
Application reference
designs for distributed
systems

by J. J. Shedletsky
J. J. Rofrano

This paper is based on the findings and
conclusions of a clientlserver work group that
was commissioned in 1991 to report ISM’S
technical strategy for client/server computing.
Although there are countless variations for
designing applications and interconnecting
components in a distributed environment, there
seems to be a finite number of variations that
represent what a large majority of customers
want to build. The intent of the work group was
to explore the possibility of defining a set of
application “reference designs, ” which would
represent the distributed designs that customers
are building today or want to build in the near
future. This paper documents the customer
scenarios, the reference designs that represent
them, and the requirements that were generated
for the underlying system software. The work
group concluded that the reference designs
described herein represent our best working
assumption about “where customers are going”
with distributed application designs. The
discussion should give those who have not yet
begun to exploit distributed systems a starting
point and considerations for their design work.

C ustomers are increasingly viewing their di-
verse collections of computing resources as

a single enterprise-wide asset. Business impera-
tives such as global reach, operational efficiency,
better customer service, or competitive advan-
tage have led to solutions that require an increas-
ing number of connections between these com-
puting resources. Users may need access to data
located in more than one database to accomplish
a business task. Different databases may exist on
computers from different vendors and in remote
locations. New applications must interact with

old applications as increasing levels of cross-
enterprise integration are required. And users
may need to access applications and data from
different locations as they move around, or, con-
versely, applications and data may be moved to
geographically dispersed users. Computing solu-
tions in the 1990s will require unprecedented lev-
els of interoperability between both hardware and
software products of computer vendors.

In addition, the increased spectrum of computing
choices, ranging from mainframes, down through
minis, servers, workstations, and personal com-
puters, has introduced new models for construct-
ing these solutions. Encouraged by the lower cost
of storage and computing power, customers are
seeking to “off-load” CPU cycles and data storage
from centralized mainframes.

Terms such as clientlsewer, cooperativeprocess-
ing, and open network computing have been used
to characterize alternatives to solutions based on
a centralized model. These terms have a variety
of meanings to different people, depending on
their frame of reference. For the purpose of this
paper, they are variations on a more generic de-
sign point called distributed systems.

Wopyright 1993 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

SHEDLETSKY AND ROFRANO 625 IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

These new distributed models are aimed at solu-
tions where the user, the application logic, and
the data are no longer constrained to be on the
same system, thus permitting the customer more
flexibility in selecting platforms suited for a par-
ticular mission.

Computer vendors face the challenge of providing
solutions that offer the flexibility of a distributed
model while at the same time accomplishing the
increased cross-enterprise integration required
by customers. Although these goals are not to-
tally contradictory, they do tend to counterbal-
ance each other. Distribution carried to a total
dispersion of computing resources would dimin-
ish the ability to provide cross-enterprise solu-
tions.

Likewise, a concentration of all computing re-
sources into one centralized platform would elim-
inate the option of utilizing advanced worksta-
tions and increase the communication burden of
connecting users to that resource. Computer ven-
dors who fail to identify and provide system so-
lutions that strike an appropriate balance will be
at a competitive disadvantage in the 1990s.

The objective of this paper is to define a set of
application models that represent these emerging
solutions and the environment that is necessary to
support them.

Our approach examines some leading-edge solu-
tions that do seem to strike an appropriate bal-
ance between the considerations of decentraliza-
tion and cross-system integration. Analyses of
these examples identify the kinds of enabling soft-
ware functions required and suggest the basis for
a “building block” architecture of distributed
software services.

We use the term distributed system to refer to a
distributed collection of users, data, software,
and hardware whose purpose is to meet some de-
fined business objective. The design of a distrib-
uted system describes how the users, data, and
software are placed in relation to one another in
a distributed network of more than one hardware
platform. The customer designs we have exam-
ined exhibit definite structures that come about
because of specific requirements. More impor-
tantly, we have observed that these structures
seem to occur repeatedly, even across applica-
tions of different industries such as banking and

626 SHEDLETSKY AND ROFRANO

manufacturing, and across different choices of
underlying hardware platforms.

Reference designs

A complete description of a distributed solution
design requires three levels of specification:

Physical network
System services infrastructure
Applications software

The lowest layer is the physical network, which
describes the hardware platforms and the net-
work connections between them. The system
services infrastructure is the collection of system
software services installed on the hardware nodes.
It provides a distributed execution environment
for the applications that support the enterprise-
specific business tasks.

The physical network is often dictated by geo-
graphical, organizational, or corporate strategic
considerations. For example, a global banking en-
terprise may have several data centers spread
across different time zones. A large insurance
company or retail bank may have branch offices
with a central office. A manufacturing enterprise
may provide advanced workstations and servers
for engineering work groups, whereas a large
retailer may seek to increase staff productivity
by providing a workstation on every desk. Large
organizations may have separate systems de-
signed to support functional organizations like fi-
nance, billing, plant floor, and inventory control.
A large hospital or a university may have diverse
systems in largely independent departments. Fi-
nally, merged enterprises may be forced to deal
with installed bases of completely independent
computing systems. Each of the considerations in
these examples will have a primaIy effect on the
design of the physical network.

Each node in the physical network requires sys-
tem-level software to support the role it will play
in the distributed solution. Most nodes require
an operating system and a collection of enabling
services such as communications, file systems,
database managers, and presentation services.
The enabling services may stand alone or be dis-
tributed. For example, a file system may support
local files only, or it may provide access to both
local and remote files. The specific services re-
quired depend on the overall design of the dis-

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

tributed system. It is the purpose of this paper to
identify these services.

The application software implements the enter-
prise-specific business tasks supported by the dis-
tributed solution. The application programs in-
stalled on each node define the role that node will
play in the distributed system. For example, a
workstation may play a front-end role to multiple
back-end transaction servers. The front-end ap-
plication would manage a dialog with the user and
coordinate requests to back-end transaction ap-
plications. The needs of the application programs
dictate the enabling services required in the un-
derlying system software. Applications them-
selves may be broken into parts and distributed or
simply rely on underlying distributed system serv-
ices, such as a distributed file system.

Figure 1 depicts different ways in which an ap-
plication and the system services it uses may be
broken into parts to run on different hardware
platforms. Considerations of communications
cost, performance, support staff availability, se-
curity, and protection of mission-critical data of-
ten determine the approach chosen.

With the wide range of choices and consider-
ations, it would seem that there could be a the-
oretically infinite number of possible designs for
a given distributed system. How then, can we
hope to gain any insights into the future direction
of distributed systems or the services required?

Our approach was to survey a number of real-
world solutions being designed or implemented
by customers. Approximately 50 solutions were
surveyed from enterprises in the banking and fi-
nance, securities, insurance, manufacturing, pro-
cess, retail, transportation, and health care in-
dustries. “Leading edge” distributed projects
were chosen under the assumption that the pio-
neering designs of today would be the routine de-
signs of tomorrow. Many of the customers were
large enough to develop or contract for their own
distributed services if none were available from
vendors.

It was observed that the designs chosen for these
distributed systems were not infinite invariety. In
fact, certain designs seemed to occur repeatedly
in the survey, across industries studied, and on
varying hardware platforms. It is convenient to
categorize these designs into classes of distrib-

Figure 1 Points for distribution

11-

POTENTIAL
DISTRIBUTION
POINTS

uted systems that we refer to as reference de-
signs. Figure 2 summarizes the seven classes of
distributed systems observed. An eighth class,
the nondistributed case, is included for contrast.

Each reference design in Figure 2 depicts a phys-
ical network in which each node plays a defined
role. The shaded areas represent application soft-
ware, and the unshaded areas represent the sys-
tem software. Stored data are represented by the
disk symbol. The reference designs are distin-
guished by differences in the placement of ap-
plication software, system software, and data
in relation to one another. Descriptive names
were chosen to characterize the design approach
used in each reference design. The “front-end-

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993 SHEDLETSKY AND ROFRANO 627

Figure 2 Classes of distributed systems observed

1 NONDISTRIBUTED DESIGN

APPLICATION,

SAME SYSTEM
DATA, USER ON

0
5 STAGED DATA DESIGN

CAL SERVER
STAGE DATA
TRANSACTION
LOGIC
ROUTER

REGIONAL SERVER
"TRUE DATA
TRANSACTION
LOGIC

2 REMOTE PRESENTATION DESIGN

APPLICATION, DATA
ON SAME SYSTEM

USER ON
DIFFERENT SYSTEM

USER MAY ACCESS
SEVERAL SYSTEMS
SIMULTANEOUSLY

6 RESOURCE-CENTRIC DESIGN

ws

U

APPLICATION,
USER ON SAME
SYSTEM

ON DIFFERENT
DATNRESOURCE

SYSTEMS

DATA MAY BE
DISTRIBUTED

TRANSPARENT API

ing" reference design, for example, is used to
layer value-added application logic on the work-
station in front of existing back-end systems and
databases.

The reference designs are described in detail in
the following section. The factors and trade-offs
customers consider in selecting these designs are
also discussed. Included with the description of
each reference design is an analysis of the system
service infrastructure needed to build it. The re-
quired services were identified by observing
those in the customer-devised solutions.

The classification system presented here should
not be considered the only correct way to classify
distributed systems. Rather, it is a useful device
to help us understand why real-world distributed

systems assume the structures they do. By taking
the perspective of the application program writer,
it helps us to understand the system services
required to build these distributed systems. It
should be further noted that a typical enterprise is
likely to utilize more than just one kind of refer-
ence design. Mixtures were often observed.

Reference design descriptions

Each of the following subsections describes one
of eight types of reference designs.

Nondistributed design. The nondistributed refer-
ence design in Figure 3 is included for contrast
with the distributed reference designs that follow.

In this design, the physical network consists of a
single node with an application program, system

628 SHEDLETSKY AND ROFRANO IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

4 DISTRIBUTED LOGIC DESIGN

FRONT END
PRESENTATION
BUSINESS LOGIC

BACK END
TRANSACTION LOGIC
MANAGED DATA ws

6 PROGRAM-TO-PROGRAM

ASYNCHRONISM

ROUTERS

8 MULTIAPPLICATION DESIGN

LOGIC IS
COLLECTION OF
COMPONENTS WITH
SIMULTANEOUS
INTERACTION

PARTITIONED DATA

services, and data. The node may be a main-
frame, midrange, or workstation computer. The
user interacts with this node via an integrated dis-
play or an attached display terminal. System serv-
ices include presentation services for the display
and access services for data.

This traditional stand-alone model has generated
trillions of dollars in computer industry revenue
over the past 30 years.

Remote presentation design. The remote presen-
tation reference design in Figure 4 distributes the
presentation sewice to a remote workstation. The
application drives the remote display via an ap-
plication programming interface. System services
produce the protocol and data streams to trans-
port the application commands to the presenta-
tion service in the workstation. No application

code or “stored data” is in the workstation. The
presentation service may be a distributed user in-
terface management system such as the X Win-
dow System**, a terminal emulator program, or
a distributed dialog manager that renders host di-
alog screens in a graphical user interface (GUI)
format on a programmable workstation.

In this design, the physical network is a worksta-
tion connected to one or more back-end systems.
The connection may be across a wide area or local
area network (WAN or LAN). If the presentation
service is a distributed user interface manage-
ment system, the connection is likely to be limited
to a LAN for performance reasons.

The application program runs entirely on the
back-end system. The programming interface to
the presentation services is invariant, whether the
display is local or remote. For this reason, the
application in this reference design has the same
view of its system environment as the application
in the nondistributed reference design.

The system services identified to support this ref:
erence design are listed in Figure 4. The nondis-
tributed services required on the back-end sys-
tems are local to those systems only. Traditional
services such as dialog management, data access,
transaction processing, security, and application
management are typical. Distributed services re-
quire coordination between system software on
two or more nodes. The X Window System is an

Figure 3 Nondistributed

REFERENCE DESIGN 1 : NONDISTRIBUTED

IBM SYSTEMS JOURNAL, VOL 32. NO 4, 1993 SHEDLETSKY AND ROFRANO 629

Figure 4 Remote presentation

REFERENCE DESIGN 2: REMOTE PRESENTATION
~~~ 

DISTRIBUTED  SERVICES 

I 
- EMULATORS 

3270 

ASCII 
5250 

OR 

- PRESENTATION 
- FONT 
-CODE PAGUNLS 
-TRANSLATE  PM-TO-X 

NONDISTRIBUTED  SERVICES 

- DIALOG/HELP 
- FILE 
- DATABASE 
- DATA  BACKUP 
-TRANSACTION 
-CHECKPOINT/ 

-SINGLE LOG-ON/ 
RESTART/LOG 

-ACCESS CONTROL 
AUTHENTICATION 

-PRINT 
-APPLICATION 

MANAGER 

example of a  distributed  presentation  service. 
Distributed fonts and  code pages are  the capabil- 
ities to download font  generators or  code page 
tables as required. 

Remote  presentation is often used as  the easiest 
way  to  attach a  workstation to a host. With ter- 
minal emulators,  the  host  applications  need  not 
be changed. Also, terminal-emulating worksta- 
tions  and  display  terminals  can  coexist  without 
requiring two different versions of application 
software on the  host. 

In our  survey,  a retail enterprise  and  an  insurance 
enterprise  improved  headquarters staff produc- 
tivity by providing workstations on every  desk. 
Users ran  personal  productivity  applications on 
the  workstations  (nondistributed)  and used ter- 
minal emulation (remote  presentation) to  access 
the office applications on the  host.  A graphical 
user  interface  adds  cut and paste  functions  to the 
terminal emulator, giving existing host applica- 
tions additional functions  that  the  end  users  never 
had before. This  alone was a  productivity aid in 
some  cases. 

Remote  presentation  services like the X Window 
System  are  attractive  because  they  support  inter- 
actions with several back-end systems  concur- 
rently. Each  session is displayed in a  separate 
“window” on the  screen.  The  X Window System 
also supports  a graphical user  interface  style, 
which can  improve  operator  productivity. 

A  desktop publishing vendor  selected  the  remote 
presentation design, using a large Advanced In- 
teractive Executive/6000* (AIX/6000*) as  the  back- 
end  system.  The document-editing application re- 
quired a graphical user  interface.  By using the  X 
Window System on less  expensive AIW6000 mod- 
els and X-terminals, the  vendor  was able to  have 
the  cost of the  back-end  system  shared among a 
work  group of users. Also, because of the  popu- 
larity of the X Window System,  the editing ap- 
plication was accessible from a  variety of ven- 
dors’  workstations. 

Front-ending  design. The front-ending design in 
Figure 5 is different from the  remote  presentation 
design because  the  workstation  has  “front-end” 
application logic. This design is often used to 

630 SHEDLETSKY  AND ROFRANO IBM  SYSTEMS  JOURNAL,  VOL 32, NO 4, 1993 



Figure 5 Front-ending 

~ 

REFERENCE  DESIGN 3: FRONT-ENDING 

DISTRIBUTED  SERVICES 

T 
- DATA  STREAM 
-INTERCEPTOR 

3270 
5250 
ASCII 

- PRINl 

T 
- USER-TO-PROGRAM 

ROUTER 
- SINGLE  LOG-ON/ 

AUTHENTCATION 
-ACCESS CONTROL 
-DIRECTORY 
-SESSION 

CONCENTRATION 

I, 

WORKSTATION  FRONT  END  NONDISTRIBUTED  SERVICES 

SERVICE 
-PRESENTATION 
- FONT 
-CODE PAGUNLS 
- DIALOG/HELP 

-BUSINESS 
-PRESENTATION  INSULATION 

PROCESSMANAGER 

INTERFACE 

INTERMEDIATE 

-PRESENTATION 
-CODE PAGEINLS 
- DIALOG/HELP 

PRESENTATION - FILE ~ 

SERVICE - DATABASE 
-DATA BACKUP 
-TRANSACTION 
-CHECKPOINT/ 

RESTART/LOG 
-APPLICATION 

MANAGER 

TRANSACTIONIDATA 
SERVICE 
" 

BACK-END  SYSTEMS 

layer  new application function in front of existing 
back-end applications. In  this  way,  value  can  be 
added to extend  the  existing application inven- 
tory. 

The front-end application intercepts and interprets 
the display data stream generated by the back- 
end systems. The front-end application logic then 
re-presents information on  the workstation display. 
The  user interface is written twice: once  on  the back 
end, and once again  on the workstation. 

The front-end application logic may  be used to 
simply transform the user  interfaces of each  back- 

end  system  into  consistent and more  modern 
graphical user  interfaces. The options available 
on the  back-end  systems  may be presented as a 
menu, thus producing an  easier-to-use, single sys- 
tem image to  the  user. 

For example,  a  user might correct  an  error in a 
customer billing by following these  steps: 

1. Verify bill was issued in the  amount claimed. 
2. Apply credit to customer's  account. 
3. Confirm correction and print acknowledgment 

for mailing. 

IBM  SYSTEMS  JOURNAL,  VOL 32, NO 4, 1993 SHEDLETSKY AND ROFRANO 631 



Back-end transaction  programs  to  query  the bill- 
ing data,  update  the  customer  account  data,  and 
log the  corrections would be  selected from the 
user’s menu.  This  sequenced  transaction  sce- 
nario  consists of short  interactions with transac- 
tion programs  on  (possibly different) back-end 
systems.  Customers  have evolved several  serv- 
ices  to  support  this model. 

The first service  required is a  router  function  that 
connects  the  workstation  to  each back-end sys- 
tem as  needed.  The  router  uses  a  directory  to 
locate  the  desired  system and then  routes  the 
LU 2 (3270), LU 7 (5250), or ASCII (m) protocols 
and  data  streams accordingly. 

Finally, as  the usefulness of the  front-end appli- 
cation grows, software  developers  seek  to  “port” 
these  applications to many different workstation 
platforms. Some  have devised presentation  ser- 
vice insulation layers  that  isolate  the application 
logic from variations in the  presentation  services 
provided on different workstations. 

Customers use the front-ending reference design 
to  provide  users  easier  access to many different 
existing back-end systems.  A large hospital used 
Easel  for OW** to provide a  consistent, win- 
dowed  user  interface to Information Management 
System (IMS*), DATABASE 2* (DB2*), and Digital 
Equipment  Corporation VMS* * back-end sys- 

Response time considerations may require  the 
tems. 

router  service to maintain continuous sessions 
with the back-end systems,  even though the  ses- 
sions  may  be used only  intermittently. In this 
case,  an  intermediate  router  node  can be used to 
provide  session  concentration.  The  router main- 
tains  one  session with each  back-end  system  and 
temporarily  allocates  that  session  to  a  worksta- 
tion wishing to make a  request. If the  router  func- 
tion is placed in an  intermediate  concentrator 
node,  session  concentration  reduces  the  overall 
number of standing sessions  required. 

Single log-on eliminates the need for  the  user  to 
provide a  separate  password  to  each back-end 
system.  The  user logs on  once to a single log-on 
service. An access  control  service  checks to  see 
if the  user is authorized  to  access  the desired 
back-end  system. An authorized  user  can be au- 
thenticated to the back-end system,  thus avoiding 
another log-on or password  interaction with that 
system.  The  router,  directory, single log-on, ac- 
cess  control, and authentication  services  may  be 
supported on the  workstation  node or (optionally) 
on an intermediate node. These  services  can be 
designed on an  intermediate  node in such  a  way 
as  to support limited function display terminals as 
well as workstations. 

In the  customer billing example  above,  the  user 
selected  each  step in the  process.  More  sophis- 
ticated front-end  applications  can actually auto- 
mate  this  process. A business  process manage- 
ment service  provides  support by which the 
application is constructed  as  a  sequence of 
scripted business  steps.  Recovery  support  may 
be automatically provided if one of the  steps in a 
sequence fails to  complete. 

632 SHEDLETSKY AND ROFRANO 

A  telephone  service  center  is replacing display 
terminals connected to multiple IMS back-end 
systems with AIW6000 workstations.  The  front- 
end application will automate 36 different opera- 
tor activities. Depending on the caller’s com- 
plaint, the  operator  selects  an  activity and follows 
a dialog through to completion. All interactions 
with the back-end transaction  programs  are han- 
dled automatically. The  telephone  service  center 
expects  this  front-end application logic to  reduce 
training time for  these high-turnover positions, as 
well as  to improve customer  service and reduce 
transcription  errors. 

A large insurance  enterprise  needed  to  provide 
access for thousands of users  to  hundreds of dif- 
ferent  back-end  systems.  Agents and claims ad- 
justers in the field would use  reduced-function 
terminals to dial into  a  central  processor,  whereas 
office  staff would use  more  capable  workstations. 
An intermediate  node provided the  router,  ses- 
sion concentration,  directory, single log-on, ac- 
cess  control, and authentication  services so both 
types of users could be  supported.  The resulting 
concentration of directory  and  access  control files 
on  the  intermediate  node simplified administra- 
tion. The users enjoyed menu-driven, single  log-on 
access  to all the back-end systems for which they 
were authorized. 

Distributed  logic design. The  distributed logic ref- 
erence design in Figure 6 is similar to  the front- 
ending reference design. The difference is that  the 
front-end and back-end application components 
interact with each  other  directly  via  a program- 
to-program communication service.  The  style of 

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993 



Figure 6 Distributed  logic 

REFERENCE DESIGN 4: DISTRIBUTED LOGIC 

DISTRIBUTED SERVICES 

I 
- PROGRAM-TO-PROGRAM 

INTERFACE CONVERSION, 
RPC. MESSAGE 

-APPLICATION MANAGER 
-EVENT NOTIFICATION 
- DATA CONVERSION SERVICE 
- DEFINE MESSAGE FORMATS 
- FILE TRANSFER 
- PRINT 
-JOB SCHEDULING 
-WORKFLOW STATUS 
-COMPOSITE UNIT OF WORK 

T 
- PROGRAM-TO-PROGRAM 

-RELIABLE MESSAGE 

- STORE/FORWARD 
-SINGLE LOG-ON/ 

AUTHENTICATION 
-ACCESS CONTROL 

-SESSION 
-DIRECTORY 

ROUTER 

DELIVERY 

CONCENTRATION 

WORKSTATION FRONT END NONDISTRIBUTED SERVICES 

- PRESENTATION 
- FONT 
-CODE PAGE/NLS 
- DIALOG/HELP 
- PRESENTATION INSULATION 
-BUSINESS 

PROCESSMANAGER 

-FILE 

- DATA BACKUP 
- DATABASE 

-LARGE OBJECT 
-FOLDERS 
-TRANSACTION 
-CHECKPOINT/ 

RESTARTILOG 

ENCAPSULATION 
- PROGRAM 

TRANSACTION/DATA 
SERVICE 

u u  
BACK-END SYSTEMS 

this service  varies, from conversations, to remote 
procedure  calls (RPC), to queued  messages. 

In the  front-ending design, the  back-end applica- 
tion is usually an existing application designed to 
drive  a display terminal. In the  distributed logic 
design, the back-end application does  not  have 
any  user  interface  component, and so it cannot 
function as a  stand-alone application. It is usually 
a new application, using a programming interface 
supported by the program-to-program communi- 
cation  service. 

An important  constraint  is  that  the  stored  data  are 
still centralized on the  back-end  system.  This dis- 
tinguishes the  distributed logic design from other 
designs to follow. The  business  needs of the  en- 
terprise  may  dictate  this  constraint  for  several 
reasons.  Enterprises like finance, insurance, and 
retail companies  may be organized in a  hierarchi- 
cal fashion, with a  central  database and branches. 
Such  data  are usually considered mission-critical, 
where integrity and security  are essential. Well- 
established recovery  services on the back-end 
systems like archiving, checkpoint image copy, 

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993 SHEDLETSKY AND ROFRANO 633 



restore utilities, and  alternative-site  disaster  re- 
covery  cannot  be  easily applied if the  database  is 
distributed and the  branches  lack  computer  op- 
erations staffing. Also, branch offices usually can- 

An important constraint is that 
the  stored data are still 

centralized on the 
back-end  system. 

not provide  the  degree of physical security  re- 
quired  for  these  data. And finally, the  database 
may  be large and  not easily partitioned  because of 
the  transaction  reference  patterns. 

Given these  constraints,  the  distributed logic de- 
sign seeks  to  strike  an appropriate  balance  be- 
tween  the  front-end  and back-end applications. 
The program-to-program interface allows more 
flexibility in selecting  this  balance point than  the 
front-ending design. For example, all presenta- 
tion services, including dialog management and 
help services,  can  be off-loaded to  the  worksta- 
tion. On the  other  hand,  communications  band- 
width  and  latency  force  any application logic re- 
quiring high-bandwidth access  to  the  data  to 
remain on  the back-end  system. Performing a 
high-bandwidth transaction  such as sorting  data 
across  a  network should be avoided in favor of 
performing the  sort local to where  the  data  reside 
and shipping only  the  results  across  the  network. 
Typically, the  back-end  systems  become  trans- 
action  servers. 

The message  style of program-to-program  inter- 
face  introduces  another  degree of flexibility. Un- 
like the  synchronous  connection-oriented rela- 
tionship in the  front-ending design, the  queued 
messaging model supports  connectionless  asyn- 
chronism.  That is, the front-end application can 
send  a message to a  back-end application and 
continue to  do additional work while waiting for 
a reply. In fact, it may not even  expect  a reply. 
Because messaging is connectionless,  the  server 
does  not need to  be running at  the  same time as 
the application (i.e., there is no need  for an es- 

634 SHEDLETSKY  AND  ROFRANO 

tablished connection  at  run time). This  style of 
designing asynchronous, cooperating applications 
generally  requires  an  event  service  to notify a 
designated application of both  expected  and  un- 
expected  events  and  exceptions. Also, the  front- 
end application is no longer limited to sending its 
requests  to back-end  applications  one  at  a time. 
Several  request  messages may be  sent  to different 
back-end  systems  concurrently,  enhancing  user- 
response time over  a  synchronous  mode of exe- 
cution. 

Any  business  process management service in the 
workstation must consequently support scripts with 
asynchronous and possibly concurrent  steps. In 
addition to  event notification, services  such  as 
data or time-dependent job scheduling and work- 
flow status monitoring may  be  used.  There  may 
be  sets of concurrent  steps  that  must all partici- 
pate in the  same unit of work.  These sets  are re- 
ferred  to as a  “composite unit of work.” An au- 
tomatic  recovery  service is needed to perform the 
necessary rollback if one of a  set of concurrent 
steps in a  composite unit of work should fail to 
complete. 

Messages and  remote  procedure  calls  emphasize 
even  more  the  short  interactive  nature of the  re- 
quest from front-end to back-end applications. 
The role of the  intermediate  node  takes on more 
importance in this  reference design. Compared  to 
the  user-to-program  router in the front-ending ref- 
erence design, the  router  service  to  support dis- 
tributed logic must  route  an increasing number of 
short program-to-program requests. It may be  re- 
quired to accomplish this routing over existing 
conversation  networks like Systems  Network Ar- 
chitecture (SNA) with either  a limited number of 
available sessions  or high overhead for establish- 
ing and relinquishing a  session, thus making ses- 
sion concentration essential. Also, customers may 
need support for storing messages when the recip- 
ient system is not available. A reliable message de- 
livery service guarantees that a routed message will 
never be lost in the  event of delivery service failure. 
This guarantee is usually accomplished via trans- 
action processing techniques such  as cascaded 
units of work. 

The  use of program-to-program interfaces  intro- 
duces  the need for  a  set of associated  services. An 
incoming request  to  start  a  conversation, run a 
remote  procedure, or receive  a message means 
that  an application must  be  dispatched  to handle 

IBM SYSTEMS  JOURNAL, VOL 32, NO 4, 1993 



the necessary interaction. The application manager 
does this job and also terminates the application 
when the request is completed. Data conversion 
services alleviate the application’s burden of trans- 
lating the  data  passed from a dissimilar system. 
Methods to define data  formats  are  necessary for 
automatic  data  conversion  and useful for appli- 
cation-to-application  consistency.  Services  to 
support  encapsulation would enable old back-end 
applications to interact  with new front-end appli- 
cations  via  the program-to-program interfaces. 

The distributed logic designs selected by custom- 
ers and  vendors in our survey  started with the 
assumption  that  the  data will remain on the  back- 
end  system. An application vendor  to  the insur- 
ance  industry  established  a  framework of services 
to  support a  distributed logic design. Worksta- 
tions  replaced  display  terminals in the offices of 
agents. Message  services  connect  the  worksta- 
tions to back-end  Customer Information Control 
Systems (CICSs*) or DB2 systems,  where  the da- 
tabases  are maintained. The back-end applica- 
tions  were  rewritten  as  message-driven  transac- 
tion programs. 

A manufacturing enterprise  is off-loading engi- 
neering design applications to Operating Sys- 
tem/2* (oS/2*) workstations.  The bill-of-material 
data will remain in the back-end IMS systems, 
where it can be  shared and secured.  The  front-end 
application interacts with the designer to  query 
and update  the bill of material. The  connection 
from front  end  to  back  end in this  case is LU 6.2, 
a  conversation model. Prototype implementa- 
tions  have  been  instrumented to ascertain  splits 
between  the front-end and  back-end application 
logic so as  to minimize communication bandwidth 
and maximize performance. 

Because of the  shared  nature of the information 
between  engineers, plant floor operators, and 
managers,  this  customer also required that AIX 
users  have  access to the  same  front-end applica- 
tions. Porting the  applications from the osi2 
(Presentation Manager*, or PM) environment to 
the AIX (X Windows System)  environment was 
avoided in this  case by providing a specialized 
PM-to-X protocol  converter  on  the os/2 worksta- 
tion, thus  supporting indirect access from AIX 
users. 

For  both  the  manufacturer and the  insurance  ap- 
plication vendor,  the  data on the  back-end  sys- 

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993 

tems will consist of collections of different kinds 
of data, including documents,  structured  data, 
and image data.  The  insurance applications will 
use  a folder model to collect all  of the policy 

A reliable message delivery 
service  guarantees  that  a  routed 

message  will never be lost in the 
event of delivery service failure. 

information for a given customer,  whereas  the 
manufacturer’s part designs include application 
design files, graphics, and such  structured infor- 
mation as  a bill of materials. In both  cases  the 
back-end  data  storage  systems  are  required to 
support  these  collections of dissimilar data. 

A national retail enterprise  connected  a CICS OW 
workstation in every  store  to a  back-end  Cus- 
tomer Information Control System/Multiple Vir- 
tual Storage (CICS/MVS) system.  The  customer 
records  are  consolidated and shared in a  back-end 
system so that  a  customer need not  return  to  the 
same  store of purchase for service.  The  front-end 
application supports  an  easy-to-use dialog inter- 
face with the  clerk  and  automates  the  steps in- 
volved in a given customer  service  transaction. A 
CICS program-to-program interface is used by  the 
front-end application to  invoke  transaction  pro- 
grams on the  back end. This  interface was chosen 
for  its economical use of communications  band- 
width. 

The telephone  service  center application that 
used the front-ending reference design will even- 
tually be  replaced by a  distributed logic reference 
design. The  requirement is for  new back-end 
transactions to use  a program-to-program mes- 
sage  interface  rather than the IMS presentation 
services for display terminals. All presentation 
services support will  be  off-loaded to the front-end 
AIX workstations. Furthermore, the customer re- 
quires a message router for session concentration 
and to add  flexibility  in routing messages to alter- 
nate back-end systems. 

SHEDLETSKY AND ROFRANO 635 



Data  staging  design. The front-ending and distrib- 
uted logic reference  designs  may  have  drawbacks 
if the  number of workstations  puts  a  heavy load 
on the back-end databases  or if the  distance be- 
tween  the  workstation  and  back  end  increases  the 
communication latency and cost. Communica- 
tion breakdowns  can  put  the  workstation  out of 
business until communications are re-established. 

The  data staging reference design in Figure 7 
solves  these  problems by moving the required 
data  closer  to  the  front-end  workstations. With 
data staging, the  “true”  data remain on a regional 
back-end  system while snapshots of portions of 
the  data  are staged (i.e., downloaded)  to local 
back-end systems.  The regional and local back- 
end systems  are  often called regional and local 
servers.  Data staging solves  the  problems  noted 
above  but still preserves  the  security  and integrity 
of the  “true”  database  by keeping it under the 
protection of a  central  back-end  system  where it 
can  be  backed  up  and  consistently  recovered. 

Data staging maintains  the availability of some 
operational  data  even if the regional server is 
down. It  can  improve  access time to  the local 
server,  reduce  communications  cost  to  the  re- 
gional server, and reduce load on the regional 
server.  In  contrast, it involves additional design 
complexity  to  devise  the staging policies and ad- 
ditional operations  complexity to periodically 
stage  the  data  snapshots  to  the local servers. 

Various  data staging policies have  been  devised, 
depending on the  characteristics and expected 
uses of the  business  data.  The simplest policy in 
our  customer  survey is to periodically stage  read- 
only  data  to  the local servers. In this  one-way 
flow  of information, the  frequency of refresh  de- 
pends on the  requirement for data  currency of the 
front-end application. Securities trading applica- 
tions  require  frequent  refreshes of rates and price 
quotes.  This policy is referred to  as a  “data  feed” 
and  may be implemented using periodic  network 
broadcasts of data.  Interest  rate  tables used by 
finance applications may only  require daily re- 
fresh. 

Another policy is  to identify a  subset of a  data- 
base  to  be staged to  each local server. Application 
reads  are satisfied by the local server if possible 
or routed to  the regional server if necessary.  Ap- 
plication updates  are  always  “write-through”  to 
both  the local and regional servers.  This policy is 

636 SHEDLETSKY AND ROFRANO 

referred to  as “contingent staging’’ and  may  be 
used to stage  data  that  tend to  be affiliated with 
each  branch office, with a low requirement for 
currency.  A nightly refresh  rate is typical for  this 
type of data.  The  write-through of any  update 
maintains the  moment-to-moment  accuracy of 
the regional database. Obviously, care  must  be 
taken  when  the  update of another  branch invali- 
dates  the  staged  data! 

A “consolidation policy” relaxes  the condition 
that  the regional database  be  accurate from mo- 
ment to moment. With this policy, the  data  are 
staged to  each local server,  and  reads and updates 
are satisfied locally. The  updated local data  are 
consolidated  to  the regional database periodi- 
cally. This policy may  be used when  the regional 
database  can  be  partitioned for each  branch with 
no sharing  between  branches. If sharing  does  oc- 
cur, out-of-date data  must be tolerated. The  re- 
gional database might be used for daily or  weekly 
report  generation. 

Other  variations of data staging policies are pos- 
sible, and more  than one policy may  be used by 
a  customer.  Our  survey identified various  serv- 
ices  customers  have devised to implement these 
policies. A broadcast message service  was used 
to implement the  data feed policy. A snapshot 
download (withversion  control) is required by  the 
contingent  data  and consolidation policies. The 
consolidation policy also  requires  a regional data 
update consolidation service. 

The local server  node in Figure 7 plays a  sub- 
stantially larger role than  the  intermediate  nodes 
in the  previous  reference designs. In general, the 
local server  must  have  the  same  database  char- 
acteristics as  the regional server.  The local server 
also has application programs to  access  the staged 
data. Finally, the program-to-program router  ser- 
vice must route  requests from the  front-end  ap- 
plication to  the appropriate local or regional 
server applications. Depending on the staging 
policies in effect, the  request may be  routed to  the 
local or  remote  server or both. 

A large bank with many  branch offices had im- 
plemented a  distributed logic design using the IBM 
Financial Branch  System  Services (FBSS) product 
on DOS workstations  connected  to IMS back  ends 
via  an IBM 4702 financial controller.  The  bank 
plans to have  the  current design evolve  into  a  data 
staging design by adding an 0s/2 local database 

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993 



Figure 7 Data  staging 

REFERENCE DESIGN 5: STAGED DATA 

DISTRIBUTED SERVICES 

I 
- PROGRAM-TO-PROGRAM 

INTERFACE CONVERSION, 
RPC, MESSAGE 

-APPLICATION MANAGER 
- EVENT NOTIFICATION 
- DATA CONVERSION SERVICE 
- DEFINE MESSAGE FORMATS 
-FILE TRANSFER 
- PRINT 
-JOB SCHEDULING 
-WORKFLOW STATUS 
-COMPOSITE UNIT OF WORK 
-SINGLE LOG-ON/ 

-ACCESS CONTROL 
AUTHENTICATION 

-DIRECTORY A 

- PROGRAM-TO-PROGRAM 
ROUTER 

DELIVERY 
- RELIABLE MESSAGE 

- STORE/FORWARD 
- DATA FEED BROADCAST 
-DOWNLOAD SNAPSHOTS 
- READWRITE THROUGH 
- REGIONAL CONSOLIDATION 
-SESSION CONCENTRATION 

STAGED 
DATA 

NONDISTRIBUTED SERVICES 

- PRESENTATION 
- FONT 

- DIALOG/HELP 
- CODE PAGEINLS 

- PRESENTATION INSULATION 
-BUSINESS 

PROCESSMANAGER 

-FILE 
- DATABASE 
-LARGE OBJECT 
- FOLDERS 
-TRANSACTION 
- CHECKPOINT/RESTART/LOG 

T 
- FILE 
- DATABASE 
- DATA BACKUP 
- LARGE OBJECT 
- FOLDERS 
-TRANSACTION 
- CHECKPOINT/RESTART/LOG 
- PROGRAM ENCAPSULATION 

server in each  branch. A study  has identified a 
subset of the regional database  that will be down- 
loaded  to  each  branch nightly. This  contingent 
data policy is expected to improve  customer  ser- 
vice availability in the  event of failure to  access 
the regional server. 

A semiconductor  manufacturer  plans  to  use  a 
data staging design to  run as much  work as pos- 
sible  on local work  group  servers. An analysis of 
the  shared  data  characteristics  determined  that  a 
distributed logic design was required for some 

data  but  that  contingent staging and consolidation 
policies could be used for other  data.  This  cus- 
tomer  also  required  the  option to support  asyn- 
chronous  write-throughs to the regional server, 
so the  front-end application could continue to 
work while waiting for the  update  to  complete. 

Resource-centric  design. The  resource-centric ref- 
erence design in Figure 8 supports  direct,  remote 
access from an application to some  system  re- 
source, usually data.  The application accesses  the 
remote  resource  via  the  same programming in- 

IBM SYSTEMS JOURNAL, VOL 32. NO 4, 1993 SHEDLETSKY AND ROFRANO 637 



Figure 8 Resource  centric 

REFERENCE DESIGN 6: RESOURCE CENTRIC 

DISTRIBUTED SERVICES APPLICATION SYSTEM NONDISTRIBUTED SERVICES 

I 
-FILE 
- DATABASE 
-DATA REPOSITORY 
- CHECK-INCHECK-OUT 
- PROGRAM-TO-PROGRAM 

INTERFACE CONVERSION, 

- DATA CONVERSION SERVICE 
RPC. MESSAGE 

- DEFINE MESSAGE FORMATS 
-SINGLE LOG-ON/ 

AUTHENTICATION 
-ACCESS CONTROL 
-DIRECTORY 

t 

1 
-DATABACKUP 
-TRANSACTION 
-CHECKPOINT/ 

RESTART/LOG 

I I RESOURCE 

- PRESENTATION 
- FONT 
- CODE PAGUNLS 

-PRESENTATION INSULATION 
- DIALWHELP 

-PRINT 
-APPLICATION MANAGER 

SYSTEMS 

terface used to  access  the local resource.  Exam- 
ples include the local file system  interface  for 
files, a  Structured  Query Language (SQL) inter- 
face  for relational databases,  or  a  check-inkheck- 
out  interface for data  repositories. Different files 
or relational tables may be  located  at different 
remote  nodes. Underlying system  services  do  the 
job of locating, accessing, and  returning  the  re- 
sulting data. 

This  reference design is  the  only  one in which an 
application has  direct  access  to  remote  data.  In 
the front-ending, distributed logic, and  data  stag- 
ing reference designs, the front-end application 
talks to a  remote application, which in turn  ac- 
cesses  the  data. 

Well-known products  such  as Novel1 Netware* * 
and Sun  Network  File  System**  have popular- 
ized this  reference design. In addition to file serv- 
ers,  database  vendors like Oracle and IBM support 

remote  access  to  database  servers.  The  resource- 
centric reference design is probably the most com- 
mercially successful distributed reference design to 
date.  It  has  probably enjoyed early  success  be- 
cause it is an easy  way for separate  users  to  share 
a  resource.  Workstation  users  can easily ex- 
change  data  through  a  shared file or  database 
server.  Since  the application accesses  both local 
and  remote  data as if all data  were local, remote 
file and  database  servers  can  be  introduced  with- 
out modification to existing applications. Users 
may also share  such  devices  as  printers  or  plotters 
to lower the  cost of the  device  per user. 

A resource-centric  reference design works  best 
when  the  amount of data  accessed is easily sup- 
ported by  the communication bandwidth avail- 
able. A low-latency  network  environment  such as 
a high-speed local area  network  is  desirable. 
When communication delays  are intolerable, or 
when additional path  lengths  due to  the commu- 

638 SHEDLETSKY AND ROFRANO IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993 



nication protocols  become  a significant computa- 
tional consideration, it is  often  more efficient to 
place  part of the application logic local to  the 
data. As hard as it may seem  to believe that  a LAN 

The  process-driven reference 
design is the first where both 
application logic  and data  are 

permanently split  apart and 
distributed in  paired pieces. 

may  not  have enough bandwidth, we observed 
one  insurance  company  that  wrote  a LAN system 
in which  every  transaction  created  thousands of 
file I/O requests.  They could not  understand  why 
they  where getting a  response time of two minutes 
per  transaction. In short,  the message traffic cre- 
ated by their application was  too  much for redi- 
rected file I/O activity to handle. In these  cases, 
the  previous  reference designs are  preferable. 

In the  resource-centric  reference design, system 
services  such  as file, database,  repository, and 
print must  be  extended to  support remote  access. 
If the  data  are  spread  across multiple nodes, 
additional care must  be  taken  by  the  system  to 
ensure integrity and recoverability. Underlying 
services  such as unit-of-work, backup,  check- 
point or  restart,  and logging must now work in a 
coordinated  fashion against the distributed  pieces 
of data. 

Popular file, database,  and print servers  are now 
widely used and  were  observed in our  survey. 
One manufacturing customer also created  a  re- 
pository  for engineering design files. Worksta- 
tions  can  check in or  check  out design files from 
the  remote  repository  via  a programming inter- 
face on the  workstation.  Once  checked  out,  the 
design files are  transferred to a file server,  where 
they  are  shared  by  the  work group. 

Process-driven  design. The process-driven refer- 
ence design is  the first design where  both appli- 
cation logic and  data  are  permanently split apart 
and  distributed in paired pieces. Each node in 

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993 

Figure 9 supports  both application code  and  its 
own stored  data.  The  data  are  private  to  the ap- 
plication and are not directly  accessible by appli- 
cations on other  nodes. Each application-data 
combination  accomplishes  a  discrete  task. 

The process-driven  reference design is character- 
ized by  a  stepwise  execution of the  applications. 
Each application may be  viewed as a  job  step in 
a higher-level process, which is designed to  ac- 
complish a  business-oriented  task. 

The simplest process is a  set of sequential  steps. 
Each application in the  sequence  must  complete 
before  the  next begins. More  complex  processes 
define parallel sequences of steps  that  may  exe- 
cute  concurrently. 

The applications do not engage in simultaneous 
communication with each  other.  Exchanges of in- 
formation  between applications usually occur  via 
a  prepared  data handoff. The handoff may  be im- 
plemented with I/O files, or locking and trigger 
conventions in a  shared  data  repository. 

A simple process  may  be  executed  by manual 
convention. An example of this is the  process fol- 
lowed to prepare large-scale scientific simulation 
jobs.  The first step is to prepare  the model de- 
scription  on  a  workstation.  The  second  step  is to 
submit the simulation run to a high-performance 
supercomputer.  The final step  is  to review the 
results of the simulation using visualization ap- 
plications on the  workstation. 

Another  example from the banking industry is 
check processing. A  check  drawn on bank A and 
submitted  for deposit to  bank B will be consoli- 
dated  into  a  debit  summary  for  bank A. Accounts 
are debited in bank A, and  funds  are  transferred 
to  bank B, where  the  appropriate  accounts  are 
credited.  The  steps in this  process  are followed by 
established  business  convention.  Some  system 
services  such  as  job  control languages are useful 
in this highly repetitious  scenario. 

Many customers  are carefully defining their busi- 
ness-oriented  processes  to  capture  them  for  au- 
tomatic  execution.  Computer-integrated manu- 
facturing is an  example of where  the  processes 
are  more  complicated  than  the  previous  exam- 
ples. In this  case, additional services are required 
to  support  the  process-driven  reference design. 
The workflow manager is a facility that  regulates 

SHEDLETSKY  AND ROFRANO 639 



Figure 9 Process  driven 

REFERENCE DESIGN 7: PROCESS DRIVEN 

DISTRIBUTED SERVICES 

-WORK 
- DATA 
- CHECI 

OW MANAGER 
POSITORY 
N/CHECK-OUT 

.FL 
RE 
K-ll 

-FOLDERS 
- LARGE OBJECT 

-EVENT NOTIFICATION/ 

-JOB SCHEDULING 
-WORKFLOW STATUS 
- ED1 
-ACCESS TO SPECIAL- 

TRIGGERS 

PURPOSE HARDWARE 
-PROGRAM-TO-PROGRAM 

(MESSAGE) 
-FILE TRANSFER 
-APPLICATION MANAGER 
- DATA CONVERSION 
-DEFINE MESSAGE FORMAT 
-SINGLE LOG-ON/ 

AUTHENTICATION 
-ACCESS CONTROL 
- DIRECTORY 
- DATA BACKUP 

I 

STEP 1 

6 

NONDISTRIBUTED SERVICES 

- PRESENTATION 
- FONT 
-CODE PAGE/NLS 

- FILE 
- DlALOGlHELP 

- DATABASE 
-TRANSACTION 
- CHECKPOINT/RESTART/LOG 

- PROGRAM ENCAPSULATION 
- PRINT 

- PRESENTATION 
- FONT 
-CODE PAGEiNLS 

- FILE 
- DIALOG/HELP 

- DATABASE 
-TRANSACTION 
- CHECKPOINT/RESTART/LOG 
-PRINT 
- PROGRAM ENCAPSULATION 

the  overall  execution of the  business  process.  The In addition to the job control language,  file transfer, 
process  may  be defined to the workflow manager and shared  repository  services mentioned above, 
by an explicit script language or a defined set of the workflow manager may also require applica- 
events  and triggers. The workflow manager im- tion manager, event notification, job scheduling, 
plementation may be  centralized or distributed. and workflow status  services.  The workflow man- 

640 SHEDLETSKY AND ROFRANO IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993 



ager function  may  be implemented as part of a 
data  repository design. In  this  case,  events  are 
defined as changes to  data values.  Data triggers 
invoke application code or send  messages to ex- 
ecute  the  next  step in the  process. 

The workflow manager may  appear  to be similar 
to  the business  process manager defined in the 
front-ending  reference design. We have  chosen  to 
use  these different terms  to allow for the differ- 
ences in emphasis we have  observed.  The  front- 
end  business  process manager is located on a 
front-end  workstation and serves  as  an agent for 
one  user.  It  translates high-level user  commands 
into multiple back-end  transaction  requests.  The 
workflow manager is an autonomous  monitor of 
defined  workflow processes. Its scope may extend 
to  the activities of hundreds of users. It will initiate 
action based on events other than human com- 
mands. It is often implemented on a host system 
and sometimes integrated with a data repository. 

In the process-driven  reference design, a message 
style  service  often  seems to  be preferred  over 
conversations  or  remote  procedure calls. Mes- 
sages  are used to  transmit  events,  status,  job  step 
commands,  and hand off data. Many business 
processes  such  as  ordering  and billing involve in- 
teractions  with  entities  outside of the  enterprise. 
Automating  these  processes  requires  support for 
message standards  such  as ED1 (electronic  docu- 
ment interchange).  The  automated  process may 
require  coordination with special-purpose  hard- 
ware  such  as  a  robot  controller  or an ATM (auto- 
matic teller machine). Messages  and  other  serv- 
ices  must  be  supported on these  platforms also. 

Multiapplication  design. The multiapplication ref- 
erence design in Figure 10 also has application 
logic and  stored  data split apart and distributed in 
paired pieces. The  data  are  private  to  the appli- 
cation  and  are  not  directly  accessible by applica- 
tions on other  nodes. 

The multiapplication reference design is different 
from the  process-driven  reference design because 
the applications are  active  at  the  same time and 
engage in simultaneous  communications with one 
another.  Each application works  as  part of a  team 
of applications to finish a given business  task. 
Since  the  stored  data of each application are  not 
directly  accessible by other applications, this ref- 
erence design is suggestive of an object-oriented 
design style in which each application encapsu- 

IBM SYSTEMS JOURNAL, VOL 32. NO 4, 1993 

lates its data.  It  is  often  referred  to  as  the  “most 
distributed”  reference design or “most  general” 
reference design. It would appear to offer the 
most  freedom in distributing application logic and 
stored  data.  In  fact, it seemed to  be used only in 
environments  where  the  constraints left no other 
choices! 

For example, a large hospital had different vendor 
systems in place for each  department. The hos- 
pital wanted to tie  these  systems  together so that 
information would flow easily from the applica- 
tion of one  department  to  another.  The goal is to 
make all information about  a patient easily ac- 
cessible to doctors,  nurses,  and  administrators. 
Transcription  errors from copying data  by  hand 
will be eliminated, and patients will receive  better 
quality  care. 

In this  environment,  the hospital requires  tech- 
niques to encapsulate  the old applications with 
new software so they  can  respond  to  requests 
from other  programs as well as from terminal op- 
erators.  Because of the existing framework,  there 
is little opportunity  to make the kind of distribu- 
tion trade-offs discussed in previous  reference  de- 
signs. 

Customers in transaction  environments  occasion- 
ally find that  they  must run applications against 
databases  that  are  separated  but  must remain co- 
ordinated.  The  databases  may  be in different de- 
partments  or  even different enterprises.  They 
may  have  been implemented separately  before 
there  was  a need for accessing  both  together.  The 
data  access  bandwidth  requirements  may  be  such 
that  a  resource-centric  reference design would 
perform poorly. The  only  alternative is a multi- 
application design, where applications in each 
node  access  their  databases  and  interact with one 
another  to  update  them in a  coordinated fashion. 

Coordination  requirements make these applica- 
tions  more complicated to design. Data integrity 
requires  that if one application fails to  update  its 
database,  the  other application’s updates  to its 
database  must  be  undone  to  restore  consistency 
between  the two databases.  Such designs require 
a  distributed  transaction management service  to 
maintain database  coordination.  The  technology 
is called distributed unit of work  and is usually 
implemented with  two-phase commit protocols. 
Furthermore, larger-scale recovery  procedures 
such as backup, logging, and  checkpoint  or  re- 

SHEDLETSKY AND ROFRANO 641 



REFERENCE  DESIGN 8: MULTiAPPLlCATlON 

Figure 10 Multiapplication 

DISTRIBUTED  SERVICES 

I - PROGRAM-TO-PROGRAM 
INTERFACE  CONVERSION, 
RPC,  MESSAGE 

-TRANSACTION 
-APPLICATION  MANAGER 
- DATA  CONVERSION 

-DEFINE MESSAGE  FORMATS 
- SINGLE  LOG-ON/ 

-ACCESS CONTROL 
AUTHENTICATION 

SERVICES 

-DIRE( 
- DATA 
- CHEC 

:TORY 
BACKUP 

:KPOINT/RESTART/LOG 

APPLICATION  SYSTEM 

PRESENTATION 
SERVICE I 

TRANSACTION/ 
DATA  SERVICE 

NONDISTRIBUTED  SERVICES 

- PRESENTATION 
- FONT 
-CODE PAGE/NLS 
- DIALOG/HELP 
- FILE 
-PRINT 
-PROGRAM  ENCAPSULATION 

n 
TRAMSACTION/ 
DATA  SERVICE 

APPLICATION  SYSTEM 

PRESENTATION 

n 

-PRESENTATION 
- FONT 
-CODE PAGE/NLS 
- DlALOGlHELP 
-FILE 
-PRINT 
-PROGRAM  ENCAPSULATION 

start  must  be  distributed  to  support recovering 
each  database  to  a point where it is coordinated 
with the  others. 

System  management  and  application 
development 

The  requirements  described in Figures 4 through 
10 and  summarized in Table 1 concentrate  only  on 
the  services  necessary  to  support  an  operational 
reference design. 

Application development  tools  and  system man- 
agement support  are equally important  require- 
ments  for  the  successful deployment of a  refer- 
ence design. For  each  reference design there  must 
be  tools to design, code,  test, and debug  the var- 
ious application components  targeted for each 
hardware platform. Efficient management of the 
increased  complexity of these multiplatform so- 
lutions is also  needed. Although these  require- 
ments  are  beyond  the  scope of this  paper, we can 
make the following observations. 

Application  development. Since  the  distribution in 
the  remote  presentation  and  resource-centric de- 
signs is transparent  to  the application, tools for 
developing stand-alone applications should work 
equally well for  these designs. Other  reference 
designs, however,  present new challenges. The 
distributed application components in the remain- 
ing reference designs must be  developed in con- 
cert  to interoperate properly. It is probably un- 
acceptable  to  require  each application component 
to be  developed in isolation of the  others.  It  is 
even  worse if different tool environments  must  be 
used for each application component,  depending 
on which system  is targeted! Tools for design, 
code,  test,  and debug should support  a  cohesive 
view of the application components  yet permit 
multiple back-end  code  generation for each  hard- 
ware platform. 

The  front-ending design requires new front-end 
applications to  intercept  the display terminal data 
streams  produced by old applications. When old 
design information is no longer available, it pres- 

IBM  SYSTEMS  JOURNAL,  VOL 32, NO 4, 1993 642 SHEDLETSKY AND ROFRANO 



Table 1 Summary  of  system services  required by reference  designs  (grouped by functional  category) 

1 System  Services  Remote  Front-  Distri-  Staged  Resource  Process  Multi- 
Presen-  Ending  buted  Data  Centric  Driven  appli- - 
tation  Logic  cation 

Presentation  services 
Emulators (3270/525O/ASCII) 
Display presentation 
Selectable  fonts 
Code  pagehational language 
Dialoghelp  functions 
Presentation insulation 
Translate PM to X (OS/2) 
Print 
Data  stream  interceptor 

Data  services 
File system 
Database 
Data  repository 
Check-idcheck-out 
Large object 
Folders 
Automatic  backup 

Transaction  processing 
Transaction manager 
Checkpoint/restart/logging 
Composite unit of work 

Program-to-program  interface 
Application  services 

Conversation 
Remote  procedure call 
Message queues 
Data feed broadcast 

File transfer 
Electronic  document interchange 
Data  conversion  services 
Defineiregister  message formats 
Application  manager 
Event notification (alert/exception) 
Program  encapsulation 
Access  to special-purpose hardware 

Single log-odauthentication 
Access  control 

User-to-program  router 
Program-to-program router 
Directory 
Reliable message  delivery 
Store/fonvard 
Session  concentration 

Business  process manager 
Workflow manager 
Programmed job scheduling 
Workflow queryhtatus 
Event notification (statdtriggers) 

Download snapshots 
Regional consolidation 
Read/write  through 

Security 

Routing  services 

h e s s  management 

Data  staging  services 

D 
D 
D 
D 
X 

D 
X 

X 
X 

X 

X 
X 

X 

X 
X 

X 
X 
X 
X 
X 

D 
D 

X 
X 

X 

X 
X 

X 

D 
D 

D 

D 

D 

X 

X 
X 
X 
X 
X 

D 

X 
X 

X 
X 
X 

X 
X 
D 

D 
D 
D 

D 

D 
D 
D 
D 
X 

D 
D 

D 
D 
D 
D 
D 

X 

D 
D 

X = Function required is nondistributed; D = Function required is distributed 

X 
X 
X 
X 
X 

D 

X 
X 

X 
X 

X 
X 
D 

D 
D 
D 
D 
D 

D 
D 
D 
D 
X 

D 
D 

D 
D 
D 
D 
D 

X 

D 
D 

D 
D 
D 

X 
X 
X 
X 
X 

X 

D 
D 
D 
D 

D 

D 
D 

D 
D 
D 

D 
D 
X 

D 
D 

D 

D 
D 
D 

X 
X 
X 
X 

X 

X 
X 
D 
D 
D 
D 
D 

X 
X 

D 

D 
D 
D 
D 
D 

X 
D 

D 
D 

D 

D 

X 
X 
X 
X 

X 

X 
X 

D 

D 
D 

D 
D 
D 

D 
D 
D 

X 

D 
D 

D 

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993 SHEDLETSKY AND ROFFIANO 643 



ents  a difficult job of re-engineering. A tool to 
analyze the  data  streams  is  a  productivity  require- 
ment. 

The  distributed logic and data staging designs in- 
volve  a  delicate  balance  between  front-end and 
back-end function placement. Performance  pre- 
diction and  analysis  tools  are  required.  The  rout- 
ers in these designs will require application-level 
interfaces  to  support  customer-supplied routing 
algorithms. Network-level traffic analysis will  help 
define these algorithms. Also, database analysis 
tools will be required to evaluate what subsets of 
data may be staged to local servers. 

The  process-driven and multiapplication designs 
require  tools to formalize and catalog  the  data and 
message interchanges  between  the  diverse appli- 
cations.  The multiapplication design in particular 
needs  tools  to  encapsulate old applications so that 
they fit into the defined request  interchange 
framework. 

System  management. System management chal- 
lenges for  reference designs range from mundane 
operations  to  sophisticated new approaches.  Cus- 
tomers  have  experienced difficulty even with re- 
mote presentation designs, where the only connec- 
tion to the back-end system is a terminal emulator. 
Basic operations like software distribution, config- 
uration management, problem reporting, and data 
backup have proved to be considerable challenges 
when thousands of workstations are involved. 

More challenging requirements lie ahead.  Cost 
pressures  to reduce  operational staff will lead to 
focal point concentrations of management sup- 
port.  From  these focal points,  operators  must  be 
able to manage distributed  reference designs as 
they manage stand-alone  systems  today.  Interop- 
erable  software  components place increased  de- 
mands on coordinating  software upgrades. Back- 
outs of other  software  component  upgrades  may 
be  necessary if the upgrade of one  component 
fails. When a  user  request  can involve transparent 
access  to several  distributed  systems, new sys- 
tem-wide approaches to user  enrollment,  authen- 
tication, and access  control  must be supported. 
Customers  have  asked for new accounting met- 
rics  based on transaction identifiers, so back-end 
server usage can  be billed accordingly. Hardware 
and  software problem reporting  to  a  remote focal 
point must  be accompanied by  the ability to di- 
agnose and  repair remotely. And finally, data 

644 SHEDLETSKY AND ROFRANO 

management capabilities must  be  extended  to 
data in remote  databases.  Separate  databases in 
the  resource-centric,  process-driven, and multi- 
application designs may still require  backup,  ar- 
chive,  checkpoint,  and  restart  operations to be 
executed in a  coordinated fashion to retain con- 
sistency. 

Conclusions 
Summaries of  all the  operational  system  services 
required by  each  reference design are  shown 
grouped by functional  category in Table 1. Table 
2 shows  just  the  distributed  services  ordered  by 
their frequency of occurrence in the  seven  refer- 
ence designs. Tables 1 and 2 illustrate  that  the 
reference designs share common requirements to 
a high degree. Fifty-six  percent of the required 
services  are used by more  than  one  reference  de- 
sign. 

In general,  every  system  service required by 
more  than  one  reference design should be de- 
signed to  be  a common service, which can  meet 
the  particular  needs of each  reference design. 
With such an approach,  the  items listed in Table 
2 can  be  viewed as  the building-block elements of 
a  distributed  services  architecture  that can  be 
used to  construct  any reference design. 

The  stated  objective of this  paper  was  to define a 
set of application reference models that could be 
used as a  starting point (i.e., template) for de- 
signing distributed applications. The develop- 
ment of the  reference designs has led us  to  the 
following propositions: 

1. The  reference designs contain  elements of cli- 
entlserver and cooperative  processing design 
philosophies, but  they suggest that  a  more  gen- 
eral  term is needed to encompass  the  solutions 
depicted. We suggest the  term  distributed  sys- 
tems. 

2. The  reference design classifications constitute 
a  reasonably  complete  description of the  kinds 
of real-world solutions  customers require- 
that  is,  solutions  that  are  distributed,  yet  pro- 
vide  cross-enterprise integration. Customers 
may use these  reference designs as  guides to 
designing distributed  system  solutions tailored 
to their own particular  needs. 

3. A common architecture of “building block” 
distributed  services is the  means by which we 

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993 



Table 2 Summary  of distributed  system  services  required  by  reference  deslgns  (ordered  by  occurrence) 

Distributed  System  Remote  Front-  Multi-  Process  Resource  Distri-  Staged 
Services  Presen-  Ending  appii-  Driven  Centric  buted  Data 

tatlon  cation  Logic 

Single log-on/authentication D D D D D D 
Access control D D D D D D 

Directory D D D D D D 

Message queues D D D D D 

Data conversion  services D D D D D 

Define/register  message formats D D D D D 
Conversation D D D D 

Remote procedure call D D D D 
Application  manager D D D D 

Print D D D 

Session  concentration D D D 

File  transfer D D D 
Programmed job scheduling D D D 
Workflow query/status D D D 
Automatic  backup D D D 
Composite unit of work D D 

Event notification (alertlexception) D D 
Program-to-program router D D 

Reliable  message  delivery D D 
Store/fonvard D D 
Data  repository 
Check-inkheck-out 
Transaction manager 
Checkpoint/restart/logging 
Emulators (3270/525O/ASCII) 
Display  presentation 
Selectable  fonts 
Code  pagehational language 
Translate PM to X (OS/2) 
Data  stream  interceptor 
User-to-program router 
Large  object 
Folders 
Electronic  document interchange 
Access  to special-purpose hardware 
Event notification (statusitriggers) 
File system 
Database 
Workflow manager 
Data  feed  broadcast 
Download snapshots 
Regional  consolidation 
Read/write  through 

D 
D 

D 
D 

D 
D 
D 
D 

D 
D 
D 
D 
D 

D 
D 

D 
D 
D 

D 
D 
D 
D 

D = Required  distributed  function 

IBM SYSTEMS JOURNAL, VOL 32. NO 4, 1993 SHEDLETSKY AND ROFRANO 645 



can  support  the  enterprise  distributed  solu- 
tions  desired by customers. 

4. The  completeness of this  common  architec- 
ture in a given environment  such as MVS, osi2,  
or AIX is measured by its  coverage of the ref- 
erence design requirements (in Table 1). 

5. Since  customers’  environments  are  increas- 
ingly multivendor, the technology selected  for 
each  distributed  service in Table 1 must  be 
widely available across  vendors’ platforms. 
The common architecture should be  open  and 
guided by industry  and de facto standards. 

Acknowledgments 

The  authors wish to acknowledge the  support of 
Ed Altman and Mike Saranga,  who commis- 
sioned this effort, and  express  appreciation for 
the  contributions of the IBM professionals  who 
were  part of the  work  group, including Brian 
Buckingham, Mike Campbell, Tom Caracio, 
Mike Cocklin, Don Daria, Cort DeVoe, Roger 
Harvey,  Rob High, John  Hildreth, Don Holtz  (co- 
chairman), George Hutfilz, Gene  Jurrens,  Dave 
Larkin,  Ray  Larner, Jay  Leiserson, R. Martin, 
Dave Pullin, Matt  Schein, David Turek, Jim 
Walsh, Shaula Yemini, and Bob Zeliff. 

*Trademark  or registered trademark of International Business 
Machines  Corporation. 

**Trademark  or registered trademark of Massachusetts Insti- 
tute of Technology, Interactive Images, Inc., Digital Equip- 
ment  Corp., Novel1 Corp.,  Inc., or Sun Microsystems,  Inc. 

Cited reference 

1. A. L. Scherr, “SAA Distributed  Processing,” IBM Sys- 
tems Journal 27, No. 3,  370-383 (1988). 

Accepted forpublication May 18, 1993. 

John J. Shedletsky IBM ClientlServer Computing, Route 
100, Somers, New York 10589. Dr. Shedletsky  is  the Director 
of Open ClientiServer  Technology and  is responsible  for 
IBM’s technical strategy for  client/server  computing. His pre- 
vious assignment was Director of Technical Strategy Devel- 
opment, with  responsibility  for  technical strategies in appli- 
cation and  system  software. Prior to this corporate 
assignment, he  was the  program  manager  for  Distributed Sys- 
tems  Architecture, reporting to the  Assistant  General Man- 
ager of Systems  Structure  and Management in Programming 
Systems. His responsibility was  to define the open IBM prod- 
uct  strategy, and  to  coordinate  its implementation across 
IBM’s lines of business. Dr. Shedletsky received  his Ph.D. 
from Stanford University in 1976 and joined IBM at the T. J. 
Watson  Research Center  that  same year. While in Research 
he co-invented the  EVE logic simulation  machine  and  devel- 

646 SHEDLETSKY AND ROFRANO 

oped a  programmable TIMER in an effort to design 1-cycle 
System/370* instruction  processors. He joined  the corporate 
Engineering,  Programming,  and  Technology staff in  1982. 
Since  then,  he  has held various design and  development  man- 
agement  positions at IBM  facilities in Austin, Texas, and 
Kingston, New York. He  was the design manager  for  the first 
release of AIX  and, most  recently,  the  third-line  development 
manager  responsible  for several IBM 3270 emulation prod- 
ucts. 

John J. Rofrano IBMPersonal Systems, East Fishkill, Route 
52, Hopewell Junction, New York 12533 (electronic mail: 
IBMMAIL(USIBMUA4) or rofrano@vnet.ibm.com). Mr. 
Rofrano is  currently a  senior  programmer and technical lead 
on the Personal  Systems Information Warehouse* develop- 
ment  team. He  is responsible  for the overall architecture,  de- 
sign, and development of the  PS Information  Warehouse, 
which is distributed across OS/2 and AIX  workstations and 
servers in a variety of LAN  and  WAN configurations. He 
joined IBM in  1984  in the  System  Products Division in White 
Plains, New  York,  as  an information center analyst. There  he 
specialized in the support of personal computer  products. In 
1986 he became manager of the  Information Center for the 
Information Systems  and  Products  Group  and a year later 
became manager of Customer  Services I/S at IBM Corporate 
Headquarters in Purchase,  New  York. In 1989 he joined 
IBM’s Application  Solutions  organization,  working in the  Co- 
operative Processing Cluster in the  Application Systems Di- 
vision as a  technical  planner. He  was responsible  for strategy 
and  plan  evaluation of future  products  that would  enable co- 
operative processing. During this  time, Mr. Rofrano served  as 
IBM’s representative  to  the  GUIDE  Cooperative Processing 
Project and  worked with members of GUIDE,  SHARE,  and 
numerous  other  customers on their  distributed  application de- 
signs. In 1991, he joined the  Architecture  and Development 
Technical Staff in Application  Solutions where he was  one of 
the chief architects of the Application Services  Architecture. 
He received  a B.S. in computer  science in 1984 from  Mercy 
College in New  York. 

Reprint Order  No. G321-5527. 

IBM SYSTEMS  JOURNAL,  VOL  32,  NO 4, 1993 


