
A public  key  extension 
to  the  Common 
Cryptographic 
Architecture 

by A. V. Le 
S. M. Matyas 
D. B. Johnson 
J. D. Wilkins 

A new  method for extending the iBM  Common 
Crypt0  raphic Architecture (CCA) to include 
public fey cryptogra hy is presented.  The public 
key extension roviAs nonrepudiation via digital 
signatures antan electronic means to distribute 
Data  Enc ption Aigorithm (Dm) key-encrypting 
keys in  aTybrid Data  Enc ption Aigorithm- 
Public Ke Algorithm ( D E x P A  cryptographic 
system. &e improvements  are 6 ased on a  novel 
method  for  extending  the control vector  concept 
used in the iBM  Common Cryptographic 
Architecture.  Four new  key ty 8s that  separate 
the public and  private key pals into four  classes 
according to their  broad uses within the 
crypt0 raphic  system  are  defined.  The public key 
extensyon to the CCA is implemented in the iBM 
Transaction  Security S stem (TSS). This paper 
dlscusses both the pu l ilc key extension to the 
CCA and the TSS implementation  of this 
architectural extension. 

T he IBM Common Cryptographic  Architecture 
(CCA)' was first described in a series of pa- 

pers appearing in 1991.2-' The CCA is based on the 
Data  Encryption Algorithm (DEA)~ and a method 
for controlling key usage, based  on  control  vec- 
tor~.~.' ' The CCA consists of a set of cryptographic 
services  supporting a wide range of data  security 
applications-data confidentiality, data integrity, 
personal identification number (PIN) processing, 
and DEA key management. This  set of services  is 
accessible through an application programming 
interface (API) and  is available on the IBM Enter- 
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prise Systems Architecture/390* Integrated Cryp- 
tographic Feature (ICRF) and  the IBM Transaction 
Security  System (TSS). A public key  extension, or 
tower, provides additional cryptographic  serv- 
ices via the API. This extension is available on  the 
Transaction  Security  System. 

The new public key  extension to the CCA provides 
an additional 20 cryptographic  services through 
the  MI.""^ These new services  access a public 
key algorithm (i.e., the RSA [Rivest, Shamir, 
Adleman] alg~rithm'~) located within secure 
hardware. 

For those unfamiliar with  the  subject,  the DEA 
enciphers a 64-bit block of plaintext into a 64-bit 
block of ciphertext  under  the  control of a 64-bit 
cryptographic key. The  key  contains 56 indepen- 
dent  key  bits and 8 bits  that may be used for error 
detection. Although the DEA itself is public, the 
keys must be kept secret. Hence, the DEA is called 
a secret key algorithm; its distinguishing feature is 
that the same key is used for enciphering and de- 
ciphering. For this reason, secret key algorithms 
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are also referred to  as symmetric algorithms, and 
secret keys are also referred to  as symmetric keys. 

In marked contrast,  the distinguishing feature of 
apublic key algorithm is that  one  key  is used for 
enciphering and another, different from the first, 
is used for deciphering. For  this reason, public 
key algorithms are  also referred to  as asymmetric 
key algorithms.  This  concept  was first introduced 
by Diffie and Hellman.15 The enciphering key  is 
made public and is  referred to  as  the  public key; 
the deciphering key  is  kept  secret and is referred 
to  as  the  private key. l6 The public and private 
keys  are related, but  the relationship is  such  that, 
given the known value of the public key, it is 
computationally infeasible to determine  the  value 
of the  private key. Public key algorithms have 
eliminated the need to transport  secret  keys be- 
tween communicating parties in order  to establish 
a secure channel. When a pair of users A and B 
wishes to establish a secure channel, each  user 
sends his or her public key to  the  other  over  the 
open channel. That  the  authenticity of the public 
key  is a major concern  is a widely known and 
accepted  fact.  The recipient of a public key  must 
ensure  that  the  key  comes from a genuine send- 
er-the sender  with  whom  the receiver intends to 
communicate. Otherwise, an adversary might 
misrepresent  the public key  to  user B, claiming 
that it belongs to user A. User B might then en- 
crypt  data for user A under  the  adversary’s public 
key, thus exposing these  data to the  adversary. 

A secret  key algorithm such as  the DEA provides 
services for both confidentiality and authenticity 
of information. However, public key algorithms 
are  often more granular with  respect to the  serv- 
ices  they provide. Some public key algorithms 
support  only confidentiality, whereas  others  sup- 
port  only  authenticity.  The RSA algorithm pro- 
vides  both capabilities. 

There  are  other differences between known se- 
cret  key and public key algorithms, such as key 
size, block size, encryption and decryption  speed 
and complexity, and key  generation  speed and 
complexity, all of which  have  been widely dis- 
cussed in the literature. See, for examples, Ref- 
erences 17 and 18. 

Need  for  public  key  cryptography 

A well-known problem for a DEA-based crypto- 
graphic system  is  the distribution of initial cryp- 
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tographic  keys for enabling any  two  devices in a 
network to establish a secure communication 
channel. These initial keys may be used for dis- 
tributing subsequent  keys, or for protecting  data 
communicated between devices. In a network of 
n cryptographic devices, on  the  order of n * initial 
keys  are needed in order for all pairs of devices to 
communicate securely. The  most conventional 
method for distributing the  keys  has  been  via 
manual delivery such as with  trusted  couriers. 
This  is generally not cost-effective for a large net- 
work consisting of thousands of cryptographic 
devices. The problem is remedied to a degree in 
DEA-based networks by using key distribution 
protocols  based on a key distribution center 
(KDC) topology. 17~19 With the KDC topology, only 
n initial keys  are required to establish secure com- 
munication between  the KDC and n devices. How- 
ever, a new element is needed: a trusted  key dis- 
tribution center.  The disadvantage here is that a 
peer-to-peer  key distribution protocol cannot be 
accomplished without involving the KDC each 
time an initial key is to be  distributed. 

With public key  cryptography,  electronic distri- 
bution of initial keys  is  more feasible and eco- 
nomical using a simple, widely known protocol. 
When a device wishes to establish a secure  chan- 
nel, it first generates a public and  private  key pair. 
The public key is sent  to  the intended receiving 
device on the  open communication channel, and 
the  private  key  is retained by the generating de- 
vice. On receipt of the public key,  the receiving 
device encrypts an initial DEA key-encrypting key 
with  the public key  and  sends  the  encrypted  key 
value to  the originating device. Since  the  private 
key  is known only to  the originating, or generating 
device, only this device can  decrypt  the  en- 
crypted initial key-encrypting key  to establish a 
secure communication session  with  the  other  de- 
vice. (Of course,  this  assumes  that  the underlying 
public key algorithm supports  secrecy, so that 
keys  can be encrypted and decrypted.) As dis- 
cussed earlier, however, the  authenticity of the 
public key is a major concern. Various methods 
have  been  proposed for certifying and registering 
public keys, and for improving the integrity of the 
key distribution process. 17,20 Many of these meth- 
ods  require  the involvement of trusted certifica- 
tion centers  or authentication servers  whose  roles 
are similar to those of key distribution centers in 
secret-key-based  key distribution. Even  with  that 
requirement, public-key-based key distribution is 
still considered  more  advantageous  than  secret- 
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key-based key distribution. 17~18,21 The  advantages 
are  these.  First,  with public-key-based key dis- 
tribution,  the certification center  or  the  authenti- 
cation  server  can  be off line and key distribution 

Public key  cryptography is 
well-suited to the digital 

signature mechanism that 
supports nonrepudiation 

applications. 

is still possible. In contrast, with secret-key- 
based  key distribution, on-line access  to  a  key 
distribution center  is usually needed each time the 
communicating parties establish an initial keying 
relationship. Second, in public-key-based key 
distribution, the degree of trust placed on the cen- 
tral  authority (e.g., a certification center) is gen- 
erally  less  than  the degree of trust placed on  the 
central  authority in secret-key-based  key distri- 
bution. This is because  with distributed public 
keys, one  needs to be  concerned  only  with their 
integrity, whereas with distributed secret  keys 
(i.e., DEA keys),  one is concerned  with  both the 
secrecy and the integrity of keys. 

Public key  cryptography is also well-suited to the 
digital signature mechanism that  supports nonre- 
pudiation applications, which are applications 
that  can establish the  authenticity of an originator 
of a message or data.  As  a simple example, let A 
be  the originator of a message M, sent with proof 
of authenticity to B. A first enerates  a public and 
private  key pair (PU, PR).’ The  private  key PR 
is retained by A, and the public key PU is  sent  to 
B. Assume that  the public key algorithm used 
supports authentication applications and has  the 
reversible property  that  epU{dPR[H(M)]} = H(M), 
where dPR denotes  the  decryption transformation 
with  the private key PR, and epu denotes  the en- 
cryption transformation with the public key PU. 
Next,  A  calculates  a hash value H(M), also 
known as  a message digest, on the message M, 
using a hash function. A  then  decrypts H(M) with 
the  private  key, and appends  the result to the 
message M. A  also  sends  the appended message 
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to B (assuming no message secrecy  is  desired). 
The  decrypted  value of H(M),  denoted as 
dPR[H(M)],  is  often called the digital signature on 
M. Signing on a hash value of a long message is 
much faster and easier than signing on the mes- 
sage itself. Upon receiving the message and the 
attached digital signature, B validates message M 
and verifies the  fact  that  M originated from A as 
follows. B first encrypts  the signature dPR[H(M)] 
with  the public key PU  to recover  H(M).  Next, B 
produces  a hash value  on message M, with the 
same hash function used by A. The produced 
hashed value  is  then  compared for equality with 
the  recovered N(M). If the comparison is suc- 
cessful, the  authenticity and integrity of message 
M  can  be  assured. B cannot forge the digital sig- 
nature,  because B does not have  the knowledge of 
the  private  key PR. Similarly, A cannot disclaim 
the digital signature, because only A  knows  the 
value of the  private  key PR. The hash value pro- 
vides integrity to the message by serving as a re- 
dundant  value to the message. Designers of public 
key  cryptographic  systems must exercise  care in 
the selection of the hash function to  ensure  that, 
with high probability, two different messages do 
not result in an identical hash value. Detailed 
treatment of hash algorithms used for calculating 
digital signatures  can  be found in References 17 
and 23. 

Public key algorithms are not the  only  means for 
producing digital signatures. Digital signatures 
can  be produced with  secret  key algorithms. They 
can  also  be produced with special transforma- 
tions  that,  strictly speaking, are not secret  key  or 
public key algorithms. l 7 y Z 3  However, public-key- 
based digital signature schemes 14,24 remain the 
most preferred schemes for many users. 

Although public key  cryptography (i.e., the RSA 
algorithm) is capable of providing both privacy 
and authentication services,  its wide usage has 
been usually in the  areas of key distribution and 
digital signature applications. It  has not been as 
widely used in general data  encryption and de- 
cryption applications. This  is  due to the fact that 
public key algorithms typically involve modular 
exponentiation and are computationally inten- 
sive” and usually slow for real-time applications 
(e.g., instantaneous  electronic  conversations). 
The DEA, on  the  other  hand, is very  fast  when 
compared to existing public key algorithms (PKA) 
and well-suited to routine  encryption of bulk 
data.  Thus, it is very  desirable to have  a hybrid 
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DEA-PKA system  that  can combine and take ad- 
vantage of the good features in both DEA and P a .  

Currently, there is a wealth of published articles 
and reports presenting ideas, techniques, and 
protocols for hybrid secret  key and public key 
cryptographic  systems. Although most of the 
published materials are largely conceptual,  some 
of them  do offer practical realizations. Most no- 
table are  the Defense Advanced Research Project 
Agency (DARPA) Internet Mail system,26  the Bell- 
Northern  Research  Inte  rated  Services Digital 
Network (ISDN) terminal,’ the Cylink CIDEC-LS** 
system, ’* the Digital Distributed System  Security 
Architecture,”  the MEMO system,30  and  the  Se- 
cure  Data  Network  System (SDNS).31’32 The 
DARPA Internet Mail system and the Digital Dis- 
tributed  System  Security  Architecture  use RSA as 
the public key method for distributing secret sym- 
metric keys. The CIDEC-LS system and the MEMO 
system  use  the Diffie-Hellman  method15 for dis- 
tributing secret DEA key-encrypting keys. The 
Bell-Northern Research terminal uses  the Diffie- 
Hellman method to distribute DEA session keys, 
which are  then used to encrypt  data exchanged 
during a communication session. And the SDNS 
utilizes a secret government algorithm to ex- 
change and authenticate keys. 

This  paper  presents a seamless PKA extension to 
the existing IBM Common Cryptographic Archi- 
tecture.  Whereas  the goal of this hybrid architec- 
ture is similar to  other mentioned hybrid systems, 
the achieved result is a unique and highly inte- 
grated  cryptographic  system  that  takes advantage 
of the rich functionality of the DEA-based Com- 
mon Cryptographic Architecture’ and  the  key- 
usage enforcement method based  on  the  recently 
developed control  vector  concept. 

Rationale  and  objectlves 

As its name implies, the public key  extension to 
CCA is  not intended to be a stand-alone  architec- 
ture,  but  is an optional add-on to  the  already  ex- 
isting CCA. If a product implements the public key 
extension,  that  product  must  also implement 
the  base Common Cryptographic  Architecture. 
Hence,  the mentioned advantages of public key 
cryptography  are used to  the fullest extent to en- 
hance  the  present CCA. The aim is twofold: (1) 
provide new data  operation  services  such as non- 
repudiation via digital signatures, and (2) provide 
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expanded key management services  such as dis- 
tribution of DEA keys  via  encryption  with a public 
key. 

The digital signature services  are independent 
services and are added to the existing data  oper- 
ation services.  The expanded key management 
services  also make use of digital signatures to pro- 
vide a high-integrity key distribution channel for 
the distribution of both PKA keys and DEA keys. 
This kind of signature, which is  created and ver- 
ified as an integral part of the  key management 
services,  is called a system digital  signature. A 
different kind of signature, called an application 
digital  signature, is generated and verified on us- 
er-supplied data  via signature services available 
to application programs. 

The expanded key management services empha- 
size  the  use of public key  cryptography to dis- 
tribute initial DEA key-encrypting keys and thus 
to eliminate the need for couriers and manual in- 
stallation of the initial DEA key-encrypting keys. 
Once DEA key-encrypting keys  are distributed via 
public key  cryptography,  subsequent DEA key- 
encrypting keys or data-encrypting keys  can  be 
distributed via existing CCA services.  Thus,  with 
the public key extension, hybrid key distribution 
is  based  on a three-level hierarchy, rather  than a 
two-level hierarchy.33 In  the  absence of a key 
management standard prescribing a key hierar- 
chy,  the  authors  adopted a three-level hierarchy 
for the following reasons: 

Pegomance. There  are  many applications 
where  the  data  keys change rapidly from one 
transaction to another.  In  these applications, 
use of a two-level hierarchy might negatively 
affect system performance, because PKA en- 
cryption must be performed on each data key. 
With a three-level hierarchy, PKA encryption 
needs to be performed only on an initial DEA 
key-encrypting key. Thereafter, a DEA encryp- 
tion is performed on  each  data  key, and thus  the 
performance impact is much less  than  that of 
the two-level hierarchy. 
Flexibility. The three-level hierarchy  is  more 
flexible than  the two-level hierarchy, because 
the  three-level  hierarchy  can  be made to simu- 
late a two-level hierarchy. For example, if PU, 
KEK, and  KD  represent a public key, a DEA 
key-encrypting key, and a DEA data key, re- 
spectively,  then  the single encrypted  key  value, 
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ePU(KD), in a two-level hierarchy, is replaced 
in a  three-level  hierarchy by two  encrypted  key 
values, ePU(KEK) and  eKEK(KD).  In  con- 
trast,  the two-level hierarchy  cannot be made to 
simulate  the three-level hierarchy. 
Securiv. The three-level  hierarchy simplifies 
the  task of analyzing security in the  key  man- 
agement design in that it ensures  that  the bridge 
from PKA to DEA is focused  at one point only- 
the  distribution of one  key  type (Le., key-en- 
crypting  key). With a two-level hierarchy,  there 
are potentially  many different key  types  that 
may  require  distribution (e.g., privacy  key, au- 
thentication  key, PIN encryption  key).  That is, 
there  are  many bridges from PKA to DEA. 

From  customer  requirements,  governmental  ex- 
port regulations, and  the  rationale  just  presented, 
the following major objectives  have  been  derived 
for the public key  extension to  the CCA: 

Provide PKA services with security  and integrity 
level comparable to  or  better than existing CCA 
services. 
Support  distribution of DEA key-encrypting 
keys  with high integrity via PKA public keys. 
Support  distribution of public keys with high 
integrity in both certification center  and  peer- 
to-peer  environments. 
Support  generation  and verification of applica- 
tion digital signatures. Application digital sig- 
natures  are  generated  on  data specified by the 
application program (or user). For interopera- 
bility with other public key  cryptographic  sys- 
tems, application digital signatures are also gen- 
erated  on  system  data (e.g., distributed public 
keys)  for  use in the  key management services. 
However,  greater integrity in the  key  distribu- 
tion process  can  be achieved with system digital 
signatures  discussed  earlier in this  paper. 
Support  generation and verification of system 
digital signatures,  which  are  generated on sys- 
tem  data specified by  the  cryptographic  sub- 
system, as an integral part of the  key manage- 
ment services requiring high integrity. 
Comply with the well-accepted digital signature 
standard ISO/IEC IS 979634 in the  generation  and 
verification of both  system digital signatures 
and application digital signatures. 
Prevent  the  system from being misused as a  co- 
vert encryption  channel by avoiding support  for 
general  data  encryption  and  decryption  capa- 
bilities with public key algorithms. PKA encryp- 
tion is  performed  only  on  system-generated 

Figure 1 Public  key extension architectural  model 

data.  In cases  where supplied data  are  en- 
crypted,  the  encrypted  data  are  not  returned  to 
the application program, but are compared in 
the  hardware with application-supplied data. 

As shall be  seen,  these major objectives  have 
greatly influenced the design of the public key 
extension. 

System overview 

Figure 1 shows  an  architectural model of the  pub- 
lic  key  extension in which two  cryptographic ap- 
plications interoperate.  Each  cryptographic ap- 
plication (APPL) interfaces  to  a  cryptographic 
subsystem  through  an application programming 
interface (API). The model parallels the CCA ar- 
chitectural model presented in Reference 2. In  the 
CCA architectural model, the  cryptographic  sub- 
system  contains  a set of cryptographic  services 
that  are invoked via  the API. In  the  extended 
CCA architectural model, the  cryptographic  sub- 
system  is  expanded to include the following: 

New cryptographic services supporting the pub- 
lic key extension 
A new  data  structure, called theprofile  vector, 
used to configure operations of the  crypto- 
graphic  services 

The  cryptographic  services  and the profile vector 
can  be implemented in hardware,  software, or a 
combination of both,  depending  on the security, 
performance,  and  cost  objectives  at  hand. 

For  the  purpose of this  paper,  the functional as- 
pect of public key  extension  is  described in terms 
of the new API cryptographic  services,  because 
they  matter  most from a  user’s  perspective.  How- 
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Figure 2 Components of the  cryptographic  subsystem 

ever,  key management concepts  developed  for 
the public key extension  are  more easily dis- 
cussed using a  more  granular  architectural model 
in which the  cryptographic  subsystem is subdi- 
vided  into  software  and  hardware  components. 
Thus, in the  remainder of the  paper,  the public 
key  extension  and  the  cryptographic  subsystem 
are discussed in terms of the specific implemen- 
tation within the IBM Transaction  Security Sys- 
tem (TSS). 

TSS implementation of the  cryptographic 
subsystem 

In  the TSS implementation of the public key  ex- 
tension,  the  cryptographic  subsystem is parti- 
tioned into  two  components:  a  hardware  compo- 
nent called the cryptographic facility (CF) and  a 
software  component called the  cryptographic fa- 
cility access program (CFAP), as illustrated in Fig- 
ure 2. The CF contains  the  cryptographic algo- 
rithms,  storage for a small number of clear  keys 
and  cryptographic  variables,  and  an  instruction 
processor  for  executing  a  set of cryptographic in- 
structions  that  may  be invoked by the CFAP 
through  a low-level interface.  The CFAP also in- 
terfaces  with  the  application  programs  through  an 
API. 

A typical  cryptographic  service  request initiated 
by an application program at  the API includes  data 
and  cryptographic  keys. The CFAP processes  the 
service  request by executing one  or  more CF in- 
structions.  Appropriate  parameter  values  are 
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passed  to  each CF instruction  at the CF-leVel in- 
terface. CF instruction  outputs  are  returned to  the 
CFAP at  the  same CF-level interface. A CF instruc- 
tion output  value  may  be  used  as  an input to an- 
other CF instruction, or it may  be  returned to  the 
application program. 

Cryptographic  facility. The CF is  the  heart of the 
cryptographic  subsystem, as shown in Figure 3. 
The CF contains  three major components: (1) en- 
cryption  processor, (2) instruction  processor,  and 
(3) CF environment. The CF is implemented within 
a  secure  boundary,  protected with tamper-resis- 
tant,  tamper-detection,  and key zeroization  cir- 
cuitry.  This  ensures  that  the CF can  be  accessed 
only  through  intended  interfaces,  and  that  clear 
keys and the  results of intermediate  steps of en- 
cipherment  and  decipherment  are  kept  protected. 

Encryption processor. The  encryption  processor 
implements the  Data  Encryption Algorithm (DEA) 
and one  or more public key algorithms (PKA). The 
encryption  processor  is  the  basic engine for  per- 
forming encryption  and  decryption  operations  re- 
quired by  the  cryptographic  instructions. The 
DEA portion of the encryption  processor  is  part of 
the existing CCA. The PKA portion of the  encryp- 
tion processor  is  added to support  the public key 
extension.  The PKA portion  includes  a  key gen- 
erator  and PKA encryption  and  decryption cir- 
cuitry. The public key algorithm used in the  pub- 
lic key  extension  for  both digital signature  and 
key  distribution is the RSA algorithm. Provisions 
have  been  made to allow the CCA to be  extended 
to  support  other public key algorithms as  the mar- 
ket dictates. 

The  key  generation  method  for RSA public and 
private  keys follows the guidelines set  forth by  the 
digital signature  standard ISO~IEC IS 9796. For dig- 
ital signature  purposes,  the RSA key modulus 
length is  between 512 and 1024 bits, inclusive. For 
DEA key distribution  purposes,  the RSA key mod- 
ulus length is 512 bits. 

Instruction processor. The  instruction  processor 
decodes  and  executes  cryptographic  instructions 
invoked by  the CFAP at  the CF-leVel interface. The 
instruction  set in the  instruction  processor  has 
been  expanded to  support  the public key  exten- 
sion. 

CF environment. The CF environment  consists of 
a set of existing and newly added  cryptographic 
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Figure 3 Cryptographic  facility 

PHYSICAL 
INTERFACE 
(OPTIONAL) 

SECUREBOUNDARY - r""""""""""""""- 1 

! ,  I! 

1 
I CF-LEVEL 

INTERFACE 

OPERATION  CODE: 
INPUT  PARAMETERS 
OUTPUT  PARAMETERS 

variables-keys,  flags, counters, and configura- 
tion data  that collectively initialize and configure 
the CF. The newly added cryptographic  variables 
include a 128-bit PKA master  key  (denoted KMP), 
which is a 128-bit DEA key-encrypting key, under 
which most PKA keys (i.e., public and private 
keys)  are  protected, and a special pair of keys 
called the public device authentication key and 
the private device authentication key. This  spe- 
cial key pair is  generated within the CF and is 
stored in the CF environment in clear form. The 
purpose of the device authentication  key pair is 
discussed in a later section. The CF environment 
is  expanded to include a configuration vector, 
which specifies operating conditions of the public 
key  extension.  The  variables in the CF environ- 
ment are initialized (1) via  execution of certain CF 
instructions  that  read  values supplied at  the CF- 
level interface and load them  into  the CF environ- 
ment, or (2) via an optional physical interface  that 
allows values to  be loaded into  the CF environ- 
ment (e.g., via an attached  key  entry unit). The 
configurationvector and the  master  keys in the CF 
environment  are  part of the public key  extension 
key management concept  that is to  be discussed 
in a subsequent  section. 

Cryptographic  facility  access  program. The  cryp- 
tographic facility access program (CFAP) consists 
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Figure 4 Cryptographic facility access program 

CF  CFAP  APPLICATION 

of a set of cryptographic  services  and  data  struc- 
tures, including a profile vector and a software 
state  vector, as shown in Figure 4. 
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Table 1 Public  key  extension  services 

PKA subsystem management services 
1. Profile vector build 
2. Profile vector load 
3. Device personalize 
4. Configuration vector build 
5. Environment  reconfigure 
6. Environment  activate 
7. Master key process 
8. Master key set 

PKA key token support services 

10.  PKA key unit  build 
9. PKA control vector generate 

11.  PKA key token build 
12. PKA key token migrate 

PKA keymanagement services 
13.  PKA key generate 
14. Public key export 
15.  Public key import 
16.  Clear  private key import 
17. DEA key generate 
18. DEA key import 

PKA  digital  signature services 
19.  Application  signature  generate 
20. Application  signature verif’y 

C?yptographic sewices. The  existing CFAP has 
been  expanded  to include new  cryptographic API 
services  that  support  the public key extension. 
As with the existing CCA API services,  the public 
key  extension API services  are in compliance 
with System Application Architecture* guidelines. 
Furthermore,  the  services  have  been designed 
with orthogonality in mind, so that  product im- 
plementers  can  select  and implement various lev- 
els or  subsets of functionality  to  meet specific 
needs of different classes of customers. 

Table 1 provides  a  categorized listing of the API- 
callable cryptographic  services available in the 
public key extension,  services  that  are imple- 
mented in the Transaction  Security  System. An 
overview of the  services is provided in a  later 
section. 

Profile vector. The profile vector is a  data  struc- 
ture  used to configure and  control  the  execution 
of cryptographic  services.  The profile vector con- 
sists of fields that  specify the default values  to  be 
used  for  certain  parameters in many  crypto- 
graphic  services  when  these  parameters  are  not 
explicitly declared by  the calling application. 
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Some of these fields contain  system-related  spec- 
ifications that  either do not  concern  the  average 
user or  that  are  the  set of specifications all users 
of the  system  must follow. By  storing  these  spec- 
ifications in the profile vector  for  use in many 
cryptographic  services,  the  burden  on  the  user to 
supply  them is removed.  Hence,  the  system  be- 
comes  more user-friendly. Some  other fields in 
the profile vector  store specifications that  con- 
cern  users  and  are  used  frequently in many  cryp- 
tographic  services.  By  storing  these specifica- 
tions in the profile vector,  the need for the  user to 
supply  them  with  each  service call is eliminated. 
In many  cryptographic  services,  these specifica- 
tions will be used as default values  for  processing, 
unless specified otherwise by  the user in the  serv- 
ices. In this  way,  the  system  can  accommodate 
both  novice and experienced  users. 

The profile vector  is envisioned to  be  set  up by a 
network  administrator  and  distributed individu- 
ally to all systems in the  network.  The profile 
vector need not be  the same  for all systems,  be- 
cause  some  systems  may  have unique roles in the 
network.  However, to ensure  interoperability, 
certain fields (e.g., fields that  contain  system-re- 
lated specifications) may  be assigned the  same 
values in  all profile vectors  by  the network ad- 
ministrator.  Once  the profile vector  is installed in 
a  system,  the  system  administrator  may  custom 
tailor the specifications of some fields to meet  the 
needs of the  users. 

Sofhvare state vector. In  addition to the  standard 
data  structure profile vector defined by  the public 
key  extension,  the TSS implementation employs 
another  data  structure within the CFAP that is 
called the  software state  vector.  The  software 
state  vector  records  various quantities  dynam- 
ically produced within the  system.  It  contains  a 
flag byte  that among other things, indicates 
whether  the profile vector  has been initialized on 
the  system. It also includes  status  on  the PKA 
master  key  and  facilitates  detection of situations 
where  a PKA key is encrypted  under  an old PKA 
master key after the PKA master key  has been 
changed. An important emerging requirement for 
all computing systems is the ability to support con- 
tinuous operations. Some earlier cryptographic sys- 
tems required that  the system be shut down in order 
to change the PKA master key. In  the public key 

IBM SYSTEMS JOURNAL, VOL 32, NO 3. 1993 



extension, when a cryptographic service detects 
such  a condition on  a PKA key, the service re-en- 
ciphers the PKA key with the current PKA master 

The  public  key  extension  key 
management incorporates a new 
concept of a configuration vector. 

key and allows the service to proceed. This process 
is called the dynamic key update process. 

We now  present  the public key extension  key 
management  concepts,  on which much of the  de- 
sign of the CF is  based. 

Key  management  concepts 

Master  key. The  concept of the  master  key in the 
public key extension  is  a  continuation of the mas- 
ter  key  concept in the CCA. In  the CCA, the DEA 
master  key  (denoted KM) is  a DEA key-encrypting 
key used  to  encrypt all DEA keys  stored  outside 
the  cryptographic facility. In  the public key ex- 
tension,  the PKA master key is also  a DEA key- 
encrypting key used to  encrypt PKA keys residing 
outside  the  cryptographic facility. Conceptually, 
the DEA master  key could also  have  been  used  to 
encrypt PKA public and private  keys.  However, 
having a  separate PKA master  key  (denoted 
KMP), as implemented on  the  Transaction  Se- 
curity  System,  permits  the public key extension 
to coexist  with the  base CCA system  without af- 
fecting the existing CCA operations or existing 
DEA keys  encrypted  under  the DEA master key. Of 
course,  the  system  administrator  may assign the 
same  value  for  both  master  keys  when installing 
the  master  keys  on  the  system.  The  essential  fea- 
ture of the  master  key  concept is to  require  only 
the  master  keys to be  protected inside the  secure 
hardware;  other DEA keys  and PKA keys  may  be 
encrypted  under  the  master  keys and stored  out- 
side the protected  hardware. 

Configuration  vector. The public key  extension 
key  management  incorporates  a new concept of a 
configuration vector, which permits  an installa- 

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993 

tion to restrict  the allowable cryptographic  serv- 
ices  that  may  be performed by  the  cryptographic 
hardware. Similar to a  control  vector,  the  con- 
figuration vector is a  collection of encoded fields, 
except  that  the configuration vector  is used to 
specify  the  operating  conditions of a  crypto- 
graphic facility and all keys of the  system.  This is 
in contrast  to  the  control  vector,  which  is used to 
specify usage of a key. Conceptually,  a config- 
uration  vector is to  the cryptographic facility and 
to all keys  what  the  control  vector is to a  partic- 
ular key.  The aim of the  architecture is to provide 
a configurable system permitting the installation 
to select  the level of security  and  the  crypto- 
graphic  services allowable within the  system. 

An example of an encoded field in the configura- 
tion vector  is  the cert@cation field, which  spec- 
ifies whether  the  cryptographic  subsystem  can 
function as a certification center (i.e., a  central 
facility with some privileges in cryptographic  ca- 
pability, where  systems in a  network  register  pub- 
lic  keys) or function  only as a regular crypto- 
graphic  subsystem. 

Node  identifier. The public key extension  key 
management makes  use of a  node identifier to 
uniquely identify each  cryptographic  subsystem 
within a  network.  This is a  nonsecret  quantity 
administered  and  distributed by a  network admin- 
istrator. The node identifier of each  cryptographic 
subsystem  is  loaded  and  stored in the CF envi- 
ronment. The node identifier is involved in the 
distribution of an initial DEA key-encrypting key 
in the following way.  The  service  that  performs 
the  distribution of this initial key first generates  a 
DEA key-encrypting  key  value and produces it  in 
two forms. One form is a DEA key-encrypting  key 
used to  export DEA keys  and  is  referred  to  as  an 
EXPORTER key.  The  other form is a DEA key-en- 
crypting key used to import DEA keys  and  is  re- 
ferred  to as  an IMPORTER key. There  are  some 
restrictions on  the usage of this DEA key pair,  but 
they  are  not  important in the  present discussion. 
The EXPORTER key  is retained at the  generating 
cryptographic  subsystem  for  subsequent  distribu- 
tion of other DEA keys,  and  the IMPORTER is dis- 
tributed to another  cryptographic  subsystem un- 
der  a public key of the receiving cryptographic 
subsystem. At  the generation time of this  key 

-pair,  the node identifier of the generating  crypto- 
graphic  subsystem is copied from the CF to a field 
in a  key  record  containing  the IMPORTER key  to  be 
distributed.  At the receiving cryptographic  sub- 
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system,  the  node identifier imbedded in the dis- 
tributed  key  record  serves a dual purpose: (1) It 
is used in a stringent checking procedure  (per- 
formed inside the CF) to  ensure  that  the sending 
cryptographic  subsystem  is  what it claims to be, 
and (2) it is used (also in a checking procedure 
inside the CF) as an anti-import value,  that is, it is 
verified against the  node identifier of the receiving 
cryptographic  subsystem to  ensure  that  this dis- 
tributed IMPORTER key  cannot be imported to  the 
generating cryptographic  subsystem.  The  reason 
the  distributed IMPORTER key  is not permitted to 
be imported to  the generating cryptographic  sub- 
system  is as follows. If the IMPORTER key  were 
imported to the generating cryptographic  sub- 
system, it would coexist  with  its  counterpart,  the 
EXPORTER key, which was  generated and retained 
at  the generating cryptographic subsystem. The 
coexistence  on a system of two DEA key-encrypt- 
ing keys of the  same clear values  but with oppo- 
site usage attributes (i.e., one  is for exporting 
keys and the  other is for importing keys) would 
violate  the unidirectional property of IMPORTER 
and EXPORTER keys. In many cryptographic ap- 
plications, maintaining unidirectionality of DEA 
key  encrypting  keys  is  an  important  security re- 
quirement. 

Cryptographic  facility  states. The public key  ex- 
tension key management also  has a new concept 
of cryptographic facility states  that  controls  the 
initialization of the CF. At any given time, the CF 
is defined to be in one of the following three 
states, in successive  order: (1) preinitialization, 
(2) initialization, or (3) run. The preinitialization 
state  is  where personalization of the CF, such as 
loading a node identifier, is performed. The ini- 
tialization state is where configuration of the CF, 
such as loading a configuration vector  into  the CF, 
is performed. The run state is the normal running 
state.  For a cryptographic  subsystem to  be useful, 
its CF should reach  the  run  state.  In  that  state, a 
current PKA master  key might be loaded, and all 
the public key  extension  cryptographic  services 
are available for use. 

Progressing the CF forward from one  state to the 
next  state  is normal (e.g., from initialization state 
to run state).  However, moving the CF from the 
run  state  to  the initialization state  or preinitial- 
ization state  causes  the  master  keys to be  erased. 
This helps maintain a level of integrity of the CF 
and can  prevent  some  forms of cheating commit- 
ted  by insiders. For example, it prevents a corrupt 
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insider from reconfiguring a CF to  an unauthorized 
role (e.g., by  setting  the certification field  in the 
configuration vector  to  have  the  cryptographic 
subsystem  act as a certification center).  This  is 
because reconfiguring the CF requires it to  enter 
the initialization state  where  the  master  keys  are 
erased  and  the CF is  rendered useless. Suppose 
from the time a cryptographic  subsystem is first 
brought up a corrupt insider configures the CF to 
a role not authorized by the  network administra- 
tor. A routine audit of the configuration vector of 
the CF by  the  network administrator can help de- 
tect  whether  the CF is configured to its designated 
role. Again, if the insider alters  the configuration 
of the CF to conceal  its unauthorized role, the CF 
is rendered useless. The coupling of a CF config- 
uration  vector to its  master  keys  can be used to 
enforce  network  security policy within a network 
that  communicates  via a public key protocol using 
a certification center. 

PKA key  types. In  the public key  extension, PKA 
keys  are classified and separated according to 
their roles in supporting  the  key management 
services and digital signature  services.  The four 
types of public and  private  key  pairs defined  in the 
public key  extension follow. 

The key-management key pair supports  key dis- 
tribution services,  where  the  key being distrib- 
uted might be a public key or a secret DEA key- 
encrypting key. At a sending  cryptographic 
subsystem,  the public key-management key of a 
receiving cryptographic  subsystem  is used to en- 
crypt  the  secret DEA key being distributed, and 
the  private key-management key of the sending 
cryptographic  subsystem  can be used to sign the 
distributed DEA key (i.e., produce a digital signa- 
ture). At the receiving cryptographic  subsystem, 
the  private key-management key of the receiving 
cryptographic  subsystem is used to decrypt  the 
distributed DEA key to recover  the DEA key, and 
the public key-management key of the sending 
cryptographic  subsystem  is used to verify the dig- 
ital signature produced on  the  distributed DEA 
key. 

The certification key pair supports distribution of 
public keys  via a certification center.  The public 
and private certification key pair can  be  created 
only  by a certification center.  The  private  certi- 
fication key always remains with  the certification 
center, for the  purpose of signing certificates con- 
taining distributed public keys. The  correspond- 
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ing public certification key  is normally distributed 
with  integrity to  other cryptographic  subsystems 
of the  network  to verify  the  distributed certifi- 
cates. 

In  contrast  to  the certification key pair, the key- 
management  key  pair  is normally used in peer- 

Except  for private user  keys, 
private keys of all other  types 
remain with the system  that 

originates them. 

to-peer  key  distribution. Within the  context of 
key management,  the certification key pair is sep- 
arated from the key-management key pair to 
clearly differentiate the  authority of a certification 

I center  from  that of an  ordinary  cryptographic 
subsystem. 

The user key pair supports application signature 
generation  and verification services  on  user-sup- 
plied data. The private  user key is used to gen- 
erate  an application signature on application pro- 
gram  data. The public user key  is used to validate 
an  application  signature. 

The device authentication key pair is a  special 
key pair  that  permits  a  cryptographic  subsystem 
to authenticate itself and  its  own  data  stored in the 
CF (e.g., the configuration vector)  to  other  cryp- 
tographic  subsystems with high integrity. Unlike 
other public and  private key pairs,  the public de- 
vice authentication  key and private  device au- 
thentication key  are generated  only during the 
preinitialization state  and  stored within the  secure 
boundary of the CF. The  keys of other  types  are 
encrypted  under  the FA master  key  and  can  be 
stored  outside  the CF. Also, each  cryptographic 
subsystem  may  have  many  key  pairs of other 
types,  but  only one device  authentication  key 
pair. The device  authentication  keys  are  kept in 
the CF and are  erased  whenever  a new node  iden- 
tifier is  loaded  into  the  cryptographic  subsystem. 
That is, it is  not possible to  cheat  by assigning two 
different node identifiers to  the same  authentica- 
tion key pair,  except  by  pure  chance. To authen- 

ticate  a  cryptographic  subsystem to  other cryp- 
tographic  subsystems  within  the  network, it is 
necessary  to  separately authenticate  that  the  pub- 
lic device  authentication  key  actually  comes from 
the  cryptographic  subsystem (via a  service  that 
exports  a public key  or via an audit  procedure). 
This  can  be  done in a  secure  environment  before 
the cryptographic  subsystem is shipped and in- 
stalled; or it can  be  done in the field using a  trusted 
third party  that  audits  the  cryptographic  sub- 
system.  Thereafter,  anything signed with  the pri- 
vate device  authentication  key  can be used to 
prove  that the signed object  originates  with  the 
said cryptographic  subsystem.  Prior  to auditing 
the  cryptographic  subsystem,  the  signatures  can 
be used but  they  are  only provisionally trusted. 

Except  for  private  user  keys,  private  keys of all 
other  types remain with  the  systems  that originate 
them. During key generation,  a  private  user  key 
can  be  provided in clear  form as  an  output  to  an 
application or  user;  other private  keys are pro- 
duced  under  encryption of the PKA master key. A 
service  exists to import  a  private  user key. This 
supports  a level of interoperability with public 
key  systems  that  do  not implement public key 
extension. No other  private  key  type  can  be im- 
ported  at  a  cryptographic  subsystem,  because 
this would undermine  security. 

The mechanism for  cryptographically  separating 
the PKA key  types  involves implementing a  new 
set of control  vectors,  which is treated  next. 

PKA control  vectors 

The control  vector  method  is  a mechanism for 
controlling the usage of a  cryptographic key and 
for enforcing the  separation of cryptographic 
keys.  The  method was developed  for  the Com- 
mon Cryptographic  Architecture. The control 
vector method  calls  for  each  cryptographic  key to 
be coupled  with  its  associated  control vector in 
such  a  way  that  the  nonsecret  control  vector  must 
be specified to recover  and  use  the  key.  The 
method  provides  for the  creator of a  crypto- 
graphic  key to declare  its  intended usage at- 
tributes in the  control vector associated  with  the 
key. Once  a key  is coupled to its  associated  con- 
trol  vector,  its usage attributes  are  enforced  dur- 
ing its lifetime to  prevent misuse. The control vec- 
tor  method  used in the  public  key  extension is 
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Figure 5 Representative  fields  in  a PKA control  vector 

I I 

built on  the  same  architectural  concepts and prin- 
ciples, but  the  cryptographic mechanisms differ. 

Format of PKA control  vectors. In  this  paper, we 
refer to  the existing control  vectors defined for 
DEA keys  as DEA control  vectors, and the new 
control  vectors defined for public and private 
keys in public key  extension as PKA control  vec- 
tors.  The DEA control  vectors  are 64 bits long, and 
the PKA control  vectors  are more than 128 bits 
long. Each PKA control  vector  consists of two 
parts: a system  control block (SCB) and a user 
control block (UCB). 

The SCB is 264 bytes long and contains  system- 
managed control information associated  with  the 
key. Figure 5 shows  several  representative fields 
of a general SCB. They  can  be briefly explained as 
follows. The CV Type field indicates  the  key  type 
of the PKA key. It  indicates  whether  the  key  is a 
public or private  key,  and  whether  the public or 
private  key  is  one of the following four types: (1) 
key-management key, (2) certification key, (3) 
user key, or (4) device  authentication key. The 
Usage Attributes field indicates  the  cryptographic 
services in which the  key  can be used. The Al- 
gorithm field indicates  the public key algorithm 
with which the  key  can  be used. Currently,  only 
the RSA algorithm is defined for this field. The 
Tstart (Le., starting time) field and  the Texp (Le., 
expired time) field together indicate the time in- 
terval during which the  key is valid for use. The 
Key/Key Authenticator field is a one-bit field that 
indicates  whether  the  control  vector  is  associated 
with a PKA key, if this bit has a value of 0. With 
avalue called a key  authenticator,  the field is used 
to authenticate  the PKA key, if this bit has a value 
of 1. Other fields shown in the figure are Anti- 
variant,  Anti-complement, and Extension, which 
have  important  roles in distinguishing control 
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vectors from other  cryptographic  variables.  The 
Anti-complement bit (B’l’) ensures  that  no two 
control  vectors  are  complements of one  another. 
The Anti-variant bit (B’O’) in combination with 
the Anti-complement bit (B’l’) ensures  that  no 
control  vector  can be equal in value to a variant 
mask as used in an earlier IBM key management 
scheme for separating  cryptographic  key^^,^ and 
vice  versa.  The role of the  Extension field is  de- 
scribed in Reference 3. 

The UCB is 64 bytes long and contains  user- or 
installation-managed control information associ- 
ated with  the key. The public key  extension pro- 
vides for a user or  an installation to encode  extra 
control information-deemed useful-in the UCB. 
However,  the  cryptographic facility does not 
check  the  values in the UCB; it is up to the appli- 
cation program to perform this checking. 

Coupling of PKA control  vectors  to keys. From a 
system point of view, a PKA key  can  be classified 
as either  an internal key  or  an  external key. An 
internal key  (also referred to  as  an operational 
key)  is  one  that  is in internal form, which is a form 
suitable for use  on  the system. An external  key is 
one  that  is in external form, which is a form suit- 
able for distributing to another  system. 

When a public key is exported to another  system 
(i.e., the public key is transformed from the in- 
ternal form to  the  external form), the coupling of 
the public key to its  associated  control  vector  is 
done  via  the digital signature, which is calculated 
both  on  the  key and the  control  vector. 

For an internal PKA key,  the coupling of the  key 
to its  control  vector is system-dependent and may 
depend on the  secrecy and integrity requirements 
for public and private keys. In  the public key  ex- 
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Figure 6 Encryption of a PKA key K 
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tension,  the  requirements  on  an internal public 
key  are  that (1) the integrity of the  key  value  must 
be  assured,  and (2) the  key must be coupled with 
its  associated  control  vector to prevent misuse of 
the key. The  requirements  on an internal  private 
key  are that: (1) the integrity of the  key  value must 
be assured, (2) the  secrecy of the  key  value must 
be assured, (3) the key must  be coupled with  its 
associated  control  vector to prevent misuse of the 
key, and (4) the  key may be used only by the 
owner of the  key  or an authorized  user.  Access 
control  methods  are normally used to meet  the 
fourth requirement on an internal  private key. 
Here  we  discuss  methods  that may be used to 
meet  the remainder of the aforementioned re- 
quirements  on PKA internal public and private 
keys. 
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Figure  6  shows  a method employed in the TSS to 
cryptographically couple a PKA key K to its  as- 
sociated  control  vector C, which consists of an 
SCB and a UCB. Usually, the  value of K is  repre- 
sented in such  a form that  the performance of the 
public key algorithm can be optimized. The  value 
of K is also expanded (e.g., via padding) to a 
block whose  size  is  a multiple of 8 bytes, so that 
existing DEA encryption and decryption  opera- 
tions  can  be conveniently performed on K. This 
expansion process  also includes prefuring the  key 
value with a 64-bit random number to increase  the 
appearance of randomness in the  encrypted  value 
of K. The long control  vector C is first processed 
by a hashing function h to produce  a 128-bit 
vector  H = h(C). The hashing function h is the 
same as that described in Reference 9, except  that 
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Figure 7 Decryption of an  encrypted PKA key 
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after an MDC hash value is calculated on C ,  the 
Anti-variant bit, the Anti-complement bit, the 
Key/Key  Authenticator field, and the  Extension 
field are  set  to  appropriate  values.  Setting  these 
fields to designated values helps protect against a 
class of potential attacks  on  control  vectors  that 
make use of the  complementary  property of the 
DEA, such as  one described recently in Reference 
35. Vector H is  then exclusive-oRed with  the PKA 
master  key KMP, and the result, denoted  KMP @ 
H is used in an  encryption algorithm, named CBC 
E-D-E, to encrypt K. 

The CBC E-D-E algorithm is  a generalization of the 
triple encryption  scheme widely used in DEA- 
based  key management schemes,  such as ANSI 
x9.17,36 for encrypting  a 64-bit DEA key  under  a 
128-bit DEA key-encrypting key. This is the  basis 
of the  term E-D-E, which stands for Encrypt-De- 
crypt-Encrypt.  In  the CBC E-D-E algorithm, the 
first 64 bits of KMP @ H is used as a DEA key  to 
encrypt K, using the  cipher block chaining (CBC) 
mode of DEA encryption, with an initial chaining 
vector of zero.  Next,  a DEA decryption  operation 
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in the CBC mode  is performed on  the  just-pro- 
duced result, using the  second 64 bits of KMP @ 
H as  the  key and an initial chaining vector of zero. 
The  decrypted result is then encrypted  with  the 
CBC mode of DEA encryption, using the first 64 
bits of KMP @ H as the  key and an initial chaining 
vector of zero.  The final result is an encrypted 
PKA key,  denoted empgH(K). Since PKA keys  are 
much longer than DEA keys, the  cipher block 
chaining mode of DEA is used in the  encryption of 
a PKA key, instead of the simpler electronic  code 
book (ECB) mode of the DEA, to help eliminate 
patterns in the  encrypted  value of the PKA key. 

The coupling method just  discussed  provides  a 
unified way for meeting the  requirements of as- 
suring the  secrecy of a  key  value and of coupling 
a  key  to  its  associated  control  vector [i.e., re- 
quirements (2) and (3)] for internal private keys. 
This method is also used in TSS to meet the re- 
quirement of coupling a  key to its  associated  con- 
trol vector [i.e., requirement (2)] on internal pub- 
lic keys. Although public keys in general need not 
be  kept  secret,  one might well take advantage of 
the  protection  that  already  exists for private keys 
and use  a single coupling method for both public 
and private keys. This coupling method does 
not require new cryptographic primitives to  be 
added.  Rather, it makes use of existing DEA en- 
cryption and decryption primitives already avail- 
able in the CCA. 

Figure 7 shows  the method for decrypting an en- 
crypted PKA key K, denoted empgH(K), using a 
PKA master  key  KMP  and  a PKA control  vector C ,  
assuming that  the  encrypted  key  is produced via 
the  encryption method of Figure 6. The  same 
hashing function h is applied to the long control 
vector C to produce H. H is  then exclusive-ORed 
with  the PKA master  key KMP, and the result, 
denoted  KMP @ H, is used in the CBC D-E-D al- 
gorithm to decrypt empgH(K). The CBC D-E-D al- 
gorithm is just  the  inverse of the CBC E-D-E algo- 
rithm. That is, the  sequence of operations, 
decrypt,  encrypt, and decrypt, is used instead of 
the  sequence  encrypt,  decrypt, and encrypt. 

The requirement of assuring the integrity of key 
values [i.e., requirement (l)] on internal public 
and private  keys  can be satisfied via  a  concept 
called a  key  authenticator. Essentially, a  key au- 
thenticator  is  a  value derived from the  value of a 
PKA public or private  key and always accompa- 
nies the  key for later verification of the  key, 

IBM  SYSTEMS JOURNAL, VOL 32, NO 3, 1993 



whenever  the  key is used. In TSS, the  key  authen- 
ticator  is produced by applying the MDC-2 hashing 
algorithm described in Reference 9 to  the  value of 
the PKA key. The result is  a 128-bit key  authen- 
ticator, which is  then  encrypted  under  the PKA 
master key. The  process of encrypting a  key  au- 
thenticator  under  the PKA master  key KMP and 
the  control  vector C associated  with  the PKA key 
is the  same as that of encrypting the PKA key 
(shown in Figure 6), except  that  a hashing func- 
tion h ’ is used instead of the hashing function h .  
The hashing function h ’ is identical to  the hashing 
function h,  except  that in step 5 ,  the KeyKey 
Authenticator field is  set  to B’l’ to indicate that 
H = h ’(C) is  associated  with  a  key  authenticator. 

The  encrypted  value of a PKA key,  the  control 
vector  associated with the PKA key, and  the en- 
crypted  key  authenticator of the  key  constitute 
the  internal form of the PKA key. In  most  requests 
to  the CF for a  cryptographic  operation,  a PKA key 
must be presented to the CF in internal form be- 
fore processing can  start.  The  process of decrypt- 
ing an  encrypted key authenticator  is  the  same as 
that of decrypting the  encrypted PKA key (shown 
in Figure 7), except  that, again, the hashing func- 
tion h ’ is used instead of the hashing function h . 
When an  encrypted PKA key, its  associated  con- 
trol  vector,  and  its companion encrypted  key  au- 
thenticator  is  presented (in internal form) to a 
cryptographic  service (and ultimately to the CF of 
the  cryptographic  subsystem),  the  control  vector 
is  checked to  ensure  that  the  requested  use of the 
key  is permitted. If the checking is successful, the 
key  recovery  process  is performed using the 
method illustrated in Figure 7. Otherwise, the  ser- 
vice  is  aborted.  Next,  the  key  authenticator  is 
recovered from the  encrypted  key  authenticator. 
Another  key  authenticator  is derived from the re- 
covered PKA key, using the  described method, 
and then  compared for equality with  the  recov- 
ered  key  authenticator. If the comparison suc- 
ceeds,  the PKA key  is  considered to  be genuine 
and is used in the public key algorithm to  carry 
out  the desired operation. 

If an  adversary  cheats by specifying a  control 
vector C’ instead of the  correct  control  vector C 
in the  internal form of the PKA key, there  are two 
possible outcomes. If the  control  vector checking 
fails, the  cryptographic  service  is  aborted. If the 
control  vector checking succeeds,  the  recovered 
PKA key authenticator and the regenerated key 

authenticator do not compare  and  the  service  is 
aborted. Generally, the  key  authenticator pro- 
vides  detection of possible corrupted  value of the 
recovered PKA key in the CF, regardless of 
whether  this  is  caused by cheating or  by inad- 
vertent  changes in the  value of the  key or the  key 
authenticator  due to hardware failures. In  the  ab- 
sence of the  key  authenticator,  a long time may 
pass before application programs can  detect  such 
a situation. Needless to say, all the checking and 
key  recovery  processes, as well as operations of 
the public key algorithm, are  carried  out inside 
the CF for security  reasons. 

In general, if the function that  generates  the 
key  authenticator is a sufficiently strong  crypto- 
graphic one-way function (e.g., MDC-2), the  key 
authenticator need not be  encrypted.  However, 
encrypting the  key  authenticator  provides  extra 
security in implementations where  a simpler or 
weaker  one-way function is used for performance 
reasons. 

It  can  be argued that  the  use of key  authenticators 
may add additional DEA encrypt or decrypt  cycles 
to  the path. However,  this  does not materially 
affect performance, because most public key  ex- 
tension services  themselves make use of a PKA 
encryption or decryption algorithm, which itself 
is very long compared to the DEA encryption 
and decryption  operations performed on  a  key 
authenticator.  In  a  hardware implementation, 
the processing of a  key  authenticator  can be per- 
formed in parallel with other  operations, and the 
overhead is considered negligible. 

Of course, an implementer may use  other meth- 
ods  to meet the  requirements  on public and pri- 
vate keys. For example, the requirement of cou- 
pling a PKA key  to  its  control  vector and the 
requirement of assuring integrity of a  key  value 
may be simultaneously met through the  use of a 
special DEA key, called the System Key Authen- 
tication Key (SKAK). The SKAK is initialized and 
stored in a  protected  area of the  cryptographic 
subsystem (e.g., the CF) and  is used only  by  the 
subsystem during the internal processing of an 
internal PKA key. At  the time a PKA key  is  created, 
the SKAK is used to calculate an authentication 
code  on  the  concatenation of the  clear  value of the 
key and the  control  vector.  The  authentication 
code  is  then  stored  with  the PKA key  and  the  as- 
sociated  controlvector.  Together,  they  constitute 
the  internal form of the PKA key. Needless to say, 
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if the PKA key  is a  private key, the  value of the 
PKA key  stored in the  internal form of the  key 
should  appear in encrypted form. 

When an internal PKA key is submitted  to  the 
cryptographic  subsystem during a  request  for  a 
cryptographic  service,  a  new  authentication  code 
is  calculated  on  the  appropriate  contents of the 
internal  form of the key.  The  result is compared 
with the trial authentication code  stored in the 
internal form. If the PKA key  is a  private  key,  the 
clear  value of the  key  must  be  recovered and used 
in the  process of calculating the new authentica- 
tion code. If the  comparison  succeeds,  the key is 
accepted as  correct  and  normal  processing  con- 
tinues  for  the  requested  service. If the compari- 
son fails, the  components of the internal  key  may 
have  been  corrupted  and  further  processing is 
aborted. 

It  is suggested that  the SKAK be a double-length 
DEA key  and  the  authentication  code  calculation 
follow the  cryptographic  check  function  de- 
scribed in the ISOIIEC IS 9797,37 and  that  the  pad- 
ding method  used in the calculation be unambig- 
uous to  ensure that  there  are  no  synonyms. 

Another  method  that  may  be used to singly meet 
the requirement of assuring  the  secrecy of the  key 
value of a  private  key is as follows. The  value of 
the  private key  is expanded  via padding to form 
a  block  whose  size is a multiple of 8 bytes, so that 
existing DEA encryption and decryption  opera- 
tions  can  be  conveniently  performed  on  the  key 
value.  The  expansion  process  also  includes  pre- 
fixing the  key  value with a 64-bit random  number 
to increase  the  appearance of randomness in the 
encrypted  value of the  key. The expanded  value 
of the  key is then  encrypted  under  the PKA master 
key, using the CBC E-D-E algorithm of Figure 6. 
This  method  is  just  a simplification of the coupling 
method of Figure 6 .  The  process of recovering  the 
clear  key  value from the  encrypted  value of a 
private  key  is  the  inverse of the encryption  pro- 
cess.  That  is,  the CBC D-E-D algorithm is used in- 
stead of the CBC E-D-E algorithm. 

Having  demonstrated the  features of key man- 
agement and  the PKA control  vector mechanism- 
both of which constitute  the underlying security 
mechanisms of the public key extension-we now 
present  the  functionality  aspect of the public key 
extension.  This  includes  the  cryptographic  to- 
kens  and  the  cryptographic  services available to 
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application programs  via  the public key  extension 
MI. 

Cryptographic API tokens 

In addition to  the profile vector,  the public key 
extension  cryptographic  services  also  use  a set of 
new tokens,  collectedly called PKA tokens. Most 
cryptographic  services  require  keys  and  crypto- 
graphic  variables to  be passed in the form of a 
token. As in the CCA, the principle of the PKA 
tokens  as designed in the  architecture  is to sim- 
plify processing of cryptographic  variables  pro- 
duced  and exchanged (1) among a  cryptographic 
service and an application program, and (2) 
among application programs. 

Each PKA token  contains  a  token identifier, a PKA 
key  or cryptographic  variable, information asso- 
ciated  with  the key  or cryptographic  variable,  and 
a  token  validation  value (TW). The  token  iden- 
tifier distinguishes the  type of token from other 
types.  The TW serves  as  a  check  sum, aiding in 
the detection of an invalid or  erroneous token 
when  one  is  submitted to a  service  for processing. 
When a  key  or cryptographic  variable  is  trans- 
mitted among systems, it also  appears  as  a  token. 
Use of PKA tokens  permits all relevant informa- 
tion regarding a key  or cryptographic  variable to 
be deposited in a single place, thus eliminating the 
need  for  carrying  other information via additional 
methods. PKA tokens  are classified into  several 
types, including the following. 

The PKA internal key token contains  a public or 
private key in protected form and  associated 
control information, including a  control  vector. 
Among the  key  tokens,  the PKA internal key to- 
ken  is pivotal in many  cryptographic  services,  be- 
cause it contains  a public or  private key in the 
internal  form  ready to  be processed by  the  serv- 
ices. This  token  is  also  known as  the SA internal 
key token,  where  letter S (for “symmetric”) in- 
dicates  that  a  symmetric algorithm, such as DEA, 
is used to  protect  the key, and  letter A (for “asym- 
metric”)  indicates  that  the key being protected is 
a public or private  asymmetric key. 

The PKA external  key  token contains  a public key 
in clear  (unencrypted) form and  the  associated 
control  vector. A public key  is in clear  form  only 
when it is  exported to  other  systems, hence the 
term  “external key.” The PKA external key token 
is considered  the  foundation  for distributing pub- 
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lic keys.  This  token is also known as the CA ex- 
ternal  key  token,  where  letter C (for “clear”) in- 
dicates  that  the  key  contained in this token is a 
clear key, and letter A indicates  that  the  key  is an 

Maintaining the  secrecy  and 
integrity of the value of the 
private key  when it is in the 
clear is the responsibility of 

the  user. 

asymmetric public key. Note  that normally a pri- 
vate  key is not kept in this form. However,  to 
provide for interoperability with non-CCA sys- 
tems,  a  private  user  key may be  generated in this 
form and may be imported from this form. Such 
a  private  user  key  may  only  be used for digital 
signatures, and the  control  vector  contains an in- 
dication that it was  once in the clear. Maintaining 
the  secrecy and integrity of the  value of the pri- 
vate  key when it is in the  clear is the responsibility 
of the  user, and cryptographic or physical meth- 
ods may  be used to achieve this. 

The P K A - D m  external  key  token contains  a DEA 
key-encrypting key  encrypted  under  a public key- 
management key. This  key  token  is  considered as 
the foundation for distributing DEA keys  en- 
crypted  under public keys.  This  token is also 
known as  the AS external  key  token,  where  letter 
A indicates  that  an  asymmetric algorithm key is 
used to encrypt  a  key, and letter S indicates  that 
the  key being encrypted is a  symmetric key, i.e., 
a DEA key. 

The system signature  token contains  a  system sig- 
nature produced by  the CF on keys and system 
data. 

The application  signature  token contains an ap- 
plication signature produced by  the CF on a hash 
value or a message digest of data supplied by ap- 
plication programs. 
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Features of the public key  extension 
services 

As discussed earlier in this  paper,  the public key 
extension  services  are  structured at various levels 
of increasing functionality to enable  product  de- 
velopers to select  the level of functionality most 
appropriate to their customers.  The major fea- 
tures of the MI services available in the public 
key  extension and implemented in the  Transac- 
tion Security  System  are now presented. 

PKA subsystem  management  services. The PKA 
subsystem management services allow an autho- 
rized application to initialize and manage the  pub- 
lic key  extension  components of the  crypto- 
graphic subsystem.  The  services  that belong to 
this  category  are  the profile vector build, profile 
vector load, device personalize, configuration 
vector build, environment reconfigure, environ- 
ment activate,  master  key  process, and the mas- 
ter  key  set  services.  The  features of the PKA sys- 
tem management services  are summarized below 
in the  expected  order of execution during system 
initialization. 

The profile vector build service builds a profile 
vector  that  contains default values for variables 
used in other public key  extension  services. Ex- 
amples of such  variables  are: node identifier; 
hashing method used in the  construction of sys- 
tem signatures; hashing and padding methods 
used in the  construction of application signatures; 
and default control  vectors for each PKA key type. 
The  types of digital signatures (i.e., system sig- 
nature or application signature) allowed in public 
key import and DEA key import may also be spec- 
ified. 

Theprofile vector load  service loads the specified 
profile vector  into  the  cryptographic  subsystem. 
The profile vector  to  be loaded may be the default 
profile vector  or it may be  one built by  the profile 
vector build service.  Once  the profile vector  is 
loaded, its specifications are made active. 

The device  personalize  service makes  the  cryp- 
tographic subsystem unique in the  network.  The 
service first resets and invalidates all stored in- 
ternal  variables  (except for the profile vector) in 
the  cryptographic  subsystem.  Next,  the  service 
internally generates  a public and private device 
authentication  key pair. The  service  then  loads 
this key pair, the  associated PKA control  vectors 
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(available from the profile vector), and the  spec- 
ified node identifier into a protected  area of the 
cryptographic  subsystem. 

As mentioned previously, the  value of the  private 
device  authentication  key  is always kept inside 
the CF of the  cryptographic  subsystem.  There  is 
no  way a user,  even a maximally authorized  user, 
can  determine  its  value.  The public device au- 
thentication key may be exported to another 
cryptographic  subsystem  via  the public key  ex- 
port service, to be described shortly.  The  private 
device authentication  key may be used to digitally 
sign a PKA public key. Thus,  the  value of the PKA 
public key  may  be  authenticated  at  another  cryp- 
tographic  subsystem by using the public device 
authentication  key of the originating subsystem to 
verify  the digital signature. The public device au- 
thentication  key  is used mainly by a user to dig- 
itally sign a new public key  sent to a certification 
center to  be certified. 

The  intent of the design of the device authenti- 
cation  keys  is  such  that if a user reinitializes the 
system  by calling the  device personalize service 
again, such a reinitialization can be detected by 
the certification center,  because a different device 
authentication  key pair will be created  for  the  sub- 
system. If a network administrator at a central 
subsystem  knows  the public device authentica- 
tion key for a remote  subsystem, and the  network 
administrator  sends a newly generated public key 
to a user at  the  remote  subsystem asking the re- 
mote  user to sign the public key  with  the  private 
device authentication  key of the  remote  sub- 
system,  then on the  subsequent verification of the 
digital signature,  the  network administrator is  as- 
sured  that  the  subsystem  is not a device newly 
joining the  network  and  has  not in the  past  been 
personalized again. 

The configuration  vector  build  service builds a 
configuration vector containing specifications on 
the  cryptographic capability of the  system. One 
such capability is  whether  the  system may oper- 
ate  as a certification center or whether  this  system 
is a normal cryptographic system. 

The environment  reconfigure  service loads a 
specified configuration vector  into  the  crypto- 
graphic subsystem.  The configuration vector  to 
be loaded may be  the default configuration vector 
or  one  that  was customized by  the configuration 
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vector build service.  Once  the configuration vec- 
tor  is loaded, its specifications are made active. 

The environment  activate  service causes  the 
cryptographic  subsystem to enter  the  run  state, 
where  most of the public key  extension  services, 
including all PKA key management and PKA digital 
signature services,  can  be called. 

The master key process  service and  the master 
key set service are used together to change the 
value of the PKA master key. Prior to changing the 
PKA master  key, a user may wish to re-encipher 
all current  operational  keys from encryption un- 
der  the  current PKA master  key to encryption un- 
der  the  new PKA master  key  by using the  key 
token migrate service described in the following 
subsection. 

PKA key  token support. The PKA key  token  sup- 
port  services  create and manage PKA key  tokens. 
The PKA key  token  support  services  are  the PKA 
control  vector  generate, PKA key unit build, PKA 
key  token build, and  the PKA key  token migrate 
services. 

The PKA control  vector  generate  service builds a 
pair of PKA control  vectors: one is associated  with 
a PKA private  key and the  other  is  associated  with 
a PKA public key. As mentioned previously, a PKA 
control  vector  contains  encoded fields that  spec- 
ify the permitted usages of a PKA private  key or 
public key. A PKA control  vector is a component 
of a PKA skeleton  key unit and is  an input variable 
to the PKA key unit build service. 

The PKA key unit  build  service builds a pair of 
public key  extension  data  structures called skel- 
eton  key units. One key unit is for a public key 
and the  other  is for a private key. A PKA skeleton 
key unit contains a control  vector and other in- 
formation associated with a public key  or a pri- 
vate key. A skeleton  key unit is a component of 
various PKA key  tokens, and is  an input to the PKA 
key  token build service. 

The PKA key token build  service builds a pair of 
PKA key tokens. One token is for a public key and 
the  other  is for a private key. The PKA key  token 
built for a public key  is always a PKA internal key 
token containing a skeleton  key unit. The PKA key 
token built for a private  key  can be either a PKA 
internal key  token or a PKA external  key  token, 
depending on  the  type of the  private key. All the 
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relevant information about a PKA public or private 
key  is  stored  together in a PKA key token. 

The built PKA key  token  key pair, or  just a single 
PKA key  token of the pair, is  subsequently  sup- 
plied to various PKA key management services for 
processing. For example, the built key  token pair 
may be supplied to the DEA key  generate  service 
for the  generation of a PKA key pair. On comple- 
tion of the PKA key  generate  service,  the gener- 
ated  key pair is  returned (usually in protected 
form) in the  token  key pair. 

The PKA key token  migrate  service verifies the 
consistency of a PKA internal key  token  and,  as- 
suming positive verification, migrates the PKA 
key in the  key  token from protection  under  either 
the old or current PKA master  key to protection 
under  either  the  current or new PKA master key. 

The PKA key  token migrate service may be used 
to update  the PKA internal key  tokens  after a PKA 
master  key  has  been changed, or  to prepare for an 
upcoming PKA master  key change. 

PKA key  management  services. PKA key manage- 
ment services provide services for generating and 
distributing PKA and DEA keys. The PKA key man- 
agement services include the PKA key  generate, 
public key  export, public key import, clear pri- 
vate  key import, DEA key  generate,  and  the DEA 
key import services. 

The PKA key generate  service generates a pair of 
public and private keys. The  generated  key pair 
can  be a pair of certification keys, key-manage- 
ment keys, or user keys, but not device authen- 
tication keys. The device authentication  keys  are 
special  keys  that  can  be  generated  only by a PKA 
system management service, called the device 
personalize service, described earlier in this pa- 
per. A PKA public key is always generated in in- 
ternal form contained in a PKA internal  key token. 
Because  the RSA algorithm is used as the public 
key  cryptographic algorithm in the public key  ex- 
tension,  the  value of the public exponent compo- 
nent of the RSA public key  may be specified to be 
a randomly chosen  value, a value of 3, or a value 
of 65 537. Because of the mathematical properties 
of the  latter  two  values,  use of either  when  per- 
forming RSA encryption is typically faster than 
when using a randomly-chosen value for the ex- 
ponent of a PKA public key. In  the public key 
extension, PKA public keys  are used either for 
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verification of a digital signature or  to encrypt a 
DEA key for distribution to another public key 
extension  system.  Because of the  better perfor- 
mance, one of these  constant  values is specified 
in some  networks as the  value of the  exponent for 
all RSA public keys. 

A PKA private  key may be generated in internal 
form contained in a PKA internal key  token or in 
external form contained in a PKA external  key 
token. All private  key  types,  except for the device 
authentication keys, can  be  generated in internal 
form. But only a private  user  key  can be gener- 
ated in external form. In this form it may be elec- 
tronically distributed to another public key  ex- 
tension system. Meeting the  requirements for the 
confidentiality or integrity of the  value of the pri- 
vate user  key  when it is in this  external form is the 
responsibility of the  user. 

The public key export  service transforms a PKA 
public key from internal form to external form, so 
that it may be  transmitted to another public key 
extension  subsystem. All four public key  exten- 
sion public key  types may be exported (i.e., pub- 
lic certification key, public key-management key, 
public user key, or public device authentication 
key).  The  external form of the public key may be 
digitally signed to allow for verification, by the 
recipient of the public key, of the key’s authen- 
ticity and origin. 

Thepublic key import  service imports a PKA pub- 
lic key  transmitted from another public key  ex- 
tension subsystem in external form by transform- 
ing it to internal form so that  the PKA public key 
may be used on this  subsystem. All four PKA pub- 
lic key  types may be imported. If the  external 
form of the PKA public key  is digitally signed, the 
digital signature may be verified. The  crypto- 
graphic subsystem may be configured (via the 
configuration vector build and environment re- 
configure services, described earlier in this  paper) 
to require a digital signature on the  external  forms 
of public keys  to  be imported. 

The clear private key import  service imports a 
clear (unencrypted)  private  key in external form 
by transforming it to  internal form, so that  the 
private  key  may  be used on the receiving sub- 
system. If the  external form of the PKA private 
key  is digitally signed, the digital signature should 
be verified before the  clear  private  key import 
service  is called. The  only  type of private  key  that 
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may be imported in external form is  a  private  user 
key. 

The DEA key generate  service generates  a double- 
length DEA key-encrypting key and produces it in 
two forms: one in operational internal form for 
use on this  system, and the  other in external form 
for distributing to a  user  at  another system. The 
operational form of the DEA key  is  returned to the 
caller in a DEA internal  key  token and is encrypted 
by  the current DEA master  key of the  creating 
system using a limited-use EXPORTER control  vec- 
tor.  This limited-use EXPORTER control  vector is 
differentiated from a CCA generic EXPORTER con- 
trol  vector in that  the limited-use EXPORTER key 
can  be used only in the CCA key  generate  service 
to generate and distribute DEA keys. It may not be 
used in the CCA key  export  service as either  the 
EXPORTER key (i.e., a DEA key-encrypting key 
used to export  other DEA keys)  or  the  key to  be 
exported. 

The  external form of the DEA key  is  returned to 
the caller in a PKA-DEA external  key token and is 
encrypted by the specified public key-manage- 
ment key of the  user  on  the receiving system.  The 
PKA-DEA external  key  token  contains  the  en- 
crypted DEA key  value and its  associated limited- 
use IMPORTER control  vector.  This limited-use 
IMPORTER control  vector  is differentiated from a 
CCA generic IMPORTER control  vector in that (af- 
ter it is imported into  operational form via  the 
public key  extension DEA key import service)  the 
limited-use IMPORTER key  can  only  be used in the 
CCA key import service to receive keys distrib- 
uted from other  systems.  The  operational form of 
the limited-use IMPORTER key may not  be used in 
the CCA key  generate  service as an IMPORTER key 
(i.e., a DEA key-encrypting key used to import 
keys distributed from other  systems). Also, the 
IMPORTER key may not be exported  by  the CCA 
key  export service. The  external form of the DEA 
key may be digitally signed by  the  private  key- 
management key of the caller to allow later  ver- 
ification of its  authenticity and origin. 

The  restriction  on  the usage capability of the 
EXPORTER and IMPORTER key pair produced by 
the DEA key  generate  service  enhances  security 
by  supporting  a single control point. The  task of 
cryptanalysis  on  the hybrid key distribution is 
then confined to this key pair, as cryptanalysis on 
DEA key distribution in the CCA has  been  already 
performed. 
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The DEA key import  service imports  a DEA key 
distributed from another public key  extension 
subsystem in external form to internal form so 
that  the DEA key may be used on this  subsystem. 
The DEA key  to  be imported is the limited-use 
IMPORTER key, mentioned in the DEA key gener- 
ate service.  The  recovery  process  has  some in- 
herent verification of the integrity of the  external 
form of the limited-use IMPORTER key to help en- 
sure  that  the public key used to encrypt  the  key 
is paired with the  private  key used to recover  the 
key. Also, if a digital signature exists  on  the ex- 
ternal form of the limited-use IMPORTER key, it 
may be verified to  further  ensure  the  authenticity 
and origin of the key. The  cryptographic  sub- 
system may be configured to require  a digital sig- 
nature  on all external forms of DEA keys. 

Once the limited-use EXPORTER and IMPORTER 
keys  are in place, a normal CCA generic EXPORTER 
and IMPORTER key pair (or alternatively, a  generic 
IMPORTER and EXPORTER key  pair) may be gen- 
erated  at  the first system using the CCA key gen- 
erate service.' The first generated  key is opera- 
tional on this system, and the  second  generated 
key  is in exportable form and  is  then  transmitted 
to the  second  system,  where it is  then imported to 
become an operational key. From  that point on, 
normal CCA key distribution methods may be 
used. Alternatively, a  data  key pair can  be gen- 
erated  on  the first system in place of a  generic 
IMPORTER and EXPORTER key pair (or a  generic 
EXPORTER and IMPORTER key pair). One of the 
data  key pair can  then  be  distributed  under  the 
limited-use EXPORTER key  to  the  second  system 
for immediate use of general data  encryption and 
decryption. 

As noted earlier, the PKA key management serv- 
ices  are designed with  an objective of supporting 
key distribution in both peer-to-peer and certifi- 
cation  center  environments. We now present an 
example that  shows  the  use of several public key 
extension  cryptographic  services in a  peer-to- 
peer environment. 

Sample  peer-to-peer  key  distribution  environment. 
Figure 8 illustrates  a typical peer-to-peer  key dis- 
tribution environment in which a  user named Ann 
wishes  to  distribute  one or more DEA keys  to  a 
user named Bill. 

A typical process flow is as follows: 
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1. Ann calls the PKA key  generate  service  (at her 
system)  to  generate a pair of PKA internal  key 
tokens containing a pair of public and private  key- 
management keys. Bill does  the  same thing at his 
system  to  obtain a pair of PKA internal  key  tokens 
containing a pair of public and private key-man- 
agement keys. 

2. Ann calls the public key  export  service to gen- 
erate a PKA external  key  token on her public key- 
management key. Assuming this is the initial pub- 
lic key-management key, Ann may choose  to 
request  that a digital signature be  generated  on 
her public key, using her corresponding  private 
key as the signing key. The digital signature 
serves  to  couple  the public key  to  its  associated 
control  vector. Bill also performs this task with 
his own public and  private  key pair. 

3. Ann sends her public key (contained in the 
PKA external  key  token) and the  attached signa- 
ture  to Bill with integrity. The  methods of sending 
a key  with integrity are discussed shortly. Bill 
also performs this  task to send his public key and 
the  attached  signature to Ann. 

4. Ann calls the public key import service to im- 
port Bill’s public key  to  her  system for later use. 
If the  signature  attached to Bill’s public key  is 
signed with his private  key, Ann may verify this 
signature  with Bill’s public key. Bill also performs 
this step  to import Ann’s public key to his system. 

5 .  Ann calls the DEA key  generate  service to pro- 
duce a pair of key  tokens,  one is a DEA internal 
key  token containing an operational limited-use 
EXPORTER key, and the  other  is a PKA-DEA ex- 
ternal  key  token containing an  encrypted limited- 
use IMPORTER key.  The  key used to  encrypt  the 
limited-use IMPORTER key (for secrecy) is Bill’s 
public key-management key. The  key used to sign 
the limited-use IMPORTER key digitally (for integ- 
rity) is Ann’s private key-management key. Ann 
sends  the resulting PKA-DEA external  key  token 
and the digital signature to Bill. If symmetry is 
desired,  the  roles  may  be  reversed,  but  this  is not 
required to  have a usable DEA key exchange. 

6. Bill calls the DEA key import service to verify 
the digital signature and import the limited-use 
IMPORTER key. If symmetry  is desired, Ann also 
performs  this task. 

7. From this point on, standard CCA key man- 
agement may be performed. For example, the  key 
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Figure 8 Peer-to-peer  key  distribution  environment 

I ANN BILL 

distribution scenario may be continued as fol- 
lows: 

Ann calls the CCA key  generate  service to pro- 
duce a pair of message authentication  code 
(MAC) keys, keeping the  operational  key for use 
on her system and sending the  other  key (in 
exported form) to Bill. The  operational MAC key 
may be used to generate a MAC on  the message 
containing the  exported MAC key. If symmetry 
is desired, the roles of Ann and Bill may be 
reversed. 
Bill calls the CCA key import service to import 
the MAC key, and verifies the  associated MAC by 
calculating a MAC for the  key distribution mes- 
sage and comparing it for equality with  the 
transmitted trial MAC. 
Ann calls the MAC generate  service to calculate 
a MAC on a subsequent  arbitrary message to 
Bill. 
On receipt of the message, Bill calls the CCA 
MAC generate  service and compares  the gener- 
ated MAC with  the  transmitted MAC. Assuming 
they  are  equal, Bill accepts Ann’s arbitrary 
message as genuine. 
Bill can  also  send an arbitrary message to Ann 
with integrity. 

8. When Ann decides  to change her public key- 
management key, her current private key-man- 
agement key  can  be used to sign the PKA external 
key  token for the new public key-management 
key. Bill may also perform this  task.  In  this  way, 
a chain of integrity of public key-management 
keys  is maintained. 

Acquiring the initial  public  key  with  integrity. As 
mentioned previously, the  value of a distributed 
public key need not be  kept  secret,  but it is re- 
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quired to have integrity. If another  user  with a 
different private and public key pair can  cause his 
or her public key  to  be mistaken for a public key 
of a legitimate user,  that  user  can  pretend to  be 
the legitimate user,  at  least insofar as digital sig- 
natures  are  concerned.  This means that an infor- 
mation channel  with sufficient integrity must  be 
established between  the communicating parties 
to distribute  the initial public key. Once an initial 
public key  has  been established, it may  be used to 
verify a digital signature on other public keys to 
assure  the receiving party of the integrity and or- 
igin of the new public key. 

Various  techniques and procedures  have  been 
proposed for distributing public keys  with varying 
levels of  integrity.l7Vm It  is  noteworthy  that, al- 
though none of the  proposed  techniques  provides 
a perfect solution to the public key distribution 
problem, some of them  have  been found useful 
for  various applications. Here, we present  some 
examples of noncryptographic methods for dis- 
tributing an initial public key  with integrity that 
might be used: 

Publish the initial public key PKA external  key 
token or a hash value of the  token in a widely- 
circulated document. The  intent  is to  ensure  va- 
lidity of the  value  by  broad distribution. The 
hash  value may be calculated by calling the CCA 
MDC generate  service or another  strong  one- 
way function. When the PKA external  key  token 
is later electronically distributed, it can  be  ver- 
ified by rehashing the received key token and 
ensuring that  the  actual  hash  value  matches  the 
published hash value. 
Distribute  the public key  or  the hash value in 
multiple ways  and  use  the public key  only if all 
the  values  are received and all agree on the 
value. 
If very high security  is required, deliver the  key 
value  or hash value to  the  other  party personally 
or via a trusted  courier. 

PKA digital  signature  services. The PKA digital sig- 
nature  services  support  the generation and veri- 
fication of application digital signatures  that pro- 
vide for data integrity and source nonrepudiation 
for user-specified data. The PKA digital signature 
services  are  the application signature  generate 
and application signature verify  services.  The dig- 
ital signatures  generated and verified in these 
services  are called the application signature. 
There  is  also  another  type of digital signature in 
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the public key  extension, called the  system digital 
signature that  is  generated  and verified on system 
data (e.g., keys and other  cryptographic  varia- 
bles) as an integral part of many PKA key man- 
agement services,  such as  the public key  export 
and DEA key  generate  services. 

The application signature generate  service gen- 
erates an application digital signature on the hash 
value of user-supplied data, using a private  cer- 
tification key, a private key-management key, or 
a private  user key. 

The application signature verify  service verifies 
an application digital signature on the hash value 
of user-supplied data, using a public certification 
key, a public key-management key, or a public 
user key. 

The method for producing digital signatures  con- 
forms to  the  part of the ISO/IEC IS 9796 standard 
that is specified for the RSA algorithm. 

Prior to calling the application signature generate 
and application signature services, application 
programs must calculate  the  hash  value on user- 
supplied data.  This  is to provide users  with  the 
flexibility of using any hash function  preferred  by 
users. The hash value  can be calculated via  the 
CCA  MDC generate  service, which supports  the 
MDC-2 and MDC-4 hash  algorithm^.^,^^ Otherwise, 
it can  also  be calculated via user-supplied func- 
tions  that  support  the hash algorithms preferred 
by users.  The length of the  hash  value on data  to 
be signed must conform to the following ISO/IEC 
IS 9796 requirement for signatures produced by 
the RSA algorithm: 

(length of hash value in bytes) * 16 
5 (modulus length in bits) + 2 

With the length of the RSA modulus ranging from 
512 to 1024 bits in the public key  extension  (for 
digital signatures), this requirement does not ap- 
pear to be a problem for most existing and emerg- 
ing hash algorithms, including the  secure hash al- 
gorithm (SHA). 39 

The  hash function used in the calculation of the 
hash  value  must  be indicated to  the application 
signature generate  service, so that  the  service  can 
communicate this indication to  the verifier of the 
application signature via  the field called the hush 
algorithm field  in the application signature token. 
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On receipt of the application signature token and 
the  data on which  the application signature  is pro- 
duced,  the verifier of the signature must first ex- 
tract  the  hash algorithm indication in the appli- 
cation  signature  token and then  use  the indicated 
hash function to calculate a hash  value on the  data 
before invoking the application signature verify 
service to verify  the application signature. Of 
course, if the length of the  data  to  be signed con- 
forms to the  above length requirement, a user 
may  choose to sign directly on the  data. 

When a first user calls the application signature 
generate  service to generate an application digital 
signature on specific data and a second  user calls 
the application signature  verify  service to verify 
the application digital signature on the first user’s 
data,  the  second  user  may be assured of the in- 
tegrity of the first user’s data.  The  second  user 
may also be assured  that  those  data  are actually 
signed by  the first user, using the first user’s pri- 
vate key.  Because  the public key is public infor- 
mation, an impartial third party  may  verify  that 
the  particular public key  associated  with  the first 
user  does  actually  verify  the digital signature as- 
sociated  with  the  data.  Thus  these  services pro- 
vide  support for both  data integrity and source 
nonrepudiation. However,  note  that if an im- 
poster  has  access to  or knowledge of the first 
user’s private key, the imposter will be able to 
generate digital signatures  associated with the 
first user. This would allow the  imposter to pose 
as  the first user.  For  this  reason, good security 
practice  requires  that  the ability to determine  the 
value of a private  key  or  the ability to  use a private 
key  requires  the identification and authentication 
of the  user as  the valid user of the  private key. 

Because  the  system signature is produced and 
verified as an integral part of many PKA key man- 
agement services,  these  services maintain an un- 
broken  chain of integrity from the point of system 
signature  generation to  the point of system sig- 
nature verification. Thus it is important  that  the 
application signatures  services  cannot be misused 
to subvert  the intended integrity of the  system 
signatures. The public key extension  key man- 
agement architecture distinguishes between  sys- 
tem  signatures and application signatures  accord- 
ing to  the following signature  production rule. A 
system  signature  is  generated from a special sig- 
nature  record, called a system signature record. 
The  system  signature  record  is a 253-bit record 
containing important  control information and a 
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128-bit hash value calculated on the  data to be 
signed. On the  other hand, an application signa- 
ture is generated from a hash  value supplied by 
the caller that  contains a whole number of bytes. 
Because  the  system  signature  record  is not a 
whole number of bytes,  cryptographic  separation 
is maintained between  system  signatures and ap- 
plication signatures. The  cryptographic  service 
that  produces  an application signature  requires 
the input hash value to contain a whole number of 
bytes and thus  cannot be misused to produce sys- 
tem signatures. Thus,  the integrity of the  system 
signature is  preserved by  the  key management 
architecture. 

Concluding  remarks 

Major features of the public key  extension to the 
Common Cryptographic  Architecture  have been 
described. Although the  concept of a hybrid 
PKA-DEA cryptographic  system  is not new, the 
public key  extension  provides a unique approach 
toward solving problems in both conventional 
and public-key cryptography.  The  control  vector 
concept  has  been successfully integrated into  the 
architecture to  separate  keys and prevent their 
misuse. Although the  control  vector  is used in a 
different way from the Common Cryptographic 
Architecture,  the  security  objectives in the Com- 
mon Cryptographic  Architecture  have  been main- 
tained and improved in the public key  extension. 
The public key  extension  has  been designed with 
flexibility in  mind so that it may be extended to 
support new public key algorithms and new  cryp- 
tographic services, as the  market  dictates. 
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