
Technical note
Complementarity attacks and
control vectors

by D. Longley
S. M. Matyas

A control vector is a data structure that specifies
the nature and role of an associated
cryptographic key. The control vector is checked
by software and cryptographic hardware in order
to limit the range of permissible operations to be
undertaken with ciphertext produced with the
key. The linking of the control vector and
cryptographic key is such that attempts to
modify, or substitute, control vectors will cause
the subsequent processing to operate with a
corrupted key, and hence ensure protection of
data encrypted with the genuine key. A potential
attack on the control vector approach is
described in which the complement of the control
vector is substituted. The manner in which such
attacks are thwarted by the IBM implementation
of control vectors is also described.

The paper
“Key Handling with Control Vec-

t o r ~ ” ~ describes the use of control vectors as-
sociated with cryptographic keys and variables.
The role of such control vectors is to restrict the
cryptographic processing that may be undertaken
with the cryptographic variables associated with
the keys. It can be shown, however, that there
exists a potential security flaw, in the control vec-
tor concept, that exploits the complementary
property of the Data Encryption Algorithm
(DEA).

In the first part of this note, D. Longley describes
such an attack on a control vector system. In the
second part, S. M. Matyas provides a detailed
description of the IBM implementation of control
vectors and indicates how the described potential
attack is countered.

IBM SYSTEMS JOURNAL, VOL 32, NO 2, 1993

Attacks on key management schemes are often
based upon misuse of key-encrypting keys. Typi-
cally ciphertext comprising a data key, encrypted
by a key-encrypting key, is submitted to a cryp-
tographic module for a data decryption operation
in order to reveal the data key. A control vector
may be associated with a key used to protect the
confidentiality of a cryptographic key or data.
This control vector provides information to sys-
tem software and cryptographic hardware on the
range of permissible operations for the associated
cryptographic variables. Coupling of a control
vector and the associated cryptographic key is
designed to prevent a modified control vector
from masquerading as the original when it is sub-
mitted for checking. If such a modified vector
were submitted, the coupling between control
vector and cryptographic key would ensure that
corrupted keys are developed in the crypto-
graphic hardware, and the subsequent output
would be meaningless.

There is considerable flexibility in the definition
of control vectors; the fields of the control vector
are interpreted by software and cryptographic
hardware, and system rules relate these fields to
permitted processing by such software and hard-
ware. The control vectors are coupled to the

Wopyright 1993 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

LONGLEY AND MAWAS 321

cryptographic keys by a two-stage process. First,
the variable length control vector (C) is subjected
to a hashing function (h) ; the fixed-length hashed
output (h (C)) is then added modulo two to the
cryptographic key, within the cryptographic hard-
ware.

This coupling of the control vector and key is
designed to prevent substitution of a fake control
vector. However, it is suggested that such a sub-
stitution of control vectors may reveal useful in-
formation to the attacker if the masquerading con-
trol vector is the complement of the original.

Complementarity attacks on the DEA

Complementarity attacks on the DEA are based
upon the two identities.

For exclusive-OR operations:

A @ B = @ @ B)

and for DEA encryption:

eK(p) = (eK(P))

In the case of a double-length key (K l , K2) and
e-d-e encryption:

e E (p) = (eKl(P))

dK2(eKl(P)) = dK2(eKl(P))
-~

eE(dK2(eKl(P))) = eKl(dK2(eKl(P)))

The proposed attack scenario is based upon the
postulated existence of two control vectors C1
and C2 such that

h(C1) = h(C2)

The assumption that both C1 and C2 may bevalid
control vectors is discussed in the next section.

Assume that h(C1) corresponds to the hashed
control vector, where C1 is the control vector for
a high-level key-encrypting key. h (C2), which is
the complement of h (C l) , is similarly postulated
to be a hashed control vector, where C2 is the
control vector for a data decipherment key.

Ciphertext concealing a key-encrypting key,
KEK, is available in the form eKC(KEK) where
KC = KK@h (C l) , and KK is the key-encrypting
key used in association with the control vector.
The key KEK in turn is employed to protect a
data-encrypting key KD, so that eKEK(KD) is
also available. The object of the attack is to pro-
duce the plaintext key KD outside a crypto-
graphic module.

The attacker first inverts eKC(KEK) and
eKEK(KD) and submits eKC(KEK) with asso-
ciated control vector C2, together with
eKEK(KD) for a data decipherment operation.
This procedure is valid since C2 is associated
with a data decipherment key.

The key-encrypting key KK@h(C2) is formed
and eKC(KEK) is first decrypted with KC =
(~~eh(C2)) to give:

-
dKC(eKC(KEK)) = dKC(eKC(KEK)) = KEK

”~ -

-
Next KEK is used to decrypt eKEK(KD) to give:

dmK(eKEK(KD)) = dKEK(eKEK(ID)) = KD
”- -

The attacker then inverts to reveal KD.

Key variants are always selected so that no one
key variant is ever a complement to another, pre-
sumably to obviate the attack described above.

Control vectors specifications. The feasibility of
the attack described above depends upon the fact
that checking by system software and crypto-
graphic hardware is performed using the control
vectors themselves. However, the cryptographic
coupling is based upon the hashed version for the
control vectors.

As described in the paper on control vectors,’ the
hashing operations for 64-bit and 128-bit data
structures are concatenation and identity func-
tions, respectively, followed by the setting of the
parity bits and the extension field. Thus there is
an almost one-to-one relationship between the
bits of the hashed control vector and the original
data structure.

In this case the semantics of the control vector
may be such that it is virtually impossible for an
inverted hashed control vector to be of value to an

322 LONGLEY AND MATYAS IBM SYSTEMS JOURNAL, VOL 32, NO 2, 1993

attacker. For example, inverting the antivariant
field is likely to produce a requirement for the
inverted hashed control vector to represent a key
variant, which in turn places severe restrictions
upon the permitted structure of the control vec-
tor.

However, in the case of data structures with
lengths in excess of 128 bits, the hashing involves
cryptographic one-way functions, and the hashed
control vector has apparently no predefined
structure, except for the parity bits and extension
field. Thus there is very little relationship be-
tween the control vector used for checking au-
thorizations, and the hashed control vector em-
ployed for cryptographic coupling.

It is therefore not inconceivable that the comple-
ment of the hashed control vector will, by chance,
be accepted as a valid control vector by the cryp-
tographic hardware, which in any case checks
only a minority of the total set of bits comprising
the control vector. The output of the hashing
function is modified to include parity bits and a
two-bit extension field indicating the length of the
original data structure. Inversion of the seven
data bits, and corresponding parity bit, will al-
ways produce correct parity. The extension field
has two bits and three code values, hence inver-
sion of two extension fields will produce a valid
extension field. Interestingly enough, inversion of
the extension field for data structures greater than
128 bits (B’10’) produces a valid extension field
for a 128-bit data structure (B’Ol’). This is con-
venient to the attacker, because the hashed
version of the 64-bit control vector has a more
defined structure, since it is formed by con-
catenation of the two 64-bit blocks.

In these circumstances there exists the possibility
of the existence of two valid control vectors C1
and C2, with length of C1 > 128 bits and length
of C2 = 128 bits such that h(C2) is the comple-
ment of h(C1). If such a pair is found, it will be
possible to effectively operate upon the key as-
sociated with C1 using the control vector autho-
rizations of C2 or vice versa, as described above.

It is, of course, assumed that both 128-bit data
structures and those greater than 128 bits will be
employed in the one system. However, the paper
by Matyas’ specifically mentions the use of the
extension field to prevent a control vector derived
from a data structure greater than 128 bits from

IBM SYSTEMS JOURNAL, VOL 32, NO 2, 1993

being employed to masquerade as a control vec-
tor derived from a 128-bit data structure.

The attacker would first compute hashed func-
tions for stored control vectors greater than 128
bits, compute their complements, and check if
any corresponded to valid, and from the attacker
viewpoint, useful control vectors for 128-bit data
structures. It is shown below that, from a cryp-
tographic control viewpoint, only a subset of con-
trol vector bits is used by the cryptographic hard-
ware, and thus it is not necessary for the com-
plement to involve all 128 bits. The reverse form
of the attack, inverting hashed control vectors for
128-bit functions, is less likely to succeed, since
the result would have to be matched against the
hashed control vectors for existing control vec-
tors greater than 128 bits, and there would have
to be a one-to-one relationship between each of
the 128 bits in the match. The one-way function
used in the hashing operation prevents the at-
tacker from generating the hashed control vector
greater than 128 bits, thus restricting the search to
stored control vectors greater than 128 bits.

A hashed 128-bit control vector has 18 fixed bits
(16 parity plus two extension field bits), and
hence, 110 bits are available for control checking.
However, only a small proportion are used for
checking by the cryptographic hardware; in the
example given in the paper, only 17 bits are
checked by the hardware (two of which will be
valid extension field bits). Hence, the probability
that an inverted hashed control value will be use-
ful to an attacker is 1 in 32 768. This figure will be
reduced by a factor according to the number of
hashed control vectors greater than 128 bits avail-
able, and the number of variants on the resulting
control vector that would be of value to the at-
tacker. The computational effort is comparatively
low; it involves the hashing function for all con-
trol vectors greater than 128 bits, inversion, and
subsequent checking of the result against “use-
ful” 128-bit control vectors.

In the above discussion it is assumed that there is
no checking on the remaining 95 bits (= 110 - 15)
of the control vector. In fact the Cryptographic
Facility Access Program (cFAP) control subvec-
tor has been ignored, although it is employed as
a check on the cryptographic operations to be
undertaken when the control vector is submitted
via the application programming interface (MI).
From the standpoint of the security of control

LONGLEY AND MATYAS 323

vectors, it is reasonable to argue that the security
should be independent of implementation details
outside the cryptographic hardware. The CFAP
control subvector will be effective for high-level
calls to the API, but an attacker may well be able
to operate at a lower level, or at least arrange for
the control vector, submitted to the crypto-
graphic hardware, to differ from that submitted
for CFAP control subvector checking. Indeed one
of the advantages of the control vector is that
much of the checking may be conducted indepen-
dently of the various subvectors.

The defense against the attack is fortunately very
straightforward: simply use three bits for the ex-
tension field and, of the eight possible sets of val-
ues, set three that do not correspond to inversions
of a valid field, e.g., 000, 010, and 001. The first
bit of the extension field provides a guarantee that
inversion will produce an invalid extension field.
The extension field provides the only independent
bits that are set after the hashing function and is
therefore the only one that may be used for this
purpose.

IBM implementation of the control vector

Complementarity attacks were indeed anticipated
and blocked in the IBM implementation of the con-
trol vector. This aspect of the control vector de-
sign was not discussed in the paper by Matyas. l

In an early design of the control vector,’ com-
plementarity attacks were thwarted by using a
four-bit extension field, along the lines suggested
by Longley. The three control vector (CV) forms
were represented as B’0000’ for 64-bit cv,
B’0001’ for 128-bit CV, and B’0010’ for cv greater
than 128 bits. However, a different approach was
taken in the final design.

During the design phase, it was recognized that
control-vector-based systems might need to co-
exist with variant-based systems, and therefore
the control vector design should prevent keys en-
crypted with variants from being substituted for
keys encrypted with control vectors (and vice
versa). Thus, a general design was sought that
would satisfy the following design objectives:

1. Separation of control vectors of one form (say,
64-bit) from control vectors of another form
(say, 128-bit)

324 LONGLEY AND MATYAS

2. Separation of control vectors from IBM vari-

3. Separation of control vectors from comple-
ants

ments of control vectors

The three design objectives are achieved through
an appropriate specification of hashing function
h .

The hashing function described in Reference 1
was somewhat oversimplified. In the actual IBM
implementation, the hashing function h also calls
for the setting in h(C) of several additional bits,
including two antivariant bits. The antivariant
property is achieved (1) by selecting two bit lo-
cations, i andj, in h (C), such that their difference
(j - i) is a multiple of eight, and (2) by fixing the
value of one bit to zero and the other to one. In
the IBM implementation, the antivariant bits are
specified at bit locations 30 and 38 and have k e d
values B’O’ and B’l’, respectively. Since a 64-bit
IBM variant mask value is formed by replicating a
single eight-bit value eight times, this forces the
bits in locations 30 and 38 of the variant mask
value to be equal. Thus, the desired separation
between control vectors and variants is achieved.
Moreover, since the antivariant bits are a con-
stant value (B’Ol’), an inversion of the field pro-
duces an invalid value (B’lO’). Such an invalid
value will be detected as part of the control vector
checking process, thus preventing attacks based
on complementarity.

The complete specification for setting of bits in
the hash value h(C) can be summarized as fol-
lows:

1. Set antivariant field (bits 30, 38) as follows:
a. Set bit 30 equal to B’O’
b. Set bit 38 equal to B’l’

a. B’OO’ if C is 64-bit
b. B’01’ if C is 128-bit
c. B’10’ if C is >128-bit

3. Set keykey-authenticator field (bit 62) as fol-
lows:
a. B’O’ if C is associated with a key value
b. B’l’ if C is associated with a key authen-

4. Set parity bits 7, 15, . . . , 127 to even parity

The final design has the advantage of having com-
plementarity attacks defended against without re-
quiring the specification of a separate anticom-

2. Set extension field (bits 45, 46) as follows:

ticator

IEM SYSTEMS JOURNAL, VOL 32, NO 2, 1993

plement bit, which, for practical purposes, is the
net effect of using a three- or four-bit extension
field instead of a two-bit extension field. Axiom-
atically, one does not want to waste control vec-
tor bits, especially for short (64-bit) control vec-
tors.

The present specification of the antivariant field
has the disadvantage of highlighting the antivari-
ant property but not highlighting the anticomple-
ment property. A more self-defining specification
can be achieved by changing the field name, an-
tivariant, to antivariant/anticomplement, or by
redefining bit 30 as anticomplement zero (con-
stant B’O’) and bit 38 as antivariant one (constant
B’l’), respectively. In the latter case, the anti-
complement zero field ensures separation of con-
trol vectors from complement control vectors,
and the antivariant one and anticomplement zero
fields, taken together, ensure separation of con-
trol vectors from variants.

Summary

Control vectors are designed to limit the crypto-
graphic processing that may be performed with
ciphertext variables. The control vector is exam-
ined by system software and the cryptographic
hardware to check authorization; the control vec-
tor is also coupled with cryptographic keys to pre-
vent the substitution of a fake control vector. The
form of coupling involves bitwise modulo two ad-
dition of the control vector and key. This tech-
nical note described a potential form of attack in
which a complement of the control vector is ex-
ploited. It concludes with a detailed description of
the IBM implementation of control vectors that
was designed to obviate such attacks.

Acknowledgments

The subject of this note originated with Dennis
Lungley while he held a Visiting Fellowship in the
Department of Computer Science, City Polytech-
nic of Hong Kong. He wishes to express his
thanks to Dr. Balasubramanian and his colleagues
for the facilities and help provided that enabled
him to complete work on the note.

’ Cited references

~ 1. S. M. Matyas, “KeyHandlingwithControlVectors,”IEM

2. S . M. Matyas et al., Secure Management of Keys Using
Systems Journal 30, No. 2, 151-174 (1991).

ISM SYSTEMS JOURNAL, VOL 32, NO 2, 1993

Extended Control Vectors, U S . Patent No. 4,924,515, is-
sued May 8, 1990.

Accepted for publication December 1, 1992.

Dennis Longley Information Security Research Centre,
Queensland University of Technology, GPO Box 2434, Bris-
bane, Queensland 4001, Australia. Professor Longley is Dean
of Faculty of Information Technology, Queensland Univer-
sity of Technology. Prior to his current post he was Head of
the Department of Computing and Cybernetics, Brighton
Polytechnic, England. In 1988, he founded the Information
Security Research Centre, which is now a major research
team in the Distributed Systems Technology Centre funded by
the Commonwealth Government. He has published research
papers in key management and, with coauthors, three books,
Dictionary of Data and Computer Security, Information Se-
curity forManagers, and Information Security Handbook. He
has acted as information security consultant to the Royal
Hong Kong Jockey Club, a German Banking Organization,
SKO, the Gold Casket Art Union, and Eracom Pty Ltd.

Stephen M. Matyas IBM Federal Systems Company, 9500
Godwin Drive, Manassas, Wq+nia 22110. Formerly a mem-
ber of the Cryptography Competency Center at IBM’s King-
ston development laboratory, Dr. Matyas is currently man-
ager of the Secure Products and Systems group at Manassas,
Virginia. He participated in the design and development of all
major IBM cryptographic products. He played a lead role in
the design of IBM’s Common Cryptographic Architecture and
is the inventor of the controlvector concept. Dr. Matyas holds
28 cryptographic patents and has published numerous tech-
nical articles covering many aspects of cryptographic system
design. He is the coauthor of an award-winning book, C r y p
tography-A New Dimension in Computer Data Security, and
is a contributing author to the Encyclopedia of Science and
Technology and to Telecommunications in the U. S. “Trends
and Policies. Dr. Matyas received a B.S. degree in mathe-
matics from Western Michigan University and a Ph.D. degree
in computer science from the University of Iowa. He is the
recipient of an IBM Outstanding Innovation Award and an
IBM FSC President’s Patent Award, and is an 18th level in-
ventor. Dr. Matyas is presently an IBM Senior Technical Staff
Member.

Reprint Order No. G321-5516.

LONGLN AND MAIYAS 325

