Rapid Delivery: An
evolutionary approach
for application
development

From a historical vantage point, large application
development projects are frequently at risk of
failure. Applications are typically developed
using a monolithic development approach.
Monolithic approaches generally feature
business-user-defined requirements that are
incorporated in the application but not evident
until the resulting application has been
implemented. To effectively produce new
information systems, innovative methods must
be utilized. This paper provides information
about one of these, Rapid Delivery—a method for
developing applications that can evolve over
time. To fully understand the principles of Rapid
Delivery, a discussion is included that illuminates
a three-dimensional application model and its
variations. The application model helps in
understanding application segmentation, a
technique used in Rapid Delivery to break
applications into a variety of functional
capabilities. After the development of each
application segment has been completed, it is
implemented to provide immediate benefit to the
enterprise; each application segment is added to
the evolving application and its ever-expanding
capabilities. The result of using Rapid Delivery is
an enhanced ability to build applications that
better support the enterprise through a
continuous stream of delivered requirements, a
reduction in the possibility of project failure, and
a diminished likelihood of runaway projects.

T ime is an element that can be used to our
advantage but frequently seems to work
against us. In application development, time has
traditionally been one of the foremost problems
causing risk to escalate, acting as a restrictor of

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

by D. Hough

what can be accomplished within allotted devel-
opment periods and reducing or eliminating the
competitive edge from an application, product, or
service.

To manage time to our advantage for application
development, we must change the generally prev-
alent philosophy. In the past, this philosophy has
framed application development as a process that
follows a long, unbending path, resulting in soft-
ware that is anything but “soft.” Many applica-
tions are developed using a monolithic approach
even though business needs and requirements
change over time. D. R. Graham defines a mono-
lithic development approach as one that regards
“development as one large process to be consid-
ered in its entirety.” The waterfall life-cycle
model is one example of a monolithic approach
for application development. Instances are com-
mon where monolithic approaches have been
used in which two-year application development
projects have taken six years, two-and-one-half-
year projects have had repeated project scoping
changes, and five-year projects have never been
completed.’

©Copyright 1993 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

HougH 397

To begin changing the development philosophy,
or the mind-set really, we discuss application de-
velopment as a process that leverages time ad-
vantageously. By leveraging time to our advan-
tage, we can realize applications that can be
developed in a responsive manner: responsive to
changes in business, responsive to user needs,
and responsive to changes that cannot be fore-
casted. This concept also supports common bus-
iness practices in which premiums are charged for
products that can be delivered within advanta-
geous time frames.

Delivering applications that can evolve over time
is a second key element in the philosophy change.
Past experiences suggest that attempts at building
large-scale applications have had a less-than-de-
sirable outcome when evolution or change is not
considered. This negative outcome is caused by
trying to use a monolithic development approach
which, in turn, results in applications that no
longer suit the needs of the business. This phi-
losophy can be realized by developing and deliv-
ering portions of applications rather than devel-
oping the total application before it is delivered.
This evolutionary process reduces the complex-
ity of each application portion and provides ap-
plication functions over time to consumers, cus-
tomers, and clients. An important facet of the
evolutionary approach is that it can reduce over-
all s (information systems) development, sup-
port, and maintenance costs by anticipating, or
perhaps almost expecting, changes to the appli-
cation. As changes in the application are accom-
modated, overall maintenance costs for the ap-
plication should decrease dramatically.

It follows then, that if applications are developed
over time (and thus evolve), they can address the
needs of the business as it changes, downsizes,
and adopts new technologies. Business climates
change so rapidly that some corporations report
the life expectancy of certain product lines as be-
ing only three months.? The contribution of an
application to the bottom line of an enterprise is
being scrutinized more closely than ever. By hav-
ing applications evolve, the business needs of
each corporation can be met.

We describe Rapid Delivery in this paper, a name
used to identify a development approach that has
been widely used by many software development
companies. Rapid Delivery has several similar-
ities to a Japanese approach to product evolution

398 HoucH

called product churning.>* In this paper, we de-
fine terms used throughout the paper and discuss
the primary concepts of Rapid Delivery. A di-
mensional application model and its variations
are described and are used to assist the reader in
understanding the foundational concepts and
principles. An overview of the method is pre-
sented with a discussion about the need for a firm
application architecture to accommodate this ap-
proach. Finally, the activities involved in Rapid
Delivery are described.

The problems of large development projects

One of the major flaws of monolithic application
development approaches is the fact that all projects
are considered as being equivalent, that is, equiv-
alent in aspects such as application type, complex-
ity, and time to develop. The duration effect is a
phenomenon that is exhibited in projects that per-
sist for too long, thereby impacting the manageabil-
ity and outcome of the project. In a paper written in
the early 1980s, Paul Melichar® wrote about appli-
cations that suffer from the duration effect. In sum-
mary, Melichar described the symptoms as mani-
festing themselves in application development
projects in the following ways:

* A slowed pace of development

» Treatment of the project as a “career”

¢ Lost sight of the original business problem

* Loss of interest by the development staff

* Constantly changing user requirements

¢ Deterioration of morale in individuals partici-
pating in the development project

* Intense, often futile attempts to speed up the
development of the application, often resulting
in confusion and reduced project manageability

In addition, large application development projects,
including those that take a long time to develop,
suffer a proportionally large risk of failure, where
the project:

* Was implemented but was unequivocally inad-
equate to the end user(s)

* Was implemented but had a negative impact on
the corporation

* Was abandoned because of business or techni-
cal analysis that concluded the application
would prove to be a failure if implemented

Typically, applications are viewed as a whole. If
the project is large, the associated risk is deemed

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1983

to be proportionately large. Smaller projects gen-
erally are associated with a lower risk. When ap-
plication development risk is considered, the fol-
lowing points are of consequence:

¢ Correctly captured user requirements

¢ Adequate and correct attainment of project
estimates

s Appropriately monitored project management
throughout the life of the development effort

¢ Checks and balances that help project partici-
pants keep project objectives clearly in mind

There are other elements affecting the outcome of
long-term application development projects. Of-
ten, progress is difficult to communicate to the
users, especially in large-scale projects. In large
projects, this poor user perception and morale
may transfer to the developers. Once the appli-
cation has been developed, using traditional de-
velopment approaches, maintenance of the appli-
cation ensues immediately after the application is
delivered. Many of these maintenance “enhance-
ments” result from user needs that have changed
after the initial requirements were gathered or
from requirements that were missed.

Another aspect of large-scale application devel-
opment projects is the notion of the “runaway”
project. Such projects, according to the study® of
one accounting firm, comprise 35 percent of the
total projects of the 600 largest clients of the firm.
Rothfeder defines a runaway project as ““a system
that is millions [of dollars] over budget, years be-
hind schedule, and—if ever completed—Iless
effective than promised.”’ Poor planning often
causes these projects to run away unchecked
since a large project has many tasks, each of
which must be adequately addressed; to plan oth-
erwise can and will jeopardize entire projects.
There are many cases in which long-duration
projects have been compressed from a several-
year period to a one-year period. This project
compression generally is approached by adding
additional resources, making the project even
more difficult to properly manage. Project com-
pression can also be required because of existing,
defined tasks that must be expedited as their com-
pletion is falling behind schedule. Sometimes un-
attainable deadlines are set, causing individuals
to work in a frenzy rather than setting the expec-
tation that regardless of the deadline, the work
simply cannot be accomplished within the spec-
ified time frames. An additional aspect of run-

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

away projects comes in the form of changes, usu-
ally many of them that are outside the scope of the
original project. It is conceivable then, that by the
time a large-scale system has been implemented,
changes that come after the implementation can
require a number of other changes that outweigh
the original total development effort.

The development of software in chunks is not a
new concept. IBM has developed products using
the release or versioning concept for a number of
years, as have other providers of software. This
method allows software providers the flexibility
to develop all or part of a product to fit within a
“window” of opportunity—that is, to be respon-
sive to the markets they serve. It is important to
know, however, that Rapid Delivery is not in-
tended to support this specific condition, rather it
is intended to help in meeting other business pres-
sures, such as those related to competition, qual-
ity, and cost.

A final point related to Rapid Delivery focuses on
having users accept parts of applications. Tradi-
tionally, the I/S function has failed to ask users if
a portion of an application would be of benefit.
Many times this would be true if the alternatives
were positioned as a choice: would the users like
nothing until two years of work have been com-
pleted, or would subsets of the application be of
value, being delivered in shorter, regular time pe-
riods.

Definitions and concepts

Applications can be viewed as having functional
capabilities. A functional capability is a grouping
of application requirements that, once developed,
results in a faculty of an application such as que-
rying an airline reservation, for example. A log-
ical collection of one or more functional capabil-
ities is called an application segment.

Rapid Delivery is a building-block approach to
large-scale system development projects. Proj-
ects are partitioned so that functional capabilities
are provided to the users on a regular basis (e.g.,
every six to eighteen months, or even less). As
each application segment is completed, the parts
of the application thus available are put into pro-
duction. By delivering portions of the application,
the project becomes easier to manage. The suc-
cess rate for large projects is notably improved by
controlling the term of a project through segmen-

HougH 399

tation into several, more easily managed projects
which, when combined, equal the single, large
project. Rapid Delivery does not mean that one
application segment must be completed before
another can be started—application segments can
be developed in an overlapping manner.

The prime incentive for Rapid Delivery is the very
high risk of failure associated with projects that
last longer than two years. Rapid Delivery helps
to reduce the effects brought on by project risk,
discussed earlier. Rapid Delivery can also be used
to have the majority of applications, other than
those deemed trivial, evolve to their desired state
over time. The fact that application segments
must be highly independent of one another to be
integrated, implemented, and tested is a key to
Rapid Delivery. A major advantage of Rapid De-
livery is that it delivers function to users much
earlier than traditional development methods with
associated benefits to the enterprise and gives de-
velopers feedback as development progresses.
Studies have shown that even “A small increment
of the system functionality, even five percent, was
of use to the sponsor ...”"

Rapid Delivery can help to:

1. Establish an information system basis that can

evolve over time

. Enable the implementation of portions of ap-
plications in a systematic manner

. Accommodate changing business needs

. Provide adaptability in the way the application
is to be developed

. Deliver earlier benefits to users

. Reduce the risks of runaway projects

. Assist in gaining user confidence early in the
process

The application dimensional model

Developed applications have several dimensions
as shown in Figure 1. When determining the re-
quirements and design specifications for an ap-
plication, the width, height, and depth of each
dimension is defined. We illustrate this concept
graphically because it is difficult to describe an
abstract concept in words. The dimensional
model is a convenient basis for discussions where
the conveyance of key concepts is critical; it can
be easily explained and understood by a variety of
individuals, whether their orientation is technical

400 HoueH

or nontechnical. Throughout this paper, we refer
to the dimensional model and its variations.

The coloring seen in succeeding figures is used for
purposes of delineation between planes of the ap-
plication dimensional model. Each dimension of
the model is described below.

The violet-shaded, top row, side-to-side width on
the face of the dimensional model represents
functions or objects.’ For example, Function 1
could symbolize the function “process notes.” In
a different vein, Function 2 could represent the
object “file.” Vertically, beneath each function or
object, are the actions associated with each func-
tion or object. The actions associated with Func-
tion 1 might be “send a note” (Action 1), “view
the note log” (Action 2), “change the note log”
(Action 3), and “print the note log” (Action 4).
For Function 2 (object) “file,” the associated ac-
tions (Action 1 through Action 5) might include
“new,” “open,” “save,” “save as,” and “de-
lete.” Note that functions (objects) can have
varying numbers of associated actions depending
on each function and the supporting require-
ments.

The depth of the dimensional model defines the
attributes, or associated application characteris-
tics that increase the substance of the application.
The shallower this depth is defined, the less ro-
bust is the application. “Look and feel,” “user
interface,” and “navigation” are examples of
these elements of refinement. As the depth in-
creases, the software becomes increasingly like a
production system. Applications have varying
depths, depending on the specific application
characteristics and to what degree these at-
tributes are defined. For example, certain appli-
cations require more depth for “error handling”
than for “security.” The terms “bullet-proof” or
“industrial-strength” are sometimes used to de-
scribe production-level code. The associated ap-
plication characteristics indicated on the top of
the model as shown in Figure 1 are typical of
production systems, although the list is not all-
inclusive.

Application model variations

The total model (e.g., all of the dimensions) illus-
trated in Figure 1 conceptually represents a com-
plete, production-level application. Any portion
less than the whole of the dimensional model is a
representation of a subset of the final application.

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

Figure 1 Application dimensional model

SECURITY

ERROR HANDLING
DATA MANAGEMENT
ALGORITHMS
COMMUNICATIONS
NAVIGATION

USER INTERFACE
LOOK AND FEEL

FUNCTION1 | FUNCTION2 | FUNCTION3 | FUNCTION 4

ACTION 1 ACTION 1 ACTION 1 ACTION 1

PRODUCTION

ACTION 2 ACTION 2 ACTION 2 ACTION 2

ACTION 3 ACTION 3 ACTION 3 ACTION 3

For each application, the application dimension-
al model appears differently. The number of
variations is practically limitless. Representative
variations will be discussed in this section to show
the concept of variations on the dimensional
model.

The model in Figure 2 shows an application seg-
ment with little depth developed; basically, a fa-
cade is built. This model could be used to describe
the end-user interface (EUI) components of an ap-
plication. Because of its shallowness, it may be
useful for communicating the degree of develop-
ment necessary for demonstrating screens, action
bars, and windows. Application segments devel-
oped to only this level may be prone to frequent
failure since more emphasis and work has been
put into the EUI and the overall look and feel of the
application than into the development and testing
of code that supports features such as error-

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

handling, data management, and validation. This
model variation is typical of many application
prototypes. It is beneficial to leverage the use of
specialized development methods and techniques
along with development tools that are designed
for iterative construction of the user interface.

The “T-shaped” model illustrated in Figure 3
shows a variation on the application dimensional
model that represents an application segment
with a reduced user interface and a narrowly de-
fined set of actions associated with a specific
application function. This vertical development
approach may be appropriate for applications
in which functional capabilities can easily be
grouped together or are of specific interest. “Slic-
ing” of the application vertically also assists when
bounding the work to be performed for a specific
application development effort. This model pro-
vides an excellent example of one type of an ap-

HoucH 401

Figure 2 Facade model variation

Figure 4 Unevenly shaped model variation

Figure 3 "T"-shaped model variation

plication segment selected for Rapid Delivery, il-
lustrating what is to be developed and delivered.

Figure 4 depicts a model in which several func-
tional capabilities of the application have been

402 HouGH

defined, each to a different depth. Additionally,
there is unevenness in the number of defined ac-
tions associated with each function. Notice too
the uneven depth shown from the front to the
back of the illustration, down to the level of the
associated actions of a specific function. The un-
evenness of this model describes an application
segment that will be developed with varying
degrees of functionality. Some actions may be
demonstrated with little functionality in place,
whereas other actions might require more exten-
sive development to provide a fully operational
application segment.

The importance of an architectural
foundation

To realize the full potential of an application, it
must be based on a sound architecture. This
means that design of the application alone is not
sufficient. It is relatively easy to design a simple
house (e.g., one with three bedrooms, a kitchen,
etc.); however, only individuals with specific
skills can properly design the architecture of a
50-story building (how the walls are built, how big
the foundation must be, etc.). Design implies car-
ing for today’s needs, whereas architecture sug-
gests that long-term issues, including expansion,
have been taken into consideration. Therefore, of

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

Figure 5 Traditional application development

REQUIREMENTS APPLICATION DESIGN

CONSTRUCTION

DELIVERY OR IMPLEMENTATION

ENTIRE
COMPLETED
APPLICATION

PQINT "A"

POINT "8"

key importance to Rapid Delivery is the ability to
continuously add increasing functionality to the
evolving application. If the overall application ar-
chitecture is not sufficiently addressed early on, it
will be difficult to integrate application segments
over time. A few architectures to consider, in ad-
dition to application, data, and process architec-
tures are: presentation, control, security, and
communications architectures.

Having an experienced application architect is
more important to Rapid Delivery projects than to
other types of application development projects.
It is particularly important because application
segments must be constructed so that each fits
with other application segments in a cohesive
way. If the application architecture is in question,
an option is to build a proof-of-concept prototype
that will allow the development team to determine
whether its intended architecture and application
segment design can coexist in a quality manner.

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

Having an application architecture also yields a
better understanding of the overall application. If,
during application construction, the application
becomes too large or unwieldy, the architecture
should allow the application architect to divide
the application into additional application seg-
ments. Segmentation makes the overall applica-
tion simpler and less complex to develop, test,
and implement.

Overview of the method

Rapid Delivery, as an approach, develops parts of
an application using all of the methods, tech-
niques, and processes that comprise traditional
development; the development of each part is
done as if it were a complete project itself. For
comparison, a graphical depiction of “tradition-
al” application development is shown in Figure 5.
This illustration is not intended to imply any par-

HouGgH 403

Figure 6 Rapid Delivery activities

RISK MANAGEMENT

PROGRESS REVIEWS

ticular methodological approach, such as infor-
mation engineering or structured methodologies.

The illustration shows how, in traditional appli-
cation development, all of the application re-
quirements are gathered at the beginning of the
project (“Point A”). This activity alone could
sometimes take two years or more for large-scale
application development projects. After the re-
quirements gathering activity come analysis and
design activities. Once the design has been com-
pleted for the total application, the application is
constructed in its entirety. When the application
is totally finished, it is delivered and implemented
(“Point B”).

Rapid Delivery changes the process for such large,
long-duration application development projects; it-
eration is a key element as well as ensuring user
involvement throughout the development process.
The same development fundamentals apply; the

404 HoucH

same development methodologies, the same plan-
ning, application requirements, analysis and de-
sign, construction, and production and mainte-
nance activities are incorporated in each Rapid
Delivery effort. No steps are left out, and no short-
cuts are taken. Rapid Delivery has the same need
for an enterprise process and data model to be in
place as do all application development projects.
Note that Rapid Delivery can support the develop-
ment and delivery of individual application func-
tions faster; however, this can be enabled only after
a base of resources and personnel has been accu-
mulated from experience. Rapid Delivery inher-
ently provides the ability to break up and manage
projects more effectively and to deliver working
functions to the user much earlier.

Figure 6 illustrates the activities that comprise
Rapid Delivery. We will examine each activity
briefly, then discuss each one in more detail later.

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

Rapid Delivery activities

First, high-level requirements are gathered for the
overall application. Requirements are gathered at
a level sufficient to set the direction for develop-
ment of the application. In the application segmen-
tation activity, the high-level application require-
ments are analyzed, and an application segmen-
tation strategy is developed. Once the segmentation
strategy is developed and approved, the develop
application segments activity begins, which is com-
prised of additional, detailed requirements gather-
ing activities directed toward the specific applica-
tion segment to be developed using analysis and
design, produce, build and test, and production and
maintenance activities. These activities are per-
formed in an iterative fashion to ensure that each
application segment accurately matches the user re-
quirements. In the application segment delivery ac-
tivity, the completed application segment is deliv-
ered and prepared for the succeeding activity.
When each application segment is delivered, each
segment is integrated with already existing applica-
tion components and is implemented in a produc-
tion environment in the integration/implementation
activity. Notice in Figure 6 how the high-level re-
quirements and application segmentation activities
take place outside of the remainder of the activities.
Risk management and progress reviews occur at
the beginning of the development process for each
application segment and every three months after
Rapid Delivery projects start. These ongoing activ-
ities are directed toward keeping each Rapid De-
livery project on target and to communicate overall
project status to date. If redirection is necessary,
risk management and progress reviews can be used
to determine the corrective actions necessary and
to develop a plan for bringing the project within
acceptable tolerances.

High-level requirements

The high-level requirements activity is intended
to help provide a continuously growing, useful
system that can be developed and implemented in
a timely manner, providing early benefits to the
corporation and end users. While one application
segment is being implemented, another segment
is being built. It is possible that segments being
completed may require changes to the functional
capabilities of segments already developed. The
potential for rework should be recognized, be-
cause requirements and design of later parts may
impact the application as it was initially defined.

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

The risk of rework is much lower than the risk of
failure of projects lasting more than two years.
This risk of rework then becomes a reasonable
risk.

Organizations that use structured methods typi-
cally use a method such as Business System
Planning/Architecture (BSP/A) to identify applica-
tions or application groups resulting from the
process architecture developed during the BSP/A.
In contrast, organizations that use information
engineering methods commonly use a Business
Area Analysis (BAA) method to identify busi-
ness systems from the process-data affinity anal-
ysis developed during the BAA. From either
of these methods, the resulting outputs should
be used as input to the high-level requirements
activity.

The underlying activities in high-level require-
ments are the following:

1. Define high-level requirements

2. Determine the “outer boundaries” of the ap-
plication

3. Design the needed high-level functions

Define high-level requirements. Using the Joint
Application Design (JAD) method, key enterprise
management and users are assembled to discuss
the application at hand. During these JAD ses-
sions, the objective is to look at the application
from a high level, focusing specifically on func-
tions and requirements that can be easily iden-
tified first, followed by other functions and re-
quirements that may not be so obvious. JAD
participants should be told that these sessions will
not cast the “outer boundaries” of the application
in concrete; the JAD sessions are intended to allow
the participants to describe the functions and ca-
pabilities that must be present in the application
as best they can at this point. Specific details
should be deferred until those details become im-
portant to the function being addressed.

The intention of defining these requirements is to
stay at a high-enough level to provide not only for
the addition of requirements at a later point in
time but also to be detailed enough for the func-
tions and requirements to act as a basis for seg-

‘menting the application.

Determine the ““outer boundaries” of the applica-
tion. The next step in Rapid Delivery is a process

HougH 405

of determining the “outer boundaries™ of the ap-
plication. In this sense, outer boundaries are de-
fined as the largest possible dimensions that will
contain the application. This process is some-
times called the forecasting horizon.'® Land de-
scribes the forecasting horizon as ““. . . some time
in the future, the uncertainty becomes so great
that the systems designers cannot conceive of any
design that can cope with the possible range of
requirements at a permissible cost.” This descrip-
tion suggests that reasonable boundaries should
be drawn around the application for develop-
ment. It should be understood that these appli-
cation boundaries are intended to be used as a
guide or road map to future development of ad-
ditional application segments. Note that the outer
boundaries in real-world business change dynam-
ically; therefore, the boundaries should be con-
sidered as the most flexible part of the applica-
tion. Changes in business strategies or objectives
should drive changes to these outer boundaries.

Once the application requirements are identified,
a process model should be constructed that re-
lates processes to the identified application func-
tions. This model helps in sequencing the identi-
fied application functions for development, the
next step in defining the application boundaries.
Once the functions have been sequenced, the JAD
participants should review the functions to ensure
that they have been sequenced for development
in an appropriate way.

Design the needed high-level functions. Functional
decomposition provides a technique for docu-
menting the high-level design of the application.
Each function in the identified sequence should
be examined. Each function and more specific
requirements for that function should be consid-
ered. The question should be asked, “What must
this function do?”” These requirements should be
listed item by item, again at a high level. Precise
design specifications, technical issues, and con-
cerns should be deferred until the function is to
actually be developed. When it appears that the
participants cannot avoid low-level specifica-
tions, it is time to conclude the functional decom-
position process.

At this point the JAD participants should assess
whether enough information exists to logically
group the identified application functions and re-
quirements. If insufficient details exist, additional
JAD sessions should be conducted to further refine

406 HougH

and improve the functions and the listed require-
ments. This high-level identification of functions
and requirements should continue until sufficient
information exists to allow the application seg-
mentation activity to occur.

Application segmentation

The objectives of application segmentation are to
define application segments that can execute use-
ful functions and to determine a sequence that
allows the evolving application to be used in the
order delivered. Once the segments and se-
quences are identified, they should be verified
with the users. One of the benefits in segmenting
the application into more pieces with shorter
deadlines is that the development staff can be
used to its capacity.! The primary dilemma as-
sociated with application segmentation is: how
does one divide (segment) the architecture and
design of an application?

In the following sections, we look at a number of
alternatives. The primary tasks involved in ap-
plication segmentation are:

1. Develop segmentation strategy
2. Define the sequence for segments to be devel-
oped and delivered

Develop segmentation strategy. There are many
issues to consider when dividing the application
into logical segments. This section looks at the
key issues associated with application segmenta-
tion.

Once the high-level application functions have
been identified, they should be grouped together.
This logical grouping should place related appli-
cation functions together (e.g., user interface ap-
plication elements). It is recommended that the
“front” of the application be built first (e.g., the
user interface). The segments should be small
enough to reduce the risk involved with changing
requirements and to ensure that the segments can
be built in a time frame of six to eighteen months
(or less). Less than six months will typically not
be enough time to adequately develop a compli-
cated segment. It is better to have numerous seg-
ments with a low level of technical complexity
than a small number of segments with a high
degree of technical complexity. When obvious
and overwhelming complexities exist, consider
breaking these segments into simpler pieces to

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

make their development less difficult. The seg-
mentation also helps to boost overall morale as
parts of the application are constantly being de-
livered, and it provides the users with new func-
tions to review. Application requirements that are
not well understood or are “fuzzy” should be pro-

totyped.

The key characteristic that must be maintained in
order for Rapid Delivery to be successful is that
the segments must be highly independent. If the
segments are not independent, division into seg-
ments can increase rather than decrease the com-
plexity and also increases the chance for a run-
away project. Finding application segments that
can be delivered and are ready for the users will,
in itself, require that the segments be fairly inde-
pendent. Still, there are many ways to divide ap-
plications into independent segments. We discuss
these next.

Business strategy. Since business strategies,
goals, and objectives are assumed to already be in
place, segmentation of the application to support
the most important business strategies may prove
to be an effective segmentation strategy. In this

way, the corporation should realize an impact on
these business strategies such as:

¢ Increasing contribution to the bottom line

* Prospering in competitive advantage situations
(e.g., first to market)

» Taking advantage of specific market opportu-
nities

* Delving into business areas resulting in in-
creased market share

Global geography. As more companies grow on
a multinational scale, it may be important to de-
velop portions of the application that are generic
in nature. Functionality capabilities that are com-
mon, for example, to Canada, Japan, and France,
can be developed and deiivered in a series of ap-
plication segments. Where unique functions are
necessary, they can be developed as additional
application segments that can be delivered to
specific countries or optionally to all countries,
whether those functions are used or not. In de-
veloping applications in this manner, cultural and
language barriers must be addressed to ensure
that initial application segments truly are com-
mon across all of the international locations.

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

Data usage. It is possible to divide the application
on the basis of data usage. Data should support
one or more business processes. When the data
have been identified, the application can be seg-
mented in such a way that each business process
and its associated data together provide a func-
tional user capability.

Most typical functions. Another way of segment-
ing the application is to determine the most com-
monly used functions. When these are determined,
it may still prove to be too much function to place
into an application segment. A further breakdown
may be required to define more segments that are
smaller and less complex technically.

Simplest functions first. It may become important
to establish I/S department credibility with the
user community early in the project. The percep-
tion that progress is being made can have a pos-
itive influence on management, users, and the de-
velopment staff. The same management team that
was reluctant to allocate budget dollars to a large-
scale project may support projects developed
with the Rapid Delivery method. Users and the
development staff gain confidence when they see
application segments and accompanying capabil-
ities implemented in a timely manner. This means
the simplest functions can be developed quicker,
resulting in delivering functions to the user faster.

This approach is similar to the strategies used to
solve jigsaw puzzles. The simplest way to solve a
puzzle is to first assemble like colors or shapes (e.g.,
the border of the puzzle with straight edges). Once
several segments have been put together, it is easier
to join unlike pieces to the puzzle chunks that have
already been completed until the puzzle is finished.

Most-willing users. With the type of user com-
munity in mind, consider segmenting the appli-
cation by the lines of business, divisions, or de-
partments most willing to accept parts of the
application that will be implemented over time.
Individuals frequently are interested in certain
portions of an application and are ready to com-
mit to the project.

Budgetary considerations. Budgetary consider-
ations are almost always a leading issue. It may be
most beneficial financially and even politically to
develop application segments that give the most
value at the least cost. These situations should be
analyzed carefully to ensure that the appropriate

HouGgH 407

Figure 7 Rapid Delivery horizontal and vertical
application segmentation

application segments are developed, particularly
if the decision made means that development
costs may be higher using Rapid Delivery instead
of another development approach.

Organizational segmentation. Segmentation of
the application by organizational entity may pro-
vide the level of segmentation desired. A partic-
ular line of business, or a specific corporate di-
vision or department, may benefit from their
corresponding application segments being devel-
oped first. Remember that objections may arise
when one organizational unit is “favored” over
another. When applications are segmented by or-
ganization, application segments can be imple-
mented in the least disruptive fashion for other
departments or organizational units. Note how
data will flow from unit to unit within the orga-
nization and deliver functions to the “upstream”
units first.

Build vertical, horizontal, or combination seg-
ments. Consider dividing the application in such
a way that segments can be built vertically, hor-
izontally, or in a combination of both. Figure 7
illustrates this concept.

Dividing the application in this manner allows it
to be built more easily. In this example, the top

408 HouaH

layer of the figure might indicate the user inter-
face while the vertical sections might represent
discrete functions of the application.

Systems and subsystems. If the application con-
sists of subsystems, segment the application into
subsystems. If the subsystems are still too large
or complex to be managed easily, the subsystems
should be further divided into additional applica-
tion segments.

Build to fit contiguous fragments of time. By de-
fining fixed blocks of time, application segments
can be divided to fit into these time frames. The
time frames that may be most useful will typically
be from 90 to 120 days in duration. These appli-
cation segments can then be developed in a con-
tiguous fashion until all of the segments have been
built. This strategy should only be used when
other strategies cannot be used.

Combined segmentation strategy. It may be ap-
propriate to divide the application by using a com-
bination of the previously discussed strategies.
For example, a combined strategy of developing
the simplest functions with the most typical func-
tions may provide the most flexibility in segment-
ing the application for the long term. Consider
combinations of segmentation strategies when a
single strategy will not provide the application
partitioning needed. Note that combining two
segmentation strategies many times also incorpo-
rates other segmentation strategies directly or
indirectly. For example, by segmenting the ap-
plication by building horizontal and vertical seg-
ments combined with developing the simplest
functions first, budgetary considerations may be
directly supported as well. In this example, di-
viding the application in this manner supports a
combination of three segmentation strategies.

Sequence the segments. Once the segmentation
strategy has been selected, the application should
be segmented into its pieces. When the segment-
ing is complete, the segments should be se-
quenced for development. As the segment se-
quence is determined, target implementation
dates should be established for each segment.
This sequencing will determine how each seg-
ment will overlap in the overall development.

At this point, the segmentation, sequencing, de-
velopment, and implementation dates should be

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

documented in a project plan for tracking and
communication purposes. Note that each project
could be developed in a “single-threaded” fash-
ion, with no more than one segment being devel-
oped at a time. A preferable approach is to over-
lap the projects, dividing the developers into
small, independent teams. Once the application
segmentation and sequencing have been com-
pleted, an estimate of the work necessary to build
the first application segment should be deter-
mined.

Develop application segments

Development of each application segment in-
cludes additional requirements gathering, analy-
sis, design, coding, and testing activities. Rapid
Delivery should use the same techniques em-
ployed on any six-to-eighteen-month project.
This section will not discuss in detail the elements
of application development such as analysis, de-
sign, diagramming techniques, coding, testing, or
other development-specific topics since these
elements are discussed in numerous books, arti-
cles, and papers. Incorporated in these tech-
niques should be iteration, an approach that
places the analysis and design and construction
activities into a repeated cycle for a prespecified
number of iterations. If inordinate numbers of
application functions must be pushed into later
application segments, it is a sign of trouble in-
dicating that requirements have not been well
established or that communications are inade-
quate.®

The requirements, design specifications, func-
tions, and features for each segment should be
determined in more detail. Subject matter experts
should be brought together where additional JAD
sessions can be conducted to determine these re-
quirements. This definition should provide suffi-
cient information to allow detailed analysis and
design activities to proceed in the application seg-
ment development activity.

Design for maximum modularity. Provisions
should be made within the overall application for
the most modularity possible. Applications under
development will have portions that will be de-
veloped in a later segment, leaving a gap in the
software. This gap may need to be filled by “stub-
bing out” the function or module that will be de-
veloped later. Stubbing out refers to application

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

code that is incomplete yet allows the application
to be compiled and operate. In designing this
modularity, the applications that must be initially
stubbed out should be designed with the capabil-
ity of easily accommodating future segments of
the application. This capability is referenced here
as a snap-in/snap-out concept. Snap-in/snap-out
provides the ability to snap one application seg-
ment onto the initial application segment. This
snap-on capability should allow modules to be
snapped on (or off) from the “top,” “bottom,”
and “sides” of the application dimensional
model.

Design for organizational flexibility, Frank Land
states that “The extent to which a system re-
sponds to changes is not only a function of the
way the system is constructed but also the type of
organisation in which the system operates. Some
forms of organisation are inherently more capable
of responding to change than others.”' Land
continues, “In considering the question of life-
span and flexibility, the design has to be aware of
any constraints imposed by the style of manage-
ment and the structure of the organisation.” Con-
sider these points when designing parts of the sys-
tem that may need to be changed because of
organizational changes. Also keep these points in
mind when changes in the application segment
sequence must be evaluated.

Design for extendability—the park bench concept.
As already discussed, allowances must be made
in the application architecture and design to ac-
cept additional segments. One concept, the “park
bench,” is useful as an approach for the founda-
tional application architecture and design. The
park bench is used to establish an overall archi-
tectural framework for the application. Once the
overall application architecture has been defined,
the portion of the architecture that will support
the eventual development of the remaining appli-
cation segments is developed. The initial archi-
tectural framework resembles a park bench hav-
ing a back, a seat, and defined sides as indicated
in Figure 8. As each application segment is de-
veloped, stubs are removed from the preceding
application segment(s), and the subsequent ap-
plication segments are snapped onto the pre-ex-
isting park bench, where the segments are inte-
grated as a part of the total application.

Design to accommodate changing requirements.
Categorize application elements according to

HouGgH 409

Figure 8 Application segments—park bench concept

APPLICATION SEGMENTS

— 7NN

Adapted from D. R. Graham,"Incremental Development: Review of Nonmonolithic Life-Cycle Development Models,"
Information and Software Technology,Vol. 31, No. 1 (January/ February 1989).

whether they are likely to change, they might
change, or they most likely will never change.
Application elements that are most likely to
change should be implemented later, if possible,
so that there will be as little impact as possible to
the application when the changes actually occur.
Application elements that might change should be
evaluated for ways in which they can be made less
likely to change and what is required from a main-
tenance standpoint.

Include rigorous configuration management. With
Rapid Delivery, configuration management is es-
pecially important for separating various applica-
tion segments under development concurrently.
Configuration management is used to identify, or-
ganize, and control changes being made to the
application (segments) made by the developers.

410 HoucH

Do not underestimate the effort involved in con-
figuration and versioning of application segments.
Configuration management will gain increasing
significance as a greater number of application
segments have been completed. For applications
that are developed on one platform and executed
on another, ensure that the configuration man-
agement tools can manage across multiple envi-
ronments. As testing progresses, use configura-
tion management to administer the influx of
application defects and necessary application
changes.

Ensure that appropriate test management is ad-
dressed. The importance of testing within Rapid
Delivery projects is no less important than in any
other project. It tends to become somewhat more
complex to manage because multiple application

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

segments may be developed concurrently. In
fact, Rapid Delivery assists in the gradual en-
largement of the test case “base.” This enlarge-
ment allows the test cases to be developed by
different testing specialists for different applica-
tion segments. Ensure that testing requirements
and test cases are addressed at the same time as
application requirements. Communication and
test case reuse is the key to ensuring that test
cases are not specified redundantly. Testing can
be enhanced as application segments are inte-
grated, reducing the overall application size and
complexity that must be tested.

Manage application changes prudently. Careful
management of change requests is of paramount
importance with large projects, with or without
Rapid Delivery. Changes that affect the general
acceptance of the application cannot be ignored.
On the other end of the spectrum, numerous small
changes can cause grievous damage to project
schedules and to project scope. Very frequently,
changes are precisely one of the elements causing
large-scale development projects to fail. Use rig-
orous change management methods and techniques
to deal with changes in the most effective way.

Application segment delivery, integration,
and implementation

Segment delivery is an appropriate place to ad-
dress expectations management and ‘““project
restraint.” As each application segment is deliv-
ered, the development pace of the next applica-
tion segment(s), in general, appears to increase.
This increase in pace may be due to the following:

¢ Code reuse—Code reuse should become more
prominent as each application segment is de-
veloped. As each succeeding application seg-
ment is developed, less initial code should have
to be developed, since some of the necessary
code will already exist.
Increased expertise—As the development of
each application proceeds, the developers’ ex-
pertise will increase as they become more fa-
miliar with the hardware and software used for
developing the application. Additionally, the
development staff will gain knowledge and con-
fidence using Rapid Delivery.
Better understanding of the application—As
development progresses, users, development
staff, and management will increasingly under-
stand the application under development.

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

Ensure that expectations are set so that individ-
uals are not under the impression that the remain-
ing work will take place faster. Properly setting
expectations at this point helps to offset the ur-
gency for developing other application segments
by using shortcuts or cutting corners. Cutting cor-
ners at this point can lead to failure of the project.
Since Rapid Delivery is designed to reduce proj-
ect risk and to increase the success rate for large-
scale projects, it is prudent to exercise “project
restraint” and better judgment in moving the de-
velopment of additional application segments
ahead. Since specific plans have been made for
the development of the application segments dur-
ing the application segmentation activity, man-
agement and users should not capriciously at-
tempt to change development, and therefore
delivery and implementation schedules.

Aristotle said, “What we have to learn to do, we
learn by doing.” A recommendation, therefore, is
to develop a document to capture lessons learned
during the segmentation, development, delivery,
integration, and implementation activities. This
document should provide information describing
both the especially effective approaches as well as
the unsuccessful approaches to segmentation, de-
livery, integration, and implementation. By doc-
umenting this information, these practices can be
exploited or avoided in future efforts.

Finally, be prepared for personnel contention.
Users may be involved in more than one Rapid
Delivery project concurrently. The development
staff may want users’ attention focused on several
of the Rapid Delivery projects underway all at the
same time. Recognizing that this contention will
likely take place will allow the scheduling of users
and enable the proper individuals to be involved
in the appropriate time frames.

Delivery. We define delivery as the completion of
one or more operating application segments.
These will be realized after the application seg-
ment development activity has been completed.
Delivery should be performed using similar tech-
niques as those used with “traditional” applica-
tion development projects. Several elements
apply differently to Rapid Delivery and are dis-
cussed here.

Delivery dates will inevitably become a focal
point in the life cycle of the project. The temp-
tation is to slip delivery dates to accommodate

HougH 411

additional work to make the application more ap-
pealing to the user or to increase its acceptance.
However, do not slip the delivery date. Gener-
ally, when dates are extended, additional work
fills the additional time. Productivity decreases
and harmful after-effects may enter into an oth-
erwise successful project.

Delivery also implies packaging the application,
which means that documentation should be com-
pleted for each application segment. This pack-
aging differs from the “traditional” application
packaging in that each application segment
should be completely documented rather than
creating a single document for the entire applica-
tion. Installation issues should be resolved, pre-
requisites should be identified, and additional el-
ements that should be a part of this packaging and
are specific to each application segment should be
finished.

The users should be prepared for the implemen-
tation of each application segment and the ensu-
ing availability of the additional application func-
tion(s). They should also be prepared to use what
they specified. Again under the category of ex-
pectations management, the users should be re-
minded that the application segment being deliv-
ered will do exactly what was specified by the
user since iteration has been used during the de-
velopment process.

Integration. Integration “marries” each applica-
tion segment to those already produced. During
the integration, the current application segment is
placed on the “park bench.” As each application
segment is integrated, the segment should be
snapped onto the other pre-existing portions of
the application as described earlier.

Implementation. What remains is implementation
of the application into the production environ-
ment. The implementation should be scheduled
for immediate cutover since each delivered ap-
plication segment provides continuity of the ap-
plication and additional functionality not previ-
ously available.

Risk management and progress reviews

Use risk management and progress reviews to
regularly monitor any initial and current risk
factors involved with the project and to assess
the progress of application segment develop-

412 HouGH

ment. Risk management techniques recognize
problems as early as possible, deal with the
identified risks directly, and reduce the overall
risks of the project. Progress reviews assess the
total application, the application segments under
development, and the application segments to be
developed and compare current progress against
the plan. Progress reviews yield a picture of the
total development effort underway, regardless of
the number of simultaneously developed projects
and application segments. Figure 9 illustrates the
relationship between risk management, progress
reviews, and Rapid Delivery application seg-
ments.

This figure shows a portion of a project plan that
indicates the relationship between progress re-
views and application segment development. It
indicates how progress reviews occur every three
months. Risk management is shown at the bottom
and extends throughout the life cycle of all on-
going Rapid Delivery projects. By conducting on-
going, scheduled progress reviews, the progress
of the application can be assessed.

Risk management. Risk management requires the
commitment and participation of corporate exec-
utives, /S management, and development person-
nel. It monitors Rapid Delivery projects and im-
proves on traditional development approaches by
identifying potential risks, recognizing existing
risks, and reducing project risks before they jeop-
ardize the large-scale project. These risks have
been discovered by others where a “. . . software
risk-reduction phase is appropriate, even for a
software-based system not requiring hardware
development or special integration.”* Risk man-
agement evaluates each application segment be-
ing developed and provides a standard against
which the ongoing risk management process can
be measured. The outcome of the risk manage-
ment activity may lead to a determination of
whether a project should be continued, adjusted,
or terminated.

Risk management should examine questions
unique to Rapid Delivery such as the following:

e If development problems exist, should they be
corrected before going on with the development
of the remaining application segments?

* Should development be stopped until existing
problems are fixed before developing the next
application segment(s)?

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

Figure 9 Relationship of risk management, progress reviews, and Rapid Delivery application segments

PROGRESS REVIEW

* Should development efforts simply continue
while simultaneously trying to resolve existing
problems?

At the inception of each Rapid Delivery project,
an initial risk assessment should be conducted to
identify elements of the project that may increase
the risk or impact the success of the project.
Based on studies performed by McComb and
Smith,® the following elements are project com-
ponents that should be initially assessed and then
monitored throughout the project:

Planning and executing. The planning and exe-
cution factors that must be dealt with carefully
are:

» Estimating—Estimates should be evaluated for
accuracy. Approaches to estimating are not at
issue as much as the accuracy that an approach
yields. Ensure that estimates and appropriate

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

personnel are available and that sufficient time
has been allotted to complete tasks within re-
alistic time frames.

Compression—If the project schedule is being
compressed, ensure that the schedule is realis-
tic. The schedule should be one that can be ac-
complished without resorting to unusual steps
to attain it.

Change management—Bad change management
can cause a large project to fail, almost overnight.
Assure the development staff that changes will be
managed effectively and that changes affecting
development activities will be properly pro-
cessed. This assurance alone should greatly en-
hance the development process and should re-
duce the frustrations brought about by a steady
stream of change requests. Changes that have
been mismanaged or not managed at all can cer-
tainly cause a project to fail.
Workarounds—Ensure that problems are dealt
with directly rather than being “creatively” re-

HougH 413

solved. Circumventing certain business practices
such as appropriate use of naming conventions
and standards inevitably causes problems. Make
sure that inconsistencies such as work estimates,
resources, and delivery dates are identified and
properly resolved. Pinpoint dependencies and
make sure that dependent project elements are
dealt with appropriately. Elements such as hard-
ware that must be in place before another task can
begin is an example of a potential workaround
situation. Oftentimes such a situation is managed
by performing the testing on existing hardware
which may, in turn, impact other work being cur-
rently executed on the project.

Human. These project aspects have to do specif-
ically with human factors.

* Bid strategy—When using external contracting
resources, be aware that the lowest-priced con-
tractor may also carry the most risk. Low bidders
many times have less expertise and, therefore,
reduced overall productivity. If work estimates
are based on a higher skill base, risk will be in-
troduced into the project if the estimates do not
also take skills into account. Alternatively, the
highest priced contracting resources should be as-
sessed for the appropriate credentials to ensure
the added price is warranted.
Staffing—Adequate personnel for the project
means not only having the proper expertise but
also having project personnel who are moti-
vated. When skills are lacking, consider either
additional training or soliciting assistance from
other more skilled internal or external re-
sources who can bring skills to bear on the cur-
rent project. Staff turnover can be handled by
ensuring that the application segments are de-
fined, when possible, so that the ability to move
personnel in and out of the project in an orderly
fashion exists.

Scheduling—Scheduling elements that impact
risk and should be assessed are elements such
as activity sequencing and scheduling. These
activities should support the goals of the proj-
ect. Assess whether the schedule has some de-
gree of flexibility built into it to allow for the
addition or insertion of other activities or
projects. Examine the overall sequencing of ap-
plication segment development to make sure
that the sequence of development still applies.
Feedback—Feedback should be sought through-
out the project. Feedback is an important tool that
can be used to judge perceived as well as real

414 HoucH

elements of risk. Information gained by feedback
should come from management, users, and the
development staff. The feedback received can act
as a catalyst in identifying potential risks, recog-
nizing risks that already exist, and indicating the
considerations for corrective actions.
Motivation—Motivational project risks involve
project personnel that may be a potential danger
to the health of the project. Personnel treating
the project more as a career than a short-lived
project should be identified. Motivation within
the project (or lack of it) can have a noticeable
impact on the project. Rewards may handle the
motivation aspects of a large-scale project.
User involvement—Having the appropriate
users involved in the project can enhance the
project by providing the expertise and knowl-
edge necessary to examine portions of the ap-
plication. Ensure that users are appropriately
trained to use the application that is being pro-
duced. Involvement in the development of the
application as well as training will ensure that
the application is accepted by the user commu-

nity.

Technical. The technical risks of a project are
varied and may be the very elements that most
endanger the project. Several of these are dis-
cussed below:

* Experimenting with new technology—Of all of
the technical risks, experimentation with new
technology may carry the highest risk. When
technology that has either just been announced
or is in a beta (test) form is used in a project, the
technology should be assessed to determine
whether it is the best technical solution, not just
the most current. The amount of available ex-
pertise should also be evaluated as well as the
availability of support for the technology.
Technical architecture—Technical architecture
that has never before been developed can also
present risks in application development. En-
sure that technical architectures are consistent,
well-designed, durable foundations on which
the application segments can be built.
Control—Ensure that controls within the appli-
cation are identified early so that they can be
incorporated directly in the application design.
Controls added later are frequently not easily
added and may cause undesirable side effects
such as degraded performance.

¢ Performance—Identify potential performance
problems and address them directly. Addition-

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

ally, locate organizational units that require a
specific performance level for the application.
Ensure that the application to be built is devel-
oped on a platform capable of providing the de-
sired performance.

& Products—Risks common to products used in
the project relate to hardware and software. As-
sess the background of these products carefully
to identify products that are not well-known,
products that do not have a history of reliability,
or products with a poor record of support.
Newly introduced products should be closely
examined to ensure their suitability to the proj-
ect.

It is recommended that an initial risk management
review be conducted before the start of develop-
ment for the first application segment. It is also
recommended that a risk management review be
conducted on a quarterly basis. When conducting
areview, assess whether the project is on track or
if it is in trouble. If the project is having difficulties
caused by a negative risk, corrective actions
should be identified and executed. Consider con-
ducting a risk management review on a monthly
basis until the project is back on track and risks
have been made acceptable.

Progress reviews. Progress reviews are intended
to evaluate the overall long-duration project as
well as each application segment under develop-
ment. Progress reviews are directed toward dis-
semination of information related to where each
application segment development is in relation to
the overall project. This direction provides the
ability to communicate information about where
the development work is presently situated and
how much work remains until the application is
done.

Progress reviews should assess work to date,
what is on time, what is not and reasons why not,
and the corrective actions required to bring the
project into agreeable tolerances. Progress re-
views also provide the ability to evaluate new
technologies to determine their impact if they are
added to the development “recipe.” If new tech-
nologies are identified, attempt to change the un-
certainty of the new technology to a risk. Finally,
progress reviews can ensure that the next appli-
cation segment to be developed is fully sup-
ported. Full support means that funding has been
or will be approved and that the organization as
a whole finds value in the continuation of the

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

Rapid Delivery project. Plan on conducting a pro-
gress review every three months.

The most successful Rapid Delivery projects will
be the ones where the application segment is de-
veloped in the allotted time. Delaying work from
one application segment to the next may indicate
trouble and frequently means that the application
segment was planned too aggressively or too
much work was placed into a specific application
segment.

The advantages of Rapid Delivery

Rapid Delivery provides the ability to make ap-
plication capabilities available to the business
user in a scheduled, regular fashion. Project aban-
donment is reduced since risk management
and progress reviews are embedded within the
method. These activities ensure that risks are
identified that otherwise might jeopardize the
project. By gathering the requirements for each
application segment at the time that they are to be
developed, urgent user requirements can be in-
cluded that otherwise might be excluded or go
unrecognized using a monolithic development ap-
proach. With this method the application can
evolve and respond to changes in business. Since
each application segment is developed sepa-
rately, the risk of underestimating development
effort is reduced as estimating is performed for
each application segment. These advantages and
others are discussed next in further detail.

Provides early contributions to the corporation.
Since applications are composed of useful user
functional capabilities, each delivery can contrib-
ute immediately to corporate profit streams. Sim-
ilarly, application segments that include compet-
itive advantage components can provide this
advantage to the enterprise when the competitive
opportunities exist, not later when the advantage
can no longer be exploited. Finally, the applica-
tion segments can be used immediately after they
have been made available.

Improvements in behavioral factors. Behavioral
factors include mistakes made in estimating proj-
ect time, budget, staffing, and scheduling. All of
these estimates become much easier for projects
of six to eighteen months or less than for multi-
year projects. Errors are discovered much sooner
because each project is shorter. User involve-
ment is critical to the building of systems that

HouGgH 415

users find to be effective. Beyond these factors
are technical considerations. One technical factor
that frequently leads to failure is the inclusion of
new or “emerging” technologies. Long-duration
projects certainly have enough risk without intro-
ducing technological factors. Second, technical
considerations are often overlooked when assess-
ing an application to be developed—applications

As components of Rapid
Delivery, risk management and
progress reviews reduce
frustration.

may be much more complex than first thought.
Rapid Delivery deals directly with these risk ele-
ments by incorporating risk management into the
development cycle.

Reduces the risk of runaway projects. Studies
demonstrate that management may lose patience
with the development of an application and finally
abandon the project out of sheer frustration. This
outcome may be manifested in a project that
seems to be hopelessly off track and doomed to
failure. Runaway projects never end; therefore,
management should consider canceling these
projects. Risk can also be related to urgency.
When delivery of an application is absolutely ur-
gent, the development risk is automatically in-
creased as urgency generally effects quicker ac-
tions, causing important activities to be missed or
to be performed with less rigor. Political risk may
also be involved with the project such as corpo-
rate political implications and general opposition
to the new system. Rapid Delivery alleviates
these elements by delivering functions signifi-
cantly earlier. Risk management and progress re-
views as integral components of the Rapid De-
livery method reduce frustration by identifying
these elements early and then providing the abil-
ity to manage them from the point where they are
identified.

Diminishes the risk of never completing the proj-
ect. Sometimes the risk of never completing a

416 HougH

project stems from overstated expectations.
When management and users alike believe appli-
cations will deliver more than can reasonably be
accomplished, the expectation will change unless
it is explicitly reset or redirected. Ambiguous
project objectives always affect the risk of a proj-
ect and many times lead to a project never being
completed. Likewise, project objectives that start
out very clearly defined and then crumble be-
cause of mismanaged changes issued against the
developing application are prime candidates for
never being completed. “Fuzzy” application re-
quirements and design specifications also lead to
high-risk projects; it is difficult to build something
that has not been articulated clearly. Dividing the
application into application segments enhances
requirements gathering by identifying only the re-
quirements and design specifications necessary to
build the application by each of its sequenced seg-
ments.

Another key point is that applications that have
been developed to a point can be examined on a
continuing basis. Applications that should not be
completed can be identified earlier, providing
cost savings on projects that would otherwise be
built. Flawed applications can be identified, and de-
velopment resources can be redirected to proj-
ects that are perceived to be of more value to the
corporation.

Lessens the risk of missing important or urgent
user requirements. Avoiding or missing important
user requirements is project suicide since the final
recipient of the completed application is the user.
Moreover, user requirements that become in-
creasingly important must also be addressed so
that they can be built into the application in a
planned fashion. To complicate matters, it is of-
ten difficult to gain consensus across departmen-
tal boundaries when several departments are to
provide requirements for the application. These
requirements are often inconsistent and conflict-
ing. Rapid Delivery provides the ability to man-
age these requirements by gathering user needs
and design specifications at the time when each
application segment will be built, thus providing
the ability to manage changing requirements. Ad-
ditionally, as the users gain experience with the
application and its growing capabilities, they will
begin to find new ways to use it and discover new
application requirements to support these uses
that otherwise might not be specified as part of the

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

application development by using a monolithic
approach.

Encourages concepts that make the project adapt-
able. Sometimes projects fail for reasons related
to adaptability. When enterprise reorganizations
take place, projects are frequently impacted by
changes in priorities and the level of importance
with which projects are viewed by the individuals
in the changed organization. Project objectives
that frequently change also require projects to
have the ability to adapt to the situation and sur-
vive. Business changes also may impact the way
business is conducted as well as the pace of the
changing business environment. A secondary
point in project adaptability is in the area of tech-
nology. Since Rapid Delivery focuses on evolu-
tionary principles, technological changes can be
injected into the development effort as appropri-
ate. Rapid Delivery incorporates risk manage-
ment and progress reviews, which keeps the
application flexible in changing business and tech-
nology environments. Rapid Delivery capitalizes
on change by making well-managed change ad-
vantageous so as to provide users with the func-
tional capabilities they want in a timely fashion.
Finally, when new application segments are in-

tegrated with existing ones, potential perfor-
mance problems can be more easily identified. If
the application performs well before a new appli-
cation segment is integrated, problem determina-
tion time can be reduced, as the most recent ap-
plication segment is the most likely culprit.

Reduces the risk of underestimating effort. Since
Rapid Delivery does not attempt to totally define
the application requirements at the beginning of
the development project, the risk of underesti-
mating the amount of effort required to produce
the application is reduced. Segmenting the appli-
cation development effort permits a better esti-
mate of the necessary effort. Additionally, as in-
creasing skill is built into the development of large
projects, the increased skill can be used in future
development effort estimating. Since each appli-
cation segment is estimated separately, the risk of
underestimating the effort should be greatly re-
duced.

Enhances application completion flexibility. When
the application matures to a certain point, it may
be advantageous to discontinue the project when
sufficient functionality has been delivered. This
means that the application can be developed only

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

to the point of benefit and not beyond, as would
be the case with traditional development ap-
proaches. In addition, application segments that
have not been started can be resequenced if ap-
propriate.

Increases I/S responsiveness and credibility. As
each application segment is delivered, the user
community will see the I/S organization as in-
creasingly more responsive. I/S credibility will be
boosted since application segments and user
functional capabilities are delivered in a regular,
scheduled manner. Application functionality is
increased with each delivery, and schedules,
which were previously not met, will be seen as
project milestones to be looked forward to.

Provides an early capability to train users. When
each application segment is being tested, the ca-
pability to bring in users to assist in the testing
exists. Use this early application availability to
also train the users on each functional capability
that evolves over time. In this way, the users can
more easily absorb and internalize the application
as opposed to traditional development patterns in
which the users must master the entire applica-
tion all at one time.

Improves the installability of applications. As each
application segment is defined and developed, the
ability exists to install smaller, more manageable
components of the application. These smaller
components make the installation and integration
easier, faster, and less trouble-prone. It also
makes better use of I/S resources.

Considerations for this method

The evolutionary approach may lead some indi-
viduals to attempt to define every thinkable
application function into the first application
segment. This phenomenon occurs in general be-
cause individuals unfamiliar with the evolution-
ary approach may fear that the application will be
terminated early or be abandoned, or the ap-
proach discontinued. Ensure that each applica-
tion segment contains reasonable numbers of
functional capabilities.

Rapid Delivery is most favorably used with the
development of applications that do not presently
exist. This observation can be attributed to the
segmented delivery of applications. When Rapid
Delivery is used to replace portions of an already

HoucH 417

existing, complete application, “trestles and
bridges™” must be built between the old and the
new application to provide all of the capabilities
available within the existing software as well as
providing access to the replacement functions in
the new software. These trestles and bridges may
be as simple as a single interfacing program be-
tween the two applications, to a series of pro-
grams that must be written to accommodate the
entire spectrum of user capabilities in both the
new application and the old application. Later, as
functions are added to the new application, the
trestles and bridges can be removed.

When the system is designed, consider the du-
rability of the application. If a bad design decision
is made or an inadequate application architecture
is defined, it will be difficult to build the remainder
of the application. Modifying additional applica-
tion segments to fit a bad design or architecture
will trigger additional application maintenance
later to force inconsistent application compo-
nents to fit. This application maintenance is one
of the fundamental elements that Rapid Delivery
attempts to address.

Ensure that there are individuals within the or-
ganization who have been trained in risk assess-
ment, risk analysis, and risk management. The
risk management process can also be used in the
training and education process. As project risks
are assessed and new risk exposures are discov-
ered, the information should be documented and
communicated across the development organiza-
tion. In this way, undesirable risks can be avoided.

It is not advised that Rapid Delivery projects be
staffed with inexperienced, or junior-level, devel-
opment personnel. To do so may cause many of
the problems that Rapid Delivery attempts to
alleviate.

Summary

We have described an evolutionary approach that
can be applied to large-scale application devel-
opment projects and review the key points here.

Rather than attempting to develop the application
as a single, large project, requirements are gath-
ered at a high level during the high-level require-
ments activity to break the application into ap-
plication segments. During the division, an
application segmentation strategy is selected.

418 HoucH

The application is segmented and is followed by
ordering the segments into an overall develop-
ment sequence. The completion of each of these
projects provides the ability to regularly inject
increasing functionality into the delivered appli-
cation base, having it evolve over time.

Application segment development uses standard
development methods and techniques but adds
iteration. In this way it takes advantage of exist-
ing skills within the enterprise while reducing the
need for expensive training and education. Ap-
plication segment delivery takes place at the com-
pletion of each application segment. Once com-
pleted, each application segment is integrated
into the existing environment and is implemented
in the production environment during the integra-
tion/implementation activity.

Ongoing activities decrease the overall risk of the
project and improve on development schedules.
Risk management provides the ability to manage
risks from the point of identification. Progress re-
views track the status of the overall project at
regular intervals rather than more traditional
“phase exits”’—phases can no longer be identified
for the overall projects.

'Cited references and notes

1. Personal communications with anonymous client
sources. These data were gathered through client inter-
views and conversations.

. P. Atkinson, “Ten Top Shops,” Canadian Datasystems
22, No. 9, 34, 39 (September 1990).

. L. H. Young, “Product Development in Japan: Evolution
vs. Revolution,” Electronic Business 17, No. 12, 75-77
(June 1991).

. Anonymous, “What Makes Yoshio Invent?,” Economist
318, No. 7689, 61 (January 12, 1991).

. P. R. Melichar, “Management Strategies for High-Risk
Projects,” IBM Information Systems Management Insti-
tute; available from the IBM Consulting Group.

. D. McComb and J. Y. Smith, “System Project Failure:
The Heuristics of Risk,” Journal of Information Systems
Management 8, No. 1, 25-34 (Winter 1991).

. I. Rothfeder, “It’s Late, Costly, Incompetent—But Try
Firing a Computer System,” Business Week (November
7, 1988), pp. 164-165.

. M. A. Griesel, Incremental Development and Prototyp-
ing in Current Laboratory Software Development
Projects: Preliminary Analysis, JPL Publication 88-41,
NASA Jet Propulsion Laboratory, California Institute of
Technology, Pasadena, CA.

. Object, in this sense, is intended to be analogous to the
user interface object-action approach. We define an ob-
ject as being a thing that is to be manipulated. Actions are
performed upon an object.

. F. Land, “Adapting to Changing User Requirements,”

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

Information and Management, North-Holland Publishing
Co., New York, No. 5, 59-75 (1982).

. W. B. Foss, “Software Piecework,” Computerworld
(September 23, 1991), pp. 69-70, 74.

. U.S. Air Force, Adapting Software Development Poli-
cies to Modern Technology, National Research Council
Commission on Engineering and Technical Systems,
Washington, DC (1989).

General references

L. J. Arthur, Rapid Evolutionary Development, Require-
ments, Prototyping & Software Creation, John Wiley & Sons,
Inc., New York (1992).

L. J. Arthur, Software Evolution—The Software Maintenance
Challenge, John Wiley & Sons, Inc., New York (1988).

B. W. Boehm, “A Spiral Model of Software Development and
Enhancement,” Computer 21, No. 5, 61-72 (May 1988).

D. R. Graham, “Incremental Development: Review of Non-
monolithic Life-Cycle Development Models,” Information
and Software Technology 31, No. 1, 7-20 (January/February
1989).

E. V. van Horn, “Software Must Evolve,” Software Engi-
neering, H. Freeman and P. M. Lewis, Editors, Academic
Press, New York (1980).

D. L. Hough, Rapid Delivery, Incremental Development, and
Prototyping: Methods for Responsive Applications Develop-
ment, IBM Consulting Group, IBM Corporation (1993); avail-
able from the IBM Consulting Group.

Accepted for publication March 15, 1992.

Donald Hough IBM Consulting Group, 1605 LBJ Freeway,
Dallas, Texas 75234. Mr. Hough is a consultant within the
IBM Consulting Group, specializing in application develop-
ment methodologies. He has developed methodologies for
both IBM and other clients and has served as consultant in the
use of methodologies, their implementation, cultural and or-
ganizational impact, and accompanying education. He has
also managed application development efforts in the financial,
telephony, oil and gas, government, research and develop-
ment, and transportation industries. Mr. Hough has devel-
oped methods for Rapid Delivery, Incremental Development,
and Prototyping for use by IBM and its customers worldwide.
In addition, he has authored an IBM application development
methodology book, Rapid Delivery, Incremental Develop-
ment, and Prototyping: Methods for Responsive Applications
Development. He has spoken to a variety of professional
groups on methodologies, evolutionary development, and

prototyping.

Reprint Order No. G321-5518.

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

HougH 419

