
The business case
for software reuse

by J. S. Poulin
J. M. Caruso
D. R. Hancock

To remain competitive, software development
organizations must reduce cycle time and cost,
while at the same time adding function and
improving quality. One potential solution lies in
software reuse. Because software reuse is not
free, we must weigh the potential benefits against
the expenditures of time and resources required
to identify and integrate reusable software into
products. We first introduce software reuse
concepts and examine the cost-benefit trade-offs
of software reuse investments. We then provide a
set of metrics used by IBM to accurately reflect
the effort saved by reuse. We define reuse
metrics that distinguish the savings and benefits
from those already gained through accepted
software engineering techniques. When used
with the return-on-investment (ROI) model
described in this paper, these metrics can
effectively establish a sound business
justification for reuse and can help assess the
success of organizational reuse programs.

R apid advancements in hardware technolo-
gies have resulted in a highly competitive

hardware market and an increasing requirement
for software to support and exploit that hardware.
Consumers demand leading-edge software as
computer hardware rapidly becomes a commod-
ity business. Only those companies that bring the
latest technologies to the market quickest and at
the lowest price will survive in this environment.

Successful software organizations must some-
how keep pace with these hardware changes with-
out incurring excessive cost that would result in
noncompetitive pricing or reduced profit. In ad-
dition to responding to the changing hardware
environment, the successful software organiza-

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

tion must also respond to changing user expec-
tations. With the widespread use of computers
across numerous applications and user environ-
ments, the computer user has become much more
knowledgeable and demanding. Customers want
easy-to-use, intuitive computer systems. They
expect the systems to operate reliably and to per-
form without noticeable delays. Competitive soft-
ware organizations must invest in new designs
and solutions to meet these new functional de-
mands.

This fast-changing, highly competitive environ-
ment challenges the software organization to do
the following:

Increase productivity to support and exploit
new technologies and produce more function in
a shorter period of time
Reduce development costs so as to sell both
system and software at a competitive price
(This requires developers to produce more with
fewer resources, and to improve product main-
tainability and quality to reduce maintenance
expenses that add cost to the product.)
Improve software quality to meet the user's
functional requirements and expectations (This
requires additional design and development ef-
fort, with additional expense and time.)

"Copyright 1993 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.

be obtained from the Editor.
Permission to republish any other portion of this paper must

POULIN, CARUSO, AND HANCOCK 567

Unlike other industries, software development
lacks the major breakthroughs in process and
methods to enable it to keep pace with the mar-
ket. For example, the last major breakthrough in
software productivity came with creation and pro-
liferation of high-level programming languages. ’
Brooks states that most observers credit the pro-
gressive use of high-level languages with at least
a factor of five in productivity. This productivity
gain came from reducing the complexity of pro-
grams through abstract constructs such as data
structures, types, and operations. Today’s goals
for software reuse strongly parallel the goals and
achievements of high-level languages. * The con-
cepts of abstract data types and hierarchical types
used in object-oriented designs reduce program
complexity by allowing the designer to inherit be-
havior or refer to existing designs.

Without further breakthroughs or significant ad-
vancements in software productivity, most soft-
ware organizations find themselves in the midst of
a software crisis that inhibits their ability to pro-
duce manageable, high-quality, cost-effective
software. 3,4 Aging software companies cannot
quickly react to hardware advances because they
did not design their software to adapt to new re-
quirements or for ease of maintenan~e.~ In addi-
tion, as they make modifications to existing soft-
ware to fix problems or add function, the stability
and quality of their design and code begins to
decline. This results in reduced quality and reli-
ability, higher maintenance costs, and reduced
responsiveness. High software development
costs result in lower profit margins because of the
need for competitive pricing.

A software organization faced with these chal-
lenges must make fundamental changes to remain
a competitive and viable software producer in the
future. What can the software manager do to meet
these challenges? One hopeful solution lies in
software reuse.

Software reuse has the two major benefits of im-
proved productivity and q ~ a l i t y , ~ ’ ~ among others.
Integration of software reuse into each stage of
the software development life cycle can provide
long-term progress in solving productivity and
quality problems and, therefore, significantly re-
duce the cost of developing software. Estimates
for some applications show that they contain less
than 15 percent of application-specific code. The
remaining 85 percent comes from common, re-

~

I

568 POULIN, CARUSO, AND HANCOCK

dundant, and potentially reusable software com-
ponents.

Great gains can come from tapping only a small
part of that potential. Even if the reuse opportu-
nity for a particular application is only 15 to 20
percent, the savings in software development
time and expense can result in tremendous cost
savings and competitive advantages for the soft-
ware organization. For example, GTE Data Serv-
ices initiated an Asset Management Program in
1986 for the purpose of creating a corporate col-
lection of reusable assets. During its first year,
GTE had a 14 percent corporate reuse rate and an
overall estimated savings of $1.5 million.’ An-
other example comes from IBM Hursley, where
they experienced a reuse rate of 20 percent in the
Customer Information Control System (CICS*) for
Extended System Architecture, V4R1. Using the
business case calculations described in this pa-
per, IBM Hursley estimated a total return on in-
vestment of $2.74 million.

However, there is a cost to achieve these bene-
fits. Reusing software requires identifying, re-
trieving, and integrating the software into the
product. These investments in time and resources
must result in benefits from reduced development
cost and maintenance. Developing software for
reuse by others requires additional development,
validation, and support investments that must be
weighed against the benefits to outside organiza-
tions and any cost recovery plans. The additional
effort to produce reusable software often raises
short-term product costs. The financial return is
not always realized in the immediate product but
in future products. In a competitive cost- and
schedule-focused market, this makes it difficult
for the software manager to gain financial support
for long-term software reuse investments. How
an organization balances its investments in soft-
ware reuse with short-term product demands may
mean the difference between long-term business
success and failure.

This paper describes the elements of software re-
use and provides a set of metrics used by IBM for
analyzing the cost-benefit trade-offs of reuse in-
vestments. We define reuse metrics that distin-
guish the savings and benefits from those already
gained through accepted software engineering
techniques. We describe a model for return-on-
investment (ROI) analysis that we effectively use
with these metrics to establish sound business

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

justification for reuse and to assess the success of
organizational reuse programs. We provide these
metrics and analysis techniques as a tool to assist
software managers and developers in determining
the benefits and measuring the progress of soft-
ware reuse investments at both the project and
corporate levels.

’ Software reuse concepts

The term software reuse is often confused with
code reuse. In fact, software reusability has many
aspects, including code reuse. Although code re-
use is perhaps the simplest and best understood
aspect of software reuse, it does not represent the
greatest potential benefit. Organizations spend
much more time in a typical software develop-
ment cycle on design, analysis, and specification
than they do in the actual coding phase.

We use the term reusable sofrware engineering to
refer to the reuse of broad classes of software
information. lo This broad-spectrum approach to
reusing existing software components includes
reusing software work products such as require-
ments, architectures, designs, algorithms, data
types, code modules, documentation, test cases,
and customized tools.” Examples of applying
software reuse at different abstraction levels” in-
clude:

Reuse of designs in different software or hard-
ware environments. Different specifications
can be derived from the same design to meet
system-specific requirements, such as perfor-
mance constraints. The potential for reusing de-
signs is great because they do not contain de-
tailed implementation-level decisions.
Reuse of specifications in different application
environments. Environment-specific code, such
as target hardware support, can be derived from
the same specification.
Reuse of code and test cases creating and test-
ing different implementations of a specification.
Code and test case reuse represents the most
tangible type of reuse. Unfortunately, it is often
difficult to find code that we can reuse without
change. Implementation details often tie soft-
ware to a specific programming language, hard-
ware and system environment, particular appli-
cation design, or data structure. The larger the
code element, the larger the payback for reuse.
However, large code elements are more likely
to require modification. Smaller code segments

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

are easier to reuse, but can be more difficult to
locate. l3

We need not limit reusable software information
to design, code, and specification components.
S. C. Bailin, R. H. Gattis, and W. Trusczkowski
explore the reuse of design knowledge.14 The
knowledge obtained from previous efforts can ap-
ply even when we do not specifically reuse a soft-
ware component. Historical data can be analyzed
to project risks, resource expenditures, design
trade-offs, and alternate approaches. The knowl-
edge represented by these data can be applied to
new projects as reusable experience.

The reuse metrics and investment model defined
in this paper are tools for measuring and analyzing
code reuse. Code reuse is the simplest form of
reuse to measure, because most software organi-
zations deal with some type of code metrics. Fur-
thermore, code measurements not only serve as
an excellent indicator of programmer productiv-
ity, they also make a good secondary indicator of
effort expended in other phases of the develop-
ment cycle. Until we develop a comprehensive
system of measuring and evaluating reuse in each
of the individual software life-cycle phases, code
reuse metrics will remain our best method of as-
sessing the overall benefits of reuse.

Software development with reuse. There are two
primary approaches for building software from
reusable components: the composition or build-
ing-block approach and the generative approach.

Composition approach. In the composition or
building-block approach, programmers create
software from existing atomic components that
they usually retrieve from a reuse library.15 The
building-block approach requires components
with encapsulated function, well-defined and
specified interfaces, and known quality. Knowl-
edge of the function and interfaces is sufficient to
use the component. Constructing a program from
building blocks requires connecting one reusable
component to another. Programmers achieve this
through message passing techniques or by writing
glue code to link the parts together. This ap-
proach to reuse is patterned after processes used
in other industries such as hardware design and
gunsmithing. For example, computer hardware
manufacturers design circuits by assembling re-
usable components and chips. ’’ The gunsmithing
industry has undergone an evolution from cus-

POULIN. CARUSO, AND HANCOCK 569

tomized, hand-built processes to industrialized
processes using interchangeable parts. The
building-block approach to software reusability
introduces these processes into the software in-
dustry.

Generative approach. In the generative ap-
proach, automated tools or generator programs
operate on reusable entities. These entities may
include code fragments, patterns, design infor-
mation, transformation rules, and specialized lan-
guages. The Draco approach16 is an example of a
generative approach based on an analysis of the
application domain and a system specification
written in a domain language. Draco is an inter-
active tool that assists the software designer in
the production of executable code from applica-
tion domain objects. l7

Reuse consumers and reuse producers. B. H.
Barnes and T. B. Bollinger define a reuse pro-
ducer as one who works to increase the reusabil-
ity of work products and a reuse consumer as one
who seeks to reduce costs through reuse of work
products. Reusable software engineering is con-
cerned with both the consuming and producing of
reusable software information throughout the
software development life cycle. Although soft-
ware reuse is most commonly associated with
code reuse, reusable software information may
also take other forms, as described earlier.

Consuming reusable information. The identifica-
tion of potential sources of software information
reuse should be performed early in the software
development life cycle, as a part of the initial re-
quirements and system domain analysis. We can
reuse software parts to develop rapid prototypes
to help us gather and validate user requirements.
The earlier we identify a reuse candidate, the
greater the potential benefit, because we can re-
use designs, specifications, and documentation in
addition to code modules. l9

There are four basic steps involved in consuming
reusable information:

1. Locating and accessing the information-The
ease with which a programmer locates reus-
able parts affects the amount of time spent
searching for candidate reuse information.
Added time means added cost. Approaches for

570 POULIN, CARUSO, AND HANCOCK

2.

locating reusable information vary widely, de-
pending on the availability and existence of
tools, well-defined classification schemes, and
component reuse libraries.

The most labor-intensive search method and
the informal method most commonly used by
software developers consists of a manual
search through existing information libraries.
Even if the reusable software is well docu-
mented and readily identifies the function and
environment for the reusable part, this method
may have limited success and can be very te-
dious.

At the other extreme, the most effective way
to locate reusable information is to use sophis-
ticated search and retrieval tools based on
well-defined classification schemes. R. Prieto-
Diaz and P. Freeman developed a “faceted”
classification and retrieval scheme that pro-
vides search mechanisms whereby the user en-
ters descriptive terms and initiates queries to
locate candidate reuse information.” The user
applies synonyms to locate information that is
similar to the desired part, if an exact match is
not available. The search for reusable infor-
mation can become much more efficient and
effective as search and retrieval tools of this
nature become commonly available, espe-
cially for very large libraly systems encom-
passing a wide variety of software.

Assessing the ability to reuse the informa-
tion-The ability to reuse a candidate software
component depends on how closely the reuse
candidate meets the reuser’s requirements. It
also depends on the availability and complete-
ness of information pertaining to the candidate
reusable component. W. Tracz uses an anal-
ogy that compares used cars to used soft-
warez1 and describes several factors that could
influence the decision as to whether to reuse a
candidate software component:

Does the candidate meet the needs? Buyers
should have a strategy for evaluating candi-
dates (features, performance, quality, avail-
ability, price).
Does the candidate meet the base require-
ments without adding excess function or
baggage? Extra functions may not pull their
weight.

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

candidate would indicate -the likeiihood of
future potential bugs.
What is the candidate’s maintenance
record? The quality of the candidate can be
evaluated by looking at the type, frequency,
and severity of the problems already found.
What is the reputation of the candidate pro-
ducer? If no quality or maintenance history
is available, the reputation of the provider
can be used to estimate the quality of the
candidate.
Does the candidate appear to be well-struc-
tured and documented? The exterior work-
manship can indicate the overall maintain-
ability and reliability of the candidate.
Does the candidate comply with documen-
tation, interface design, and testing stan-
dards? If the candidate meets easily observ-
able design specifications, it probably runs
well, too.
Who maintains the candidate after it is re-
used? Will assistance be provided for mod-
ifying and repairing the candidate if neces-
sary?

3. Adapting the information-We gain the most
benefit from reusing software information “as-
is,” without modification. As soon as we mod-
ify the reused information we incur additional
costs beyond the modification, including test-
ing the changes and maintaining the resulting
software. As explained later, this paper pres-
ents metrics for measuring the costs and ben-
efits of software reuse without modification.

However, it may not always be cost-effective
to reuse software information even if we cus-
tomize the component. If a reusable compo-
nent requires extensive adaptation or lacks
key documents, the cost to reuse that compo-
nent may become higher than if we develop an
entirely new software component.

4. Integrating the information into the system-
Once we obtain and possibly modify all the
reusable parts, we must integrate and test
them in our system. If the system is made up
entirely of reusable parts, the construction or
building-block approach can be used to assem-
ble the parts. More likely, the system consists
of a combination of new and reusable parts. In
that case, a hybrid construction approach is

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

parts, possibly with the use of custom-devel-
oped “glue code.”

When the percentage of unmodified, reused
code is very high, the system is similar to a
system undergoing maintenance. In a mainte-
nance environment, we build upon the existing
system base of design, code, and documenta-
tion. The opportunities for reuse are in the new
and modified code. In these systems, the reuse
is referred to as adaptive reuse. l8 With adap-
tive reuse, we confine the new or modified
code to isolated locations to minimize the im-
pact to the overall system.

Producing reusable information. A software en-
terprise typically invests in producing reusable
software as a means of improving its overall pro-
ductivity and quality and reducing long-term
costs. Reusable software information may also be
developed for the purpose of obtaining revenue,
licensing fees, or royalties from marketing it to
other organizations. Whatever the motivation,
we must consider the implications of producing
reusable information at each stage of the software
development life cycle.

We begin by considering software requirements
and domain analysis. We must determine the soft-
ware elements that will make good candidates for
future reuse during the system analysis stage.
This process is referred to as domain analysis. An
application domain analysis has some unique
characteristics that are not normally addressed in
a traditional analysis phase. 22 The goal of domain
analysis is to increase the reusability of software
components developed during the software engi-
neering process. The key to domain analysis is
thoroughly researching the domain to define the
functions that the software must provide. Using
these functions, we can develop a set of require-
ments and specific features. We can then abstract
the related functions and features into reusable
software components with well-defined interfaces.

Domain analysis follows good software engineer-
ing practices4 and parallels the ideas of object-
oriented design and analy~is.’~ It is also possible
to apply these principles to non-object-oriented
software languages.

Domain analysis extends systems analysis and
emphasizes:

POULIN, CARUSO, AND HANCOCK 571

Definition of relationships among domain ele-

Identification of those things that are common

Identification of unique features for each appli-

ments

across applications within the domain

cation

A domain analysis for reuse potential in an ap-
plication must involve a perspective that looks
beyond the development of a single project or
system.N The domain analyst must examine the
needs and requirements of a collection of systems
or similar applications. l6 With this expanded form
of analysis, reuse opportunities can be identified
for a class of applications, rather than for a spe-
cific project.

T. Biggerstaff and C. Richter13 discuss the do-
main of numerical computation routines as a clas-
sic example of successful software reuse. They
state that the numerical computation domain is
unique in that it (1) contains only a small number
of data types, (2) is well understood, and (3) in-
volves a static technology with slow, upwardly-
compatible changes. The fact that the domain is
largely static means that the reuse library can be
quite stable, allowing repeated reuse over longer
periods of time for different applications. A reuse
domain where the underlying technology changes
rapidly would not suggest a great opportunity for
long-term reuse.

In addition to domain analysis, there are several
possible design approaches when designing for
reusability.

Object-based and object-oriented design are use-
ful reuse design approaches. Designing with ob-
jects includes the construction of software sys-
tems as structured collections of abstract data-
type implementations. *' Objects encapsulate data
and only operate on those data through well-de-
fined operations or methods. Inheritance, gener-
alization, and overriding behavior are key aspects
of object-oriented modeling and design that en-
able objects to be easily reused and extended
without modification to the original object. Sev-
eral object-oriented modeling schemes have been
defined and are in use today to describe and doc-
ument the relationships among objects in a sys-
tem. Modeling tools that use these schemes are

572 POULIN, CARUSO, AND HANCOCK

Generic orparameterized design can be used to
effect design reuse. Generic software is designed
to provide a generalized set of functions for use in
different types of applications through the selec-
tion of parameters. However, the value of gen-
eralized designs is debatable. Building generality
into reusable parts tends to be expensive and la-
bor-intensive. The designer must predict and de-
sign in functions for use in future applications.
Reusing a generalized design may also have per-
formance, size, and complexity implications to
the resulting system.

Message-oriented design is similar to object-
oriented design in that software parts are inter-
connected through well-defined interfaces (mes-
sages).

The reuse of design information requires model-
ing tools and standard design templates and no-
tations. Formalized specification methods can en-
hance the reusability of the design and provide
precise functional definitions for use in the vali-
dation steps. Well-defined architectures and in-
terfaces are critical to the reusability of a design.

During the implementation phase, the software
developer can build reusable parts by developing
structured code with well-defined interfaces and
accurate documentation. The programmer should
be careful to avoid environment-specific imple-
mentations. For example, code should be relo-
catable and conform to applicable standards. The
reusability of the code is directly related to the
reusability of the design and quality of other in-
formation for that code. As such, the reusable
code parts and their documentation should be en-
tered into the reuse library with links to the as-
sociated design and specification.

We can map the design, specification, and imple-
mentation methods for building reusable parts di-
rectly to the test phases. Reusable test designs for
test cases and test tools, test specifications (often
called test plans), and test code, including test
cases, test scripts, and test documentation, can
be produced for reuse in the same manner as re-
usable information for system products.

Software organizations investing in the produc-
tion of reusable software information must also

IEM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

acquire or invest in reuse library management
tools. These tools assist in collecting and classi-
fying the reusable software information for easy
location and retrieval. The Reusable Software Li-
brary (RSL) prototype is an exam le of a design
and programming tool for Ada.* ! This tool in-
eludes an underlying database, a library manage-
ment system, a user query system, a software
component retrieval and evaluation system, and
a software computer-aided design system. The
RSL classification scheme is based upon the as-
signment of hierarchical category codes com-
bined with descriptive keywords.

Developing the business case for reuse

Whether an organization considers making in-
vestments in reusing software or producing reus-
able software, the decision to initiate a reuse pro-
gram requires a convincing business case, based
on realistic and quantifiable results. To develop a
business case, the organization must gather,
track, and statistically analyze software develop-
ment information using metrics that meaningfully
reflect the software development process. The or-
ganization combines these metrics with financial
data, historical data, and the related costs and
benefits of reuse to produce an expected return on
investment upon which managers may base their
business decisions.

Software metrics serve an important role in effec-
tive software management. However, the lack of
an industry standard for reuse metrics results in
one of the major inhibitors to a coordinated reuse
program. 27 Without a means to quantify the prac-
tice, development organizations cannot judge
their return on investment and therefore refrain
from engaging in an active reuse program. How-
ever, if we use metrics in a return on investment
model to verify and demonstrate the substantial
benefits of reuse, we find organizations more re-
ceptive to a formal reuse program. With pub-
lished productivity gains commonly claimed be-
tween 20 to 40 percentz8 and occasionally up to an
order of magnitude, 29 organizations should want
to take advantage of the increased output and cor-
responding lower costs that reuse offers.

Management traditionally uses metrics to assist in
quantifying the software process. With an emerg-
ing technology, however, metrics must extend
beyond their traditional role. Reuse metrics must
also encourage the practice of reuse. We find

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

most organizations do not practice formal reuse
or resist investing in a formal reuse program. Re-
use metrics can assist these organizations by pro-

Reuse metrics used in an
ROI model can demonstrate

substantial benefits.

viding favorable process improvement statistics
and by placing emphasis on activity conducive to
reuse. Our experiences show that we can suc-
cessfully motivate managers by using a return-
on-investment (ROI) model that shows value to
their organizations.

Finally, reuse metrics must establish an effective
standard that development organizations can im-
plement. The organizations must be able to obtain
the data easily and they must have the ability to
implement and interpret the information in a
meaningful, uniform way. In summary, reuse
metrics must quantify reuse, encourage reuse,
and standardize reuse counting methods.

To succeed in developing these goals and to con-
tribute to a business case for reuse, we must look
at the way the organization practices reuse. Fac-
tors influencing how organizations practice reuse
include (1) how well the organization adheres to
software development processes and (2) the man-
agement structure of the development group.
These factors determine what the reuse metrics
should record and the value of the activity.

How organizations practice reuse

The most fundamental difference in how organi-
zations practice reuse lies in whether they are
simply recovering old code for later use (i.e., un-
planned reuse) and whether they engage in a for-
mal, planned reuse program. These two classes
are distinguished by when the organization makes
the decision for reuse.3o Planned reuse starts
early in the software life cycle and involves a
thorough requirements study and domain analy-

POULIN, CARUSO, AND HANCOCK 573

sis of the problem area. By doing this additional
planning and domain analysis, organizations
identify the factors that normally change in soft-

Greater cost and
productivity benefits

result from planned reuse.

ware. Examples are hardware or system soft-
ware; user, mission, or installation; and function
or performance.

Early design and analysis results in components
that can accommodate these changes without
modification. However, this additional work re-
quires time and effort. This investment in planned
reuse results in an increased level of generality
and quality in the initial development of the com-
ponent. As subsequent projects reuse the gener-
alized software, organizations can recover this
investment quickly. Organizations also recover
the investment through reduced support costs be-
cause they need to maintain only one reusable
product rather than several nonreusable ones.

Unfortunately, traditional software development
usually fails to plan for reuse. Although organi-
zations may informally consider using existing
software in a new application, they develop most
new software from scratch. Independently of how
often organizations informally use previously de-
veloped software in new applications, traditional
software development methods do not include the
systematic reuse of existing code. To determine
the financial return of a reuse program, we must
distinguish between these two classes of reuse.

Code recovery. We call copying and modifying
existing code to meet new requirements code re-
covery. Because code recovery proliferates new
software and results in additional products to
maintain, it has nominal benefits as compared to
planned reuse. Nonetheless, many organizations
practice several forms of code recovery to meet
their development objectives and schedules. The

574 POULIN, CARUSO, AND HANCOCK

following code recovery processes show how or-
ganizations accommodate the three change fac-
tors of hardware or system software; user, mis-
sion, or installation; and function or performance.

Rehosting occurs when organizations modify ex-
isting software to fit new hardware or system soft-
ware. Rehosting focuses on revising internal in-
terfaces to fit the new environment, thereby
effecting minimal change in function.

Retargeting occurs when organizations modify
existing software to fit a specific use or installa-
tion. Retargeting focuses on modifying external
interfaces and physical configurations of equip-
ment. The code function does not change, al-
though implementation details in the code do
change.

Salvaging occurs when organizations extract po-
tentially useful software from an existing system
and modify it to fit a new use. Salvaging is the
most basic form of recovery; it relies on a bot-
tom-up strategy of integrating elements from
many sources to build a new product.

In each of the above situations, organizations
copy and modify the original software to create
new software. This adds to the maintenance and
development costs for the product. However, or-
ganizations can still benefit from recovering old
code, especially if the cost of custom develop-
ment greatly exceeds the cost of modification.
Unfortunately, every organization that recovers
the code must incur the cost of modification and
must maintain its copy of the software.

Planned reuse. If organizations plan for reuse,
they can make software components that they can
readily adapt to the three change factors listed
above. For example, if they exclude system de-
pendencies and use parameters to control envi-
ronment variables, the component may find use in
another product. Planned reuse increases the
value of software by expanding its applicability.
This requires domain analysis, careful design,
and building into the software tailorable attributes
based on a range of potential uses. The following
show ways organizations plan for reuse and ac-
commodate the three major change factors.

Porting occurs when an organization moves a
software item from one hardware or software
system to another. Ease of porting results from

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

design considerations that isolate machine-de-
pendent functions and use standard virtual inter-
faces.

Tailoring allows a single software system to adapt
to the needs of specific installations, users, or
missions. Tailoring occurs when an organization
plans product modifications through a controlled
customization interface that does not involve di-
rect source code changes. A system designed for
tailoring typically uses a generic or parameterized
design approach, generic modules, or changes
controlled through inheritance.

Assembling occurs when an organization con-
structs a software system with prebuilt parts.
Many refer to this form of reuse as the composi-
tion or building-block approach. Assembly is the
most common form of formal reuse. Using this
strategy, organizations design, code, test, and
document software components for integration.

Table 1 provides a summary of how system
changes relate to the classes of reuse.

Measuring code recovery and planned reuse. Be-
cause planned reuse results in fewer products to
maintain and avoids modification costs, planned
reuse provides greater cost and productivity ben-
efits than code recovery. The benefits accrue rap-
idly over several development cycles as more or-
ganizations reuse the software. Using these
criteria, we believe metrics should focus on
planned reuse. This does not mean that code re-
covery does not serve a useful and important role
in software development. However, the benefits
only come during the development phase and
quantifying these benefits can become very diffi-
cult and subjective. For example, what value do
we place on modifying a small portion of compo-
nents versus a large portion? How do we collect
data on the portion of components modified?
How do we estimate the resulting development
savin s? Although others have studied these is-
sues,’ we do not have these data nor can we
justify investing in tools and process overhead to
collect them. Because we believe code recovery
has limited benefits when compared with planned
reuse and because our goals include adopting for-
mal reuse in our software process, we do not fac-
tor the three techniques for code recovery into
our reuse metrics. However, some organizations,
such as the IBM Federal Systems Company, track
the amount of recovered code in their products to

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

Table 1 Relation between system changes and classes
of reuse

Required Change Code With
Recovery Planned

Only Reuse

Hardware or system software Rehosting Porting
User, mission, or installation Retargeting Tailoring
Function or performance Salvaging Assembling

emphasize the amount of “total leverage” they
gain by copying and modifying old software.

Of the three forms of planned reuse, we find many
organizations assembling reusable components
into new applications. Language features such as
generics, parameterization, message passing, and
inheritance control all allowable modifications to
component function. In fact, this is the current
state of reuse technology and reuse metrics must
capture code assembly. The next most advanced
form of reuse comes with tailoring, which we find
most often in organizations with established reuse
programs. These organizations conduct domain
analysis and carefully design programs for reuse.
Reuse metrics must also capture this activity. An
example of tailoring comes from the tremen-
dously successful reuse experiences on the IBM
Advanced Automation System (AAS) for the Fed-
eral Aviation Administration. 32

The third form of planned reuse comes from port-
ing. However, porting causes difficulty when de-
termining the investment value of reuse because
porting is already factored into the business plan-
ning of products. Planners normally estimate re-
sources to develop a product on one hardware
platform or operating system and then allocate a
relatively nominal amount of resources for
changes required to adapt to other environments.

Since porting normally involves adapting a minor
portion of a large product, to include ported code
in reuse metrics would cause misleading results in
the form of unrealistically high measures of reuse
activity. For example, an organization making
small changes to a large base might report levels
of reuse close to 100 percent, whereas an orga-
nization performing an equal amount of labor on
an original project might do very well to demon-
strate reuse levels of 5 to 10 percent. Further-
more, porting an application program to a new
operating system by a simple recompilation of the

POULIN, CARUSO. AND HANCOCK 575

Table 2 Reuse techniques and reuse metrics x i Measured Planned Measured
Recovery Reuse

Rehosting Porting Separately
Retargeting
Salvaging Assembling

source code has a different value to the organi-
zation than does avoiding having to write a similar
amount of code for a custom application. To pre-
vent distortions caused by porting large programs
and determining their investment value, we do
not include porting in these reuse metrics. This
allows us to isolate and quantify the benefits of
reuse beyond those of established business and
software engineering practice. Some organiza-
tions that port large amounts of software sepa-
rately track and report the amount of porting on
their products. Table 2 shows how we measure
the various classes of code recovery and planned
reuse.

When to measure reuse. We discussed how to dis-
tinguish between code recovery, which results in
new software to maintain, and planned reuse, in
which organizations assemble or tailor products
from building blocks of reusable software. Next,
we define reuse based on who uses the compo-
nent.

Experience shows us that we can expect good
program design and management within develop-
ment organizations. However, coordination and
cooperation between organizations, especially as
their size increases, becomes less likely. Com-
munication, necessary for the simple exchange of
information and critical to sharing software, be-
comes more difficult as the number of people in-
volved grows and natural organizational bound-
aries emerge. We find that to improve the practice
of reuse we must develop metrics that encourage
reuse across these organizational boundaries.

We define a reused component as one used by an
organization that did not develop or maintain the
component. We expect an organization to use the
code it develops. Because we seek to quantify the
financial benefit accrued by effort saved, we place
a value on avoiding program development by us-
ing another organization’s work. Because soft-
ware development organizations can vary, we

576 POULIN, CARUSO, AND HANCOCK

define a typical organization as either a program-
ming team, department, or functional group of
about eight people. Also, although organizational
size can indicate how well communication within
and between organizations takes place, we find
functional boundaries equally important. For ex-
ample, a small programming team may qualify as
an organization if it works independently, so our
development organizations typically range from 4
to 20 persons.

For consistency, we consider the type and size of
the reporting organization as part of the metrics.
This provides us with an informal check on the
flexibility allowed in selecting the most appropri-
ate boundary for the organization. Selection of an
inappropriately small boundary would distort the
value of the metrics upward and an inappropri-
ately large boundary would result in low reuse
values. Changing the organizational boundary be-
tween reports would eliminate any possibility for
comparisons and evaluation of the reuse pro-
gram.

Reusing versus using components. Most organiza-
tions report their reuse effort as the reuse percent
of a product. The reuse percent comes from the
portion of the product (normally expressed in
lines of code, or LOC) that the organization
avoided having to write by reusing software. The
effort attributed to reuse comes from completely
unmodified reusable components. We can easily
identify reusable components in new products be-
cause we use straightforward criteria. If use of a
component saves having to develop a similar
component, we record it as reuse. However, al-
though an organization may “use” a component
numerous times, it can reuse a component but
once.

Accurate estimates of the benefits of reuse and
return on investment analysis of projects depend
on this distinction. Because we expect organiza-
tions to use components previously developed for
a product or previously developed by themselves,
we do not credit the organizations with reuse sav-
ings that result. In other words, source instruc-
tions from a reused part count once per organi-
zation, independently of how many times one
calls or expands the part. There are two reasons
for this: (1) Metrics must accurately reflect effort
saved. Programmers use subroutines and macros
because many functions are repetitive. (2) Met-
rics should not depend on the implementation.

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

The choice of using a subroutine versus a macro
should result from design considerations well out-
side the realm of reuse. A programmer should not
decide to use macros because multiple in-line ex-
pansions increase the amount of reuse reported
on a project. In other words, the decision to reuse
should make good business sense.

In one actual example, a project reported 11 thou-
sand lines of code of reuse on a relatively small
application. Closer inspection revealed 5120 lines
of the 11 thousand lines of code came from one
10-line reusable macro and that all 5120 lines
came from the same module. A code review re-
vealed that the original code:

Do i := 1 t o 512
MACRO(1) ;

consisted of two instructions (the DO . . . WHILE
and the call to MACRO) and the 10 reused instruc-
tions from MACRO. However, to optimize the
loop, it was unrolled to yield:

MACRO(1) ;
MACRO(2) ;

MACRO (5 11) ;
MACRO(512) ;

....

The reuse report therefore contained 512 source
instructions and 5120 reused instructions, which
does not accurately reflect the productivity or re-
use on the project.

Units of measurement. We express these metrics
using traditional lines of code to quantify the ef-
fort in software development. Although lines of
code have well-known deficiencies as a unit of
measure, 33,34 their universal use makes them sim-
ple to understand, easy to collect and compare,
and difficult to distort. Nonetheless, we take sev-
eral actions to increase our confidence in lines of
code as a unit of measurement. These actions in-
clude use of a standard code counting tool. An-
other action eliminates the units of LOC from the
metrics by using metrics derived from ratios and
percentages of effort. For example, reporting lev-
els of reuse as a percent of the delivered product
or reporting programming leverage using a pro-
ductivity ratio reduces concerns about the under-
lying unit of measure. This approach also allows
organizations that use other units of measure-
ment, such as function points, to express their

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

reuse activity and results without any changes to
the metrics.

A historical perspective on reuse business
cases

Several groups have conducted research in the
area of reuse metrics and business-case models.
In 1988 Gaffney and D ~ r e k ~ ~ published a com-
prehensive model addressing business-case anal-
ysis of reuse. They premise their model on the
need to amortize the cost of the reuse program,
including the additional cost to build reusable
components, across all projects using the com-
ponent. When doing cost-benefit analysis for soft-
ware reuse, one needs to consider the long-term
benefits and associated costs, which apply to ev-
ery project using the component. Taking a short-
term approach to these costs, the additional cost
of developing reusable components greatly over-
emphasizes their cost relative to their benefit. The
authors argue that a better economic estimate in-
cludes the number of times the component is re-
used.

Gaffney and Durek define the cost of software
development with reuse relative to the cost of
software development with all new code. 36 They
developed an equation for relative cost, C:

C=R,Xl+RX b + - (3
where:

R, is the portion of nonreused (newly written)

R is the portion of reused code.
b is the relative cost of integrating reused code.
E is the relative cost of creating reusable code.
n is the number of uses over which the reused

code.

code is to be amortized.

If the R value is zero (e.g., there is no reuse), the
value of C is equal to 1. The equation also shows
that for a reusable component to pay off, the com-
ponent must be reused at least two times.

The second metric defined in Reference 35 is the
productivity index, PI, which is the productivity
relative to that of creating the software product
without reuse. The productivity index is defined
as the inverse of C:

POULIN, CARUSO, AND HANCOCK 577

1
Productivity index = - C

A PI of 2.5 indicates the measured project was 150
percent more productive in terms of cost than the
project would have been without reuse.

Observing that the coefficient b varies depending
on the type of reuse (recovering, porting), Ref-
erence 32 extends the reuse value added metric
model by defining additional values of b for the
different types of reuse, R. C becomes R , X 1 X
Ri x bi for each (Ri ,b i) .

For example:

Ro is the portion of reused code from other

bo is the relative cost of integrating reused code

R , is the portion of code requiring re-engineering

b , is the relative cost of integrating re-engi-

sources.

from other sources.

(copied and modified code).

neered code.

An additional cost-benefit model of reuse is pre-
sented as the NATO model in References 37 and
38. The NATO model consists of listing the major
benefits and costs of reuse and then applying
time-value of money formulas to adjust for future
values. The benefits are:

Saving due to avoided cost, S,-the sum of
costs avoided each time the component is re-
used
Service life, L-the useful lifetime, in years, of
the component
Demand-the number of times the component
is likely to be reused during its service life, L

The costs of reuse are:

Cost to reuse, C,-the cost incurred each time
the component is reused, including identifica-
tion, retrieval, familiarization, modification,
and installation (this is the relative cost of reuse)
Accession time, T,-the amount of time likely
to elapse between the decision to acquire the
component and its availability in the library
Accession cost, C,-the cost to add the com-
ponent to the library, including obtaining raw
material developing the complete component,
and installing it in the library

578 POULIN, CARUSO, AND HANCOCK

Maintenance cost, C,-the cost to maintain the
component in the library, including mainte-
nance and change distribution

The net saving to the reuser (NSR) is the difference
between the savings due to avoided cost and the
cost to reuse:

NSR = s, - c,

The net saving to the supported program (NSP) is
the total savings from all instances of reuse of a
component less the accession and maintenance
costs. The total savings from all instances of re-
use is the NSR multiplied by the number of reuses,
N:

NSP = (NSR X N) - (c, + c,)
Although the NATO model continues with adjust-
ments for the time value of money, there is little
guidance on collecting the data required for the
model. For example, there are no details on ac-
counting for the savings due to avoided cost, how
to estimate the number of times a component is
likely to be reused, nor estimating the service life
of a product that does not wear out. Finally,
where data are not available or the analyst feels
mitigating factors affecting the risk of the reusable
product exist, statistical distributions and esti-
mates of risk factors may be used to adjust the
inputs.

In 1992 Gaffney and Cruickshank3’ published a
generalized model which differentiates between
costs of domain analysis and application engi-
neering. The basic reuse cost equation is defined
as

where:

C, is the total cost of the application system.
Cus is the unit cost of the application system.
CDE is the unit cost of domain engineering.
ST is the expected value of the size of the reuse

library measured in source statements.
N is the number of application systems over

which to amortize the domain engineering
costs.

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

CVN is the unit cost of new code developed for the
application system.

S, is the number of new source statements writ-
ten for the application system.

C,, is the unit cost of reusing code from the reuse
library for the application system.

S, is the number of reused source statements
incorporated into the application system.

S s is the total number of application source
statements.

The researchers also define a library efficiency
metric E = SR/ST, which measures the degree to
which maximum use has been made of the reuse
library. If full use has been made of the library,
then E = 1 and the basic reuse cost equation
reduces to:

where R is the proportion of code that is reused
code. The authors go on to apply the model to
example applications and demonstrate significant
increases in overall productivity as a result of in-
creases in new code productivity and the percent
of reuse.

Reuse metrics

Ultimately, the goals of the organization define
what we measure and report as reuse.4o Because
the IBM metrics are inputs to an ROI model, we
need metrics that reflect effort saved, both by
quantifying the level of reuse in an organization
and by determining the investment value of reuse.
We also want to encourage reuse activity beyond
the good software engineering practices already
established in the company. Specifically, the IBM
reuse metrics are intended to reflect the effort
saved and encourage reuse.

Of the reuse metrics developed by others, few
provide definitions and supporting information on
how to gather the data required to implement
their metrics. Reference 29 differentiates between
reuse within an organization and reuse from
sources external to the organization. No other
paper addresses ways to measure the classes of
reuse or provides a concentrated definition of RSI.
We also have other considerations, such as the
availability or ease of collecting the required data.
Without this necessary detail we cannot respon-

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

sibly determine the accuracy of existing reuse
metrics and their related ROI models.

Because we wanted to address these consider-
ations, we started by collecting the data we had
and by defining the data we needed. We then built
an ROI model using those data. By carefully de-

Metrics are used
to support practices,

processes, and goals.

fining what we count as reuse and the value we
attach to it, we have a high degree of confidence
in how the metrics motivate reuse and the accu-
racy they give to our business model.

The following sections define the reuse metrics
used in IBM. 41 We developed these metrics and an
ROI model to support our business practices, soft-
ware development process, and reuse goals.42
However, these metrics also support companies
with similar business practices and reuse goals.

Observable data. We calculate the reuse metrics
presented in the next section from the following
observable data elements. Although most of these
data elements have been collected by IBM for
many years, they are similar to the data elements
collected by other companies.43 We can usually
measure directly observable data from the prod-
uct. For example, we routinely count the different
classes of source instructions. Observable data
may also come from historical information. For a
variety of reasons related to managing the soft-
ware development process, IBM has also col-
lected information on such things as costs for soft-
ware development and statistical error rates.
Detailed descriptions of each of the following re-
quired observable data elements are given after
the summary in Table 3:

Shipped source instructions (ss1)-total lines of

New and changed source instructions ((31) -
code in the product source files

POULIN, CARUSO, AND HANCOCK 579

Table 3 Observable data

Data Element Symbol Unit of Source
Measure

Shipped source SSI LOC
instructions

Changed source CSI LOC
instructions

Reused source RSI LOC
instructions

Source SIRBO LOC
instructions
reused by
others

Software develop- Cost per $/LOC
ment cost LOC

Software develop- Error rate Errors/
ment error LOC
rate

Software error Cost per $/Error
repair cost error

Direct
measurement

Direct
measurement

Direct
measurement

Direct
measurement

Historical data

Historical data

Historical data

total lines of code new or changed in a ne!
release of a product

N

Reused souice instructions (RS1)"tOtal lines
not written but included in the source files. RSI
includes only completely unmodified reused
software components.
Source instructions reused by others (SIRBO)-
total lines of code that other products reuse
from a product
Software development cost-a historical aver-
age required for estimating reuse cost avoid-
ance
Software development error rate-a historical
average required for estimating maintenance
cost avoidance
Software error repair cost-a historical average
required for estimating maintenance cost avoid-
ance

Shipped source instructions. Shipped source in-
structions (SSI) come from the number of non-
comment instructions in the source files of the
first release of a product. SSI does not include
reused source instructions (RSI). A call to a re-
usable part counts as one SSI. When reporting
reuse measures for development organizations,
SSI includes all the source instructions the orga-
nization maintains.

580 POULIN, CARUSO, AND HANCOCK

Changed source instructions. Changed source in-
structions (CSI) come from the number of non-
comment source instructions that an organization
adds, modifies, or deletes in a subsequent release
of a product. CSI does not include reused source
instructions (RSI) or unchanged base instructions
from prior releases of the product. CSI includes
source instructions from partially modified com-
ponents incorporated into the release. A call to a
reusable part counts as one CSI.

Reused source instructions. Reused source in-
structions (RSI) come from source instructions
shipped, but not developed or maintained by the
reporting organization. RSI serves as our primary
observable measure of reuse consumption. RSI
comes from completely unmodified components.
Base instructions from prior releases of a product
do not count as RSI; we do not consider the sec-
ond release of a product as having reused all code
from the first release.

In a hierarchical reporting structure, we obtain
the RSI for higher levels of management by sum-
ming the RSI values reported by their suborgani-
zations. We also use this technique to calculate
RSI when several organizations work on a single
product. Because we previously defined organi-
zations in such a way that we do not normally
expect them to share software, it is possible for a
component to count more than once in the RSI of
the higher level organization; this indicates that
more than one suborganization reused the same
component. Because we also roll up the values
for SSI and CSI in this manner, the higher level
manager receives a weighted average of the levels
of reuse in each of the suborganizations.

Source instructions reused by others. Source in-
structions reused by others (SIRBO) for an orga-
nization come from source instructions reused by
other organizations. SIRBO serves as our primary
observable indicator of reuse production; it re-
flects how much an organization contributes to
reuse. For a reuse program to succeed, organi-
zations must not only reuse software but help
other organizations reuse software. SIRBO not
only measures the parts contributed for use by
others but also the success of those parts. Orga-
nizations writing successful reusable parts will
have a very high SIRBO, because SIRBO increases
every time another organization reuses their soft-
ware. This encourages organizations to generate

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

high-quality, well-documented, and widely appli-
cable reusable components.

We calculate SIRBO by summing over all parts that
an organization contributes for reuse as follows:

SIRBO = (source instructions per part)

x (number of organizations using part)

As an example, an organization’s contributions to
a reuse library are: a 5 thousand-lines-of-code
module in use by five other departments, a 15
thousand-lines-of-code macro in use by six other
departments, and an unused 50 thousand-lines-
of-code macro. The organization’s SIRBO is ex-
pressed as follows:

SIRBO = (5 departments X 5 KLOC)

+ (6 departments X 15 KLOC)

+ (0 departments X 50 KLOC)

= 115 KLoc

where KLOC = thousand lines of code.

For the same reasons used in determining RSI, we
calculate SIRBO independently of the number of
times the same organization invokes or calls the
part. The same rules apply that apply for counting
RSI: use of a reusable part saved having to de-
velop the part one time, not one time for every
call to the part. SIRBO grows over time. As more
organizations reuse the components, the SIRBO of
the donating organizations increases. We base
our SIRBO measurement on the most current list of
reusers by using a process similar to software li-
censes.

Software development cost. To determine the fi-
nancial benefit of reuse, we must know the cost of
developing software without reuse. The new soft-
ware development cost (cost per LOC) comes
from historical averages that we normally obtain
from the financial planners and management of
the organization. If necessary, we calculate the
new software cost by adding all the expenses of
the organization, including overhead, and divid-
ing by the total output (in LOC) of the organiza-
tion.

Software development error rate. No amount of
testing, inspection, or verification can guarantee

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

the release of a product without errors (error
rate). Although emphasis on quality and strict ad-
herence to development processes leads to better
products, errors inevitably reveal themselves af-
ter product release to the marketplace. Every de-
velopment organization has a historical average
number of errors uncovered in its products.

Note that we usually design and test software
components built for reuse to stricter standards
than those for normal program product compo-
nents. We justify the additional cost of testing and

Observable data elements
are combined to form

derived metrics.

quality assurance for reuse by the savings gained
when other organizations do not have to develop
and maintain a similar component. The additional
testing not only helps identify errors in the com-
ponent, but as more organizations reuse the com-
ponent the more confidence we have in its qual-
ity.

Software error repair cost. To quantify the benefit
of the increased quality of reusable components,
we need the historical average cost of maintaining
components with traditional development meth-
ods (cost per error). As with software develop-
ment cost, we generally obtain this figure from
financial planners and management in the orga-
nization. If necessary, we calculate the software
error repair cost by taking the sum of all costs of
repairing latent errors in software maintained by
the organization, including overhead, and divid-
ing by the number of errors repaired.

Derived metrics. The observable data elements
combine to form three primary derived reuse met-
rics: reuse percent, reuse cost avoidance, and re-
use value added. We also define a fourth metric,
additional development cost, to complete our ROI
model. As shown below, the first two metrics in-
dicate the level of reuse activity as a portion of

POULIN, CARUSO, AND HANCOCK 581

Table 4 Derived metrics

Metric Symbol Derlved from Unit of Measure

Reuse percent Reuse percent
For products SSI, RSI
For product releases CSI, RSI
For organizations SSI, RSI

Percent

Reuse cost avoidance RCA SSI or CSI, RSI, costLOC, Dollars
errodLOC, cost/error

Reuse value added RVA SSI, RSI, SIRBO Ratio

Additional development cost ADC Code written for reuse
by others, cost/LOC

Dollars

effort and by financial benefit. The third metric
includes recognition for writing reusable code.
The fourth ROI metric accounts for added ex-
penses directly attributable to producing reusable
software. Table 4 provides a summary of these
metrics. 41

Reuse percent-the primary indicator of the
amount of reuse in a product or practiced in an
organization. Reuse percent is derived from SSI,
CSI, and RSI.
Reuse cost avoidance-indicator of reduced to-
tal product costs as a result of reuse in the prod-
uct. Reuse cost avoidance is derived from SSI,
CSI, RSI, error rates, software development cost
(cost per LOC), and maintenance costs (cost per
error).
Reuse value added-an indicator of leverage
provided by practicing reuse and contributing
to the reuse practiced by others. Reuse value
added is derived from SSI, RSI, and SIRBO.
Additional development cost-indicator of in-
creased total product costs as a result of devel-
oping some product code for subsequent reuse
by others. Additional development cost is de-
rived from the amount of code written for reuse
by others and normal software development
cost (cost per LOC).

Reuse percent. The purpose of the reuse percent
measurement is to indicate the portion of a prod-
uct, product release, or organizational effort that
can be attributed to reuse. The ease of calculating
and understanding reuse percent makes it an im-
portant metric. Unfortunately, many companies
report their reuse experiences in terms of reuse
percent but few describe how they calculate the
values. They commonly include informal reuse in

582 POULIN, CARUSO, AND HANCOCK

the metric, making it difficult to assess actual sav-
ings or productivity gains. Inasmuch as we pro-
vide a supporting framework and clearly define
what we mean by RSI, we believe the reuse per-
cent metric reasonably reflects real effort saved.

Reuse percent of a product. Now that we have
defined how we obtain our data, we use a simple
percent equation to calculate the reuse percent of
a product (or first release of a product):

RSI

RSI + SSI
Reuse percent = x 100 percent

Consider the following example. If a product con-
sists of 75 KLOC SSI and an additional 25 KLOC
from a reuse library, then the reuse percent of the
product equals:

x 100 percent = 25 percent

Reuse percent of a product release. For a new
release of a product, we calculate the reuse level
based on work done since the last release of the
product. We exclude all code in the previous re-
leases of the products (the product base) and
count RSI from reusable components added to the
product for this release. A call to a component
used in a previous release is a new or changed
source instruction (CSI). We still use a simple per-
cent equation but substitute CSI for SSI:

RST
Reuse percent = x 100 percent

""

RSI -t CSI

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

The following is a product release example. If a
new release of a product consists of 8K CSI plus
2K new RSI from a reuse library, the reuse percent
for this product release equals:

2 KLOC
Reuse percent = KLoc + KLoc

x 100 percent = 20 percent

Reuse percent for an organization. Often we
would like to know how an organization as a
whole practices reuse, without having to consider
the number of products or parts of products it
develops. For an organization, all software de-
veloped and maintained by the organization
counts as the SSI of the organization. Any soft-
ware used by the organization but maintained
elsewhere counts as RSI. The reuse percent equa-
tion remains the same:

RSI

RSI + SSI
Reuse percent = x 100 percent

Here is an organizational example of reuse per-
cent. If a programming team develops and main-
tains 70K SSI and the team additionally uses 30K
RSI from a reuse library, the reuse percent for the
team equals:

30 KLOC
Reuse percent = 30 mot + 70 mot

x 100 percent = 30 percent

Reuse cost avoidance. The purpose of a reuse cost
avoidance (RCA) measurement is to quantify the
financial benefit of reusing software. The ability
to show the return on investment potential of re-
use makes this a particularly important metric.
Although we also use RCA in parts of our corpo-
rate ROI analysis for reuse, we find RCA helps with
the insertion of reuse at all organizational levels.

The potential benefits and savings of reusing soft-
ware depend on the specific project and reuse per-
cent. Even organizations that only consume re-
usable software must make investments in
process changes, tools, and education. For ex-
ample, for software developers and managers
who require training in software reuse, the
amount of training may require a substantial com-
mitment. Reference 44 discusses an experiment

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

to test whether programmers untrained in soft-
ware reuse can accurately assess component re-
usability. The experiment concludes that soft-
ware development personnel untrained in software
reuse cannot assess the worth of reusing a candi-
date component. Further, the subjects of the ex-
periment were influenced by unimportant features
and were not influenced by important features of
reusable software.

One method for determining the RCA for a con-
sumer of reusable software involves identifying
and quantifying the individual costs and benefits
associated with the incorporation of the reused
software into the system. With this itemized ap-
proach to computing RCA, we can calculate the
total reuse cost avoidance as follows:

i k

Reuse cost avoidance = 2 bi - 2 ci
i= l i= 1

where bi is a benefit and ci is a cost associated
with being a consumer of the reusable software.

Itemized costs and benefits vary for each project
and organization. Figure 1 lists examples of ben-
efits and costs associated with reusing software
information. The benefits of reusing software typ-
ically far outweigh the costs and include the
dollars saved by not having to design, develop,
document, test, maintain, and manage the devel-
opment of the reused software. Benefits may also
include reduced cost of tools or equipment that
would have otherwise been required, if the soft-
ware had been developed rather than reused. The
benefits may take the form of additional revenue
from delivering a product to market earlier or im-
proved customer satisfaction.

Costs of reuse include such things as dollars spent
to educate the organization on software reuse and
the availability of reusable software information.
The organization may also incur costs for a sys-
tem and application domain analysis and time
spent identifying portions of the design to make
into candidates for reused software. Program-
mers require time and facilities to select reused
software. If the organization obtains commer-
cially available software packages, it may have to
pay license fees or purchase the software. Also if
an organization decides it must modify or cus-
tomize the software, the typical development

POULIN, CARUSO. AND HANCOCK 583

Figure 1 Benefits and costs of reusing existing software information

REUSE CONSUMER BENEFITS: MEASUREMENT

b, Reduced cos t to des ign person months x $/person month
b, Reduced c o s t t o document (i n t e r n a l) pages x $/page
b3 Reduced c o s t t o implement person months x $/person month
b, Reduced c o s t t o u n i t t e s t p e r s o n months X $/person month
b, Reduced c o s t t o d e s i g n t e s t s
b, Reduced c o s t t o document t e s t s

person months x $/person month

b, Reduced c o s t t o implement t e s t cases person months x $/person month
b, Reduced c o s t t o e x e c u t e t e s t i n g person months x $/person month
bg Reduced cos t to p roduce pub1 i c a t i o n s pages x $/page
b,, Added revenue due t o d e l i v e r i n g p r o d u c t months x $/month

b,, Reduced maintenance costs e r r o r s x $ / e r r o r
b,, Added revenue due t o improved customer sa les x $ /sa le

b13 Reduced c o s t o f t o o l s $
b,, Reduced c o s t o f equipment $
b,, Reduced c o s t t o manage development and t e s t person months x $/person month

REUSE CONSUMER COSTS:

c1 Cost o f per forming cost -benef i t analys is person months x $/person month
c, Cost o f p e r f o r m i n g domain ana lys i s person months x $/person month
c3 Cost o f l o c a t i n g and assess ing reusable par ts person months x $/person month
c, Cost o f i n t e g r a t i n g r e u s a b l e p a r t s person months x $/person month
c5 Cost o f m o d i f y i n g r e u s a b l e p a r t s person months x $/person month
c, Cost o f ma in ta in ing mod i f i ed reusab le pa r t s e r r o r s x $ / e r r o r
c, Cost o f t e s t i n g m o d i f i e d r e u s a b l e p a r t s person months x $/person month
c, Fees f o r o b t a i n i n g r e u s a b l e p a r t s $
cg Fees o r r o y a l t i e s f o r r e u s i n g p a r t s copies used x $/copy
cl0 Cost o f t r a i n i n g on software reuse $

pages x $/page

sooner to the marke t p lace

s a t i s f a c t i o n w i t h p r o d u c t q u a l i t y

costs associated with making it ready to use add
to the costs, and many of the benefits become
lost.

If we can identify and quantify each of the indi-
vidual costs and benefits, we can accurately de-
rive the RCA from the itemized cost-benefit list.
However, we often do have enough information
or cannot justify the expense of obtaining it. Or-
ganizations new to software reuse may have dif-
ficulty estimating the costs of integrating the re-
used parts into the system because they do not
have historical data upon which to base the esti-
mates. We ourselves find it difficult to quantify
intangible items such as improved revenue from
earlier delivery of the software or customer sat-
isfaction.

To determine RCA we have found a useful method
that depends on an estimate of the effort required
to integrate reused software. Experience and
studies show that we can estimate the cost of this
effort at only about 20 percent of the cost of new

development.45,46 This percent assumes no mod-
ification of reusable parts. If the organization
must modify or maintain the modified reusable
parts we adjust this percent upward. Based on
this relative cost of reuse, we define the financial
benefit attributable to reuse during the develop-
ment phase of a project as 80 percent of the cost
of developing new code. We call this benefit the
development cost avoidance (DCA):

Development cost avoidance

= RSI x (1 - 0.2) x (new code cost)

= RSI x 0.8 x (new code cost)

Development, however, comprises only about 40
percent of the software life There is also
a significant maintenance benefit that results from
reusing quality software. We can quantify this
benefit as the cost avoidance of not fixing errors
in newly developed code,35 and we define this
benefit as the service cost avoidance (SCA):

584 POULIN, CARUSO, AND HANCOCK IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

Service cost avoidance

= RSI x (error rate) x (cost per error)

The total reuse cost avoidance is expressed as
follows:

Reuse cost avoidance (RCA)

= development cost avoidance (DCA)

+ service cost avoidance (SCA)

As an cxample of this concept, if an organization
has a historical new code development cost of
$125 per line, an error rate of 1.25/KLOc, and a
cost to fk an error of $20K, then the estimated
RCA for integrating 20K RSI into a product equals:

Reuse cost avoidance

= (20 KLOC X 0.8 x $125 per line)

+ (20 KLOC X 1.25 error per KLOC

x $20K per error)

= $2.0 million + $0.5 million

= $2.5 million

Reuse value added. The previous two metrics
measure how much organizations reuse software.
We must also motivate the producer side of soft-
ware reuse by recognizing contributions to the
inventory of reusable software. The reuse value
added (RVA) metric provides a way to recognize
organizations that both reuse software and help
other organizations by developing reusable code.

Someone must produce the software for everyone
to reuse. Some development groups recognize
this and organize to obtain the most benefit pos-
sible from both consuming and producing reus-
able software. For example, the IBM Mid-Hudson
Valley Programming Laboratory and the IBM
Federal Systems Company in Rockville, Mary-
land, dedicate programming teams to develop and
maintain shared software or site-wide reuse li-
braries. Corporate parts centers, such as the Bob-
lingen software center, also develop and maintain
software for IBM-wide use. Experience shows
that although these types of groups may have
modest values for the reuse percent metric, these
groups have extremely high values for the RVA
metric, and this high RVA indicates the tremen-

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

dous programming leverage they provide to their
organizations.

We use a ratio, or productivity index, to represent
the RVA. Organizations with no involvement in
reuse have an RVA = 1; an RVA = 2 indicates that
the organization has doubled its effectiveness
through reuse. That organization has become
twice as effective to the corporation because it
either directly or indirectly produced more soft-
ware than it could without reuse. Therefore, the
total effectiveness of a development group is:

(SSI + RSI) + SIRBO
SSI Reuse value added =

Consider the programming team that maintains 80
KLOC and uses 30 KLOC from a reuse library. If
five other departments reuse a 10 KLOC module
the programming team contributed to the organi-
zational reuse library, the RvA of the program-
ming team is:

Reuse value added

- (80 KLOC + 30 KLOC) + (5 depts X 10 KLOC)
-

80 KLOC

=: 2.0

In this example, the RVA of 2.0 indicates the pro-
gramming team became 2.0 times more effective
as a result of reuse.

Additional development cost. Developing soft-
ware intended for reuse costs the reuse producer
more than developing code for one-time use only.
The organization must spend additional effort to
ensure that the code is made ready for reuse in
different application domains. The additional de-
velopment cost (ADC) metric seeks to quantify
this effort.

As with RCA, we can determine the ADc by iden-
tifying and quantifying the individual costs and
benefits associated with producing reusable soft-
ware. With this itemized approach to computing
ADC, the total is expressed as follows:

1 k

Additional development cost = 2 ci - 2 bi
i = l i= 1

POULIN, CARUSO, AND HANCOCK 585

where ci is a cost and bi is a benefit associated
with being a producer of the reusable software.

The degree of investment in building software for
reuse varies, depending on the needs and prior-
ities of each software organization. Through on-
going education and incentives, the software
manager can promote the production of reusable
software within the organization. The costs to the
organization include several factors:

Domain analysis required to conduct a thor-
ough study of the problem and reveal opportu-
nities for reuse. To be practical, the domain an-
alyst must have an in-depth knowledge of the
application domain and training or experience
in software reuse and design.
Training required for software developers to
learn the concepts and practices of building re-
usable software. Software reuse training in-
cludes learning concepts of data encapsulation,
information hiding, constructing well-defined
interfaces, using language-specific features,
and programming for environment-indepen-
dence. These important software reuse at-
tributes have analogies in object-oriented de-
sign and analysis.
Library tools and maintenance required for a
library to store reusable components. This li-
brary may require additional hardware and soft-
ware tools for library access and parts retrieval.
Development and certification of reusable soft-
ware required to ensure that the parts are de-
signed, implemented, and tested for reuse in
other environments. The organization must
also place extra emphasis on user documenta-
tion so the reuser can understand the function
of the software and its interfaces. For high-qual-
ity, reusable components, we require certifica-
tion by an independent test group to ensure
software quality and function.
Involvement and communication with other
software development groups (both internal or
external) to help locate potential sources of re-
usable software information. Each organization
investing in software reuse should assign per-
sonnel the responsibility for staying abreast in
software reuse developments and new technol-
ogy. This requires time to read and investigate
literature, participating in work groups or sem-
inars, and communicating information back to
the software organization.
Encouraging participation to avoid many of the
inhibitors to widespread software reuse. One

586 POULIN, CARUSO, AND HANCOCK

source of inhibitors are cultural or social is-
sues.6 Managers must provide incentives for
participating in software reuse to break through
some of these barriers. In design activities, the
manager should encourage design for reuse by
rewarding designers for the reuse of their de-
signs in multiple applications. In addition to
measuring the typical lines of code produced,
the manager can measure and reward lines of
code built for reuse.

Fortunately, the additional costs of producing re-
usable software include some direct benefits. An
organization may realize these benefits through
cost recovery or collection of fees and royalties
from reusers of the software they produce. Figure
2 lists examples of benefits and costs associated
with producing reusable software information.

We call the sum of the costs and benefits of pro-
ducing reusable information the relative cost of
writing for reuse. We set the relative cost of writ-
ing for reuse with respect to the cost of writing
code for one-time use, which we take equal to 1.
As with RCA, we often find the costs and benefits
of producing reusable software difficult to identify
and quantify. We may also find we do not have all
the required information or cannot justify obtain-
ing it. To estimate the ADC, we use our experience
to show we can estimate the cost of this additional
effort at about 50 percent of the cost of new de-
~ e l o p m e n t . ~ ~ , ~ ~ Therefore, we define the addi-
tional development cost as:

ADC = (relative cost of writing for reuse - 1)

x code written for reuse by others

x new code cost

To illustrate this, take a programming team that
develops and maintains 80 KLOC, of which 20
KLOC consists of macros and modules that the
programming team contributed to the organiza-
tional reuse library. If the programming team has
a historical new code development cost of $125
per line, and the relative cost of writing for reuse
is 1.5, the ADC for the programming team is:

ADC = (1.5 - 1) x 20 KLOC X $125 per line

= $1.25 million

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

In this example, the m c of $1.25 million reflects
the investment made by the programming team to
develop software that other programming teams
can later reuse.

Reuse return on investment

The reuse metrics aid in both quantifying and
standardizing counting methods for projects and
development organizations. Because financial re-
sults are always a high priority, however, the
most effective way to encourage reuse is to show
the return on investment for reuse. This section
describes a traditional way to evaluate return on
investment through cost-benefit analysis. We
combine the principles of cost-benefit analysis
with the metrics described in this paper to provide
templates for project- and corporate-level reuse
business cases.

Calculating ROI using cost-benefit analysis. Cost-
benefit analysis is a technique that uses estimates
to compare and weigh the costs and benefits of an
~ndertaking.~' We can use cost-benefit analysis
for software reuse investment decisions in three
ways. As a planning tool, cost-benefit analysis
assists in determining the appropriate amount of
resources to apply toward software reuse invest-
ment. This analysis serves as an auditing tool for
evaluating existing projects that practice software
reuse. It also provides quantitative support to in-
fluence decisions on software reuse investments
and strategies.

The most difficult task in a cost-benefit analysis is
to assign values to the costs and benefits. Where
possible, we must quantify intangible items. For
example, improved quality can result in improved
customer satisfaction, which in turn can result in
revenue from additional sales. We often cannot
predict these kinds of effects. When uncertainty
surrounds the value applied of an intangible item,
we can apply a range of values to that item and
perform a sensitivity analysis. In a sensitivity
analysis, we complete a cost-benefit analysis at
the high and low ends of the range to determine
the effect that the item has on the overall results.
If we do not see a significant difference in the
outcome over the range ofvalues, we estimate the
value within that range.

The following steps apply when completing a
cost-benefit analysis for software reuse invest-
ment decisions:

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

1. Select the alternatives to analyze. Examples of
cost-benefit alternatives for deciding on soft-
ware reuse investments are:

Reuse parts from an identified source for a
specific function within an application do-
main. This simple reuse alternative may lead
to immediate benefits because software gen-
erally costs less to acquire than to develop.
However, the organization may not have the
necessary skills, the software may not exist,
or existing software may take too long to
acquire.
Redesign a specific function within an appli-
cation domain for reuse within the organi-
zation in future applications. An organiza-
tion with expertise in a particular application
domain might repeatedly develop and main-
tain highly similar, but distinct versions of
software. By creating a reusable component,
the organization can relieve pressure to pro-
duce more function on a shorter develop-
ment cycle and improve productivity.
Design a set of reusable parts for reuse out-
side of the organization. When the reuse
consumers are other organizations within
the same company, the benefits to the cor-
poration motivate the investment. When the
reuse consumers come from outside compa-
nies, revenue, fees, and royalties motivate
the investment.

2. Determine the organization's priorities, goals,
requirements, and business strategies that will
influence the investment decision. These fac-
tors greatly influence the criteria for deciding
whether the results of the cost-benefit analysis
will indicate an invest or do not invest deci-
sion. An organization whose long-term busi-
ness strategy is to develop software to obtain
revenue from sales or licensing fees would
likely invest more in building a libraly of re-
usable parts. An organization that provides
custom software packages for a wide range of
applications would more likely invest in ob-
taining and reusing parts from externally avail-
able reuse libraries. This means of reducing
cost and shortening schedules especially ap-
plies to companies with limited resources.

3. Determine the time period for the analysis. It
often takes more than the time frame of one
project to realize the benefits of producing re-

POULIN, CARUSO, AND HANCOCK 587

Figure 2 Benefits and costs of producing reusable inforrnatlon
~ ~ ~~ ~

REUSE PRODUCER BENEFITS:

bl Added revenue due t o income from s e l l i n g r e u s a b l e i n f o r m a t i o n
b, Added revenue f rom fees o r roya l t i es resu l t i ng f rom the

r e d i s t r i b u t i o n o f i n f o r m a t i o n

REUSE PRODUCER COSTS:

c1 Cost o f per fo rming cos t -benef i t ana lys is
c2 Cost o f p e r f o r m i n g domain ana lys i s
c3 Cost o f des ign ing reusab le par ts
c4 Cost o f model i n g / d e s i g n t o o l s f o r r e u s a b l e p a r t s
c5 Cost o f implement ing reusable parts
c6 Cost o f t e s t i n g r e u s a b l e p a r t s
c7 Cost o f document ing reusable par ts (in ternal)
c8 Cost o f obta in ing reuse 1 i b r a r y t o o l s
cg Cost o f added equipment f o r r e u s e l i b r a r y
cl0 Cost o f r e s o u r c e s t o m a i n t a i n r e u s e l i b r a r y
cll Cost o f management f o r development, t e s t , and l i b r a r y

cl, Cost o f p roduc ing pub l i ca t ions
cI3 Cost o f ma in ta in ing reusab le pa r t s
cI4 Cost o f marke t i ng reusab le pa r t s
c15 Cost o f t r a i n i n g i n s o f t w a r e r e u s e

support groups

MEASUREMENT

x #users
x #users x #copies

$
8

person months x $/person month
person months x $/person month
person months x $/person month
$
person months x $/person month
person months x $/person month
pages x $/page
6
$
person months x $/person month
person months x $/person month

pages x $/page
person months x $/person month
$
$

usable software because of the initial invest-
ments in analysis, design, tools, and library
support. The cost-benefit analysis should span
the time frame of the life of the application.
For example, if an organization makes an ini-
tial investment in developing a library of ob-
jects that they expect to reuse in a set of ap-
plications spanning a three-year period, the
cost-benefit analysis should span three years.

4. Identify and quantify the costs and benefits for
each alternative. The list of costs and benefits
varies, depending on the type and extent of the
reuse investments considered. An organiza-
tion must include costs associated with per-
forming the cost-benefit analysis, obtaining re-
usable software, maintaining libraries, and
developing tools. The organization must also
take care not to bias the analysis results. In a
typical cost-benefit analysis, organizations
tend to overestimate the benefits and under-
estimate the costs.

After performing the cost-benefit analysis and
making the investment decisions, periodically re-
validate the decisions and make adjustments to
the investment areas. New information, changes
in strategies and priorities, and initial investment
results can affect how the organization should
continue to direct its resources.

A cost-benefit analysis also requires an assumed
discount rate (or time value of money). We in-
clude the time value of money because we must
allow for the fact that we can invest today's
money at an interest rate that makes it worth
more tomorrow. Since cost-benefit analyses for
software reuse generally span several years, we
should use the time value of money for a more
accurate analysis. The organization's business
planner or financial analyst provides an accept-
able discount rate. We then use the following
equation for computing the net present value
(NPV) of a particular investment over a time pe-
riod of 0 through n years:48

5. Perform the cost-benefit analysis. Determine a
break-even point, a payback period, and a list
of intangible benefits for use in the analysis
and final investment decision process.

" (4 - CJ
NPV = 2 (1 + k)'

t=O

588 POULIN, CARUSO, AND HANCOCK IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

where k is the discount rate, B, is the value of
benefits in year t , and C, is the value of costs in
year t . Using the benefits and costs described in
Figure 1 for the reuse of existing reusable infor-
mation or Figure 2 for producing reusable infor-
mation, we compute the values for B and C for
each year in the cost-benefit analysis as follows:

i k

B = x b i , C = 2 ci
i=l i = l

where j is the number of costs or benefits that
apply to the investment within that year.

Using derived metrics to simplify cost-benefit anal-
ysis. We simplify the cost-benefit analysis proce-
dure because of the solid foundation provided by
the metrics. For example, we obtain DCA from the
sum of development benefits in reduced cost to
design, document, code, and test, minus integra-
tion and other development costs. SCA, in turn,
represents the benefits of reduced software main-
tenance costs. To obtain the RCA metric we sum
the DCA and SCA metric. As a result, the RCA met-
ric quantifies the net benefits to a project that
consumes reusable software.

The ADC metric accounts for the additional costs
of producing reusable software. These include the
costs of designing, testing, documenting, etc. Use
of these metrics provides a simplified way to iden-
tify and quantify costs and benefits for reuse in
step four of the cost-benefit procedure.

Project level ROI. In the absence of direct finan-
cial motivators such as fees, royalties, or dollar
incentives, product managers are often reluctant
to invest in a comprehensive reuse program, be-
cause the benefits of writing reusable code often
accrue to projects outside their realm of respon-
sibility. Therefore, any definition of return on in-
vestment should include benefits that other
projects reap as a result of efforts by the initiating
project. A straightforward formulation for return
on investment includes the RCA and ADC metrics
previously discussed:

ROI = RCA i- RCAo - ADC

where

ROI = return on investment that occurs in infinite
time

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

Figure 3 Business template program

S S I / C S I 88- KLOC
R S I 28 KLOC %
SSI/CSI w r i t t e n f o r r e u s e 28- KLOC -%

R e l a t i v e c o s t o f r e u s e (RCR)2 - (8-1)
R e l a t i v e c o s t o f w r i t i n g r e u s e . . 1 . 5 (1-2)
E r r o r r a t e 1.2F Errors/KCS
Cos t /e r ro r $20" K

Data f rom o ther p ro jec ts us ing your code:
P r o j e c t SIRBO(K) CostlLOC RCR Error /Rate Cost /Error
A 2
B-

288
8- 88- .3- .5

.2 2

- e- l QQ- .2- 2e- - 8- 188" .2- - 20-
- 0- lee- .2- - 2 8-

0- 188- .2- - 26-
- 8- lee- .2- - 28-
- 8- lee- .2- - 28-
- 0- 100- .2- - 2e- - e- 100- .2- - 28"

Cost/LOC $ 1 2 5
-

;:- -

" "- -

Figure 4 Output from business template program

S S I / C S I 88.88 KLOC
* Reuse percent 28.88 %

R S I 28.88 KLOC
Percent S S I / C S I w r i t t e n f o r r e u s e . 25.88 %
KLOC o f S S I / C S I w r i t t e n f o r r e u s e . 28.88 KLOC
Addit ional development cost (A N) . $1258.88 K

* Reuse va lue added (RVA) 1.38
SIRBO 18.88 KLOC
Development cost avoidance (DCA) .. $2888.88 K
Service cost avoidance (SCA) $ 588.88 K

* Reuse cost avoidance (RCA) $2588.88 K

(Savings f o r o t h e r p r o j e c t s)
Development cost avoidance (DCA,) . $ 768.88 K
Service cost avoidance (SCA,) $ 112.88 K

* Cost avoided by o the rs (RCA,) $ 888.88 K

To ta l RCA (RCA + RCA,). $3388.88 K
+ R O I (RCA+RCA,-AOC) $2130.88 K

RCA=reuse cost avoidance for the initiating
project

RCA, =reuse cost avoidance for other projects
benefiting from the reusable code written
by the initiating project

ADC = additional development cost to the initiat-
ing project of writing reusable code

Because individual projects usually have a limited
duration, the ROI formula ignores the time value

POULIN, CARUSO, AND HANCOCK 589

of money. The new term, RCA,, is similar to RCA
in computation but we base it on SIRBO rather
than RSI. We calculate RCAo by summing the RCA
for each benefiting project as follows:

n

RCA, = 2 SIRBO, x (1 - relative cost of reuse,)
i= 1

x (new code cost,)

n

+ SIRBO, x error rate,
i = l

X cost per error,

where

SIRBO, = source instructions reused by
project i

IZ =number of projects reusing
code written by the initiating
project

relative cost
of reuse, = cost of integrating reusable

code for project i relative to the
cost of creating a new line of
code, which is taken as 1

new cost code, = cost per line of code for project
i

error rate, =number of errors per KLOC for
project i

cost per error, =cost to repair an error for proj-
ect i

To illustrate, assume an organization has an RCA
of $2.5 million and an ADC of $1.25 million, as in
the previous example. Projects A and B have al-
ready agreed to reuse some components and have
the following data:

Cost/ Relative Error Cost/
1" Pro'ect SIRBO LOC cost rate Error

A 2 200 0.2 2.0 10
B 8 80 0.3 0.5 18

"

Then

ROI = RCA + RCAo - ADC

= $2.5 million + R C A ~ - $1.25 million

590 POULIN, CARUSO, AND HANCOCK

= $1.25 million + (2 KLOC X 0.8

X $200 per line)

+ (2 KLOC X 2 errors/moc

X $10K per error)

+ (8 KLOC X 0.7 X $80 per line)

+ (8 KLOC X 0.5 e r ro r /uoc

X $18K per error)

= $2.13 million

Although not very complex, the number of com-
putations make the final figure for ROI prone to
error. For this reason, we wrote a business tem-
plate program to automate the project level ROI
analysis. The template provides defaults for many
of the parameters previously described. How-
ever, the user can alter the default parameters to
use actual project data or to simply experiment
with different input values. Figure 3 shows a tem-
plate with example data.

After the user enters the unique project-level
data, the template program generates the output
shown in Figure 4. The template program com-
putes all reuse metrics in addition to providing the
ROI for the project. The automation of the reuse
metrics and ROI computations greatly assist the
software project manager in developing justifica-
tion to implement a reuse program at the project
level.

Corporate-level ROI. A corporate-level reuse pro-
gram may consist of many project-level reuse pro-
grams. In part, the costs and benefits that accrue
to the corporation come from the sum of the costs
(ADC) and benefits (RCA) to the individual
projects. From a cost perspective, however, we
must consider additional start-up activities. For
example, a group of people might exist to pro-
mote reuse programs across the corporation. The
corporation might fund tools to store, to search
for, and to retrieve reusable parts. The reuse li-
brary may require a significant amount of disk
storage to store the reusable parts. The corpora-
tion may decide to purchase parts from outside
vendors rather than develop them locally.

These start-up activities may require a significant
period of time before the reuse commitment be-

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

Figure 5 Example corporate-level ROI in thousands of dollars

BenefitslCosts Year
Start-up 1 2 3 4 5

Benefits
Total DCA
Total SCA

Total RCA

Support costs
Reuse technology center
Site champions
Disk storage

Total support

Other costs
Total ADC
Tool development
Vendor parts

Net savings per year
Present value

0 6,763 11,870 17,990 23,713 30,447
0 1,646 877 395 169 71
0 8,409 12,747 18,385 23,882 30,518

85 88 65 41 29 30
24 1 500 598 717 858 1,024

326 770 984 1,239 1,508 1,833
0 182 321 481 621 779

0 3,730 5,299 6,247 6,009 5,008
1,200 1,200 1,200 1,200 1,200 1,200
2,400 1,450 1,450 1,450 1,450 1,450

-3,926 1,259 3,814 8,249 13,715 21,027
-3,926 1,049 2,649 4,774 6,614 8,450

Net present value 19,610
Internal rate of return 104 percent

gins to yield productivity and quality savings. For
this reason, a corporate-level ROI should take into
account the time value of money. The most com-
mon way to express this ROI is through the net
present value (NPV) approach, previously dis-
cussed, as follows:

B , - C , B2 - C2
NPV= - ~ o ~ ” l - - + ~ ~ *

1 + k (1 + k) 2

Bn - Cn +- (1 + k)”

where

C, =corporate reuse start-up costs
Bi =benefits in year i
Ci = costs in year i
n = number of years for which revenues are to

be considered
k =discount rate

Figure 5 displays an example of a corporate-level
ROI. In this example, business planning practices
dictate that we consider returns five years into the
future. The hypothetical ROI is $20 million net
present value with a 104 percent internal rate of
return. Although this ROI seems extraordinarily
high by conventional business standards, it does

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

not reflect the risk inherent in many of the un-
derlying assumptions of the ROI. For instance, we
must make assumptions about the growth of reuse
over time, the relative cost of reuse, the cost of
writing reusable code, and the amount of vendor-
purchased reusable code versus code written in-
ternally within the corporation. Because we base
our assumptions on a range of probable out-
comes, we should vary the assumptions to ex-
plore their effect on the ROI.

Notice that the ROI includes costs of tool devel-
opment and support costs for persons who are
either in a corporate reuse technology support
center or who are site champions. In the IBM re-
use program, these persons have the responsibil-
ity to communicate the benefits of reuse and to
help spread reuse throughout the corporation and
individual sites. Although individual projects do
not incur these costs we must include them in the
corporate ROI.

Concluding remarks

Software management depends on sound busi-
ness decisions based on accurate measure-
m e n t ~ . ~ ~ This paper introduces an investment
model for software r eu~e~’ ,~ ’ and the following
new metrics: reuse percent, reuse cost avoid-

POULIN, CARUSO, AND HANCOCK 591

ance, additional development cost, and reuse
value added. The metrics rely on easily collected
data, provide reasonable representations of reuse
activity, and encourage reuse. These metrics pro-
vide reliable input to the corporate reuse ROI
model, where we carefully define the benefits at-
tributed to reuse.

With emerging technologies, such as software re-
use, we must extend the traditional role of metrics
and ROI analysis. Metrics must not only assure
the quality of reusable components, but they must
also demonstrate the success of a program and
improve the ability to plan and predict for future
projects. Metrics also serve to encourage reuse
by providing feedback on the results of a reuse
program and by highlighting the benefits of an
organizational reuse effort.

We made our ROI business template program
available to all IBM sites to help convince project
management to implement formal reuse pro-
grams. The IBM Reuse Technology Support Cen-
ter also uses the corporate-level ROI to evaluate
the benefit of formal reuse relative to other tech-
nologies that improve programmer productivity
and quality.

We intend to continue to validate the measures
and the ROI model. This includes comparing the
predicted costs with actual costs avoided, and
comparing increased productivity rates with the
values calculated in the metrics and the ROI
model. Although the model uses industry expe-
rience for default values in the equations, we use
actual values when we have them. For example,
we usually have actual software development
costs and standard software development defect
and maintenance data, and we routinely gather
usage data on reusable components. We con-
stantly compare and review these data with in-
dustry experience to maintain the accuracy of the
model.

This paper discusses reuse measurements for
software only. Future work will include methods
to quantify reuse of information in areas other
than software (e.g., design, test case, and infor-
mation development). We want to capture, track,
and validate our relative cost factors, such as the
relative cost of developing reusable components.
We also would like to study data related to the
reuse process, such as the cost of certifying re-
usable components and the costs of maintaining

592 POULIN, CARUSO, AND HANCOCK

our infrastructure of personnel and our reuse
library.

Software reuse provides a promising answer to
the challenges that confront most software orga-
nizations. A software organization that invests in
software reuse can realize great improvements in
productivity, cost reduction, and software qual-
ity. Faced with increasing demand for more func-
tion, reduced development cycle time, reduced
development costs, and improved quality, the
long-term competitiveness of any software devel-
opment organization may depend on these im-
provements. To prepare, every organization
should begin educating and involving its software
developers in software reuse techniques and
tools. Individuals skilled in the reuse techniques
and the application domain can start by conduct-
ing an initial domain analysis. This domain anal-
ysis will provide the software organization with a
set of software reuse alternatives appropriate to
that organization’s application and business envi-
ronment.

Software reuse must become an integral part of
the software development process. When this
happens, software development will have
evolved to the point where we find the develop-
ment of commodities like hardware today. Only
then can programmers keep pace with the de-
mands of new hardware technologies and user
requirements by spending resources on new, cre-
ative software rather than reworking and rein-
venting the old.

Acknowledgments

The authors thank the IBM Corporate Reuse
Council for assistance with many of the concepts
described in this paper and for supplying much of
the data for examples. Also, we thank Mike Fal-
cetano for his excellent work on the business tem-
plate program and other related measurement
tools.

*Trademark or registered trademark of International Business
Machines Corporation.

Cited references

1. F. P. Brooks. “No Silver Bullet,”ZEEE Computer 4, No.
2, 10-19 (AGil 1987).

veys 24, No. 2, 131-183 (June 1992).
2. C. W. Krueger, “Software Reuse,”ACMComputingSur-

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

3. B. T. Cox, “Planning the Software Industrial Revolu-
tion,” ZEEE Software 7, No. 6, 25-33 (November 1990).

~ 4. R. S . Pressman, Software Engineering: A Practitioner’s
Approach, McGraw-Hill Book Co., Inc., New York
(1992).

5. R. S. Pressman and S . R. Herron, Software Shock, Dorset
~ House, New York (1991).

6. W. Tracz, “Software Reuse: Motivators and Inhibitors,”
, Proceedings of COMPCON S’87, 1987. Reprinted in

W. Tracz, Software Reuse: Emerging Technology, IEEE
’ Computer Society Press (1990), pp. 62-67.

7. W. B. Frakes, “Software Reuse, Quality, and Productiv-
ity,” Proceedings of International Software Quality Ex-
change, Juran Institute Inc., Wilton, CT (March 1992),

~ pp. 9-9 to 9-17.
1 8. T. C. Jones, “Reusability in Programming: A Survey of
~ the State of the Art,” ZEEE Transactions on Software
~ Engineering SE-10, No. 5, 488494 (September 1984).

9. R. Prieto-Diaz, “Implementing Faceted Classification for
Software Reuse,” Communications of the ACM 34, No.
5, 88-97 (May 1991).

10. P. Freeman, “Reusable Software Engineering: Concepts
and Research Directions,” ZTTProceedings of the Work-
shop on Reusability Programming (1983), pp. 129-137.
Reprinted in P. Freeman, Tutorial: Software Reusability,
IEEE Computer Society Press, New York (1987), pp. 10-
23.

11. M. D. Lubars, “Wide-Spectrum Support for Software Re-
usability,”Proceedings of the Workshop on Software Re-
usability and Maintainability (October 1987). Reprinted
in W. Tracz, Software Reuse: Engineering Technology,
IEEE Computer Society Press, New York (1990), pp.

12. M. Lenz, H. A. Schmid, and P. Wolf, “Software Reuse
Through Building Blocks,” IEEE Software 4, No. 4,

~

275-281.

34-42 ?July 1987):
13. T. Bieeerstaff and C. Richter. “Reusabilitv Framework,

Assessment, and Directions,;’ ZEEE S o s u r e 4, No 2,
4149 (March 1987).

14. S. C. Bailin, R. H. Gattis, and W. Trusczkowski, “A
Learning-Based Software Engineering Environment for
Reusing Design Knowledge,” Znternational Journal of
Software Engineering and Knowledge Engineering 1, No.
4, 351-371 (December 1991).

15. R. Prieto-Diaz and G. A. Jones, “Breathing New Life into
Old Software,” GTE Journal of Services and Technology,
Vol. 1. Reprinted in W. Tracz, Software Reuse: Emerging
Technology, IEEE Computer Society Press, New York
(1990), pp. 152-160.

16. J. M. Neighbors, “The Draco Approach to Constructing
Software from Reusable Components,” ZEEE Transac-
tions on Software Engineering SE-10, No. 5, 564-573
(September 1984). Reprinted in P. Freeman, Tutorial:
Software Reusability, IEEE Computer Society Press

17. P. Freeman, “A Conceptual Analysis of the Draco Ap-
proach to Constructing Software Systems,” Tutorial:
Software Reusability, IEEE Computer Society Press,
New York (1987), pp. 192-205.

18. B. H. Barnes and T. B. Bollinger, “Making Reuse Cost-
Effective,”ZEEE Software 8, No. 1,13-24 (January 1991).

19. T. B. Barnes and S. L. Pfleeger, “Economics of Reuse:
Issues and Alternatives,” Information Software Technol-
ogy 32, No. 10, 643-652 (December 1990).

20. R. Prieto-Diaz and P. Freeman, “Classifying Software for

-

(1987), pp. 181-191.

Reusability,” ZEEE Software 4, No. 1, 6-16 (January
1987).

21. W. Tracz, “Reusability Comes of Age,” ZEEE Software,
6-8 (July 1987).

22. R. Prieto-Diaz, “Domain Analysis for Reusability,” Pro-
ceedings of COMPSAC ’87, IEEE Computer Society
Press, New York (1987), pp. 23-29.

23. G. Booch, Object Oriented Design with Applications,
Benjamin/Cummings, Redwood City, CA, 1991.

24. M. A. Simos, “The Domain-Oriented Software Life Cy-
cle: Towards an Extended Process Model for Reusabili-
ty,” Proceedings of the Workshop on Software Reusabil-
ity and Maintainability (October 1987). Reprinted in
W. Tracz, “Software Reuse: Emerging Technology,”
IEEE Computer Society Press (1990), pp. 354363.

25. B. Meyer, “Reusability: The Case for Object-Oriented
Design” ZEEE Software 4, No. 2, 50-64 (March 1987).

26. B. A. Burton, R. W. Aragon, S. A. Bailey, K. D. Koehler,
and L. A. Mayes, “The Reusable Software Library,”
ZEEE Software 4, No 3, 25-33 (July 1987).

27. G. M. Bowen, “An Organized, Devoted, Project-Wide
Reuse Effort,” Ada Letters 12, No. 1, 43-52 (Janu-
arypebruary 1992).

28. T. Standish, “An Essay on Software Reuse,” ZEEE

(1984).
Transactions on Software Engineering 10, No. 5,494-497

29. R. D. Banker and R. J. Kauffman, “Reuse and Produc-
tivity in Integrated Computer Aided Software Engineer-
ing: An Empirical Study,” MIS Quarterly, 375401 (Sep-
tember 1991).

30. Repositoly Guidelines for the Software Technology for
Adaptable, Reliable Systems (STARS) Program, Con-
tract No. F19628-88-D-0032, CDRL No. 0460, Technical
Report Center, Morgantown, WV 26505 (March 15,1989).

31. W. M. Thomas, A. Delis, and V. R. Basili, “An Evalu-
ation of Ada Source Code Reuse,” Proceedings of 11th
Ada Europe Znternational Conference, Zandvoort, Neth-
erlands (June 4-5, 1992), pp. 80-91.

32. J. Margano and L. Lindsey, “Software Reuse in the Air
Traffic Control Advanced Automation System,” paper for
the Joint Symposia and Workshops: Improving the Soft-
ware Process and Competitive Position, Alexandria, VA
(April 29-May 3, 1991).

33. D. G. Firesmith, “Managing Ada Projects: The People
Issues,’’ Proceedings of TRI Ada ’88, Charleston, WV
(October 24-27, 1988), pp. 61M19.

34. C. Jones, Applied Software Measurement: Assuring Pro-
ductivity and Quality, McGraw-Hill, Inc., New York
(1991).

35. J. E. Gaffney, Jr. and T. Durek, Software Reuse-Key to
Enhanced Productivity; Some Quantitative Models,”
Software Productivity Consortium, SPC-TR-88-015
George Mason University, Center for Software and Sys-
tems Engineering, Herndon, VA (April 1988).

36. J. E. Gaffney, Jr. and T. A. Durek, “Software Reuse-
Key to Enhanced Productivity: Some Quantitative Mod-
els,” Information and Software Technology 315 (June
1989).

37. Standard for Management of a Reusable Software Com-
ponent Libraly, NATO Communications and Information
Systems Agency (August 18, 1991).

38. Standard for the Development of Reusable Software
Components, NATO Communications and Information
Systems Agency (August 18, 1991).

39. J. E. Gaffney, Jr. and R. D. Cruickshank, “A General

IBM SYSTEMS JOURNAL VOL 32, NO 4, 1993 POULIN, CARUSO, AND HANCOCK 593

Economics Model of Software Reuse,” Association for
Computing Machinery, Melbourne, Australia (May
1992).

40. V. R. Basili and R. W. Selby, “Paradigms for Experi-
mentation and Empirical Studies in Software Engineer-
ing,’’ Reliability Engineering and System Safety 32, 171-
191 (1991).

41. J. S . Poulin and J. M. Caruso, “A Reuse Measurement
and Return on Investment Model,” Proceedings of the
Second International Workshop on Software Reusability,
Lucca, Italy (March 24-26, 1993), pp. 152-166.

42. J. S . Poulin, ‘‘Issues in the Development and Application
of Reuse Metrics,” Fifih International Conference on
Software Engineering and Knowledge Engineering (June
16-18, 1993), pp. 258-262.

43. M. K. Daskalantonakis, “A Practical View of Software
Measurement and Implementation Experiences Within
Motorola,” ZEEE Transactions on Software Engineering
18, No. 11, 998-1010 (November 1992).

44. S . Woodfield, D. Embley, and D. Scott, “Can Program-
mers Reuse Software?,” ZEEE Software 4, No. 4, 52-53
(July 1987).

45. W. Tracz, “Software Reuse Myths,” ACM SZGSOFT
Software Engineering Notes 13, No. 1, 17-21 (January
1988).

46. J. Favaro, “What Price Reusability? A Case Study,”Ada
Letters 11, No. 3, 115-24 (Spring 1991).

47. Software Engineering Strategies, Strategic Analysis Re-
port, Gartner Group, Inc., Stamford, CT (April 30,1991).

48. J. L. King and E. L. Schrems, “Cost-Benefit Analysis in
Information Systems Development and Operation,”
ACM Computing Surveys 10, No. 1,19-34 (March 1978).

49. A. J. Albrecht, “Measuring Application Development
Productivity,” in Proceedings of the Joint ZMISHAREI
GUZDE Application Development Symposium (October
1979), pp. 83-92.

50. D. J. Reifer, “Reuse Metrics and Measurement-A
Framework,” NASNGoddard Fifteenth Annual Soft-
ware Engineering Workshop (November 28, 1990).

51. J. S . Poulin and J. M. Caruso, “Determining the Value of
a Corporate Reuse Program,” Proceedings of the ZEEE
Computer Society International Software Metrics Sym-
posium, Baltimore, MD (May 21-22, 1993), pp. 16-27.

Accepted for publication Februaly 25, 1993.

Jeffrey S. Poulln ZBM Federal Systems Company, Owego,
New York 13827. Dr. Poulin joined IBM’s Reuse Technology
Support Center in Poughkeepsie, New York, in 1991, where
his responsibilities included developing and applying corpo-
rate standards for reusable component classification, certifi-
cation, and measurements. As a member of the RTSC, Dr.
Poulin helped lead the development and acceptance of the
IBM software reuse metrics and return on investment model.
Dr. Poulin currently works as an advisory programmer with
the IBM Federal Systems Company Open Systems Develop-
ment group on software reuse and systems integration issues.
He participates in the IBM Corporate Reuse Council, the As-
sociation for Computing Machinery, and the IEEE Computer
Society. A Hertz Foundation Fellow, Dr. Poulin earned his
bachelor’s degree at the United States Military Academy at
West Point, New York, and his master’s and Ph.D. degrees at
Rensselaer Polytechnic Institute in Troy, New York.

Joseph M. Caruso ZBM Large Scale Computing Division,
Poughkeepsie, New York 12601. Dr. Caruso is an advisory
systems analyst whose responsibilities include the determi-
nation of return on investment for the many technologies
funded by his organization. He joined IBM in 1978 as a sys-
tems analyst for Material Requirements Planning Systems. In
1985 he moved into the assurance department to pursue his
interests in statistics. While in that department, he developed
software statistical tools, projected quality levels of software
projects, automated reporting and analysis systems, and pro-
vided statistical education for the quality assurance organi-
zation. His interests include applications of software reliabil-
ity growth modeling, sample size determination, and Monte
Carlo simulation. He received his B.S. degree from the State
University of New York at Stony Brook, his M.S. degree from
Pennsylvania State University, and his Ph.D. degree from
Union College, New York.

Debera R. Hancock ZBM PC Company Technology Center,
Boca Raton, Florida 33487. Ms. Hancock is a senior pro-
grammer and manager whose primary responsibility is the
management of software design and development projects for
IBM PSI2 systems. She has seven years experience managing
IBM software and microcode development projects to support
IBM midrange and personal systems. She is interested in ob-
ject-oriented design and software reuse as a method of im-
proving programming productivity and product quality. Ms.
Hancock is currently the engineering software representative
to the IBM Corporate Reuse Council and is a member of the
Association for Computing Machinery. Prior to joining IBM,
she was a systems programmer for large systems operating
systems for the Burroughs Corporation and programmed ma-
chine tool and robotics applications for the General Electric
Company. Ms. Hancock received her B.S. degree from the
University of Delaware, and is currently pursuing an M.S.
degree in computer engineering at Florida Atlantic Univer-
sity, Boca Raton, Florida.

Reprint Order No. G321-5525.

594 POULIN, CARUSO. AND HANCOCK IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1903

