
A storage subsystem
for image and records
management

by H. M. Gladney

Digital storage and communications are
becoming cost effective for massive collections
of document images with access not only for
nearby users but also for those who are
hundreds of miles from their libraries. The
Document Storage Subsystem (DocSS) provides
generic library services such as searching,
storage, and retrieval of document pages and
sharing of objects with appropriate data security
and integrity safeguards. A library session has
three components: a manager of remote
catalogs, a set of managers of large-object
stores, and a manager of cache services. DocSS
supports all kinds of page data-text, pictures,
spreadsheets, graphics, programs-and can be
extended to audio and video data. Document
models can be built as DocSS applications; the
paper describes a folder manager as an example.
What differentiates DocSS among digital library
projects is its approach to data distribution over
wide area networks, its client-server approach to
the heterogeneous environment, and its
synergism with other components of evolving
open systems.

R eplacing paper in massive administrative ap-
plications by raster image data is of high cur-

rent interest. Electronic libraries for scientific and
cultural collections are drawing similar attention
from a different community. This paper describes
a Document Storage Subsystem (DocSS) that
knits together more basic software components to
create the digital analog of a conventional library.

DocSS originated in 1987 inquiries into supplant-
ing the use of paper by engineers, doctors, law-
yers, and other professionals for the well-known
advantages of digital media. Within the Research

Division of IBM, it quickly became apparent that
replacing even a portion of the division’s depen-
dency on paper would be a massive task involving
undeployed technologies and some invention.
Support for a professional staff is particularly dif-
ficult because of the heterogeneity of the tools,
working methods, and objectives even within a
single profession or a single enterprise. In con-
trast, we observed that large clerical staffs have
relatively homogeneous needs, especially for
their core activities. We further found that some
massive clerical automation opportunities-in
governmental human services, documentation
for regulated industries, and civil engineering, in
addition to the usual insurance and banking ap-
plications-required only functional subsets of
what a professional staff needed.

As a practical matter, it was possible to devise,
finance, and bring to market an offering for such
applications, with a storage system architecture
that supports a long-term goal of IBM. This offer-
ing, the IBM Image and Records Management
(IRM) system, combines a partial implementation
of DocSS with sibling parts of a toolkit-scan,
print, and presentation services, optical character
recognition and related information capture rou-
tines, distributed work list management, and a
folder manager. By showing how DocSS is re-

OCopyright 1993 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

lated to other parts of the IRM product, the paper
suggests how it can contribute to other packaged
offerings.

Library service is seen by many people as an en-
hancement of existing services that could store
data from many applications. Encoded data are
usually more useful and cheaper to handle than
raster image representations of the same infor-
mation. Raster image is needed for photographs,
for rescuing existing paper like the 40000000 Cal-
ifornia birth, death, and marriage certificates de-
teriorating in archives, and for dealing with in-
coming paper such as income tax returns. DocSS
handles all kinds of objects. Raster image data are
prominent because they dominate performance.
The reader should accept a broad construction of
the word “image”; in what follows, an image is a
representation of something other than itself.
Sometimes the coined word “blob” (binary large
object) replaces “image” to emphasize that
DocSS does not interpret the data that it holds
and catalogs.

DocSS is responsive to requirements gleaned
from more than a dozen in-depth application stud-
ies. Since the needs of a state highway depart-
ment illustrated generic requirements better than
any other single case and because of the quality
of a consultant’s analysis, the paper uses this case
to motivate the architectural aspects emphasized.
A recent term exercise’ for students, closely re-
lated to an American Physical Society projec-
tion, proposed national distribution of scholarly
publications; it will be seen that, in the service
niche that it addresses, DocSS comes remarkably
close to providing what such diverse studies call
for. What differentiates DocSS from any compet-
itive technology is its approach to data distribu-
tion over wide area networks, its client-server ap-
proach to the heterogeneous environment, and its
synergism with other components of evolving
open systems.

Document library applications and
requirements

This study was stimulated by inquiries about re-
placing significant amounts of paper with digital
representations-inquiries from within IBM and
from associates in state government. In the IBM
research environment in which the author is em-
ployed, storing and cataloging images and graph-
ics present problems that each scientist must ad-

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

dress individually, or forego using such data.
Consequently people use and share such data
much less than might be desirable.

Doubting that our own working environment typ-
ified more common situations, we analyzed two
dozen outside application^,^ mostly in the gov-
ernment of the State of California. Their needs
seemed to be spanned by four cases: a vital rec-
ords archive, collection of commercial income
taxes, historical data in a large law office, and an
engineering collection called “Bridge Books.”
Only the last one is described below. Of the li-
brary applications we inspected, it attracted us
most as a research target. It intermixes image,
graphics, text, geographic, video, and audio data.
It is big, challenging, and contains most of the
ingredients found in all of the others collectively.

Highway engineering. In a 1985 highway records
management study, Arthur Young and Company
(AY) recommended replacement of mostly man-
ual document systems by a comprehensive opti-
cal disk records management system. The study
found that “The California Department of Trans-
portation (Caltrans) is responsible for the plan-
ning, design, construction administration, and
maintenance of State highway facilities. These
activities have resulted in . . . documents . . .
which date back prior to 1930. Estimates . . . in-
dicated that approximately forty-eight million
pages of environmental, project development,
structures maintenance, right-of-way, and con-
struction documents were being maintained in
various manual filing systems at headquarters,
district offices, and . . . record centers. Not in-
cluded in this estimate were documents main-
tained by Planning and Programming, Mainte-
nance and Transportation Operations, and
Administration and Finance.”’

Over 2000 Caltrans engineers work in 11 district
offices separated by hundreds of miles. A high-
way project may last several years and involve
many different groups: headquarters evaluation
and approval, design squad, traffic survey, right-
of-way, appraisals, and environmental impact.
Central document repositories reside in Sacra-
mento and Los Angeles. Caltrans has supplied
many engineers with intelligent workstations and
CAD (computer-aided design) software and re-
quires a shared document repository that is un-
obtrusively accessible.

GLADNEY 513

“Bridge Books” collects into binders the con-
struction and inspection history of each of 36 000
bridges and highway overpasses. Although grey
scale and color photographs are important, what
primarily makes this an image application is ex-
isting paper. The 50 million pages of drawings and
reports are classified into 48 categories. How
many pages are originals is not known; AY esti-
mated 2 to 30 copies of each original. Six million
new originals enter the system each year, i.e.,
about one arrival every three seconds if input oc-
curs during normal office hours. Because of in-
adequate housing, the sole copy of many docu-
ments is at risk from fire or water damage.

Document retrieval rates were projected at 1600
per day and 500 during peak hours; sizes of doc-
uments were not specified. Refinement of the in-
teractive search is an explicit requirement. Work-
station responsiveness targets were stated as:
eight seconds to identify candidate documents
from indices; 20 seconds to present the first sheet
of a selection; and one second for subsequent
sheets when the system is 80 percent loaded. We
believe that users will not be satisfied with this
performance.

AY judged that the cost effectiveness of optical
character recognition is still to be demonstrated
for Caltrans.‘j The size of the conversion needed
to digitize “old paper” will force the question to
be reconsidered. Samples suggest that each doc-
ument in a class has the same kind of indexing
information located in one of a few places on the
paper. An obvious start would be to scan several
thousand samples, test whether simple transfor-
mations yield numerical signatures that sort the
images into types and the extent to which docu-
ment analysis’ and optical character recognition
can replace manual indexing.

What data search and information representation
features individual engineers want was not care-
fully studied. The consultant’s analysis’ of cur-
rent procedures emphasized the quality control
problems inherent in a massive paper system:

Loss of individual documents or index entries,

Loss of historical and legal documents because

Inability to search on secondary keys
Inability to locate the sole copy if checked out

or both

of varying retention procedures

Distribution of related data among several lo-

Difficulty of updating records when indices

Cost of managing project splits and combina-

cations

change, e.g., post mile limits

tions

More subtle quality controls may be helpful but
were not mentioned. In this collection, as in every
other we have observed, controls end at the level
of folders. Nothing prevents improper insertion
or removal of a sheet from a folder or misfiling,
and there is no help for auditing adherence to
prescribed procedure.

Quite simple searches into the collection can have
significant impact. Caltrans sometimes loses tort
litigation because it is not able to produce records
in a timely fashion. We even heard of a bizarre
episode in which the highway agency had been
negotiating with a city to buy some real estate,
only to discover that it already owned the parcel.
Apparently the city had started using the idle land
many years previously.

Role of document storage services. Document stor-
age and access software can be realized in two
layers above a base of file systems and database
managers (Figure 1). The lower layer runs DocSS,
which stores and retrieves objects to and from
each library collection, updates and searches li-
brary catalog records, and limits who can manip-
ulate which data, giving only services that are
identical for all types of documents. Instances of
the higher layer, called document managers, help
applications or end users with their special kinds
of documents. The storage subsystem layer pro-
vides generic document storage services; each
of potentially many document managers imple-
ments a model such as hypertext. Application
programs are workstation programs; the storage
subsystem embeds needed interprocess and in-
termachine communications.

Typical document managers interpret scanned
data to create catalog entries automatically, man-
age interrelationships among documents, facili-
tate the most common search methods, and help
move information among workers. For instance:

A folder manager might scan electronic mem-
oranda, letters, contracts, and financial rec-
ords; such a manager would extract names, ad-
dresses, and dates to cross-index information

IBM SYSTEMS JOURNAL, VOL 32, NO 3, I S 9 3

received8 and associate each document with an
account folder. It might further model the in-
formation flow of a business core, such as
“back room” operations in an insurance com-
pany-
The entities of a second document manager
might be movies; it would communicate with its
users in terms of movies, reels, and frames and
depend on a storage subsystem with video de-
livery channels.
A third document manager might feature a CAD
system and be applied to maintenance records
of government buildings; it would generate and
display building plans with a graphic editor and
maintenance contracts with a customized text
editor.
A fourth document manager might model what
is found in a university library-books and pam-
phlets with individually viewable pages, loose
collections of papers in folders, manuscripts,
videotapes, and so on.

Generic document managers for applications like
personnel services and enterprise-specific ones
administering conventions and document quality
standards may evolve over time. DocSS attempts
comprehensive coverage of functional require-
ments by relatively primitive operations with
many options; good document managers would
offer less flexibility and fewer options but would
be much easier to explain and understand.

Applications and document managers execute in
users’ machines; DocSS provides storage serv-
ices and manages intermachine communications,
hiding them to the extent possible. Implementa-
tion follows a client-server approach.

Comparison with offices based on paper. The dig-
ital library reproduces essential characteristics of
systems based on paper, emulating aspects of us-
ing or managing a library-whether public, pri-
vate, professional, or school-which has books,
pictures, and other material objects. For in-
stance,

Users are usually somewhere away from the
library information they need and often need
items from several libraries concurrently.
Whoever wants to use a library must show that
he or she has permission to do so.
Users are not necessarily those to whom per-
mission was given, i.e., requesters are active
entities distinct from patrons.

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

Figure 1 Partitioning of library service software

i WORK-
STATION

”-

LIBRARY

Different patrons are permitted different actions
and allowed to see different parts of the collec-
tion.
The catalog and the collected objects are dis-
tinct entities, used differently and not necessar-
ily housed in the same place.
The catalog may describe items not actually
held as part of the library collection.
Translations of a document may express essen-
tially the same information, e.g., versions of
classic literature in different languages.
Document identifiers are different from docu-
ment names; a document may have several
names, one for each context, e.g., Tales of
H o f i a n n in English, Les contes d’Hof iann
in French, and Hof ianns Enahlungen in Ger-
man.
Documents are cataloged with text descriptors
and also with conventional properties, such as
author names.
Documents contain cross references to other
documents.
To find anything, each user must understand the
catalog structure.

Like its material counterpart, the digital library is
intended for objects that are worth retaining for

GIADNEY 515

long periods and are valuable to many people.
Such documents are used differently than papers
carried in briefcases and stored in desks. They
tend to be static, e.g., a 1965 photograph of a

Picture storage must blend
into each user’s existing
hardware and software

environment.

building does not change without being consid-
ered to be some other object. In any period of
several months, most of the collection is not
looked at.

The advantages of a digital library over a paper
library are similar to those of any digital database
over its paper counterpart: faster addition to the
data collection, improved search functionality,
faster distribution from the point of storage to the
point of usage, better history tracking, and finer
granularity of control.

The benefit of improved control is not only im-
proved data quality, but also more freedom and
reduced bureaucracy for individual users. Only a
librarian may add to the collection of a paper li-
brary because of the discipline essential to create
a quality catalog. In a digital analog, cataloging
discipline and search restrictions to authorized
data can be automatically enforced. An electronic
library can allow each patron a wider range of
services than is practical with a paper library.

A summary of requirements. Any social unit
(school, business, department, individual) might
create and manage its own library, and most in-
dividuals want access to many libraries. Picture
storage must blend into each user’s existing hard-
ware and software environment; it must be min-
imally obtrusive to the user’s favorite applica-
tions and support all of the user’s object types. All
libraries should do certain things similarly, e.g.,
adhere to certain standards, so that people do not
need to learn new methods for each library and so
that information can be exchanged.

516 GLADNN

Our 1987-1988 application analyses identified sev-
eral hundred specific requirements-too many to
tabulate here. However, several broadly applica-
ble elements emerged and are summarized below
because they determine the structure of DocSS.

Least surprise for users. The concept of “library”
has been refined over several centuries. It would
be injudicious to depart from what people expect
merely because a digital service is replacing a ma-
terial one. Except where explicit reasons suggest
an improvement that is easily explained (e.g., in
query services), library services should imple-
ment a model familiar to everyone.

Distribution. People are often distant from
needed information, frequently in locations for
which high-speed links are not affordable. Mobile
clients, such as police officers, want access over
radio links. Recipients of large objects often want
delivery over common carrier links delayed to
times when communication tolls are low.

PerSormance. Updating a stored document is
likely to be a rare event and not subject to strin-
gent responsiveness objectives. In contrast, re-
trieval should be rapid, and a search to identify
which objects are worth retrieving should be even
more rapid.

Large and small objects. Object sizes range from
about 1000 bytes for financial transaction records
to 10 million bytes for technical pictures. When
digital video and audio libraries become practical,
even bigger objects will have to be delivered with
controlled pacing.

Accessibilityfrom all workstationplatforms. Dif-
ferent workers in the same department may have
different kinds of machines because of history,
function needed, or personal preference. Each li-
brary must be accessible from whatever worksta-
tion has been chosen.

Catalog sewice from all kinds of operating sys-
tem platforms. A large enterprise may have dif-
ferent kinds of database servers in different loca-
tions and should be able to provide compatible
library catalog services from these database serv-
ers.

Support for all kinds of image storage. Custodi-
ans should be able to house image collections as
economically as possible within their operational

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

and policy constraints. They should be able to
augment capacity with whatever is the currently
most effective storage medium and attach this me-
dium in the network wherever needed to mini-
mize communication costs and maximize respon-
siveness.

Low entry point, with growth togiant collections.
Library service offerers want to start cheaply and
to grow without disruption or breakage to large
numbers of clients and very large databases.
There may be 10 000 subscribers to each library,
with 1000 connected at once. State of California
paper collections typically contain 10 to 100 mil-
lion items. International banks are considering
collections of 1 to 10 billion items held for up to
30 years.

Low installation and administration overhead.
Installation and custodial responsibilities for a li-
brary should require only a small addition in time
and training for dat.a administrators. Installation
and use of the workstation portion of library serv-
ices should be easy given only “shrink wrap” ma-
terials. Protecting the catalog and collection will
require the infrastructure and discipline of a
“glass house” (traditional air-conditioned, large-
computer) environment.

Joining libraries to other databases. People want
easy use of library data in unanticipated ways,
joining library catalogs to enterprise databases
and combining data across agencies (e.g., toxic
waste data with death certificates) and sometimes
across administrative jurisdictions (interstate,
county-to-state, etc.). The ability to do a partic-
ular correlation on short notice and with low cost
is of keen interest.

Application independence. Cataloging docu-
ments is economical primarily under the pre-
sumption of future pertinence to multiple, unan-
ticipated applications. The utility of stored data is
hampered by anything that tailors the data to one
application or one usage paradigm in preference
to alternatives. An application-neutral interface is
needed.

Document managers. The kind of library layer
implied by the above requirement is too primitive
for most enterprises. It should be augmented by
document managers that support broadly appli-
cable application paradigms or the needs of spe-

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

cific kinds of customers, e.g., university libraries,
or both.

Tool for “‘amateur” application programmers.
Library services should be as accessible to
knowledge workers as editors and spreadsheets
are, requiring a very short learning period. Given
that many people en.tering the work force have
some programming training, providing library ac-
cess to shell languages will permit ad hoc appli-
cations.

Customer-defined data formats. Each enterprise
should be able to define the format in which it
stores images and other objects, with the under-
standing that it must store enough collateral in-
formation for object interpretation. For industry-
standard or IBM-standard data formats, the library
service must provide the collateral information
(this may be within the data objects themselves,
as in MO:DCA, or Mixed Object Document Con-
tent Architecture).

Automatic capture and indexing. Today the big-
gest inhibitor of large digital collections is the cost
of capturing information from paper and indexing
it for search and retrieval. Giant libraries can be
achieved only with automatic means of capturing
information.

Open subsystem. Emerging workstation applica-
tion packages-text, graphic, image, and audio
editors, spreadsheets, CAD packages, and indus-
try support packages such as those for hospitals
and for doctors’ offices-are potential sources
and sinks for large numbers of electronic docu-
ments. Value-added vendors have much to offer
users, who therefore want systems with easy ac-
cess to programming interfaces.

Standard inte$aces and protocols. The previous
requirements imply a long-term commitment to
an application programming interface for library
services and to protocols for the interchanges
among library clients, library servers, and image
servers. Library service implementations should
conform to pertinent national and international
standards and programming conventions needed
for application program portability, such as Sys-
tems Application Architecture* (SAA*) and Open
Software Foundation Distributed Computing En-
vironment (OSFDCE**).

The Image and Records Management product. The
IRM product’ complements operating system of-

GLADNEY 517

Figure 2 Structure and platforms of IRM V1 R2

IBM IRM CLIENT SERVICESE
I I

I
I
I
I
I
I
I
I
I
I

'I
I

I
I
I

I
I

I
I
I

IBM IRM SERVER MVSXA
I

IBM IRM SERVER MVS/ESA
I
I
I

MAINFRAME MAGNETIC I
I
I
I
I
I
I
I
I
I
I
I

- 1
I
I
I
I
I
I
I
I
t
I
I
I
I
I
I

- 1

ferings with a document management toolkit. Ap-
plication programs execute in Personal System/2*
(PS/~*) machines running Operating System/2*
(os/2*); library catalog servers execute either in
mainframes running Multiple Virtual Storagemn-
terprise Systems Architecture (MVS/ESA*) or
Multiple Virtual Storagemxtended Architecture
(MVS/XA*) with Customer Information Control

machines with os12 Extended Edition; "blob"
System (CICS*) and DATABASE 2* (DB2*) Or in PS/2

servers are available for both mainframe or work-
station environments and support both magnetic
and optical disk storage. The mainframe blob
server is, in fact, based on the Data Facility Prod-
uct-Object Access Method (DFP-OAM) part of
the Imageplus* System MVSESA product.'

In addition to DocSS, the product contains pre-
sentation modules exploiting 0s/2 Presentation
Manager*, print and scan servers for raster im-

518 GLADNN IBM SYSTEMS JOURNAL, VOL 32, NO 3. 1993

ages, forms processing subroutines, a distributed
list manager that is a partial basis for work flow
management, and a folder manager. The forms
processing portion implements novel algorithms
for deciding whether a raster image represents a
known kind of form (e.g., an I.R.S. 1040 form,
birth certificate, etc.), dropping out and later add-
ing back form “boilerplate” for image compres-
sion and preparation for optical character recog-
nition, lo and an adaptation of the field extraction
and optical character recognition package called
Intelligent Forms Processing (IFP). l1 Figure 2 de-
picts how these components are packaged. The
colored boxes in the figure show what is part of
the product. The darker areas represent DocSS.
The dashed outline indicates how the product is
packaged.

The IRM folder manager is a document manager
that emulates a folder filing system; its program-
ming interface models the connections, descrip-
tors, and integrity rules described by joint study
partners; its graphical interface presents a Com-
mon User Access* (CUA)-COmpliant emulation of
manila filing folders and file cabinets with sug-
gestive icons for spreadsheet, for image, and for
document pages, among others. Editors for some
kinds of data objects (images, text and word pro-
cessor files, spreadsheets, etc.) are invoked au-
tomatically when a user “clicks” with a mouse on
an associated page icon.

The smallest possible installation combines the
IRM workstation components with a library cat-
alog server and a blob server all running in a single
workstation. This configuration is useful for ap-
plication preparation and test, particularly for it-
erative design involving end users. Production
environments are likely to be much larger; one
customer is deploying an unemployment insur-
ance application with several workstations in
each of 60 statewide offices and a single library
catalog held in the state capital.

Much of what motikates the internal design of
DocSS-concurrent execution of operations ini-
tiated by users competing for the same data, com-
munication protocols that are economical for
moving large objects over wide area networks,
combination of data from many libraries, delayed
availability of remote servers, protection of sen-
sitive information-is encountered only when
large-scale deployment is considered. DocSS fea-
tures that otherwise might seem unnecessarily

IBM SYSTEMS JOURNAL. VOL 32. NO 3, 1993

Figwe 3 A document service network

APPLICATION LIBRARY
SERVER

CACHE 8 LIST
SERVER

BLOB
SERVER

complex are essential for scaling to very large
environments. These features include the ability
to activate and deactivate multiple concurrent
sessions with library servers, to cache objects ar-
riving from and destined for object stores, to com-
bine commands into packaged requests, to defer
work for delayed execution, to enqueue work for
other people and for background services, and,
more generally, to decouple the pace of applica-
tion execution from that of library servers.

A library and document model

Library service can be viewed as the managed
flow of information within a distributed storage
network. The circumstances and statistics de-
scribed earlier force stores with four roles: library
catalogs, blob stores, nearby caches, and the
workspace of the application (Figure 3). Library
catalogs and blob stores are owned and controlled
by library custodians, and caches and application
stores are owned and controlled by end users.
DocSS limits data flow among stores to enforce
clear, explicit rules that define what is meant by
data integrity and security and hides platform dif-
ferences in a heterogeneous computer network.

Stores may or may not be co-located. Typically,
each of many libraries, each one consisting of a

catalog and several blob stores, holds many ob-
jects for long periods and is accessible to many
users. Each of many caches holds a smaller num-
ber of objects for much shorter periods and is
accessible only to a few closely associated users.
Each store may itself be distributed over several
machines; for a library catalog this might be done
with a distributed relational database.” As a
practical example, descriptions of California
bridges could be split among regional data centers
(San Diego, Sacramento, San Francisco, etc.) but
still give each user the illusion of a statewide cat-
alog of bridges.

The conceptual structure of the storage network
is sketched in the following sections. For preci-
sion, we need to establish for the reader key terms
of reference more carefully than has been done so
far.

Classes of storage and storage contents. Address-
ability is needed at several levels: to entire stores,
to store portions called substores, and to individ-
ual objects within stores. Astore is a place where
data are held (or the data held in that place) and
for which the operating system or network, or
both, provide addressability conforming to well-
known, standard schemes. Examples are work-
stations in a local area network (LAN) environ-
ment and independently-administered Structured
Query Language (SQL) databases. Stores are ad-
ministered by operating system components that
are insensitive to the structure of contents. Asub-
store is a store portion that holds logically related
objects. For example, a library catalog (a sub-
store) is a set of tables (objects) within a database
(a store); a database can house several library
catalogs in addition to other tables.

A blob (binary large object) is a finite sequence of
bits-what has been loosely called an object;
“blob” is used to imply that the internal structure
is unimportant for the discussion of the moment.
Blobs are the units of data transfer among stores.
The collection part of a library is a set of blobs.

An item is a structure of blobs that represent
closely related things, such as the pages of a
book. It is the smallest collection that can be fully
described in a library catalog; for instance, users
can attach named attributes to items but not to
item parts. An item is also the smallest collection
of information that library services independently
control for security or other administrative pur-

poses. The term itempart, a synonym for blob, is
used to suggest the relationship of a blob to an
item. An item part could correspond to a page in
a document manager’s model of books. An item
can be without parts; a part can be without con-
tent or have content of zero length.

A library is a named collection of items together
with descriptive catalog entries. Each item has a
unique identifier and is accompanied by certain
obligatory catalog fields.

A library differs from a cache in its proximity, avail-
ability, accessibility, data administration method-
ology, and support for finding information. Librar-
ies may be distant and relatively expensive with
which to communicate. Caches are typically close
and available whenever wanted. Table 1 summa-
rizes important differences.

Item descriptions-the library catalog. Items can
be named, labeled, and described by text of ar-
bitrary length. Item identifiers are chosen by li-
brary services and have no mnemonic value and
no operations apart from the identity test.
Names, usually chosen by human users, can be
ambiguous and are therefore distinct from iden-
tifiers. Labels chosen by users are enforced to be
unique within a library; they are useful for applica-
tions such as insurance policy numbers. Names,
labels, and descriptors are commonly used as
search indices.

Each item has a container attribute intended to
model the notion that it is a part of something
larger, as a steering wheel is part of an automo-
bile. This container relationship is the most effi-
cient method for modeling file cabinets holding
folders that themselves contain documents. An
item is not allowed to contain itself, even indi-
rectly.

If limiting every item to exactly one container is
not what the application at hand wants, other
folder models are readily implemented. Any
query that returns a set of item identifiers effec-
tively creates a virtual folder that can be pre-
sented to users in the same ways as folder objects
modeled by the container attribute.

The catalog can link objects. Alink relationship is
similar to the notion of attaching one end of a
string by thumbtack in one document page and
the other end in another page. Each link is tagged

520 GLADNEY IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

Table 1 Differences between caches and libraries

Characteristics Cache Library

Size Zero to one hundred thousand blobs Ten thousand to one billion item parts

Availability Needed whenever document management Intermittent availability is acceptable
services wanted

Content lifetime Typically minutes to months Typically years to decades

Accessibility To a single user, or to collaborating users To anyone permitted by a library administrator

Data retention Semiautomatic, with old blobs being Protected by automatic and manual procedures
discarded to prevent data loss

Confidentiality of contents Log on and cryptographic security Access control for individual objects and
actions

Integrity of contents Work group members can disrupt Every change is checked for authorization and
colleagues’ data consistency

Search tools Simple table of contents indexed by blob Relations that can be joined to external
name relations by SQL queries

with a link type and may be bound to a link de-
scription item. For instance, if the first item de-
scribes a man and the second item a woman, the
link type might be marriage and the link descrip-
tion the marriage contract. Linking is particularly
useful for interrelating text and pictures, such as
geographic maps.

Each item can have any number of properties;
each is recorded as aproperty typelproperty value
pair, such as color/purple. A nonobvious use of a
property value entry is to relate the image of a
business form to all instances of filled-in forms of
that type, as might be needed to support sup-
pressing boilerplate. For example, in a tax appli-
cation with many items of type tax1 040, the prop-
erty type and value of the image of the blank form
might be template and taxl040.

Each item has an obligatory property called its
semantic type, indicating a kind of thing-memo,
picture, contract, or the like. Each item part has a
representation type classifying either how the in-
formation is encoded or which version of a thing
it is. Representation type as encoding comple-
ments semantic type. For instance, a photo (se-
mantic type) could be represented in 600-pel four-
bit grey scale, 300-pel three-bit grey scale, or 50-
pel half-tone. Fingerprints could be represented
either as 10 print (pictures of the ink impressions)

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

or minutiae (standard encoding of loops and
whorls).

Item part transformations and versions. Rela-
tionships among object versions are complex
intrinsically and because there are few broadly
accepted models for such relationships. One
kind of version is a subset of the base inforrna-
tion, selected to be seen by a specific kind of
individual; for instance, a design engineer
would want to show different aspects of some
work to a manager, a customer, a patent attorney,
and a product test engineer. Another kind of
version is a product variation for a submarket.
Yet another is one of several tentative designs.
Such versions are modifications of some base
instance-modifications made by humans for
purposes that are usually only incompletely
recorded.

Other versions correspond to algorithmic trans-
formations: geometric projections, text format-
ting, graphic rendering, scientific visualizations
of physical models, data compression or encryp-
tion, and so on. A simple case is selection of a
contiguous bit sequence from a blob; for text ob-
jects this is called partial document access and
might be used to return one page of a document
stored as a single blob.

A version can be created by a transformation
step. Sometimes this process can be defined by a
program; often it involves human steps that are
inconvenient or impossible to reduce to explicit
expressions. Sometimes a user wishes to store
some new object and simply declare that it is a
transform of an existing object, without any com-
puting system control that the claim is valid.

Library access control. A library custodian is a
person or organization offering a library service
and committing to users the integrity and security
of library-held data. A library administrator is an
agent of the custodian and is responsible for ad-
mitting patrons to the library, defining their priv-
ileges, and otherwise administering basic access
control tables.

Security is conformance to proper authorizations
for the movement of data out of one store into
another and for changes made in one store re-
sponsive to instructions originating in another
store. Library users will be most concerned about
how workstations interact with libraries and sec-
ondarily with what applications can do to caches.
Access control is the security component for de-
fining who may do what and administering such
rules. Other security components enforce the
rules and create an audit trail for compliance
checking.

Access control and security depend on identify-
ing patrons and items uniquely. The library cat-
alog associates a single patron with each item as
its owner. Conceptually, a patron is a potential
user defined by a library administrator. Formally,
a patron is a set of permissions to store into,
search in, or retrieve from a specific library, or
combinations of these activities.

Ownership of an item implies other privileges,
including alteration of its access list. However,
even an owner can be selectively blocked. For
instance, a library administrator can block all up-
dates to primary object instances, i.e., ensure that
a library is read-only in the sense that no item may
be altered after it has been stored.

Document storage subsystem design

The Document Storage Subsystem is an answer
to the question, “Given existing and emerging
file, database, and communication systems, what
is the least amount of software needed for a digital

522 GLADNEY

analog to conventional library services and for
managing the electronic equivalent of paper as it
flows into and from each user’s workspace?”

Ideally, each user would have prompt library ac-
cess, without interference from the other activity.
The service interface would be simple, with the
information sought in each library request avail-
able before the user wants further interaction. AI-
though this is sometimes possible, practical and
economical considerations often impose less fa-
vorable circumstances:

Data requested may be too large for delivery
while human users wait, or may not be promptly
accessible, e.g., if held on tape volumes.
Library service connections may be disrupted;
this possibility should not impede users from
submitting requests or using library data al-
ready collected into their workstations.
Massive data input, such as scanning all of the
birth, death, and marriage records of California,
must be executed with sustained throughput but
without interfering with information inquiry.

Fortunately many applications do not need a
prompt response provided that the users are not
impeded in their collateral tasks. DocSS provides
enqueued as well as interactive service, exploit-
ing workstation and server multitasking to buffer
interactions and to create a storage hierarchy that
holds data for repeated use in the workstation.

A single library service instance. A library service
instance consists of cooperating processes in a
workstation, a library catalog machine, and a blob
storage machine (Figure 4). The 50 or so elements
of the application programming interface can be
classified into cache manipulation, library catalog
query, library catalog update, and blob move-
ment primitives.

Each library catalog is implemented within a re-
lational database. The query language is SQL, en-
abling all queries permitted by the database, in-
cluding queries that range beyond the current
library catalog. For instance, a highway depart-
ment might have an independent database relat-
ing maintenance contractor invoices to bridge
numbers; a query join would permit a search for
“inspection reports of bridges for which the XYZ
Company delivered concrete.” Each library op-
eration visible to applications (ServiceConnect,
ItemPartStore, etc.) is effectively a single program

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

Figure 4 Structure of a library service instance

LIBRARY CLIENT LIERARY SERVER

running partly in the client environment and
partly in a library server. In Figure 4, a server
portion on the right implements a primitive library
operation for each application programming in-
terface on the left. The client portion does those
input validity checks that are possible without re-
mote data and translates its inputs to a standard
form. The server portion repeats and extends the
validity checks before making persistent changes
or returning library data to the client. When net-
work connections are unavailable or slow, de-
graded service can continue with the cache con-
tent.

Every item is uniquely identified within its li-
brary; no identifier is ever reused for a new item.
Since every library in the world also has a unique
name, no item can ever be confused with any
other item.

Privilege to library data is granted at three levels:
to each library, to each operation or closely re-
lated set of operations on each library, and to
each item within a library. For instance, a patron
who wants to discard something needs permis-
sion to use the containing library, permission to

IBM SYSTEMS JOURNAL, VOL 32, NO 3, lW3

use ItemDiscard in that library, and discard per-
mission on the item in question.

Different communication methods are hidden
from other programs by Isolator modules. Given a
library identifier, the client Isolator chooses a path
to a library server and communication protocols
(Systems Network Architecture LU 6.2, Transmis-
sion Control Protocol/lnternet Protocol, NetBIOS,
etc.). The same Isolator code runs in clients and
servers, except in Mvs-based servers, where part
of the function is provided by CICS. l3 The special
cases in which the client and server are in the
same machine or on the same LAN are detected in
the isolator, which chooses an efficient commu-
nication protocol, e.g., 0s/2 queues if both pro-
cesses are in a single P S ~ . Thus communication
between coresident processes is almost as effi-
cient as direct calls would have been.

The computers and operating systems in a library
network can be of different types; the data con-
version needed is the same as that for electronic
mail and distributed database management sys-
tems (DBMS), viz., EBCDIC-ASCII conversions and
differing representations of integers. If the ma-

chine type and operating system into which an
object is retrieved is the same as that where it
originated, it is bit-wise identical to what was

The client-server split naturally
protects against workstation
programmer improprieties.

stored. Otherwise, the data conversion needed is
identical to that encountered when a file is moved
directly from the source environment to the target
environment.

Blobs can be stored in the library catalog, in files
on the machine housing the catalog, or some-
where else entirely. DocSS does not hide the lo-
cation of where any particular blob is stored, but
does not allow application programs direct con-
trol of where and when blobs are placed or moved
among library stores. Instead, applications can
hint at what treatment will balance economy and
performance, according to the concepts of sys-
tem-managed storage. l4 Blob servers are file serv-
ers, except that blobs move on different paths
than commands.

Multitasking in remote service delivery. A library
service is a set of processes that mediate access
to one or more libraries. A library session is a
collaboration between an application agent exe-
cuting in a workstation-the client process, a li-
brary server that executes a single execution
thread in a catalog machine, and blob servers that
deliver or accept data from blob stores wherever
they may be in the network.

In each library catalog machine, a single process
with a published address helps applications con-
nect to the libraries in that environment; the other
processes there are library servers (Figure 5).
Each user might have several open library ses-
sions; each library might have several blob stores
and use more than one within any session. Each
library server controls access to one library at a
time. A requester is a (workstation) application
process that makes demands on one or more li-

524 GLADNEY

braries-demands mediated by clients. A library
client is a process that acts on behalf of a patron
and exploits a library server. A workstation may
concurrently execute many requesters; each re-
quester may have several active clients.

Workstations may be installed wherever users
want them and therefore are not assumed to be
secured by physical or administrative measures.
Library server machines control the integrity of
the data that they catalog. Images are moved di-
rectly between workstations and blob stores.
Each blob store accepts commands exclusively
from library servers associated with a single li-
brary; the database that houses each library cat-
alog is the sole point of control for that library.
Protection against information theft, unautho-
rized changes to library contents, and disruption
by playback attacks is achieved by well-known
means. Encryption is available during object stor-
age or transmission, or both, if other protection is
deemed insufficient.

The client-server split naturally protects against
workstation programmer improprieties. Library
security as good as that of the server machines is
achieved without any new administrative tasks.
Server programs must be installed by a trusted
administrator, who must guard against “Trojan
horses.” Apart from this risk, the possible library
damage caused by a deliberate invader is limited
to the data for which the invader has valid or
purloined passwords. Improper changes to any
workstation program can at most damage the ser-
vice at that workstation. How security is achieved
has been described and analyzed elsewhere. Is

DocSS manages changes as atomic units of work or
transactions. Each library session is treated as an
independent application. The concepts and behav-
ior are identical to SQL transaction management,
which is described in any basic text on database
management systems. l6 To help applications avoid
overwriting each other’s updates, each library in-
cludes a check-outkheck-in l7 registry.

Buffering traffic to and from libraries. Before an
application can manipulate items or their descrip-
tors, it must call Sessionstart to establish a library
session. The Sessionstart call includes apriority
relative to other sessions competing for scarce
resources, such as long-haul communications
bandwidth, and a style to indicate the format of
error and information messages. It returns a to-

ISM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

Figure 5 Multitasking in a library network

WORKSTATIONS \ / LIBRARY SERVER MACHINES

IMAGE STORAGE MACHINES

ken called a session identifier; the application Library service calls create primitive libraIy or-
must use such a token to direct subsequent library ders: move one blob, change one catalog record,
requests to one of a multiplicity of sessions it may etc. Each order could be transmitted as a separate
have established. network message, but doing so would often be

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993 GLADNEY 525

Figure 6 Access to library requests, responses, and blobs in a cache

APPLICATION STORAGE CACHE

unnecessarily costly and slow. Instead, library
clients accumulate orders into batches called re-
quests and buffer these requests to permit appli-
cations to run ahead of their library sessions.

The client part of a library session is a request list
and a response set. Each element of the request
list is a sequence of orders for a library server.
Each request list consists of any number of ready
requests followed by a single incomplete request
(Figure 6). Request lists and individual requests
are anchored by application-held handles. Li-
brary service calls append orders to the incom-
plete request. Each response is a sequence of re-
plies-ne for each order in the corresponding

request. Whenever the application chooses, it
calls on RequestEnd to complete the open request
and return a request handle for access to the even-
tual response. RequestEnd also implicitly creates
a new request consisting of a prefix that identifies
the target library and patron and that carries ad-
dressing and authentication tokens.

Serviceconnect creates a client daemon process
(Figure 7) that promptly starts submitting re-
quests. This daemon removes and deals with the
first list element, repeating this procedure when-
ever there are at least two list elements; the last
request in the list is always incomplete. In antic-
ipation that the cache itself may be remote in fu-

526 GLADNEY IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

ture implementations, client stubs communicate
with the cache managers and client daemons via
isolators; for local service, the implied overhead
is low. In contrast, interactions of each client dae-
mon with a library server and a blob server on the
channels depicted in Figure 5 are synchronous
and serial. Thus execution is asynchronous, with
the request list buffering any pace difference be-
tween the application and the remote service. The
application can make it synchronous by waiting
for each response before issuing the next request.

An application can ask for a background process
by specifying a ServiceConnect delay for start of
service. The daemon created by such a call takes
ownership of the current list, leaving the incom-
plete tail request as the beginning of a new request
list. After the prescribed delay it deals with the
list, terminating itself when done.

Responses and blobs are returned from library
and blob servers to the cache. The application
may use ResponseGet to bind a response using a
handle returned by RequestEnd, and may use
Blobopen, which exploits a cache directory, to
locate blobs.

Storing and retrieving blobs. Storing a blob into a
library is managed as a cascade of client-server
interactions already suggested by the triangular
configuration in Figure 4: a client daemon (Figure
7) acts as a library client; the library catalog
server acts as a blob server client; the blob server
acts as a client of a cache management task in the
workstation. The sequence of events (Figure 8) is:

1. The client prepares its blob transmission port
for a read and then sends the library server a
request that includes the address and extent of
the blob and a proposed blob identifier, id. The
client then waits on its blob port.

2. The library server checks request validity and
id uniqueness and chooses a blob server to
which it sends a command containing id, the
address of the client’s blob port, the blob de-
scription, and a hint about where the blob
should be stored.

3. The blob server sends to the client’s blob port
a request for the data.

4. The client compares an embedded authentica-
tion token to its copy; if they match, it sends
the requested data.

5 . After the blob server has stored the data reli-
ably, it signals the library server.

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

Figure 7 Cache and client daemon to implement
asynchrony

rl CACHE

Figure 8 Message order for ItemPartStore and
ItemPartRetrieve, equivalent to three
client-server relationships

6. If the library server receives a timely positive
acknowledgment, it updates the library cata-
log and signals overall success or failure to the
client.

Retrieving a blob from a library to a client is sim-
ilar, except that the blob server and the client

GLADNN 527

move the blob in the opposite direction. Discard-
ing a blob is different:

1. The client sends a discard request to the li-
brary server.

2. The library server checks whether the request
is valid, deletes the catalog record of the blob,
and builds and saves a blob server request to
discard.

3. At some later time in the same library session,
the library server executes the client’s request
that its library changes be committed as an
atomic unit of work.

4. Finally the library server causes each saved
discard order to be executed by the appropri-
ate blob server.

Replacing a blob, moving a blob between two
blob stores, and replicating a blob in several blob
stores (for performance or safety) are somewhat
more complicated. These blob movement proto-
cols have been described in more detail, together
with demonstrations that they preserve the con-
sistency of library catalog to blob store, that they
can be protected against the expected kinds of
security violations, and that they are the most
economical safe alternatives for wide area net-
works. l5 This is under the condition that sessions
intermix queries, retrievals, and library updates
in an order that cannot be anticipated; for read-
only sessions, improved average performance is
possible by ordering retrieval requests to reduce
optical jukebox platter mounts. l8

Having the blob server act as a client relative to
the workstation rather than as a server not only is
an economical route to data security and integrity
but also simplifies its internal catalog and admin-
istration compared to what would otherwise be
needed. Blob servers do not need information
about end users or about workstation addresses.

Managing transformations. Transformations rep-
resented by completely automatic programs (of-
ten called filters) could be managed entirely by
DocSS. Transformations needing human assis-
tance (e.g., for deciding unresolved characters in
optical character recognition) must be executed
at least partly in a workstation. This execution
may be at a different time and in a different work-
station than where the input originates; for in-
stance, it will sometimes be effective to scan an
entire collection of papers and to apply semiau-

528 GIADNEY

tomatic recognition routines only to subsets se-
lected long after the scanning step.

Completely automatic transformations may be
executed when the base information is stored, at
times chosen by the storage subsystem, or during

Transformations represented
by completely automatic programs

could be managed entirely
by DocSS.

retrieval. Early generation may be desirable if it
requires a great deal of processing, as in the case of
document analysis and optical character recogni-
tion, or to achieve the best retrieval performance.
For instance, calculations such as reduction of
fingerprint images to encoded form (minutiae) are
best done when processors would otherwise be
unloaded.

Blob servers have been described as returning
strings identical to the strings stored. More flex-
ibility is possible. Projections of tables or pictures
can be done at viewing time. For example, partial
document access is a simple filter to avoid trans-
mitting and caching unwanted data. The efficient
implementation of delivery filters puts them in
blob servers, with the library server passing
transformation orders from the library client to
the blob server. Being bound as server exten-
sions, the transformation programs are inacces-
sible to user inspection or tampering-an effec-
tive protection for proprietary or otherwise
sensitive programs.

Programming Document Storage Subsystem
applications

The reader can deduce much of the programming
interface from what precedes and from the ob-
servation that DocSS primitives are intended for
construction of generic document managers. In
this section a summary of a catalog and call subset
emphasizing less obvious aspects is given. Full

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

Table 2 Some views defined in library catalog

ITEMS

ITEMPARTS

GRAVEYARD

REPLICAS

NAMES

DESCRIPTIONS

PROPERTIES

LINKS

...

Basic item attributes, with one tuple per item; the fields include:
The identity of another item-the container
Ownership and type identifiers
A user-chosen unique label, e.g., for an insurance policy number
Creation, reference, and planned expiration time stamps
Security classifications

Part attributes, with one tuple per item part; the fields include:
Representation type and part number
Storage location and storage hierarchy control flags
A last-changed time stamp
Transformation parameters giving the provenance of versions

Attributes of discarded items, describing each as in the ITEMS table

Locators of duplicate item parts held to improve performance or availability

Human-legible item names bound to particular patrons

Text descriptions of items in free format and of arbitrary length

Attribute type/attribute values for items, e.g., color/purple

Links of a directed graph among points in documents

...

details on the implemented subset can be found in
the IRM programmers’ guide.

Summary of the library catalog. A library catalog
is represented by tables that can be extended by
service offerers. These tables store attributes
concisely, using some formats inconvenient for
human users. The catalog definesviews that show
legible mappings and that filter the data to imple-
ment read access constraints. DocSS functional-
ity is defined in terms of these views, some of
which are given in Table 2.

Not listed are tables for event logging and for
access control.

A library can catalog and describe items it does
not hold, such as external files, physical objects,
and items in other libraries. Of course, such ex-
ternal items can be moved or removed without
these changes being correctly reflected in the cat-
alog.

Summary of the procedure interface. The DocSS
client portion uses the cache (Figure 1) to buffer
control information and blobs prepared for send-
ing to libraries and to hold replies and blobs re-
ceived. Caches are also available for other work,

e.g., queues for work flow applications. An ap
plkatibn can attach to several caches concur-
rently and to several work lists within each cache.
An implementation can share caches so that
several machines on a LAN can share retrieved
objects. Applications obtain addressability to
cached objects as handles to lists, blobs, etc. (Fig-
ure 6). Cache subroutine calls as listed in Table 3
cause no interactions with catalog servers or blob
servers.

Except for RequestEnd, each library service call
(see Table 4) prepares a primitive server order
and appends it to the incomplete request at the
queue tail. RequestEnd completes the open re-
quest and appends a new request stub to the
queue (Figure 6). Request boundaries and atomic
unit of work boundaries may be interspersed with
other commands in any order, permitting any
blend of interactivity with batching.

Library administration can be done with work-
station application programs. Since permission to
use each operator is separately granted by the
library custodian, the distinction between an ad-
ministrator and an ordinary patron is simply that
an administrator is granted the use of privileged
operators.

IBM SYSTEMS JOURNAL VOL 32. NO 3, 1993 GLADNEY 529

Table 3 Some cache subroutlne calls

SessionStarl Establishes a client-server
relationship with a cache
instance

WorkQueueCreate Establishes a library work queue

ServiceChoose Associates a library work queue
with a particular patron and
library

Serviceconnect Starts up a client daemon (Figure
7) to manage what is asked for
in a library work queue

Blobcreate Allocates cache space for a new
blob, returning its handle and
defining the cache retention
wanted

BlobOpen Binds a blob to an application,
with a copy in application
storage for editing

BlobSave Saves an edit copy of a blob in
the cache, replacing the old
version

... ...

A model document manager-folders and file cab-
inets. Document storage subsystem services nei-
ther interpret object contents nor require partic-
ular descriptive attributes beyond some basics,
e.g., time stamps, object type indicators, and
owner identifiers. Practical applications require
data models and enforced compliance to those
models. A document manager can help users con-
form to common practices and rules in their en-
terprise, or to public standards. The IRM folder
manager creates a digital analog of filing folders
held in file cabinets; the IBM ImagePlus Folder
Application Facility’ is similar.

In descriptions of the document storage sub-
system, we use neutral terms such as item, blob,
and part to avoid implying any particular data
model. In what follows, it is quite appropriate for
the reader to think in terms of an analogy to pa-
per, so we can use more connotative terms, such
as document, image, and page without creating
false expectations. These words, and also folder
andfile cabinet, are the terms of reference for the
description of a folder manager.

A document is a sequence of images, such as (a
digital representation of) the pages of a book. A

folder is simply a document that contains other
items by reference. Folders are unordered group-
ings of documents; ordering can be induced by
SQL queries.” Every document except one oc-
curs in exactly one folder; the folder relationship
is acyclic. In addition to a system-assigned unique
identifier, each folder or document has an appli-
cation-assigned label unique within its library. A
file cabinet is a collection of folders. File cabinets
are related to folders precisely as folders are re-
lated to documents.

A document version is one of a set of represen-
tations of more or less the same information. Ex-
amples are a formattedversion of marked-up text,

Table 4 Examples of library service calls

RequestEnd

TransactionEnd

LibCatalogQuery

Itemcreate

ItemPartStore

ItemPartMove

ItemPartRetrieve

...
ItemLink

TransformBuild

TransformRetrieve

AccessRuleSet

Enqueues collected orders as a
library request and starts a
new request

Completes a library atomic unit
of work

Sends an SQL query to library;
just as for other orders, the
query result comes back as
part of a reply

Creates a new, empty item in a
library

Copies a cached blob into a
library item part, creating a
new part if necessary

Moves or copies a library item
part, creating a new item part

Retrieves a copy of a library
item part into a cache

...
Builds or discards a LINKS table

entry

Creates a version from stored
item parts and stores it as a
new library item part, together
with information on how it was
constructed

Creates a version from stored
item parts and stores it as a
cached blob

Changes the access control list
for a set of items

530 GLADNEY IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

Figure 9 Nomenclature for the model of stored objects

DOCUMEN?
MANAGER
JARGON

STORAGE

JARGON
SUBSYSTEM

)@”-

DOCUMENT
OR FOLDER CONTAINS

0

REPRESENTATION
TYPE

VERSION

PAGE
NUMBER

PAGE

z

ITEM

TYPE

TRANSFORM

NUMBER
PART

PART

a low-resolution derivative of a portrait, and a
two-dimensional projection of a three-dimen-
sional design. Folder manager applications can-
not always determine whether an image is stored
or generated for the occasion. Apage is a member
of the sequence that makes up a version. Allow-
ing each document or item to consist of versions
or transforms that themselves consist of pages or
parts is more structure than is needed in principle.
However, it corresponds so closely to real-world
situations, such as editions of books, that it is
often useful.

The mapping of the concepts of this particular
folder manager to the structures of the document
storage subsystem is illustrated in Figure 9. The
diagram graphs an object which contains a second
object and suggests a particularly simple docu-
ment manager whose accessible entities map one-
to-one to storage subsystem entities. Types re-
flect the DocSS concept without change. The type
of each document, called a semantic type, indi-
cates a human purpose, e.g., memorandum, pur-
chase order, employee photograph, program
code, etc., and consequently a schema for inter-
nal structure. The type of each version, called a
representation type, indicates an encoding meth-
od; this might be a markup language (for revisable

IBM SYSTEMS JOURNAL, VOL 32. NO 3, 1993

text), a compression scheme (for uncoded infor
mation such as image), or a ‘programming lan-
guage such as COBOL.

An OS!?. Presentation Manager interface is closely
coupled to the IRM folder manager and shows
icons suggestive of printers, scanners, file cabi-
nets, folders, etc. Page icons differentiate spread-
sheet, word processor, and image files. Selecting
any kind of object invokes the right kind of editor
for that object, and pull-down menus are a path to
other appropriate operators. Such an interface is
easily learned by novice users.

Simple folder models just described work well for
topics whose individual subjects are human, such
as welfare, taxation, insurance, and education ap-
plications. They are often insufficient for engi-
neering, social, or cultural topics.

Discussion and futures

This paper articulates a stage in a cycle of de-
signs, prototypes, and discarded code. For li-
brary services, this is the fourth iteration since
1988. For cache services, it is the third iteration
since 1989. Each design iteration was critiqued by
joint study partners; each prototype was only part

of what was envisioned at the time but taught
much that was later incorporated. Part of what is
yet to be addressed is shared below.

Extensibility of DocSS. The library service prim-
itive routines-ServiceConnect, ItemPartStore, etc.
in Figure L a r e relatively simple compared to the
rest of DocSS. The client portion converts inputs
to the format expected by the library (e.g., we
might add a COBOL interface to the current C-lan-
guage one) and checks input as much as possible

Many administrative tasks can
be implemented as ordinary DocSS
applications executing concurrently

with end-user applications.

without a library catalog connection. The server
portion rechecks and further validates inputs be-
fore executing orders. The logic that distinguishes
library service from other distributed data serv-
ices is almost entirely in these routines, i.e., to
extend DocSS functionality, one must add such
primitive routines.

The colored portions (in Figure 4) of library cli-
ents have no I/O or other operating system service
calls; their code is portable from 0s/2 to UNIX**-
family environments. The colored server portions
have no system or I/O interfaces apart from em-
bedded SQL. This is ANSI-SQL (American National
Standards Institute) except for database connec-
tion services (which are not covered in the ANSI
definition). Thus it is possible to program portable
versions of these routines; portability-espe-
cially the server portions-helps make library se-
mantics identical on all platforms OS/^, Advanced
Interactive Executive*, or AIX*, MVS, etc.).

DocSS is positioned to use OSFDCE naming’0221
and authentication” services when suitable im-
plementations become available. Only the Isolator
needs to be modified, replacing its table-based
subroutines by network calls.

532 GIADNEY

The data model has limited each image collection
to being accessible by way of a single library cat-
alog-that of the library that owns the contents of
the image server in question. This restriction can
be relaxed to permit retrieve-only access by way
of a nonowning library that has cross-indexed
some items. Catalog entries for objects in external
libraries cannot, of course, be guaranteed to be
correct. (This weakness is apparent also in librar-
ies based on paper.)

The following subsections deal with a few kinds
of extension in more detail than is possible for
others-means for tuning and tailoring library
service, contextual search, improved access con-
trol, versions, and multimedia.

Library administration, tuning, and tailoring.
Many administrative tasks can be implemented as
ordinary DocSS applications executing concur-
rently with end-user applications. Examples are:

A purge executor for expired items (an end us-
er’s discretionary document disposition orders
might be overridden to meet statutory require-
ments or enterprise policy)
A predictor that senses blob requests, uses the
library catalog to predict future requests, and
stages the data
An optical jukebox layout manager to group
blobs likely to be used together
A migration utility to move data to cheaper me-
dia within or among blob stores

Such operations can run in daemon processes that
schedule themselves, making load measurements
and other tests to avoid impairing performance
for more urgent work. Since information systems
nearly always have processor cycles and channel
bandwidth that would otherwise be idle and there-
fore wasted, this tactic can be very effective.

Individual enterprises and individual users often
understand the dynamic statistics of their appli-
cations in ways that are difficult to exploit in ge-
neric software. They would like to use this insight
to optimize document service performance and
cost. The opportunities include policies for:

Scheduling of deferred work, e.g., retrievals,

Allocating shared resources, such as commu-
and background sessions

nication channels

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

Controlling which objects are cleared from

Choosing the kind of storage for arriving objects
Choosing whether and when a library object
should be replicated and which objects an ar-
riving object should be stored close to
Scheduling transformations, e.g., the more ex-
pensive ones described earlier in the subsection
on managing transformations
Choosing and scheduling automatic indexing
processes, such as those for finding and tabu-
lating specialized indices (e.g., city names in a
highway database). (Such automatic indexing
is a specialized form of transformation that is
readily implemented as a library primitive.)

These opportunities require installation exits be-
yond what is in the IRM product.

Contextual search. A mature system would in-
clude the ability to choose objects not only by
catalog queries but also by filtering blob contents.
This ability is particularly important for textual
objects, for which it is called contextual search,
but extends to esoteric filters. Ideally, an ex-
tended SQL would combine predicates on rela-
tions with fuzzy predicates on object contents and
structure. Practical implementations are unlikely
in the near future.

The near-term solution is a two-phase approach
using inverted indices. An independent contex-
tual search engine would act as a library client
retrieving blobs of types it can handle (probably
text only) to create its own index structures. A
new query interface would be needed for com-
bined filtering based on contextual indices and
library catalog attributes. There is a clear oppor-
tunity to invent better ways of integrating con-
textual search and relational attribute search than
such a stopgap measure. The solution is likely to
embed search engines in blob servers.

Access control. Adequate library security can be
delivered by knitting together components that
either exist today in commercial operating sys-
tems or are under consideration, except that, as
far as we know, no extant access control model
combines everything needed.

The problem is partly one of scale: libraries may
range from instances with 10 users and 100000
stored objects to instances with 100 000 users and
one billion stored objects. It is partly one of het-

caches early and which late

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

erogeneous applications: what a public service
library needs (almost nothing) is very different
from what governmental oversight of toxic waste
disposal might demand, and both are very differ-
ent from what an aircraft manufacturer needs. A
comprehensive scheme must provide at least:

Decentralized administration of resource pools,
because for large pools no single individual or
department can know what controls are appro-
priate for everything
Clear definition of resource pool boundaries so
that service offerers such as library custodians
can confidently enter (implicit) contracts to pro-
tect other people’s data
Clear definition of reference scopes; for in-
stance, the word “public” becomes fuzzy when
data may be accessed across enterprise bound-
aries and has a different meaning for the Re-
source Access Control Facility (RACF)23 than
for SQL”
Smooth synthesis of mandatory and discretion-
ary access control, as might be needed by a
company with both military and commercial
contracts
Conformance to generally accepted accounting
principles, which hold that each person be lim-
ited to resources needed to discharge his or her
responsibilities, that user actions can be re-
viewed by outside auditors, and that sensitive
resources are accessible only to partial steps by
independent users (separation of authority as is
common for money management)
Means of constraining specially privileged
users, such as security officers, auditors, and
data administrators, to their proper activities,
and differentiation of user roles from individu-
als (e.g., “payments office manager” instead of
“Jane Doe”)
Proxy support, in which a human user acting for
another human, or one machine process work-
ing for another, temporarily gets partial privi-
leges of the principal
Fine granularity for data subsets, such as con-
trolled access to certain fields in standard forms
(for instance, hiding part of adoption records in
birth certificates), and field-value-dependent
constraints
The possibility of an implementation with good
performance, e.g., access control should not
markedly increase the number of I/O calls over
what uncontrolled service uses

GLADNEY 533

Work in progress suggests a comprehensive so-
lution; a DocSS subset is being designed.

Version management. No single model of ver-
sions encompasses everything needed. Office ap-
plications can be satisfied by a simple model; en-
gineering applications need to capture intricacies of
how people collaborate. A general model would
permit users to represent different releases of a
data object; different aspects such as (for inte-
grated circuits) physical design, materials design,
circuit parameters, circuit transfer functions, and
timings; design variations (customization); design
experiments (“what if . . . ?”); and algorithmic
transformations that show views.

An implementation thus faces a double challenge:
whether it permits all models that might reason-
ably be wanted, and whether it can efficiently
realize (the features of) the particular models
wanted in the near future.

DocSS can model a version history as a directed
acyclic graph with a single root and with a clear
distinction between derivative and alternative
arcs. The essential distinction between the most
recent version and the current version is made,
but DocSS must be extended to support policies
for “(1) which users are permitted to reset cur-
rency, (2) how many currencies may be simul-
taneously active within a single version history,
and (3) whether currencies can move back-
ward. ” 24

In visualization and massive statistical applica-
tions, such as geophysical modeling, scientists
demand a complete lineage of derived data.
This is provided in the DocSS catalog structure
and transformation operations.

Labeling item parts with type and provenance
fields helps with the fact that a “variety of rep-
resentations are needed to describe a design ar-
t i f a ~ t ” ’ ~ and with transformations creating ver-
sions abstracting more complete information.

“Workspaces . . . can be archive, group, orpri-
vate. . . . An archive workspace is readable by
all, and anyone may append to it. Special con-
trols . . . ensure that only fully verified (i.e., re-
leased) objects are placed into it. . . . Only the
owner of a (private) workspace may read or al-
ter its contents. . . . It turns out that two kinds
of workspaces are not sufficient for the CAD

534 GLADNEY

environment. Sometimes it is necessary to com-
bine the in-progress work of two or more de-
signers before it can be determined that the as-
sembly works as required. Group workspaces
are meant to support this kind of activity: any
member of a specific group may access the con-
tents of a group workspace or append to it.7724

DocSS supports the archive/private distinction
by its librarykache dichotomy. Departmental
libraries are a possible basis for group work-
spaces; we must consider whether shared
caches or libraries implemented on worksta-
tions are better.

9 Katz calls for propagation of changes and con-
straints. 24 Since propagation can be ambiguous,
DocSS needs an interface with which designers
can communicate their intentions for check out
and replica management.

Given the extensibility described above, sophis-
ticated version management is clearly feasible but
has not been demonstrated.

Audio and video objects (multimedia libraries). It
is taken for granted that video and audio libraries
will require their own kinds of servers coupled
loosely with digital catalogs. The blob movement
protocol shown in Figure 8 has large but simple
messages on the blob server to library client link,
with most of the control and authentication data
on the links to the catalog server. It is equivalent
to three cascaded client-server relationships,
with the perhaps unexpected twist that the blob
server acts as a client to a workstation process.
We believe that the control and catalog portions
of DocSS can b 1. extended to manage video and
audio services synchronized with the demon-
strated blob services.

Information capture from data. Often library ap-
plications are not intrinsically image applications
but become so because of existing collections and
because paper continues to enter the system from
the outside- uncapturedpaper. Also prominent is
paper originating in a computer system, printed,
and shared only to be needed in another system-
jkg-tive paper. Information available in encoded
form will nearly always be cheaper and simpler to
use than images scanned from paper or microfilm.
Converting raster images into encoded forms is al-
ways apt to be relatively expensive because it is
likely to require human assistance if close to 100

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

Figure 10 What it means to be a resource manager

JOURNALS
TRACFR

OTHERRESOURCEMANAGERS I
percent accuracy is wanted. In such cases, the cost
of putting a page into a library may be larger than
the cost of storing that page for a century.

Whatever procedural changes are instituted to
avoid fugitive paper, residual information avail-
able only on paper will have to be captured. When
there are large retrospective collections, the eco-
nomics can be understood in readily compre-
hended terms. If each existing Caltrans document
costs $1.00 to code and index, a modest estimate
based on existing commercial methods, capture
into the database will cost $50,000,000. Since this
cost of capture is apparently the economic deter-
rent, it is surprising how little relative attention it
is receiving. To realize giant libraries of admin-
istrative information, we must examine every as-
pect of information capture- scanning, encoding,
type and structure determination, and cross-in-
dexing-and eliminate every human step possi-
ble, without interfering with users' ability to in-
tervene manually.

Document storage services within open systems. A
library is one tool among many needed by each

digital document user. Different users will use dif-
ferent tool mixes and different data models. Doc-
ument management tools must integrate readily
into existing and emerging environments. For
each component-hardware such as storage vol-
umes and software such as operating systems,
image processing subroutines, etc.-there are
many alternatives. Any specific application will
require a mixture likely to be different from what
is installed elsewhere and likely to change over
time. Internally, DocSS is a modular toolbox that
is partly implemented in the IRM product. Over
time, we hope to extend this toolbox to the most
important machine and operating system environ-
ments.

An industry direction emphasizes a network of
mutually supportive resource managers. Each re-
source manager instance (Figure 10) combines
state and processes and is accessible to remote
concurrent clients, and may act as a client for
services it itself needs. Resource managers avoid
favoring one application class over another by
particular data structures and typically depend on

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993 GLADNEY 535

Figure 1

one another; for instance, a database manage-
ment subsystem draws on naming and authentica-
tion servers, which themselves may use database
managers in their implementation. The DocSS li-
brary catalog service, blob service, and cache ser-
vice may each be seen to be a resource manager in
the sense suggested by the figure. Together with
document managers, they fit into a pattern in which
application enablers define data models that they
implement by drawing on resource managers (Fig-
ure 11). A folder manager such as that sketched and
previously described in the subsection on a model
document manager belongs in the second row-ap-
plication enablers that obtain remote services only
by way of resource managers. The second row in
Figure 11 depicts application enablers, and the third
and fourth rows depict resource managers; the

heavy line two-thirds of the way from the top de-
picts what is called a Transport Layer Protocol
Bounda y (TLPB). This paper describes components
in the categories shown with bold font.

Electronic library projects for knowledge workers.
A dream that motivates the work reported is
ready access, from both the office workstation
and the home computer to all the information al-
luded to. In addition to basic computing, storage,
and communications support, parts of the tech-
nology needed are being pursued in many digital
library projects in both commercial and academic
circles. Commercial projects tend to emphasize
business and quality controls, cost control, and
improved responsiveness to ultimate clients. Ac-

IBM SYSTEMS JOURNAl VOL 32, NO 3, 1983

ademic and professional society projects tend to
focus on the dream.

Each project necessarily concentrates on aspects
essential to creating a service within two to three
years. The points of emphasis are more comple-
mentary than competitive. A National Library of
Medicine projectz showed that digital replace-
ment of existing books is not economical, at least
not yet.26 As a consequence, academic and cul-
tural library projects are concentrating on making
unique and fragile materials broadly accessible
and on enabling searches over archives too large
for public shelves.

An IBM joint study with the Japanese Museum
of Ethnology allowed a search into a collection

IBM SYSTEMS JOURNAL VOL 32, NO 3, 1993

of color pictures of Pacific Island artifact^.'^
The implementation environment is a “based
database on Kanji-enabled P S / ~ workstations.
In another IBM joint study with the Spanish
Ministry of Culture and the Ramon Areces
Foundation, the 16th century papers of the Ar-
chive General de IndiasZ8 are being digitized.
By the celebration of the 500th anniversary of
Columbus’ first voyage to America, about eight
million pages, representing about 10 percent of
the collection, had been captured. The project
uses about 60 P S / ~ workstations and an Appli-
cation System/400* (AS/400*).
A third IBM joint study with the Brandywine
Museum captured and cataloged high-quality
renditions of Andrew Wyeth’s work while the
artist was still available to guide the project.29
The project emphasized quality of color repro-
duction. The machinery is a network of PS/2s.
In 1990, the U.S. Library of Congress started a
project called “American Memory”; it intends
to deliver on-line collections of unique value to
libraries throughout the United States. The first
collection comprises about 30 000 80-year-old
photographs of Detroit. The distribution me-
dium is optical disks to be shown on personal
computers in one or two libraries in each state.
The University of California, Berkeley, image
database project “demonstrates the feasibility
of on-line access to digital images of maps, slides,
paintings, photographs, rare manuscripts, mu-
seum artifacts, botanical specimens, and other
visual material^."^^ The eventual target is ac-
cess to about 50 departmental collections from
a campus-wide network. The project emphasis
has been on the presentation and query inter-
face; the prototype environment is based on the
UNIX operating system.
More recently, in the Sequoia/2000 project, the
University of California and Digital Equipment
Corporation are collaborating to create and use
a prototype network for the investigation of
global warming, identifying and solving key
global circulation and distributed computing
system problems.31 In addition to creating an
application prototype, the project is concentrat-
ing on network delivery of very large objects in
real time, consisting of migrating file systems,
database extensions for geographic informa-
tion, repository management, and visualiza-
tion.
At Carnegie Mellon University, the Alexandria
Project is focused on browsing tools in encoded

GLADNEY 537

 database^,^' and the Mercury project is focused
on a nationwide electronic publishing system.

Object-oriented databases33 and hypermedia34
are closely related to image libraries but so well
represented in the literature that they need not be
described here. Standards efforts, such as that for
bibliographic search, 35 are important but beyond
the scope of this paper.

In contrast to other digital libraries, DocSS ex-
poses views of library catalogs and other tables
for queries (but not for updates). It invents no
new query language; its query language is
“SQL SELECT . . . ”. Apart from confidentiality
restrictions, any question answerable from the
database can be posed, including questions that
join the basic catalog tables to catalog extensions
defined by library custodians, or tables belonging
to independent applications. Thus, if a database
containing a library also contains the catalogs of
other subsystems (e.g., electronic mail, tele-
phone book, bill-of-materials, etc.), users can in-
quire how documents are related to these sub-
systems.

Summary and conclusions

This paper has described a client-server design
that creates distributed electronic libraries as a
modest addition to widely supported operating
system components. Each library is a digital an-
alog of a public or private collection of papers and
pictures. The new services occur in layered ab-
stractions, with families of document managers
riding on the Document Storage Subsystem
(DocSS).

The DocSS layer is primitive, providing the struc-
ture and mechanisms for storing and cataloging
data objects of all types and for recovering the
information stored. Document managers are
workstation programs. The storage subsystem
can be implemented with sAA-compliant products
among which standard SQL relational database
management systems figure prominently.

DocSS is structured for extensions to specialized
requirements and for exploitation of emerging
technologies, such as multimedia services, with-
out disrupting what already has been built. It dis-
tributes processing and hides environmental de-
tails by client-server techniques, providing for:
multiple concurrent library sessions from each

538 GLADNEY

application process, with interactive or batch ser-
vice within each session; system-managed place-
ment of stored objects for performance and cost
optimization; identical treatment of documents
and folders; links between documents, as re-
quired for hypertext and engineering design; as-
sistance for managing different versions originat-
ing from common information; and batching,
buffering, and caching to shield the progress of
applications from weaknesses of networks-par-
ticularly wide area networks.

The work described complements other digital li-
brary projects described above. What distin-
guishes DocSS from anything else that we have
seen is how it manages data distribution over wide
area networks and its synergism with distributed
SQL databases and other components of evolving
open systems. A practical implementation exists.

Acknowledgments

Five years of conversations within the Computer
Science Departments of IBM Research have in-
fluenced what is described, as have similar dis-
cussions in the IBM development laboratories in
Bethesda, Dallas, and Sindelfingen. I would like
to acknowledge individuals, but the list is impos-
sibly long.

Many joint study partners-most notably mem-
bers of teams led by Russ Bohart, Ray Wells, and
Larry Kite, of the governments of California, Al-
abama, and Illinois, respectively-commented
on early DocSS designs. Their contributions
make what is described correspond more nearly
to real needs than it otherwise would.

The IBM IRM product was managed by an IBM
program office led by Joe Ganahl and an IBM mar-
keting team led by Mike Miller. The product was
largely developed and integrated by an American
Management Systems, Inc., team led by Paul Hu-
decek. The product is made viable by hundreds of
refinements suggested by these teams.

I wish particularly to thank the designers and im-
plementers of the first prototype, James Antog-
nini, Robert Cubert, Dave Hildebrand, Steve
Horne, Ken Rothermel, Bob Schmiedeskamp,
and Rina Walach, for their contributions, and Bill
Bigley, Pat Mantey, and Robin Williams for their
support.

IBM SYSTEMS JOURNAL, VOL 32, NO 3, lQS3

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of the Open Software
Foundation or UNIX Systems Laboratories, Inc.

Cited references
1. Image and Records Management (ZRM) General Infor-

mation Guide, IBM Systems Reference Library, GC22-
0027, IBM Corporation (1991); Baseline User’s Guide,
IBM Systems Reference Library, SC22-0031, IBM Cor-
poration (1991); Application Programmer’s Reference
Guide, IBM Systems Reference Library, SC22-0030, IBM
Corporation (1991); all available through IBM branch of-
fices.

2. C. Brazdziunas et al., DevelopmentPlan foran Electronic
Library System, Carnegie Mellon University Information
Networking Institute, Technical Report 1990-1, Pitts-
burgh, PA.

3. “Report of the APS Task Force on Electronic Information
Systems,” Bulletin of the American Physical Society 36,
No. 4, 1119-1151 (1991).

4. H. M. Gladney, Requirements Analysis for a Document
Storage Subsystem, IBM Research Report RJ-7085, IBM
Corporation (1989).

5. Automated Records Management System Feasibility
Study Report, Arthur Young International for the State
of California Department of Transportation (October 31,
1986).

6. Zbid., p. 111-7.
7. F. M. Wahl, K. Y. Wong, and R. G. Casey, “Block Seg-

mentation and Text Extraction in Mixed TextIImage Doc-
uments,” Computer Graphics and Image Processing 20,
375 (1982).

8. T. W. Malone, K. R. Grant, F. A. Turbak, S . A. Brobst,
and M. D. Cohen, “Intelligent Information Sharing Sys-
tems,” Communications of the ACM 30, No. 5,390-402
(1987).

9. C. D. Avers and R. E. Probst, “ImagePlus as a Model for
Application Solution Development,” IBM Systems Jour-
nal 29, No. 3, 356-370 (1990).

10. R. G. Casey, D. F. Ferguson, K. Mohiuddin, and E. Wal-
ach, “An Intelligent Forms Processing Subsystem,” Ma-
chine Vmion and Applications 5, 143-155 (1992).

11. R. G. Casey and D. F. Ferguson, “Intelligent Forms Pro-
cessing,”ZBMSystems Journal 29, No. 3,421-434 (1990).

12. R. Reinsch, “Distributed Database for SAA,” ZBM Sys-
tems Journal 27, No. 3, 362-369 (1988).

13. CZCSIMVS Version 2.1 MasterZndex, IBM Systems Ref-
erence Library, SC33-0513, IBM Corporation (1988);
available through IBM branch offices.

14. J. P. Gelb, “System-Managed Storage,” IBM Systems
Journal 28, No. 1, 77-103 (1989).

15. H. M. Gladney, “Inter-Machine Protocols for Electronic
Libraries,” 13th International Conference on Distributed
Computing Systems (May 1993).

16. C. J. Date, An Introduction to Database Systems, Third
Edition, Addison-Wesley Publishing Co., Reading, MA
(1981).

17. R. A. Lorie and W. Plouffe,“Complex Objects and Their
Use in Design Transactions,” Engineering Design Appli-
cations, Proceedings of the Annual Meeting, Database
Week, San Jose (1983), pp. 115-121.

IBM SYSTEMS JOURNAL VOL 32, NO 3, 1993

18. P. E. Mantey and D. E. Levy, “Electronic Libraries and
Optical Jukebox DocumentDmage Libraries,”ZEEE Sym-
posium on Electronic Imaging Science and Technology
(February 1992).

19. SQLIData System Application Programming for VMlSys-
tem Product and VMlExtended Architecture System
Product, IBM Systems Reference Library, SH09-8019,
IBM Corporation (1988); available through IBM branch
offices.

20. B. W. Lampson, “Designing a Global Name Service,”
Proceedings of the 5 4 Annual Symposium on Principles
of Distributed Computing (1986), pp. 1-10.

21. Data Communications Networks Directory Recommen-
dations X. 5OO-X.521, Volume VIII, Fascicle VIII.8,
CCITT IXth Plenary Session, Melbourne (November
1988); Open Systems Interconnection-The Directory,
IS0 DIS 9594-1 to 9594-8, ISO, Geneva, Switzerland
(1988).

22. J. G. Steiner, B. C. Neuman, and J. I. Schiller, “Ker-
beros: An Authentication Service for Open Network Sys-
tems,” Proceedings of USENZXAssociatwn Winter Con-
ference (February 1988), pp. 191-202.

23. Resource Access Control Facility (RACF) General Znfor-
matwn Manual, IBM Systems Reference Library, GC28-
0722, IBM Corporation (1985); available through IBM
branch offices.

24. R. H. Katz, “Toward a Unified Framework for Version
Modeling in Engineering Databases,” ACM Computing
Surveys 22, No. 4, 375-408 (1990).

25. G. R. Thoma, S . Suthasinekul, F. L. Walker, J. Cookson,
and M. Rashidian, “A Prototype System for the Elec-
tronic Storage and Retrieval of Document Images,”ACM

279-291 (1985).
Transactions on Ofice Information Systems 3, No. 3,

26. C. Ruckman, letter in “The Rocky Road to ‘Computo-
pia’,’’ Physics Today 45, No. 1, 94-96 (1992).

27. M. Sato, M. Koda, M. Ioka, and J.-K. Hong, “Image1
Text Retrieval System on a LAN,” ZEEE office Automa-
tion Symposium (April 1987), pp. 200-204.

28. J. Bescos, J. P. Secilla, and J. Navarro, “Filtering and
Compression of Old Manuscripts by Adaptive Processing
Techniques,” Proceedings of the Society for Information
Display Symposium, Las Vegas 21, 384-387 (1990).

29. F. Mintzer and J. D. McFall, “Organization of a System
for Managing the Text and Images That Describe an Art
Collection,” Image Handling and Reproduction Systems
Integration, W. Bender and W. Plouffe, Editors,Proceed-
ings of SPZE 1460, 3849 (1991).

30. B. Morgan and S . Jacobsen, The UC Berkeley Image Da-
tabaseProject, preprint (August 1988); informal summary
report (February 1991).

31. M. Stonebraker and J. Dozier (principal investigators),
Sequoia/2OOO: Large Capacity Object Sewers to Support
Global Change Research, seminar given at the IBM Al-
maden Research Center (October 1991).

32. M. Horowitz, F. Hansen, M. McInerny, T. Peters, and
M. Wadlow, The Alexandria Project: In Support of an
Information Environment, seminar given at the IBM Al-
maden Research Center (November 1991).

33. W. Kim and F. H. Lochovsky, Object-Oriented Con-
cepts, Databases, and Applications, Addison-Wesley
Publishing Co., Reading, MA (1989).

34. B. J. Haan, P. Kahn, V. A. Riley, J. H. Coombs, and
N. K. Meyrowitz, “IRIS Hypermedia Services,” Com-
munications of the ACM 35, No. 1, 36-51 (1992).

GLADNN 539

35. C. A. Lynch, “The 239.50 Information Retrieval Proto-
col: An Overview and Status Report,” Computer Com-
munication Review 21, No. 1, 58-70 (1991).

Accepted for publication March 31, 1993.

Henry M. Gladney IBM Almaden Research Center, 650
Hany Road, San Jose, California 95120-6099 (electronic
mail: Internet: gladney@almaden. ibm. com, Inter-entepise:
USIBMF6R at IBMMAIL). Dr. Gladney is a research staff
member in the Computer Science Department of the Almaden
Research Center. He joined IBM Research in 1963, and has
been there since with short sabbatical periods in other IBM
divisions and in universities. His research has focused on ap-
plications of computers to scientific problems and is repre-
sented by articles in such diverse periodicals as the Physical
Review, the Journal of Analytical Chemistry, the IBM Sys-
tems Journal, and ACM Transactions on Database Systems.
His recent work has been directed toward distributed library
systems for very large collections of documents and images,
with special emphasis on related security needs. Dr. Gladney
received his B.A. from Toronto University in 1960, his M.A.
from Princeton University in 1962, and his Ph.D. from Prince-
ton University in 1963. He is a member of ACM and a Fellow
of APS.

Reprint Order No. G321-5523.

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

