Process automation
in software application
development

Over the years, the field of application develop-
ment (AD) has evolved from that of an art

form to being more of a science, hence the
emergence of concepts such as information
engineering. In engineering and scientific fields,
the value of process definition and management
has long been known. This paper discusses the
requirements for managing the AD process and
establishes the need for automated assistance
for these management activities. Considerations
for an automated system to manage the process
are presented, and the benefits to be realized by
such an implementation are then discussed.

he development of software applications is

certainly one of the more complex human
activities. For large projects, it requires the close
cooperation of many people with distinct respon-
sibilities. In an effort to bring more structure to
development efforts and increase productivity
and application quality, current trends in devel-
opment have leaned toward an engineering ap-
proach using computer-aided software engineer-
ing (CASE) tools and more rigorous methods.
CASE tools offer a more structured way to do data
and function modeling and development by of-
fering tool support in these areas. However, in
order to achieve higher quality products and to
increase productivity, activities must be planned,
managed, and evaluated. The people on the proj-
ect team represent a critical factor toward achiev-
ing the goals of a project. If we can create a syn-
ergy between the project team and a managed
process, and enable people to perform creative
work more productively, our outlook for predict-
ably successful projects is considerably en-
hanced.

3706 SARACELLI AND BANDAT

by K. D. Saracelli
K. F. Bandat

As in other industries, managers of software ap-
plication development are faced with the chal-
lenge of increasing the productivity of their de-
velopment teams, and at the same time, improving
the quality of the applications they deliver to the
end user. Factors that greatly influence their ability
to affect these challenges include: reliable predic-
tion of project costs, tracking development projects
already in progress, meeting committed schedules,
securing and keeping adequately skilled designers
and developers, and being able to handle changes in
a timely and controlled manner. Faced with these
management and process-related problems, they
find themselves reacting to, rather than being in a
position of proactively managing, the day-to-day
work. The methodology for a development effort of
6 to 12 months often consists of 400 to 500 identi-
fiable tasks. Performing and managing such a large
number of tasks does not leave project managers
and teams much time to look at improving produc-
tivity and quality. Thus these important areas can
quickly become obscured by daily pressures.

Historically, there have been many tools and
techniques that were intended to increase pro-
ductivity and quality. These tools and techniques
have been used in application development with
some success. However, the benefits have been

©Copyright 1993 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

incremental. What is needed is a more holistic
approach, one that can be used by developers,
designers, analysts, and testers alike, to yield re-
peatable, predictable results and alleviate the
churn that dealing with chaos can cause. Watts
Humphrey (formerly of the Software Engineering
Institute) felt that to attain this approach, we
would need to provide more advanced tools, tech-
niques, and management, but that it would take
sound process management to achieve required
quality objectives.! Applying process manage-
ment principles without a great deal of automated
assistance can provide the essential basis for pro-
cess improvement, including repeatability, pre-
dictability, and a greater awareness of the activ-
ities and deliverables. However, an application
development (AD) solution that includes an auto-
mated process management system can provide a
more consistent and repeatable basis for manag-
ing application development efforts and for im-
proving them.

A methodology solution for application develop-
ment. A methodology is a collection of methods
and tools, designed and arranged so as to provide
guidance in achieving a specific objective. Whereas
a CASE environment provides a set of tools for the
AD work, a methodology defines a consistent and
efficient way of applying these tools, and adds sup-
port for the aspects of project planning, adminis-
tration, and evaluation. A methodology includes
the enactment of a defined process. It provides the
guidance for the entire life cycle of application de-
velopment, using what exists in AD: deliverables
(the output, or work product, resulting from a given
activity or task), tools, and methods, to name a few.
In addition, it must provide the framework for a
logical and smooth progression of work from one
activity to another, eventually delivering the final
application to the end user. The value of the meth-
odology is that it provides predictability and repeat-
ability, encourages adherence to organizational
standards for quality, and uses the accumulated
experience of the developers. Thus, the developers
are not left to figure out how to do development on
their own but can capitalize on this knowledge and
experience.

Components of an AD process solution. A well-
thought-out AD process is an integration of pro-
cess management, project management, and meth-
odology. These three form the infrastructure upon
which development projects are performed. Metric
collection and analysis must be done for each spe-

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

cific project. The activity-related information, such
as completion date, duration, resources required,
and the deliverables produced, needs to be tracked
and analyzed so that any out-of-line conditions can
be hzandled and the project replanned as appropri-
ate.

Figure 1 illustrates the interrelationships of these
components. First, within a specific project (rep-
resented by the top three tiers of the component
pyramid), project results are continuously fed
back into the project plan. This in turn is re-
planned as required, appropriate changes are
made to the project-specific process, and the proj-
ect continues until complete. Second is the im-
provement of the overall AD process based upon
the collective results of actual projects. As we
shall see, this is at the heart of all total quality
management (TQM) programs. Predictability and
repeatability are possible through this system of
feedback and continuous process improvement.

Although formal education is required for build-
ing the skills needed to reach proficiency as a
software developer, the methodology facilitates
on-the-job training by guiding the developers
through the activities and deliverables, helping
them to see the progression of events, while
alleviating extraneous work. The methodology
should provide guidance with tool usage, with or-
ganizational standards (such as common user ac-
cess and documentation standards), and with de-
liverable samples (for example, a developer pulls
down a window and gets immediate help for any
step in the process). This kind of guidance or on-
line help reinforces learning, as it enables the de-
velopers to see a practical application of the new
information while doing the work, making it more
meaningful and relevant in the context of their
job. One example of an on-line help capability is
a hypertext application, such as SAA* (Systems
Application Architecture*) BookManager*.> A
hypertext application typically provides text in a
display-oriented fashion, providing additional
navigation features such as links and searches
through the document.

Requirements for process management

The need to implement an AD solution that includes
process management is derived from several
sources. First and foremost are the direct require-
ments from development organizations that are
seeking a new approach to AD to help them to re-

SARACELLI AND BANDAT 377

Figure 1 AD solution components and feedback loops

CONTINUOUS:
IMPROVEMENT

OF PROCESS

alize increased productivity and product quality.
Second, we consider the environment within which
we find ourselves in the 1990s, where fotal quality
management is having a major influence on the
products we create and the processes we use to
produce them. Intrinsic to the quality of a process
is its usability, and we consider the implications of
human factors in process management.

Requirements from development organizations.
The authors have gained their experience in this
area by previous work in the field, particularly
with the IBM process management tool Applica-

378 SARACELLI AND BANDAT

tion Development Project Support (ADPS).* The
feedback from customers using ADPS, along with
several reviews and analyses of the product, val-
idated the general approach taken and brought
out requirements for future extensions of func-
tions originally offered by the ADPS products. Pro-
totyping work in this area is progressing.

In 1987, the Application Development Joint Proj-
ect (ADJP) was formed by the International User
Group Council (TUGC). The ADJP members repre-
sented Australasian SHARE/GUIDE, GUIDE Inter-
national (U.S.A.), G.U.LD.E. (Europe), SHARE Eu-

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

ropean Association (SEAS), and SHARE (U.S.A.) in
both the commercial and scientific and engineer-
ing fields. This group’s mission was to advise IBM
of requirements for functions that would result in
a “significant increase in application develop-
ment productivity.”® The resulting Application
Development Productivity Strategy paper repre-
sented a compendium of needs from over 15 000
member organizations worldwide. The paper
pointed to an application development environ-
ment (ADE) as the way for IBM to “enable its cus-
tomers to produce efficient, high-quality applica-
tions with an order of magnitude improvement in
application development productivity.”> One of
the key features of the ADE is the automation of
process management that would provide many
functions, including: automating work flow, in-
voking tools, triggering tasks at appropriate
times, reporting process status, and describing
states and state transitions of deliverables. Other
desired features were intertask communication, a
tool interface, and a method to validate the work
produced with respect to correctness, or an indi-
cation of which part of the process was respon-
sible for the error.

This set of requirements developed by the ADJP
was further expanded by the subsequent work of
the Application Development Management Proj-
ect (ADMP). ¢ This follow-on IUGC project included
afocus on cross life-cycle services (those services
that affect more than one area of AD), including:
project management, process management, and
metric requirements, and emphasized the need
for an information model to contain business and
project-related information. Their work empha-
sized that the current processes are poorly de-
fined, difficult to manage (enforce, automate, and
measure), and do not allow for formal change
control to be implemented. There was also an
acknowledgment that the present situation left
their AD organizations unable to deliver products
of consistent quality and cost. One of the points
made was that automation was required to do
effective process definition and measurement col-
lection, and further, that links to project manage-
ment were necessary. Their work discussed the
need for project and process synergy and pro-
posed that enabling these cross life-cycle facilities
was the only way to achieve the order of magni-
tude productivity improvement.®

The environment. In the 1990s, we find ourselves
in a worldwide movement to improve quality in

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

every industry. Application development is not
immune to the problems that poor quality prod-
ucts cause. To better understand the environ-

We are concerned about product
quality and process quality.

ment, we first need to differentiate between the
two areas of the quality emphasis.

The focus on quality is twofold; on the one hand,
we are concerned about product quality—the end
result or deliverable of a series of activities. Prod-
uct quality is typically thought of in terms of num-
bers of defects per production run, mean time to
failure, or other tangible characteristics that are
readily measurable. Product quality has been a
focus of manufacturing for years, and in applica-
tion development we have successfully used var-
ious methods of inspecting for product quality.
These methods include peer reviews and code
walk-throughs, in which the objective is to vali-
date the logical flow and determine if the code will
perform the desired function. Application quality
is typically measured in terms of defects, re-
sponse time, and end-user satisfaction.

Contrasted to product quality, but complemen-
tary to it, is the quality of the process that is em-
ployed to produce the deliverable. Process qual-
ity has to do with the ease of navigation through
the required activities, the ease of executing se-
lected activities, and the predictability and reli-
ability of the end result, or product. Traditionally,
we have focused on product quality. Only re-
cently has the importance of the process by which
we do our work been acknowledged as a major
contributor to the quality of the product. The em-
phasis on quality, of both product and process, is
of worldwide concern, as shown in the require-
ments from ADJP/ADMP.>$

ISO 9000. The International Organization for
Standardization (I1S0) has published a set of stan-
dards for developing processes to establish reli-
able contracts for the delivery of quality products

SARACELLI AND BANDAT 379

between supplier and purchaser. Since develop-
ing software was seen as a problem with very
specific properties that differed from manufactur-
ing hardware products, ISO has issued a specific
standard 180 9000-3 on “Guidelines for the Ap-
plication of 150 9001 to the Development, Supply
and Maintenance of Software.”’

This standard requires that suppliers establish a
quality system for the life-cycle activities of a
product, beginning prior to the development life
cycle, at the contract stage. Here, the purchaser
identifies requirements and product parameters,
and the supplier makes contractual commitments
to deliver a product that conforms to these re-
quirements. The overall objective of the quality
system is to ensure that both supplier and pur-
chaser have the capability to meet their contrac-
tual obligations. The 150 9000 standards require
the supplier to submit a well-defined description
of their quality system for certification.

A quality system, as defined by 1S0O, consists of
many elements that must be present and audit-
able, including: product identification and trace-
ability, inspection and test status, special controls
for nonconforming products, documentation and
records, training, and use of statistical techniques
for quality measurements. Automation is not a
requirement for a quality system. In the 150 9000
sense, system (typically thought of in computer
terms) refers more to a comprehensive program
with feedback loops for error correction and im-
provement.’

In addition, 1s0 9000 suggests what major func-
tions a quality system for the life cycle of software
development should support and requires a pro-
cess with certain properties. The process of the
quality system must be well documented, must
analyze causes of nonconforming products, and
analyze and improve all processes and their com-
ponents. The term quality is used here in the
sense of conformance to specifications in general.
The standard also requires well-defined manage-
ment authority and responsibility for ensuring
that the requirements of 13S0 9000, as expressed in
the certified process, are implemented and main-
tained throughout a project.

The components of a life-cycle quality system
recommended by 1SO 9000-3 represent the known
aspects of good software engineering techniques.
The process definition must be available for in-

380 SARACELLI AND BANDAT

dependent, external inspection by purchasers,
thus requiring a particular emphasis on complete,
well-structured and accessible documentation for
all aspects of the quality system. While executing,
the process must be monitored and recorded so
that adherence to the certified process can be au-
dited throughout the project. The documentation
and audit files must be retained for a defined pe-
riod after conclusion of the project. The mode of
implementation of a quality system is left open to
the supplier. But many aspects of documentation,
recording, and auditability will strongly suggest
computer support for a quality system.

Malcolm Baldrige Award. The Malcolm Baldrige
Award was developed as a result of the Malcolm
Baldrige National Quality Improvement Act of
1987. This act called for a national quality award
with the intent of increasing the quality of U.S.
companies, as part of a national quality improve-
ment program.® The act established award crite-
ria with which companies could assess their qual-
ity improvement efforts. The Malcolm Baldrige
Award represents the highest rating for quality
attainable in the United States. The criteria for
assessing an enterprise according to Baldrige
standards emphasize a number of key process
concepts.

The award system has seven major categories
that are separately assessed, contributing to a to-
tal attainable point value of 1000 points (in all
categories combined). These are:

. Leadership (90)

. Information and Analysis (80)

. Strategic Quality Planning (60)

. Human Resource Development and

Management (150)

5. Management of Process Quality (140)
6. Quality and Operational Results (180)
7. Customer Focus and Satisfaction (300)

The fifth category, Management of Process Qual-
ity, includes: process quality, continuous im-
provement of processes, quality assessment, and
documentation, among others. Each of these has a
corresponding point value that contributes to the
overall 140 points for the category. The assessment
looks for any approach to manage and control the
process that will yield verifiable, repeatable results
that meet customer needs.® Although a process is
explicitly assessed in this category, most other cat-
egories focus on management systems and pro-
cesses as well.

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

The focus on information quality is pervasive
throughout the Baldrige assessment and accounts
for approximately 30 percent of the total score.
An example of an individual category’s emphasis
is that of database quality, within the Information
and Analysis category. This focus has resulted in
the category point value being increased from 70
to 80 points. “The database that is used to mea-
sure the progress of the organization in meeting
its goals is one of the most important factors in the
quality system.”? In fact, the point value for col-
lecting and using company data has doubled, from
20 to 40 points. This emphasis on metric collec-
tion and analysis places additional requirements
on an automated quality system.

Within IBM, which uses the Baldrige model as the
basis for its market-driven quality program, the
Management of Process Quality category empha-
sizes the importance of the definition, manage-
ment, and improvement of processes. Assess-
ment is based upon three factors: approach,
deployment, and resuits, with a percentage of the
total possible points given for various stages of
attainment.

Deming philosophy. W. Edwards Deming is an
international consultant and a member of the Na-
tional Academy of Engineering. Deming’s man-
agement philosophy was adopted by Japan in
1950 and is credited with greatly influencing the
Japanese transformation into a world-class indus-
trial nation. In 1980, the American Statistical As-
sociation established the annual Deming Prize for
improvement in the areas of quality and produc-
tivity.

The Deming approach’ focuses on statistical pro-
cess control and process measurement, resulting
in quality being built into a product, rather than
requiring postproduction inspections for defects
and errors. Deming’s 14-point program for trans-
forming the industry, based on improved quality
and productivity, addresses areas such as mini-
mizing cost, instituting training on the job, lead-
ership, and eliminating production quotas.

Deming, in his discussions about manufacturing
processes, asserted that the definition, scrutiny,
and control of the process (process management)
would provide opportunities for process improve-
ment. Process improvement would, in turn, lead
to manufacturing improvement because it forces
people to look at the design and manner in which

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

something is produced. This scrutiny provided
insight into the individual tasks performed and
made evident areas where greater efficiency could
be achieved, or error-prone activities upstream
could be changed so that a higher-quality product
resulted the next time through the process. Dem-
ing felt that to perform reviews and inspections
was simply not sufficient. Even though these ap-
proaches were excellent error-detection meth-
ods, they still occurred after the error had been
made, and the final product of that stage then
required correction.

The concept of product improvement is predi-
cated upon first being able to obtain predictable
and repeatable results in development efforts.
Improvement can only be accomplished by a
systematic, disciplined approach to production,
whether it be in manufacturing or in application
development. For example, the term information
engineering implies a more structured and rigor-
ous method of application design and production.
This transformation of application development
from an art form to a more defined set of activities
is an indication of the recognition that process
management is required in order to further mature
the field. The additional requirements of 1SO 9000,
Baldrige, and Deming justify the need to define,
measure, and improve the process. A discus-
sion of automated process management systems
brings to bear additional factors that must be con-
sidered during development of such a system.

Other requirements on process management au-
tomation. Paramount to the acceptance and use
of a tool or system are its human factors consid-
erations. The most efficient and effective tool will
quickly be cast aside if it is not perceived as useful
and easy to use by its intended audience.! The
value of ease of use and good human factors can
be measured by productivity gains, facilitating
timely product delivery, satisfaction of develop-
ers with their jobs, reduced training costs, and
protection of investment in tools. Ease of use in-
cludes providing a high degree of intuitiveness in
operation and navigation, so that when presented
with an activity, the users (in this case the devel-
opers) can easily connect the function to be per-
formed with the relevant deliverable and then ac-
complish the activity in the most straightforward
manner. We have worked with tools that ne-
glected this premise and found it interesting that
users would take a more circuitous route (bypass-

SARACELLI AND BANDAT 381

ing a tool) to accomplish a task, rather than use a
tool that they perceived as cumbersome.

In addition to ease-of-use considerations, if users
should need assistance, an on-line, context-sen-
sitive help facility would be valuable. During fa-
miliarization with a new tool, a primer and ref-

Paramount to the acceptance and
use of a tool or system are its
human factors considerations.

erence guide in document format would enable a
user to browse through the material while using
the tool. A good primer helps the novice user
achieve proficiency quickly and thus feel greater
satisfaction in using the tool. Ease of use in a
multitool environment includes passing the out-
put from one tool to the subsequent tool down-

stream in the process.

Proficiency levels will be achieved in varying
amounts of time due to differences in usage. Some
may use a given tool only occasionally, requiring
more time to relearn functions with each use.
Those who use a tool regularly will become fa-
miliar with the basics quickly and will likely learn
the more subtle nuances the tool has to offer.
These differences in usage and proficiency re-
quire a tool to be easy to learn, but also to be
usable in both a basic and a more sophisticated,
fast-path manner. Failure to provide these two
perspectives can result in decreased usage by ex-
perienced people, simply because it now takes
them too long to perform a function, and the tool
becomes an impediment to productivity. These
considerations present an additional challenge to
the developer of any automated system but pose
particular challenges for the automation of a pro-
cess management tool. The tool must provide for
both occasional and frequent users and must be
friendly to the novice, while not becoming an im-
pediment to those who are very experienced.

Other sources of expertise and knowledge. Watts
S. Humphrey, in his book Managing the Software

382 SARACELLI AND BANDAT

Process," provides a general analysis of the chal-
lenges and approaches in application develop-
ment, with the goal of improving deliverable qual-
ity and process productivity. In his introduction
of the concept of process maturity levels, Hum-
phrey distinguishes five levels of maturity for
software development processes and also identi-
fies what is needed to promote a process to the
next higher level. The five levels are listed in Ta-
ble 1. Using such categories, AD organizations
can assess themselves and determine what is
needed for them to continually mature. The goal,
of course, is to attain the optimized level, level 5.

Humphrey’s concepts guide one through the
functions that will have to be implemented to
achieve certain characteristics of the process. As
he explains, a quality process is a prerequisite for
the development of quality products. Implemen-
tation can range from manual disciplines to a
maximum of computer support. However, as we
shall see when we approach higher levels of ma-
turity, the need for computer support will become
progressively more apparent.

It should be noted that the discussion of optimiz-
ing processes is occurring while the industry is
still on a learning curve about processes and their
attributes and properties. Humphrey’s concept of
a continuously optimizing process clearly needs
automated support in order to be successful. The
implications of how process behavior reflects the
behavior of the people that are an integral part of
the whole development system is included in this
learning curve, as are their acceptance and reac-
tion to the process.

Requirements summary. In summary, the require-
ments for a defined and disciplined approach to
application development are being voiced from
several areas. The true challenge for automating
process management comes not only from being
able to satisfy these requirements, but also from
doing so in a manner that leaves the developer
using the process with an increased sense of sat-
isfaction from the job. The proposed process
management solution should enable creativity
and innovation and not make the development
process a rote and mundane job. Productivity in-
creases and higher product quality are tightly
linked with job satisfaction; thus a process man-
agement approach must be ever mindful of its in-
tended user.

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

Table 1 The process maturity levels

Level Characteristics

. "*Progkess: Enhancamem

Initial Ad hoc, on occasion even chaotic. No formalized
procedures or project plans. No management
understandmg of relevance of kcy process
issues. :

Repeatable Can repeat tasks mastered in previous project.
Process dependent on accumulated experience
of individuals. New tools and methods cannot
be incorporated without risk, due to lack of
process framework. Inability to capitalize on
innovative approaches.

Defined The process is established and well understood.
The process can be applied to most normal
and crisis situations. The process does not
encompass a sufficient collection of data about
the process to analyze efficiency.

The process is measured and controlled,
measurements are meanmgfui and well deﬁned

Managed

Establish progect management system, mcludmg
quality assurance and change control.

Establish a process group and a software
‘development process architecture or
development life cycle (methodology) that
describes all activities in the process.

Establish process measurements to identify
quality and cost parameters. Provide sufficient
resource to monitor process data to assess
relative product quality and advise management
to take action when targets are not met.

Demonstrate that measurements are accurately
and correctly gathered, aggregated, and
evaluated. Due to the volume and type of data

‘Optimized

Measurements are kept in a process. database.

~ Focus is on systematic process improvement

involved, Humphrey felt that this would require
automated support.

The data gathered about the process must be fully
utilized toward identifying the places in the
process that can be improved. Product quality
becomes a natural by-product of the high-
quality process.

Note: Based on the Software Maturity Model by Watts S. Humphrey 2

Automating process management

The terminology in the area covered by this paper
has not yet stabilized. In particular, the semantics
used in this paper for the terms process manage-
ment and project management need to be defined.

Process management is a term with varying def-
initions in the literature. The broader meaning,
and the one used in this paper, encompasses all
work of the development team (in any role)
throughout a project, including items traditionally
thought of as components of project manage-
ment, metrics, quality management, and others.
This larger scope more accurately reflects the
concepts of process maturity and the 150 9000
standards.” Historically, process management
has been basically concerned with the applica-
tion-oriented deliverables in a project (e.g., data
flow diagrams and modules), with their status
(e.g., in progress, completed), and with their re-
lated activities. This narrower view of process
management does not consider management as-

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

pects, such as who does which task when (tradi-
tionally thought of as a project management ac-
tivity), or who controls the correct execution of
the process (typically not a consideration in de-
velopment projects).

Project management, in the traditional sense,
manages the details and constraints within a proj-
ect: who has to perform which activity in the con-
text of a task, and when. By use of project man-
agement techniques, task plans for a project are
established, including estimates for resources and
effort needed, schedules to be met, and quality to
be achieved. The aspects of planning, tracking,
measurement, and recording are facets of project
management.

Separation of such facets into independent man-
agement domains (process or project) is the tra-
ditional response to the lack of an integrated
development environment with respect to the def-
inition of its process. This integration from a
process perspective will enable us to achieve

SARACELL! AND BANDAT 383

the goals of producing higher-quality deliverables
and increasing productivity by having develop-
ment teams consider their work efforts from a
broader perspective, including quality assurance,
tools and techniques, and training.

Historically the procedures in application devel-
opment (the methodology) were implemented by
sets of books and standards that were to be read
and used by the developers. One of the earlier
methodologies of this type was developed in
IBM Germany under the name “Verfahrenstech-
nik,”** which advised IBM customers how to ap-
proach and master the challenge of developing
data processing applications. These early meth-
odologies were exclusively documentation-
based. The requirement to aid the developers
with more advanced tools and services always
existed. Only when improved price-performance
hardware and user-friendly interfaces to comput-
ers via displays became economically feasible did
the first comprehensive computer-based support
environments for the AD process become avail-
able. An early example is the IBM Program Of-
fering vIDOC,' developed in cooperation be-
tween IBM Germany and IBM customers, which
provided computer-based support for the above-
mentioned “Verfahrenstechnik™ and integrated a
set of AD tools available at the time under the
process. Based on VIDOC concepts, the set of IBM
Program Products Application Development
Project Support (ADPS)* was developed and be-
came available in 1987.

Although ADPS assisted in the management of de-
velopment projects and introduced the concepts
of process management by invoking tools, it left
the developer with a certain amount of manual
day-to-day routine activities and workplace man-
agement tasks. In this sense, it actually supported
process management more than project manage-
ment. To gain the additional benefits from a pro-
cess management system that can fulfill the re-
quirements of Humphrey’s metric collection and
analysis, and support project management activ-
ities as well as various other quality require-
ments, calls for a more highly automated system.

A quality system for software development can
involve computer support to a high degree. Ever-
increasing levels of product quality and process
productivity will demand even higher degrees of
computer support by automated processes with
integrated tools. We frequently talk about the qu-

384 SARACELLI AND BANDAT

tomation of software development, a term to be
used with caution because it can lead to a misin-
terpretation of the role of developers in a fully
automated development environment. Only rou-
tine activities can be automated. The work re-
maining for the developer may require higher skill
levels, enabling the developer to concentrate on
the creative aspects of development. Work envi-
ronments can be defined for specific user roles,
providing guidance to activities and deliverables
eligible for work, as well as extensive help sup-
port, automated metric collection, and fully au-
tomatic tool initialization and invocation. These
work environments can then be automated to en-
able developers to achieve higher productivity
and quality of work by reducing the probability
for errors and by reducing the amount of admin-
istrative manual work.

For a process supporting the concepts of a spe-
cific application development methodology, we
must incorporate tools and tool functions in a way
that satisfies all requirements of the methodology:
the right set of deliverables and of corresponding
tool functions for activities in the process, the
ability to integrate them into a comprehensive
seamless process based on the methodology, and
support for the pragmatic requirements of pro-
cess maturity, the 150 9000 standards, Malcolm
Baldrige, or similar quality and productivity ap-
proaches. Many of the aspects of process defini-
tion and process implementation have already
been discussed in the literature. >’

Components of a process management system.
There are several components of a process man-
agement system that are needed to support the
requirements for mature, certifiable processes for
multideveloper projects. For every role in a proj-
ect (e.g., process planning, technical develop-
ment, quality assurance, resource management),
developers can be offered customized work-
places. A workplace customized for a role en-
ables the developer to concentrate on the specific
activities and objects relevant to that role. We can
provide developers with units of work they can
perform in a role in an undisturbed and uninter-
rupted way for substantial periods of time (e.g.,
several days or weeks). Developers may have a
choice between several units of work that, at a
given point in time, could be assigned to them,
either in one single role or in multiple roles within
a project.

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

When analyzing the software development pro-
cess representations with conventional means of
functional decomposition and data analysis, one
can observe that the functions in these processes
depend, to a large extent, on the existence of de-
liverables and deliverable states. As a practical
example for these aspects, consider a deliverable
“source-module” that could have a status of “in-
work™ or “code-complete,” where the function
“inspect-source-module” would, according to
the rules of the specific example, only be execut-
able if the deliverable has reached the status
“code-complete,” as indicated by the developer.

Considering all deliverables, deliverable status,
and activities incorporated in a specific method-
ology, we can design a generic process model for
all instances where the methodology would be
used in specific projects. In the process model we
define activity and deliverable types, whereas
specific instances will be defined in the execution
of the process for a specific project.

When automating process support, various op-
tions are available for presenting the units of work
and their contained activities to a developer, who
is performing one or more roles in a project. A

system can be designed to present a developer
with a single activity, or with many activities in
units of work. A system could also present a de-
veloper with a list of deliverables that are eligible
for work, according to work assignments. The
amount of work presented to a developer may be
restricted to those activities or deliverables that,
according to the progress of the project, are eli-
gible for work by roles or for the whole project.
Work can also be presented in a broader view of
already completed and future work. Choosing
among the available alternatives, the designer or
administrator of the development process will
have to consider a balance between a high degree
of enforced control versus a higher amount of
user choice in selecting work, following informal
disciplines.

A methodology-based application development
process essentially supports and coordinates the
work of designers, coders, planners, administra-
tors, and managers of the development team.
Most plans, schedules, and cost assumptions are
centered around the work of people involved in
the process. Thus it is most important to under-
stand how the work of people is planned, coor-
dinated, and supported. For this purpose we as-

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

sume that elementary activities are executed by
the members of a project team in their assigned
roles. Today, we find that most of these elemen-
tary activities in a process are supported in a va-
riety of CASE tools. Elementary activities in most
cases depend upon input deliverables and provide
output deliverables in defined states.

Process catalog of activity types and deliverable
types. Earlier work of the authors with ADPS cus-
tomers and subsequent prototyping work have
verified the need for a catalog of activity types
and deliverable types, as well as for an inventory
of deliverables throughout the project (these
items appear in the ADPS products under different
terminology). A process model supporting a se-
lected software development methodology em-
ploys a set of elementary activity types, requiring
defined input and output deliverable types. The
instances of activities and deliverables will only
be defined when the plan for a concrete project is
established. It is convenient for the developer of
a process model to be able to use a catalog of all
activity types and deliverable types that play a
role in the selected methodology.

For each activity type, the catalog also defines the
types of input and output deliverables and their
associated states as required for input, and de-
livered as output. Elementary activity types in
most cases are supported by tools or tool func-
tions. It is advisable to define activity types in a
generic way and to implement a catalog of activity
types such that the association of tools and tool
functions can be changed throughout execution of
a process model in a project. This facilitates tool
upgrades for new tool releases or replacements,
and will enable reuse of catalog items used in de-
fining a process model for execution in multiple
projects where different sets of tools may be em-
ployed.

Deliverables inventory. Throughout a quality sys-
tem, the status of individual deliverables and of
collections of deliverables (lists, sets) plays an
important role in the navigation decisions in the
control flow, whether done manually or automat-
ically. Individual deliverables and deliverable
collections are also the objects to which numer-
ous measured and assessed data are attributed.
Automated processes require the concept of an
inventory where all such information can be
maintained and retrieved. Such an inventory does
not necessarily contain the actual data of the de-

SARACELLI AND BANDAT 385

liverables, like the source code of a module or the
text file of a document, but may facilitate access
to these deliverable data, in addition to maintain-
ing the navigation-relevant and quality- and pro-

Automated processes require the
concept of an inventory where
information can be maintained

and retrieved.

ductivity-related attributes. Auditability require-
ments of the 1S0O 9000 standards require that much
of this information remains available for several
years after a project has terminated.

Today, subsets of these data may be found in
databases, libraries, repositories, and encyclope-
dias, embedded in, or used by, a variety of tools.
It is a particular challenge to provide an integra-
tion concept for all of these existing partial solu-
tions into one single and consistent framework,
enabling access to data and attributes of all de-
liverables in an automated, integrated, and seam-
less way.

Tools and functions available for activities. Ac-
tivity types defined in the catalog are imple-
mented by tools and tool functions. Any realistic
approach toward a computer-aided quality sys-
tem must make the best use of existing invest-
ments in CASE tools, standards, and education.
Only an evolutionary process for upgrading de-
velopment environments toward a quality system
is economically feasible. Many application devel-
opment tools exist today, supporting functions
from enterprise analysis, through requirement
analysis, design, implementation, verification, in-
stallation, and maintenance. It is not reasonable
to assume or require that an organization replace
its current tool base in order to realize the benefits
of automated process support.

The tools and tool functions integrated into the
process for executing specific activities will be the
environment where developers spend most of
their working hours, and achieve, or fail to

386 SARACELLI AND BANDAT

achieve, the projected goals of productivity and
quality. Most of the relevant metrics to be re-
corded for a process and used for its evaluation
and improvement must originate from this envi-
ronment, either collected automatically by the
tools or provided by the developers.? The inte-
gration of tools into the process and their auto-
matic invocation during process execution has
been identified as one of the most important re-
quirements for process automation.’

Suitability of tools and functions for integration.
Guidelines will have to be defined for an improved
generation of tools that will support new require-
ments and that will evolve over time. It is con-
ceivable that the requirements for full integration
of all aspects of a quality system pose substantial
requirements beyond the capabilities of many of
today’s tools. Enhancements to existing tools or
the development of new tools may be needed.

Tools could be imbedded in tool shells that could
present a consistent interface to the user, provide
interface adaptations for invocation and parame-
ter passing, and provide access to additional help
information for the process context. These shells
could also support dialogs for situations in which
developers have to provide additional informa-
tion required by the process, but not provided by
some tools.

Some aspects to be considered in determining the
suitability of tools and tool functions are:

¢ Adequacy of the function set according to re-
quirements

¢ Ability to invoke tools with parameters for spe-
cific functions

* Ability to accept information about input deliv-
erables
Ability to deliver information about output de-
liverables
Provision for measurement data about output
deliverables
Provision for measurement data about function
execution
Provision to return information about function
completion
Ability to provide text output for project doc-
umentation

Seamlessness of operation. A quality system as-
sembled from components that exist today has to

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

be composed of elements from various sources:
existing application development, quality assess-
ment, and process administration tools with their
own dialogs and help information. Methodologies
need to make the right selections from these sets
of tools for complete support through all steps in
an application life cycle. Developers should be
supported with methodology-specific help and
guidance, providing workplaces that support
their roles, and with documentation that follows
the process, recording progress at various points.
Throughout the process, a process navigator
should provide the individual workplaces with
references to selectable activities and deliver-
ables. This complex system would appear to the
developer as one single, consistent environment,
providing consistent user interfaces and “look
and feel.”” The higher the degree of automation
in an integrated development environment, the
more visible the faults in seamlessness will be-
come. Some of the aspects required for seamless
operation are:

* Consistent dialog standards as documented for
Common User Access* (CUA*)™®

* A consistent way of exchanging information be-
tween developers

* Smooth flow of deliverables through the pro-
cess activities

* Comprehensive coverage of all functions re-
quired by a methodology

* Overall concepts for measurement and valida-
tion across all phases of a project

Migration and convergence. A quality system
will have to integrate a wide variety of tools that
are in use today and will also have to import ex-
isting deliverable sets from existing software
projects into the new environment. A critical fac-
tor in moving to a quality system will be the trans-
parency with which a migration can be made, and
how much initial effort may be needed to migrate
an existing application portfolio. Migration and
conversion tools will be needed to logically link or
physically transport existing deliverables into the
context of the quality system.

Tools continuing to use their current deliverables
environment must provide dynamic exchange of
information about their activities and must be
able to execute requests to perform functions on
specific deliverables for which they hold the de-
liverable data.

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

The process from the planner’s perspective. A
model for the flow of activity execution in a proj-
ect can be designed from the catalog of activity
types, deliverable types, and deliverable states
required for activity execution. Such a process
model can represent a schema for many projects
that follow the same methodology and use the
same, or an equivalent, set of tools. A convenient
way to present process models is to represent
them as control flow graphs.

Navigation logic. The sequence of activity exe-
cution in a process plan is controlled by naviga-
tion conditions. Figure 2 shows a sample section
out of such a network of activities. An activity
can be modeled, showing a successor activity de-
pendent on the truth value of a transition condi-
tion in a control connector between the activities.
A completed activity may also be followed by
more than one successor activity, according to
the truth values for the outgoing control connec-
tors in a split condition. Several activities may
also have one common successor activity, where
a join condition determines the conditions under
which the successor activity becomes enabled for
execution.

The control flow connectors shown in Figure 2
carry values to control the flow of execution logic.
The control values carried by a connector leaving
an activity or a navigation condition can be un-
evaluated, true, or false, depending upon the sta-
tus of its execution.

Navigation conditions can be based on such flow
control values and on values obtained from de-
liverable status. Thus, the flow control value leav-
ing a navigation condition can depend on the flow
control value carried by the control connectors
entering the condition and on the status values of
deliverables referenced by this condition.

When designing navigation conditions, reference
to deliverables entering the control flow may be
shown by data connectors. Since these deliver-
ables are referenced by name, showing data con-
nectors enhances the graphical representation of
the conditions. Optionally, data connectors may
also be used to denote the status of an output
deliverable from an activity or the status of a de-
liverable that is input to an activity. This infor-
mation (associated with data connectors) serves
only as commentary. The actual status has to be
checked in a navigation condition, and the status

SARACELLI AND BANDAT 387

Figure 2 Example of a control flow network

N :

1 (STATE = 'COMPLETE}

h

CONNECTOR

CONTROL
CONNECTOR

TRANSITION

CONDITION

SPLIT
CONDITION

JOIN
CONDITION

"—""'1 ACTIVITY
_ Jows

DELIVERABLE
L Naws

() OUTPUT ASSERTION
OR INPUT CONDITION,
WITH DATA CONNECTOR

for the output from an activity must be set by the
activity.

Many navigation conditions will not depend on
deliverables produced by predecessor activities,
but rather on other data obtained from the project
environment. Such data could come from trigger
events, like “end of week,” or “calendar date,”
or from the change of certain deliverable at-
tributes that are utilized as triggers. Navigation
decisions in process execution could be evaluated
manually by a developer investigating the execu-
tion status of activities and the status of deliver-
ables. Navigation decisions based on docu-

388 SARACELLI AND BANDAT

mented rules and disciplines would then be made
by the developer (in a manual process) or auto-
matically by a navigation engine (in an automated
process management system), based on the con-
ditions in a control flow network.

Abnormal navigation. We have to expect cases in
which the flow of execution as it has been mod-
eled for a project cannot be done as planned.
When an error is detected, it is necessary to de-
termine which of the previous activities caused
the error. As a result, parts of an already executed
process may have to be reopened and re-exe-
cuted. It will remain the job of an expert planner

iBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

or process analyst to identify which deliverable
status values have to be reset, which of the al-
ready executed activities in a project have to be
reopened and re-executed, and even what new
subprocesses may have to be defined and at-
tached to the original process in order to repair
the impact of defects. This case shows how im-
portant it is to avoid errors and, if they occur, to
detect them as early as possible so that the planned
process can incorporate corrective actions.

Advance navigation. In many cases in a real proj-
ect, developers may want to start activities even
if the required input deliverables have not yet
reached the required completion status. This type
of work ahead navigation can be precisely de-
fined, identifying the possibility of starting an ac-
tivity even though the input deliverable is not yet
ready. A sequence of such loosely conditioned
activities must be synchronized at a predefined
point, verifying that all deliverables in the se-
quence have reached the status required for the
start of each activity before the synchronization
point. In a less rigorously controlled or less au-
tomated process such decisions may be left to the
developer, relying on the discipline of the devel-
oper to obey rules that may be documented but
are not enforced.

Transformations and state transitions of deliver-
ables. Before one can design a complete model of
a development process, assuming a specific meth-
odology, one has to understand the detailed role
of deliverables in the process. Many deliverables
undergo state transitions and are subject to trans-
formations. Let us, as a practical example, talk
about a specific function of an application to be
implemented as a module. Let us further assume
that we have already obtained a deliverable of
type “module-description” for the module ABC as
the result of an analysis phase. This module-de-
scription will now be transformed into a new de-
liverable of type “module-design” for the same
module ABC by an activity of the type “design-mod-
ule.” This will be executed with the input “module-
description-ABC,” the specific description for the
module. Further transformations will, for the spe-
cific example, create new deliverables, “module-
source-ABC” and “module-object-ABC.” Figure 3
explains this sequence of activities, transforming
the conceptual object “Module ABC,” as it may be
reflected in the analysis and high-level design for the
application, into the concrete deliverables of the

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

sequence of transformations, each qualified by the
identifier ABC from the conceptual object.

In this example, the first part of the name of the
deliverables is formed by the type of the deliver-
ables, whereas the second part is the name of the
conceptual object. Thus, we observe a sequence
of deliverables of different types being created for
the same conceptual object name. Such transfor-
mation sequences are common in development
processes where conceptual objects are carried
through multiple steps of refinement. Each indi-
vidual step involves an activity to be performed
by a person in the developer role. Each of these
steps of refinement may involve both the use of
tools and creative work by the developer.

Figure 3 also shows the status value of deliver-
ables, either as output from activities or input to
activities. A specific deliverable in our example
also passes through a sequence of states, as
shown in Figure 4. The deliverable “module-
source-ABC” goes through the status wvalues
“in-work,” “completed,” “inspected,” and “ap-
proved.” This transition of states is again per-
formed by a sequence of elementary activities
within the subprocess activity “code-module-
ABC” (from Figure 3). Thus, the state of an object
changes from an initial state to a final state, as
defined by the development methodology.

Process planning for a project. Once the enter-
prise has established the model that is applicable
for a specific project, a person in the role of pro-
cess planner will have to produce the process
plan, making decisions about the definition of
work units as aggregations of activities to be as-
signed to the individuals in the development
team. (It should be noted that new roles may
emerge over time, such as that of process plan-
ner, which may evolve from the traditional role of
project manager, or may become an additional,
complementary role. Role definition and delinea-
tion will most likely occur at an organization or
project level.) Process planning dynamically con-
tinues throughout the progress of the project. In
this planning activity the constraints of limited
resources may require the planner to employ hu-
man resource and time management functions to
determine the most effective use of the develop-
ment team to achieve the given targets. Such
planning activities themselves are part of the pro-
cess plan that has to be executed at defined proj-
ect checkpoints or whenever one of the critical

SARACELLI AND BANDAT 3890

Figure 3 Transformation sequence of activities

A

MODULE-DESCRIPTION-ABC L\ “:

STATE = 'APPROVED)

DESIGN-MODULE-ABC

(STATE = ‘APPROVED)

MODULE-DESIGN-ABC %

(STATE = ‘APPROVED")

CODE-MODULE-ABC

(STATE = ‘APPROVED")

MODULE-SOURCE-ABC %

(STATE = 'APPROVED')

COMPILE-MODULE-ABC

(STATE = 'SUCCESSFULLY-
COMPILED")

v |

MODULE-OBJECT-ABC \

parameters monitored throughout the project de-
viates from the target plan.

For a specific project, a process plan can be de-
rived from a process model. In such a process
plan, the specific instances of deliverables of a
given type for the project will be defined as shown
in Figure 5. In the various places in a process

390 SARACELLI AND BANDAT

model where deliverable types are involved, the
names for deliverables in the project have to be
provided by a planner or designer. Thus the pro-
cess model will be populated with the instances of
deliverables and activities for the specific project.

The refinement of a process model into a process
plan will, in most projects, be a dynamic planning
process, progressing to the planning of instances
of deliverables and activities in steps when parts
of the project have already been executed. Both
process models and the corresponding process
plans can be represented by a control flow graph,
as shown in the example in Figure 5. The stepwise
refinement of the process plan will have to take
into account the fact that the exact number of
instances of a deliverable of the project, and the
corresponding instances of activities to be exe-
cuted, will only become known as the project
progresses.

As part of the planning activity, at the earliest
logically feasible point, the estimates or projec-
tions for the effort needed to perform an activity,
and for the size of the deliverable to be created,
have to be provided by a planner or by a tool and
have to be recorded. Such data will be subject to
later revision and to eventual recording of the fi-
nal values when completed. The planner, acting
in the role of project manager, will consolidate the
logical process planning with the given resource
constraints and with the relevant business factors
for the project. This consolidation will continue
throughout the project.

In this task of process planning, the accumulated
knowledge from previous projects and from
skilled team members should be accessible and
should be used. Numerous factors come into play
in planning that are difficult to formalize and op-
timize, because they involve both judgment of
human behavior and a strategy of risk assessment
and risk taking. Measuring the performance of
people touches on an area of legal consideration:
depending on the laws of the country where a
project is performed and on the practice of the
industry, it may be illegal or unusual to record
detailed information about the performance of in-
dividuals. This situation makes estimating and
planning more difficult and less transparent. The
art of estimating and projecting will always in-
volve a good amount of human judgment and rep-
resents a key critical function in software devel-
opment projects.

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

Figure 4 Sequence of activities changing deliverable status

A BB

[COMPLETE-WORK

[INSPECT-WORK

(STATE = 'COMPLETED"

o R S TS

(STATE = ‘COMPLETED’)

)

MODULE-SOURCE-ABC

H| (STATE = ‘REJECTED)

ll

[APPROVE-WORK

!

T

STATE = ‘APPROVED)

[REJECT-WORK

The process from the developer’s perspective. Up
to now, we have only described the logical con-
ditions under which the navigation of activity ex-
ecution progresses. Activities in a process can be
defined as manual, requiring a developer to exe-
cute the activity, or as automatic, requiring a pro-
cessor to execute code defined for the activity.

In defining the process plan, it must be estab-
lished who is to perform each activity before its
execution—a person (acting in a specific role) or
a processor (for automatic activities). In the pro-
cess model, an activity type can be defined such
that it is logically related to the role intended to
execute that activity.

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

Role-oriented work guidance. During process ex-
ecution, developers will be assigned to roles so
that specific responsibilities, according to the role
requirements of the activity and the roles as-
signed to developers, can be identified. As activ-
ities become eligible for execution, the responsi-
ble developers will be notified by an automated
navigator. In a similar way, automatic activities
will be placed on work queues for the appropriate
processors.

Earlier, we introduced the concept of units of
work that can be performed in a project by one
developer in an uninterrupted way. Such units of
work can be defined as part of the process plan,

SARACELLI AND BANDAT 301

Figure 5 Process model and process plan

FUNCTION-DEFINITION-

MODULE-DESCRIPTION- ’\\ OBJECT-MODULE-

1Y

DESCRIBE-MODULES-OF- DEVELOP/TEST-MODULE-

FUNCTION-DEFINITION-A

MODULE-DESCRIPTION-AA

DEVELOP/TEST-MODULE-AA

DEFINE-FUNCTION-A DESCRIBE-MODULES-OF-A MODULE-DESCRIPTION-AB

(DEVELOP/TEST-MODULE-AB

e
>

MODULE-DESCRIPTION-AC

|

DEVELOP/TEST-MOD

identifying which sequence of activities can be
assigned to one developer. Such a sequence may
not be dependent on deliverables that have to be
provided from activities outside this unit of work
and that are not yet available at the start of the
unit of work. Many of the planning, management,

392 SARACELLI AND BANDAT

and reporting attributes throughout a project are
associated with units of work.

Role-oriented viewing of a project. The process

model and the evolving process plan can provide
a view of the progress throughout a project. The

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

o

LINK-FUNCTION-

OBJECT-MODULE-AA

_{ LINK-FUNCTION-A

{
1

OBJECT-MODULE-AC X

total view can be subsetted to those portions as-
signed to specific roles. The model itself is static
(unless the process model is changed during a
project, which should be the exception), but as
it progresses, it becomes populated by the in-
stances of activities created for instances of de-

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

liverables. By graphical means, it may be shown
how far activities have been executed and what
status deliverables have reached. This concept
can provide developers with an overview of the
complete project process, as well as for their spe-
cific role.

The process from the management perspective.
The management perspective of a process is con-
cerned with the constraints of resources and time
under which a logical process can be executed.
The number of persons in the development team
and in specific roles will be limited, time con-
straints and cost targets will have to be met, and
various ways of optimizing the use of resources to
meet the business goals for the project will have
to be taken into account. Progress will have to be
tracked and evaluated in order to produce audit-
able progress reports and to obtain early warning
signals for plan deviations.

Reporting and documentation. There are many
aspects of identifying and maintaining docu-
ments. These include: embedding information
from various places in a process into one docu-
ment, administering sets of documents, organiz-
ing the printing, electronic distribution, prepara-
tion for on-line viewing, and storing for audit and
backup purposes. These will require a versatile
and integrated documentation management and
administration system for development projects.
An example of such a tool designed to support the
documentation needs of software development
projects is Professional Documentation Manager
(PrDM*). %

The 130 9000 standards mandate that comprehen-
sive documentation must be provided for projects
following an 1S0O 9000 certified process. The cer-
tified process must be well documented and the
project must define and explain deviations from
the certified process. Documentation must also
be provided about the progress of projects over
time and about measurements taken and evalua-
tions made throughout the project. Reports and
documentation must be kept in order to prove
standards adherence, to provide project audit-
ability during the project and after its completion,
and to provide data to analyze the process for
further improvements. As part of this documen-
tation, it may be necessary to maintain many of
the deliverables of a project (such as graphical
design objects, user interface design, source

SARACELLI AND BANDAT 393

code, and help information) simultaneously in
both printable and on-line viewable format.

Measurements. The concepts of process maturity
and of Malcolm Baldrige assessments, as well as
the 150 9000 standards, require an organization to
accumulate and evaluate data throughout a pro-
cess and to draw conclusions about process and
deliverable quality and required corrective ac-
tions.? Planning data, assumptions, estimates,
and projections have to be aggregated and re-
corded at certain steps of the process.

For many data to be observed, the elementary
source are the units of work. Data may have to be
collected about the deliverables involved and
about the activities performed.

Information to be recorded for deliverables may
be:

* Size

¢ Effort to produce

* Cost to produce

¢ Defect history

* Customer satisfaction attributes

Similarly, data may have to be recorded for each
executing unit of work in a process. Such data
may be:

» Effort

 Elapsed time

* Time to complete
¢ Defect history

For these data, the system should provide a
means for recording initial estimates, revised pro-
jections, current values, projections to comple-
tion, and final completion values. These data will
be needed in the quality system if we are to assess
the quality of the deliverables and of the process
and the improvements we have made in compar-
ison to past projects.

Benefits of process automation

A highly automated quality system imposes con-
straints and puts additional requirements on
many of the existing tools and requires additional
enablers for process integration, process naviga-
tion, deliverables housekeeping, process and de-
liverables quality analysis, and the like. What are

394 SARACELLI AND BANDAT

the benefits that justify such an effort and invest-
ment?

Enabling people. A large number of functions of
the quality system that we are discussing repre-
sent routine work that has to be performed man-
ually. Today, for example, the developer has to
key in data to create a deliverable and then record
additional data about the status of the deliverable,
or its disposition. This information is redundant
when we assume the existence of an interpretable
project plan, which defines for each developer
what tasks can be done next and what deliver-
ables are involved. With full automation, deliv-
erables will be identified automatically and
passed to the tools supporting the tasks. Auto-
matic tool invocation simplifies the process by
further reducing the manual tasks of selecting and
starting specific tools for various activities within
the process.

The developer will be freed from the questions
“what should I do next?”” and “what deliverable
should I be working on?” by automatic tool in-
vocation and can fully concentrate on the creative
work to be performed in each task. Being auto-
matically guided, of course, has the additional
benefit of preventing the developer from making
the wrong decisions, selecting wrong deliver-
ables, or selecting functions that are not yet ex-
ecutable due to the progress in the project.

Monitoring progress. A quality system imple-
mented with an automated control flow naviga-
tion continuously “understands” the total state of
progress in a system, at a relevant level of gran-
ularity. The progress can continuously be viewed
and inspected, and early warning signals for out-
of-line situations can immediately be communi-
cated to the project manager.

Quality deliverables. A referencing system that at
any instance automatically records each deliver-
able, its status, and its measurable attributes, rep-
resents an access and control system for the proj-
ect. Continuous visibility of these attributes will
also ensure that progress in producing the com-
mitted quality product is monitored and on target,
or else intervention and replanning will be trig-
gered. The potential for erroneous use of input
that is not yet at the required state of completion
is alleviated, as the navigation flow monitors both
deliverable status and activity dependencies.

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

Process quality and productivity attributes. We
have to accept an observation from physics that
the function of measurement always influences
the value measured about an object. The wealth
of data needed for a quality system is only af-
fordable if its collection and evaluation is sup-
ported with a high degree of automation and does
not impact overall productivity. A computer-
aided quality system will collect and analyze the
required amount of data and develop corrective
signals and feedback to the process before large
deviations occur. Achieving higher levels of pro-
cess maturity will only be feasible with automa-
tion for this critical aspect of a quality system.

Continuous improvement. An automated quality
system can provide a substantial amount of anal-
ysis of collected process data. Only when an en-
terprise has collected sufficient knowledge over
time about the way it does business in the area of
software development will it possess sufficient in-
formation to analyze and compare all aspects of
the applied process—methodology, tools, and
personnel—against the accumulated experience.
Trends can be detected and corrective actions
taken for arriving at more accurately planned and
higher-quality future projects. The volume of data
to be collected and evaluated again suggests the
use of automated process support.

Summary

Development organizations and the worldwide
emphasis on quality (as embodied in 1S0 9000,
Baldrige, Deming, and Humphrey) require that
we find a way to improve product quality, process
quality, and productivity, both in our own devel-
opment and in development solutions we offer to
our customers. To effectively address these re-
quirements, we need to begin with an environ-
ment in which we can depend upon predictable,
repeatable processes, while integrating existing
tools and technology. The environment must in-
clude an AD methodology, metric collection and
analysis, project management techniques, and
process management principles in a cohesive
manner. Such a comprehensive solution could be
implemented manually and yield incremental im-
provements in managing the various aspects of
the AD process. An automated solution is re-
quired in order to achieve true process improve-
ment, as this can only be realized by continuously
monitoring, evaluating, and adjusting the overall
process. At the same time, automating the over-

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

whelming tasks of metric collection and analysis,
deliverable tracking, and work status monitoring
will increase productivity by alleviating this over-
head work of a development team. In a total qual-
ity management environment, automation be-
comes the only realistic way to handle the large
amounts of data and data analysis required to ef-
fectively perform continuous process improve-
ment. A high degree of automation will help us to
provide developers with workplaces optimally
tailored to their specific roles in a project and
enable them to be more creative in producing
quality products that meet the needs of their cus-
tomers.

Acknowledgments

The authors would like to acknowledge the intel-
lectual stimulation they have received from the
referenced sources in this paper, and from the
Worldwide Application Development Consulting
Practice Methodology Development team. For
their patient reviews of the work in progress, we
thank Kathy Freeman, Dick Antalek, Paul Sara-
celli, Wayne Stevens, Alistair Cockburn, Pat
Gongla, and Gene Sakamoto, whose comments
and suggestions helped to make this paper read-
able.

*Trademark or registered trademark of International Business
Machines Corporation.

Cited references

1. W. S. Humphrey, Programming Process Management,
Technical Report TR00.3320, IBM Corporation (Decem-
ber 12, 1984), p. 2.

. C. Walrad and E. Moss, “Measurement: The Key to Ap-
plication Development Quality,” IBM Systems Journal
32, No. 3, 445-460 (1993, this issue).

. SAA BookManager READ/2 General Information, GB35-
0800-1, IBM Corporation; available through IBM branch
offices.

. Application Development Project Support/Application
Development Model and Process Mechanism—General
Information, GH19-8109, IBM Corporation (April 1990);
available through IBM branch offices.

. Application Development Productivity Strategy White
Paper, International User Group Council (1989), p. 23.

. Application Development Management Project Presen-
tation, International User Group Council, GUIDE Fall
’92 Conference, Atlanta (November 1992).

. International Standard ISO 9000-3, Guidelines for the Ap-
plication of ISO 9001 to the Development, Supply and
Maintenance of Software, International Organization for
Standardization, Geneva (1991).

. D. A. Garvin, “How the Baldrige Award Really Works,”
Harvard Business Review 69, No. 6, 80-93 (November-
December, 1991).

SARAGELLI AND BANDAT 395

. M. G. Brown, “The Baldrige Criteria—Better, Tougher
and Clearer for 1992, Journal for Quality and Partici-
pation 15, No. 2, 70-75 (March 1992).

. W. E. Deming, Out of the Crisis, Massachusetts Institute
of Technology Center for Advanced Engineering Study,
Cambridge, MA (1982, 1986), pp. 18-96.

. F. D. Davis, “Perceived Usefulness, Perceived Ease of
Use, and User Acceptance of Information Technology,”
MIS Quarterly 13, No. 3, 319-340 (September 1989).

. W. S. Humphrey, Managing the Software Process, SEI
Series in Software Engineering, Addison-Wesley Publish-
ing Co., Reading, MA (1989/1990).

. Handbuch fuer DV Projekte—Methoden fuer Planung,
Steuerung, Entwicklung und Betrieb von EDV Verfahren,
GE12-1473, IBM Corporation (1978), out of print.

. VIDOC Einfuehrungs Broschuere, GE12-1632, IBM Cor-
poration (1985); available through IBM branch offices.

. G. F. Hoffnagle and W. E. Beregi, “Automating the Soft-
ware Development Process,” IBM Systems Journal 24,
No. 2, 102-120 (1985).

. G. Chroust, H. Goldmann, and O. Gschwandtner, “The
Role of Work Management in Application Development,”
IBM Systems Journal 29, No. 2, 189-208 (1990).

. R. W. Phillips, “State Change Architecture: A Protocol
for Executable Process Models,” C. Tully, Editor, Rep-
resentation and Enacting the Software Process, Proceed-
ings 4th International Software Process Workshop (May
1988); ACM Software Engineering Notes 14, No. 4, 129—
132 (1989).

. SAA Common User Access, Advanced Interface Design
Reference, SC34-4290, IBM Corporation; available
through IBM branch offices.

. T. DeMarco, Controlling Software Projects, Manage-
ment, Measurement and Estimation, Yourdon Press
Computing Series, Prentice-Hall, Inc., Englewood Cliffs,
NIJ (1982).

. IBM SAA AD/Cycle Professional Documentation Man-
ager/MVS & VM, General Information Manual, GH12-
5901-00, IBM Corporation; available through IBM branch
offices.

Accepted for publication March 8, 1993.

Kristine D. Saracelli IBM Consulting Group, 5505 Six Forks
Road, Raleigh, North Carolina 27609 (electronic mail: kriss
@rhqvm21.vnet.ibm.com). Ms. Saracelli is currently a mem-
ber of the Methodology Development group within the Con-
sulting Practice, where her primary focus is on AD Process
Management. Since joining IBM in 1979, she has held various
positions within Information Systems, including Operations
Management, End-User Compute Advocacy, and Informa-
tion Center technical support. In 1986, she became involved
with the competitive marketing team in IBM’s National Dis-
tribution Division, where her focus was competitive worksta-
tion communications products and operating systems. In
1988, she began working to help groups become more effective
through the use of groupware in areas such as application
development requirements gathering sessions. She joined the
consulting group in 1991. Ms. Saracelli received her Bachelor
of Science degree in management information systems from
Ramapo College in 1982.

306 SARACELLI AND BANDAT

Kurt F. Bandat /BM Vienna Software Development Labora-
tory, Lassallestrasse 1, A1020 Vienna, Austria (electronic
mail: bandat@vabvml.vnet.ibm.com). Dr. Bandat received a
Ph.D. in communication engineering from the Technical Uni-
versity in Vienna in 1961 and joined the IBM Vienna Labo-
ratory in the same year. He worked on various advanced
technology projects in the areas of digital speech signal pro-
cessing, synthesized speech, and formal definition of pro-
gramming languages. During a foreign assignment to the IBM
Poughkeepsie laboratory in 1968-1970 he worked on program-
ming architecture and on the design and formal definition of
command and control languages. Subsequently he was in-
volved in the development of architecture concepts for par-
allel processing systems. From 1976 on, Dr. Bandat was re-
sponsible for the development of application development
products (SDF, ADPS, Graphics Interface Kit/2). He is cur-
rently working on the technology for solutions involving the
use of work management concepts.

Reprint Order No. G321-5517.

IBM SYSTEMS JOURNAL, VOL 32, NO 3, 1993

