
The impact of object-
orientation on
application development

by A. A. R. Cockburn

Object-orientation introduces new deliverables,
notations, techniques, activities, and tools.
Application development consists not only of
these items but also of work segmentation,
scheduling, and managing the sharing and
evolution of deliverables. This paper breaks
application development into three major
components: construction, coordination, and
evolution, with the topic of reuse receiving extra
attention. It highlights four aspects of object-
orientation having impact: encapsulation,
anthropomorphic design, reuse with extensibility,
and incremental and iterative development

0 bject-oriented (00) development is charac-
terized by: (1) the encapsulation of process

with data in both the application structure and the
development methodology, (2) anthropomorphic
design, in which objects in the application are as-
signed “responsibilities” to carry out, (3) model-
ing the problem domain throughout development,
(4) emphasis on design and code reuse with ex-
tensibility, and (5) incremental and iterative de-
velopment.

Encapsulation, anthropomorphic design, and the
new reuse mechanisms give designers a new way
of thinking about system decomposition and con-
struction. Encapsulation and subclassing provide
an incentive to pay more attention to reuse, af-
fecting the structure of the development organi-
zation. Encapsulation and dynamic binding facil-
itate incremental and iterative development. For
all the changes, incremental and iterative devel-
opment are not newly arrived with object-orien-
tation. They are well-established in modern, non-

object-oriented methodologies. Many of the
effects described can be felt or applied to non-
object-oriented systems.

These areas have an impact on the individual de-
veloper, the application development methodol-
ogy, and the organization developing the 00 ap-
plications. Of the characteristics mentioned, only
extensibility actually relies upon the 00 mecha-
nism of inheritance. That means that the effects
described in this paper can be applied, or felt, by
other systems, notably those that provide coen-
capsulation of procedure and data (object-based
systems).

The effects are far-reaching and have mixed value.
Each new mechanism provided by object-orien-
tation requires training and judgment of engineer-
ing and business trade-offs. The emphasis on reuse
brings difficult reuse issues to the fore, issues such
as how to encourage sharing and at the same time
how to protect the integrity of software modules.

The first section of this paper introduces the area
affected by object-orientation. It is divided into
four parts: three for the three major development
components of construction, coordination, and
evolution, and a fourth for reuse alone. The sec-
ond section introduces and highlights encapsula-

Wopyright 1993 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993 420 COCKBURN

tion, anthropomorphic design, and the 00 mech-
anisms for reuse with extension. The last four
sections examine the impact of those character-
istics of object-orientation on the four initial ap-
plication development topics: construction, in-

Object-orientation is apt
to affect quite a few

aspects of application
development.

cluding the new methodologies, coordination,
evolution, and reuse.

The impact zone

Object-orientation is apt to affect quite a few as-
pects of application development: (1) the deliv-
erables produced, (2) the activities, techniques,
and tools used, (3) the staging and scheduling
strategy, (4) segmenting the work, and (5) sharing
and controlling the evolution of the deliverables.
I place these issues along three dimensions: con-
struction (deliverables, activities, and tools), co-
ordination (scheduling, staging, and work seg-
mentation), and evolution (sharing, control,
reuse, and modification). In this paper, reuse re-
ceives special attention, since it weaves itself
across all three dimensions. Figure 1 captures the
three areas in summary form.

Construction. A project delivers not only its final
product but also models of the product at various
levels of detail (requirements, design descrip-
tions, source text, test cases) and various project
management deliverables. Each deliverable is de-
scribed using a notation. Tools are employed to
work with each notation, perhaps only paper and
pencil, but sometimes specialized CASE (comput-
er-aided software engineering) tools. Discussion
of deliverables, then, becomes mixed with the
discussion of notation and tools, notwithstanding
a desire to keep the three separate. With object-
orientation producing different deliverables, the
notations and tools will also be different.

The development activities and techniques are
tied to the notations and deliverables, and to the
tools available. The tools affect not only the way
in which developers work, but also the structure
of what they produce. Code browsers in the av-
erage 00 toolkit, for example, facilitate the man-
agement of thousands of tiny subroutines (typi-
cally 3 to 10 lines long), a task that is prohibitive
without them. Coding habits for such small sub-
routines can afford to be different than those for
subroutines averaging 20 to 50 lines.

In short, once the deliverables and their notations
change, the entire construction portion of a meth-
odology can be expected to change too.

Coordination. Coordination includes scheduling,
staging, and work segmentation.

Worksegmentation. For a project with more than
one person, the deliverables and work must be
segmented and parceled out to separate teams
and individuals. If the methodology does not
make a statement about how the work will be
segmented across the teams, someone in the or-
ganization must. A natural way to segment is by
deliverables. If the methodology calls for require-
ments, high-level design, low-level design, and
test deliverables, it will be quite natural to expect
a requirements team to evolve, as well as a high-
level design team, etc. Over time, they will be-
come specialists, reinforcing the work segmenta-
tion policy. Note that this is not a necessary work
segmentation policy and is possibly not the best
one. A known alternative is to use the same team to
develop several kinds of deliverables and parti-
tion the teams according to time-scheduled units.

Staging and scheduling deliverables. Some meth-
odologies address the scheduling of activities and
passing on of deliverables. What has been called
“Waterfall Development’’ carries the restriction
that all requirements be defined, reviewed and
approved before high-level design or analysis can
begin; in turn, high-level design must be com-
pleted before component design can begin, and
so on. Alternatives to this staging and schedu-
ling strategy are the incremental and iterative
strategies recommended by the 00 community.
‘As is discussed next, the incremental staging and
scheduling policies of 00 methodologies are ba-
sically the same as those of non-oo methodolo-
gies. They are, however, more vocally expressed

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993 COCKBURN 421

Figure 1 Three dimensions of application development

and perhaps more uniformly practiced in the 00 They are used almost interchangeably by some
community. people, possibly for historic reasons. At one time,

just allowing a project to pass through require-
In order to examine the assertion that incremental ments and high-level design twice was a major
and iterative development are much the same topic for discussion, so iterative was an apt term.
with object-orientation as before, we must be Today, numerous strategies involve repetition of
careful about the terms incremental and iterative. phases and are all iterative in some sense. The

422 COCKBURN IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

meanings of iterative and incremental have
evolved to refer to distinct, in fact, independent,
development strategies. The definitions that fol-
low do not match the way in which everyone in
software development uses the terms incremental
and iterative (none could, given the existing con-
flicts in terminology), and a succinct definition of
the terms does not appear in the literature. With
this apology, I provide definitions for the terms as
they are used in this paper.

Incremental development is a scheduling and
staging strategy allowing portions of the system to
be developed at different times or rates, and in-
tegrated as they are completed. Iterative devel-
opment is a scheduling and staging strategy sup-
porting predicted rework of portions of the
system. These definitions identify incremental
and iterative as independent concepts to be used
separately or together. The intent of an incremen-
tal strategy is to develop a system piece by piece
and to permit additions to the requirements,
improvements to the development process, or
changes to the scheduling. The intent of an iter-
ative strategy is to allow correction of mistakes
and product improvements based upon user feed-
back, performance tuning, or maintenance crite-
ria, and to allow it in a controlled manner.

Speakers and authors of an incremental method-
ology sometimes apologize when showing the
chain of activities governing the evolution of de-
liverables. They (accurately) fear in advance that
the audience will interpret the diagram as en-
dorsement of “Waterfall Development.” In the
context of this discussion, waterfall development
(not capitalized or in quotes) is defined as a one-
pass scheduling and staging strategy requiring a
given set of deliverables to pass checkpoints to-
gether, with the exact set of deliverables left un-
specified. Any set of deliverables that must pass
checkpoints together follows a waterfall develop-
ment. This is only natural and needs no apology,
since every line of code should have been pre-
ceded by design and tlidt by some requirement. It
should be unremarkable that a portion of a prod-
uct undergoes waterfall development within any
single iteration. From a project manager’s view,
waterfall development is simply the progression
to completion of each component of the system.
It is useful for tracking purposes.

The above definition may be contrasted with
“Waterfall Development” (here capitalized and

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

in quotes) referring to when all of the require-
ments must be approved before high-level design
begins, etc. A single changed requirement would
force all work to grind to a halt while all the de-
liverables get back into sync. Such a strict inter-
pretation may be so difficult in practice that even
groups claiming to use it may actually perform a
form of incremental development, just to keep
development of the product progressing.

In incremental development, the repetitions of
activities address new parts of the system, adding
either end function, robustness, error checking,
or security facilities (see Figure 2). The essential
characteristic of incremental development is that
the system is developed in portions. As the por-
tions are completed, they are added to the grow-
ing system. There may be a period of evaluation
after the integration of one increment and before
work on the next increment is begun to gather
feedback and new requirements. Alternatively,
the increments may be staged in parallel. In a
noniterative but incremental project, the incre-
ments are developed to full production standards
from the start. Further discussion of incremental
development is given by Hough’ and Pittman.3

Iterative development no longer just means that
an activity is performed multiple times in one
project, it indicates that portions of the system
undergo rework in a predicted manner. McMen-
amin4 wrote:

Iterative refinement accommodates two wide-
spread human traits:

Misconception We get things wrong before we
get them right.

Improvement We make things badly before
we make them well.

and added, verbally,

When each iteration is considered “rework,”
that is your clue that iteration is not considered
affordable. In truth, iteration is rework.

McMenamin’s description omits a key element
of iterative development: the positive act of dis-
covery. Iterative development allows one to dis-
cover new information and improve the design,
both positive undertakings. This positive act may
require creating a disposable prototype for re-
quirements gathering, altering portions of the sys-

COCKBURN 423

Figure 2 Incremental development model

tem following usability tests, or restructuring the
system in preparation for evolution.

Iterative development may explicitly call for plan-
ning, execution, and evaluation phases within
each iteration in order to control the scheduling of
rework5 (Figure 3). In Boehm’s “spiral” model,6
risk management techniques are used to decide
what parts of the system need schedule time for
preliminary work and rework.

Most phrases describing iterative development
give it a somewhat stately and ordered appear-
ance (spiral, fountain, gestalt round trip, etc.). A
more evocative and perhaps accurate term was
coined by a leader recently reporting on an iter-
ated 00 project: “[The] ‘Tornado’ model has re-
sulted in the highest quality for the least amount
of w ~ r k . ” ~

Incremental development may be used with or
without iterative development. A project team

Courtesy Don Hough, IBM Consulting Group

may plan on an increment reaching shipping qual-
ity in a single pass, or it may, in pursuit of quality
or because of known risk, plan on an increment
being reworked one or more times (developed it-
eratively). It is important to bear in mind that on
a real project, the precise distinction between in-
cremental and iterative is not critical, as long as
the project team understands what they are to
produce and when.

Prototyping. Prototyping is linked with incremen-
tal and iterative development. Unfortunately,
two very different meanings are associated with
the word prototype. A disposable prototype is
one not intended for production and thus possibly
not meeting production quality standards. An ev-
olutionaly prototype is one incomplete in scope
but intended for eventual production, hence
meeting production quality standards.

A disposable prototype is useful for gathering re-
quirements and is not intended to evolve to a

424 COCKBURN IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

Figure 3 An iterative development model

product. The hazard with a disposable prototype,
of course, is that in the pressure to meet dead-
lines, it may be pressed into service as the final
product (at which point it is neither disposable nor
a prototype). An evolutionary prototype is one
created according to full production standards so
that it may evolve to be added to the final product.
It may be disposed of in the course of evolution,
or it may become one increment of the final sys-
tem. Evolutionary prototypes are becoming in-
creasingly preferred as organizations suffer main-
tenance and evolution costs following instances
in which disposable prototypes were turned into
products.

Courtesy Mark Lorenz, IBM 00 Technology Council

Most of the issues surrounding prototypes remain
the same with object-orientation as without.
The distinction becomes significant in the use of
subclassing (class inheritance), as is discussed
later.

Evolution. Some deliverables, such as database
definitions, can be identified as organization-crit-
ical assets, whose sharing across projects results
in cost savings (alternatively, the absence of
whose sharing is a major cost contributor).
Non-oo methodologies already call for controlled
sharing and evolution of data definitions. They
rarely, if ever, include a similar emphasis on pro-

IEM SYSTEMS JOURNAL, VOL 32, NO 3, 1993 COCKBURN 425

Figure 4 Sharing and evolution of information
technology assets

grams. Most 00 methodologies include recom-
mendations for sharing class definitions and ob-
jects.

To avoid the cost incurred by inconsistent defi-
nitions and bad data in the database, database
administrators and support groups are used to
support sharing, to ensure integrity, and to con-
trol growth of database definitions. In some or-
ganizations, database administration even in-
cludes control over the data-accessing routines in
an effort to see that bad data do not get into the
database.8 It is not odd, therefore, that database
administrators have a place in organizations, or
that they have started to include data-accessing
programs in their domain. It is odd, rather, that
the same has not taken place for programs and
program designs.

It is quite a challenge to create an organizational
structure to promote sharing and to control the
evolution of program parts. Creation of this struc-
ture may not be so hard for an organization that
already is comfortable with shared database def-
initions but may be for other organizations. That
challenge, associated with object-orientation, is
really a reuse issue.

426 COCKBURN

The organization as a whole and an individual
project have conflicting interests with regard to
such assets. It is in the best interests of a project
team to have the assets tuned to the specific needs
of the project, but it is in the best long-term interests
of the organization to maximize the utility of the
asset across projects, even those that may be costly
to an individual project. Balancing the needs of
the organization against the needs of a project
motivates creation of an “asset evolution” de-
partment or job, in which a person or team is
assigned to monitor each asset, promote its use
(as opposed to reinvention), and prevent its over-
specialization by a single project (see Figure 4).

Two facts should be evident already. An organi-
zation using a current non-oo methodology has a
challenge in moving to object-orientation. An or-
ganization that has not updated its (non-oo) meth-
odology has several additional challenges. For
some organizations, object-orientation may be
viewed as an incentive to introduce incremental
development and asset management.

Reuse and extensibility. Extensibility involves
creating a new solution from an existing one by
programming the differences. It allows economic
growth of systems, particularly when the new one
varies in only minor ways from an existing one.
Extensibility relies upon reuse.

Object-orientation provides three new mecha-
nisms for reuse and extension: classes, inheri-
tance, and polymorphism. In addition to the or-
ganizational issues already mentioned, these
three mechanisms affect the impact analysis, ed-
iting, testing, and installation of changes.

Stevens adds as a reuse factor the degree of cou-
pling in the reuse.’ If the using component ref-
erences but does not interact with the reused
components, reference and interaction are decou-
pled. Managing parts whose reuse is decoupled
may be less complex since the reuse is guaranteed
to be “clean” (see below). Data flow and event
flow systems, such as IBM’s data flow system
DFDM* (non-object-oriented), and Digitalk’s
PARTS** product (object-oriented), exemplify de-
coupled reuse. Further discussion of coupled vs
decoupled reuse falls outside the domain of this
paper since it involves techniques that are inde-
pendent of object-orientation.

Traceability and impact analysis. When a part is
to be changed, all occurrences of the part should

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

be examined for validity and retested. This is eas-
ier said than done. The using part often refers
back to the used part, but a part almost never
refers to the parts using it.

When the reuse is being tracked within one sys-
tem, tools can be applied to examine the entire
system to locate all references to a part in ques-
tion and construct both forward and backward
traces. Some such tools are provided with object-
oriented development systems, the class hierar-
chy browser being an example. As soon as the
tracing goes across a wider area, the problem
takes on different dimensions. Solving this prob-
lem is important but is beyond the scope of this
discussion.

Given the difficulty of tracing the effects of a
change to a part, a desirable practice is to refer-
ence only the minimum necessary part of a reused
component, producing a narrow area of impact.
Grouping components into subroutine libraries,
classes, or include files makes reuse more con-
venient at a cost: more references than necessary
have to be examined for impact and retested (wide
area of impact). A conscious exchange of reuse con-
venience against difficulty of impact analysis is
rarely made-both are so difficult that a manager
is usually content if either can be improved.

Single point of evolution. Single point of evolu-
tion is present when a change to a component is
automatically reflected in all occurrences of its
use. Multiple points of evolution is present when
a change to all occurrences of a component can
only be accomplished by making changes in mul-
tiple places.

Subclassing, procedure calls, and data inclusion
are examples of single point of evolution. Sub-
classing is specifically designed to provide access
to groups of data and procedure definitions with
a single reference. The new part references a base
part, and every change to the base part is auto-
matically obtained by the parts using it. An al-
ternative form of reuse is to copy and modify the
base part. With copy and modify, when the base
part is found to need an update, every copy of
what was once the base part must be found and
changed individually (hence, multiple points of
evolution).

A single point of evolution can be good or bad,
depending on how the reused abstraction fits with

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

its new use. It is beneficial if the using part is
committed to whatever abstraction is provided by
the base part (the base represents “essential com-
monality” across all of its uses). It is hazardous
if the base part represents only coincidental com-
monality across its uses, because a change to the

A desirable practice is to
reference only the minimum
necessary part of a reused

component.

reused part may break the coincidence and ruin
a previously working component. Determining
which case applies is part of impact analysis.

Clean vs messy reuse. Clean reuse is reuse in
which the reused item needs no retesting (al-
though the new combination of parts needs test-
ing). Messy reuse is reuse in which retesting of the
reused item is required.

A part used without any modification to its exe-
cution or definition need not have its functioning
retested (the reuse is clean). As soon as any mod-
ification is made to its definition or execution, it
becomes a new part and must be freshly tested
and maintained (hence, messy reuse). Messy re-
use benefits the developer only, and not the test
or evolution teams, whereas clean reuse can ben-
efit them all. The usual form of messy reuse is
copying and modifying an existing component. It
is often faster to copy and modify a component,
keeping even just the form, than to write the new
one from scratch.

Object-oriented programming gives the ability,
through subclassing and overriding, to modify the
execution of a component without altering its
source text. Subclassing with the possibility of
overriding therefore constitutes messy reuse.

Outside of object-orientation, clean reuse corre-
lates with no modification of the base part and
therefore the single point of evolution, and messy
reuse correlates with modification of the base part

COCKBURN 427

Figure 5 The three levels of object-orientation

and multiple points of evolution. Object-orienta-
tion combines messy reuse with a single point of
evolution. It also allows clean reuse needing mul-
tiple points of evolution (using composition of ob-
jects).

Distributing and installing updates. Once a part is
changed, the decision must still be made as to
how to install the newly updated component. Ide-
ally, each newly updated base part is considered
a new part, and sophisticated tools allow the new
base part to be independently accepted or not for
each part using the older version.

Perhaps surprisingly, multiple points of evolution
actually improves control over installation of the
update in the absence of the ideal case. Every
separate place in which the update might need to
be made provides an opportunity to accept or re-
ject the change. With the single point of evolu-
tion, the only recourse is to avoid recompilation,
relinking, or reloading (or there may not be any

recourse). It is for this reason that a multiple-
points-of-evolution solution should not be re-
jected out of hand.

The constructs having impact

In the context of this paper, an object is a soft-
ware packet containing the data and procedures
needed to carry out its The
use of the word “responsibilities” in the definition
indicates that the object serves a purpose in the
system. It sets the stage for one of the major im-
pacts of object-orientation, the promotion of soft-
ware modules from merely inanimate to “socially
responsible’’ modules.

The availability of objects, classes, and inheri-
tance is used to distinguish different levels of “ob-
ject-oriented-ness,’ (Figure 5). A class is a “tem-
plate for defining the methods and variables for a
particular type of object,”’ a definition carefully
couched in implementation terms. A business an-

428 COCKBURN IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

alyst using the word class will use it in the sense
of classification. The classes in the implementa-
tion may not correspond to the classes identified
by the analyst because of implementation consid-
erations. Subclassing (class inheritance) is a
“mechanism whereby classes can make use of the
methods and variables defined in all classes above
them on their branch of the class hierarchy.”’

The three degrees of object-orientation are ob-
ject-based, class-based, and object-oriented.13
Object-based systems allow the coencapsulation
of data and procedures, but the objects are not
generated from a class. They are individuals.
Class-based indicates the use of classes to de-
scribe and manufacture objects. The state or data
of the object may be individualized, but the meth-
ods (procedures) and data definitions are com-
mon. Object-oriented uses class inheritance to
obtain a single point of evolution on class defini-
tions.

Many of the effects described in the paper stem
just from encapsulation. These effects can there-
fore be found or applied to any object-based or
class-based system. There are other effects that
are a consequence of inheritance and are not
found in object- and class-based systems.

Encapsulation. Encapsulation is a “modeling and
implementation technique that separates the ex-
ternal aspects of an object from the internal, im-
plementation details.” lo Encapsulation is pro-
vided by object-based systems.

Encapsulation is not a new concept that has orig-
inated with object-orientation. Its principles were
described by Parnas in 197214 and are present
in structured design and numerous non-oo lan-
guages, notably Ada and Modula2. Parnas de-
scribed the ideal in 1976: A program is developed
as a family tree in which a design decision creates
a branch of the tree, and a particular program can
be found by traversing the decisions made. Each
design decision is encapsulated and restricted to
affecting a small amount of code:

. . . the design decisions which cannot be com-
mon properties of the family are identified and
a module is designed to hide each design deci-
sion . . . Objective criticism of a program’s
structure would be based upon the fact that a
decision or assumption which was likely to
change has influenced too much of the code

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

either because it was made too early in the de-
velopment or because it was not confined to an
information hiding module. l5

Parnas’s design evaluation technique has not re-
ceived a name in the literature, much less been
widely practiced, but it might be called variation
analysis. Variation analysis involves reviewing
the effects on the design of predicted changes in
the system requirements, either user or imple-
mentation requirements. A better (more robust)
design will have relatively smaller areas of impact
from the changes, indicating reduced risk and
simpler evolution. Variation analysis can and is
beginning to be practiced meaningfully with ob-
ject-based and object-oriented systems, since the
coencapsulation of procedure and data allows
meaningful encapsulation of design decisions.

Objects and classes can encapsulate not only de-
sign decisions but also business rules and control
processes. Business rules are those parts of the
operating practices of an organization that place
constraints on data throughout the system. A bus-
iness rule is a candidate for encapsulation be-
cause it captures a design decision on behalf of
the business. Ideally, a change to that decision
causes changes only to the directly affected ob-
jects. It is a candidate for encapsulation for im-
plementation reasons, too. The rule may touch
multiple objects and so not properly belong to any
one of them. Business control processes, such as
how an organization should react to a particular
business event, are candidates for encapsulation
for similar reasons.

The objects in the software system, therefore, are
not just those found as entities in the application
data model, but rather are those obtained by con-
sidering which aspects of the business and appli-
cation are worth encapsulating. No doubt other
examples of objects that can be created by focus-
ing on encapsulation will occur to the reader. AI1
of the above are available within object-based and
class-based systems, as witnessed by Booch’s
class-based development methodology for Ada.

Inheritance. Subclassing is an optimization mech-
anism that provides a single point of evolution. A
different form of inheritance, interface inheri-
t a n ~ e , ” , ” ~ ’ ~ commits a (lower) object or class to
providing (at least) the same services as another
(higher), without necessarily giving access to the
data or code of the higher one to the lower one.

COCKBURN 429

Interface inheritance is for organizing and for
specification activities.

Class and interface inheritance differ philosoph-
ically and practically. Interface inheritance can
be used to obtain a strong form of encapsulation:
Stating that one class will provide the same in-
terface as another emphatically does not mean
that they share the same representation or imple-
mentation. In fact, no presumption about relative
implementations can be derived from a relation-
ship between interfaces. l9 Different organizations
result from the two-interface inheritance pro-
duces an organization of capabilities and stresses
substitutability. Subclassing produces an optimi-
zation of code; subclasses are not required to be
substitutable.

Which inheritance, interface or class, captures
the data analyst’s and programmer’s notion of
type? Type is generally understood to mean both
subset and substitutable. 2o However, the two are
not strictly compatible. Subsetting can decrease
the number of imperatives that are valid while
increasing the number of queries, 21 whereas sub-
stitutability requires an increase or nondecrease
in both. For example, a set of squares is certainly
a subset of rectangles. Whenever a rectangle is
needed, it would seem that a square could be
used. However, in programming, a rectangle is
given the ability to accept a different aspect ratio,
which a square is not, so the square cannot be
substituted for the rectangle.

The above discussion carries over into data mod-
eling. Subtype in data modeling means “having
the same data attributes as. . . ,”which is the data
version of subclassing. However, it does not
translate to either class or interface inheritance
and introduces dangers of its own. Suppose em-
ployee and customer are modeled as different
data subtypes of person. Then an employee who
becomes a customer will end up with two name
and address records in the database, presenting
an exposure to the database on updates.” Tech-
niques to address this sort of issue, e.g., depen-
dency modeling,23 are applicable to both 00 and
non-00 systems.

Polymorphism and dynamic binding. Polymor-
phism is the ability to serve a common operational
purpose in more than one way, using a common
interface having more than one implementation.
It allows the same name to be given to different

430 COCKBURN

methods (procedures) in several different kinds of
objects, or even in different parts of the inheri-
tance hierarchy for the same object. Dynamic

Polymorphism aids programming
by allowing each method to
become simpler and more

specific in nature.

binding is a “form of method resolution that as-
sociates a method with an operation at run time,
depending on the class of one or more target ob-
jects.”1° Polymorphism and dynamic binding can
both be made available in object-based systems.

We use polymorphism without much notice in our
daily life, giving the same name to similar services
attached to different kinds of objects, even when
the details are different. Answering the door in-
volves quite a different action than answering a
phone, letter, or question. So does computing the
balance of our checking account as compared to
our savings account. We “print” a letter onto a
printer or a faxmachine, “exit” from an unaltered
file or a file that has been changed, etc.

Polymorphism aids programming by allowing
each method to become simpler and more specific
in nature, hence easier to understand and less
likely to contain errors. At the same time, it dis-
tributes the total definition of the name over a
wider area, making the full meaning of the name
more difficult to learn. Dynamic binding extends
polymorphic programming, allowing very simple
and general algorithms to be written whose exact
outcome cannot be determined at the time of pro-
gram compilation. On the one hand it provides the
programmer with flexibility; on the other hand it
makes the workings of programs harder to un-
derstand.

Anthropomorphic design. Taking the step from
encapsulation to responsibilities requires a bit of
indulgence in anthropomorphism (“attribution of
human motivation, characteristics, or behavior to
inanimate objects, animals, or natural phenome-

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

na7, 24). The procedures of the object are called its
services, and the guarantee that those services
will be carried out correctly becomes a contract.
A contract involves an agreement between ob-
jects whereby a service provider promises to de-
liver the expected results if the service requestor
makes requests in prearranged ways. 12,25

The responsibility of an object is “the purpose of
an object and its place in the system . . . all the

Responsibilities and contracts
are part of an anthropomorphic

design style.

services it provides for all of the contracts it sup-
p o r t ~ . ” ~ ~ The responsibility is a description of
why the object was created (and encapsulated) in
the first place. The data and methods of an object
help it in carrying out its responsibilities.26

The difference between encapsulation and re-
sponsibility is one of intent and degree. A data
structure may be encapsulated without encapsu-
lating the purpose of the data structure, in which
case the encapsulating methods provide little
more than debugging assistance or integrity
checks on the data (the integrity checks actually
may be the purpose of the encapsulation, in which
case they are the true responsibility of the object).
In paying attention to the responsibility of an ob-
ject, the designer’s thinking is shifted away from
just data and processes. It is this shift in thinking
that I single out as a major consequence of object-
orientation.

Responsibilities and contracts are part of an
anthropomorphic design style. Objects may be
called actors, having roles. They are given re-
sponsibilities and assignments and are required to
meet contracts with collaborators. An effective
and widely taught 00 design exercise for parti-
tioning a system into finer-grained subsystems or
objects involves constructing cards detailing the
responsibilities and collaborators of each ob-
ject. ” According to field reports, people do well
with anthropomorphic techniques and produce

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

effective designs using them. Possibly it is be-
cause it allows a developer to bring intuitive and
social knowledge to bear on the design problem as
a supplement to technical skills.

Messages. Amessage is a “signal from one object
to another that requests the receiving object to
carry out one of its methods.”’ Messaging is al-
most as widely associated with object-orientation
as classes and inheritance. Once objects are an-
thropomorphized to the point of being responsi-
ble for services, it becomes natural to talk of
sending them messages requesting services (or
talk of their sending messages to each other).

One of the benefits of the messaging metaphor is
that the definition of message says nothing about
whether the signal is traveling within the same
machine or across a network, or whether it is
blocking or nonblocking. These very real and se-
rious implementation issues can be concealed
during initial or general discussions and ad-
dressed at the appropriate moment in design.

Reuse with extension. Object-orientation provides
three kinds of reuse: class libraries, subclassing,
and polymorphism.

Reusing class libraries. Class libraries are the di-
rect descendant of the venerable run-time librar-
ies. A class is, in effect, an individual run-time
library. It provides the benefit of breaking a
monolithic collection of thousands or tens of
thousands of available methods (procedures) into
related clusters indexed by keyword and orga-
nized hierarchically. Just by itself, this is a benefit
to the developer searching for a particular capa-
bility.

Reuse of a class is done by reference, composi-
tion, or subclassing. Composition and subclass-
ing are alternative ways to gain the capabilities of
one or more base classes for a new class. In com-
position, the desired portion of the interface def-
inition of the base class is copied and modified as
needed. The new object passes along a service
request to the base object for service. Composi-
tion uses copy and modify reuse in the service
interface definition and referencing (method call)
in the service implementation. That means a sin-
gle point of evolution is available for each service,
but the combination of services requires multiple
points of evolution, since a change to the inter-

COCKBURN 431

face of the base class requires a separate change
to the composing class.

Subclassing. Subclassing introduces a tension be-
tween code savings and evolution issues. Any al-
teration made to a class is inherited by all of its
subclasses. The safest use of subclassing, re-
specting this single point of evolution, is to ensure
that all the methods of the superclass are essential
to the abstraction of each subclass. Then, a
change to the superclass will logically entail cor-
responding changes to the subclasses, and the sin-
gle point of evolution is an advantage. Should
a superclass be just a convenient collection of
methods momentarily in common, the single
point of evolution provided by inheritance is ac-
tually a menace: with each change to the super-
class, every subclass must be investigated for
(un)currency and (in)validity.

Experienced programmers recognize this situa-
tion from its counterpart in subroutines: A sub-
routine provides a single point of evolution for a
collection of program instructions. Programmers
recognize the difference between essential and
coincidental commonality for sequences of in-
structions and can identify proper vs improper
uses of subroutines. In the case of classes, a class
collects methods (subroutines) instead of single
instructions, but the issue is the same.

During the early phases of development, sub-
classing can be used to create an initial version of
a class with little effort, which may be very useful
for evaluating a design decision or pasting to-
gether a system for user feedback. The result may
be considered a disposable prototype, since the
inherited abstraction may not be essential. The
correct (and production) system should ideally
only use essential abstractions. However, the
cost of creating, or even deciding upon, a correct
solution may be unacceptably high. This factor
introduces the need to make an engineering and
economic decision. Commenting on making a
mistake using subclassing instead of composing,
Dave Thomas of Object Technology International
offered the analogy, “Sometimes I welded when
I should have used screws.”28 Good program-
ming habits and tools can minimize the inconve-
nience of moving the class to its proper place.

Three approaches to defending against improper
or inaccurate subclassing suggest themselves,
depending on the capabilities and personal out-

432 COCKBURN

look of the development team: (1) program con-
servatively, writing to minimize the effect of
changes in the class hierarchy and then subclass-
ing with caution; (2) avoid subclassing entirely
and build or rely upon programming tools to ob-
tain a similar effect; (3) change the rules of inher-
itance. This last alternative is not as farfetched as
it may seem. The original rules of inheritance ex-
posed the representation of the superclass to its
subclasses. In IBM’S System Object Model*, the
representation of the superclass is concealed
from the subclass, although the data and imple-
mentations are still inherited. l7 In the more recent
CORBA standard, l8 only the interface declarations
must be inherited; the implementations may be
shared or not.

Polymolphism and dynamic binding. Polymor-
phism allows reuse in two directions, not just the
single direction of most reuse mechanisms. Con-
sider an algorithm (e.g., sorting). There are many
sort algorithms with fairly complex internal logic.
In order for them to work, they need to know only
two things about the items being sorted: how to
tell which should come first in the sort order, and
how to make two items change places. Those two
pieces of knowledge can, in principle, be passed
as parameters to the sort algorithm. Each algo-
rithm can work with many kinds of data struc-
tures, and each kind of data structure can be
sorted with many algorithms. In a non-oo pro-
gramming language, the comparison and ex-
changing procedures are sometimes passed as pa-
rameters to the sort algorithm (not all languages
support this). In an object-based or 00 language
with polymorphism, the comparison and ex-
changing procedures are associated with the ob-
jects being sorted and need not be passed as pa-
rameters. The algorithm just instructs the two
objects to compare themselves to identify which
comes first, and instructs their container object to
exchange their places.

Once a polymorphic algorithm works with one
class, the developer can use it with other classes
that provide the required operations. Any other
class that requires sorting need only have the com-
pare operation defined. The effect of polymorphism
is that an algorithm can be extended to work with
many kinds of objects with little effort, and alter-
native algorithms will immediately work with all of
the objects with which the first algorithm worked.

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

An illustration of the effect of polymorphism on a
product line is the addition of facsimile to the
NeXT system.29 All objects on the system al-
ready knew how to respond to the print message
for the local printer. The facsimile program was
written to take advantage of this knowledge, so
that it immediately worked with all objects in the
system. Sending an object to the printer makes it
print onto paper; sending the object to the fac-
simile machine makes it “print” onto the phone
line.

Polymorphism creates a unique danger for reuse
and evolution: inadvertent polymorphism. Inad-
vertent polymorphism combines with subclassing
to produce “superoverriding” (my term): A new
superclass method is inadvertently overridden by
an existing subclass method, due to an accidental
name conflict. Imagine that a subclass defines a
method, m, not in its superclass. The superclass
is changed one day to add m, inadvertently using
the same name but not the same intent. The code
in the superclass references m in the mistaken
belief that either its own definition or a compatible
one will be used. In fact, the method in the sub-
class overrides the superclass’s version of the
method inadvertently and subverts the intent of
the program. Superoverriding is more likely to
occur in type-free 00 languages such as Smalltalk
and CLOS, less likely to occur in strongly typed
languages such as C+ + * * and Eiffel, and is ad-
dressed by specific mechanisms in IBM’s System
Object Model” and the CORBA standard.”

Inadvertent polymorphism is not a great danger
among a small group of developers who can be
made aware of one another’s changes and adopt
naming standards. However, as commerce in
class libraries grows, so does the likelihood of
inadvertent polymorphism.

Frumeworks. A framework is a multiclass com-
p ~ n e n t . ~ ’ It is a template for a group of objects
that manage a responsibility jointly, using a pre-
defined protocol among themselves. The objects
exchange carefully structured sequences of mes-
sages, called theirprotocol. The framework itself
consists of the statement of how the responsibility
is divided and the definition of the protocol.

Frameworks offer a level of design reuse above
that of classes. A good framework defines a com-
bination of classes and interactions that solves an
interesting design problem and can be applied in

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

multiple circumstances. 31 The solution is applied
to different circumstances by substituting new
classes for member classes. The only requirement
of any substituted class is that it must satisfy the
contract or protocol. Polymorphism with dynam-
ic binding allows classes to be substituted at run
time. Subclassing allows member classes to be
tailored, with the subclass using some inherited
methods and overriding others. In some cases,
frameworks can be used without subclassing. 30

Frameworks carry forward the goal of Parnas de-
scribed earlier, the creation of classes of pro-
grams with common design decisions. Frame-
works are receiving a surge of interest in the
design and research communities because of the
design savings they offer. Discussion of frame-
works is complicated by the fact that no really
good documentation techniques have been found
for them, something that also makes it difficult to
build commerce in frameworks and to learn a new
framework.

The impact: construction

Of the characteristics of object-orientation dis-
cussed in the preceding section, some represent
normal shifts in technology and vocabulary: ob-
jects, classes, subclassing, dynamic binding. The
learning curve involved in getting people to mas-
ter the new vocabulary is not to be minimized. In
this section, however, I highlight selected areas of
impact: development methodologies, the effects
of encapsulation, modeling continuously through
implementation, the use of responsibilities, and
the effect of the object and messaging models on
the design of the user interface.

The 00 methodologies. To begin the discussion
on 00 methodologies, this quotation by Ken Orr
indicates to some extent the current environment:

The way to identify an emerging technology is
that there is more written about it than known
about it, there are more people selling it than
using it, and the vendors are making more
money from education than from selling the
tools.

An evaluation published in late 1992 included 23
00 development methodologies or methodology
fragments for comparison. 32 At least four notice-
ably different methodologies have appeared since
that article went to ~ r e s s , ~ ~ - ~ ‘ j and more are com-

COCKBURN 433

ing. The methodologies fall roughly into three
camps: those that work from commonly practiced
non-oo techniques where possible (e.g., data flow
diagram decomposition), those that are based on
formal models with existing notations (e.g., Petri
nets, finite state machines), and those that work
from new and uniquely 00 techniques (e.g., con-
tracts, responsibility-driven design). Monarchi
and Puhr3’ call the three approaches adaptive,
combinative, andpure-oo, terms I adopt here.

The single most common characteristic among
the methodologies is the call for incremental and
iterative development. To some extent, it just
represents current thinking applied to a current
topic. Some people have expressed the view,
however, that 00 is sufficiently new, different,
and difficult that it is just not practical to plan on
getting the system built properly in one pass. Be-
yond that recommendation, and the need for ob-
jects, the methodologies diverge.

Classes and objects are, of course, present, but
the notation used for them (and everything else)
varies according to the methodology. There is not
even agreement on the need for or sufficiency of
entity-relationship diagrams or their equivalent as
indicated by Rubin and Goldberg:

. . . we tried to define a small set of relationships
between objects and their attributes . . . We
concluded that no such small set exists that
adds real value to capturing the deep semantic
relationships and at the same time can be used
by the designers to specify the deliverable sys-
tem . . . when desired, we can augment these
<extensible tables> with diagrams that, in
fact, can be generated from the g l o ~ s a r i e s . ~ ~

Some authors espouse data flow diagrams for be-
havioral description^,^^ others tolerate them, ’’
and others eschew them.34 Every other piece of
notation suffers a similar fate.

With disagreement on the deliverables, there can
be no agreement on the activities, techniques,
tools, or work segmentation. The lack of consen-
sus does not at all mean the various techniques do
not work. It is quite possible that several, quite
different, methodologies will prove very success-
ful, although evolving along different paths.

Pure-00 approaches. These 00 approaches “use
new techniques to model object structure, func-

434 COCKBURN

tionality, and dynamic behavior.”32 Included
here are Wirfs-Brock et al. (responsibility-driven
design),” Beck and Cunningham (CRC card^),'^
B o o c ~ , ~ ~ Jacobson (use-case-driven design), 34

ParcPlace Systems (object-behavior analysis), 37

and Reenskaug (role modeling).36 The techniques
proposed have no particular relation to the struc-
tured techniques most widely practiced in com-
mercial application development houses today.

The single most common
characteristic among the

methodologies is the call for
incremental and iterative

development.

The authors typically have long experience with
building systems in object-oriented languages,
going back to Smalltalk and Simula67. They are
concerned with strong information hiding (“at-
tributes are logical and not necessarily physical
p r ~ p e r t i e s ” ~ ~) , explanations of why classes exist
(e.g., use cases and responsibilities), contracts
between classes with respect to goals, roles of
objects with respect to each other, etc. This group
of methodologies is nicely identified by the acro-
nym, B-O-R-D (behavior, objects, relations, dy-
namics), 37 showing that behavior comes first and
that attributes are a secondary consideration.

Users of the pure-oo approach seem to have little
need for many of the current diagramming tech-
niques and corresponding CASE tools (see com-
binative approaches below). Until quite recently,
they worked largely with paper and pencil and a
class hierarchy browser, demonstrating, more
than anything, the power of those two tools. A
notable exception on the topic is Booch, whose
method has been criticized as having “too much
graphical notation.’’ In keeping with the pure-oo
methodologies, though, the notation is all new.

Current tool efforts are focusing on hyper-linked
data dictionaries and groups of list boxes with text
windows. 34337 The feeling is, as quoted above, “di-
agrams can be generated” to “provide a graphical

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

perspective,” but are “not sufficient for capturing
the deep semantics.’’ The good news is that tables
are a form of documentation with which people
work well;39 the bad news is that the techniques
are quite different from those currently in use in
many organizations.

Combinative approaches. These approaches “use
object-oriented, function-oriented, and/or dynam-
ic-oriented techniques to separately model struc-
ture, functionality and/or dynamic behavior and
provide a method for integrating the different
models.”32 The methodologies of Rumbaugh et
al. (Object Modeling Technique), lo Edwards,
Martin and Ode11 (Pte~h**),~’ Embley et al. (Ob-
ject Structure Analysis),33 Coad and Y~urdon,~’
and Shlaer and Mellor (Recursive Design)41 rep-
resent the combinative approach. The emphasis
of this group is on producing formal or quasi-for-
mal models of the classes, attributes, relation-
ships, private behavior, and interacting behavior.
This group of methodologies is nicely identified
by the acronym C-R-A-B (classes, relationships,
attributes, behavior). They are distinguished,
among other things, by attributes being a first-
class interest. Of course, the authors differ on
their recommendations for modeling formalisms.

Two attractions of the combinative approach are
that the modeling techniques already exist, for the
most part, and that the models are formal. There
are several dimensions to the modeling. The
structural model usually resembles an entity-
relationship (E-R) diagram and defines relation-
ships including inheritance, attributes, and
method names. The object behavior model may
resemble predicate logic, finite state machines, or
data flow diagrams (in some cases without any
data stores allowed, since accessing a data store
is a responsibility of an object). The interaction
model may be in data flow diagrams, finite state
machines or state charts, event traces or interac-
tion diagrams, or Petri nets.

The attractions of formal models are that they
yield an unambiguous description of the system
(for whatever portions of the system they cap-
ture), and one can build sensible CASE tools for
them. One could hope that since existing model-
ing techniques are being used, existing CASE tools
could, too. They can to a limited extent. Handling
inheritance and polymorphism requires at least
an upgrade. In many cases, the gap cannot be

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

bridged with existing tools, which are then re-
duced to drawing aids.

The formal nature of the models is part of their
drawback as well as part of their attraction. Not
every part of the description of a system fits into
one of the models-quality requirements and per-
formance and timing constraints being notorious
examples. Working with the formal model, even
just reading it, takes special training. The differ-
ent views may not integrate well to form a com-
plete, object-oriented design. It is probably safe
to say that formal models are appreciated more by
people working on developing a CASE tool or
working in an advisory capacity than those in the
throes of constructing applications.

Adaptive approaches. These approaches “use
existing techniques in a new (object-oriented)
way, or extend existing techniques to include ob-
ject-orientati~n.”~~ Bailin, Gorman, Choobineh,
Henderson-Sellers, and Constantine and Kappel
are among those in this category.32 They blend
use of standard techniques and notations, e.g.,
essential systems analysis, data flow diagram-
ming, E-R diagramming, with the need to create
objects. The challenge faced by this approach is
the mismatch between the design produced by the
traditional techniques and the object model. De-
spite algorithms invented for extracting methods
from data flow diagrams (DFDs),~* the essential
technique is basically, “read the non-oo design
document very carefully; design some 00 struc-
tures to do that.” Notwithstanding the difficulty
involved, there are times, even for an 00 product,
when an E-RDFD design has already been gener-
ated, must be generated, or is conveniently gen-
erated due to existing skills. In these situations,
the adaptive approach is to be considered.

As a final comment, it must be said that designers
and methodologists over the last several decades
have discovered good (non-oo) solutions to sys-
tem development questions, ones that cannot af-
ford to be ignored by the 00 community. Until the
solutions are transferred, 00 developers will
grapple with the same problems as their non-oo
predecessors.

Responsibilities. Designers approaching a design
problem who look for objects and analyze for re-
sponsibilities follow a different train of thought
and probably will produce a different result than
other designers. In the B-0-R-D 00 methodologies,

an object is given a responsibility to produce a
certain piece of information in a certain format on
demand. The definition of just what data are at-
tached to the object is considered a local design
issue. In the other methodologies, identifying the
attributes (object data) and possibly their format
is a major design activity.

Responsibilities are a normal way for people to
organize systems. For example, employees in the
United States have the responsibility of produc-
ing their social security number on demand. It

Responsibilities are a normal
way for people to organize

systems.

does not matter whether the number is memo-
rized, emblazoned on their person, or whether the
employee has to retrieve a piece of paper or even
ask someone else for the number. Actually, these
methods are each ultimately only a cache. The
responsibility of deciding the real number lies
with the U.S. Social Security Administration (and
just how it stores or obtains the information is its
own private matter).

Designing with responsibilities in mind produces
a change as subtle or dramatic as avoiding the use
of data stores in a data flow diagram. According
to the responsibility model, no process has the
right of direct access to a piece of data; each has
the right to request a copy of it in a particular
format. One object, somewhere, has control over
the actual data. Making data access a service of-
fering means that the actual location and format
of the data are hidden from view of the client
processes (exemplifying encapsulation). The data
access service may freely involve network or da-
tabase access, data caching, or format conversion
algorithms. Of course, these solutions can be de-
signed with other approaches, but designing with
responsibilities leads to these solutions in a sat-
isfyingly direct way.

The difference in working with responsibilities
goes all the way back to requirements gathering.

436 COCKBURN

Knowing that the system will be designed in
terms of E-R diagrams and data flow diagrams
gives the interviewer the incentive to tune the
requirements-gathering questions to data and
processes (“What process do you follow when
. . . ,” “What data appears in the report . . .”).
The answers are then funneled along a data de-
velopment path and a process development path.
This method is quite reasonable, unless the sys-
tem is going to be designed in terms of objects and
responsibilities. The object-oriented developer
would like to have the requirements gatherer
elicit information revealing the objects and their
characteristics, whether B-0-R-D or C-R-A-B. In an
ideal world, the users’ answers are insensitive to
the way in which the questions are asked. In the
absence of that ideal world, the work of the sys-
tems designers is dependent on the training and
preferences of the requirements gatherers.

Encapsulation. Having a full range of encapsula-
tion affects modeling and the split between pro-
grammers and data modelers.

Modeling the problem domain. Just as concern
with responsibilities affects the design process
and the final design, so does the decision to model
the workings of the problem domain. Many tech-
niques try to model the problem domain, most of
them in business analysis and database design. A
characteristic of object-oriented practices is that
a serious attempt is made, down to the program-
ming level, to capture the structure and workings
of the world. The program designers, as well as
the analysts and database designers, worry about
the accuracy of the model, along with their other
concerns. This attention to verisimilitude is partly
a predictable outcome of the pervasive use of en-
capsulation, partly it is a consequence of the use
of anthropomorphic design (responsibilities, con-
tracts, etc.), and partly it is technology facilitating
something that has been desired for a long time. 43

The effects of modeling down to the implemen-
tation level are profound but not complicated.
The first is that every person who comes in con-
tact with the system, from the first stages of de-
sign down to the final programming, obtains a
greater knowledge of the user domain. An exe-
cutable model of the way in which the company
does business is provided by us, which gives the
business person greater visibility into the work-
ings of US, and I/S a better understanding of the
business needs. Application requirements are

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

Figure 6 Classes interlock from problem to solution

gathered with an increased motivation to get the
business users' view of their work. The designers
are concerned about the accuracy of the model in
addition to its performance, robustness, etc. And
when a program fault shows up, the programmers
are likely to find themselves arguing about the
functioning of the objects in the real world instead
of just data fields and program structures."

Objects, classes, and frameworks provide a vo-
cabulary for describing the problem; The abstrac-
tions that are encapsulated, and the resulting
vocabulary, can be taken from various do-
mains: computer programming, design abstrac-
tions, business terms, and business rules. The re-
sult is a chain of abstractions and vocabulary that
bridge the distance from the business problem
and user's desire to the capability of the computer
(Figure 6). The two ends are given: business
needs and the capabilities of the computer. Ob-
jects and classes provide the vocabulary in the
middle. As more industry-specific and generic
business rule classes become available, the gap to

be bridged becomes smaller, more people can af-
ford to do their own programming, and the com-
mercial potential of specialized class libraries and
business models increases.

The last effect of modeling is on the user inter-
face. The programmer has a direct way to present
a set of abstractions and a vocabulary closely
matched to the user's interests. Object-orienta-
tion is so well-suited to the task that modern user
interfaces are almost exclusively object-orient-
ed. 45

The datalprogram development split. At first
glance it would seem that objects, containing both
data and program, remove the split between pro-
gram developers and database developers. Cer-
tainly the programmers will be concerned with
the relationships between data in new ways. Also,
having an 00 database implies that the program
and data are simply put onto disk and saved.
However, there is reason to suppose that this will
not be the case in general or in the long run.

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

Many shops will continue to use their relational,
hierarchical, or networked databases for quite
some time. They will still need application data
models, logical data models, and physical data
models, with qualified specialists to refine and
maintain them and see that they evolve. That sit-
uation reproduces the program-database design
split as before.

With or without 00 databases, responsibility-
based design indicates that there will be special
classes devoted to working the database, so that
specialized skills in database design are likely to
evolve. Both application logic and database spe-
cialists may work on classes, so the program-da-
tabase split may not be visible in the methodol-
ogy, but it will make little difference in the daily
operations of the organization, which will contain
the two sets of specialists.

Finally, there is a split between the services pro-
vided by the reuse catalog components and those
needed by the application. One team is assigned
to develop or enhance components of a cross-
project nature, and another to develop the appli-
cation function based on those components (as
illustrated in Figure 4). Both groups will produce
class definitions, but for different kinds of com-
ponents, having different probability of reuse.
The program-data split then takes on a new form
as an applications-vs-components split.

The impact: coordination

Nothing in the definition of object-orientation in-
dicates that any particular staging and scheduling
strategy ought to be adopted. As mentioned ear-
lier, both incremental and iterative development
strategies are already standard recommendations
in the non-oo methodologies. It should be no sur-
prise, therefore, that the 00 community also rec-
ommends those two strategies. An organization
already comfortable with incremental or iterative
development should feel little impact here.

Object-orientation actually facilitates incremen-
tal and iterative development. The encapsulation
provided by objects and the dynamism provided
by dynamic binding make the ongoing addition
and modification of the software relatively less
burdensome and less error prone.

Object-orientation does add two wrinkles to the
smoothness of development. One is the need to

438 COCKBURN

restructure the class hierarchy to improve the
placement of classes and functions. Experienced
00 developers expect to restructure the inheri-
tance hierarchy as the project progresses and as
they gain experience. The new structure im-
proves reuse potential and evolution. It is no
news that a new design will need revision. It is,
perhaps, news that the designers recognize at the
beginning that even their best attempts will war-
rant revision. Again, any risk-based management
technique allows for iteration once the risk is
identified. It is still rare to find a group that admits
that their design will need revision and plan for it
as part of the project.

Knowing in advance that the class hierarchy will
change puts pressure on two places: the schedule
and the coding conventions. Time should be al-
located at the beginning for restructuring the class
hierarchy. Such allocation may be considered
preparation for evolution and reuse. Similarly,
coding conventions should be adopted at the start
that will minimize the dependency on functions
and classes being at particular points in the hier-
archy (e.g., only one method ever touches any
given state data; all other methods use that one
access method&).

The other wrinkle is parallelism in development
due to use of frameworks as prestructured de-
signs. A good software designer, object-oriented
or not, designs a system in such a way as to pro-
mote parallelism in the development process.
Frameworks provide a vehicle to formalize and
replicate some of those design decisions. The
structure provided by a framework need not be
new (in fact, quite the reverse: it is likely to be a
distillation of previous, successful designs), but it
can be put into place as a matter of routine. The
framework neatly extracts risky or highly vari-
able subsystems, which can then follow an iter-
ative development path in relative isolation.

The impact: evolution

Controlled sharing and evolution. Objects, classes,
and frameworks are organizational assets as are
database definitions and data, and the general
technique of managing their evolution is the
same: Some specific person or team should be
placed to promote the sharing of classes and
frameworks across projects and to ensure that no
single project overspecializes the behaviors of the
classes to its specific needs.

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

The idea that a project or function owner may not
be able to get certain behaviors put into a class
raises an issue: Where should those behaviors
then be put? Different variants are possible, all of
which boil down to the idea that the available
reusable classes may not completely cover the

Subsystem strategy is to choose
a subsystem of the application
that can use the strengths of

object-orientation.

needed functionality of the application. One pos-
sible approach is to simply leave the behavior un-
attached. Not all methodologies or languages re-
quire every behavior to be attached to a class
(e.g., Ptech3’ and C + + , respectively). Even if
they do, the attachment of those behaviors to
classes may be considered an implementation is-
sue. If they are put into a class, it may be a spe-
cial, application-dependent class. As the system
evolves, some of that behavior may be found to
be more general and moved to a shared class. In
all cases, it must be deliberately managed.

Not everyone agrees that evolution of assets can
or should be centrally managed.47 In a large com-
pany or across organizations, there is simply no
chance to collect all of the developers affecting or
affected by a class (or any other software asset).
Easy as it is to state this objection, a workable
solution is not at hand, although some initial ar-
chitectural research is being done.48

Strategies for migrating to object-orientation. Ob-
ject-orientation can be introduced by subsystem,
by language feature, or by methodology feature.
The strategies appropriate for different organiza-
tions are different.

The subsystem strategy is to choose a subsystem
of the application that can use the strengths of
object-orientation. That might be the user inter-
face subsystem or some section that can take ad-
vantage of inheritance or polymorphism. Moving
one subsystem at a time to object-orientation

IBM SYSTEMS JOURNAL, VOL 32. NO 3, 1993

means that relatively few people need to be
trained at one time, so they can be trained by an
expert, or mentor. Once they become experts
they can be dispersed to lead other designs or to
carry on with the evolution of the subsystem. The
new experts become mentors to other groups, and
the process repeats itself on a growing scale. The
subsystem can be designed in a fully 00 way,
using a “pure” 00 methodology, language, etc.,
because the scale of the training is relatively
small.

A second choice, one that delays the need for
complete 00 training, is to use a hybrid 00 lan-
guage that is fully compatible with its non-oo
counterpart. With this strategy, the existing code
base is maintained, new developers do not have
to learn all about object-orientation at one time,
new subsystems do not have to be completely
object-oriented in design, and the existing meth-
odology can be used to start with, i.e., nothing
need change, except what the team decides to
change. 00 methodology, design techniques, and
language features are introduced slowly on a per-
son-by-person or team-by-team basis. Note that
in selecting this option, an organization foregoes
many of the advantages of object-orientation in
exchange for a less traumatic and extended edu-
cational period.

The third choice is to create 00 designs in stages,
using staged 00 facilities in the methodology.
This choice is the architectural correspondent to
the previous strategy and requires a hybrid meth-
odology fully compatible with its non-oo coun-
terpart, probably to be found in the adaptive and
combinative groups of 00 methodologies. The de-
sign can be implemented in a hybrid language, or
there can be a jump from non-oo to fully 00 at
some stage in the evolution of the system. At
some stage, the architectural description may
pass through a point allowing either 00 or non-oo
implementation. Such a design must contain suf-
ficient information for the inheritance hierarchies
to be designed but described in such a way as not
to require inheritance or removal of inheritance in
the design. This third strategy is very attractive,
but has not been demonstrated.

Legacy systems. No strategy for migrating would
be complete without handling legacy, or pre-ex-
isting systems. In object-orientation, any system
or subsystem at all can be considered a unique
instance of its class. All functions at the interface

of the system are considered as its services (meth-
ods). To interface an 00 system with an existing
non-oo system, one or more new classes are cre-
ated with methods that correspond to the services
of the non-00 system. Several classes may be
created to jointly provide the full service set of the
old system so as to provide continuity for when
the old system is broken into smaller pieces and
rewritten. 00 messages are converted (within the
method) to call the non-oo services in the legacy
system.

The new class is referred to rather grandiosely
within the 00 community as a wrapper for the
non-oo system. The term “peephole” would be
more appropriate, since the new code only affects
how the 00 portion views the rest of the system.
It is called a wrapper because, from the point of
view of the 00 system, it encapsulates the old
system, hiding the details from sight. Once
wrapped, the old system can be left in peace or
replaced over time (presumably by objects).

The above technique is applicable at any scale. It
has been used to reverse engineer and upgrade
portions of large systems.49 At the other end of
the scale, the New World Infrastructure system5’
provides fine-grained wrappers at the class and
individual object level. The internals of these fine-

440 COCKBURN

grained objects can be written in an 00 or non-oo
language, allowing non-oo programmers to par-
ticipate in the production of an 00 system.

The impact: reuse

The reuse issues revisited. The reuse and exten-
sion mechanisms offered by object-orientation in-
teract with the basic issues of reuse in rather sur-
prising ways. Table 1 summarizes the effect of six
different reuse mechanisms.

Subclassing obtains the entire interface and all
implementation, so any change at all to the su-
perclass forces all subclasses to be completely
re-evaluated, even if none is actually affected. In
the table, that action is considered to be a wide
area of impact. Subclassing is usually traced in
both directions by the standard 00 programming
environment.

Subclassing without polymorphism is a clean,
traceable form of reuse with the single point
of evolution. However, subclassing without
polymorphism is generally considered uninter-
esting, for whatever reason, and no serious at-
tempts have been made to remove polymorph-
ism from inheritance to improve security for

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

evolution. Subclassing with polymorphism con-
stitutes messy reuse, because the subclass can
redefine the meaning of the methods of its super-
class.

Object composition is sometimes presented as be-
ing cleaner than subclassing. It uses method call
for each method, but copy and modify for the
interface definition. It is clean reuse with the sin-
gle point of evolution for the method implemen-
tations, but messy reuse with multiple points of
evolution for the interface definition. The area of
impact is wide because any change to the reused
class forces a re-evaluation of the entire using
class.

Copy and modify is the standard of messy, un-
traceable reuse with multiple points of evolution
(which does not mean it is not useful).

A method call, like a subroutine call, provides
clean, traceable reuse with the single point of ev-
olution and narrow area of impact. It is useful for
obtaining the implementation of a single method
and does not address obtaining the class inter-
face.

Polymorphism splits up the implementation of a
method. The definition of the interface of the
method is spread over multiple locations, having
to be mutually consistent. The interface definition
is copied, making for messy reuse of the interface
definition. Changing the interface or intent of the
polymorphic method forces updates in multiple
places, making for multiple points of evolution.
Each method content is obtained using a method
call, which is clean and provides the single point
of maintenance.

Polymorphism with dynamic binding does not
produce a clear trace. It presents a significant
challenge to impact analysis, since the addition
of a new polymorphic method to a system results
in a combinatorial explosion of possible inter-
actions between classes and methods. Fortu-
nately, the area of impact is narrow (only meth-
ods using a particular name can be affected), and
tools can search the entire reachable system
to locate all parts of a polymorphic method. The
difficulty involved with polymorphism can be
expected to grow with a commerce in class
libraries. What is perhaps surprising is that cat-
astrophic errors from this source have not been
reported (yet).

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

Project management. With the availability of pre-
cut classes and design frameworks, significant ef-
fort goes into evaluating ways to use and extend
the components, and which mechanisms to use.
Multiple departments may become involved be-
cause of the evolution issues. Further, sharing
components during their development is fairly
complex. An object relies upon other objects for
services, and typically, several mutually depen-
dent classes undergo design concurrently. Each
layer of objects provides services to objects
above and relies upon services from objects be-
low. All of this acts to complicate project man-
agement.

When serious attention is given to reuse, more
time than previously is spent studying the com-
ponents catalogs, seeing what parts are available
and what their detailed capabilities and restric-
tions are. The positive aspect is that reusing pre-
vious solutions often takes considerably less time
than construction from scratch.44 The negative
aspect is that while studying catalogs for reusable
components, the designers are not actively de-
signing. In terms of lines of code per day, the bad
news is that fewer lines of code are produced per
day; the good news is that fewer lines of code are
needed.

This poses a challenge for schedule estimation.
Fortunately, when incremental development is
used, the development process itself provides a
mechanism for developing a schedule estimation
history and a chance to improve its accuracy.

A new project may receive a time estimate in any
number of ways. Common sense and experience
from previous, non-oo projects may be the best.51
Another is to estimate the number of new classes
that will have to be created and the number that
will have to be learned. The initial estimate is not
as important as what happens with the estimates
during the project. From increment to increment,
the estimation basis is improved by learning from
the previous increments. This estimation history
has the advantage of rating the same people using
the same tools on the same problem.

Note that the above discussion focuses on sched-
ule estimation and does not suggest measuring
programmer productivity on the basis of a volu-
metric measure such as lines-of-code. To do so
would work against reuse. Of the two, volume
and reuse, achieving reuse is the more important.

COCKBURN 441

Summary

Object-orientation revitalizes a two-decade-old
goal with a different mind-set backed by different
programming mechanisms. The goal is the encap-
sulation of design decisions, the mind-set is an-
thropomorphic design, and the mechanisms are
objects, classes, inheritance, polymorphism, and
dynamic binding. Objects provide the developer
with a full range of program modules, from data-
only, through data-plus-function, to function-
only. The result is the ability to model business
domains, business rules, and software architec-
tures, preserve the model within the computer,
and present it to the user at the user interface.
Anthropomorphic design allows developers to
use their own intuitions and experience with so-
cial organizations as well as to use analytical tech-
niques.

The good news associated with object-orientation
is that it facilitates the use of incremental and
iterative development strategies, which have
been recommended for years. Organizations al-
ready using these strategies are in a comfortable
position with regard to this aspect of object-ori-
entation.

Object-orientation brings with it multiple new
mechanisms for reuse, complicating decisions
about which to use, but refreshing interest in at-
taining significant amounts of reuse. Classes and
frameworks are development units that can be
treated as organizational assets to be shared and
protected. The organization with a good handle
on shared data assets has an advantage in learning
to work with the new ones.

A major cost of moving to object-orientation is
training. The construction aspect of 00 develop-
ment is very different from the way in which it
was done before. Several dozen new methodol-
ogies have appeared, with little appearance of
reaching consensus, although trends are emerg-
ing. An additional complexity is project manage-
ment, given the interdependence of multiple
classes undergoing development at the same
time, and the absence of a base of experience in
project estimation.

Two strategies are available for migrating to ob-
ject-orientation: moving a few people completely,
or many people slowly. The former results in the
full benefits of object-orientation in a few places,

442 COCKBURN

the latter reduces the trauma of retraining at the
expense of some of the benefits of object-orien-
tation. Legacy systems can coexist with or slowly
be rebuilt to become object systems through the
use of object peepholes, also known as wrappers.

Finally, many of the impacts associated with ob-
ject-orientation are not dependent on inheritance,
the characteristic that fully separates object-
oriented systems from object-based and class-
based systems. Therefore, the effects described
can be found or felt in object-based and class-
based systems.

Acknowledgments

The members of the Methodology Department of
IBM’s Application Development Consulting Prac-
tice spent a good deal of energy bringing me up-
to-date on non-oo application development.
Wayne Stevens of IBM and Dick Antalek of Amer-
ican Management Systems deserve special men-
tion for their discussions, insights, and careful
readings of the paper. In the object-oriented com-
munity, Dave Thomas of Object Technology In-
ternational and Tom Morgan of Brooklyn Union
Gas helped both fire up and temper myviews. The
authors cited in the references and members of
the organizations I visited contributed experi-
ences and insights. My family provided patience
and support, and Sean (age two) instructed me to
be happy.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Digitalk, Inc.,
AT&T, or Associative Design Technology Corporation.

Cited references and note

1. Observation of Wayne Stevens, IBM Consulting Group,
Southbury, CT.

2. D. Hough, “Rapid Delivery: An Evolutionary Approach
for Application Development,” ZBMSystems Journal 32,
No. 3, 397-419 (1993, this issue).

3. M. Pittman, “Lessons Learned in Managing Object-Ori-
ented Development,” ZEEE Software 10, No. 1, 43-54
(January 1993).

4. S . McMenamin, “The New Economics of Requirements
Modeling and Prototyping,” The First National Confer-
ences on Software Methods, Orlando, FL, presented by
Technology Transfer Institute, 741 Tenth Street, Santa
Monica, CA 90402 (March 30, 1992), Section 9.362.

5. M. Lorenz, Object-Oriented Software Development: A
Practical Guide, Prentice-Hall, Inc., Englewood Cliffs,
NJ (1992).

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

6. B. Boehm, “A Spiral Model of Software Development,”
Computer 21, No. 5, 61-72 (May 1988).

7. McGehee, Corporate Infusion of Object Technology: The
“Big-Bang” Approach, Texas Instruments Microelec-
tronics Manufacturing Science and Technology, pre-
sented at Experience Session, OOPSLA ’92.

8. Observation of Dick Antalek, then at AMs, currently at
IBM Consulting Group, Bethesda, MD.

9. D. Taylor, Object-Oriented Technology: A Manager’s
Guide, Servio Corporation, Alameda, CA (1990).

10. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and
W. Lorensen, Object-Oriented Modeling and Design,
Prentice-Hall, Inc., Englewood Cliffs, NJ (1991).

11. A. Snyder, “The Essence of Objects: Concepts and
Terms,” ZEEE Software 10, No. 1 ,3143 (January 1993).

12. R. Wirfs-Brock, B. Wilkerson, and L. Wiener, Designing
Object-Oriented Software, Prentice-Hall, Inc., Engle-
wood Cliffs, NJ (1990).

13. P. Wegner, “Dimensions of Object-Based Language De-
sign,” OOPSLA 1987, SIGPLAN Notices 22, No. 12,
168-182 (1987).

14. D. Parnas, “On the Criteria to Be Used in Decomposing
Systems into Modules,” Communications of the ACM 15,
No. 12, 1053-1058 (December 1972).

15. D. Parnas, “On the Design and Development of Program
Families,” ZEEE Transactions on Software Engineering
2, No. 3, 1-9 (March 1976); reprinted in Programming
Methodology: A Collection of Articles by Members of
ZFZP WG2.3, Springer, New York (1978), pp. 429-447.

16. G. Booch, “Object-Oriented Development,”ZEEE Trans-
actions on Software Engineering 12, No. 2, 211-221
(1986).

17. System Object Model Guide and Reference, No. 1066309,
first edition, IBM Corporation (December 1991).

18. The Common Object Request Broker: Architecture and
Specification, OMG Document 91.12.1, Rev. 1.1, Object
Management Group, 47 Walnut, Suite 206, Boulder, CO
80301 (December 1991).

19. Observation of Bill Harrison, IBM Research, Yorktown
Heights, NY.

20. B. Liskov, “Data Abstraction and Inheritance,”
OOPSLA ’87, Addendum, SZGPLAN Notices 23, No. 5,
17-34 (May 1988).

21. A. Cockburn, “Using Natural Language as a Metaphoric
Base for Object-Oriented Modeling and Programming,”
Addendum to OOPSLA 1992Proceedings, to appear. Full
text in IBM Technical Report TR-36.0002, IBM Corpo-
ration (1992).

22. Observation of Ghica van E.nde Boas Lubsen, IBM Eu-
ropean Systems Architecture and Technology, Uithoorn,
Netherlands.

23. Business System Development Method, Business Map-
ping Part I: Entities, No. SC19-5310-00, IBM Corpora-
tion (1992); available through IBM branch offices.

24. American Heritage Dictionary, second College Edition,
Houghton Mifflin Co., Boston (1976).

25. R. Helm, I. Holland, and D. Gangopadhyay, “Contracts:
Specifying Behavioral Compositions in Object-Oriented
Systems,” OOPSLA POProceedings, SZGPLANNotices
25, No. 10, 169-180 (October 1990).

26. R. Wirfs-Brock and B. Wilkerson, “Object-Oriented De-
sign: A Responsibility-Driven Approach,” OOPSLA
1989, SZGPLAN Notices 24, No. 10, 71-76 (October
1989).

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

27. K. Beck and W. Cunningham, “A Laboratory for Teach-
ing Object-Oriented Thinking,” OOPSLA 1989, ACM
SIGPLAN Notices 24, No. 10, 1-6 (October 1989).

28. Dave Thomas, Object Technology International, Ottawa,
Ontario, personal communication.

29. “Software Made Simple,” Business Week (September 30,
1991), pp. 92-97.

30. R. Johnson and B. Foote, “Designing Reusable Classes,”
Journal of Object-Oriented Programming 1, No. 2,22-35
(JuneIJuly 1988).

31. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “De-
sign Patterns: Abstraction and Reuse of Object-Oriented
Design,” ECOOP’93 (July 1993), to appear.

32. D. Monarchi and G. Puhr, “A Research Typology for
Object-Oriented Analysis and Design,” Communications
of the ACM 35, No. 9, 35-47 (September 1992).

33. D. Embley, B. Kurtz, and S. Woodfield, Object-Oriented
Systems Analysis and Specifcation: A Model-Driven Ap-
proach, prentice-Hall, Inc., Englewood Cliffs, NJ (1992).

34. I. Jacobson, M. Christerson, P. Jonsson, and G. Over-
gaard, Object-Oriented Software Engineering, Addison-
Wesley Publishing Co., Wokingham, England (1992).

35. J. Martin and J. Odell, “Object-Oriented Analysis and
Design,” Prentice-Hall, Inc., Englewood Cliffs, NJ
(1992).

36. T. Reenskaug, E. Andersen, A. Berre, A. Hurlen,
A. Lnadmark, 0. Lehne, E. Nordhagen, E. Nass-Ulseth,
G. Oftedal, A. Skaar, and P. Stenslet, “OORASS: Seam-
less Support for the Creation and Maintenance of Object-
Oriented Systems,” JOOP 5, No. 6, 27-43 (October
1992).

37. K. Rubin and A. Goldberg, “Object Behavior Analysis,”
CommunicationsoftheACM35, No. 9,48-62 (September
1992).

38. G. Booch, Object-Oriented Design with Applications,
Benjamin/Cummings Publishing Co., Redwood City, CA
(1991).

39. G. Cantin, The Use of Function-Tables to Specify Serv-
ices and Protocols, Technical Report 91-236, Telecom-
munications Research Institute of Ontario, McMaster
University, Hamilton, Ontario (1991).

40. P. Coad and E. Yourdon, Object-Oriented Analysis,
Yourdon Press, Englewood Cliffs, NJ (1991).

41. S. Shlaer and S. Mellor, Object-Oriented Systems Anal-
ysis, Modeling the World in Data (1988); Object-Oriented
Systems Analysis, Modeling the World in States (1992),
Yourdon Press, Englewood Cliffs, NJ.

42. M. Branson, E. Herness, and E. Jenney, “Moving Struc-
tured Projects to Object Orientation,” Proceedings of the
Second Annual Repositov ADICycle International Users
Group Conference, Chicago (October 1991), pp. 151-170.

43. M. Jackson, System Development, Prentice-Hall, Inc.,
Englewood Cliffs, NJ (1982).

44. J. Davis and T. Morgan, “Object-Oriented Development
at Brooklyn Union Gas,” ZEEE Software 10, No. 1,67-75
(January 1993).

45. R. Berry and C. Reeves, “The Evolution of the Common
User Access Workplace Model,” ZBM Systems Journal
31, No. 3, 414-428 (1992).

46. E. Klimas, D. Thomas, and S. Skublics, Smalltalk with
Style, Addison-Wesley Publishing Co., Reading, MA, to
appear.

47. W. Harrison and H. Ossher, fitension-&Addition:
Building Extensible Software, Research Report RC-
16127, IBM Corporation, Yorktown Heights, NY (1990).

COCKBURN 443

48. W. Harrison, M. Kavianpour, and H. Ossher, “Integrat-
ing Coarse-Grained and Fine-Grained Tool Integration,”
Proceedings of the Fifth International Worbhop on Com-
puter-Aided Software Engineering (CASE ’92), (July
1992), pp. 23-25.

49. I. Jacobson and F. Lindstrom, “Reengineering of Old
Systems to an Object-Oriented Architecture,” OOPSLA
1991, SZGPLANNotices 26, No. 11,340-350 (November

50. New World Infrastructure was jointly developed by IBM
and Softwright Systems, Ltd.

51. F. Bergeron and J-Y. St.-Arnaud, “Estimation of System
Development Costs Should Be Done Differently at Each
Phase of Development,” Really Useful Research 1, No.
6,7-8 (August 1992), RUR Publishing, 212 E. Ontario St.,
Chicago, IL 60611. Extracted from “Estimation of Infor-
mation Systems Development Efforts,” Information &
Management 22, No. 4, 239-254 (April 1992).

1991).

Accepted for publication March 22, 1993.

Allstair A. R. Cockburn ZBM Consulting Group, 150 Kettle-
town Road, Southbuy, Connecticut 06488. Mr. Cockburn is
the focal point for object-orientation in the Methodology De-
partment of IBM’s Worldwide Application Development Con-
sulting Practice. He continually works to reduce the imped-
ance mismatch between people and computers. He has been
a designer, programmer, and researcher in computer graphics,
software techniques, and the human interface aspects of pro-
gram specification. He published over a dozen technical pa-
pers in these areas and coined the phrase “computational rhet-
oric.” Mr. Cockburn obtained an M.S. in computer science
from Case Western Reserve University in 1975. He enjoys
sitting under water, learning, and dancing and has forgotten as
many languages as he still speaks.

Reprint Order No. G321-5519.

444 COCKBURN IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

