the application, tools for
developing stand-alone applications should work
equally well for these designs. Other reference
designs, however, present new challenges. The
distributed application components in the remain-
ing reference designs must be developed in con-
cert to interoperate properly. It is probably un-
acceptable to require each application component
to be developed in isolation of the others. It is
even worse if different tool environments must be
used for each application component, depending
on which system is targeted! Tools for design,
code, test, and debug should support a cohesive
view of the application components yet permit
multiple back-end code generation for each hard-
ware platform.

The front-ending design requires new front-end
applications to intercept the display terminal data
streams produced by old applications. When old
design information is no longer available, it pres-

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

Table 1 Summary of system services required by reference designs (grouped by functional category)

System Services Remote Front- Distri- Staged Resource Process Multi-
Presen- Ending buted Data Centric Driven appli-
tation Logic cation

Presentation services
Emulators (3270/5250/ASCII)
Display presentation
Selectable fonts
Code page/national language
Dialog/help functions
Presentation insulation
Translate PM to X (0S/2)
Print
Data stream interceptor

Data services
File system
Database
Data repository
Check-in/check-out
Large object
Folders
Automatic backup

Transaction processing
Transaction manager
Checkpoint/restart/logging
Composite unit of work
Application services
Program-to-program interface
Conversation
Remote procedure call
Message queues
Data feed broadcast
File transfer
Electronic document interchange
Data conversion services
Define/register message formats
Application manager
Event notification (alert/exception)
Program encapsulation
Access to special-purpose hardware

Security
Single log-on/authentication
Access control

Routing services
User-to-program router
Program-to-program router
Directory
Reliable message delivery
Store/forward
Session concentration

Process management
Business process manager
Workflow manager
Programmed job scheduling
Workflow query/status
Event notification (status/triggers)

Data staging services
Download snapshots
Regional consolidation
Read/write through

XU Koouog
T DO XXX
OX>X XK bl T XXMM
(Wi Lol T XXX
oo U oooug LT R e
KX DUOTOU XM >

xougo T OTUuouo
ivivivivilviviviviv)
og UxX UQUOQUOUo U

(whw)

oo X UUooodo
oo X UCQUOUU

X = Function required is nondistributed; D = Function required is distributed

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993 SHEDLETSKY AND ROFRANO 643

ents a difficult job of re-engineering. A tool to
analyze the data streams is a productivity require-
ment.

The distributed logic and data staging designs in-
volve a delicate balance between front-end and
back-end function placement. Performance pre-
diction and analysis tools are required. The rout-
ers in these designs will require application-level
interfaces to support customer-supplied routing
algorithms. Network-level traffic analysis will help
define these algorithms. Also, database analysis
tools will be required to evaluate what subsets of
data may be staged to local servers.

The process-driven and multiapplication designs
require tools to formalize and catalog the data and
message interchanges between the diverse appli-
cations. The multiapplication design in particular
needs tools to encapsulate old applications so that
they fit into the defined request interchange
framework.

System management. System management chal-
lenges for reference designs range from mundane
operations to sophisticated new approaches. Cus-

tomers have experienced difficulty even with re-
mote presentation designs, where the only connec-
tion to the back-end system is a terminal emulator.
Basic operations like software distribution, config-
uration management, problem reporting, and data
backup have proved to be considerable challenges
when thousands of workstations are involved.

More challenging requirements lie ahead. Cost
pressures to reduce operational staff will lead to
focal point concentrations of management sup-
port. From these focal points, operators must be
able to manage distributed reference designs as
they manage stand-alone systems today. Interop-
erable software components place increased de-
mands on coordinating software upgrades. Back-
outs of other software component upgrades may
be necessary if the upgrade of one component
fails. When a user request can involve transparent
access to several distributed systems, new sys-
tem-wide approaches to user enrollment, authen-
tication, and access control must be supported.
Customers have asked for new accounting met-
rics based on transaction identifiers, so back-end
server usage can be billed accordingly. Hardware
and software problem reporting to a remote focal
point must be accompanied by the ability to di-
agnose and repair remotely. And finally, data

644 SHEDLETSKY AND ROFRANO

management capabilities must be extended to
data in remote databases. Separate databases in
the resource-centric, process-driven, and multi-
application designs may still require backup, ar-
chive, checkpoint, and restart operations to be
executed in a coordinated fashion to retain con-
sistency.

Conclusions

Summaries of all the operational system services
required by each reference design are shown
grouped by functional category in Table 1. Table
2 shows just the distributed services ordered by
their frequency of occurrence in the seven refer-
ence designs. Tables 1 and 2 illustrate that the
reference designs share common requirements to
a high degree. Fifty-six percent of the required
services are used by more than one reference de-
sign.

In general, every system service required by
more than one reference design should be de-
signed to be a common service, which can meet
the particular needs of each reference design.
With such an approach, the items listed in Table
2 can be viewed as the building-block elements of
a distributed services architecture that can be
used to construct any reference design.

The stated objective of this paper was to define a
set of application reference models that could be
used as a starting point (i.e., template) for de-
signing distributed applications. The develop-
ment of the reference designs has led us to the
following propositions:

1. The reference designs contain elements of cli-
ent/server and cooperative processing design
philosophies, but they suggest that a more gen-
eral term is needed to encompass the solutions
depicted. We suggest the term distributed sys-
tems.

. The reference design classifications constitute
a reasonably complete description of the kinds
of real-world solutions customers require—
that is, solutions that are distributed, yet pro-
vide cross-enterprise integration. Customers
may use these reference designs as guides to
designing distributed system solutions tailored
to their own particular needs.

. A common architecture of “building block”
distributed services is the means by which we

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

Table 2 Summary of distributed system services required by reference designs (ordered by occurrence)

Distributed System Remote
Services Presen-
tation

Front-
Ending

Multi-

appli-
cation

Process
Driven

Resource
Centric

Distri-
buted
Logic

Single log-on/authentication
Access control

Directory

Message queues

Data conversion services
Define/register message formats
Conversation

Remote procedure call
Application manager

Print

Session concentration

File transfer

Programmed job scheduling
Workflow query/status
Automatic backup

Composite unit of work

Event notification (alert/exception)
Program-to-program router
Reliable message delivery
Store/forward

Data repository
Check-in/check-out
Transaction manager
Checkpoint/restart/logging
Emulators (3270/5250/ASCII)
Display presentation

Selectable fonts

Code page/national language
Translate PM to X (0S/2)

Data stream interceptor
User-to-program router

Large object

Folders

Electronic document interchange
Access to special-purpose hardware

Event notification (status/triggers)

File system

Database

Workflow manager
Data feed broadcast
Download snapshots
Regional consolidation
Read/write through

D = Required distributed function

D
D
D

[vMivEivilwilvilvilvilvv]

ivAivlvilvilvilv v lv)

v

googgogguouooououououuo
(vAiviiviivilvilvilvilvilvilvilvilvviv]

(vlviivliv il v/
oo uoyo

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

SHEDLETSKY AND ROFRANO 6§45

can support the enterprise distributed solu-
tions desired by customers.

. The completeness of this common architec-
ture in a given environment such as MVS, 0872,
or AIX is measured by its coverage of the ref-
erence design requirements (in Table 1).

. Since customers’ environments are increas-
ingly multivendor, the technology selected for
each distributed service in Table 1 must be
widely available across vendors’ platforms.
The common architecture should be open and
guided by industry and de facto standards.

Acknowledgments

The authors wish to acknowledge the support of
Ed Altman and Mike Saranga, who commis-
sioned this effort, and express appreciation for
the contributions of the IBM professionals who
were part of the work group, including Brian
Buckingham, Mike Campbell, Tom Caracio,
Mike Cocklin, Don Daria, Cort DeVoe, Roger
Harvey, Rob High, John Hildreth, Don Holtz (co-
chairman), George Hutfilz, Gene Jurrens, Dave
Larkin, Ray Larner, Jay Leiserson, R. Martin,
Dave Pullin, Matt Schein, David Turek, Jim
Walsh, Shaula Yemini, and Bob Zeliff.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Massachusetts Insti-
tute of Technology, Interactive Images, Inc., Digital Equip-
ment Corp., Novell Corp., Inc., or Sun Microsystems, Inc.

Cited reference

1. A. L. Scherr, “SAA Distributed Processing,” IBM Sys-
tems Journal 27, No. 3, 370-383 (1988).

Accepted for publication May 18, 1993.

John J. Shedletsky /BM Client/Server Computing, Route
100, Somers, New York 10589. Dr. Shedletsky is the Director
of Open Client/Server Technology and is responsible for
IBM’s technical strategy for client/server computing. His pre-
vious assignment was Director of Technical Strategy Devel-
opment, with responsibility for technical strategies in appli-
cation and system software. Prior to this corporate
assignment, he was the program manager for Distributed Sys-
tems Architecture, reporting to the Assistant General Man-
ager of Systems Structure and Management in Programming
Systems. His responsibility was to define the open IBM prod-
uct strategy, and to coordinate its implementation across
IBM’s lines of business. Dr. Shedletsky received his Ph.D.
from Stanford University in 1976 and joined IBM at the T. J.
Watson Research Center that same year. While in Research
he co-invented the EVE logic simulation machine and devel-

6406 SHEDLETSKY AND ROFRANO

oped a programmable TIMER in an effort to design 1-cycle
System/370* instruction processors. He joined the corporate
Engineering, Programming, and Technology staff in 1982.
Since then, he has held various design and development man-
agement positions at IBM facilities in Austin, Texas, and
Kingston, New York. He was the design manager for the first
release of AIX and, most recently, the third-line development
manager responsible for several IBM 3270 emulation prod-
ucts.

John J. Rofrano IBM Personal Systems, East Fishkill, Route
52, Hopewell Junction, New York 12533 (electronic mail:
IBMMAIL(USIBMUA4) or rofrano@vnet.ibm.com). Mr.
Rofrano is currently a senior programmer and technical lead
on the Personal Systems Information Warehouse* develop-
ment team. He is responsible for the overall architecture, de-
sign, and development of the PS Information Warehouse,
which is distributed across OS/2 and AIX workstations and
servers in a variety of LAN and WAN configurations. He
joined IBM in 1984 in the System Products Division in White
Plains, New York, as an information center analyst. There he
specialized in the support of personal computer products. In
1986 he became manager of the Information Center for the
Information Systems and Products Group and a year later
became manager of Customer Services I/S at IBM Corporate
Headquarters in Purchase, New York. In 1989 he joined
IBM’s Application Solutions organization, working in the Co-
operative Processing Cluster in the Application Systems Di-
vision as a technical planner. He was responsible for strategy
and plan evaluation of future products that would enable co-
operative processing. During this time, Mr. Rofrano served as
IBM’s representative to the GUIDE Cooperative Processing
Project and worked with members of GUIDE, SHARE, and
numerous other customers on their distributed application de-
signs. In 1991, he joined the Architecture and Development
Technical Staff in Application Solutions where he was one of
the chief architects of the Application Services Architecture.
He received a B.S. in computer science in 1984 from Mercy
College in New York.

Reprint Order No. G321-5527.

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

