I/0 subsystem
configurations for ESA:
New roles for processor
storage

I/O subsystem configurations are dictated by the
storage and /0 requirements of the specific
applications that use the disk hardware. Treating
the latter requirement as a given, however, draws
a boundary at the channel interface that is not
well-suited to the capabilities of the Enterprise
Systems Architecture (ESA). This architecture
allows hardware expenditures in the I/O
subsystem to be managed, while at the same
time improving transaction response time and
system throughput capability, by a strategy of
processor buffering coupled with storage control
cache. The key is to control the aggregate time
per transaction spent waiting for physical disk
motion. This paper investigates how to think
about and accomplish such an objective. A case
study, based on data collected at a large Multiple
Virtual Storage installation, is used to investigate
the potential types and amounts of memory use
by individual files, both in storage control cache
and in processor buffers. The mechanism of
interaction between the two memory types is
then examined and modeled so as to develop
broad lguidelines for how best to deploy an
overall memory budget. These guidelines tend to
contradict the usual metrics of storage control
cache effectiveness, underscoring the need for
an adjustment in pre-ESA paradigms.

he effective use of almost any computer sys-

tem requires the juggling of three key re-
sources: the central processor, the high-speed
working memory provided in the processor
(which may include both central and expanded
storage), and disks for the permanent storage of
files and databases. The processor memory and

252 McNuTT

by B. McNutt

disk storage form a storage hierarchy, tied to-
gether by processor-initiated 1/0 operations.

On large systems, I/O operations are generally
performed with the help of a storage control to
access the disks and a channel to carry data be-
tween the storage control and the processor. A
relatively recent addition to the storage hierarchy
has been storage control cache, which is an extra
working memory in the storage control that re-
tains copies of the most recently used disk tracks.

The focus of this paper is the impact that Enter-
prise Systems Architecture (ESA) has had on the
balanced use of the above resources in large sys-
tems. These include the computing environments
provided by the IBM operating systems MVS/ESA*
(Multiple Virtual Storage/Enterprise Systems Ar-
chitecture), VM/ESA* (Virtual Machine/Enterprise
Systems Architecture*), and VSE/ESA* (Virtual
Storage Extended/Enterprise Systems Architec-
ture). ESA provides a powerful range of capabilities
for the use of processor memory as an I/O buffer
area. Such an area allows 1/0 requests to be avoided
by temporarily saving data previously obtained
from disk storage. On the other hand, planning for

©Copyright 1993 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 32, NO 2, 1983

the 10 subsystem (the disk- and storage-control
hardware) is often performed by taking as a given
the 1/0 requirements of the applications that use the
hardware. This “given” draws a boundary at the
channel interface that is not well-suited to the ca-
pabilities of Enterprise Systems Architecture (ESA).
Expenditures in the I/O subsystem can be managed,
while at the same time improving transaction re-
sponse time and system throughput capability,
through a strategy of processor buffering coupled
with storage control cache.

The key to accomplishing this is to control the
aggregate time per transaction spent waiting for
physical disk motion. The less time is spent wait-
ing for disk motion, the fewer 1/0 subsystem re-
sources such as actuators and storage controls are
needed to service the stored data and the lower is
the cost per megabyte of disk storage needed to
achieve a given level of system throughput. This
objective may at times conflict with and override
the usual /0 subsystem objectives of minimizing
1/0 response time and maximizing storage control
cache hit ratios.

This paper investigates how to think about and

accomplish the game plan just outlined. Some of
the questions addressed are:

* What types of data require which type of cache
Or processor memory?

¢ How can each type of data be given the amount
of memory required?

* Should both cache and processor memories be
used at the same time?

¢ If so, how much of each?

The following section begins by examining some
actual patterns of potential ESA memory use to
support specific files and databases. To explore
the cache and/or processor memory requirements
of individual files (or data sets, in MVS terminol-
ogy) in a typical MVS environment, the multiple
workload approach is used. A summary is given
of the multiple workload approach and its appli-
cation to memory planning.

The data show that a number of important files,
such as database logs, do not use processor buft-
ers and can be served at high speed only with
storage control cache. Other files, such as small
heavily used program libraries, can be served so
well by processor memory that there is little need
for storage control cache. For many types of data,

IBM SYSTEMS JOURNAL, VOL 32, NO 2, 1993

including most large databases, both types of
memory technology can be deployed to advan-
tage at the same time. This is accomplished by
using each technology in the following specific
roles:

¢ Processor storage is used to hold individual
page frames for long periods of time.

» Storage control cache contributes additional
hits by staging the entire track of data following
a requested record and holding it for relatively
shorter times.

The succeeding section presents a study in more
detail concerning the circumstances under which
it makes sense to use both types of memory at the
same time. Also discussed is the balancing of the
amounts of the two types of memory against one
another. For this purpose, a simplified statistical
model, called hierarchical reuse, is used to gain a
better understanding of the interaction between
the two memory types. A summary of this model
is also presented.

By applying the hierarchical reuse model, we
show that, for most data, we should expect a bal-
anced deployment of the overall memory budget,
using both memory technologies, to be the most
cost-effective strategy for achieving high perfor-
mance. Guidelines for how to accomplish this are
also developed.

We conclude by pulling together the results of the
previous sections and discussing in greater detail
the shift in 1/0 subsystem paradigms that ESA ap-
pears to require.

Patterns of memory use

We now consider individual file requirements for
storage control cache and processor buffers at a
real installation. This is done by showing early
results obtained in a live MVS environment using
a set of tools and procedures called Storage
Hierarchy Analysis by Review of Data Sets
(SHARDS).

SHARDS has been developed to facilitate an ex-
change of information about 1/0 subsystem work-
loads. The plan is to offer to run SHARDS at a
number of installations in return for their partic-
ipation in a survey of information about the types
of files being used, patterns of file activity, and the
locality of file reference. Summary results of the

MCNUTT 253

survey are to be published for use by anyone in-
terested in disk performance and capacity plan-
ning. To protect the privacy of the participants,
customer names, file names, volume labels, or
other identifying information is to be held in con-
fidence and is not to be published.

SHARDS produces a picture of cache and proces-
sor storage requirements by individual file, in
such a manner that the specific files to be sup-
ported by each technology can be selected or ex-
cluded one at a time. This is made possible by the
multiple workload approach to cache planning,
in which the service objective for each caching
technology is stated in terms of cache residency
time (of which there are two flavors). A brief sum-
mary of the multiple workload approach is given
first, followed by an examination of some of the
early SHARDS results.

The multiple workload approach. The multiple
workload approach to identifying cache memory
requirements takes advantage of an analogy that
can be drawn between the clements of a least
recently used (LRU) list and the cars crowded to-
gether on a one-lane highway between two towns.
Just as all types of cars on the highway require
about the same amount of time to travel between
towns, all types of data in the LRU list take about
the same amount of time to go from the top to the
bottom of the list.

This observation can be used to analyze each
file’s cache requirements separately from the re-
quirements of any other files that may share the
cache. The key that makes this possible is to state
a service objective for the time-in-cache. Such an
objective captures the operating state of the
planned cache insofar as it affects any individual
file. Planning for each file can proceed indepen-
dently of any others, based solely on the operat-
ing state (time-in-cache) of the cache as a whole.

Single-reference residency time. Two flavors of
the time-in-cache service objective are of inter-
est. The most theoretically appealing, for the
reasons just given, is the time to go from the
top to the bottom of the LRU list. This is called
the single-reference residency time in Reference 1,
because it is the time spent in the cache by
objects that are referenced only once. Subse-
quent authors have also introduced the terms
demotion time* and holding time.> Future

254 mcnuTT

authors are strongly urged to pick from among the

above three terms rather than adopting any new
6

ones.

Unfortunately, the single-reference residency
time cannot be used for planning purposes with-
out having a cache simulation tool that provides
an output showing it. Recent tools have begun to
provide this information so as to facilitate multi-
ple workload planning.*’

Average residency time. Because such tools have
not been available until recently, a useful alter-
native has been to state the service objective as an
average residency time, which is the average time
for all cache visits, whether single-reference or
otherwise. The average residency time will not be
precisely the same for all files in the cache, but in
this method of defining the service objective we
proceed by assuming, for purposes of simplicity,
that it is the same. This approach to multiple
workload planning continues to be of interest for
two reasons:

& Errors in cache hit ratio obtained from this sim-
plifying assumption tend to be negligible.'

» The average residency time can be backed out
from cache hit ratios.

The ability to back out the average residency time
comes from Little’s law. In its general form, that
law states that for any system (where system is
very broadly defined),

residency arrival
() o

(population) = (time rate

for the averages of these three quantities.

Equation 1 can be applied directly to a system
comprised of the population of objects that have
been staged into a cache. Because the storage
required by these objects is the following:

by each staging
operation

cache) _ (population
storage/ ~ \ staged

) (storage claimed)
X

we can use Equation 1 to substitute for popula-
tion:

IBM SYSTEMS JOURNAL, VOL 32, NO 2, 1993

(cache) _ (residency) (request)
storage/ ~ time X\ rate

fraction of
x | requests that

cause staging

by each staging
operation

storage claimed
X @)

Equation 2 gives a way to estimate the average
residency time directly from cache hit ratio data.
For this reason, any desired cache simulation tool
can be used to implement the average-residency-
time version of the multiple workload approach.

A case study. We are now ready to apply the mul-
tiple workload approach to a specific case study.
The installation examined in the case study was a
large MVS/ESA environment running primarily on-
line database applications. More specifically,
most applications were constructed using Data
Language/1 (DL/) to formulate data requests and
the Customer Information and Control System
(cIcs) to facilitate terminal interactions with the
database. Database 1/0 was mostly performed us-
ing two of the several access methods provided
by MvS:

* Virtual Storage Access Method (VSAM)
e Overflow Sequential Access Method (0SAM)

Both access methods provide for automatic pro-
cessor buffering of 1/0 requests, with the size of
the buffer usually being equal to one 4096-byte
page frame. The analysis presented here is based
on data obtained in early 1992.

We begin the analysis of the case study data by
defining service objectives for the single-refer-
ence residency time in both storage control cache
and processor storage. The objective for proces-
sor storage should exceed the objective for stor-
age control cache by a factor of at least several
times, because this ensures that the two technol-
ogies are able to cooperate effectively with one
another. As discussed earlier, the key to effective
cooperation is a subdivision of roles:

* Processor storage holds individual page frames
for long periods of time.

IBM SYSTEMS JOURNAL, VOL 32, NO 2, 1993

¢ Storage control cache holds entire tracks for
short periods of time.

For the purpose of the analysis below, we adopt
the single-reference residency time objective of
300 seconds and 30 seconds, respectively, for
processor buffers and storage control cache.
Based on experience so far, these appear to be
reasonable, middle-of-the-road objectives.

Our examination of the installation of the case
study is based on a trace of all channel 1/0 at the
installation during 30 minutes of the morning
peak. The busiest 30 data sets appearing in this
trace are presented in Figure 1. For each data set,
the processor storage and cache storage require-
ments needed to provide the single-reference res-
idency times of 300 and 30 seconds, respectively,
are shown. The figure also shows the percentage
of traced 1/0 requests that would be served out of
the processor buffers or out of the storage control
cache, given these memory sizes.

Note that the use of channel /0 as a base for
expressing the percentages shown represents a
compromise. Conceptually, a more appealing al-
ternative would be to base the analysis on a trace
of the logical data requests made by the applica-
tion, including those requests served in the pro-
cessor without having to ask for data from disk.
A key aim of SHARDS, however, has been to cap-
ture a global picture of all disk activity, including
all potential users of processor buffering or stor-
age control cache. A global picture of this kind
was believed to be practical only relative to chan-
nel 1/O.

Inasmuch as channel 1/0 is the base for reporting,
application requests that are hits in the existing
processor buffers do not show up in the trace of
channel 1/0 and are not reflected in the projected
percentages of I/O served by the processor. Only
the additional 1/0s that may be intercepted by add-
ing more buffer storage are shown. The SHARDS
estimate of the processor buffer memory require-
ment does, however, include the existing buffer
storage, up to the limit implied by the single-ref-
erence residency time objective.

With the dynamic cache facility of MVS/ESA, the
use of storage control cache can be turned on and
off on a data set basis. Similarly, the system ad-
ministrator can choose which databases should
be supported by a given buffer pool. To take max-

MCNUTT 255

Figure 1 Busiest 30 files (data sets) in the case study and recommendations for their use of cache memory and

processor buffers
Data Set ‘Memory | Prc o | Pro;ected Prolected Percent of Trace /O
; ~Types 9 | Rate - -Me,m iB) |
CICS journal Y |N |n/a 266| 1.1 0.0 100.0 97.2 0.0
CICS journal Y [N |(n/a 10.1| 04 0.0 100.0 98.0 0.0
CICS journal Y |N |n/a 10.1] 04 0.0 100.0 98.0 0.0
CICS journal Y (N (n/a 10.1 | 04 0.0 100.0 98.0 0.0
CICS journal Y (N jn/fa 93] 1.7 0.0 0.0 84.8 0.0
CICS journal Y |N |n/a 93| 0.3 0.0 100.0 97.9 0.0
CICS system load lib N (Y |proglib 74 00 1.2 0.0 0.0 97.7
CICS journal Y |N |n/a 731 03 0.0 100.0 98.0 0.0
Security control file Y N n/a 72| 09 0.0 479 94.6 0.0
CICS journal Y N n/a 70] 03 0.0 100.0 98.0 0.0
CICS application load lib N Y prog lib 64| 0.0 7.3 0.0 0.0 48.3
CICS application VSAM work area (Y |Y |Hiperspace 48| 08 1.4 17.7 17.7 71.3
CICS application VSAM work area |Y |Y |Hiperspace 40| 08 1.3 18.9 18.0 68.3
CICS application VSAM workarea |Y |Y | Hiperspace 39| 0.7 1.3 18.0 18.2 68.8
CICS DL/ VSAM database N |Y |Hiperspace 291 00 2.0 27 0.0 44.1
CICS DL/I VSAM database Y Y Hiperspace 291 00 0.3 9.3 13.4 85.8
CICS DL/1 VSAM database Y Y Hiperspace 29| 13 1.6 115 15.7 49.3
CICS DL/1 OSAM database Y |Y [aboveline 22 1.1 1.3 17.3 21.0 39.8
CICS DL/l OSAM database Y (Y [aboveline 221 06 2.0 9.4 219 57.6
CICS DL/I OSAM database Y |Y [aboveline 22] 04 1.8 13.2 26.1 57.6
CICS DL/1 OSAM database Y Y above line 22| 06 2.1 10.8 236 55.0
CICS monitoring data (VSAM) Y N {Hiperspace 20(07 0.0 53.0 79.2 0.0
CICS DL/1 OSAM database Y Y |aboveline 20| 0.6 1.9 9.9 223 54.9
CICS application VSAM flat file Y |N [Hiperspace 19| 0.8 0.0 72.6 69.8 0.0
CICS DL/ OSAM database Y Y |aboveline 19] 05 1.8 10.0 22.1 57.5
CICS DL/T OSAM database Y Y above line 19] 05 1.9 8.7 22.7 55.8
CICS DBRC recon file (VSAM) Y Y Hiperspace 1.71 0.1 03 16.4 19.1 74.8
CICS DL/1 OSAM database Y |Y |aboveline 1.7 04 1.5 1.5 22.5 56.5
CICS DL/I OSAM database Y Y |above line 16 04 1.5 12.3 24.0 53.8
CICS application VSAM flat file Y N | Hiperspace 1.6 02 0.0 86.6 89.4 0.0
for: | Hiperspace (103.7 (22.2 (357 22.1 25.4 56.3
g aboveline | 61.6 (194 45.2 8.6 17.7 56.5
| prog lib 165 04 8.6 0.0 6.6 70.2
n/a 105.1| 8.5 0.0 82.5 94.1 0.0

256 menutT ‘ IBM SYSTEMS JOURNAL, VOL 32, NO 2, 1993

imum advantage of this flexibility, SHARDS uses a
spreadsheet program so that the planner has the
option, for each data set, of whether or not to
allocate that data set’s projected processor and
storage control cache memory requirements.
This choice is indicated by the columns CU? and
PR? in Figure 1.

Figure 1 also indicates the method (if any) by
which large buffer areas can be defined for use by
each data set. Some of the methods indicated in
the figure include:

» Hiperspace*—special expanded storage exten-
sions of the vSaM Local Shared Resource buffer
area

* Above line—large buffer areas defined by using
areas of the virtual address space beyond the
line represented by the largest 24-bit address.
Above-line buffer areas, addressed by 31-bit ad-
dressing, use a combination of central and ex-
panded storage under the control of the paging
subsystem.

* Prog lib—special storage for frequently used
programs, provided through the Virtual Look-
aside Facility/Library Lookaside (VLF/LLA)

The figure does not contain examples of the full
range of facilities available for using large pro-
cessor buffer areas. (For readers particularly in-
terested in MVS buffering, some not shown in-
clude PDSE [partitioned data set extended], CLIST
[command list], and catalog support, VIO [virtual
1/0], and the Hiperbatch* facility.)

Some data sets cannot make use of large proces-
sor buffer areas via any of the standard methods
just outlined. Examples illustrated by Figure 1
include CICS journals (i.e., database logs) and the
security control file, which are denoted by n/a in
the column labeled Processor Buffering Tech-
nique. Also shown are three vSAM flat files (one
used by the CICS monitor facility) for which large
processor buffers were found to be ineffective ow-
ing to the sequential method of access. Figure 1,
therefore, shows the deployment of storage con-
trol cache memory, but not the deployment of
processor memory, for the logs, the security con-
trol file, and the three flat files.

In contrast, an approach based on processor buff-
ers was adopted to support the program libraries
(except for some of the less active ones not in-
cluded in Figure 1). Although no attempt was

1BM SYSTEMS JOURNAL, VOL 32, NO 2, 1983

made to do so in the case study, it is possible to
obtain 100 percent hit ratios in the processor for
a few selected program libraries, by setting aside
enough storage to contain them entirely. Similar
results are also possible for a few other highly
specialized data sets. Enough processor storage
can be set aside to contain entirely, however, at
most a small fraction of all data sets. Disk storage
(measured in gigabytes) has three orders of mag-
nitude more capacity than does processor storage
(measured in megabytes).

Most of the databases presented by Figure 1 can
make effective use of both processor storage and
storage control cache. The recommended amount
of storage control cache, as shown in the figure,
is usually smaller than the amount of processor
storage. This reflects the specialized role of the
cache memory, which is to capture the following:

* Write activity
* Those read hits that come from staging an entire
track of data rather than a single record

Because of their low percentages of read hits
compared to overall reads, the databases pre-
sented by Figure 1 might appear to be making
ineffective use of storage control cache, if judged
by the read-hit-ratio measure of cache effective-
ness. These data sets are nevertheless being sup-
ported in an efficient and cost-effective manner.
The fact that this is not revealed by the traditional
read-hit-ratio metric underscores the need for a
shift in traditional planning paradigms.

Expectations for memory interaction

As previously discussed, time-in-cache objectives
can be established for storage control cache and for
processor buffers, so that the two types of memory
waork cooperatively. But the functions provided by
the two memories partially overlap. Read hits in the
processor cannot also be hits in storage control
cache. Does it really make sense to use both types
of memory at the same time on the same data?

We now address this issue by applying a simpli-
fied statistical treatment called the hierarchical
reuse model.” Despite its simplicity, the hierar-
chical reuse model provides a highly serviceable
description of realistic reference patterns. The re-
sults of the model show how the tradeoff of the
two storage technologies is driven by the basic
difference in their memory management strate-

McNuTT 257

Figure 2 Empirical checks of the hierarchical reuse model

0.063 —

PROBABILITY EXCEEDED

0.125 —

0250 o .

0.500

1.000 —

- 0.016

— 0.031

- 0.063

|- 0.126

— 0.250

I~ 0.500

- 1.000

|
4

I L 1] 1
8 16 32 64 128 256 512

TIME BETWEEN 1/0s TO SAME TRACK (SECONDS)

gies. We find that for typical data there are two
conclusions:

1. The best method of deploying a given memory
budget is to use a relatively larger amount of
processor storage and a small-to-moderate
amount of storage control cache.

2. Within this guideline, overall performance is
highly insensitive to the exact ratio of memory
sizes.

The second conclusion is a big help in practical
applications. SHARDS takes advantage of it by ap-
plying the same time-in-cache objectives outlined
earlier in this paper to each type of memory,
whether the two types are being used together or
separately. This succeeds in achieving a sound
balance of the two memories because it yields a
result that is in the ballpark, that is, close enough
given the second conclusion.

For simplicity in dealing with the fundamental is-
sue of memory management in page frames ver-
sus tracks, we consider a reference pattern that
consists of reads only. Also for simplicity, we use

258 monuTT

a model of storage control cache operation in
which any reference to a track contained in the
cache is considered to be a hit. The probability of
a so-called “front-end miss” (request to an un-
cached portion of a cached track), normally very
small, is assumed to be zero.

Hierarchical reuse model. The hierarchical reuse
model of reference locality is motivated by the ob-
servation that the causes of data reuse tend to have
a hierarchical structure. Thus, 1/0s are requested by
subroutines that are a part of main routines that are
invoked by transactions that, in turn, are employed
to accomplish some overall task. Because of this,
the hierarchical reuse model hypothesizes that the
probability structure of data reuse at long time
scales should mirror that at short time scales, after
the time scale itself is taken into account.

For example, consider two tracks in storage con-
trol cache: (1) A short-term track, last referenced
5 seconds ago, and (2) a long-term track, last ref-
erenced 20 seconds ago. The hierarchical reuse
model predicts that the short-term track has the
same probability of being referenced in the next

IBM SYSTEMS JOURNAL, VOL 32, NO 2, 1993

2 o016 - 0.016
o
w
3
>
W 0,031 1 0.031
>
=
3
o
&
D 0.063 |- 0.063
il
o
0.125 L 0.125
0.250 T L 0.250
0.500 J ’._ 0.500
1.000 L 1.000
T T L T T T T T
1 2 4 8 16 32 64 128 256 512

TIME BETWEEN I/0s TO SAME PAGE FRAME (SECONDS)

5 seconds as the long-term track does of being
referenced in the next 20 seconds. Similarly, the
short-term track has the same probability of being
referenced in the next one minute as the long-
term track does of being referenced in the next
four minutes.

Suppose U represents the time from the last ref-
erence to the next re-reference of a given track (or
page frame); and suppose that u, is an arbitrary
interval of time (e.g., u, might represent the time
intervals of 5 or 20 seconds used in the examples
of the short-term and long-term tracks, respec-
tively). Then a more formal statement of the hy-
pothesis above is:

Hierarchical reuse hypothesis: The conditional
distribution of the quantity

u—O]U>u0

does not depend upon u,. Moreover, this distri-
bution is independent and identical across periods
following different references.

IBM SYSTEMS JOURNAL, VOL 32, NO 2, 1993

A hypothesis of this form has to be constructed
with some lower limit on the time scale u,; other-
wise, there is danger of dividing by zero. For stor-
age control cache and processor memory, the
lower limit appears to be much lower than any of
the time scales of interest (some fraction of one
second). The lower limit, although it exists, has
little or no practical effect on the application of
the model. For this reason we shall usually ignore
it.

The behavior just predicted by the hierarchical
reuse hypothesis is a special case of statistical
self-similarity, a feature often seen in the study of
fractals. Indeed, it is shown in Reference 8 that a
random variable U that satisfies the conditions
stated in the hierarchical reuse hypothesis must
belong to the hAyperbolic family of distributions;
i.e., U can be characterized by

PlU>x]=ax""* 3)

for some constants a and 6, and for sufficiently
large values of x (values above the lower limit
mentioned earlier).

mcNuTT 2590

The thrust of Equation 3 is that if IJ is plotted
versus x in a log-log plot, the result should be a
straight line. Figure 2 presents a check of this
hypothesis against trace data collected at 11 VM
installations? in 1988. Every volume at each in-
stallation was traced. The volumes were then di-
vided into data pools, depending on the type of
data. Figure 2 presents the results for the pool of
system data at each installation (shown as a
dashed line) as well as the pool of user data
(shown as a solid line). The left side presents a
log-log plot of the distribution of U as defined in
terms of references at the track level. The right
side presents a similar plot of the distribution de-
fined in terms of references at the page-frame
level, where each page frame contains one VM
disk record.

Figure 2 comes strikingly close to being the pre-
dicted collection of straight lines. This makes
Equation 3 a highly serviceable approximation to
real reference behavior. Little would be lost by
replacing any of the curves of Figure 2 by a
straight line, as specified by suitable choices of
the parameters a and 6.

An important aspect of the data presented in Fig-
ure 2 is the difference in slopes between the left
and the right side. For example, user data typi-
cally seems to exhibit a slope corresponding to a
value 6 = 0.25 in the plot of track reference lo-
cality. By contrast, user data in the plot of page-
frame locality tends to exhibit about half of this
slope, 6 = 0.125.

The value of 8 is a measure of cache responsive-
ness with respect to increasing time-in-cache.
Some intuition about 6 can be gained by consid-
ering again the idea of a hierarchical set of rou-
tines/programs/transactions/tasks that might gen-
erate repeat references to a given data object. In
this framework, the value of 6 is related to the
average number of repeat references to a given
object that are expected to occur at a given level
of the hierarchy. That is, it is an indirect measure
of the amount of branching that affects a given
data item. This clarifies why the slopes on the left
of Figure 2 are greater than the slopes on the right.
The difference in slope reflects the fact that more
repeat references can be expected to a given track
than to a given record.

It can be shown that Equation 3 has a number of
interesting consequences.’ The miss ratio m, sin-

260 mcnutr

gle-reference residency time 7, average residency
time 7, and memory size s, relate to one another
in a very simple series of equations:

m=ar?

r=(1-0)T

A
s \T=¢
T=(zbr)

where r represents 1/O rate, z represents stage size
(average amount of storage claimed in order to
add a new entry into memory), and b is a constant
related to a:

“

b=a(l-8)"*

These equations can be applied to obtain the miss
ratio as a function of cache size for either storage
control cache or processor buffers operating as a
separate technology. If the two technologies op-
erate together, some hits occur only in the pro-
cessor, which otherwise would have occurred in
storage control cache. The effect of this on the
miss ratio in storage control cache is easiest to see
when the single-reference residency time in the
processor is shorter than that in the cache, i.e.,
when 7, < 7. where the subscripts p and ¢ are
used to denote processor and storage control
cache memories, respectively. In this case, all the
hits in the processor overlap with hits that would
have occurred in the cache by itself, assuming
that the cache’s single-reference residency time is
held fixed. The effect of processor buffering is,
therefore, to reduce the number of requests to the
cache without any reduction in cache misses. As
a result,

m,=-~ (5)

where the prime indicates the miss ratio in the
combined configuration.

A more useful configuration is one in which 7, >
7.. The analysis of this case is more complex, but
it can be shown in this case also that the hit ratio
in the cache when running in combination with
processor buffers can be estimated as a function
of the hit ratios for the two memory technologies®
operating separately:

IBM SYSTEMS JOURNAL, VOL 32, NO 2, 1993

’ m. 6
m; =~ (6)

plrp=71c

where the suffix starting with “|” indicates that
the processor miss ratio is evaluated at the single-
reference residency time of the storage control
cache.

When applied to Equation 6, the reasoning of Ref-
erence 7 produces a set of relationships closely
analogous to those for a single memory. Provided
that 7, > 7., we have:

a

r= & (8- 6p)
m, apfc P
T.=[1-(0.-0,)]T.
Ok , 0
el
z.b.m,r

where
aC

b= [l (0.~ 8,1 %
aP

Balancing the memories. Equations 4, 5, and 7
provide a practical method to estimate the miss
ratio as a function of memory size in a configura-
tion that includes both storage control cache and
processor memory. The delay D to serve a given
/O request can therefore be estimated as well:

D=m,D,+m,m.D, (8)
where

D, =increment of delay caused by a miss in the
processor buffer (i.e., the time required to
obtain the data from storage control cache)

D, =additional increment of delay caused by a
miss in the storage control cache (native de-
vice service time less time for cache service)

Figure 3 presents the result of applying Equation
8 across the range of memory sizes that yield a
fixed total size of 0.25 megabytes per I/O per sec-
ond. This figure uses average values of the user
data pools (solid line) and system data pools
(dashed line) presented in Figure 2 as the param-
eters determining cache behavior. The quantities

IBM SYSTEMS JOURNAL, VOL 32, NO 2, 1993

Figure 3 Tradeoff of the two memory types, where the
diamonds mark 10-times ratios of the single-
reference residency time

SERVICE TIME (MS)
»
]

— 1T
0 20 40 60 80 100
PERCENTAGE OF MEMORY BUDGET IN PROCESSOR

D, and D, are assumed to have the values 2.5 and
12.5 milliseconds, respectively {making total ser-
vice time on the native device equal to 15 milli-
seconds). For the extreme case where either
memory size is zero, the miss ratio is taken to be
unity. To avoid the lower limit of the hierarchical
reuse time scale, the regions involving single-ref-
erence residency times of less than one second for
either memory are bridged using interpolation.

Figure 3 establishes the two conclusions prom-
ised earlier in this paper:

¢ The best method of deploying a given memory
budget is by using a relatively larger amount
of processor storage and a small-to-moderate
amount of storage control cache.

e Within this guideline, overall performance is
highly insensitive to the exact ratio of memory
sizes.

From a practical standpoint, a good way to at
least come close to the optimum memory balance
is to plan for a time-in-cache service objective in
the processor that is approximately a factor of ten
greater than the same objective in storage control
cache. Figure 3 shows the points where this oc-
curs for the user and system cases.

Although the exact ratio of memory sizes is not a
sensitive one, it is still interesting to ask where the

MCNUTT 261

actual minimum in the service time occurs. For
this purpose, it is useful to generalize slightly the
treatment of Figure 3 by assuming that the total
memory budget is given in dollars rather than in
megabytes. If both types of memory are assumed
to have the same cost per megabyte (which is
roughly true at current prices), then this reduces
to the framework of Figure 3.

Now suppose we wish to minimize the total delay
D subject to a fixed budget

s,E, + s.E.=B 9)
where

E, =cost per megabyte of processor storage

E_ =cost per megabyte of cache storage

The Equations 7 can be solved to show that the
minimum occurs when

s E. (00 1)1 1
5,E, \s, 110155 (10)
where

5 b, 1 1—(6
=5 g 1= (0.~ 6)]

c [

Application of Equation 10 requires an iteration
on the value of the cache miss ratio. The miss
ratio can initially be set to an arbitrary value such
as 0.5, then recomputed using Equations 10 and
7. Convergence is very rapid, so that three eval-
uations of Equation 10 are enough to obtain a
precise result.

In the present context, however, we are not so
much interested in performing calculations based
on Equation 10 as in using it to gain insight. For
this purpose, it is helpful to consider what hap-
pens if the goal is simply to minimize the number
of requests to be served by the native device. In
this case, we take into account only D, and as-
sume that D, is zero. With this simplification,
Equation 10 reduces to:

s.E, p
T E =(0——1) (1-9,) (11)

PP p

262 mcnutT

This result shows clearly that the crucial deter-
minant of the best balance between the two mem-
ories is the difference in their cache responsive-
ness (i.e., values of 6). As long as there is any
tendency for references to different page frames
to cluster into groups, thereby causing a greater
amount of use of a given track than of a given page
frame, then some amount of storage control cache
is appropriate. The stronger this tendency grows,
the greater the role of storage control cache be-
comes in the optimum balance. Using as an ex-
ample the values for 8 of 0.25 in storage control
cache and 0.125 in processor memory (the values
mentioned earlier in this paper for user data),
Equation 11 indicates that the fewest native-
device accesses occur when the ratio of the stor-
age control and processor portions of the memory
budget is

025 1) 1—0.125) = 0.875
0125 1) 1-0.125)=0.

This means that 1/(1 + 0.875) = 54 percent of the
total budget is allocated to the processor. If, in-
stead, the values of @ are 0.35 in storage control
cache and 0.225 in processor storage (typical val-
ues for the system data in Figure 2), we would
allocate 70 percent of the total budget in the pro-
cessor to get the fewest native device accesses.

As indicated by Equation 10, the memory balance
that minimizes the total delay D involves a small
upward adjustment in processor memory com-
pared to the results just given. Assuming for sim-
plicity that both memory costs E. and E, are
equal, the fractions of the total storage needed in
the processor to produce minimal delay are 62
and 78 percent in the user and system cases, re-
spectively.

It is worthwhile to reiterate that achieving the
optimum balance is not important in practice. As
Figure 3 shows, what matters is to achieve some
balance, so that the larger portion of the memory
budget is in the processor and a small-to-moder-
ate portion is in the storage control cache. This is
sufficient to ensure that the delay per request is
close to the minimum that can be achieved within
the memory budget.

It should again be noted, as at the end of the

section on patterns of memory use earlier in this
paper, that in a configuration that displays the

IBM SYSTEMS JOURNAL, VOL 32, NO 2, 1993

desired balance of memories, the read hit ratio
may well be below the often-recommended guide-
line of 70 percent. In the user and system con-
figurations just discussed that yield the minimum
delay D, the storage control cache hit ratios are 58
and 64 percent, respectively. The low hit ratios
are mitigated, however, by the overall load re-
duction due to processor buffering. Average uti-
lization of the 1/0 subsystem actuators and paths
is substantially lower in the selected configura-
tions than it would be without processor buffers.

Concluding remarks

We have used the multiple workload approach to
gain insight into the manner in which both pro-
cessor and storage control memory can be used to
provide fast and cost-effective service for disk 1/0.
The application of the approach to a specific case
study shows that it is helpful to divide the files on
disk storage into three categories:

1. Files for which buffer memory is best provided
in the storage control. Examples drawn from
the case study include flat files as well as files,
such as logs, that do not have the capability to
use processor buffering.

2. Files for which buffer memory is best provided
in the processor. Examples drawn from the
case study include several program libraries
(which can be contained entirely in processor
memory if they are small enough) as well as
one database that had almost no tendency for
nearby records to be referenced together.

3. Files for which a mixed-buffering strategy is
most effective. This group includes most of the
databases examined in the case study.

For the data in the third category, the larger
amount of memory should usually be provided in
the processor with a small-to-moderate amount
being provided in storage control cache.

Collectively, these conclusions demand that two
key assumptions often made in the disk planning
process must be abandoned. These assumptions
are usually implicit, but at this stage it would be
worthwhile to bring them into the open:

1. A system throughput requirement in transac-
tions per second directly implies a correspond-
ing /O rate requirement in I/Os per second. The
problem with this assumption is that the num-
ber of I/0s per transaction can be adjusted for

IBM SYSTEMS JOURNAL, VOL 32, NO 2, 1993

any given transaction type by changing the
number of processor buffers available for that
transaction type. If desired, system through-
put can be increased with no corresponding
increase in 1/0 rate.

2. Transaction response time and system through-
put capability are directly coupled to disk re-
sponse time, and therefore to the hit ratio of
the storage control cache. This assumption
breaks down when the number of 1/0s required
by a given type of transaction is not fixed.
Even if the response time per /O increases,
transaction response time might still go down,
and system throughput capability may in-
crease if the number of I/Os per transaction is
reduced. This outcome can be expected to oc-
cur routinely in planning for MVS/ESA, VM/ESA,
and VSE/ESA systems.

All is not lost, however. The following premise
continues to stand up, and helps to act as a re-
placement for statements 1 and 2 above:

3. Transaction response time and system through-
put capability are directly coupled to the aggre-
gate time per transaction spent waiting for phys-
ical disk motion.

In Enterprise Systems Architecture (ESA), many
capabilities are available to reduce the amount of
such motion and to target the reductions to the
types of transactions that are most response-time
critical. These include processor buffering tech-
niques provided by ESA, the use of dynamic cache
management to target storage control cache at
specific files, and tools to identify which files are
most impacted by disk delays.*’ It is easy to
waste time and effort, however, trying to solve
the wrong problem, i.e., trying to minimize 1/0
subsystem response time when this is not the
most helpful objective.

The capabilities of ESA can best be leveraged to
achieve cost-effective I/O subsystems by keeping
statement 3 above in mind. The less time is spent
waiting for physical disk motion, the fewer 10
subsystem resources such as actuators and stor-
age controls are needed to service the stored data
and the lower is the cost per megabyte of disk
storage needed to achieve a given level of system
throughput. This strategy does, however, require
a departure from traditional /O subsystem guide-
lines, in particular, a departure from the objective

McNUTT 263

of always maintaining a 70 percent hit ratio in
storage control cache,

Luckily, the target at which the strategy above
takes aim appears to be broad and easy to hit.
System-level performance is highly insensitive to
the exact balance of the two key resources—stor-
age control cache and processor buffer memory—
needed to reduce disk delays. It is important only
that some balance exists, with the larger part of
the memory budget allocated in the processor and
a small-to-moderate amount of memory provided
in storage control cache.

Acknowledgment

The author is pleased to acknowledge the vital
contributions of Charlic Werner and Neena Che-
rian toward the development of the tools that
comprise SHARDS. Without such tools, the gath-
ering of data such as that presented in this paper
would not be possible.

*Trademark or registered trademark of International Business
Machines Corporation.

Cited references and note

1. B. McNutt and J. W. Murray, “A Multiple-Workload Ap-
proach to Cache Planning,” CMG 87, Computer Measure-
ment Group Conference Proceedings, Internal Conference
on Measurement and Performance Evaluation of Com-
puter Systems, Orlando, Florida (December 7-11, 1987),
pp. 9-11.

2. B. McNutt, “An Overview and Comparison of VM DASD
Workloads at Eleven Installations, with a Study of Storage
Control Cache, Expanded Storage and Their Interaction,”
CMG’89, Proceedings, International Conference on Man-
agement and Performance Evaluation of Computer Sys-
tems, Reno, Nevada (December 11-15, 1989), pp. 306-318.

3. B. McNutt, “High-Speed Buffering of DASD Data: A
Comparison of Storage Control Cache, Expanded Storage,
and Hybrid Configurations,” CMG 90, International Con-
Jerence for the Management and Performance Evaluation
of Computer Systems, Orlando, Florida (December 1014,
1990), pp. 75-89. See particularly appendix result (A-9),
which becomes Equation 6 of the present paper, when ex-
pressed in terms of miss ratios.

4. T. W. Ryan, “Optimizing Cache Performance,” CMG’90,
International Conference for the Management and Per-
formance Evaluation of Computer Systems, Orlando, Flor-
ida (December 10-14, 1990), pp. 26-37.

5. G. Houtekamer, “Cache Management: Subsystem and
Data Level Approaches,” CMG’91 Proceedings, Interna-
tional Conference for the Management and Performance
Evaluation of Computer Systems, Nashville, Tennessee
(December 9-13, 1991), pp. 122-132.

6. Terminology is further confused by a conflict between this
use of the term “holding time”” and that used in References
2 and 3, in which “average holding time” is adopted as a

264 monutT

nickname for “‘average residency time” and both phrases
are used interchangeably. In this paper I avoid the term
“holding time.”

7. B. McNutt, “A Simple Statistical Model of Cache Refer-
ence Locality, and Its Application to Cache Planning, Mea-
surement, and Control,” CMG’91 Proceedings, Interna-
tional Conference for the Management and Performance
Evaluation of Computer Systems, Nashville, Tennessee
(December 9-13, 1991), pp. 203-210.

8. B. B. Mandelbrot, The Fractal Geometry of Nature, re-
vised edition, W. H. Freeman & Co., New York (1983).
See particularly p. 383.

Accepted for publication December 4, 1992.

Bruce McNutt /1BM ADSTAR, 5600 Cottle Road, San Jose,
California 95193. Mr. McNutt is an advisory engineer-scien-
tist working in the area of DASD system performance eval-
uation. He joined IBM in 1983 and has worked in the area of
DASD performance and workload characterization since that
time. His 1990 paper “DASD Configuration Planning: Three
Simple Checks” received the award for Best Management
Paper at that year’s conference of the Computer Measurement
Group (CMG). Since first proposing the multiple workload
approach to cache planning in 1987, he has continued to ex-
plore and develop the practical applications of this approach.
Mr. McNutt received his B.S. degree in mathematics from
Stanford University and his master’s degree in electrical en-
gineering and computer science from the University of Cali-
fornia at Berkeley.

Reprint Order No. G321-5512.

IBM SYSTEMS JOURNAL, VOL 32, NO 2, 1993

