
A public key extension
to the Common
Cryptographic
Architecture

by A. V. Le
S. M. Matyas
D. B. Johnson
J. D. Wilkins

A new method for extending the iBM Common
Crypt0 raphic Architecture (CCA) to include
public fey cryptogra hy is presented. The public
key extension roviAs nonrepudiation via digital
signatures antan electronic means to distribute
Data Enc ption Aigorithm (Dm) key-encrypting
keys in aTybrid Data Enc ption Aigorithm-
Public Ke Algorithm (D E x P A cryptographic
system. &e improvements are 6 ased on a novel
method for extending the control vector concept
used in the iBM Common Cryptographic
Architecture. Four new key ty 8s that separate
the public and private key pals into four classes
according to their broad uses within the
crypt0 raphic system are defined. The public key
extensyon to the CCA is implemented in the iBM
Transaction Security S stem (TSS). This paper
dlscusses both the pu l ilc key extension to the
CCA and the TSS implementation of this
architectural extension.

T he IBM Common Cryptographic Architecture
(CCA)' was first described in a series of pa-

pers appearing in 1991.2-' The CCA is based on the
Data Encryption Algorithm (DEA)~ and a method
for controlling key usage, based on control vec-
tor~.~.' ' The CCA consists of a set of cryptographic
services supporting a wide range of data security
applications-data confidentiality, data integrity,
personal identification number (PIN) processing,
and DEA key management. This set of services is
accessible through an application programming
interface (API) and is available on the IBM Enter-

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

prise Systems Architecture/390* Integrated Cryp-
tographic Feature (ICRF) and the IBM Transaction
Security System (TSS). A public key extension, or
tower, provides additional cryptographic serv-
ices via the API. This extension is available on the
Transaction Security System.

The new public key extension to the CCA provides
an additional 20 cryptographic services through
the MI.""^ These new services access a public
key algorithm (i.e., the RSA [Rivest, Shamir,
Adleman] alg~rithm'~) located within secure
hardware.

For those unfamiliar with the subject, the DEA
enciphers a 64-bit block of plaintext into a 64-bit
block of ciphertext under the control of a 64-bit
cryptographic key. The key contains 56 indepen-
dent key bits and 8 bits that may be used for error
detection. Although the DEA itself is public, the
keys must be kept secret. Hence, the DEA is called
a secret key algorithm; its distinguishing feature is
that the same key is used for enciphering and de-
ciphering. For this reason, secret key algorithms

"Copyright 1993 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to repubhh any other portion of this paper must
be obtained from the Editor.

LE ET AL. 461

are also referred to as symmetric algorithms, and
secret keys are also referred to as symmetric keys.

In marked contrast, the distinguishing feature of
apublic key algorithm is that one key is used for
enciphering and another, different from the first,
is used for deciphering. For this reason, public
key algorithms are also referred to as asymmetric
key algorithms. This concept was first introduced
by Diffie and Hellman.15 The enciphering key is
made public and is referred to as the public key;
the deciphering key is kept secret and is referred
to as the private key. l6 The public and private
keys are related, but the relationship is such that,
given the known value of the public key, it is
computationally infeasible to determine the value
of the private key. Public key algorithms have
eliminated the need to transport secret keys be-
tween communicating parties in order to establish
a secure channel. When a pair of users A and B
wishes to establish a secure channel, each user
sends his or her public key to the other over the
open channel. That the authenticity of the public
key is a major concern is a widely known and
accepted fact. The recipient of a public key must
ensure that the key comes from a genuine send-
er-the sender with whom the receiver intends to
communicate. Otherwise, an adversary might
misrepresent the public key to user B, claiming
that it belongs to user A. User B might then en-
crypt data for user A under the adversary’s public
key, thus exposing these data to the adversary.

A secret key algorithm such as the DEA provides
services for both confidentiality and authenticity
of information. However, public key algorithms
are often more granular with respect to the serv-
ices they provide. Some public key algorithms
support only confidentiality, whereas others sup-
port only authenticity. The RSA algorithm pro-
vides both capabilities.

There are other differences between known se-
cret key and public key algorithms, such as key
size, block size, encryption and decryption speed
and complexity, and key generation speed and
complexity, all of which have been widely dis-
cussed in the literature. See, for examples, Ref-
erences 17 and 18.

Need for public key cryptography

A well-known problem for a DEA-based crypto-
graphic system is the distribution of initial cryp-

462 LE ET AL.

tographic keys for enabling any two devices in a
network to establish a secure communication
channel. These initial keys may be used for dis-
tributing subsequent keys, or for protecting data
communicated between devices. In a network of
n cryptographic devices, on the order of n * initial
keys are needed in order for all pairs of devices to
communicate securely. The most conventional
method for distributing the keys has been via
manual delivery such as with trusted couriers.
This is generally not cost-effective for a large net-
work consisting of thousands of cryptographic
devices. The problem is remedied to a degree in
DEA-based networks by using key distribution
protocols based on a key distribution center
(KDC) topology. 17~19 With the KDC topology, only
n initial keys are required to establish secure com-
munication between the KDC and n devices. How-
ever, a new element is needed: a trusted key dis-
tribution center. The disadvantage here is that a
peer-to-peer key distribution protocol cannot be
accomplished without involving the KDC each
time an initial key is to be distributed.

With public key cryptography, electronic distri-
bution of initial keys is more feasible and eco-
nomical using a simple, widely known protocol.
When a device wishes to establish a secure chan-
nel, it first generates a public and private key pair.
The public key is sent to the intended receiving
device on the open communication channel, and
the private key is retained by the generating de-
vice. On receipt of the public key, the receiving
device encrypts an initial DEA key-encrypting key
with the public key and sends the encrypted key
value to the originating device. Since the private
key is known only to the originating, or generating
device, only this device can decrypt the en-
crypted initial key-encrypting key to establish a
secure communication session with the other de-
vice. (Of course, this assumes that the underlying
public key algorithm supports secrecy, so that
keys can be encrypted and decrypted.) As dis-
cussed earlier, however, the authenticity of the
public key is a major concern. Various methods
have been proposed for certifying and registering
public keys, and for improving the integrity of the
key distribution process. 17,20 Many of these meth-
ods require the involvement of trusted certifica-
tion centers or authentication servers whose roles
are similar to those of key distribution centers in
secret-key-based key distribution. Even with that
requirement, public-key-based key distribution is
still considered more advantageous than secret-

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

key-based key distribution. 17~18,21 The advantages
are these. First, with public-key-based key dis-
tribution, the certification center or the authenti-
cation server can be off line and key distribution

Public key cryptography is
well-suited to the digital

signature mechanism that
supports nonrepudiation

applications.

is still possible. In contrast, with secret-key-
based key distribution, on-line access to a key
distribution center is usually needed each time the
communicating parties establish an initial keying
relationship. Second, in public-key-based key
distribution, the degree of trust placed on the cen-
tral authority (e.g., a certification center) is gen-
erally less than the degree of trust placed on the
central authority in secret-key-based key distri-
bution. This is because with distributed public
keys, one needs to be concerned only with their
integrity, whereas with distributed secret keys
(i.e., DEA keys), one is concerned with both the
secrecy and the integrity of keys.

Public key cryptography is also well-suited to the
digital signature mechanism that supports nonre-
pudiation applications, which are applications
that can establish the authenticity of an originator
of a message or data. As a simple example, let A
be the originator of a message M, sent with proof
of authenticity to B. A first enerates a public and
private key pair (PU, PR).’ The private key PR
is retained by A, and the public key PU is sent to
B. Assume that the public key algorithm used
supports authentication applications and has the
reversible property that epU{dPR[H(M)]} = H(M),
where dPR denotes the decryption transformation
with the private key PR, and epu denotes the en-
cryption transformation with the public key PU.
Next, A calculates a hash value H(M), also
known as a message digest, on the message M,
using a hash function. A then decrypts H(M) with
the private key, and appends the result to the
message M. A also sends the appended message

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

to B (assuming no message secrecy is desired).
The decrypted value of H(M), denoted as
dPR[H(M)], is often called the digital signature on
M. Signing on a hash value of a long message is
much faster and easier than signing on the mes-
sage itself. Upon receiving the message and the
attached digital signature, B validates message M
and verifies the fact that M originated from A as
follows. B first encrypts the signature dPR[H(M)]
with the public key PU to recover H(M). Next, B
produces a hash value on message M, with the
same hash function used by A. The produced
hashed value is then compared for equality with
the recovered N(M). If the comparison is suc-
cessful, the authenticity and integrity of message
M can be assured. B cannot forge the digital sig-
nature, because B does not have the knowledge of
the private key PR. Similarly, A cannot disclaim
the digital signature, because only A knows the
value of the private key PR. The hash value pro-
vides integrity to the message by serving as a re-
dundant value to the message. Designers of public
key cryptographic systems must exercise care in
the selection of the hash function to ensure that,
with high probability, two different messages do
not result in an identical hash value. Detailed
treatment of hash algorithms used for calculating
digital signatures can be found in References 17
and 23.

Public key algorithms are not the only means for
producing digital signatures. Digital signatures
can be produced with secret key algorithms. They
can also be produced with special transforma-
tions that, strictly speaking, are not secret key or
public key algorithms. l 7 y Z 3 However, public-key-
based digital signature schemes 14,24 remain the
most preferred schemes for many users.

Although public key cryptography (i.e., the RSA
algorithm) is capable of providing both privacy
and authentication services, its wide usage has
been usually in the areas of key distribution and
digital signature applications. It has not been as
widely used in general data encryption and de-
cryption applications. This is due to the fact that
public key algorithms typically involve modular
exponentiation and are computationally inten-
sive” and usually slow for real-time applications
(e.g., instantaneous electronic conversations).
The DEA, on the other hand, is very fast when
compared to existing public key algorithms (PKA)
and well-suited to routine encryption of bulk
data. Thus, it is very desirable to have a hybrid

LE ET AL. 463

DEA-PKA system that can combine and take ad-
vantage of the good features in both DEA and P a .

Currently, there is a wealth of published articles
and reports presenting ideas, techniques, and
protocols for hybrid secret key and public key
cryptographic systems. Although most of the
published materials are largely conceptual, some
of them do offer practical realizations. Most no-
table are the Defense Advanced Research Project
Agency (DARPA) Internet Mail system,26 the Bell-
Northern Research Inte rated Services Digital
Network (ISDN) terminal,’ the Cylink CIDEC-LS**
system, ’* the Digital Distributed System Security
Architecture,” the MEMO system,30 and the Se-
cure Data Network System (SDNS).31’32 The
DARPA Internet Mail system and the Digital Dis-
tributed System Security Architecture use RSA as
the public key method for distributing secret sym-
metric keys. The CIDEC-LS system and the MEMO
system use the Diffie-Hellman method15 for dis-
tributing secret DEA key-encrypting keys. The
Bell-Northern Research terminal uses the Diffie-
Hellman method to distribute DEA session keys,
which are then used to encrypt data exchanged
during a communication session. And the SDNS
utilizes a secret government algorithm to ex-
change and authenticate keys.

This paper presents a seamless PKA extension to
the existing IBM Common Cryptographic Archi-
tecture. Whereas the goal of this hybrid architec-
ture is similar to other mentioned hybrid systems,
the achieved result is a unique and highly inte-
grated cryptographic system that takes advantage
of the rich functionality of the DEA-based Com-
mon Cryptographic Architecture’ and the key-
usage enforcement method based on the recently
developed control vector concept.

Rationale and objectlves

As its name implies, the public key extension to
CCA is not intended to be a stand-alone architec-
ture, but is an optional add-on to the already ex-
isting CCA. If a product implements the public key
extension, that product must also implement
the base Common Cryptographic Architecture.
Hence, the mentioned advantages of public key
cryptography are used to the fullest extent to en-
hance the present CCA. The aim is twofold: (1)
provide new data operation services such as non-
repudiation via digital signatures, and (2) provide

464 LE ET AL.

expanded key management services such as dis-
tribution of DEA keys via encryption with a public
key.

The digital signature services are independent
services and are added to the existing data oper-
ation services. The expanded key management
services also make use of digital signatures to pro-
vide a high-integrity key distribution channel for
the distribution of both PKA keys and DEA keys.
This kind of signature, which is created and ver-
ified as an integral part of the key management
services, is called a system digital signature. A
different kind of signature, called an application
digital signature, is generated and verified on us-
er-supplied data via signature services available
to application programs.

The expanded key management services empha-
size the use of public key cryptography to dis-
tribute initial DEA key-encrypting keys and thus
to eliminate the need for couriers and manual in-
stallation of the initial DEA key-encrypting keys.
Once DEA key-encrypting keys are distributed via
public key cryptography, subsequent DEA key-
encrypting keys or data-encrypting keys can be
distributed via existing CCA services. Thus, with
the public key extension, hybrid key distribution
is based on a three-level hierarchy, rather than a
two-level hierarchy.33 In the absence of a key
management standard prescribing a key hierar-
chy, the authors adopted a three-level hierarchy
for the following reasons:

Pegomance. There are many applications
where the data keys change rapidly from one
transaction to another. In these applications,
use of a two-level hierarchy might negatively
affect system performance, because PKA en-
cryption must be performed on each data key.
With a three-level hierarchy, PKA encryption
needs to be performed only on an initial DEA
key-encrypting key. Thereafter, a DEA encryp-
tion is performed on each data key, and thus the
performance impact is much less than that of
the two-level hierarchy.
Flexibility. The three-level hierarchy is more
flexible than the two-level hierarchy, because
the three-level hierarchy can be made to simu-
late a two-level hierarchy. For example, if PU,
KEK, and KD represent a public key, a DEA
key-encrypting key, and a DEA data key, re-
spectively, then the single encrypted key value,

IBM SYSTEMS JOURNAL, VOL 32. NO 3, IS33

ePU(KD), in a two-level hierarchy, is replaced
in a three-level hierarchy by two encrypted key
values, ePU(KEK) and eKEK(KD). In con-
trast, the two-level hierarchy cannot be made to
simulate the three-level hierarchy.
Securiv. The three-level hierarchy simplifies
the task of analyzing security in the key man-
agement design in that it ensures that the bridge
from PKA to DEA is focused at one point only-
the distribution of one key type (Le., key-en-
crypting key). With a two-level hierarchy, there
are potentially many different key types that
may require distribution (e.g., privacy key, au-
thentication key, PIN encryption key). That is,
there are many bridges from PKA to DEA.

From customer requirements, governmental ex-
port regulations, and the rationale just presented,
the following major objectives have been derived
for the public key extension to the CCA:

Provide PKA services with security and integrity
level comparable to or better than existing CCA
services.
Support distribution of DEA key-encrypting
keys with high integrity via PKA public keys.
Support distribution of public keys with high
integrity in both certification center and peer-
to-peer environments.
Support generation and verification of applica-
tion digital signatures. Application digital sig-
natures are generated on data specified by the
application program (or user). For interopera-
bility with other public key cryptographic sys-
tems, application digital signatures are also gen-
erated on system data (e.g., distributed public
keys) for use in the key management services.
However, greater integrity in the key distribu-
tion process can be achieved with system digital
signatures discussed earlier in this paper.
Support generation and verification of system
digital signatures, which are generated on sys-
tem data specified by the cryptographic sub-
system, as an integral part of the key manage-
ment services requiring high integrity.
Comply with the well-accepted digital signature
standard ISO/IEC IS 979634 in the generation and
verification of both system digital signatures
and application digital signatures.
Prevent the system from being misused as a co-
vert encryption channel by avoiding support for
general data encryption and decryption capa-
bilities with public key algorithms. PKA encryp-
tion is performed only on system-generated

Figure 1 Public key extension architectural model

data. In cases where supplied data are en-
crypted, the encrypted data are not returned to
the application program, but are compared in
the hardware with application-supplied data.

As shall be seen, these major objectives have
greatly influenced the design of the public key
extension.

System overview

Figure 1 shows an architectural model of the pub-
lic key extension in which two cryptographic ap-
plications interoperate. Each cryptographic ap-
plication (APPL) interfaces to a cryptographic
subsystem through an application programming
interface (API). The model parallels the CCA ar-
chitectural model presented in Reference 2. In the
CCA architectural model, the cryptographic sub-
system contains a set of cryptographic services
that are invoked via the API. In the extended
CCA architectural model, the cryptographic sub-
system is expanded to include the following:

New cryptographic services supporting the pub-
lic key extension
A new data structure, called theprofile vector,
used to configure operations of the crypto-
graphic services

The cryptographic services and the profile vector
can be implemented in hardware, software, or a
combination of both, depending on the security,
performance, and cost objectives at hand.

For the purpose of this paper, the functional as-
pect of public key extension is described in terms
of the new API cryptographic services, because
they matter most from a user’s perspective. How-

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993 LE ET AL. 465

Figure 2 Components of the cryptographic subsystem

ever, key management concepts developed for
the public key extension are more easily dis-
cussed using a more granular architectural model
in which the cryptographic subsystem is subdi-
vided into software and hardware components.
Thus, in the remainder of the paper, the public
key extension and the cryptographic subsystem
are discussed in terms of the specific implemen-
tation within the IBM Transaction Security Sys-
tem (TSS).

TSS implementation of the cryptographic
subsystem

In the TSS implementation of the public key ex-
tension, the cryptographic subsystem is parti-
tioned into two components: a hardware compo-
nent called the cryptographic facility (CF) and a
software component called the cryptographic fa-
cility access program (CFAP), as illustrated in Fig-
ure 2. The CF contains the cryptographic algo-
rithms, storage for a small number of clear keys
and cryptographic variables, and an instruction
processor for executing a set of cryptographic in-
structions that may be invoked by the CFAP
through a low-level interface. The CFAP also in-
terfaces with the application programs through an
API.

A typical cryptographic service request initiated
by an application program at the API includes data
and cryptographic keys. The CFAP processes the
service request by executing one or more CF in-
structions. Appropriate parameter values are

466 LE ET AL

passed to each CF instruction at the CF-leVel in-
terface. CF instruction outputs are returned to the
CFAP at the same CF-level interface. A CF instruc-
tion output value may be used as an input to an-
other CF instruction, or it may be returned to the
application program.

Cryptographic facility. The CF is the heart of the
cryptographic subsystem, as shown in Figure 3.
The CF contains three major components: (1) en-
cryption processor, (2) instruction processor, and
(3) CF environment. The CF is implemented within
a secure boundary, protected with tamper-resis-
tant, tamper-detection, and key zeroization cir-
cuitry. This ensures that the CF can be accessed
only through intended interfaces, and that clear
keys and the results of intermediate steps of en-
cipherment and decipherment are kept protected.

Encryption processor. The encryption processor
implements the Data Encryption Algorithm (DEA)
and one or more public key algorithms (PKA). The
encryption processor is the basic engine for per-
forming encryption and decryption operations re-
quired by the cryptographic instructions. The
DEA portion of the encryption processor is part of
the existing CCA. The PKA portion of the encryp-
tion processor is added to support the public key
extension. The PKA portion includes a key gen-
erator and PKA encryption and decryption cir-
cuitry. The public key algorithm used in the pub-
lic key extension for both digital signature and
key distribution is the RSA algorithm. Provisions
have been made to allow the CCA to be extended
to support other public key algorithms as the mar-
ket dictates.

The key generation method for RSA public and
private keys follows the guidelines set forth by the
digital signature standard ISO~IEC IS 9796. For dig-
ital signature purposes, the RSA key modulus
length is between 512 and 1024 bits, inclusive. For
DEA key distribution purposes, the RSA key mod-
ulus length is 512 bits.

Instruction processor. The instruction processor
decodes and executes cryptographic instructions
invoked by the CFAP at the CF-leVel interface. The
instruction set in the instruction processor has
been expanded to support the public key exten-
sion.

CF environment. The CF environment consists of
a set of existing and newly added cryptographic

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

Figure 3 Cryptographic facility

PHYSICAL
INTERFACE
(OPTIONAL)

SECUREBOUNDARY - r""""""""""""""- 1

! , I!

1
I CF-LEVEL

INTERFACE

OPERATION CODE:
INPUT PARAMETERS
OUTPUT PARAMETERS

variables-keys, flags, counters, and configura-
tion data that collectively initialize and configure
the CF. The newly added cryptographic variables
include a 128-bit PKA master key (denoted KMP),
which is a 128-bit DEA key-encrypting key, under
which most PKA keys (i.e., public and private
keys) are protected, and a special pair of keys
called the public device authentication key and
the private device authentication key. This spe-
cial key pair is generated within the CF and is
stored in the CF environment in clear form. The
purpose of the device authentication key pair is
discussed in a later section. The CF environment
is expanded to include a configuration vector,
which specifies operating conditions of the public
key extension. The variables in the CF environ-
ment are initialized (1) via execution of certain CF
instructions that read values supplied at the CF-
level interface and load them into the CF environ-
ment, or (2) via an optional physical interface that
allows values to be loaded into the CF environ-
ment (e.g., via an attached key entry unit). The
configurationvector and the master keys in the CF
environment are part of the public key extension
key management concept that is to be discussed
in a subsequent section.

Cryptographic facility access program. The cryp-
tographic facility access program (CFAP) consists

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

Figure 4 Cryptographic facility access program

CF CFAP APPLICATION

of a set of cryptographic services and data struc-
tures, including a profile vector and a software
state vector, as shown in Figure 4.

LE ET AL. 467

Table 1 Public key extension services

PKA subsystem management services
1. Profile vector build
2. Profile vector load
3. Device personalize
4. Configuration vector build
5. Environment reconfigure
6. Environment activate
7. Master key process
8. Master key set

PKA key token support services

10. PKA key unit build
9. PKA control vector generate

11. PKA key token build
12. PKA key token migrate

PKA keymanagement services
13. PKA key generate
14. Public key export
15. Public key import
16. Clear private key import
17. DEA key generate
18. DEA key import

PKA digital signature services
19. Application signature generate
20. Application signature verif’y

C?yptographic sewices. The existing CFAP has
been expanded to include new cryptographic API
services that support the public key extension.
As with the existing CCA API services, the public
key extension API services are in compliance
with System Application Architecture* guidelines.
Furthermore, the services have been designed
with orthogonality in mind, so that product im-
plementers can select and implement various lev-
els or subsets of functionality to meet specific
needs of different classes of customers.

Table 1 provides a categorized listing of the API-
callable cryptographic services available in the
public key extension, services that are imple-
mented in the Transaction Security System. An
overview of the services is provided in a later
section.

Profile vector. The profile vector is a data struc-
ture used to configure and control the execution
of cryptographic services. The profile vector con-
sists of fields that specify the default values to be
used for certain parameters in many crypto-
graphic services when these parameters are not
explicitly declared by the calling application.

468 LE ET AL.

Some of these fields contain system-related spec-
ifications that either do not concern the average
user or that are the set of specifications all users
of the system must follow. By storing these spec-
ifications in the profile vector for use in many
cryptographic services, the burden on the user to
supply them is removed. Hence, the system be-
comes more user-friendly. Some other fields in
the profile vector store specifications that con-
cern users and are used frequently in many cryp-
tographic services. By storing these specifica-
tions in the profile vector, the need for the user to
supply them with each service call is eliminated.
In many cryptographic services, these specifica-
tions will be used as default values for processing,
unless specified otherwise by the user in the serv-
ices. In this way, the system can accommodate
both novice and experienced users.

The profile vector is envisioned to be set up by a
network administrator and distributed individu-
ally to all systems in the network. The profile
vector need not be the same for all systems, be-
cause some systems may have unique roles in the
network. However, to ensure interoperability,
certain fields (e.g., fields that contain system-re-
lated specifications) may be assigned the same
values in all profile vectors by the network ad-
ministrator. Once the profile vector is installed in
a system, the system administrator may custom
tailor the specifications of some fields to meet the
needs of the users.

Sofhvare state vector. In addition to the standard
data structure profile vector defined by the public
key extension, the TSS implementation employs
another data structure within the CFAP that is
called the software state vector. The software
state vector records various quantities dynam-
ically produced within the system. It contains a
flag byte that among other things, indicates
whether the profile vector has been initialized on
the system. It also includes status on the PKA
master key and facilitates detection of situations
where a PKA key is encrypted under an old PKA
master key after the PKA master key has been
changed. An important emerging requirement for
all computing systems is the ability to support con-
tinuous operations. Some earlier cryptographic sys-
tems required that the system be shut down in order
to change the PKA master key. In the public key

IBM SYSTEMS JOURNAL, VOL 32, NO 3. 1993

extension, when a cryptographic service detects
such a condition on a PKA key, the service re-en-
ciphers the PKA key with the current PKA master

The public key extension key
management incorporates a new
concept of a configuration vector.

key and allows the service to proceed. This process
is called the dynamic key update process.

We now present the public key extension key
management concepts, on which much of the de-
sign of the CF is based.

Key management concepts

Master key. The concept of the master key in the
public key extension is a continuation of the mas-
ter key concept in the CCA. In the CCA, the DEA
master key (denoted KM) is a DEA key-encrypting
key used to encrypt all DEA keys stored outside
the cryptographic facility. In the public key ex-
tension, the PKA master key is also a DEA key-
encrypting key used to encrypt PKA keys residing
outside the cryptographic facility. Conceptually,
the DEA master key could also have been used to
encrypt PKA public and private keys. However,
having a separate PKA master key (denoted
KMP), as implemented on the Transaction Se-
curity System, permits the public key extension
to coexist with the base CCA system without af-
fecting the existing CCA operations or existing
DEA keys encrypted under the DEA master key. Of
course, the system administrator may assign the
same value for both master keys when installing
the master keys on the system. The essential fea-
ture of the master key concept is to require only
the master keys to be protected inside the secure
hardware; other DEA keys and PKA keys may be
encrypted under the master keys and stored out-
side the protected hardware.

Configuration vector. The public key extension
key management incorporates a new concept of a
configuration vector, which permits an installa-

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

tion to restrict the allowable cryptographic serv-
ices that may be performed by the cryptographic
hardware. Similar to a control vector, the con-
figuration vector is a collection of encoded fields,
except that the configuration vector is used to
specify the operating conditions of a crypto-
graphic facility and all keys of the system. This is
in contrast to the control vector, which is used to
specify usage of a key. Conceptually, a config-
uration vector is to the cryptographic facility and
to all keys what the control vector is to a partic-
ular key. The aim of the architecture is to provide
a configurable system permitting the installation
to select the level of security and the crypto-
graphic services allowable within the system.

An example of an encoded field in the configura-
tion vector is the cert@cation field, which spec-
ifies whether the cryptographic subsystem can
function as a certification center (i.e., a central
facility with some privileges in cryptographic ca-
pability, where systems in a network register pub-
lic keys) or function only as a regular crypto-
graphic subsystem.

Node identifier. The public key extension key
management makes use of a node identifier to
uniquely identify each cryptographic subsystem
within a network. This is a nonsecret quantity
administered and distributed by a network admin-
istrator. The node identifier of each cryptographic
subsystem is loaded and stored in the CF envi-
ronment. The node identifier is involved in the
distribution of an initial DEA key-encrypting key
in the following way. The service that performs
the distribution of this initial key first generates a
DEA key-encrypting key value and produces it in
two forms. One form is a DEA key-encrypting key
used to export DEA keys and is referred to as an
EXPORTER key. The other form is a DEA key-en-
crypting key used to import DEA keys and is re-
ferred to as an IMPORTER key. There are some
restrictions on the usage of this DEA key pair, but
they are not important in the present discussion.
The EXPORTER key is retained at the generating
cryptographic subsystem for subsequent distribu-
tion of other DEA keys, and the IMPORTER is dis-
tributed to another cryptographic subsystem un-
der a public key of the receiving cryptographic
subsystem. At the generation time of this key

-pair, the node identifier of the generating crypto-
graphic subsystem is copied from the CF to a field
in a key record containing the IMPORTER key to be
distributed. At the receiving cryptographic sub-

LE ET AL. 469

system, the node identifier imbedded in the dis-
tributed key record serves a dual purpose: (1) It
is used in a stringent checking procedure (per-
formed inside the CF) to ensure that the sending
cryptographic subsystem is what it claims to be,
and (2) it is used (also in a checking procedure
inside the CF) as an anti-import value, that is, it is
verified against the node identifier of the receiving
cryptographic subsystem to ensure that this dis-
tributed IMPORTER key cannot be imported to the
generating cryptographic subsystem. The reason
the distributed IMPORTER key is not permitted to
be imported to the generating cryptographic sub-
system is as follows. If the IMPORTER key were
imported to the generating cryptographic sub-
system, it would coexist with its counterpart, the
EXPORTER key, which was generated and retained
at the generating cryptographic subsystem. The
coexistence on a system of two DEA key-encrypt-
ing keys of the same clear values but with oppo-
site usage attributes (i.e., one is for exporting
keys and the other is for importing keys) would
violate the unidirectional property of IMPORTER
and EXPORTER keys. In many cryptographic ap-
plications, maintaining unidirectionality of DEA
key encrypting keys is an important security re-
quirement.

Cryptographic facility states. The public key ex-
tension key management also has a new concept
of cryptographic facility states that controls the
initialization of the CF. At any given time, the CF
is defined to be in one of the following three
states, in successive order: (1) preinitialization,
(2) initialization, or (3) run. The preinitialization
state is where personalization of the CF, such as
loading a node identifier, is performed. The ini-
tialization state is where configuration of the CF,
such as loading a configuration vector into the CF,
is performed. The run state is the normal running
state. For a cryptographic subsystem to be useful,
its CF should reach the run state. In that state, a
current PKA master key might be loaded, and all
the public key extension cryptographic services
are available for use.

Progressing the CF forward from one state to the
next state is normal (e.g., from initialization state
to run state). However, moving the CF from the
run state to the initialization state or preinitial-
ization state causes the master keys to be erased.
This helps maintain a level of integrity of the CF
and can prevent some forms of cheating commit-
ted by insiders. For example, it prevents a corrupt

470 LE ET AL.

insider from reconfiguring a CF to an unauthorized
role (e.g., by setting the certification field in the
configuration vector to have the cryptographic
subsystem act as a certification center). This is
because reconfiguring the CF requires it to enter
the initialization state where the master keys are
erased and the CF is rendered useless. Suppose
from the time a cryptographic subsystem is first
brought up a corrupt insider configures the CF to
a role not authorized by the network administra-
tor. A routine audit of the configuration vector of
the CF by the network administrator can help de-
tect whether the CF is configured to its designated
role. Again, if the insider alters the configuration
of the CF to conceal its unauthorized role, the CF
is rendered useless. The coupling of a CF config-
uration vector to its master keys can be used to
enforce network security policy within a network
that communicates via a public key protocol using
a certification center.

PKA key types. In the public key extension, PKA
keys are classified and separated according to
their roles in supporting the key management
services and digital signature services. The four
types of public and private key pairs defined in the
public key extension follow.

The key-management key pair supports key dis-
tribution services, where the key being distrib-
uted might be a public key or a secret DEA key-
encrypting key. At a sending cryptographic
subsystem, the public key-management key of a
receiving cryptographic subsystem is used to en-
crypt the secret DEA key being distributed, and
the private key-management key of the sending
cryptographic subsystem can be used to sign the
distributed DEA key (i.e., produce a digital signa-
ture). At the receiving cryptographic subsystem,
the private key-management key of the receiving
cryptographic subsystem is used to decrypt the
distributed DEA key to recover the DEA key, and
the public key-management key of the sending
cryptographic subsystem is used to verify the dig-
ital signature produced on the distributed DEA
key.

The certification key pair supports distribution of
public keys via a certification center. The public
and private certification key pair can be created
only by a certification center. The private certi-
fication key always remains with the certification
center, for the purpose of signing certificates con-
taining distributed public keys. The correspond-

IBM SYSTEMS JOURNAL. VOL 32, NO 3, 1993

ing public certification key is normally distributed
with integrity to other cryptographic subsystems
of the network to verify the distributed certifi-
cates.

In contrast to the certification key pair, the key-
management key pair is normally used in peer-

Except for private user keys,
private keys of all other types
remain with the system that

originates them.

to-peer key distribution. Within the context of
key management, the certification key pair is sep-
arated from the key-management key pair to
clearly differentiate the authority of a certification

I center from that of an ordinary cryptographic
subsystem.

The user key pair supports application signature
generation and verification services on user-sup-
plied data. The private user key is used to gen-
erate an application signature on application pro-
gram data. The public user key is used to validate
an application signature.

The device authentication key pair is a special
key pair that permits a cryptographic subsystem
to authenticate itself and its own data stored in the
CF (e.g., the configuration vector) to other cryp-
tographic subsystems with high integrity. Unlike
other public and private key pairs, the public de-
vice authentication key and private device au-
thentication key are generated only during the
preinitialization state and stored within the secure
boundary of the CF. The keys of other types are
encrypted under the FA master key and can be
stored outside the CF. Also, each cryptographic
subsystem may have many key pairs of other
types, but only one device authentication key
pair. The device authentication keys are kept in
the CF and are erased whenever a new node iden-
tifier is loaded into the cryptographic subsystem.
That is, it is not possible to cheat by assigning two
different node identifiers to the same authentica-
tion key pair, except by pure chance. To authen-

ticate a cryptographic subsystem to other cryp-
tographic subsystems within the network, it is
necessary to separately authenticate that the pub-
lic device authentication key actually comes from
the cryptographic subsystem (via a service that
exports a public key or via an audit procedure).
This can be done in a secure environment before
the cryptographic subsystem is shipped and in-
stalled; or it can be done in the field using a trusted
third party that audits the cryptographic sub-
system. Thereafter, anything signed with the pri-
vate device authentication key can be used to
prove that the signed object originates with the
said cryptographic subsystem. Prior to auditing
the cryptographic subsystem, the signatures can
be used but they are only provisionally trusted.

Except for private user keys, private keys of all
other types remain with the systems that originate
them. During key generation, a private user key
can be provided in clear form as an output to an
application or user; other private keys are pro-
duced under encryption of the PKA master key. A
service exists to import a private user key. This
supports a level of interoperability with public
key systems that do not implement public key
extension. No other private key type can be im-
ported at a cryptographic subsystem, because
this would undermine security.

The mechanism for cryptographically separating
the PKA key types involves implementing a new
set of control vectors, which is treated next.

PKA control vectors

The control vector method is a mechanism for
controlling the usage of a cryptographic key and
for enforcing the separation of cryptographic
keys. The method was developed for the Com-
mon Cryptographic Architecture. The control
vector method calls for each cryptographic key to
be coupled with its associated control vector in
such a way that the nonsecret control vector must
be specified to recover and use the key. The
method provides for the creator of a crypto-
graphic key to declare its intended usage at-
tributes in the control vector associated with the
key. Once a key is coupled to its associated con-
trol vector, its usage attributes are enforced dur-
ing its lifetime to prevent misuse. The control vec-
tor method used in the public key extension is

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993 LE ET AL. 471

Figure 5 Representative fields in a PKA control vector

I I

built on the same architectural concepts and prin-
ciples, but the cryptographic mechanisms differ.

Format of PKA control vectors. In this paper, we
refer to the existing control vectors defined for
DEA keys as DEA control vectors, and the new
control vectors defined for public and private
keys in public key extension as PKA control vec-
tors. The DEA control vectors are 64 bits long, and
the PKA control vectors are more than 128 bits
long. Each PKA control vector consists of two
parts: a system control block (SCB) and a user
control block (UCB).

The SCB is 264 bytes long and contains system-
managed control information associated with the
key. Figure 5 shows several representative fields
of a general SCB. They can be briefly explained as
follows. The CV Type field indicates the key type
of the PKA key. It indicates whether the key is a
public or private key, and whether the public or
private key is one of the following four types: (1)
key-management key, (2) certification key, (3)
user key, or (4) device authentication key. The
Usage Attributes field indicates the cryptographic
services in which the key can be used. The Al-
gorithm field indicates the public key algorithm
with which the key can be used. Currently, only
the RSA algorithm is defined for this field. The
Tstart (Le., starting time) field and the Texp (Le.,
expired time) field together indicate the time in-
terval during which the key is valid for use. The
Key/Key Authenticator field is a one-bit field that
indicates whether the control vector is associated
with a PKA key, if this bit has a value of 0. With
avalue called a key authenticator, the field is used
to authenticate the PKA key, if this bit has a value
of 1. Other fields shown in the figure are Anti-
variant, Anti-complement, and Extension, which
have important roles in distinguishing control

472 LE ET AL.

vectors from other cryptographic variables. The
Anti-complement bit (B’l’) ensures that no two
control vectors are complements of one another.
The Anti-variant bit (B’O’) in combination with
the Anti-complement bit (B’l’) ensures that no
control vector can be equal in value to a variant
mask as used in an earlier IBM key management
scheme for separating cryptographic key^^,^ and
vice versa. The role of the Extension field is de-
scribed in Reference 3.

The UCB is 64 bytes long and contains user- or
installation-managed control information associ-
ated with the key. The public key extension pro-
vides for a user or an installation to encode extra
control information-deemed useful-in the UCB.
However, the cryptographic facility does not
check the values in the UCB; it is up to the appli-
cation program to perform this checking.

Coupling of PKA control vectors to keys. From a
system point of view, a PKA key can be classified
as either an internal key or an external key. An
internal key (also referred to as an operational
key) is one that is in internal form, which is a form
suitable for use on the system. An external key is
one that is in external form, which is a form suit-
able for distributing to another system.

When a public key is exported to another system
(i.e., the public key is transformed from the in-
ternal form to the external form), the coupling of
the public key to its associated control vector is
done via the digital signature, which is calculated
both on the key and the control vector.

For an internal PKA key, the coupling of the key
to its control vector is system-dependent and may
depend on the secrecy and integrity requirements
for public and private keys. In the public key ex-

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

Figure 6 Encryption of a PKA key K

C KMP K

HASHING FUNCTION h 1

KMP XOR H

tension, the requirements on an internal public
key are that (1) the integrity of the key value must
be assured, and (2) the key must be coupled with
its associated control vector to prevent misuse of
the key. The requirements on an internal private
key are that: (1) the integrity of the key value must
be assured, (2) the secrecy of the key value must
be assured, (3) the key must be coupled with its
associated control vector to prevent misuse of the
key, and (4) the key may be used only by the
owner of the key or an authorized user. Access
control methods are normally used to meet the
fourth requirement on an internal private key.
Here we discuss methods that may be used to
meet the remainder of the aforementioned re-
quirements on PKA internal public and private
keys.

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

Figure 6 shows a method employed in the TSS to
cryptographically couple a PKA key K to its as-
sociated control vector C, which consists of an
SCB and a UCB. Usually, the value of K is repre-
sented in such a form that the performance of the
public key algorithm can be optimized. The value
of K is also expanded (e.g., via padding) to a
block whose size is a multiple of 8 bytes, so that
existing DEA encryption and decryption opera-
tions can be conveniently performed on K. This
expansion process also includes prefuring the key
value with a 64-bit random number to increase the
appearance of randomness in the encrypted value
of K. The long control vector C is first processed
by a hashing function h to produce a 128-bit
vector H = h(C). The hashing function h is the
same as that described in Reference 9, except that

LE ET AL. 473

Figure 7 Decryption of an encrypted PKA key

+
31

F

K

after an MDC hash value is calculated on C , the
Anti-variant bit, the Anti-complement bit, the
Key/Key Authenticator field, and the Extension
field are set to appropriate values. Setting these
fields to designated values helps protect against a
class of potential attacks on control vectors that
make use of the complementary property of the
DEA, such as one described recently in Reference
35. Vector H is then exclusive-oRed with the PKA
master key KMP, and the result, denoted KMP @
H is used in an encryption algorithm, named CBC
E-D-E, to encrypt K.

The CBC E-D-E algorithm is a generalization of the
triple encryption scheme widely used in DEA-
based key management schemes, such as ANSI
x9.17,36 for encrypting a 64-bit DEA key under a
128-bit DEA key-encrypting key. This is the basis
of the term E-D-E, which stands for Encrypt-De-
crypt-Encrypt. In the CBC E-D-E algorithm, the
first 64 bits of KMP @ H is used as a DEA key to
encrypt K, using the cipher block chaining (CBC)
mode of DEA encryption, with an initial chaining
vector of zero. Next, a DEA decryption operation

474 LE ET AL.

in the CBC mode is performed on the just-pro-
duced result, using the second 64 bits of KMP @
H as the key and an initial chaining vector of zero.
The decrypted result is then encrypted with the
CBC mode of DEA encryption, using the first 64
bits of KMP @ H as the key and an initial chaining
vector of zero. The final result is an encrypted
PKA key, denoted empgH(K). Since PKA keys are
much longer than DEA keys, the cipher block
chaining mode of DEA is used in the encryption of
a PKA key, instead of the simpler electronic code
book (ECB) mode of the DEA, to help eliminate
patterns in the encrypted value of the PKA key.

The coupling method just discussed provides a
unified way for meeting the requirements of as-
suring the secrecy of a key value and of coupling
a key to its associated control vector [i.e., re-
quirements (2) and (3)] for internal private keys.
This method is also used in TSS to meet the re-
quirement of coupling a key to its associated con-
trol vector [i.e., requirement (2)] on internal pub-
lic keys. Although public keys in general need not
be kept secret, one might well take advantage of
the protection that already exists for private keys
and use a single coupling method for both public
and private keys. This coupling method does
not require new cryptographic primitives to be
added. Rather, it makes use of existing DEA en-
cryption and decryption primitives already avail-
able in the CCA.

Figure 7 shows the method for decrypting an en-
crypted PKA key K, denoted empgH(K), using a
PKA master key KMP and a PKA control vector C ,
assuming that the encrypted key is produced via
the encryption method of Figure 6. The same
hashing function h is applied to the long control
vector C to produce H. H is then exclusive-ORed
with the PKA master key KMP, and the result,
denoted KMP @ H, is used in the CBC D-E-D al-
gorithm to decrypt empgH(K). The CBC D-E-D al-
gorithm is just the inverse of the CBC E-D-E algo-
rithm. That is, the sequence of operations,
decrypt, encrypt, and decrypt, is used instead of
the sequence encrypt, decrypt, and encrypt.

The requirement of assuring the integrity of key
values [i.e., requirement (l)] on internal public
and private keys can be satisfied via a concept
called a key authenticator. Essentially, a key au-
thenticator is a value derived from the value of a
PKA public or private key and always accompa-
nies the key for later verification of the key,

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

whenever the key is used. In TSS, the key authen-
ticator is produced by applying the MDC-2 hashing
algorithm described in Reference 9 to the value of
the PKA key. The result is a 128-bit key authen-
ticator, which is then encrypted under the PKA
master key. The process of encrypting a key au-
thenticator under the PKA master key KMP and
the control vector C associated with the PKA key
is the same as that of encrypting the PKA key
(shown in Figure 6), except that a hashing func-
tion h ’ is used instead of the hashing function h .
The hashing function h ’ is identical to the hashing
function h, except that in step 5 , the KeyKey
Authenticator field is set to B’l’ to indicate that
H = h ’(C) is associated with a key authenticator.

The encrypted value of a PKA key, the control
vector associated with the PKA key, and the en-
crypted key authenticator of the key constitute
the internal form of the PKA key. In most requests
to the CF for a cryptographic operation, a PKA key
must be presented to the CF in internal form be-
fore processing can start. The process of decrypt-
ing an encrypted key authenticator is the same as
that of decrypting the encrypted PKA key (shown
in Figure 7), except that, again, the hashing func-
tion h ’ is used instead of the hashing function h .
When an encrypted PKA key, its associated con-
trol vector, and its companion encrypted key au-
thenticator is presented (in internal form) to a
cryptographic service (and ultimately to the CF of
the cryptographic subsystem), the control vector
is checked to ensure that the requested use of the
key is permitted. If the checking is successful, the
key recovery process is performed using the
method illustrated in Figure 7. Otherwise, the ser-
vice is aborted. Next, the key authenticator is
recovered from the encrypted key authenticator.
Another key authenticator is derived from the re-
covered PKA key, using the described method,
and then compared for equality with the recov-
ered key authenticator. If the comparison suc-
ceeds, the PKA key is considered to be genuine
and is used in the public key algorithm to carry
out the desired operation.

If an adversary cheats by specifying a control
vector C’ instead of the correct control vector C
in the internal form of the PKA key, there are two
possible outcomes. If the control vector checking
fails, the cryptographic service is aborted. If the
control vector checking succeeds, the recovered
PKA key authenticator and the regenerated key

authenticator do not compare and the service is
aborted. Generally, the key authenticator pro-
vides detection of possible corrupted value of the
recovered PKA key in the CF, regardless of
whether this is caused by cheating or by inad-
vertent changes in the value of the key or the key
authenticator due to hardware failures. In the ab-
sence of the key authenticator, a long time may
pass before application programs can detect such
a situation. Needless to say, all the checking and
key recovery processes, as well as operations of
the public key algorithm, are carried out inside
the CF for security reasons.

In general, if the function that generates the
key authenticator is a sufficiently strong crypto-
graphic one-way function (e.g., MDC-2), the key
authenticator need not be encrypted. However,
encrypting the key authenticator provides extra
security in implementations where a simpler or
weaker one-way function is used for performance
reasons.

It can be argued that the use of key authenticators
may add additional DEA encrypt or decrypt cycles
to the path. However, this does not materially
affect performance, because most public key ex-
tension services themselves make use of a PKA
encryption or decryption algorithm, which itself
is very long compared to the DEA encryption
and decryption operations performed on a key
authenticator. In a hardware implementation,
the processing of a key authenticator can be per-
formed in parallel with other operations, and the
overhead is considered negligible.

Of course, an implementer may use other meth-
ods to meet the requirements on public and pri-
vate keys. For example, the requirement of cou-
pling a PKA key to its control vector and the
requirement of assuring integrity of a key value
may be simultaneously met through the use of a
special DEA key, called the System Key Authen-
tication Key (SKAK). The SKAK is initialized and
stored in a protected area of the cryptographic
subsystem (e.g., the CF) and is used only by the
subsystem during the internal processing of an
internal PKA key. At the time a PKA key is created,
the SKAK is used to calculate an authentication
code on the concatenation of the clear value of the
key and the control vector. The authentication
code is then stored with the PKA key and the as-
sociated controlvector. Together, they constitute
the internal form of the PKA key. Needless to say,

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993 LE ET AL. 475

if the PKA key is a private key, the value of the
PKA key stored in the internal form of the key
should appear in encrypted form.

When an internal PKA key is submitted to the
cryptographic subsystem during a request for a
cryptographic service, a new authentication code
is calculated on the appropriate contents of the
internal form of the key. The result is compared
with the trial authentication code stored in the
internal form. If the PKA key is a private key, the
clear value of the key must be recovered and used
in the process of calculating the new authentica-
tion code. If the comparison succeeds, the key is
accepted as correct and normal processing con-
tinues for the requested service. If the compari-
son fails, the components of the internal key may
have been corrupted and further processing is
aborted.

It is suggested that the SKAK be a double-length
DEA key and the authentication code calculation
follow the cryptographic check function de-
scribed in the ISOIIEC IS 9797,37 and that the pad-
ding method used in the calculation be unambig-
uous to ensure that there are no synonyms.

Another method that may be used to singly meet
the requirement of assuring the secrecy of the key
value of a private key is as follows. The value of
the private key is expanded via padding to form
a block whose size is a multiple of 8 bytes, so that
existing DEA encryption and decryption opera-
tions can be conveniently performed on the key
value. The expansion process also includes pre-
fixing the key value with a 64-bit random number
to increase the appearance of randomness in the
encrypted value of the key. The expanded value
of the key is then encrypted under the PKA master
key, using the CBC E-D-E algorithm of Figure 6.
This method is just a simplification of the coupling
method of Figure 6 . The process of recovering the
clear key value from the encrypted value of a
private key is the inverse of the encryption pro-
cess. That is, the CBC D-E-D algorithm is used in-
stead of the CBC E-D-E algorithm.

Having demonstrated the features of key man-
agement and the PKA control vector mechanism-
both of which constitute the underlying security
mechanisms of the public key extension-we now
present the functionality aspect of the public key
extension. This includes the cryptographic to-
kens and the cryptographic services available to

476 LE ET AL.

application programs via the public key extension
MI.

Cryptographic API tokens

In addition to the profile vector, the public key
extension cryptographic services also use a set of
new tokens, collectedly called PKA tokens. Most
cryptographic services require keys and crypto-
graphic variables to be passed in the form of a
token. As in the CCA, the principle of the PKA
tokens as designed in the architecture is to sim-
plify processing of cryptographic variables pro-
duced and exchanged (1) among a cryptographic
service and an application program, and (2)
among application programs.

Each PKA token contains a token identifier, a PKA
key or cryptographic variable, information asso-
ciated with the key or cryptographic variable, and
a token validation value (TW). The token iden-
tifier distinguishes the type of token from other
types. The TW serves as a check sum, aiding in
the detection of an invalid or erroneous token
when one is submitted to a service for processing.
When a key or cryptographic variable is trans-
mitted among systems, it also appears as a token.
Use of PKA tokens permits all relevant informa-
tion regarding a key or cryptographic variable to
be deposited in a single place, thus eliminating the
need for carrying other information via additional
methods. PKA tokens are classified into several
types, including the following.

The PKA internal key token contains a public or
private key in protected form and associated
control information, including a control vector.
Among the key tokens, the PKA internal key to-
ken is pivotal in many cryptographic services, be-
cause it contains a public or private key in the
internal form ready to be processed by the serv-
ices. This token is also known as the SA internal
key token, where letter S (for “symmetric”) in-
dicates that a symmetric algorithm, such as DEA,
is used to protect the key, and letter A (for “asym-
metric”) indicates that the key being protected is
a public or private asymmetric key.

The PKA external key token contains a public key
in clear (unencrypted) form and the associated
control vector. A public key is in clear form only
when it is exported to other systems, hence the
term “external key.” The PKA external key token
is considered the foundation for distributing pub-

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

lic keys. This token is also known as the CA ex-
ternal key token, where letter C (for “clear”) in-
dicates that the key contained in this token is a
clear key, and letter A indicates that the key is an

Maintaining the secrecy and
integrity of the value of the
private key when it is in the
clear is the responsibility of

the user.

asymmetric public key. Note that normally a pri-
vate key is not kept in this form. However, to
provide for interoperability with non-CCA sys-
tems, a private user key may be generated in this
form and may be imported from this form. Such
a private user key may only be used for digital
signatures, and the control vector contains an in-
dication that it was once in the clear. Maintaining
the secrecy and integrity of the value of the pri-
vate key when it is in the clear is the responsibility
of the user, and cryptographic or physical meth-
ods may be used to achieve this.

The P K A - D m external key token contains a DEA
key-encrypting key encrypted under a public key-
management key. This key token is considered as
the foundation for distributing DEA keys en-
crypted under public keys. This token is also
known as the AS external key token, where letter
A indicates that an asymmetric algorithm key is
used to encrypt a key, and letter S indicates that
the key being encrypted is a symmetric key, i.e.,
a DEA key.

The system signature token contains a system sig-
nature produced by the CF on keys and system
data.

The application signature token contains an ap-
plication signature produced by the CF on a hash
value or a message digest of data supplied by ap-
plication programs.

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

Features of the public key extension
services

As discussed earlier in this paper, the public key
extension services are structured at various levels
of increasing functionality to enable product de-
velopers to select the level of functionality most
appropriate to their customers. The major fea-
tures of the MI services available in the public
key extension and implemented in the Transac-
tion Security System are now presented.

PKA subsystem management services. The PKA
subsystem management services allow an autho-
rized application to initialize and manage the pub-
lic key extension components of the crypto-
graphic subsystem. The services that belong to
this category are the profile vector build, profile
vector load, device personalize, configuration
vector build, environment reconfigure, environ-
ment activate, master key process, and the mas-
ter key set services. The features of the PKA sys-
tem management services are summarized below
in the expected order of execution during system
initialization.

The profile vector build service builds a profile
vector that contains default values for variables
used in other public key extension services. Ex-
amples of such variables are: node identifier;
hashing method used in the construction of sys-
tem signatures; hashing and padding methods
used in the construction of application signatures;
and default control vectors for each PKA key type.
The types of digital signatures (i.e., system sig-
nature or application signature) allowed in public
key import and DEA key import may also be spec-
ified.

Theprofile vector load service loads the specified
profile vector into the cryptographic subsystem.
The profile vector to be loaded may be the default
profile vector or it may be one built by the profile
vector build service. Once the profile vector is
loaded, its specifications are made active.

The device personalize service makes the cryp-
tographic subsystem unique in the network. The
service first resets and invalidates all stored in-
ternal variables (except for the profile vector) in
the cryptographic subsystem. Next, the service
internally generates a public and private device
authentication key pair. The service then loads
this key pair, the associated PKA control vectors

LE ET AL. 477

(available from the profile vector), and the spec-
ified node identifier into a protected area of the
cryptographic subsystem.

As mentioned previously, the value of the private
device authentication key is always kept inside
the CF of the cryptographic subsystem. There is
no way a user, even a maximally authorized user,
can determine its value. The public device au-
thentication key may be exported to another
cryptographic subsystem via the public key ex-
port service, to be described shortly. The private
device authentication key may be used to digitally
sign a PKA public key. Thus, the value of the PKA
public key may be authenticated at another cryp-
tographic subsystem by using the public device
authentication key of the originating subsystem to
verify the digital signature. The public device au-
thentication key is used mainly by a user to dig-
itally sign a new public key sent to a certification
center to be certified.

The intent of the design of the device authenti-
cation keys is such that if a user reinitializes the
system by calling the device personalize service
again, such a reinitialization can be detected by
the certification center, because a different device
authentication key pair will be created for the sub-
system. If a network administrator at a central
subsystem knows the public device authentica-
tion key for a remote subsystem, and the network
administrator sends a newly generated public key
to a user at the remote subsystem asking the re-
mote user to sign the public key with the private
device authentication key of the remote sub-
system, then on the subsequent verification of the
digital signature, the network administrator is as-
sured that the subsystem is not a device newly
joining the network and has not in the past been
personalized again.

The configuration vector build service builds a
configuration vector containing specifications on
the cryptographic capability of the system. One
such capability is whether the system may oper-
ate as a certification center or whether this system
is a normal cryptographic system.

The environment reconfigure service loads a
specified configuration vector into the crypto-
graphic subsystem. The configuration vector to
be loaded may be the default configuration vector
or one that was customized by the configuration

478 LE ET AL.

vector build service. Once the configuration vec-
tor is loaded, its specifications are made active.

The environment activate service causes the
cryptographic subsystem to enter the run state,
where most of the public key extension services,
including all PKA key management and PKA digital
signature services, can be called.

The master key process service and the master
key set service are used together to change the
value of the PKA master key. Prior to changing the
PKA master key, a user may wish to re-encipher
all current operational keys from encryption un-
der the current PKA master key to encryption un-
der the new PKA master key by using the key
token migrate service described in the following
subsection.

PKA key token support. The PKA key token sup-
port services create and manage PKA key tokens.
The PKA key token support services are the PKA
control vector generate, PKA key unit build, PKA
key token build, and the PKA key token migrate
services.

The PKA control vector generate service builds a
pair of PKA control vectors: one is associated with
a PKA private key and the other is associated with
a PKA public key. As mentioned previously, a PKA
control vector contains encoded fields that spec-
ify the permitted usages of a PKA private key or
public key. A PKA control vector is a component
of a PKA skeleton key unit and is an input variable
to the PKA key unit build service.

The PKA key unit build service builds a pair of
public key extension data structures called skel-
eton key units. One key unit is for a public key
and the other is for a private key. A PKA skeleton
key unit contains a control vector and other in-
formation associated with a public key or a pri-
vate key. A skeleton key unit is a component of
various PKA key tokens, and is an input to the PKA
key token build service.

The PKA key token build service builds a pair of
PKA key tokens. One token is for a public key and
the other is for a private key. The PKA key token
built for a public key is always a PKA internal key
token containing a skeleton key unit. The PKA key
token built for a private key can be either a PKA
internal key token or a PKA external key token,
depending on the type of the private key. All the

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1093

relevant information about a PKA public or private
key is stored together in a PKA key token.

The built PKA key token key pair, or just a single
PKA key token of the pair, is subsequently sup-
plied to various PKA key management services for
processing. For example, the built key token pair
may be supplied to the DEA key generate service
for the generation of a PKA key pair. On comple-
tion of the PKA key generate service, the gener-
ated key pair is returned (usually in protected
form) in the token key pair.

The PKA key token migrate service verifies the
consistency of a PKA internal key token and, as-
suming positive verification, migrates the PKA
key in the key token from protection under either
the old or current PKA master key to protection
under either the current or new PKA master key.

The PKA key token migrate service may be used
to update the PKA internal key tokens after a PKA
master key has been changed, or to prepare for an
upcoming PKA master key change.

PKA key management services. PKA key manage-
ment services provide services for generating and
distributing PKA and DEA keys. The PKA key man-
agement services include the PKA key generate,
public key export, public key import, clear pri-
vate key import, DEA key generate, and the DEA
key import services.

The PKA key generate service generates a pair of
public and private keys. The generated key pair
can be a pair of certification keys, key-manage-
ment keys, or user keys, but not device authen-
tication keys. The device authentication keys are
special keys that can be generated only by a PKA
system management service, called the device
personalize service, described earlier in this pa-
per. A PKA public key is always generated in in-
ternal form contained in a PKA internal key token.
Because the RSA algorithm is used as the public
key cryptographic algorithm in the public key ex-
tension, the value of the public exponent compo-
nent of the RSA public key may be specified to be
a randomly chosen value, a value of 3, or a value
of 65 537. Because of the mathematical properties
of the latter two values, use of either when per-
forming RSA encryption is typically faster than
when using a randomly-chosen value for the ex-
ponent of a PKA public key. In the public key
extension, PKA public keys are used either for

IBM SYSTEMS JOURNAL. VOL 32, NO 3, 1993

verification of a digital signature or to encrypt a
DEA key for distribution to another public key
extension system. Because of the better perfor-
mance, one of these constant values is specified
in some networks as the value of the exponent for
all RSA public keys.

A PKA private key may be generated in internal
form contained in a PKA internal key token or in
external form contained in a PKA external key
token. All private key types, except for the device
authentication keys, can be generated in internal
form. But only a private user key can be gener-
ated in external form. In this form it may be elec-
tronically distributed to another public key ex-
tension system. Meeting the requirements for the
confidentiality or integrity of the value of the pri-
vate user key when it is in this external form is the
responsibility of the user.

The public key export service transforms a PKA
public key from internal form to external form, so
that it may be transmitted to another public key
extension subsystem. All four public key exten-
sion public key types may be exported (i.e., pub-
lic certification key, public key-management key,
public user key, or public device authentication
key). The external form of the public key may be
digitally signed to allow for verification, by the
recipient of the public key, of the key’s authen-
ticity and origin.

Thepublic key import service imports a PKA pub-
lic key transmitted from another public key ex-
tension subsystem in external form by transform-
ing it to internal form so that the PKA public key
may be used on this subsystem. All four PKA pub-
lic key types may be imported. If the external
form of the PKA public key is digitally signed, the
digital signature may be verified. The crypto-
graphic subsystem may be configured (via the
configuration vector build and environment re-
configure services, described earlier in this paper)
to require a digital signature on the external forms
of public keys to be imported.

The clear private key import service imports a
clear (unencrypted) private key in external form
by transforming it to internal form, so that the
private key may be used on the receiving sub-
system. If the external form of the PKA private
key is digitally signed, the digital signature should
be verified before the clear private key import
service is called. The only type of private key that

LE ET AL. 479

may be imported in external form is a private user
key.

The DEA key generate service generates a double-
length DEA key-encrypting key and produces it in
two forms: one in operational internal form for
use on this system, and the other in external form
for distributing to a user at another system. The
operational form of the DEA key is returned to the
caller in a DEA internal key token and is encrypted
by the current DEA master key of the creating
system using a limited-use EXPORTER control vec-
tor. This limited-use EXPORTER control vector is
differentiated from a CCA generic EXPORTER con-
trol vector in that the limited-use EXPORTER key
can be used only in the CCA key generate service
to generate and distribute DEA keys. It may not be
used in the CCA key export service as either the
EXPORTER key (i.e., a DEA key-encrypting key
used to export other DEA keys) or the key to be
exported.

The external form of the DEA key is returned to
the caller in a PKA-DEA external key token and is
encrypted by the specified public key-manage-
ment key of the user on the receiving system. The
PKA-DEA external key token contains the en-
crypted DEA key value and its associated limited-
use IMPORTER control vector. This limited-use
IMPORTER control vector is differentiated from a
CCA generic IMPORTER control vector in that (af-
ter it is imported into operational form via the
public key extension DEA key import service) the
limited-use IMPORTER key can only be used in the
CCA key import service to receive keys distrib-
uted from other systems. The operational form of
the limited-use IMPORTER key may not be used in
the CCA key generate service as an IMPORTER key
(i.e., a DEA key-encrypting key used to import
keys distributed from other systems). Also, the
IMPORTER key may not be exported by the CCA
key export service. The external form of the DEA
key may be digitally signed by the private key-
management key of the caller to allow later ver-
ification of its authenticity and origin.

The restriction on the usage capability of the
EXPORTER and IMPORTER key pair produced by
the DEA key generate service enhances security
by supporting a single control point. The task of
cryptanalysis on the hybrid key distribution is
then confined to this key pair, as cryptanalysis on
DEA key distribution in the CCA has been already
performed.

480 LE ET AL.

The DEA key import service imports a DEA key
distributed from another public key extension
subsystem in external form to internal form so
that the DEA key may be used on this subsystem.
The DEA key to be imported is the limited-use
IMPORTER key, mentioned in the DEA key gener-
ate service. The recovery process has some in-
herent verification of the integrity of the external
form of the limited-use IMPORTER key to help en-
sure that the public key used to encrypt the key
is paired with the private key used to recover the
key. Also, if a digital signature exists on the ex-
ternal form of the limited-use IMPORTER key, it
may be verified to further ensure the authenticity
and origin of the key. The cryptographic sub-
system may be configured to require a digital sig-
nature on all external forms of DEA keys.

Once the limited-use EXPORTER and IMPORTER
keys are in place, a normal CCA generic EXPORTER
and IMPORTER key pair (or alternatively, a generic
IMPORTER and EXPORTER key pair) may be gen-
erated at the first system using the CCA key gen-
erate service.' The first generated key is opera-
tional on this system, and the second generated
key is in exportable form and is then transmitted
to the second system, where it is then imported to
become an operational key. From that point on,
normal CCA key distribution methods may be
used. Alternatively, a data key pair can be gen-
erated on the first system in place of a generic
IMPORTER and EXPORTER key pair (or a generic
EXPORTER and IMPORTER key pair). One of the
data key pair can then be distributed under the
limited-use EXPORTER key to the second system
for immediate use of general data encryption and
decryption.

As noted earlier, the PKA key management serv-
ices are designed with an objective of supporting
key distribution in both peer-to-peer and certifi-
cation center environments. We now present an
example that shows the use of several public key
extension cryptographic services in a peer-to-
peer environment.

Sample peer-to-peer key distribution environment.
Figure 8 illustrates a typical peer-to-peer key dis-
tribution environment in which a user named Ann
wishes to distribute one or more DEA keys to a
user named Bill.

A typical process flow is as follows:

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

1. Ann calls the PKA key generate service (at her
system) to generate a pair of PKA internal key
tokens containing a pair of public and private key-
management keys. Bill does the same thing at his
system to obtain a pair of PKA internal key tokens
containing a pair of public and private key-man-
agement keys.

2. Ann calls the public key export service to gen-
erate a PKA external key token on her public key-
management key. Assuming this is the initial pub-
lic key-management key, Ann may choose to
request that a digital signature be generated on
her public key, using her corresponding private
key as the signing key. The digital signature
serves to couple the public key to its associated
control vector. Bill also performs this task with
his own public and private key pair.

3. Ann sends her public key (contained in the
PKA external key token) and the attached signa-
ture to Bill with integrity. The methods of sending
a key with integrity are discussed shortly. Bill
also performs this task to send his public key and
the attached signature to Ann.

4. Ann calls the public key import service to im-
port Bill’s public key to her system for later use.
If the signature attached to Bill’s public key is
signed with his private key, Ann may verify this
signature with Bill’s public key. Bill also performs
this step to import Ann’s public key to his system.

5 . Ann calls the DEA key generate service to pro-
duce a pair of key tokens, one is a DEA internal
key token containing an operational limited-use
EXPORTER key, and the other is a PKA-DEA ex-
ternal key token containing an encrypted limited-
use IMPORTER key. The key used to encrypt the
limited-use IMPORTER key (for secrecy) is Bill’s
public key-management key. The key used to sign
the limited-use IMPORTER key digitally (for integ-
rity) is Ann’s private key-management key. Ann
sends the resulting PKA-DEA external key token
and the digital signature to Bill. If symmetry is
desired, the roles may be reversed, but this is not
required to have a usable DEA key exchange.

6. Bill calls the DEA key import service to verify
the digital signature and import the limited-use
IMPORTER key. If symmetry is desired, Ann also
performs this task.

7. From this point on, standard CCA key man-
agement may be performed. For example, the key

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

Figure 8 Peer-to-peer key distribution environment

I ANN BILL

distribution scenario may be continued as fol-
lows:

Ann calls the CCA key generate service to pro-
duce a pair of message authentication code
(MAC) keys, keeping the operational key for use
on her system and sending the other key (in
exported form) to Bill. The operational MAC key
may be used to generate a MAC on the message
containing the exported MAC key. If symmetry
is desired, the roles of Ann and Bill may be
reversed.
Bill calls the CCA key import service to import
the MAC key, and verifies the associated MAC by
calculating a MAC for the key distribution mes-
sage and comparing it for equality with the
transmitted trial MAC.
Ann calls the MAC generate service to calculate
a MAC on a subsequent arbitrary message to
Bill.
On receipt of the message, Bill calls the CCA
MAC generate service and compares the gener-
ated MAC with the transmitted MAC. Assuming
they are equal, Bill accepts Ann’s arbitrary
message as genuine.
Bill can also send an arbitrary message to Ann
with integrity.

8. When Ann decides to change her public key-
management key, her current private key-man-
agement key can be used to sign the PKA external
key token for the new public key-management
key. Bill may also perform this task. In this way,
a chain of integrity of public key-management
keys is maintained.

Acquiring the initial public key with integrity. As
mentioned previously, the value of a distributed
public key need not be kept secret, but it is re-

LE ET AL. 481

quired to have integrity. If another user with a
different private and public key pair can cause his
or her public key to be mistaken for a public key
of a legitimate user, that user can pretend to be
the legitimate user, at least insofar as digital sig-
natures are concerned. This means that an infor-
mation channel with sufficient integrity must be
established between the communicating parties
to distribute the initial public key. Once an initial
public key has been established, it may be used to
verify a digital signature on other public keys to
assure the receiving party of the integrity and or-
igin of the new public key.

Various techniques and procedures have been
proposed for distributing public keys with varying
levels of integrity.l7Vm It is noteworthy that, al-
though none of the proposed techniques provides
a perfect solution to the public key distribution
problem, some of them have been found useful
for various applications. Here, we present some
examples of noncryptographic methods for dis-
tributing an initial public key with integrity that
might be used:

Publish the initial public key PKA external key
token or a hash value of the token in a widely-
circulated document. The intent is to ensure va-
lidity of the value by broad distribution. The
hash value may be calculated by calling the CCA
MDC generate service or another strong one-
way function. When the PKA external key token
is later electronically distributed, it can be ver-
ified by rehashing the received key token and
ensuring that the actual hash value matches the
published hash value.
Distribute the public key or the hash value in
multiple ways and use the public key only if all
the values are received and all agree on the
value.
If very high security is required, deliver the key
value or hash value to the other party personally
or via a trusted courier.

PKA digital signature services. The PKA digital sig-
nature services support the generation and veri-
fication of application digital signatures that pro-
vide for data integrity and source nonrepudiation
for user-specified data. The PKA digital signature
services are the application signature generate
and application signature verify services. The dig-
ital signatures generated and verified in these
services are called the application signature.
There is also another type of digital signature in

482 LE ET AL.

the public key extension, called the system digital
signature that is generated and verified on system
data (e.g., keys and other cryptographic varia-
bles) as an integral part of many PKA key man-
agement services, such as the public key export
and DEA key generate services.

The application signature generate service gen-
erates an application digital signature on the hash
value of user-supplied data, using a private cer-
tification key, a private key-management key, or
a private user key.

The application signature verify service verifies
an application digital signature on the hash value
of user-supplied data, using a public certification
key, a public key-management key, or a public
user key.

The method for producing digital signatures con-
forms to the part of the ISO/IEC IS 9796 standard
that is specified for the RSA algorithm.

Prior to calling the application signature generate
and application signature services, application
programs must calculate the hash value on user-
supplied data. This is to provide users with the
flexibility of using any hash function preferred by
users. The hash value can be calculated via the
CCA MDC generate service, which supports the
MDC-2 and MDC-4 hash algorithm^.^,^^ Otherwise,
it can also be calculated via user-supplied func-
tions that support the hash algorithms preferred
by users. The length of the hash value on data to
be signed must conform to the following ISO/IEC
IS 9796 requirement for signatures produced by
the RSA algorithm:

(length of hash value in bytes) * 16
5 (modulus length in bits) + 2

With the length of the RSA modulus ranging from
512 to 1024 bits in the public key extension (for
digital signatures), this requirement does not ap-
pear to be a problem for most existing and emerg-
ing hash algorithms, including the secure hash al-
gorithm (SHA). 39

The hash function used in the calculation of the
hash value must be indicated to the application
signature generate service, so that the service can
communicate this indication to the verifier of the
application signature via the field called the hush
algorithm field in the application signature token.

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

On receipt of the application signature token and
the data on which the application signature is pro-
duced, the verifier of the signature must first ex-
tract the hash algorithm indication in the appli-
cation signature token and then use the indicated
hash function to calculate a hash value on the data
before invoking the application signature verify
service to verify the application signature. Of
course, if the length of the data to be signed con-
forms to the above length requirement, a user
may choose to sign directly on the data.

When a first user calls the application signature
generate service to generate an application digital
signature on specific data and a second user calls
the application signature verify service to verify
the application digital signature on the first user’s
data, the second user may be assured of the in-
tegrity of the first user’s data. The second user
may also be assured that those data are actually
signed by the first user, using the first user’s pri-
vate key. Because the public key is public infor-
mation, an impartial third party may verify that
the particular public key associated with the first
user does actually verify the digital signature as-
sociated with the data. Thus these services pro-
vide support for both data integrity and source
nonrepudiation. However, note that if an im-
poster has access to or knowledge of the first
user’s private key, the imposter will be able to
generate digital signatures associated with the
first user. This would allow the imposter to pose
as the first user. For this reason, good security
practice requires that the ability to determine the
value of a private key or the ability to use a private
key requires the identification and authentication
of the user as the valid user of the private key.

Because the system signature is produced and
verified as an integral part of many PKA key man-
agement services, these services maintain an un-
broken chain of integrity from the point of system
signature generation to the point of system sig-
nature verification. Thus it is important that the
application signatures services cannot be misused
to subvert the intended integrity of the system
signatures. The public key extension key man-
agement architecture distinguishes between sys-
tem signatures and application signatures accord-
ing to the following signature production rule. A
system signature is generated from a special sig-
nature record, called a system signature record.
The system signature record is a 253-bit record
containing important control information and a

IBM SYSTEMS JOURNAL VOL 32. NO 3, 1993

128-bit hash value calculated on the data to be
signed. On the other hand, an application signa-
ture is generated from a hash value supplied by
the caller that contains a whole number of bytes.
Because the system signature record is not a
whole number of bytes, cryptographic separation
is maintained between system signatures and ap-
plication signatures. The cryptographic service
that produces an application signature requires
the input hash value to contain a whole number of
bytes and thus cannot be misused to produce sys-
tem signatures. Thus, the integrity of the system
signature is preserved by the key management
architecture.

Concluding remarks

Major features of the public key extension to the
Common Cryptographic Architecture have been
described. Although the concept of a hybrid
PKA-DEA cryptographic system is not new, the
public key extension provides a unique approach
toward solving problems in both conventional
and public-key cryptography. The control vector
concept has been successfully integrated into the
architecture to separate keys and prevent their
misuse. Although the control vector is used in a
different way from the Common Cryptographic
Architecture, the security objectives in the Com-
mon Cryptographic Architecture have been main-
tained and improved in the public key extension.
The public key extension has been designed with
flexibility in mind so that it may be extended to
support new public key algorithms and new cryp-
tographic services, as the market dictates.

Acknowledgments

The authors wish to acknowledge their former
colleagues, William Rohland and William Martin,
who participated in the design of the public key
extension. The authors also wish to thank C. H.
Meyer, C . Holloway, and P. Maclaine-Pont for
their valuable inputs during the design process.
We also thank D. Abraham, G. M. Dolan, J. S .
Stevens, B. E. Fitzpatrick, T. W. Arnold, and
S . E. Wince for their constructive comments dur-
ing the course of incorporating the public key ex-
tension into the Transaction Security System.
*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Cylink Corporation.

Cited references and notes

1. Common cryptographic Architecture: Cryptographic Ap-
plication Programming Interface Reference, SC40-1675,
IBM Corporation (1992); available through IBM branch
offices.

2. D. B. Johnson, G. M. Dolan, M. J. Kelly, A. V. Le, and
S. M. Matyas, “Common Cryptographic Architecture
Cryptographic Application Programming Interface,”ZBM
Systems Journal 30, No. 2, 130-150 (1991).

3. S. M. Matyas, “Key Handling with Control Vectors,”
ZBMSystems Journal 30, No. 2, 151-174 (1991).

4. S. M. Matyas, A. V. Le, and D. G. Abraham, “A Key-
Management Scheme Based on Control Vectors,” ZBM
Systems Journal 30, No. 2, 175-191 (1991).

5. P. C. Yeh and R. M. Smith, Sr., “ESN390 Integrated
Cryptographic Facility: An Overview,” ZBM Systems
Journal 30, No. 2, 192-205 (1991).

6. D. G. Abraham, G. M. Dolan, G. P. Double, and J. V.
Stevens, “Transaction Security System,” ZBM Systems
Journal 30, No. 2, 206-229 (1991).

7. D. B. Johnson and G. M. Dolan, “Transaction Security
System Extensions to the Common Cryptographic Archi-
tecture,”ZBMSystems Journal 30, No. 2,230-243 (1991).

8. American National Standard X3.92-1981, Data Encryp-
tion Algorithm, American National Standards Institute,
New York (December 31, 1981).

9. S. M. Matyas, “Key Processing with Control Vectors,”
Journal of Cryptology 3, No. 2, 113-136 (1990).

10. B. Brachtl, S. M. Matyas, and C. H. Meyer, Control Use
of Cryptographic Keys via Generating Station Estab-
lished Control Values, U.S. Patent No. 4,850,017 (July 18,
1989).

11. Common Cryptographic Architecture: Cryptographic Ap-
plication Programming Interface Reference-Public Key
Algorithm, SC40-1676, IBM Corporation (1993); available
through IBM branch offices.

12. Transaction Security System Programming Reference:
Volume ZZ, Public Key Cryptography, SC31-2888, IBM
Corporation (1992); available through IBM branch offices.

13. The ZBM Transaction Security System Concepts and Pro-
gramming Guide: Volume ZZ, Public Key Cryptography,
GC31-2889, IBM Corporation (1992); available through
IBM branch offices.

14. R. L. Rivest, A. Shamir, and L. Adleman, “A Method of
Obtaining Digital Signatures and Public Key Cryptosys-
tems,” Communications of the ACM 21, No. 2, 120-126
(February 1978).

15. W. Diffie and M. E. Hellman, “New Directions in Cryp-
tography,” ZEEE Transactions on Information Theory
IT-22, No. 6, 644-645 (November 1976).

16. In this paper, the termprivate key refers to a private key
of public key algorithms. The term secret key refers to a
secret key of symmetric algorithms, such as DEA. That is,
the terms private key and secret key do not interchange.

17. D. W. Davies and W. L. Price, Security for Computer
Networks, Second Edition, John Wiley & Sons, Inc., New
York (1989).

18. J. Nechvatal, “Public Key Cryptography,” Contempo-
rary Cryptology: The Science of Information Zntegr’ty,
G. J. Simmons, Editor, IEEE Press, Piscataway, NJ
(1992), pp. 177-288.

19. D. Branstad, “Encryption Protection in Computer Data
Communications,”Proceedings of the Fourth Data Com-

484 LE ET AL.

munication Symposium, Quebec City, Canada (October
7-9, 1975).

20. S. M. Matyas, “Public Key Registration,” Advances in
Cryptology-CRYPTO ’86 Proceedings, A. M. Odlyzko,
Editor, Springer-Verlag, New York (1987), pp. 451458.

21. C. S. Kline and G. J. Popek, “Public Key vs. Conven-
tional Key Encryption,” American Federation Znforma-
tion Processing Societies Conference Proceedings, Vol.
48: National Computer Conference, R. E. Merwin, Edi-
tor, New York, June 4-7, 1979, AFIPS Press, Montvale,
NJ (1979), pp. 831-837.

22. By convention, in this paper the public key PU is used for
enciphering, and the private key PR is used for decipher-
ing.

23. C. J. Mitchell, F. Piper, and P. Wild, “Digital Signa-
tures,’’ Contemporary Cryptology: The Science of Znfor-
mation Integrity, G. J. Simmons, Editor, IEEE Press,
Piscataway, NJ (1992), pp. 177-288.

24. T. El Gamal, “A Public Key Cryptosystem and a Signa-
ture Scheme Based on Discrete Logarithms,” ZEEE
Transactions on Information Theory IT-31, No. 4, 469-
472 (July 1985).

25. P. G. Comba, “Exponentiation Cryptosystems on the
IBM PC,” ZBM Systems Journal 29, No. 4, 526-536
(1990).

26. J. Lint and S. T. Kent, “Privacy for DARPA-Internet
Mail,” The Proceedings of the Twelfth National Com-
puter Security Conference (1989), pp. 215-229.

27. W. Diffie, B. O’Higgins, L. Strawczynski, and D. Steer,
“An ISDN Secure Telephone Unit,” Proceedings Na-
tional Computer Forum 41, No. 1, 473-477 (1987).

28. J. Graff, “Key Management Systems Combining X9.17
and Public Key Techniques,” The Proceedings of Sev-
enth Annual ZSSA Conference (1990), pp. B-9-1 to B-9-8.

29. M Gasser, A. Goldstein, C. Kaufman, and B. Lampson,
“The Digital Distributed System Security Architecture,”
The Proceedings of the Twelfth National Computer Se-
curity Conference (1989), pp. 305-319.

30. B. Schanning, S. A. Powers, and J. Kowalchuk,
“MEMO: Privacy and Authentication for the Automated
Office,” Fifth Conference on Local Computer Networks,
(1980), pp. 21-30.

31. R. Nelson, “SDNS Services and Architecture,” The Pro-
ceedings of the Tenth National Computer Security Con-
ference (1987), pp. 153-157.

32. P. A. Lambert, “Architectural Model of the SDNS Key
Management Protocol,” The Proceedings of the Eleventh
National Computer Security Conference (1988), pp. 126-
128.

33. In this paper, the number of levels of key distribution
hierarchy are defined relative to the data key being dis-
tributed. The term three-level key distribution hierarchy
refers to one in which a public key is used to distribute a
DEA key-encrypting key, which in turn is used to dis-
tribute a DEA data key. The term two-level hierarchy
refers to one in which a public key is used to distribute a
DEA data key directly.

34. ISO/IEC IS 9796-1991, Information Technology-Secur-
ity Techniques-Digital Signature Scheme Giving Mes-
sage Recovery, International Organization for Standard-
ization, CH-1211, Geneva, Switzerland.

35. D. Longley and S. M. Matyas, “Technical note-Com-
plementarity Attacks and Control Vectors,” ZBM Sys-
tems Journal 32, No. 2, 321-325 (1993).

36. American National Standard X9.17-1985, American Na-

I IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

tional Standard for Financial Institution Key Manage-
ment (Wholesale), American Bankers Association, Wash-
ington, D.C. (1985).

37. ISO/IEC IS 9797-1989, Data Cryptographic Techniques-
Data Integrity Mechanism Using a Cryptographic Check
Function Employing a Block Cipher Algorithm, Interna-
tional Organization for Standardization, CH-1211, Geneva,
Switzerland.

38. IS0 CD 10118 (as of July 21, 1992) Data Cryptographic
Techniques-Hashing Operation Using a Symmetric
Block Cipher Algorithm, International Organization for
Standardization, CH-1211, Geneva Switzerland.

39. “A Proposed Federal Information Processing Standard
for Secure Hash Standard,” Federal Register Announce-
ment (January 31, 1992), pp. 3747-3749.

Accepted for publication March 15, 1993.

An V. Le IBM Federal Systems Company, 9500 Godwin
Drive, Manassas, Virginia 22110. Mr. Le is an advisory en-
gineer in the Cryptographic Center of Competence in the IBM
Manassas Laboratory. He received a master’s degree in elec-
trical engineering from the University of Utah, Salt Lake City,
Utah, in 1982. He joined IBM in 1983 at Boca Raton, Florida,
where he worked as a computer designer in a reduced in-
struction set computer project for several years. In 1986, he
joined the Cryptographic Center of Competence in Manassas,
and has since been working in the areas of cryptographic al-
gorithms and architectures. Mr. Le is a codeveloper of the
Common Cryptographic Architecture (CCA) implemented in
several IBM products. He is also a key designer of the public
key extension to the CCA implemented in the IBM Transac-
tion Security System. Mr. Le holds 14 issued patents, several
patents on file, and has published over 20 technical papers and
technical disclosures in the area of computer design and cryp-
tography. He has received six IBM Invention Achievement
Awards, several informal awards, two IBM FSC Manassas
Laboratory Technical Publication Plateau Awards, and one
IBM FSC President’s Patent Award for two patents on key
management for public key cryptography.

Stephen M. Matyas IBM Federal Systems Company, 9500
Godwin Drive, Manassas, Virginia 22110. Formerly a mem-
ber of the Cryptography Competency Center at the IBM King-
ston Development Laboratory, Dr. Matyas is currently man-
ager of the Secure Products and Systems department at
Manassas, Virginia. He participated in the design and devel-
opment of all major IBM cryptographic products, he played a
lead role in the design of the IBM Common Cryptographic
Architecture, and is the inventor of the control vector con-
cept. Dr. Matyas holds 28 patents and has published numerous
technical articles covering many aspects of cryptographic sys-
tem design. He is the coauthor of an award-winning book
entitled Cryptography-A New Dimension in Computer Data
Security, published by John Wiley & Sons, Inc. He is a con-
tributing author to the Encyclopedia of Science and Technol-
ogy and Telecommunications in the U.S.-Trends and Poli-
cies. Dr. Matyas received a B.S. degree in mathematics from
Western Michigan University and a Ph.D. degree in computer
science from the University of Iowa. He is the recipient of an
IBM Outstanding Innovation Award, an IBM FSC President’s
Patent Award, and is an IBM eighteenth-level inventor. Dr.
Matyas is currently an IBM Senior Technical Staff Member.

Donald 0. Johnson IBM Federal Systems Company, 9500
Godwin Drive, Manassas, Vb@nia 22110 (electronic mail:
dbj@manvml. vnet. ibm. com). Mr. Johnson received a B.A. in
mathematics from Oakland University, Rochester, Michigan,
and an M.S. in computer science from Union College,
Schenectady, New York. He joined the IBM Field Engineer-
ing Division in 1974 as a program support representative. In
1978, he joined the 81OO/DPPX Change Team in Kingston,
New York. In 1982, he worked on DPPWAPL development
in Lidingo, Sweden. Since 1987 Mr. Johnson has worked in
the Cryptographic Center of Competence in Manassas, Vir-
ginia. He is the chairman of the Confidentiality and Integrity
Work Group of the IBM Security Architecture Board. He is
the recipient of an Outstanding Innovation Award for his con-
tributions to the Common Cryptographic Architecture appli-
cation programming interface and an IBM FSC President’s
Patent Award. Mr. Johnson has achieved the sixth plateau in
the IBM Invention Achievement Award program and holds 15
patents with other patents pending because of his contribu-
tions to the IBM Common Cryptographic Architecture and the
IBM Transaction Security System product architecture. Mr.
Johnson has achieved IBM FSC Manassas Author Recogni-
tion and has authored two papers on cryptography, which
have been published in the IBM Systems Journal. One of these
papers won an award as one of the best papers published that
year from the IBM Manassas site. Currently, he is an advisory
programmer.

John D. Wilkins IBM Federal Systems Company, 9500 God-
win Drive, Manassas, Virginia 22110 (electronic mail:
jwilkins@manvml. vnet. ibm.com). Mr. Wilkins received a
B.S. in mathematics and computer science from Bucknell
University in 1980. He is currently a staff programmer in the
Secure Products and Systems Department in Manassas. His
responsibilities include the design and evaluation of IBM
cryptographic products, protocols, and architectures. He is a
codeveloper of the IBM Common Cryptographic Architecture
that was implemented in the IBM ESN390 Integrated Cryp-
tographic Feature and IBM Transaction Security System. Mr.
Wilkins is a sixth-level inventor and holds 15 cryptography-
related patents. He received an IBM FSC President’s Patent
Award in 1991 for two inventions relating to key management
in public key cryptography. He has coauthored papers on
public key cryptography, an exportable cryptographic algo-
rithm, and network security issues for the IBM Interdivisional
Technical Liaison on Computer Security and for the UNIX
Internal Technical Exchange. Prior to being hired by IBM in
1986, he was a lead software engineer for the signal collection
and analysis system in a prominent U.S. Department of De-
fense intelligence program.

Reprint Order No. G321-5521.

IBM SYSTEMS JOURNAL, VOL 32, NO 3. 1993

