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170 subsystem  configurations are dictated  by  the 
storage  and  IlO  requirements  of  the  specific 
applications  that  use  the disk hardware.  Treating 
the  latter  requirement as a  given,  however,  draws 
a  boundary  at  the  channel  interface  that is not 
well-suited to the  capabilities  of  the  Enterprise 
Systems Architecture (ESA). This  architecture 
allows hardware  expenditures in the  IlO 
subsystem to be  managed, while at the same 
time  improving  transaction response time and 
system  throughput  capability,  by  a  strategy of 
processor  buffering  coupled with storage control 
cache.  The  key is to control the  aggregate  time 
per transaction  spent  waiting  for  physical disk 
motion.  This paper  investigates  how to think 
about  and  accomplish  such  an  objective.  A  case 
study, based on  data  collected at a  large  Multiple 
Virtual  Storage  installation, is used to investigate 
the  potential  types and  amounts  of  memory  use 
by individual  files, both in storage control cache 
and in processor  buffers. The  mechanism  of 
interaction between the two memory  types is 
then  examined  and  modeled so as to develop 
broad  uidelines  for how  best to deploy  an 
overal P memory  budget.  These guidelines  tend to 
contradict  the  usual  metrics  of  storage control 
cache  effectiveness,  underscoring  the need for 
an  adjustment in pre-€SA  paradigms. 

T he effective use of almost any  computer  sys- 
tem  requires  the juggling of three  key re- 

sources:  the  central  processor,  the high-speed 
working memory provided in the  processor 
(which may include both central and expanded 
storage), and disks for the  permanent  storage of 
files and  databases.  The  processor memory and 
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disk storage form a storage  hierarchy, tied to- 
gether  by processor-initiated I/O operations. 

On large systems, I/O operations  are generally 
performed with  the help of a storage  control to 
access  the  disks and a channel to carry data  be- 
tween  the  storage  control and the  processor. A 
relatively recent addition to  the  storage  hierarchy 
has  been storage  control cache, which is  an  extra 
working memory in the  storage  control  that re- 
tains  copies of the most recently used disk tracks. 

The  focus of this paper is the impact that  Enter- 
prise Systems  Architecture (ESA) has had on the 
balanced use of the  above  resources in large sys- 
tems. These include the computing environments 
provided by  the IBM operating systems MVS/ESA* 
(Multiple Virtual StorageEnterprise Systems  Ar- 
chitecture), VWSA* (Virtual MachineEnterprise 
Systems Architecture*), and VSE/ESA* (Virtual 
Storage ExtendediEnterprise Systems Architec- 
ture). ESA provides a powerful range of capabilities 
for the use of processor memory as an I/O buffer 
area. Such an area allows I/O requests to  be avoided 
by temporarily saving data previously obtained 
from disk storage. On the other hand, planning for 
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the YO subsystem (the disk- and storage-control 
hardware) is often performed by taking as a given 
the 110 requirements of the applications that use the 
hardware. This “given” draws a boundary at the 
channel interface that is not well-suited to the ca- 
pabilities of Enterprise  Systems Architecture (ESA). 
Expenditures in the I/O subsystem can be managed, 
while at the same time  improving transaction re- 
sponse time and system throughput capability, 
through a strategy of processor buffering coupled 
with storage control cache. 

The  key  to accomplishing this is to control  the 
aggregate time per  transaction  spent waiting for 
physical disk motion. The  less time is  spent  wait- 
ing for disk motion, the  fewer I/O subsystem  re- 
sources  such as actuators and storage  controls  are 
needed to service  the  stored  data  and  the lower is 
the  cost per megabyte of disk  storage  needed  to 
achieve a given level of system  throughput.  This 
objective  may  at  times conflict with and  override 
the  usual 110 subsystem  objectives of minimizing 
I/O response  time  and maximizing storage  control 
cache hit ratios. 

This  paper  investigates how to think about  and 
accomplish the game plan just outlined. Some of 
the  questions  addressed are: 

What  types of data  require which type of cache 
or  processor  memory? 
How can  each  type of data  be given the  amount 
of memory  required? 
Should  both  cache  and  processor  memories  be 
used at  the  same time? 
If so, how much of each? 

~ The following section begins by examining some 
actual  patterns of potential ESA memory  use to 
support specific files and databases. To explore 
the  cache  and/or  processor  memory  requirements 
of individual files (or data  sets, in MVS terminol- 
ogy) in a typical MVS environment, the multiple 

i workload approach  is used. A summary is given 
of the multiple workload approach  and  its appli- 
cation to memory planning. 

The  data  show  that a number of important files, 
such as database logs, do  not  use  processor buff- 
ers and  can be served at high speed  only  with 
storage  control  cache.  Other files, such as small 
heavily used program libraries, can  be  served so 
well by processor  memory  that  there  is little need 
for  storage  control  cache. For many  types of data, 
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including most large databases,  both  types of 
memory  technology  can  be deployed to advan- 
tage at the same time. This is accomplished by 
using each  technology in the following specific 
roles: 

Processor  storage  is used to hold individual 
page frames  for long periods of time. 
Storage  control  cache  contributes additional 
hits by staging the entire  track of data following 
a requested  record and holding it for  relatively 
shorter times. 

The  succeeding  section  presents a study in more 
detail  concerning  the  circumstances  under which 
it makes  sense  to use  both  types of memory  at  the 
same time. Also discussed  is  the balancing of the 
amounts of the  two  types of memory against one 
another. For this  purpose, a simplified statistical 
model, called hierarchical reuse, is used to gain a 
better  understanding of the  interaction  between 
the two memory  types. A summary of this model 
is also  presented. 

By applying the hierarchical reuse model, we 
show  that,  for  most  data,  we should expect a bal- 
anced  deployment of the  overall  memory  budget, 
using both  memory technologies, to  be  the most 
cost-effective strategy  for achieving high perfor- 
mance. Guidelines for how to accomplish this are 
also developed. 

We conclude by pulling together  the  results of the 
previous  sections  and discussing in greater  detail 
the shift in I/o subsystem paradigms that ESA ap- 
pears  to require. 

Patterns of memory  use 

We now consider individual file requirements for 
storage  control  cache  and  processor buffers at a 
real installation. This  is  done by showing early 
results  obtained in a live MVS environment using 
a set of tools and procedures called Storage 
Hierarchy Analysis by Review of Data Sets 
(SHARDS). 

SHARDS has  been  developed to facilitate  an  ex- 
change of information about I/O subsystem  work- 
loads.  The plan is to offer to run SHARDS at a 
number of installations in return  for their partic- 
ipation in a survey of information about  the  types 
of files being used,  patterns of  file activity, and  the 
locality of file reference.  Summary  results of the 
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survey  are  to  be published for use  by  anyone in- 
terested in disk performance and capacity plan- 
ning. To protect  the  privacy of the  participants, 
customer names, file names,  volume labels, or 
other identifying information is to be held in con- 
fidence and is not to be published. 

SHARDS produces  a  picture of cache and proces- 
sor  storage  requirements  by individual file,  in 
such  a  manner  that  the specific files to  be sup- 
ported by each technology can  be  selected or ex- 
cluded one  at  a time. This is made possible by  the 
multiple  workload approach to  cache planning, l 3  

in which the  service objective for each caching 
technology is  stated in terms of cache  residency 
time (of which there  are  two flavors). A brief sum- 
mary of the multiple workload approach is given 
first, followed by  an examination of some of the 
early SHARDS results. 

The  multiple  workload  approach. The multiple 
workload approach  to identifying cache memory 
requirements  takes advantage of an analogy that 
can  be  drawn  between  the  elements of a least 
recently used (LRU) list and the cars crowded to- 
gether  on  a  one-lane highway between  two  towns. 
Just as all types of cars  on  the highway require 
about  the  same amount of time to  travel  between 
towns, all types of data in the LRU list take  about 
the  same amount of time to go from the  top  to  the 
bottom of the list. 

This observation  can be used to analyze  each 
file’s cache  requirements  separately from the  re- 
quirements of any  other files that  may  share  the 
cache.  The  key  that  makes  this possible is to  state 
a  service objective for the time-in-cache. Such  an 
objective captures  the operating state of the 
planned cache insofar as it affects any individual 
file. Planning for each file can  proceed indepen- 
dently of any  others,  based solely on the  operat- 
ing state (time-in-cache) of the  cache as a whole. 

Single-reference  residency time. Two flavors of 
the time-in-cache service objective are of inter- 
est.  The most theoretically appealing, for the 
reasons  just given, is  the time to go from the 
top to  the  bottom of the LRU list. This  is called 
the single-reference  residency  time in Reference 1, 
because it is  the time spent in the  cache  by 
objects  that  are referenced only  once.  Subse- 
quent  authors  have  also  introduced  the  terms 
demotion time4 and holding time. Future 
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authors  are strongly urged to pick from among the 
above  three  terms  rather  than adopting any new 
ones. 

Unfortunately,  the single-reference residency 
time cannot  be used for planning purposes with- 
out having a  cache simulation tool that  provides 
an  output showing it. Recent  tools  have begun to 
provide this information so as  to facilitate multi- 
ple workload planning. 4,5 

Average residency time. Because  such  tools  have 
not been available until recently, a useful alter- 
native has  been to  state  the service objective as an 
average  residency time, which is  the average time 
for all cache  visits,  whether single-reference or 
otherwise. The  average  residency time will not be 
precisely the same for all  files  in the  cache,  but in 
this method of defining the  service objective we 
proceed by assuming, for purposes of simplicity, 
that it is  the same. This approach  to multiple 
workload planning continues to  be of interest for 
two reasons: 

Errors in cache hit ratio obtained from this sim- 

The average residency time can be backed out 
plifying assumption tend to  be negligible.’ 

from cache hit ratios. 

The ability to back  out  the  average  residency time 
comes from Little’s law. In its general form, that 
law states  that for any  system  (where vstem is 
very  broadly defined), 

for the  averages of these  three quantities. 

Equation 1 can  be applied directly to a  system 
comprised of the population of objects  that  have 
been staged into  a  cache.  Because  the  storage 
required by  these  objects  is  the following: 

( cache ) = (population 
storage staged 

storage claimed 

operation 

we  can  use  Equation 1 to  substitute for popula- 
tion: 
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(storage) = ( time ) X ( rate ) cache  residency  request 

fraction of 

cause staging 

storage claimed 

operation 

Equation 2 gives a way  to  estimate  the  average 
residency time directly from cache hit ratio  data. 
For this reason, any desired cache simulation tool 
can  be used to implement the average-residency- 
time version of the multiple workload approach. 

A case study.  We are now ready to apply the mul- 
tiple workload approach to a specific case  study. 
The installation examined in the  case  study  was a 
large MVSESA environment running primarily on- 
line database applications. More specifically, 
most applications were  constructed using Data 
Language/l (DWI) to formulate data  requests and 
the Customer Information and Control System 
(CICS) to facilitate terminal interactions  with  the 
database.  Database 110 was mostly performed us- 
ing two of the  several  access  methods provided 
by MVS: 

Virtual Storage  Access Method (VSAM) 
Overflow Sequential Access Method (OSAM) 

Both access  methods provide for automatic pro- 
cessor buffering of I/O requests, with the  size of 
the buffer usually being equal to  one 4096-byte 
page frame. The analysis presented  here is based 
on  data obtained in early 1992. 

We begin the analysis of the  case  study  data  by 
defining service  objectives for the single-refer- 
ence  residency time in both storage  control  cache 
and processor storage. The objective for proces- 
sor  storage should exceed the objective for stor- 
age control  cache by a factor of at  least  several 
times, because  this  ensures  that  the two technol- 
ogies are able to cooperate effectively with  one 
another.  As discussed earlier, the  key to effective 
cooperation is a subdivision of roles: 

Processor  storage holds individual page frames 

(2) 

for long periods of time. 
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Storage  control  cache  holds  entire  tracks for 
short  periods of time. 

For the  purpose of the analysis below, we  adopt 
the single-reference residency time objective of 
300 seconds  and 30 seconds, respectively, for 
processor buffers and storage  control  cache. 
Based on  experience so far, these  appear  to  be 
reasonable, middle-of-the-road objectives. 

Our examination of the installation of the  case 
study  is  based  on a trace of all channel I/O at  the 
installation during 30 minutes of the morning 
peak. The busiest 30 data sets appearing in this 
trace  are  presented in Figure 1. For each data  set, 
the  processor  storage and cache  storage require- 
ments needed to provide the single-reference res- 
idency times of 300 and 30 seconds, respectively, 
are shown. The figure also shows the percentage 
of traced 110 requests  that would be  served out of 
the  processor buffers or out of the storage  control 
cache, given these memory sizes. 

Note  that  the  use of channel I/O as a base for 
expressing the  percentages shown represents a 
compromise. Conceptually, a more appealing al- 
ternative would be  to  base the analysis on a trace 
of the logical data  requests made by the applica- 
tion, including those  requests  served in the pro- 
cessor without having to ask for data from disk. 
A key aim of SHARDS, however, has been to cap- 
ture a global picture of all disk activity, including 
all potential users of processor buffering or stor- 
age control  cache. A global picture of this kind 
was believed to  be practical only relative to chan- 

, nel I/O. 

Inasmuch as channel I/O is the  base for reporting, 
application requests  that  are hits in the existing 
processor buffers do not show up  in the  trace of 
channel I/O and are not reflected in the projected 
percentages of I/O served  by  the  processor. Only 
the additional I/OS that may be  intercepted  by add- 
ing more buffer storage  are shown. The SHARDS 
estimate of the processor buffer memory require- 
ment does, however, include the existing buffer 
storage, up to  the limit implied by the single-ref- 
erence  residency time objective. 

With the  dynamic  cache facility of MVWESA, the 
use of storage  control  cache  can be turned  on and 
off on a data  set basis. Similarly, the  system ad- 
ministrator can  choose which databases should 
be  supported  by a given buffer pool. To take max- 
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Figure 1 Busiest 30 files (data  sets) in the  case  study  and  recommendations  for  their  use of cache  memory  and 
processor  buffers 

256 

CICS journal 

CICS application VSAM work area Y Y Hiperspace 4.8 0.8 1.4 17.7 17.7 71.3 
CICS application VSAM work area Y Y Hiperspace 4.0 0.8 1.3  18.9 18.0 68.3 
CICS application VSAM work area Y Y Hiperspace 3.9 0.7 1.3 18.0 18.2 68.8 
CICS DL/I VSAM database N Y Hiperspace 2.9 0.0 2.0 2.7 0.0 44.1 
CICS DL/I VSAM database Y Y Hiperspace 2.9 0.0 0.3 9.3 13.4 85.8 
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imum advantage of this flexibility, SHARDS uses a 
spreadsheet program so that  the planner has  the 
option, for each  data  set, of whether or not to 
allocate that  data set’s projected  processor and 
storage  control  cache memory requirements. 
This choice is indicated by  the columns CU? and 
PR? in Figure 1. 

Figure 1 also  indicates  the method (if any) by 
which large buffer areas  can  be defined for use  by 
each data  set. Some of the  methods indicated in 
the figure include: 

Hiperspace*-special expanded storage  exten- 
sions of the VSAM Local  Shared  Resource buffer 
area 
Above line-large  buffer areas defined by using 
areas of the  virtual  address  space beyond the 
line represented  by  the largest 24-bit address. 
Above-line buffer areas,  addressed  by 31-bit ad- 
dressing, use a combination of central and ex- 
panded storage under the  control of the paging 
subsystem. 
Prog lib-special storage for frequently used 
programs, provided through the Virtual Look- 
aside FacilityLibrary  Lookaside (VLF~LLA) 

The figure does not contain examples of the full 
range of facilities available for using large pro- 
cessor buffer areas.  (For  readers particularly in- 
terested in MVS buffering, some not shown in- 
clude PDSE [partitioned data set extended], CLIST 
[command list], and catalog support, VIO [virtual 
1/01, and the Hiperbatch* facility.) 

Some data sets cannot make use of large proces- 
sor buffer areas  via any of the  standard  methods 
just outlined. Examples illustrated by Figure 1 
include CICS journals (i.e., database logs) and the 
security  control file, which are  denoted by n/a in 
the column labeled Processor Buffering Tech- 
nique. Also shown  are  three VSAM flat  files (one 
used by  the CICS monitor facility) for which large 
processor buffers were found to  be ineffective ow- 
ing to the sequential method of access. Figure l, 
therefore,  shows  the deployment of storage  con- 
trol  cache memory, but not the deployment of 
processor memory, for the logs, the  security  con- 
trol file, and the  three flat  files. 

In  contrast,  an  approach based on processor buff- 
ers  was adopted to  support  the program libraries 
(except for some of the  less  active  ones not in- 
cluded in Figure 1). Although no  attempt  was 
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made to do so in the  case  study, it is possible to 
obtain 100 percent hit ratios in the  processor for 
a few selected program libraries, by  setting aside 
enough storage to contain them entirely. Similar 
results  are  also possible for a few other highly 
specialized data  sets.  Enough  processor  storage 
can  be  set aside to contain entirely, however, at 
most a small fraction of all data  sets. Disk storage 
(measured in gigabytes) has  three  orders of mag- 
nitude more capacity than does  processor  storage 
(measured in megabytes). 

Most of the  databases  presented by Figure 1 can 
make effective use of both  processor  storage and 
storage  control  cache.  The recommended amount 
of storage  control  cache, as shown in the figure, 
is usually smaller than  the amount of processor 
storage. This reflects the specialized role of the 
cache memory, which is to  capture  the following: 

Write activity 
Those read hits that come from staging an entire 
track of data  rather than a single record 

Because of their low percentages of read hits 
compared to overall reads, the  databases pre- 
sented  by Figure 1 might appear to be making 
ineffective use of storage  control  cache, if judged 
by the  read-hit-ratio  measure of cache effective- 
ness. These  data sets  are nevertheless being sup- 
ported in an efficient and cost-effective manner. 
The fact that this is not revealed by  the traditional 
read-hit-ratio metric  underscores  the need for a 
shift in traditional planning paradigms. 

Expectations  for memory interaction 

As previously discussed, time-in-cache objectives 
can be established for storage control cache and for 
processor buffers, so that the two types of memory 
work cooperatively. But the functions provided by 
the two memories  partially overlap. Read hits in the 
processor cannot also be hits in storage control 
cache. Does it really  make sense to use both types 
of memory at the same time on the same data? 

We now address  this  issue  by applying a simpli- 
fied statistical  treatment called the hierarchical 
reuse modeL7 Despite its simplicity, the hierar- 
chical reuse model provides a highly serviceable 
description of realistic reference  patterns.  The re- 
sults of the model show how the tradeoff of the 
two storage technologies is driven by  the  basic 
difference in their memory management strate- 
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Figure 2 Empirical checks of the hierarchical reuse model 
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gies. We  find that for typical data  there  are two 
conclusions: 

1. The  best method of deploying a given memory 
budget is  to  use a relatively larger amount of 
processor  storage  and a small-to-moderate 
amount of storage  control  cache. 

2. Within this guideline, overall performance is 
highly insensitive to the  exact  ratio of memory 
sizes. 

The  second conclusion is a big help in practical 
applications. SHARDS takes advantage of it by ap- 
plying the  same time-in-cache objectives outlined 
earlier in this  paper to each  type of memory, 
whether  the two types  are being used together or 
separately. This succeeds in achieving a sound 
balance of the two memories because it yields a 
result that is in the ballpark, that is, close enough 
given the  second conclusion. 

For simplicity in dealing with  the fundamental is- 
sue of memory management in page frames  ver- 
sus  tracks,  we  consider a reference  pattern  that 
consists of reads only. Also for simplicity, we use 
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a model of storage  control  cache  operation in 
which any  reference to a track contained in the 
cache  is  considered to be a hit. The probability of 
a so-called “front-end miss” (request to  an un- 
cached portion of a cached  track), normally very 
small, is assumed to be  zero. 

Hierarchical reuse model. The hierarchical reuse 
model of reference locality is motivated by the ob- 
servation that the causes of data reuse tend to have 
a hierarchical structure. Thus, I/& are requested by 
subroutines that are a part of main routines that are 
invoked by transactions that, in turn, are employed 
to accomplish some overall task. Because of this, 
the hierarchical reuse model hypothesizes that the 
probability structure of data reuse at long  time 
scales should mirror that at short time scales, after 
the time scale itself is taken into account. 

For example, consider two tracks in storage  con- 
trol cache: (1) Ashort-term truck, last referenced 
5 seconds ago, and (2) a long-term truck, last ref- 
erenced 20 seconds ago. The hierarchical reuse 
model predicts  that  the  short-term  track  has  the 
same probability of being referenced in the  next 

IBM SYSTEMS JOURNAL,  VOL  32.  NO 2, 1993 



( B [  -1 0.016 0.016 

E 
Lu 

X 
0 

UJ 0.031  0.031 

1 2 4 8 16 32 64 128 256 512 

TIME BETWEEN li0s TO SAME PAGE FRAME (SECONDS) 

5 seconds as the long-term track  does of being 
referenced in the  next 20 seconds. Similarly, the 
short-term  track  has the  same probability of being 
referenced in the  next one minute as  the long- 
term  track  does of being referenced in the  next 
four minutes. 

Suppose U represents  the time from  the  last ref- 
erence  to  the next  re-reference of a given track (or 
page frame); and  suppose  that u o  is an  arbitrary 
interval of time (e.g., u,, might represent  the time 
intervals of 5 or 20 seconds used in the  examples 
of the  short-term  and long-term tracks,  respec- 
tively). Then  a  more formal statement of the  hy- 
pothesis  above is: 

Hierarchical  reuse  hypothesis: The conditional 
distribution of the  quantity 

U 

u0 
- - J u > u ,  

does  not  depend upon uo.  Moreover,  this distri- 
bution  is  independent and identical across  periods 
following different references. 
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A hypothesis of this  form  has to  be  constructed 
with some lower limit on the time scale uo; other- 
wise, there  is  danger of dividing by zero. For stor- 
age control  cache and processor  memory,  the 
lower limit appears  to  be  much lower than  any of 
the time scales of interest  (some  fraction of one 
second).  The  lower limit, although it exists,  has 
little or  no practical effect on  the application of 
the model. For this  reason we shall usually ignore 
it. 

The  behavior  just  predicted by  the hierarchical 
reuse  hypothesis is a  special  case of statistical 
self-similarity, a  feature  often  seen in the  study of 
fractals.  Indeed, it is  shown in Reference 8 that  a 
random  variable U that satisfies the  conditions 
stated in the  hierarchical  reuse  hypothesis  must 
belong to  the hyperbolic family of distributions; 
i.e., U can  be  characterized by 

P [ U > x ]  =ax-'  (3) 

for  some  constants a and 8, and  for sufficiently 
large values of x (values above  the lower limit 
mentioned earlier). 



The  thrust of Equation 3 is that if U is plotted 
versus x in a log-log plot, the result should be a 
straight line. Figure 2 presents  a  check of this 
hypothesis against trace  data collected at 11 VM 
installations’ in 1988. Every  volume  at  each in- 
stallation was  traced.  The  volumes  were  then di- 
vided  into  data pools, depending on the  type of 
data.  Figure 2 presents  the  results for the pool of 
system  data  at  each installation (shown as a 
dashed line) as well as the pool of user  data 
(shown as a solid line). The left side presents  a 
log-log plot of the distribution of U as defined  in 
terms of references  at  the  track level. The right 
side presents  a similar plot of the distribution de- 
fined  in terms of references  at  the page-frame 
level, where each page frame  contains  one VM 
disk record. 

Figure 2 comes strikingly close to being the  pre- 
dicted collection of straight lines. This  makes 
Equation 3 a highly serviceable approximation to 
real reference behavior. Little would be lost by 
replacing any of the  curves of Figure 2 by a 
straight line, as specified by  suitable  choices of 
the  parameters a and 8. 

An important  aspect of the  data  presented in Fig- 
ure 2 is  the difference in slopes between the left 
and the right side. For example, user  data typi- 
cally seems to exhibit a  slope  corresponding to a 
value 8 = 0.25 in the plot of track  reference lo- 
cality. By contrast,  user  data in the plot of page- 
frame locality tends to exhibit about half  of this 
slope, 8 = 0.125. 

The value of B is  a  measure of cache responsive- 
ness with  respect to increasing time-in-cache. 
Some intuition about 8 can be gained by consid- 
ering again the idea of a hierarchical set of rou- 
tines/programs/transactions/tasks that might gen- 
erate  repeat  references to a given data object. In 
this framework, the  value of 8 is related to  the 
average number of repeat  references to a given 
object that  are  expected to occur  at  a given level 
of the hierarchy. That is, it is an indirect measure 
of the amount of branching that affects a given 
data item. This clarifies why  the  slopes  on  the left 
of Figure 2 are  greater than the slopes on the right. 
The difference in slope reflects the  fact  that  more 
repeat  references  can be expected to a given track 
than to a given record. 

It  can  be shown that  Equation 3 has a number of 
interesting consequences.  The miss ratio m, sin- 
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gle-reference residency time r, average residency 
time T ,  and memory size s, relate to  one  another 
in a  very simple series of equations: 

m = U T - *  

~ “ ( 1 -  B ) T  

- 1 

T =  

where r represents I/O rate,z represents  stage  size 
(average amount of storage claimed in order  to 
add a  new entry into memory), and b is a  constant 
related to a :  

b = a(l  - e ) - @  
These  equations  can be applied to obtain  the miss 
ratio as a function of cache  size for either  storage 
control  cache or processor buffers operating as a 
separate technology. If the two technologies op- 
erate  together,  some hits occur  only in the pro- 
cessor, which otherwise would have  occurred in 
storage  control  cache.  The effect of this  on  the 
miss ratio in storage  control  cache  is  easiest to  see 
when  the single-reference residency time in the 
processor  is  shorter  than  that in the  cache, i.e., 
when rP s rc where  the  subscripts p and c are 
used to denote  processor  and  storage  control 
cache memories, respectively. In this  case, all the 
hits in the  processor  overlap with hits  that would 
have  occurred in the  cache by itself, assuming 
that  the cache’s single-reference residency time is 
held fixed. The effect of processor buffering is, 
therefore, to reduce  the number of requests to the 
cache without any reduction in cache misses. As 
a  result, 

where  the prime indicates  the miss ratio in the 
combined configuration. 

A more useful configuration is  one in which rP > 
rC . The analysis of this  case  is  more complex, but 
it can  be shown in this  case  also  that the hit ratio 
in the  cache  when running in combination with 
processor buffers can  be  estimated as a function 
of the hit ratios  for  the two memory technologies3 
operating  separately: 
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where  the suffix starting with “I” indicates  that 
the  processor miss ratio is evaluated  at  the single- 
reference  residency time of the  storage  control 
cache. 

When applied to  Equation 6, the reasoning of Ref- 
erence 7 produces a set of relationships  closely 
analogous to  those for a single memory. Provided 
that rp > r,, we have: 

1 

where 

Balancing the memories. Equations 4, 5 ,  and 7 
provide a practical method to estimate  the miss 
ratio as a function of memory  size in a configura- 
tion that includes both  storage  control  cache  and 
processor memory. The  delay D to  serve a given 
I/O request  can  therefore  be  estimated as well: 

D = mpDp + mpmcDc (8) 

where 

D, =increment of delay  caused by a miss in the 
processor buffer (i.e., the time required to 
obtain  the  data from storage  control  cache) 

D ,  =additional  increment of delay  caused  by a 
miss in the storage  control cache (native  de- 
vice  service time less time for  cache  service) 

Figure 3 presents  the result of applying Equation 
8 across  the range of memory  sizes  that yield a 
fixed total  size of 0.25 megabytes per I/O per sec- 
ond. This figure uses  average  values of the  user 
data  pools (solid line) and  system  data  pools 
(dashed line) presented in Figure 2 as  the  param- 
eters determining cache  behavior.  The  quantities 

~ 
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Figure 3 Tradeoff of the  two  memory  types,  where  the 
diamonds  mark  10-times  ratios of the  single- 
reference  residency  time 
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D, and D, are  assumed to have the  values 2.5 and 
12.5 milliseconds, respectively (making total  ser- 
vice time on  the  native  device  equal  to 15 milli- 
seconds). For  the  extreme  case  where  either 
memory  size  is  zero,  the miss ratio  is  taken to  be 
unity. To avoid the  lower limit of the  hierarchical 
reuse time scale,  the regions involving single-ref- 
erence  residency times of less  than one second  for 
either  memory are bridged using interpolation. 

Figure 3 establishes  the two conclusions prom- 
ised earlier in this paper: 

The best method of deploying a given memory 
budget  is by using a relatively larger amount 
of processor storage and a small-to-moderate 
amount of storage control cache. 
Within this guideline, overall  performance  is 
highly insensitive  to the exact  ratio of memory 
sizes. 

From a practical  standpoint, a good way  to  at 
least  come  close  to  the  optimum  memory  balance 
is  to plan for a time-in-cache service  objective in 
the  processor  that  is  approximately a factor of ten 
greater  than  the  same  objective in storage  control 
cache.  Figure 3 shows  the  points  where  this  oc- 
curs for the  user  and  system  cases. 

Although the  exact  ratio of memory  sizes  is  not a 
sensitive  one, it is still interesting  to  ask  where  the 
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actual minimum  in the  service time occurs.  For 
this purpose, it is useful to generalize slightly the 
treatment of Figure 3 by assuming that  the  total 
memory budget is given in dollars rather  than in 
megabytes. If both types of memory are assumed 
to have  the  same  cost  per megabyte (which is 
roughly true  at  current prices), then  this  reduces 
to the  framework of Figure 3. 

Now  suppose we wish to minimize the total delay 
D subject to a fixed budget 

spEp  + s c E ,  = B 

where 

E ,  =cost per megabyte of processor  storage 
E ,  =cost per megabyte of cache  storage 

The  Equations  7  can be solved to show  that  the 
minimum occurs  when 

where 

Application of Equation 10 requires  an  iteration 
on  the  value of the  cache miss ratio. The miss 
ratio  can initially be set  to an arbitrary  value  such 
as 0.5, then  recomputed using Equations 10 and 
7. Convergence is very rapid, so that  three eval- 
uations of Equation 10 are enough to obtain  a 
precise result. 

In  the  present  context, however, we are not so 
much interested in performing calculations based 
on  Equation 10 as in using it to gain insight. For 
this  purpose, it is helpful to consider  what hap- 
pens if the goal is simply to minimize the number 
of requests  to be served by the  native device. In 
this case,  we  take  into  account  only D ,  and as- 
sume  that D, is  zero. With this simplification, 
Equation 10 reduces to: 

This result shows clearly that  the crucial deter- 
minant of the best balance between  the two mem- 
ories  is  the difference in their cache responsive- 
ness (i.e., values of e). As long as there  is  any 
tendency for references  to different page frames 
to cluster  into  groups,  thereby causing a  greater 
amount of use of a given track  than of a given page 
frame, then some amount of storage  control  cache 
is appropriate.  The  stronger  this  tendency grows, 
the  greater  the role of storage  control  cache be- 
comes in the optimum balance. Using as an ex- 
ample the  values for 8 of 0.25  in storage  control 
cache and 0.125 in processor memory (the  values 
mentioned earlier in this paper for user data), 
Equation 11 indicates  that  the fewest native- 
device accesses  occur when the  ratio of the stor- 
age control and processor  portions of the memory 
budget is 

(g - 1) (1 - 0.125) = 0.875 

This  means  that 1/(1 + 0.875) = 54 percent of the 
total budget is allocated to  the  processor. If, in- 
stead,  the  values of 8 are 0.35  in storage  control 
cache and 0.225  in processor  storage (typical val- 
ues for the  system  data in Figure 2), we would 
allocate 70 percent of the  total budget in the pro- 
cessor  to get the fewest native device accesses. 

As indicated by  Equation 10, the memory balance 
that minimizes the  total  delay D involves a small 
upward adjustment in processor memory com- 
pared to  the  results  just given. Assuming for sim- 
plicity that  both memory costs E ,  and E, are 
equal,  the  fractions of the  total  storage needed in 
the  processor to produce minimal delay  are 62 
and 78 percent in the  user and system  cases, re- 
spectively. 

It is worthwhile to reiterate  that achieving the 
optimum balance is  not  important in practice.  As 
Figure 3 shows,  what  matters is to achieve some 
balance, so that  the larger portion of the memory 
budget is in the  processor and a small-to-moder- 
ate portion is in the  storage  control  cache.  This is 
sufficient to  ensure  that  the delay per request  is 
close to  the minimum that  can  be achieved within 
the memory budget. 

It should again be noted, as at  the end of the 
section  on  patterns of memory use earlier in this 
paper,  that in a configuration that displays the 
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desired balance of memories, the read hit ratio 
may well be below the often-recommended guide- 
line of 70 percent. In the  user and system  con- 
figurations just discussed that yield the minimum 
delayD,  the  storage  control  cache hit ratios  are 58 
and 64 percent, respectively. The low hit ratios 
are mitigated, however, by the overall load re- 
duction due to processor buffering. Average uti- 
lization of the 110 subsystem  actuators and paths 
is  substantially lower in the  selected configura- 
tions than it would be without processor buffers. 

Concluding remarks 

We have used the multiple workload approach to 
gain insight into  the manner in which both pro- 
cessor and storage  control memory can be used to 
provide fast  and cost-effective service  for disk I/O. 
The application of the  approach to a specific case 
study  shows  that it is helpful to divide the files on 
disk storage  into  three categories: 

1. Files for which buffer memory is best provided 
in the  storage  control.  Examples  drawn from 
the  case  study include flat  files as well as files, 
such as logs, that do  not have the capability to 
use  processor buffering. 

2. Files for which buffer memory is best provided 
in the  processor.  Examples drawn from the 
case  study include several program libraries 
(which can  be contained entirely in processor 
memory if they  are small enough) as well as 
one  database  that had almost no tendency for 
nearby  records to  be referenced together. 

3. Files for which a mixed-buffering strategy is 
most effective. This group includes most of the 
databases examined in the  case  study. 

For  the  data in the third category,  the larger 
amount of memory should usually be provided in 

~ the  processor with a small-to-moderate amount 
being provided in storage  control  cache. 

Collectively, these conclusions demand that two 
key  assumptions  often made in the disk planning 
process must be abandoned. These  assumptions 
are usually implicit, but  at this stage it would be 
worthwhile to bring them  into  the open: 

1. A system throughput requirement in transac- 
tions  per  second directly implies a correspond- 
ing I/O rate requirement in 110s per second. The 
problem with  this assumption is  that  the num- 
ber of I/OS per  transaction  can  be adjusted for 
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any given transaction  type  by changing the 
number of processor buffers available for that 
transaction type. If desired, system through- 
put can  be  increased  with no corresponding 
increase in I/O rate. 

2. Transaction response time and system through- 
put capability are directly coupled to disk re- 
sponse time, and therefore to  the hit ratio of 
the  storage  control  cache. This assumption 
breaks  down  when  the number of I/OS required 
by a given type of transaction  is not fked. 
Even if the response time per 1/0 increases, 
transaction  response time might still go down, 
and system throughput capability may in- 
crease if the number of I/OS per transaction  is 
reduced.  This  outcome  can be expected to oc- 
cur routinely in planning for MVSESA, VM/ESA, 
and VSEESA systems. 

All is not lost, however. The following premise 
continues  to  stand up, and helps to act as a re- 
placement for statements 1 and 2 above: 

3. Transaction response time  and system through- 
put capability are directly coupled to  the aggre- 
gate time per transaction spent waiting for phys- 
ical disk motion. 

In Enterprise  Systems  Architecture (ESA), many 
capabilities are available to reduce  the amount of 
such motion and to target the  reductions to the 
types of transactions  that  are most response-time 
critical. These include processor buffering tech- 
niques provided by ESA, the  use of dynamic cache 
management to target storage  control  cache  at 
specific files, and tools to identify which files are 
most impacted by disk  delay^.^,^ It  is  easy to 
waste time and effort, however, trying to solve 
the wrong problem, i.e., trying to minimize I/O 
subsystem  response time when this is not the 
most helpful objective. 

The capabilities of ESA can  best  be leveraged to 
achieve cost-effective I/O subsystems  by keeping 
statement 3 above in  mind. The less time is spent 
waiting for physical disk motion, the fewer 1/0 
subsystem  resources  such as actuators and stor- 
age controls  are  needed to service  the  stored  data 
and the lower is the  cost  per megabyte of disk 
storage needed to achieve a given level of system 
throughput. This  strategy  does, however, require 
a departure from traditional 110 subsystem guide- 
lines, in particular, a departure from the objective 
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of always maintaining a 70 percent hit ratio in 
storage  control  cache. 

Luckily, the target at which the  strategy  above 
takes aim appears to be  broad and easy to hit. 
System-level performance is highly insensitive to 
the  exact balance of the two key resources-stor- 
age control  cache and processor buffer  memory- 
needed to reduce disk delays. It is important  only 
that some balance exists, with the larger part of 
the memory budget allocated in the  processor and 
a small-to-moderate amount of memory provided 
in storage  control  cache. 
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