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A control  vector  is a data  structure  that  specifies 
the  nature  and  role of an  associated 
cryptographic  key.  The  control  vector  is  checked 
by  software  and  cryptographic  hardware in order 
to limit the range of permissible  operations to be 
undertaken  with  ciphertext  produced  with the 
key.  The  linking  of  the  control  vector  and 
cryptographic  key is such  that  attempts to 
modify, or substitute,  control  vectors  will  cause 
the  subsequent  processing to operate  with  a 
corrupted  key,  and  hence  ensure  protection of 
data encrypted  with  the  genuine  key. A potential 
attack  on the control  vector  approach  is 
described in which the complement of the  control 
vector  is  substituted.  The  manner in which  such 
attacks are thwarted by the IBM implementation 
of control  vectors  is  also  described. 

The paper 
“Key Handling with Control Vec- 

t o r ~ ” ~  describes the use of control vectors as- 
sociated  with  cryptographic  keys  and  variables. 
The role of such  control vectors is to  restrict  the 
cryptographic  processing  that  may be undertaken 
with  the  cryptographic  variables  associated  with 
the  keys. It  can  be  shown,  however,  that  there 
exists  a  potential  security flaw,  in the  control  vec- 
tor  concept,  that  exploits  the  complementary 
property of the  Data  Encryption Algorithm 
(DEA). 

In the first part of this  note, D. Longley  describes 
such  an  attack  on  a  control  vector  system.  In  the 
second  part, S. M. Matyas  provides  a  detailed 
description of the IBM implementation of control 
vectors and indicates how the  described  potential 
attack is countered. 
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Attacks on key management schemes are often 
based upon misuse of key-encrypting keys. Typi- 
cally ciphertext comprising a data key, encrypted 
by a  key-encrypting key, is submitted to a  cryp- 
tographic module for  a  data  decryption  operation 
in order  to reveal  the  data  key. A control  vector 
may be associated with a key used to  protect  the 
confidentiality of a  cryptographic  key or data. 
This  control  vector  provides information to  sys- 
tem  software and cryptographic  hardware on the 
range of permissible operations  for  the  associated 
cryptographic  variables. Coupling of a  control 
vector  and  the  associated  cryptographic  key is 
designed to  prevent  a modified control  vector 
from masquerading as the original when it is  sub- 
mitted  for checking. If such  a modified vector 
were  submitted,  the coupling between  control 
vector  and  cryptographic key would ensure  that 
corrupted  keys  are  developed in the crypto- 
graphic  hardware, and the  subsequent  output 
would be meaningless. 

There is considerable flexibility in the definition 
of control  vectors;  the fields of the  control  vector 
are  interpreted by  software  and  cryptographic 
hardware,  and  system  rules  relate  these fields to 
permitted  processing by such  software  and  hard- 
ware.  The  control  vectors  are coupled to  the 
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cryptographic  keys  by  a two-stage process.  First, 
the  variable length control  vector (C) is subjected 
to a hashing function ( h ) ;  the fixed-length hashed 
output ( h ( C ) )  is  then added modulo two to  the 
cryptographic key, within the cryptographic hard- 
ware. 

This coupling of the  control  vector and key is 
designed to prevent  substitution of a  fake  control 
vector.  However, it is suggested that  such  a  sub- 
stitution of control  vectors may reveal useful in- 
formation to the  attacker if the masquerading con- 
trol  vector is the complement of the original. 

Complementarity  attacks on the DEA 

Complementarity attacks  on  the DEA are  based 
upon the two identities. 

For exclusive-OR operations: 

A @ B = @ @ B )  

and for DEA encryption: 

eK(p) = (eK(P)) 

In  the  case of a double-length key (K l ,   K2)  and 
e-d-e encryption: 

e E ( p )  = (eKl(P)) 

dK2(eKl(P)) = dK2(eKl(P)) 
-~ 

eE(dK2(eKl(P))) = eKl(dK2(eKl(P))) 

The  proposed  attack  scenario is based upon the 
postulated existence of two  control  vectors C1 
and C2 such  that 

h(C1) = h(C2) 

The assumption that  both C1 and C2 may bevalid 
control  vectors is discussed in the next section. 

Assume that h(C1) corresponds to  the hashed 
control  vector,  where C1 is  the  control  vector for 
a high-level key-encrypting key. h (C2), which is 
the complement of h ( C l ) ,  is similarly postulated 
to be  a hashed control  vector,  where C2 is the 
control  vector for a  data decipherment key. 

Ciphertext concealing a key-encrypting key, 
KEK, is available in the form eKC(KEK) where 
KC = KK@h ( C l ) ,  and KK is  the key-encrypting 
key used in association with  the  control  vector. 
The  key KEK in turn is employed to protect  a 
data-encrypting  key KD, so that eKEK(KD) is 
also available. The object of the  attack is to pro- 
duce  the plaintext key KD outside  a  crypto- 
graphic module. 

The  attacker first inverts eKC(KEK) and 
eKEK(KD) and submits eKC(KEK) with asso- 
ciated control  vector C2, together with 
eKEK(KD) for a  data decipherment operation. 
This  procedure is valid since C2 is  associated 
with  a  data decipherment key. 

The key-encrypting key KK@h(C2) is formed 
and eKC(KEK) is first decrypted with KC = 
(~~eh(C2)) to give: 

- 
dKC(eKC(KEK)) = dKC(eKC(KEK)) = KEK 

”~ - 

- 
Next KEK is used to decrypt eKEK(KD) to give: 

dmK(eKEK(KD)) = dKEK(eKEK(ID)) = KD 
”- - 

The  attacker  then  inverts  to reveal KD. 

Key variants  are always selected so that no one 
key  variant is ever  a complement to another,  pre- 
sumably to obviate  the  attack described above. 

Control  vectors  specifications. The feasibility of 
the  attack described above depends upon the fact 
that checking by  system  software and crypto- 
graphic hardware  is performed using the  control 
vectors themselves. However,  the  cryptographic 
coupling is based upon the hashed version for the 
control  vectors. 

As described in the  paper on control  vectors,’  the 
hashing operations for 64-bit and 128-bit data 
structures  are  concatenation and identity func- 
tions, respectively, followed by  the  setting of the 
parity  bits and the  extension field. Thus  there is 
an almost one-to-one relationship between  the 
bits of the hashed control  vector and the original 
data  structure. 

In  this  case  the  semantics of the  control  vector 
may be  such  that it is virtually impossible for an 
inverted hashed control  vector to  be of value to an 
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attacker.  For example, inverting the  antivariant 
field is likely to produce a requirement for the 
inverted hashed control  vector to represent a key 
variant,  which in turn  places  severe  restrictions 
upon the permitted structure of the  control  vec- 
tor. 

However, in the  case of data  structures  with 
lengths in excess of 128 bits,  the hashing involves 
cryptographic  one-way functions, and the hashed 
control  vector  has  apparently  no predefined 
structure,  except for the  parity  bits and extension 
field. Thus  there  is  very little relationship be- 
tween  the  control  vector used for checking au- 
thorizations, and the hashed control  vector em- 
ployed for cryptographic coupling. 

It is therefore  not inconceivable that  the comple- 
ment of the hashed control  vector will, by  chance, 
be  accepted as a valid control  vector by the  cryp- 
tographic  hardware, which in any  case  checks 
only a minority of the total set of bits comprising 
the  control  vector.  The  output of the hashing 
function is modified to include parity  bits  and a 
two-bit extension field indicating the length of the 
original data  structure.  Inversion of the  seven 
data bits, and corresponding  parity bit, will al- 
ways  produce  correct parity. The  extension field 
has  two  bits and three  code  values, hence inver- 
sion of two extension fields  will produce a valid 
extension field. Interestingly enough, inversion of 
the  extension field for  data  structures  greater than 
128 bits (B’10’) produces a valid extension field 
for a 128-bit data  structure (B’Ol’). This  is  con- 
venient  to  the  attacker,  because  the hashed 
version of the 64-bit control  vector  has a more 
defined structure,  since it is formed by con- 
catenation of the two 64-bit blocks. 

In these  circumstances  there  exists  the possibility 
of the  existence of two valid control  vectors C1 
and  C2, with length of C1 > 128  bits  and length 
of C2 = 128  bits  such  that h(C2) is the comple- 
ment of h(C1). If such a pair is found, it will be 
possible to effectively operate upon the  key  as- 
sociated with C1 using the  control  vector  autho- 
rizations of C2  or vice  versa,  as described above. 

It is, of course, assumed that  both 128-bit data 
structures and those  greater  than 128 bits will be 
employed in the  one  system.  However,  the paper 
by  Matyas’ specifically mentions  the  use of the 
extension field to prevent a control  vector derived 
from a data  structure  greater than 128 bits from 
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being employed to masquerade as a control  vec- 
tor derived from a 128-bit data  structure. 

The  attacker would first compute  hashed func- 
tions for stored  control  vectors  greater  than 128 
bits,  compute their complements, and check if 
any  corresponded to valid, and from the  attacker 
viewpoint, useful control  vectors for 128-bit data 
structures.  It  is shown below that, from a cryp- 
tographic control viewpoint, only a subset of con- 
trol  vector  bits  is used by  the  cryptographic hard- 
ware, and thus it is not necessary for the com- 
plement to involve all  128 bits. The  reverse form 
of the  attack, inverting hashed control  vectors for 
128-bit functions, is  less likely to  succeed,  since 
the result would have to be matched against the 
hashed control  vectors for existing control  vec- 
tors  greater  than 128 bits, and there would have 
to be a one-to-one relationship between  each of 
the 128 bits in the match. The  one-way function 
used in the hashing operation  prevents  the  at- 
tacker from generating the hashed control  vector 
greater than 128 bits, thus restricting the  search to 
stored  control  vectors  greater  than 128 bits. 

A hashed 128-bit control  vector  has 18 fixed bits 
(16 parity plus two  extension field bits), and 
hence, 110 bits  are available for control checking. 
However,  only a small proportion are used for 
checking by  the cryptographic hardware; in the 
example given in the  paper,  only 17 bits  are 
checked  by  the  hardware  (two of which will be 
valid extension field bits). Hence,  the probability 
that  an inverted hashed control  value will be use- 
ful to an attacker  is 1 in  32 768. This figure  will be 
reduced by a factor according to the number of 
hashed control  vectors  greater than 128 bits avail- 
able, and the number of variants  on  the resulting 
control  vector  that would be of value  to  the  at- 
tacker.  The computational effort is comparatively 
low; it involves the hashing function for all con- 
trol vectors  greater than 128 bits, inversion, and 
subsequent checking of the result against “use- 
ful” 128-bit control  vectors. 

In  the  above discussion it is assumed that  there is 
no checking on the remaining 95 bits (= 110 - 15) 
of the  control  vector.  In fact the Cryptographic 
Facility  Access Program (cFAP) control  subvec- 
tor  has  been ignored, although it is employed as 
a check on  the  cryptographic  operations  to be 
undertaken  when  the  control  vector is submitted 
via the application programming interface (MI). 
From  the  standpoint of the  security of control 
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vectors, it is reasonable to argue that  the  security 
should be independent of implementation details 
outside  the  cryptographic hardware. The CFAP 
control  subvector will be effective for high-level 
calls to  the API, but an attacker may well be able 
to  operate  at a lower level, or at  least  arrange  for 
the  control  vector,  submitted to  the  crypto- 
graphic hardware, to differ from that submitted 
for CFAP control  subvector checking. Indeed  one 
of the  advantages of the  control  vector is that 
much of the checking may be  conducted indepen- 
dently of the  various  subvectors. 

The  defense against the  attack  is  fortunately  very 
straightforward: simply use  three bits for the  ex- 
tension field and, of the eight possible sets of val- 
ues,  set  three  that do not correspond to inversions 
of a valid field,  e.g., 000,  010, and 001. The first 
bit of the  extension field provides a guarantee  that 
inversion will produce an invalid extension field. 
The extension field provides  the only independent 
bits  that  are set after the hashing function and is 
therefore  the  only  one  that may be used for this 
purpose. 

IBM implementation of the  control  vector 

Complementarity attacks were indeed anticipated 
and blocked in the IBM implementation of the  con- 
trol  vector.  This  aspect of the  control  vector  de- 
sign was not discussed in the  paper  by Matyas. l 

In an early design of the  control vector,’ com- 
plementarity attacks  were  thwarted  by using a 
four-bit extension field, along the lines suggested 
by Longley. The  three control vector (CV) forms 
were  represented as B’0000’ for 64-bit cv, 
B’0001’ for 128-bit CV, and B’0010’ for cv greater 
than 128 bits. However, a different approach  was 
taken in the final design. 

During the design phase, it was recognized that 
control-vector-based  systems might need to co- 
exist with variant-based  systems, and therefore 
the  control  vector design should prevent  keys  en- 
crypted with variants from being substituted for 
keys  encrypted with control  vectors (and vice 
versa).  Thus, a general design was sought that 
would satisfy  the following design objectives: 

1. Separation of control  vectors of one form (say, 
64-bit) from control  vectors of another form 
(say, 128-bit) 
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2. Separation of control  vectors from IBM vari- 

3. Separation of control  vectors from comple- 
ants 

ments of control  vectors 

The  three design objectives  are achieved through 
an appropriate specification of hashing function 
h .  

The hashing function described in Reference 1 
was  somewhat oversimplified. In  the  actual IBM 
implementation, the hashing function h also calls 
for the  setting in h(C) of several additional bits, 
including two antivariant bits. The antivariant 
property  is achieved (1) by selecting two bit lo- 
cations, i andj, in h (C), such  that their difference 
( j  - i) is a multiple of eight, and (2) by fixing the 
value of one bit to zero and the  other to one.  In 
the IBM implementation, the antivariant bits  are 
specified at bit locations 30 and 38 and have k e d  
values B’O’ and B’l’, respectively. Since a 64-bit 
IBM variant mask value is formed by replicating a 
single eight-bit value eight times, this  forces  the 
bits in locations 30 and 38 of the  variant  mask 
value to be equal. Thus,  the desired separation 
between  control  vectors and variants is achieved. 
Moreover,  since  the antivariant bits  are a con- 
stant  value (B’Ol’), an inversion of the field pro- 
duces an invalid value (B’lO’). Such an invalid 
value will be detected as part of the  control  vector 
checking process,  thus preventing attacks  based 
on complementarity. 

The  complete specification for setting of bits in 
the hash value h(C)  can be summarized as fol- 
lows: 

1. Set antivariant field (bits 30,  38) as follows: 
a. Set bit 30 equal to B’O’ 
b.  Set bit 38 equal to B’l’ 

a. B’OO’ if C is 64-bit 
b. B’01’ if C is 128-bit 
c. B’10’ if C is >128-bit 

3. Set  keykey-authenticator field (bit 62) as fol- 
lows: 
a. B’O’ if C is associated  with a key  value 
b. B’l’ if C is associated with a key  authen- 

4. Set parity  bits 7, 15, . . . , 127 to even  parity 

The final design has  the advantage of having com- 
plementarity attacks defended against without re- 
quiring the specification of a separate anticom- 

2. Set extension field (bits 45,  46) as follows: 

ticator 
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plement bit, which, for practical purposes,  is  the 
net effect of using a  three- or four-bit extension 
field instead of a two-bit extension field. Axiom- 
atically, one  does not want  to  waste  control  vec- 
tor  bits, especially for short (64-bit) control  vec- 
tors. 

The present specification of the antivariant field 
has  the disadvantage of highlighting the antivari- 
ant  property  but not highlighting the anticomple- 
ment property. A more self-defining specification 
can be achieved by changing the field name, an- 
tivariant, to antivariant/anticomplement, or  by 
redefining bit 30 as anticomplement zero  (con- 
stant B’O’) and bit 38 as antivariant one  (constant 
B’l’), respectively. In the  latter  case,  the anti- 
complement zero field ensures  separation of con- 
trol vectors from complement control  vectors, 
and the antivariant one and anticomplement zero 
fields, taken  together,  ensure  separation of con- 
trol vectors from variants. 

Summary 

Control  vectors  are designed to limit the  crypto- 
graphic processing that may be performed with 
ciphertext  variables.  The  control  vector is exam- 
ined by system  software and the  cryptographic 
hardware  to  check  authorization;  the  control vec- 
tor  is also coupled with  cryptographic  keys to pre- 
vent the  substitution of a  fake  control  vector.  The 
form of coupling involves bitwise modulo two ad- 
dition of the control  vector and key. This  tech- 
nical note described a potential form of attack in 
which a complement of the  control  vector  is  ex- 
ploited. It concludes with a detailed description of 
the IBM implementation of control  vectors  that 
was designed to obviate  such  attacks. 
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