Software reuse: From
library to factory

Systematic software reuse is a key business
strategy that software managers can employ to
dramatically improve their software development
processes, to decrease time-to-market and costs,
and to improve product quality. Effective reuse
requires much more than just code and library
technology. We have learned that careful
consideration must be given to people, process,
and technology. One approach to the systematic
integration of these three elements is the concept
of the software factory. At Hewlett-Packard Co.,
we have initiated a multifaceted corporate reuse
program to help introduce the best practices of
systematic reuse into the company,
complemented by multidisciplinary research to
investigate and develop better methods for
domain-specific, reuse-based software
engineering. This essay discusses our
experiences. Key aspects include domain-
specific kits, business modeling, organization
design, and technology infrastructure for a
flexible software factory.

he phrase software crisis was first used in

1969 to describe the ever-increasing burden
and frustration that software development and
maintenance have placed on otherwise happy and
productive organizations. Since then, managers
have been looking for effective strategies to deal
with software. Manufacturers of computer sys-
tems and instruments, such as Hewlett-Packard
Co. and IBM, whose businesses relied mostly on
hardware and mechanical engineers, today find
that over 70 percent of their research and devel-
opment engineers are working in the areas of soft-
ware and firmware. Maintenance and rework ac-
count for about 60 to 80 percent of the total
software costs. Systems take longer to produce
than expected, and software is frequently on the
critical path.

548 cRiss

by M. L. Griss

Among the many solutions proposed to address
this software crisis, the systematic application of
software reuse to prototyping, development, and
maintenance is one of the most effective ways
to significantly improve the software process,
shorten time-to-market, improve software quality
and application consistency, and reduce devel-
opment and maintenance costs.’” While many
companies are developing proprietary software
libraries, software reuse is not yet a major force
in most corporate software development. We be-
lieve that this is largely because effective reuse
depends more on socioeconomic than on techni-
cal factors at this time,** while most users still
concentrate on library or language technology.

In this essay I describe how Hewlett-Packard is
directing its efforts to better understand these is-
sues and implement solutions to systematically
improve and expand its reuse practice. In the fol-
lowing sections I highlight the business issues, the
growing need for flexibility, and a more engi-
neered approach to software. I summarize the
status and promise of reuse, stressing the inte-
gration of improved process, management, and
technology. The library metaphor and model,
used for many years to guide work in reuse, needs
to be replaced by a software engineering model
based on Kkits, factories, manufacturing, and en-
gineering. Software engineers and managers need
to change their view of software reuse from that

©Copyright 1993 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

Figure 1 The software trend

PERCENT OF DEVELOPMENT AND MAINTENANCE EFFORT

70% OF HEWLETT-
PACKARD ENGINEERS
PERFORM SOFTWARE
DEVELOPMENT

50% OF HEWLETT-
PACKARD RESEARCH
AND DEVELOPMENT
PROJECTS INVOLVE
SOFTWARE
DEVELOPMENT

of simply accessing parts in a software library, to
that of systematically developing and using well-
designed parts following a careful process within
a reuse-based software factory.

Business issues facing software managers

The crisis in software is due in part to our very
success in designing increasingly complex and
powerful computer hardware using integrated cir-
cuits and sophisticated computer-aided design and
simulation tools, and to our ability to manufacture
these tremendously powerful computers with con-
tinuously decreasing cost/performance ratios. This
has led to the construction of very sophisticated
products, incorporating large amounts of software.

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

There is a growing demand for more complex ap-
plications and products that have greater software
content, and for more varieties of software than
ever before, to serve many more people. New prod-
ucts are appearing ever more rapidly, and in some
cases, market windows and product cycles have
decreased from several years to only a few months!
Unfortunately, software production methods have
generally not kept pace (see Figure 1). The increas-
ing size of software systems, more complex stan-
dards, and more sophisticated user demands aggra-
vate the situation.

Software managers feel the pressure to simulta-
neously improve product time-to-market, soft-
ware quality, and staff productivity. They need to

reduce costs of both development and mainte-
nance. At the same time, they need to maintain or
increase the ability to respond effectively and rap-
idly to changes in markets, requirements, or bus-
iness cycles. This is sometimes called flexibility
or agility, and is believed to be a key to compet-
itiveness in times of change.®

Many solutions, but no silver bullet

Many different solutions have been proposed and
pursued. They include:

» Higher-level, problem-oriented languages, in-
cluding so-called fourth-generation languages
(4GLs), which both reduce the amount of soft-
ware written and empower end-users

» Object-oriented analysis, design, and technol-
ogy that better encapsulate decisions, making it
easier for software to evolve and be reused

* Computer-aided software engineering (CASE)
tools that provide overall support for the entire
life cycle, especially front-end activities such as
analysis and design

» Formal methods that ensure accuracy of spec-
ifications and interfaces, and therefore improve
quality and reduce rework

» Cleanroom, spiral, prototyping, or incremental
life cycles that improve the overall software
process to reduce development risk and con-
front requirements change earlier than in the
traditional waterfall model

¢ Inspections, reviews, and structured testing,
which ensure and certify quality

Unfortunately, most of these approaches have
been pursued with a quick-fix, single-solution at-
titude. Once the realization “strikes home” that
the payoff from any one of the above may be lim-
ited and harder to achieve than expected, most
organizations abandon that quick fix and move to
the next quick fix. They soon discover that there
is no single “silver bullet”’ that will solve the
crisis, and most fail to see the need to take the
time to integrate each appropriate method into a
continuous improvement process.

Systematic software reuse

The idea of systematic reuse (the planned devel-
opment and widespread use of software compo-
nents) was first proposed in 1968 by Doug
Mcllroy.® Since then, many attempts at improv-
ing the software process by reusing software com-

550 cRiss

ponents have been proposed and tried, with vary-
ing degrees of success.

We have come to learn that the key to success
with software reuse is a systematic process and a
paradigm shift in the way we deal with software
development. In the rest of this essay, I describe
how software reuse can be made effective by sys-
tematically integrating it into an overall software
process, and by changing the way we view soft-
ware reuse and its role in software development.

The dream—a simple concept. The concept is sim-
ple. Most statistics on the overall cost and time of
software development, and the quality of result-
ing code, correlate most closely with the amount
of new code written. Thus all one has to do to
dramatically improve many aspects of the soft-
ware process is to design and write less new code.
At first glance, it appears that all an organization
has to do is to collect well-tested software com-
ponents in a library, and encourage software de-
velopers to use these components, rather than to
write entirely new ones. In fact, as the amount of
a new product made from existing components
(the “reuse level”) increases, we do observe cor-
responding improvements in costs, time, and
quality. At reuse levels of 80 percent or more,
these improvements are dramatic. As I next dis-
cuss, it takes more than the parts library alone to
achieve these results.

Reuse does work. Several good books, tutorials,
and review articles summarize the status of reuse
practice and research.’%!° Each includes some
discussion of the technical, managerial, and or-
ganizational implications, as well as important
case studies.

Many companies around the world are reporting
successful reuse programs.'*'? These companies
include AT&T, The Boeing Co., British-Telecom-
munications, PLC, Eastman Kodak Company,
Ford Aerospace Corporation, Fujitsu Limited,
General Dynamics Corp., GTE Corporation, Har-
ris Corporation, Hewlett-Packard, Hitachi, Ltd.,
Hughes Aircraft Company, 1BM, Intermetrics,
Inc., McDonnell Douglas Corp., Mentor Graph-
ics Corp., Motorola, Inc., the National Aeronau-
tics and Space Administration (NASA), NEC
Corp., Pacific Telecom, Inc., Toshiba Corpora-
tion, US West, Inc., and many others. Significant
reuse research is underway as part of MCC
(Microelectronics and Computer Technology Cor-

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

poration), SPC (Software Productivity Consor-
tium), SEI (Software Engineering Institute),
ESPRIT (European Strategic Programme for
Research and Development in Information Tech-
nology), STARS, and other programs.

While the books and articles mentioned above
cite several benefits, these benefits cannot be cal-
culated and compared easily, since few organi-
zations have kept accurate baseline information,
and there are few standard methods of measuring
the processes in use today. Many companies are
developing proprietary software libraries, but
software reuse is not yet a major force in their
corporate software development. Nevertheless,
it appears that product development costs, fac-
toring in the cost of producing, supporting, and
integrating reusable software components, can
decrease by a sustainable 10 to 12 percent; defect
rates in delivered products can drop drastically to
10 percent of their former levels; and long-term
maintenance costs can drop to 20 to 50 percent of
their former values when several products share
the same, high-quality components.*

Somewhat different approaches have been fol-
lowed in Japan, the United States, and Europe.
The Japanese approach to reuse has been to con-
centrate on core functionality, design, productiv-
ity, and quality rather than on an ideal feature set,
while the approach in the United States has been
to concentrate on tools, technology, and feature
sets.

The Japanese have been able to produce much
higher quality systems at a faster rate.'? Hitachi
reduced the number of late projects from 72 per-
cent in 1970 to 12 percent in 1984, and reduced the
number of defects to 13 percent of the 1978 level.
Toshiba increased productivity by a factor of 250
percent between 1976 and 1985, and by 1985 had
reduced defect rates to 16 to 33 percent of the
1976 level. NEC improved productivity by 126 to
191 percent and reduced defect rates to 33 percent
of prior levels. Nippon Telegraph & Telephone
Corp. (NTT) has a comprehensive program includ-
ing a reuse-specific organization, printed cata-
logs, guidelines, and certification for reuse, lead-
ing to reuse levels of 15 percent or more, with
several hundred small components.

In the United States, there is significant work at
research consortia such as MCC, SPC, SEI, and the

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

Department of Defense-funded STARS program,
as well as several companies. IBM has a corporate
program, with several reuse support centers, a
large parts library, and a multisite Corporate Re-

Improvements in cost, time, and
quality require more than a
parts library.

use Council. A key aspect of their program is a
formal identification of reuse “champions” and
agents.'>!* Starting in 1988, AT&T developed a do-
main-specific, large-scale software-bus system
for on-line transaction processing and network
management.'> With a support staff of about 30,
their reuse program'® has reduced development
costs by about 12 percent and time-to-market
from 18-24 months to 6-9 months.

Most of the European work consists of industrial
or industrial-academic consortia. The ESPRIT ini-
tiative has funded several industrial-academic
collaborations, such as KNOSOS, PRACTITIONER,
ITHACA, SCALE, REDO, and REBOOT.! REBOOT
focuses on object-oriented technology for reuse,
providing a reuse-based software engineering
environment, a methodology for populating and
reusing components, and a base of general-pur-
pose and domain-specific software components.
Other efforts include the RACE initiative for tele-
communications software, and the EUREKA Soft-
ware Factory (ESF) initiative and its prototype
library management tool. The European Space
Agency has a reuse project that emphasizes or-
ganizational and contractual issues. ®

Software reuse at Hewlett-Packard

Hewlett-Packard (HP) has been engaged in soft-
ware reuse since the early 1980s. Early work in-
volved the development of instrument libraries in
BASIC, the construction and use of databases to
store and distribute software components, and
more recently the use of Objective-C** or C+ +**
to develop class libraries. Several of these librar-

Griss 551

ies have been widely distributed within the com-
pany, and some provided to the outside. Today
there. are many active reuse projects in HP divi-
sions and in HP laboratories. Over the past five

Systematic reuse needs to
become part of the software
process.

years, several HP divisions have been developing
and have begun to report on more ambitious reuse
programs involving common architectures, com-
ponents, and libraries for families of related prod-
ucts in a variety of application areas (application
“domains”), sometimes spanning several divi-
sions. ! Product areas include: embedded soft-
ware for instruments and peripherals; network
management; and analytical, medical, and man-
ufacturing systems.

HP corporate reuse program. Following an exten-
sive survey in 1989 and 1990 of these ongoing
division-sponsored reuse programs and a study of
reuse at other companies, a corporate reuse pro-
gram was created, aimed at making software re-
use a more significant and systematic part of the
software processes at HP.*>* In establishing this
program, it was felt that a fairly broad, well-co-
ordinated software reuse program involving man-
agement, process, and technology was needed to
make significant progress.

The program’s goal is to develop, qualify, and
promulgate the best practices that can be effective
within HP. The program involves a core team of
software reuse experts, with additional people
working on assignment with several divisional pi-
lot projects. The core team works on developing
the following: reuse process, domain analysis,
reuse assessments, economic models, coding
guidelines, a reuse handbook, reuse education,
and consulting to divisional reuse projects. The
pilot projects combine the evaluation and refine-
ment of proposed best practices for reuse, and the
incremental introduction of new methods into di-
visional reuse efforts.

552 GRiss

The program has been operating since October
1990. It has been responsible for several divi-
sional reuse program assessments, two reuse
practitioner’s workshops, a draft of the reuse
handbook, and several reuse training courses.
The core team is actively developing a domain
and reusability analysis methodology, and fo-
cuses on the methods and processes of managed,
systematic, domain-specific software reuse. Un-
like some corporations, HP is not building a single
corporate-wide centralized reuse library. The di-
versity of HP’s products and divisional software
processes requires that divisions create reuse
programs and products customized to suit their
needs.

Key reuse factors—what we have learned

HP and industry experience have shown that sev-
eral research and development efforts must be
integrated to allow reuse to reach its potential
benefit level. Current attempts to introduce li-
braries and reuse technology have highlighted not
only success factors but inhibitors as well.

Reality—people and process get in the way. There
are many inhibitors to starting and running an
effective reuse program.?® A study of reuse
practice at HP and elsewhere has made it strik-
ingly clear that the impediments to improving
software reuse are predominantly nontechnical
and socioeconomic.** These include many cul-
tural, organizational, business, or process fac-
tors, which can be overcome only through a com-
bination of management, education, process,
policy, and incentive initiatives.

Because of early beliefs that reuse required large
libraries, many practitioners started their reuse
programs by creating classification structures for
software components, and collecting as much
software (good or bad) as they could. Incentives
were offered to contributors. Complex library
systems were built to store, manage, and find the
components. Researchers have studied alterna-
tive classification schemes, prototyped powerful
browsers, and automated access systems.

Although the focus was on intriguing technical
aspects, much of this work has not produced the
desired benefits. Reuse is not as simple as we
think.

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

Libraries of randomly collected code usually only
address a small number of a typical developer’s
needs. Components do not work well together.
Developers are reluctant to go looking for com-
ponents and prefer to write their own, usually
claiming (without even checking) that the avail-
able parts are wrong, inefficient, or have many
defects. Incentives need to be focused on the de-
sired goal. For example, a common incentive is to
offer a “reward” for contributing to a library but
not for using the library, which can easily increase
library size without increasing reuse. This creates
a major information problem. People need to
know what exists and how to use it.

Systematic reuse will not just “happen.” Simply
announcing the existence of a library will not
cause the paradigm and behavior change desired.
Systematic reuse needs to be managed and be-
come an intrinsic part of the software processes
that an organization follows. In order to achieve
high levels of reuse and so gain the anticipated
benefits, pervasive process, organization, and
management changes are required. Funding is
needed to pay for the ongoing maintenance of
components. People need to be trained. Reuse of
code alone is not sufficient to produce the large
impacts. Since the cost of the coding phase of a
project is typically less than 40 percent of the
whole, ways to effectively reuse other software
work products (such as designs, tests, or docu-
ments) are needed to fully exploit the reuse op-
portunity.

When confronted with their first reuse failure, and
suddenly realizing the magnitude of the changes
needed to make reuse succeed, organizations
need to pursue an incremental improvement pro-
cess, rather than to abandon the effort. Each re-
use organization will encounter varying opportu-
nities and issues peculiar to its situation. For a
reuse program to be effective, the specific inhib-
itors likely to affect it must be identified and over-
come in a timely way. A questionnaire-based as-
sessment can be a useful tool to pinpoint key
issues. To make it easier to visualize these fac-
tors, HP has used a simple assessment framework.
It identifies factors such as:

* People—culture, motivation, management, train-
ing, skills, and experience

* Process—domain, scope, policies, economics,
and standards

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

* Technology—tools, mechanisms, languages, do-
main, and architecture

Figure 2 elaborates some of these factors.

Once the dominant inhibitors have been identi-
fied, solutions can be proposed and tried. The
following are examples of several of the obstacles
and possible resolutions.?*

Management. Without the long-term support of
senior management and their willingness to make
up-front investments, most reuse programs can-
not succeed.? Such commitment allows projects
to work together and balances the short-term
needs of individual projects with the longer-term
needs of the product portfolio.

The solution may be to pick a suite of projects that
already have a supportive senior manager. Sell
management on the program, on appropriate time
frame expectations, and on the need for commit-
ment by providing them with case studies, cost-
benefit analysis, or return-on-investment calcu-
lations. Provide contacts with other senior
managers who have successful reuse programs in
their organizations.

Culture. People do not know how to make use of
reuse effectively, or are biased against it through
a lack of trust, a “not-invented-here” syndrome,
or fear of loss of creativity and independence.

The solution may be to introduce incentives,
training, and management backing. Publicize suc-
cess stories. Try several alternative methods of
eradicating the ‘“not-invented-here” syndrome.
Build confidence in libraries and support teams.

Organization. Various kinds of institutional bar-
riers make it hard to change financial policies,
contracting models, and other legal policies.
Evaluation policies such as rewarding individual
work and productivity more highly than group
work, or complex rules for exchanging and cross-
charging for software between divisions or groups
can be significant impediments.

The solution may be to create and empower a
corporate-wide body (or several, linked, sector-
or group-wide bodies) to advocate reuse and
make it succeed by changing the reward and fund-
ing mechanisms. Establish groups to define and
support reusable work products.

criss 553

Figure 2 Reuse factors

PROCESS

PEOPLE

TRAINING
INCENTIVES

COMPONENT, PROJECT, LAB LIFE CYCLES
CAPTURE/VERSION WORK PRODUCTS
RE-ENGINEERING

PROTOTYPING

MAINTENANCE

DOMAIN ANALYSIS

DESIGN FOR REUSE

DESIGN WITH REUSE

ECONOMICS

SYSTEM COSTING
COMPONENT PRICING
SUPPORT COSTS
METRICS

LEGAL ISSUES

SCOPE

SIZE OF GROUPS
SIZE OF LIBRARY
PERCENT REUSE EXPECTED

CULTURE
STABILITY
EXPERIENCE

AR G, RSN

DOMAIN

SN SR

MANAGEMENT

CHANGE

STARTUP COSTS
COMPONENTS GROUP
REVIEW QUESTIONS
DEADLINES
ENCOURAGEMENT

TECHNOLOGY é

COMPONENT REPOSITORIES
CLASSIFICATION

SEARCH

BROWSERS

HYPERTEXT

ASSEMBLY TOOLS

CODE WRITERS
GENERATORS AND BUILDERS
TYPES AND PARAMETERS
INFRASTRUCTURE

STANDARDS

PRODUCT FAMILIES
DOMAIN EXPERIENCE
DOMAIN ANALYSIS
ARCHITECTURES
DESIGN FOR REUSE
DESIGN WITH REUSE

DOCUMENTATION
TESTING

LANGUAGES
INTERFACES, CODING
NAMING

Economics. The funding profile for reuse projects
is quite different from conventional software
projects. Typically, several years of up-front in-
vestment are needed before payoff is realized.
Managers are reluctant to make this long-term
investment without some guarantee of success.

The solution may be to develop return-on-invest-
ment (ROI) models. Describe success stories.
Treat reusable work products as assets, requiring
appropriate design, maintenance, and enhance-
ment.

554 criss

Legual issues. In some situations, incorrect con-
tracting mechanisms actively discourage reuse.
The lack of contracting mechanisms (i.e., be-
tween divisions) makes it hard to create agree-
ments that can be trusted or enforced. Increasing
the use of third-party software increases the im-
portance of this issue.

The solution may be to develop (new) contracts,
maintenance agreements, and royalty systems.
Negotiate for rights to contracted components.

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

Technical aspects. Arbitrary software work prod-
ucts are typically not very reusable and are often
hard to find.

The solution may be to provide guidelines and
standards for building, testing, and documenting
reusable work products, together with an en-
forcement mechanism. Sometimes a library with
a classification structure, retrieval mechanisms,
and certification procedures may be required. Ar-
chitectural guidelines, documented frameworks,
and reuse reviews can help ensure that compo-
nents are designed to fit. Introduce reuse-oriented
inspections to ensure quality and correct compo-
nent usage.

While there are many opportunities to inject new
technology,? the nontechnical issues need to be
addressed before this technology can be effective.
For example, object-oriented technology seems
to be a promising vehicle, and recent work in do-
main analysis, object-oriented methods, library
technology, and architectural frameworks has po-
tential to produce a consistent methodology for
domain-specific reuse. However, these will not
succeed in changing the way we work without a
significant effort in the nontechnical areas. For
example, most experience suggests that effective
systematic reuse will require fairly substantial
changes in organization and laboratory-wide soft-
ware process, which are much harder to intro-
duce than “just” introducing a new method that
could be practiced by individuals or (small) inde-
pendent project teams (such as inspections or
configuration management)—and these are not
that easy to introduce. People must learn the most
effective way to perform cost benefit analysis and
evaluation of reuse investments, to set up and use
new processes, organizations, and technology,
and to provide incentives that encourage appro-
priate change.

Effective reuse programs. Successful and effective
reuse programs begin small, are funded from the
start, and have gained experience through pilot
projects.

Start small and incrementally. The most effective
reuse programs concentrate on the identification
and development of a small, high-quality set of
needed, useful components, and make sure that
the users of these components know about them,
know how to use them, and are motivated to do
so. Process changes are introduced incremen-

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

tally, and are adapted as the reuse experience
grows. A small, high-quality, well-documented
component set is far more effective than a large
poor-quality set available on line in a complex
library. Once the reuse program is established,
the size and scope of the program can be ex-
panded. This means that most engineering and
management effort should be (initially) directed
at “component engineering”—including design,
test, documentation, and support—rather than at
the creation of complex library systems and clas-
sification schemes. A set of less than 100 com-
ponents can be handled by simple paper or on-line
catalogs.” Components are either developed
from scratch or re-engineered from existing soft-
ware. Significant levels of reuse can be achieved
in almost any language (COBOL and FORTRAN are
common), with very little tool support. ‘

Fund the start-up. Management should fund the
creation of components (by “producers™), and
also encourage product developers (“consum-
ers”) to make use of available reusable compo-
nents, rather than to write their own. Ensure that
producers are aware of, and responsive to, needs
of the consumers. Ensure that reuse funding is
not diverted. This may be achieved via education,
incentives, rewards, edicts, and changes in per-
formance evaluation criteria. Ultimately, eco-
nomic issues will be significant, but since most
reuse programs start with a “tax” funding, rather
than “self-funding,” there is little industry expe-
rience with cost recovery.

Start with a pilot. Early success and quick learn-
ing are critical in order to gain and retain man-
agement and engineer agreement and support.
Risk and cost are also reduced by starting with a
small pilot project and proceeding incrementally
to expand the scope as the reuse process matures.
Early success will facilitate learning about the
specific organizational and infrastructure issues
that typically impede reuse programs. In some
other cases, however, the project cannot succeed
without a significant investment and effort to do
major system redesign and implementation.

A working group on management and technology
transfer at the Fifth Annual Workshop on Soft-
ware Reuse® identified three major stages of re-
use adoption, similar to several other reuse adop-
tion or “maturity” models, as follows:

criss 555

1. Introduce the commitment to try reuse. Focus
on technology transfer, learning, feasibility
study, and starting a pilot project. Expect to
encounter and handle resistance. Activities
should include determination of the domain
bounds, recommendation for the (changes to
the) producer and consumer software reuse
process, and selection of a domain analysis
process and a business model.

2. Institutionalize the commitment to change
and expand the pilot program. Reuse is inte-
grated into the development cycle. Activities
should include facilitation, education, and
support, as well as the support and creation of
tools and technology. Use appropriate metrics
and gather data, record and report on progress
and lessons learned, and provide resources.
Communicate, motivate people, and maintain
project momentum through personal contacts.

. Sustain the commitment to improve. Reuse is
integrated into the organization’s charter, and
technology transfer effort is reduced. Activi-
ties include collection of information, provi-
sion of support and consultation, assessment
and optimization of the reuse producer and
consumer processes, and expansion of the
scope of the program.

To ensure the success of these stages may require
an independent reuse group, distinct component
producers, reuse champions, change agents, and
corporate sponsors. More complex and detailed
adoption and maturity models have been pro-

posed by several reuse researchers® inspired

by the Software Engineering Institute Process
Capability Model and Assessment.*> While no
common model has yet emerged, all of these mod-
els can offer guidance in the design of a reuse
program. Each model involves several stages,
building on increased learning, experience, con-
fidence, and sophistication. Reuse seems to ma-
ture naturally from an ad hoc stage to a final man-
aged, systematic, architectural stage.

The payoff where time is of the essence. For many
kinds of software development, reducing time-to-
market can be even more important than direct
cost reduction.®”*® Shorter product cycles can
have greater impact on overall profit and com-
petitive advantage than nonreuse development,
or even cost-focused reuse-based development.
Missing a market window can result in a loss of
both market share and a significant portion of the

556 cRiss

available revenue stream of this product before
the next product takes over. A six-month slip in
market introduction in a five-year lifetime prod-
uct can lose more than 27 percent of the potential
profit; under these circumstances, spending even
50 percent more during development may be
worthwhile. Short product cycles allow rapid
learning from the marketplace and allow quicker
changes to compensate for competitor moves.

For example, one of Hewlett-Packard’s instru-
ment divisions was able to produce the applica-
tion software for a new product in less than six
months. A hardware innovation enabled some
new capability, and a quick shift in software pri-
orities allowed a prototype to be deployed at beta-
sites in under a month, with final product roll-out
four months later. The division general manager
asserted that without their prior investment in
building up high levels of reuse (nearly 80 per-
cent), they would not have been able to be as
responsive.

Improved quality is critical to business success. For
products with potentially large sales volumes, high
quality increases the acceptance of product up-
grades, reduces the cost of on-line service support
(for expedient fixes, or “workarounds”), and re-
duces the consequences of loss of reputation (and
market share). For embedded firmware products,
recovery from defects shipped in the product can be
devastating. Increased cost for field service or prod-
uct exchange can destroy product profits. For all
software and firmware products, improved quality
through reuse reduces maintenance costs. HP’s pe-
ripheral and medical divisions consider reuse as an
approach to significantly improve quality and
simultaneously reduce the time-to-market. Testing
of embedded firmware is critical and time-consum-
ing. A one-month delay can have a dramatic impact
on profit. An estimate based on data gathered at one
of HP’s medical divisions suggests that the (pre-ship)
rework costs associated with defects on a typical
product can exceed $1 million.*” These divisions
are looking at systematic reuse as a methodology to
improve quality and to allow more software devel-
opers to be active at the same time in a manageable
way. In the case of very large product volumes
(such as peripherals or consumer appliances), de-
creased developer cost has been much less signif-
icant than the impact of reduced time-to-market.

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

Hewlett-Packard Laboratories research

In 1992 HP Laboratories initiated a comprehen-
sive, multidisciplinary software reuse research
program to systematicallay address the plethora of
issues described above.”

Our research vision is motivated by the notion
that components need to fit together well, and
that there is a need for a more industrialized ap-
proach to quick assembling of new applications
from appropriately designed parts using well-de-
signed tools and processes. I am convinced that

Using only a library
metaphor limits the
reuse program results.

families of related applications (those in the same
application domain space) will increasingly be
built from components and assembled within
frameworks using glue languages, builders, gen-
erators, and other tools. These parts, and the pro-
cess followed in using them, will be domain-spe-
cific to varying degrees.

I see several implications of this change in the
software development paradigm.

* There will be new business opportunities, mod-
els, and issues (e.g., how to fund component
development, how to package and sell reusable
componentry, and how to structure the value
chain).

New organizational structures and specialties
will be needed (e.g., distinct component pro-
ducer and consumer groups, librarians, and do-
main-analysts). New opportunities for training
and management will arise, as well as new cul-
tural and incentive issues.

New methods will be required to both develop
and use the components (e.g., domain analysis,
domain engineering, development with reuse,
and certification). To support these methods,
new tools and technology are possible.

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

The library metaphor. When we try to describe
software reuse, metaphorical terms such as “soft-
ware library,” “software-IC” and “software in-
dustrial revolution,”* “software-bus,” **? “soft-
ware Lego,”® and “software factory”** are
often used. These suggest and connect with more
familiar contexts. While evocative, these carry
both useful and confusing (even contradictory)
messages.

One attractive metaphor for reuse is the “library”
of software “documents,” with authors, publica-
tions, and librarians. The library metaphor fo-
cuses on the management of these documents.
This introduces librarians, catalogs, classification
schemes, and browsing to the reuse field and has
inspired several researchers to investigate vari-
ous retrieval schemes based on faceted classifi-
cations,*’ keywords, or free-text document re-
trieval.® Other researchers are investigating the
interoperability and interconnection of local and
branch libraries, and the problems of interlibrary
loan, copyright, etc. A deeper look at typical in-
dustrial reference library systems, with specialist
reference librarians, consultants, and acquisition
and obsolescence committees, may yield further
insight.

While the library metaphor has guided early work
in classification and storage systems, we believe
that a different metaphor is required for effec-
tively structuring our approach to setting up and
running a reuse program. Software modules are
not as much like books and articles as we think.
Except for encyclopedias, books do not have to
“work together,” nor are they carefully designed
to have compatible, interrelated parts, nor main-
tained on a careful cycle. Copying software is
much easier than copying books. Generally, the
resulting cost of buying or borrowing the wrong
book is not a major problem. While libraries en-
courage the acquisition of different books in the
same subject area, each displaying an author’s
individual creativity, rarely are books weighed
for which is best, nor is synthesis encouraged—
copying and plagiarism are actively discouraged.
While software copyright is important, system-
atic reuse is most often practiced wholly within
the confines of one (part of the) company, in
which case appropriate software sharing and
copying should be encouraged.

While library-based reuse has been fairly success-
ful with stable, well-understood, low-level appli-

Griss 557

cation areas (called “domains” by reuse practi-
tioners) such as user interface libraries, math
libraries, and statistical packages, this has not
yielded a major change in the way most people
develop software.

Software Kits, manufacturing, and factories. In the
library-centered reuse approach, software code
libraries and their usage patterns encourage de-
velopers to look for needed parts after most of the
design work has been done. By this time, the de-
veloper has already made most of the key deci-
sions, and needs to look through large libraries for
a part that can be used or adapted, rather than
designing the product to available parts.

This shortcoming of the library approach has en-
couraged us to find and closely examine alterna-
tive metaphors for useful insights and direction. A
scrutiny of hardware design, product manufac-
turing, and children’s building blocks has pro-
vided us with insight. Hardware design and man-
ufacturing involves producing parts to specified
tolerances, standards, and processes, and then
using design methods that take into account
which parts are preferred by a typical organiza-
tion to enhance manufacturability and reduce
overall costs. Similarly, software products need
to be designed around the available software com-
ponents, rather than waiting until the design is
done, and then looking (often in vain) for the
matching component. This will change the way
we design software and software parts, and will
require different organizations (called “software
factories”) to support and enforce these models.

Domain-specific kits. Our vision is that applica-
tions will increasingly be built from domain-spe-
cific “kits” that consist of several domain-specific
parts. These may include: components, frame-
works, glue languages, generic applications,
tools, environments, and reuse- and domain-ori-
ented processes. We see these kits as a way of
packaging compatible domain-specific reusable
workproducts, processes, and tools, to cost-ef-
fectively cover a space of related applications (a
domain). Application developers using a kit to
build an application within the domain will find it
easier, quicker, and less expensive to use the kit
than to build the entire application from the be-
ginning, or to just use random parts from a library.

LEGO™** building blocks, a popular children’s toy
from LEGO Systems, Inc., illustrates well the con-

558 criss

cept of a kit. The LEGO metaphor has been used
by many authors to suggest parts that fit together
and (subliminally) exhibit ease of use. Over the
years, the LEGO Systems blocks have evolved
from a small variety of simple generic parts, to a
rich family of kits, composed of a mix of generic
and specific parts. Different LEGO kits build
spacecraft, farms, castles, and other “domains.”
Each system comes in carefully-packaged boxes,
illustrating the range of related models the kit can
build. The boxes are marked with the user “ma-
turity” level for which the kit is most appropriate.
Detailed instructions included with the kit specify
the process to be followed in using the kit. Ap-
plication notes are available to indicate how sev-
eral kits may be combined to build even more
complex applications. Some of the series also
come with “domain-specific” frameworks (e.g.,
the space platform, or landing fields). Figure 3
shows some LEGO examples.

While the above example seems perhaps whim-
sical, it illustrates our view that a “kit” should
contain well-designed and packaged compatible
reusable work products, tools, and processes to
assist in providing more “complete” solutions for
application developers. Good kits will substan-
tially reduce the software construction costs and
improve the quality, functionality, and interop-
erability of software in a particular domain.

In the software area, many such kits exist, but
they are often seen as toys or curiosities rather
than a new way of structuring software. For ex-
ample, the Pinball Construction Kit and Calcula-
tor Construction Kit are well-known end-user
kits. HP’s HP-VEE and National Instrument’s
Labview support the construction of instrument
systems by engineers, allowing the connection of
“virtual” instruments together. Each of these
provides an environment in which components
(pieces of calculator, pinball game, or instrument)
are selected from a palette, and assembled using
tools and a visual glue language, to make com-
plete programs that then can be immediately run.
Hypercard** for the Apple Macintosh**, and
ToolBook** for the IBM-Compatible PCs, provide
a similar environment in which components such
as buttons, pages, and panels can be glued to-
gether and customized to develop a variety of
information management and educational appli-
cations. These provide a hypertext-based frame-
work, and a programming paradigm based on in-
crementally adapting a running system (a skeletal

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

Figure 3 Sample LEGO examples

HGC SYS1Em

or generic application), so that prototyping and
rapid delivery are enhanced. Additional compo-
nents (buttons, scripts, widgets, or stacks) can be
purchased and added to the available set. Spread-
sheet systems are another well-known example.
Again, the environment provides a skeletal ap-
plication that can be adapted into a complete ap-
plication by a combination of visual program-
ming, macro-language programs, and the loading
and modification of complete spreadsheet pro-
grams. NeXT Inc. publishes a catalog of objects
and kits that can be run in its NextStep** envi-
ronment.

In a more systematic software process, kits are
produced by using methods such as domain anal-
ysis, domain engineering, and component engi-
neering, using specialized tools, and perhaps
drawing on more generic technologies such as
customization Kits, UI kits, software-bus frame-
works, and architecture and design handbooks.

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

Our software reuse department in HP Laborato-
ries is researching some of these methods, and is
applying them to prototype kits we are currently
building. It is our research goal to understand how
to build and use kits, how to improve current re-
use methods, and how to make their usage a more
significant part of the way HP builds software. For
example, current domain-analysis methods need
to be modified to permit the smooth combination
of compositional and generative reuse that are
implied by our integrated approach.* Our group
has built several kits, such as ACEKkit for an end-
user programmable application construction
environment toolkit,* and a distributed software-
bus kit.* We are currently prototyping a new kit
in the domain of group-task managers and calen-
dars, using the software-bus as a base kit, with
more explicit domain analysis and kit design
steps. As the ideas mature, we will work collab-
oratively with pilot divisional projects to apply
the concepts and methods to their situations.

criss 559

Software preferred parts and group technology.
Experience with preferred parts and group tech-
nology approaches in manufacturing can also be
applied to software. Typical manufacturing orga-
nizations expend a significant amount of money”!
to select and qualify vendors and parts. Engineers
are then required to design new products using
these preferred parts. This simplifies the manu-
facturing process and amortizes the cost of ac-
quiring the parts. Methods called “design for
manufacturability” are common, and engineers
are expected to learn these methods and to use
the recommended parts. For software, this sug-
gests that we introduce design methods based on
preferred software parts, and invest in the qual-
ification and certification of preferred software
parts.

To increase reuse and decrease redundancy, an
HP software project® applied an analysis derived
from manufacturing group technology® pre-
ferred-parts clustering and selection-approach
features to do a reuse-oriented early design re-
view. During development of a real-time data-
base, this review resulted in a 25 percent reduc-
tion in final code size, and a 40 percent time
savings in detailed design, implementation, and
unit testing. Overall, the extra time for the reuse
review and design change was more than com-
pensated for, resulting in a 25 percent saving in
total project cost.

Many computer-aided design (CAD) tools have
been augmented to access libraries of preferred
parts and give manufacturing cost estimates of
using the various parts. This suggests that future
reuse-based software environments could help
the developer to assemble components into com-
plete systems, as well as comment on the size,
cost, quality, and performance implications of se-
lecting a particular part.

Flexible software factory. The other important as-
pect of our research is a “flexible software fac-
tory” in which kits will be constructed and used.
Not only must software parts be designed to work
together (the notion of a kit) but the component
production and product assembly processes must
be optimized to decrease redundant engineering
and rework. Carefully tuned processes and design
guidelines must work together. Attention must be
paid to standards for construction, certification,
and test.*

560 criss

The flexible software factory provides a frame-
work for analyzing and innovating the way we
design, structure, and equip the organizational
and technical infrastructure of a software entity to
produce, use, and support kits. The term is based
on the notion of a software factory, combined
with the idea of flexible manufacturing systems.

While the explicit title “software factory” was
first applied by the Software Development Cor-
poration (SDC) in the United States to develop a
more engineered approach to software, it was in
Japan that the experience of actually setting up
and optimizing hardware manufacturing organi-
zations was applied to extend these early ideas of
a software factory.

Over the years, the Japanese manufacturing in-
dustries have introduced a series of innovations
that have increased the flexibility, focus, and agil-
ity of factories. These include the focused factory
and the flexible factory.® The key idea is to reduce
unnecessary steps, reduce the number of different
parts, and optimize the materials flow (such as
just-in-time processing) to reduce time-to-market
and the time it takes to set up a new product line.

The initial factories and assembly lines were set
up to achieve economies of scale to make vast
numbers of essentially identical products, using
carefully tuned processes, specialized tools, and
optimized material flow, justifying huge capital
investment in a rather rigid plant and process. As
described by M. Cusumano,* software factories
are more appropriately aimed at economies of
scope, obtained by sharing standard parts and
processes across a variety of related products.

Toshiba, Hitachi, and others'>* invested large
amounts of money to train, equip, and measure
organizations of many thousands of programmers
in order to systematically improve large-scale
software development. They created a series of
focused software organizations that employ high
levels of software reuse in limited classes of ap-
plications (called application domains) to more
quickly produce related applications. Simple re-
peatable and standardized processes are used and
optimized by continuously gathered metrics.

While the early notions of a software factory are
also somewhat rigid,“** software construction
needs flexible, adaptable organizations akin to

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

those introduced in flexible manufacturing to
achieve economies of scope.

Different authors use the term software factory to
focus on different aspects of a more industrialized
production of software. Some focus on the orga-
nizational aspects, emphasizing distinct special-
ties and roles. Others focus on the use of rigorous,
high-maturity software processes and metrics.
Some focus on reuse, while others emphasize au-
tomated toolsets and powerful environments. Fi-
nally, others address the training, learning, and
flexibility aspects. As indicated by Cusumano,*
these are all facets of applying factory-like ideas
to software.

V. Basili uses the term “experience factory” or
“knowledge factory”* to emphasize the flexible
information-processing and learning aspects of a
reuse-based organization. M. Patterson®’ applies
the manufacturing or factory metaphor to product
development as well as software development,
mapping the processing of raw materials and man-
ufactured goods into the gathering, processing,
and use of information. M. Simos discusses or-
ganizational design and learning in his papers on
the Organon.**® W. Scacchi emphasizes process
support, reuse, and tools in his University of
Southern California system factory.® The term
“new software factory”® has been used by Lock-
heed Corp. to refer to a domain-specific technical
infrastructure for domain-specific software engi-
neering, which partially explores organizational
roles. J. Eng describes a Bellcore “workstation
software factory.”*

For us at HP Laboratories, the key is to integrate
several factory and manufacturing derived con-
cepts together to understand how the cultural,
organizational, people, management, technical,
and process issues play together as an organiza-
tion builds software by creating, using, support-
ing, and evolving domain-specific kits. Our sense
of “flexibility” is coupled with the notion that
different processes and styles of kits are most ap-
propriate for different styles of software business
and organizational experience. To do this, our
multidisciplinary research department includes
experts in organizational design, anthropology,
software process modeling, and business as well
as traditional software technologists and engi-
neers.” Figure 4 illustrates the concepts of the HP
domain-specific kits and the flexible software fac-

tory.

{BM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

Accordingly, our idea is to perform a business-
specific and domain-specific design or redesign by
following these steps:

s Model the business (business analysis) to iden-
tify the key issues this variant of the reuse-
based business may address, as well as influ-
ence and determine the domain choice.

s Identify key software reuse process elements
(technical analysis) and relate these to market-
ing, product definition, and software develop-
ment processes.

» Define the new reuse-oriented organization (so-
cial analysis) starting from the reuse process
elements, a set of design guidelines and ele-
ments adapted from the experience and rede-
sign of knowledge work organizations, reuse or-
ganizations, and the software processes used by
software entities.

s Provide the factory with a supporting technical
infrastructure (tools and environments) appro-
priately customized from a “kit” of flexible
software factory support components and
framework.

Identifying the key software reuse process ele-
ments and adapting the reuse organization to op-
timize these is similar in concept to binding the
organization roles in Basili’s reuse reference ar-
chitecture,® the process selection phase of B.
Boehm’s spiral model, % or the use of “core pro-
cess” based organization and business redesign.
Tools and environments in the flexible software
factory will be built on an open information man-
agement and computer-supported collaborative
work substrate (built on a distributed software
bus,* a multiuser hypertext,* and an open soft-
ware tool integration framework such as HP Soft-
Bench**.* This will support both traditional soft-
ware development and CASE tools, and also new
software reuse and process enactment tools (such
as Matisse,® HP SynerVision**, domain-analysis
tools, browsers, builders, and generators). This
framework will permit customizing both the soft-
ware process and tool set to support the specific
kind of reuse being done.

Conclusion

Software reuse can work and can produce satis-
fying savings in cost and time, even though tra-
ditional problems in measuring software produc-
tivity make it difficult to quantify the savings.
Software reuse, however, is not a quick-fix silver

Figure 4 A flexible software factory

SYSTEMATIC SOFTWARE REUSE

FUNCTION LIBRARIES OBJECT LIBRARIES

E CLASS
INTERFACES ENCAPSULATE
TOOLS INHERIT
CLASSIFICATION OBJECT-ORIENTED
ANALYSIS & DESIGN

INTEGRATION MECHANISMS

CUSTOMIZATION TECHNOLOGY
BUILDER, GENERATOR TOOLS

DOMAIN, KIT ANALYSIS,
AND DESIGN METHODS

DOMAIN-SPECIFIC KITS

bullet. To make software reuse work takes more
effort than the simple and familiar software li-
brary metaphor would suggest. Inhibitors to suc-
cessful systematic reuse can be overcome by im-
proved processes, careful management, and well-
designed and packaged reusable software. New
methods and technologies can yield highly reus-

562 GcRiss

able domain-specific kits, comprising reusable
components, frameworks, and glue languages.
New processes and organizations can produce
flexible and effective software factories. These
approaches offer great promise for further gains,
and a more systematic attack on the software
problem.

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

DRAMATICALLY
IMPROVED

TIME TO MARKET
QUALITY

FLEXIBLE SOFTWARE FACTORY

USER NEEDS

PURCHASED

KIT DESIGNERS, -

TOOL BUILDERS

REUSE PROCESS ADOPTION
AND EVALUATION

ECONOMIC AND METRIC
MODELS

REUSE ORGANIZATION DESIGN

CUSTOMIZED REUSE
PROCESSES,
TOOLS, ENVIRONMENTS

RELATED
APPLICATIONS

CUSTOMER

SOFTWARE
PRODUCTS

Acknowledgments

I received many useful suggestions from Patricia
Collins, Danielle Fafchamps, Mehdi Jazayeri,
Reed Letsinger, James Navarro, Ruth Malan,
Marv Patterson, Chuck Untulis, and Kevin Went-

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

zel. I am particularly grateful for the efforts and
dedication of my research assistant, Marty
Wosser. She read and corrected numerous drafts
of the essay, found key references, investigated
HP preferred parts processes, and helped prepare
the figures.

GrRISs 563

**Trademark or registered trademark of Stepstone, Inc.,
AT&T, LEGO Systems, Inc., Apple Computer, Inc.,
Asymetrix Corp., NeXT, Inc., or Hewlett-Packard Co.

Cited references and notes

1. T. Biggerstaff and A. Perlis, Software Reusability, Vol-
umes 1 & 2, ACM Press, New York (1989).

2. W. Tracz, IEEE Tutorial on Software Reuse: Emerging
Technology, IEEE Computer Society Press, IEEE Cat-
alog Number EH0278-2 (1988).

. B. Barnes and T. B. Bollinger, “Making Reuse Cost
Effective,” Software 8, No. 1, 13-24 (January 1991).

. B. I. Cox, “Planning the Software Industrial Revolu-
tion,” Software 7, No. 6, 25-33 (November 1990).

. G. Aharonian, “Starting a Software Reuse Effort at Your
Company,” (distributed at) NASA Workshop, Towards a
National Software Exchange (April 1991); available
through Source Translation and Optimization, P.O. Box
404, Belmont, MA 02178.

. G. Stalk, Jr., “Time—The Next Source of Competitive
Advantage,” Harvard Business Review 66, No. 4, 41-51
(Jul-Aug 1988).

. F. P. Brooks, Jr., “No Silver Bullet: Essence and Acci-
dents of Software Engineering,” IEEE Computer 20, No.
4, 10-19 (April 1987).

. D. Mcllroy, “Mass-produced Software Components,”
Proceedings of Software Engineering Concepts and
Technigues, 1968 Nato Conference on Software Engi-
neering, J. M. Buxton, P. Naur, and B. Randell, Editors
(January 1969), pp. 138-155; available through Petrocel-
li/Charter, New York (1969).

. Software Reusability, W. Schaefer, R. Prieto-Diaz, and
M. Matsumoto, Editors, Ellis Horwood, Chichester, En-
gland (1993).

. J. W. Hooper and R. Chester, Software Reuse—Guide-
lines and Methods, Plenum Press, New York (1991).

. P. Walton, “Software Reuse: Management Issues,” Pro-
ceedings of the First International Workshop on Software
Reusability, R. Prieto-Diaz et al., Editors (July 1991), pp.
100-107; available through SWT Memo Internes Memo-
randum des Lehrstuhls, Software-Technologie, Prof. Dr.
Herbert Weber, Fachbereich Informatik, Universitat
Dortmund, Postfach 500 500, D-4600 Dortmund 50, Ger-
many.

. R. H. Yacobellis, 4 White Paper on U.S. vs. Japan Soft-
ware Engineering, Technical Report, Motorola, Austin,
TX 78767 (January 1990).

. J. R. Tirso, “The IBM Reuse Program,” Proceedings of
the Fourth Annual Workshop on Software Reuse, L. La-
tour, Editor, Department of Computer Science, Univer-
sity of Maine, Orono, ME 04469 (November 1991), pp.
1-5.

. J. R. Tirso, “Championing the Cause: Making Reuse
Stick,” Proceedings of the Fifth Annual Workshop on
Software Reuse, M. Griss and L. Latour, Editors, De-
partment of Computer Science, University of Maine,
Orono, ME 04469 (November 1992), pp. Tirso 1-6.

. K.J. Anderson, R. P. Beck, and T. E. Buonanno, “Reuse
of Software Modules,” AT&T Technical Journal 67, No.
4, 71-76 (July 1988).

. R.P.Beck, S. R. Desai, D. R. Ryan, R. W. Tower, D. Q.
Vroom, and L. M. Wood, “Architectures for Large Scale
Reuse,” AT&T Technical Journal 71, No. 6, 34-45 (No-
vember/December 1992).

564 GRiss

. J. Faget and J. Morel, “The REBOOT Approach to the
Concept of a Reusable Component,” Proceedings of the
Fifth Annual Workshop on Software Reuse, M. Griss and
L. Latour, Editors, Department of Computer Science,
University of Maine, Orono, ME 04469 (November 1992),
pp- Faget 1-7.

. J. Favaro, “Measuring the Cost of Reusable Ada Com-
ponents,” Proceedings of First Symposium on Ada in
Aerospace, Barcelona (December 1990).

. R. Martin, G. Jackoway, and C. Ranganathan, “Software
Reuse Across Continents,” Proceedings of the Fourth
Annual Workshop on Software Reuse, L. Latour, Editor,
Department of Computer Science, University of Maine,
Orono, ME 04469 (November 1991), pp. 1-7.

. G. Mayobre, “Using Code Reusability Analysis to Iden-
tify Reusable Components for the Software Related to an
Application Domain,” Proceedings of the Fourth Annual
Workshop on Software Reuse, L. Latour, Editor, Depart-
ment of Computer Science, University of Maine, Orono,
ME 04469 (November 1991), pp. 1-14.

. A. Nishimoto, “Evolution of a Reuse Program in a Main-
tenance Environment,” Proceedings of the Second Irvine
Software Symposium—ISS’92, R. W. Selby, Editor, Irv-
ine Research Unit in Software, Department of Informa-
tion and Computer Science, University of California, Irv-
ine, CA 92717 (March 1992), pp. 89-108.

. P. Collins, “Considering Corporate Culture in Institution-
alizing Reuse,” Proceedings of the Fifth Annual Work-
shop on Software Reuse, M. Griss and L. Latour, Editors,
Department of Computer Science, University of Maine,
Orono, ME 04469 (November 1992), pp. Collins 1-4.

. K. Harris, “Increasing Reusability Through Architectural
Design,” Proceedings of the Fifth Annual Workshop on
Software Reuse, M. Griss and L. Latour, Editors, De-
partment of Computer Science, University of Maine,
Orono, ME 04469 (November 1992), pp. 1-5.

. W. B. Frakes, “An Empirical Framework for Software
Reuse Research,” Third Annual Workshop: Methods &
Tools for Reuse, CASE Center, Syracuse University,
Syracuse, NY 13244-4100 (June 1990), pp. 1-5.

. W. Tracz, “Software Reuse: Motivators and Inhibitors,”
Digest of Papers, Computer Society International Con-
ference (COMPCON) Spring ’87; Thirty-Second IEEE
Computer Society International Conference on Intellec-
tual Leverage, IEEE Cat. No. 87CH2409-1 (February
1987), pp. 358-363.

. M. L. Griss, J. Favaro, and P. Walton, Managerial and
Organizational Issues—Starting and Running a Software
Reuse Program, Ellis Horwood, Chichester, England
(1993), Chapter 3, pp. 51-78.

. It is also true that many successful reuse programs have
a “corporate angel” who funds and nurtures the program
through its early years.

. W. Tracz, “Software Reuse Technical Opportunities,”
Proceedings of the DARBP Computer Science Confer-
ence, Los Angeles, CA (April 1992).

. S. Isoda, “An Experience of Software Reuse Activities,”
Proceedings of the First International Workshop on Soft-
ware Reusability, R. Prieto-Diaz et al., Editors (July
1991), pp. 79-85; available through SWT Memo Internes
Memorandum des Lehrstuhls, Software-Technologie,
Prof. Dr. Herbert Weber, Fachbereich Informatik, Uni-
versitdt Dortmund, Postfach 500 500, D-4600 Dortmund
50, Germany.

. Proceedings of the Fifth Annual Workshop on Software

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

Reuse, M. L. Griss and L. Latour, Editors, Department
of Computer Science, University of Maine, Orono, ME
04469 (November 1992).

. M. J. Davis, “Stars Reuse Maturity Model: Guidelines for
Reuse Strategy Formulation,” Proceedings of the Fifth
Annual Workshop on Software Reuse, M. Griss and
L. Latour, Editors, Department of Computer Science,
University of Maine, Orono, ME 04469 (November 1992),
pp- M 1-6.

. R. Prieto-Diaz, “Making Software Reuse Work: An Im-
plementation Model,” Software Engineering Notes 16,
No. 3, 61-68 ACM Press, New Yoik (July 1991).

. P. Koltun and A. Hudson, “A Reuse Maturity Model,”
Proceedings of the Fourth Annual Workshop on Software
Reuse, L. Latour, Editor, Department of Computer Sci-
ence, University of Maine, Orono, ME 04469 (November
1991), pp. 14.

. W. S. Humphrey and W. L. Sweet, 4 Method for As-
sessing the Software Engineering Capability of Contrac-
tors, Technical Report CMU/SEI-87-TR-23 ESD/TR-87-
186, Carnegie Mellon University, September 1987;
available through Defense Technical Information Center,
Attn: FDRA, Cameron Station, Alexandria, VA 22304-
6145.

. W. S. Humphrey, “Characterizing the Software Process:
A Maturity Framework,” Software 5, No. 2, 73-79 (1988).

. “Architectural” implies domain analysis, architectures,
frameworks, and well-designed, compatible building
blocks. “Systematic” or “managed” implies well-defined
and intentional reuse processes and carefully-structured
organizations.

. W. T. Ward, “Calculating the Real Cost of Software De-
fects,” Hewlett-Packard Journal 42, No. 4, 55-58, 3200
Hillview Ave., Palo Alto, CA 94304 (October 1991).

. P. G. Smith and D. G. Reinertsen, Developing Products
in Half the Time, Van Nostrand Reinhold, New York
(1991).

. M. L. Griss, “A Multi-Disciplinary Software Reuse Re-
search Program,” Proceedings of the Fifth Annual Work-
shop on Software Reuse, M. Griss and L. Latour, Editors,
Department of Computer Science, University of Maine,
Orono, ME 04469 (November 1992), pp. Griss 1-8.

. B. J. Cox, “There Is a Silver Bullet,” BYTE 15, 209-218
(October 1990).

. J. Purtilo, The Polylith Software Bus, Technical Report
CSD 2469, Computer Science Department, Institute for
Computer Studies, University of Maryland, College Park,
MD 20742 (1990).

. B. W. Beach, M. L. Griss, and K. D. Wentzel, “Bus-

based Kits for Reusable Software,” Proceedings of Irvine

Systems Symposium (ISS)°92, University of California at

Irvine, Irvine, CA (March 1992), pp. 19-28.

. E. Corcoran, “Soft Lego: How Software Designers Hope
to Make Programs Reusable,” Scientific American, 145-
146 (January 1993).

. M. A. Cusumano, Japan’s Software Factories, Oxford
University Press, New York (1991).

. W. S. Humphrey, “Software and the Factory Paradigm,”
Software Engineering Journal 6, No. 5, 370-376 (Sep-
tember 1991).

. J. Eng, “Implementing a Software Factory at Bellcore,”
Proceedings of the Fifth Annual Workshop on Software
Reuse, M. Griss and L. Latour, Editors, Department of
Computer Science, University of Maine, Orono, ME
04469 (November 1992), pp. Eng 1-8.

47. R. Prieto-Diaz, “Implementing Faceted Classification for

Software Reuse,” Proceedings of the Twelfth Interna-
tional Conference on Software Engineering, 1EEE
(March 1990), pp. 300-304.

. W, B. Frakes and B. A. Nejmeh, “An Information System

for Software Reuse,” Proceedings of the Tenth Minnow-
brook Workshop on Software Reuse 1987, IEEE Com-
puter Society Press, Holmdel, NJ (1988), pp. 142-151.

. M. Griss and W. Tracz, “Workshop on Software Reuse,”

ACM Software Engineering Notes 18, No. 2, 74-85 (April
1993).

. J. Johnson, B. Nardi, C. L. Zarmer, and J. R. Miller,

“Ace: Building Interactive Graphical Applications,”
Communications of the ACM 36, No. 4, 41-55 (April
1993).

. HP has a group of over 40 people within its corporate

procurement organization whose job it is to assign part
numbers and maintain a database of over 100 000 parts
ranging from resistors to ICs, gears, and complete sub-
systems.

. F. Fatehi, “Group Technology + Design for Reusability

= On-Time Quality Software,” [HP] R&D Network,
18-21 (January 1990).

. Group technology is a manufacturing methodology that

groups parts into families by coding prominent charac-
teristics such as shape, materials, and manufacturing
steps.

. Cox, in Reference 4, suggests that software “gauges” can

be used to help certify that components meet their spec-
ifications within acceptable tolerances.

. For example, Kodak refers to their reuse endeavor by the

rather static term “software warehouse.”

. V. R. Basili, G. Caldiera, and G. Cantone, “A Reference

Architecture for the Component Factory,” ACM Trans-
actions on Software Engineering and Methodology 1, No.
1, 53-80 (January 1992).

. M. L. Patterson, Accelerating Innovation, Van Nostrand

Reinhold Co. Inc., New York (1993).

. M. Simos, “The Domain Life Cycle: Steps Toward a Uni-

fied Paradigm for Software Reusability,” IEEE Tutorial
on Software Reuse: Emerging Technology, Will Tracz,
Editor, IEEE Computer Society Press, 1730 Massachu-
setts Ave., N.W., Washington, DC, 20036-1903 (1988).

. M. A. Simos, “Software Reuse and Organizational Devel-

opment,” Proceedings of the First International Workshop
on Software Reusability, R. Prieto-Diaz et al., Editors (July
1991), pp. 36-41; available through SWT Memo Internes
Memorandum des Lehrstuhls, Software-Technologie, Prof.
Dr. Herbert Weber, Fachbereich Informatik, Universitit
Dortmund, Postfach 500 500, D-4600 Dortmund 50, Ger-
many.

. W. Scacchi, The Software Infrastructure for a Distributed

System Factory, Technical Report, University of South-
ern California, Los Angeles, CA 90089-0782 (June 1990);
revised version appeared in Software Engineering Jour-
nal 6, No. 5, 355-369 (September 1991).

. W.Mark, Ceres: A New Software Factory, Technical Re-

port, Lockheed, Palo Alto, CA (April 1992).

. B. W. Boehm, “A Spiral Model of Software Development

and Enhancement,” Computer 21, No. 5, 61-72 (May
1988).

. M. Creech, D. Freeze, and M. L. Griss, “Using Hyper-

text in Selecting Reusable Software Components,” Pro-
ceedings of Hypertext’9] (Software and Systems Labo-
ratory, Palo Alto, CA), ACM, New York (December

IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

Griss 565

1991), pp. 25-38. (See also HP Laboratory Technical Re-
port SSL-91-59.)

. M. R. Cagan, “The HP Softbench Environment: An Ar-
chitecture for a New Generation of Software Tools,”
Hewlett-Packard Journal 10, 36-47, 3200 Hillview Ave-
nue, Palo Alto, CA 94304 (June 1990).

. P. Garg, T. Pham, B. Beach, A. Desphande, W. Fong,
A. Ishizaki, and K. Wentzel, Matisse: A Knowledge-
based Team Programming Environment, Technical Re-
port HP1.-92-104, Hewlett-Packard Laboratories, Tech-
nical Publications Department, 1501 Page Mill Road, Palo
Alto, CA 94304 (August 1992); to appear in International
Journal of Software Engineering (1994).

Accepted for publication March 31, 1993.

Martin L. Griss Hewlett-Packard Laboratories, 1501 Page
Mill Road, Palo Alto, California 94306 (electronic mail:
griss@hpl.hp.com). Dr. Griss is Technical Director for Soft-
ware Engineering and a laboratory scientist/engineer in the
Computer Research Center at Hewlett-Packard Laboratories,
Palo Alto. He leads research on software reuse, software fac-
tories, software-bus frameworks, and hypertext-based reuse
tools. He works closely with HP corporate engineering to
systematically introduce software reuse into HP’s software
development processes. He was previously director of HP’s
Software Technology Laboratory, researching expert sys-
tems, object-oriented databases, programming technology,
human-computer interaction, and distributed computing. Be-
fore that, he was Associate Professor of Computer Science at
the University of Utah, working on computer algebra and
portable LISP systems (PSL). He received a Ph.D. in physics
from the University of Illinois in 1971.

Reprint Order No. G321-5524.

566 cRiss IBM SYSTEMS JOURNAL, VOL 32, NO 4, 1993

