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Box  structures pro vide a rigorous and  systematic 
process for performing  systems  development 
with  objects.  Box  structures  represent data 
abstractions as objects in three  system  views 
and  combine the advantages of structured 
development  with the advantages of object 
orientation. As data abstractions  become  more 
complex,  the  box  structure  usage  hierarchy 
allows  stepwise  refinement of the system  design 
with  referential  transparency  and verification 
at every step. An integrated  development 
en vironment  based on box structures  supports 
flexible  object-based  systems  development 
patterns.  We present a classic  example of object- 
based  systems  development using box 
structures. 

S ystem and software  development  organiza- 
tions  face difficult decisions  when  selecting 

development methodologies. Complex  develop- 
ment projects  require formal methods for the in- 
tellectual control of the  process and the resulting 
system  product. After many  years of striving to 
achieve  the  proven benefits of structured  analysis 
and design methods (e.g., Structured Analysis 
and Structured Design,’ Jackson  System Devel- 
opment, * and Information Engineering3),  devel- 
opment  organizations  must now consider  the 
important  advantages of object-oriented  develop- 
ment methods. 

We propose  that  the decision between  structured 
development  methods and object-oriented  meth- 
ods is not  a  choice of one  or  the  other. With the 
right conceptual  representations and develop- 
ment processes,  the  advantages of structured  de- 

velopment and objects  can  be integrated into  a 
formal development methodology. In this  paper, 
we discuss  the  use of boxstructures as a bridge to 
support  the integration of structured  concepts 
and  object-oriented  concepts. 

Object orientation (Le., the  object-oriented ap- 
proach) is receiving a great deal of attention as a 
promising approach for the  analysis  and design of 
complex information systems. For many  system 
applications, it is very natural  to  view  the  system 
environment as a collection of identifiable objects 
that  collaborate to achieve  a desired behavior. 
Recent  research and development in object  ori- 
entation  has led to a number of methods  and  tech- 
niques to support  object-oriented  systems  devel- 
opment.  Three principal areas  have  been  studied: 
object-oriented analysis, object-oriented design, 
and  object-oriented programming. 

Object-oriented analysis (OOA) applies object  ori- 
entation to  the initial stages of the  systems  de- 
velopment  process, specifically the  analysis of 
desired or existing system  behavior.  Prominent 
works in this  area include Bailin’s use of objects 
for  requirements specification, Ward’s exten- 
sion of structured  analysis  to  support objects,’ 
Coad and Yourdon’s  comprehensive  framework 
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for understanding  object-oriented analysis, and 
Shlaer and Mellor’s text on data modeling in ob- 
jects.’ 

Object-oriented design (OOD) produces  a formal 
specification of the desired system  behavior in 
terms of objects  and their interactions.  Various 
graphical and  syntactic  representations  have 
been  proposed  to  support an OOD system  speci- 
fication. In addition,  processes for developing 
and evolving the  object-oriented designs have 
been defined. The  best  known OOD methods in- 
clude Booch’s design method,’ Seidewitz and 
Stark‘s method,9 Meyer’s approach for software 
construction  as defined in the Eiffel programming 
system, lo and Coad and Yourdon’s  methods. 

Object-oriented programming (ooP) languages, 
such  as Smalltalk, Object Pascal, C+ +, and CLOS 
directly  support  the implementation of an object- 
oriented design. Other languages, such  as  Ada, 
provide limited support for certain  object-ori- 
ented  features  such as inheritance and are collec- 
tively named “object-based’’ languages. ’* 
A  systematic  process for object-oriented  devel- 
opment should provide  a  seamless  development 
environment  that  supports  the  complete  systems 
development  process. Recent research  projects 
have defined object-oriented  system  develop- 
ment life-cycle processes, l3 including the object 
modeling technique from General  Electric Co. l 4  

and the responsibility driven design from Tek- 
tronix,  Inc. l5 

In recent  years  development  organizations  have 
made large investments in areas  such  as training 
experience, and computer-aided  software engi- 
neering (CASE) tools for the  support of structured 
development  methods.  The  question  arises  as to 
whether  there is a way  to integrate  the  advantages 
of object  orientation in this existing development 
infrastructure.  Several  proposals  have been made 
to use the  structured analysis results from data 
flow diagrams as a  basis for object-oriented  de- 
sign (e.g., see Reference 5) .  A number of prob- 
lems exist with these  proposals. 

First,  there is a  serious gap between  data flow 
diagrams and object-oriented designs. Block di- 
agrams  coalesce  separate  uses of system  objects 
into single nodes and coalesce  the  separate usage 
relations among the  objects  into single arcs  be- 
tween  nodes.  Thus,  such diagrams irreversibly 
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summarize  separate  transactions  that need to be 
identified in good object-oriented designs. l6 

Second,  there is no systematic  means of intellec- 
tual control  over  the hierarchical growth of a com- 
plex  system.  There is little clear discipline or  or- 
der to the  discovery, design, and implementation 
of objects. In particular,  the  discovery of embed- 
ded objects (Le., objects within objects) and of 
inheritance  opportunities is not  addressed. 

Third,  the  approach  depends on the  heuristic in- 
vention of objects from a  data flow perspective. 
There is no formal, mathematical basis  for eval- 
qating the  correctness  or  quality of design deci- 
sions.  Object-oriented designs are  often  pre- 
sented  as faits accomplis from data flow diagrams 
skipping important  analytic  steps. In small prob- 
lems, this may be possible. But in larger ones, it 
becomes difficult to  determine if the  leap was in- 
spired or flawed. As complex as large problems 
are, and as  numerous  the design alternatives, it is 
risky business  to  accept  the discontinuity be- 
tween  data flows and object stimuli and responses 
without  a lot of engineering analysis. 

Finally, the design and implementation of the 
transformational  functions  that tie together  ob- 
jects  are left as  exercises for the programmer 
once  the  objects  are completed.  Programmers 
who  are  not involved in the design process may 
not understand  the  intentions of the design and 
may produce an incorrect  system implementa- 
tion. 

Many of these  problems  arise  because of the 
widely held misconception  that  top-down  func- 
tional decomposition found in structured  meth- 
ods is inappropriate and even  contradictory  to an 
object-oriented  development  process.  Instead, it 
is our premise that, with the  correct  representa- 
tions and techniques,  the  advantages of both sys- 
tem decomposition and object composition can 
be combined into  a rigorous systems  develop- 
ment with object  orientation. 

What is needed is a  comprehensive  process 
framework and integrated environment  to  sup- 
port  systems  development  with  objects from ini- 
tial requirements analysis through system imple- 
mentation.  The objective of this  paper is to 
present  box  structures as integrating components 
for  object-based  structured  systems  develop- 
ment.  Box  structures  support  a rigorous, yet 



practical, set of methods for the  development of 
systems.'"'' Box  structure  methods  have  been 
used successfully on numerous  systems  develop- 
ment projects  both internal and external to IBM. 
(See Reference 19 for examples.) This  paper  pre- 
sents  an overview of the  box  structure  theory, 
shows  that  box  structures  are, in fact, formal rep- 
resentations of objects  by  demonstrating  that  box 
structures  support  essential  features of objects, 
and presents an integrated  object-based  systems 
development  environment with box  structures. 
Good use of box  structure  operations  provides 
the flexibility to perform needed  systems  devel- 
opment  tasks. Finally, these  ideas  are applied, by 
means of an  example, to the  development of a 
classic  Master  File-Transaction File processing 
system. 

Box structure theory 

Box-structured  systems  development is a  step- 
wise refinement and verification process  that  pro- 
duces  a  system design. Such  a  system design is 
defined by a  hierarchy of small design steps that 
permit the immediate verification of their  correct- 
ness.  Three  basic principles underlie the  box- 
structured design process: '' 
1. All data  to  be defined and  stored in the design 

are hidden in data  abstractions. 
2. All processing is defined by sequential and con- 

current  uses of data  abstractions. 
3. Each  use of a  data  abstraction in the  system 

occupies  a  distinct place in the usage hierarchy 
of the  system. 

Box  structure  methods define a single data  ab- 
straction in three  forms in order  to isolate  the 
creative design steps involved in building the  ab- 
straction.  The black box gives an external  de- 
scription of data  abstraction  behavior in terms of 
a  mathematical  function from stimulus  histories 
to  responses.  The black box  is  the  most  abstract 
description of system  behavior  and  can  be  con- 
sidered as a  requirements  statement for the  sys- 
tem or subsystem.  The state box includes  a  de- 
signed state and an  internal  black  box  that 
transforms  the  stimulus  and  an initial state  into 
the  response and a new state.  The  state is de- 
signed from an  analysis of the  required  stimulus 
histories  and  responses  for  the  system. Finally, 
the clear box replaces  the  internal  black  box with 
the designed sequential or  concurrent usage of 
other  black  boxes  as  subsystems.  These  new 
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black  boxes  are  expanded at the  next level of the 
system  box  structure usage hierarchy  into  state 
box  and  clear  box forms. 

Box  structures  have underlying mathematical 
foundations  that  permit  the  analysis  and design to 
be applied to larger systems of arbitrary size. 
These  foundations  are  based on  sets and  func- 
tions  that  can  be  described in mathematical  no- 
tation  for small systems  or subsystems or in well- 
structured  natural language in a given context in 
larger systems.  In  any  case,  a  black  box  is defined 
by a  mathematical  function from histories of stim- 
uli to  the  next  response.  Let S be  the  set of pos- 
sible stimuli, and R be the  set of possible  re- 
sponses of a  system  or subsystem. In illustration, 
an airlines reservation  system, with many  thou- 
sands of concurrent  users, will accept their stim- 
uli sequentially  into  the  system in real time and 
return  responses accordingly. The  black  box 
function,  say f, will map historical sequences of 
such stimuli, in this  case S * ,  to responses, R, 
shown in the form 

f : S *  + R 

The description of function f may  be very com- 
plex for an airlines reservation  system,  but it is 
still only  a  function.  This  description of the  black 
box  assumes no data  storage  between stimuli, 
even though such  storage may be known to  exist, 
or  be planned for development. 

In  a simple illustration, consider a stack  object of 
integers, defined by  a  set of commands, say 
RESET, PUSH, POP, EMPTY?, and TOP?, whose 
functions  are easily inferred from  the  names. A 
stimulus is a command plus data, if required. For 
example, a possible sequence of stimuli might be: 

RESET, EMPTY?, PUSH 17, PUSH 31, POP, TOP?, 

PUSH 11, . . . 

The  responses for the  stimulus  histories  returning 
data  are: 

RESET, EMPTY? + yes 

RESET, EMPTY?, PUSH 17, PUSH 31, POP, 

TOP? + 17 
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Although a  data  stack  can  be readily imagined, 
the  responses  can  be  determined by examining 
only  the  stimulus histories, as above. 

The  state  box of a  system  or  subsystem  expands 
the black box  by identifying data at this  system 
level to be stored  between stimuli so that  only  a 
current stimulus is  required,  but not previous his- 
tory.  Let T be  a  set of possible data states  at  the 
top level, and let t be  the initial state of the  system 
or  subsystem. As noted  above,  the  state  box  con- 
tains  an  internal  data  abstraction  that is defined 
by another  black  box,  say g. In this  case,  the 
internal black box has  a  compound  stimulus  con- 
sisting of the  external  stimulus and the internal 
state, and a compound response consisting of the 
external  response  and  the new internal state.  That 
is, g has  the form 

g: (S x T)* + (R x r )  

Then, each pair (t,g) of an initial state  and  an 
internal  black box function will uniquely define 
the  behavior of the  system.  Note  that  the internal 
data  abstraction will be  capable of maintaining 
more  deeply  stored  data, with the internal black 
box using its compound stimulus  histories. 

To continue  the  stack illustration, consider  the 
state  to be a list of integers, with the initial state 
being the  empty list. Then  the  commands RESET, 
PUSH, POP, EMPTY?, and TOP? are  functions from 
the stimuli and state resulting in a  response and 
new state.  For example, the  sequence of stimuli 
above will produce states  as well as  responses  as 
follows: 

(RESET, ( )) + (null, ( )) 

(EMPTY?, ( )) + (yes, ( ), 
(PUSH 17, ( )) + (null, (17)) 

(PUSH 31,  (17)) -+ (null, (31, 17)) 

(POP, (31,  17)) -+ (null, (17)) 

(TOP?, (17)) + (17,  (17)) 

(PUSH 11,  (17)) + (null, (11,  17)) 

Furthermore, all intermediate  states of this  state 
box  can be eliminated by mathematical  substitu- 
tion to  derive  a black box function, say k ,  in 
which the initial state will serve  as  a  parameter. 
Thus,  whenever  a specified black  box,  say f, has 
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been designed into  a  state  box,  say (t,g), the  cor- 
rectness of (t,g) can  be verified by comparing its 
behavior,  say k ,  to the  intended  behaviorf. 

Continuing, a  state  box  can  be  expanded  into  a 
clear  box by replacing the internal data  abstrac- 
tion with  a  procedural  structure of new data ab- 
stractions in either  sequential  or  concurrent logic. 
Sequential  structures may involve simple se- 
quence,  alternation, or iteration  whose  semantics 
are well known from sequential programming. 
Since  sequential  programs  are  rules for mathe- 
matical functions, from initial states  to final states 
of computation,  a clear box in sequential  struc- 
tures defines the functional behavior in terms of 
the  next level black  boxes.  Concurrent  structures 
require more  analysis  and discipline in use  be- 
cause of their potential complexities. 

Such  a  procedural  structure of data  abstractions 
can  also  be eliminated to  produce  the effect of a 
single internal data  abstraction and the  state, in 
much  the  same  way as  the  state  was eliminated to 
derive  a black box. Sequence and alternation 
structures  are eliminated by function composition 
and disjoint union directly.  Iteration  structures 
can  be reformulated as noniterative decision 
structures  or  recursive  structures. 2o Again, con- 
current  structures  require  more specific treat- 
ment. In this  way, clear box designs can  be ver- 
ified against state  box specifications, as well. 

Figure 1 shows  the  relationships among the  three 
views of a single data  abstraction.  The  creative 
design steps, along the right side of the figure, are 
called expansions.  The design verification steps, 
along the left side of the figure, are called deri- 
vations. A given black box  can  be  expanded  into 
many  correct  state box designs. Conversely,  a 
state  box will define a unique black box  by  der- 
ivation. Also, a given state  box  can  be  expanded 
into  many  correct  clear  box designs, and con- 
versely,  a  clear  box will define a unique state  box 
by derivation. 

In order  to gain intellectual control  over  the  de- 
velopment of a  complex  system, it is necessary  to 
be able to  decompose the  system  into  smaller, 
more manageable parts. A box  structure usage 
hierarchy  represents  the use of black  box  abstrac- 
tions in a higher-level clear box  abstraction. A 
usage hierarchy of abstractions  provides  referen- 
tial transparency among all black  boxes within a 
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Figure 1 Box structure expansion and derivation 
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clear box.21 Thus, each black box in a clear box 
can  be designed independently of the  others. 

The effective use of box  structures for the devel- 
opment of information systems is guided by  the 
use of four basic  box  structure principles: refer- 
ential transparency,  transaction  closure,  state mi- 
gration, and common services. We  briefly  define 
each of these principles. 

Referential transparency-Referential transpar- 
ency  occurs  when  a black box  abstraction  is com- 
pletely defined within the clear box  at  the next 

higher level in the usage hierarchy. The  black  box 
is  then logically independent of the rest of the 
system, and can  be designed to  satisfy  a well- 
defined behavior specification. The principle of 
referential transparency  provides  a  crisp disci- 
pline for management delegation and assignment 
of responsibility. 

Transaction closure-The principle of transac- 
tion closure defines a  systematic,  iterative  spec- 
ification process to ensure  that  a  sound and com- 
plete set of transactions  is identified to achieve 
the required system behavior. The closure pro- 
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cess can  be  performed at each  box  structure  view 
of an  object  abstraction. At  the  black  box,  checks 
are performed to  ensure that  the  system stimuli 
are  necessary  and sufficient to  generate  the  re- 
quired  system  responses. At  the  state  box,  the 
defined transactions  must be  necessary and suf- 
ficient for  the acquisition and  preservation of  all 
state  data,  and  the  state  data  must  be  necessary 
and sufficient for  the completion of  all transac- 
tions.  At  the clear box, the  procedural design and 
the  internal  black  boxes  must include all trans- 
actions. 

State migration-State data should be identified 
and stored in the  system  part (i.e., data  abstrac- 
tion) at the  lowest level in the  box  structure hi- 
erarchy  that  includes all references  to  those  data. 
At  any time in the  systems  development  process, 
state  data  can  be migrated upward or downward 
in the  hierarchy in order  to achieve  some  system 
objective,  such as minimizing data  scope. 22 State 
migration must be performed carefully in order  to 
maintain the  consistency and mathematical cor- 
rectness of data  abstractions  throughout  the hi- 
erarchy. 

Common services-A common service is a  data 
abstraction  that is described in a  separate  box 
structure  hierarchy, and used in other  box-struc- 
tured  systems.  System  parts with multiple uses 
should be defined as common services for reus- 
ability. Also, predefined common services,  such 
as  database management systems and input/out- 
put  interfaces, should be used to  advantage 
throughout  the  box-structured  system.  The ad- 
vantages of reusable common services  for  sys- 
tems  development  are obvious. Box  structures 
directly  support  the identification and reuse of 
common  services within and among systems. 

More  complete  descriptions of box  structure the- 
ory and principles can be found in References 
16-18. 

Box structures as objects 

Similar to  box  structures,  the  object  concept  can 
be  seen  as  an  extension of abstract  data  types in 

1 programming languages. 23,24 A  precise  mathemat- 
1 ical definition of an  object  has  not  been widely 
~ accepted  or  used. An object  can be informally 

defined as a  unique unit of information and de- 
scriptions of its manipulations. More  concisely, 
Booch defines an object as having “state,  behav- 
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ior, and identity.”’ A collection of objects  that 
have  a common behavior  and  structure is termed 
an  object class. Booch  establishes four major and 
three minor elements of any  object-oriented mod- 
el.’ The four major (Le., essential)  elements  are 
abstraction,  encapsulation, modularity, and hier- 
archy.  The  three minor (i.e., useful, but not es- 
sential)  elements  are typing, concurrency,  and 
persistence. 

An object-oriented  systems  development  process 
must  support all major object  elements  and 
should support  the minor object  elements  as ap- 
propriate for its application environment. In this 
section, we demonstrate  that  the  box  structure 
theory  incorporates  the  essential  elements of the 
object model. We also  discuss  the  box  structure 
approaches  for  supporting  other useful elements 
of the  object  concept. 

Essential object-oriented elements. We now briefly 
show  that  box  structures  provide  the  concepts of 
abstraction,  encapsulation, modularity, and hier- 
archy. 

Abstraction. An object  is  an  abstract  representa- 
tion of an  entity in the problem domain. Much 
creative skill and  experience  are  needed  to  iden- 
tify and design a good set of system  objects and 
classes.  Box  structures  provide an excellent  set of 
abstraction capabilities for system  description. 
During analysis, a  potential  object  can  be defined 
and  studied in any of the  three  box  structure 
views. In particular,  the black box  view gives the 
external, design-free system  behavior  that  pro- 
vides  the  essence of a  system ab~ t rac t ion .~~  The 
state  box  views  the  object as a  data  abstraction 
with the  state visible. Within the clear box  view 
complex  object  abstractions  can be rigorously de- 
composed  into simpler objects and simple objects 
can  be grouped into larger objects. 

During top-down design, the  box  structure usage 
hierarchy  provides  a  framework in which to  cap- 
ture multiple levels of system  abstraction in a  con- 
trolled manner. All system design units, from the 
top-level complete  system  to  the smallest sub- 
system  components, and even  down to simple 
variables, are viewed  and  described  as  box  struc- 
ture  objects.  Throughout  the  hierarchy,  the abil- 
ity  to manage abstraction applies to all system 
components;  stimulus (i.e., input),  responses 
(i.e., outputs),  state (i.e., internal  data),  and pro- 
cedures. 

HEVNER AND MILLS 237 



The ability to handle abstractions is also impor- 
tant  for  the  reverse engineering of existing sys- 
tems.  Bottom-up  system  analysis  abstracts  func- 
tionality (i.e., black box behavior) from system 
implementation details of procedure  and  state. 
The application of box  structure  theory  to  system 
reverse engineering is  presented in Reference 26. 

Encapsulation. Encapsulation, also known as in- 
formation hiding, is supported by  the  state  box 
and clear boxviews of a  box  structure  object.  The 
state of an object  and  the  procedural  operations 
on  that  state  are hidden within the  box  structure 
as design constructs.  The  essential behavioral ab- 
straction, or interface, of the  object is described 
by  the  black  box view. 

An extension  to  object  encapsulation  can  be 
found in the  box  structure principle of state mi- 
gration. As box  structure  objects  are  decomposed 
and composed in a usage hierarchy,  opportunities 
for state migration may exist. Beneficial state mi- 
grations  provide insights into new class  inheri- 
tance  structures.  Upward migration of state  can 
identify new  superclass  structures  and  downward 
migration of state  can identify new subclass  struc- 
tures. 

Modularity. Modularity in systems  development 
involves dividing the complete  system  into man- 
ageable units of analysis, design, and implemen- 
tation. Each  system module must  be internally 
cohesive and loosely  connected to the  other  mod- 
ules of the  system.' 

Modularity is one of the major strengths of the 
box  structure  development  process.  The princi- 
ple of referential transparency  throughout  the  box 
structure usage hierarchy  provides module inde- 
pendence  for all box  structures in the  system  de- 
sign. Furthermore, referential transparency ap- 
plies to  both object  decomposition and object 
composition in the  systems  development  process, 
as discussed in the  next  section  on  hierarchy. 

Hierarchy. The  concept of a  system  hierarchy is 
an  essential  component for systems  develop- 
ment.  Box-structured  systems  development with 
objects utilizes two distinct  types of hierarchy: 
usage hierarchies to describe  system  behavior 
and inheritance hierarchies to  describe  object be- 
havior via  inheritance. 

A usage hierarchy of box  structures is con- 
structed during system design by  the application 
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of both  system  decomposition  and  object  com- 
position. Top-down  system  decomposition  en- 
ables an essential intellectual control in develop- 
ment.  The  system  grows  one level at  a time. The 
mathematical  structuring of systems in usage hi- 
erarchies of objects allows formal verification 
methods  to be used. Also, the referential trans- 
parency of objects in a  clear box provides  an  es- 
sential modularity and design independence to 
each  object. 

In addition, in this  framework of a usage hierar- 
chy,  the  advantages of object composition come 
into play. An object  requirement,  stated as a 
black  box,  can  be  matched with existing object 
classes  stored  for  reuse in a  repository. During 
the  systems  analysis  phase  the benefits and costs 
of object  reuse  and modification can be studied. 
Another  opportunity  for  object composition 
arises during the design of the clear box.  Knowl- 
edge of existing object  classes  or insight into  de- 
sired object  classes will influence the designer's 
invention of data  abstractions as black  boxes at 
the  next level in the  object  hierarchy. 

As an  object is used in the  system usage hierar- 
chy, it carries with it a  description of its  inherent 
behavior as defined in an  inheritance  hierarchy. 
Inheritance is a  fundamental  aspect of object ori- 
entation.  Inheritance is the  means  by which one 
object  class,  the  subclass,  inherits  the informa- 
tion and operations of another  object  class,  the 
superclass.  The  subclass  can  then be modified by 
adding or deleting information or operations of its 
own. 

Inheritance is exhibited in the  box  structure  de- 
velopment  process by building new classes from 
existing classes during systems development. Af- 
ter  an  object  has  been  instantiated in a  system 
design, the designer has  the  freedom to modify 
the  object design by altering the  state design of 
the  state  box (e.g., via  state migration) and the 
procedural design of the  clear box. If the modified 
object is designated for reuse,  then  a  choice  can 
be  made  as  to  its  representation in the  reuse  re- 
pository. The new object  class, from black box  to 
clear  box, can be  stored  as  a unit or  the new sub- 
class  can  be  stored as a  set of modifications with 
a  pointer  to  the  existing  superclass.  Thus,  an in- 
heritance  hierarchy  can be developed of object 
classes.  The physical structure of the  hierarchy is 
a  representation  issue  based  upon  an optimization 
of the  reuse  repository.  Thus, an object is defined 
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and stored in the form of a  generic common ser- 
vice. 27 

Important  object-based  features. Based upon the 
fact  that  the  box  structure  theory  supports  the 
four essential  elements of Booch’s object model, 
we conclude  that  box  structures  support  object- 
based  systems development. In fact,  box  struc- 
tures  provide  important  extensions  for  systems 
development with objects.  These  extensions in- 
clude  the isolation and verifiability of  all creative 
design steps in small units and  systematic  expan- 
sion of the design in a  top-down  hierarchy for 
intellectual design control.  Thus,  there is no need 
to  develop  transformational  functions to tie ob- 
jects  together, as is required in some traditional 
object-oriented design methods. 28 

Next we discuss  several  important  features of 
box-structured  development  methods, to include 
Booch’s minor elements of typing, concurrency, 
and persistence, as well as  reuse and object  rep- 
resentations. 

Typing. The typing of an object identifies the  ob- 
ject  as  a member of a specific class with all in- 
herent states and behaviors. Object typing en- 
sures  that differently typed objects may interact 
only in very  restricted  ways.  The  support in var- 
ious OOP languages for typing ranges from weak 
enforcement  to  strong  enforcement.  The  box 
structure  syntax  does not specifically enforce 
strong typing in design specifications. 

Concurrency. We believe that  the ability to  ana- 
I lyze and design concurrent  structures is essential 
~ for  realistic  systems development. The  clear  box 

structure  provides  the  means  to model the  con- 
current  behavior of black box  objects. We have 
defined analysis and design methods to optimize 

1 the  use of concurrency in system specifications. 29 

However,  many difficult questions remain to be 
explored. 

Persistence. Persistence  through time and space 
is embedded in the organization-wide common 
services  as  discussed in the  next  section on reuse. 
The  use or reuse of persistent common services, 
such as object-oriented  database management 
systems, allows data and procedures  to  be  shared 
across  many  system  boundaries. 30,31 

Reuse. Reuse is a  fundamental  concept in object- 
oriented  development.3z  The  reuse of objects 

~ 
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within and among systems  has  the  potential  to 
significantly raise  the  productivity of systems de- 
velopment  and  the certified quality of systems. 
Box  structure  methods  support  a high level of 
object  reuse. 

In a top-down manner,  each  object in the  system 
hierarchy  is  stored in its  three box structure  views 
in a  systems  development  repository.  Certain of 
these  objects, usually the smaller objects  at lower 
levels in the  hierarchy,  can  be  selected  for  future 
reuse.  Objects are  stored in the  form of their in- 
heritance hierarchies. Special design require- 
ments  are imposed on the  objects,  such as inter- 
face  standards,  documentation  standards, and 
certification requirements.  These  reusable  ob- 
jects  are migrated to large organizational reposi- 
tories  as  object  classes  for  potential  reuse  across 
all development  projects.  By including all three 
box  views of the  object in the  reuse  repository,  a 
verified design trail of the  object from require- 
ment to detailed design is available for evaluation 
and use during reuse decisions. 

During design, reuse  decisions  are made for a 
given black box  requirement.  It  may be possible 
to find a reusable object  type in the  reuse  repos- 
itory  that  meets  the  requirement.  (Current  re- 
search on repository  structures and access  meth- 
ods for reuse is reported in Reference 33.) We 
recognize several  forms of object  instantiation for 
reuse during a  systems development. 

An organization-wide object instantiation would 
encapsulate information and  operations used by 
many  systems.  Such  objects would include data- 
base and file management systems,  common  user 
interfaces, and sensors  that maintain the  state of 
physical properties (e.g., temperature,  pressure). 
A system-wide  object instantiation would encap- 
sulate information (e.g., data  types  and  con- 
stants)  and  operations used in several different 
places in the  system usage hierarchy,  but  not  out- 
side of the  system.  Examples would include com- 
monly used data  structures and their operations 
(e.g., files, stacks,  queues)  and  monitors  for  crit- 
ical sections of the  system. A one-time  object in- 
stantiation would allow reuse of information and 
operations  without information sharing. This 
would be beneficial primarily for reusing existing 
program code.  The first two forms of object in- 
stantiations  are  examples of box  structure com- 
mon services. 
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Table 1 The 16 box structure  Operations 

1. Requirements determination 
2. Black box definition 
3. Black box analysis 
4. Black box requirements review 
5 .  State box expansion 
6. State box analysis 
7. Black box derivation 
8. Clear box expansion 
9. Clear box analysis 

10. State box derivation 
11. Stepwise  system  decomposition 
12. System implementation 
13. System operations 
14. System analysis 
15. System  box structure description 
16. Stepwise  system abstraction 

Object representation languages. The  search for 
appropriate languages for  object-oriented  devel- 
opment  has led to  graphics-based  aids  such as 
Smalltalk icons34 and Booch diagrams, and syn- 
tactical  forms  such as Ada program description 
languages ( P D L S ) . ~ ~  Box  structures  have  both  a 
graphic  notation  and  a  syntactic  notation,  that  be- 
ing the  box  description language ( B D L ) . ~ ~  While 
graphics  may be appropriate  for small system  de- 
signs and high-level presentations, we  see no al- 
ternative for the  use of a  syntactically  complete 
design language for  large-scale  object-oriented 
development of systems.  The  use of the Z nota- 
tion has also been used to  represent  box-struc- 
tured designs. 36 

An integrated box-structured environment 
for systems development with objects 

Box  structures and the  box  structure usage hier- 
archy  provide  the common, unifying concepts for 
achieving a  truly  integrated  object-based  devel- 
opment  environment. No artificial bridges and 
transformation  procedures are needed to  ex- 
change information among development activi- 
ties. We  have defined 16 fundamental box  struc- 
ture  operations  (see  Table 1) and  show  these in a 
schematic  structure of an  integrated  development 
environment  (see  Figure 2). These  operations, 
used and  reused in various  patterns,  contain all 
the  required  processing  needed to perform all ac- 
tivities in object-based  systems  development. 
The  box  structure information is stored in well- 
defined box  structure  formats,  box  structure 
graphics, and the  box  description language in sys- 
tems  development  repositories.  In  this  section, 
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we describe  the 16 operations  and  discuss  several 
important  patterns of object-based  development. 

Each of the  box  structure  operations  shown in 
Table 1 is atomic, accepting stimuli from and  pro- 
ducing responses to  the  system developer  and  the 
systems  development  repositories.  At any point 
in systems  development  or  systems evolution, an 
operation  can  be performed as needed as long as 
the stimuli for it are available. It is incumbent 
upon the  system  developer to put  the  operations 
to “good  use” in the development  process.  Nat- 
ural groupings of the  operations  are  exploited in 
good-use patterns.  The  box  structures  that  un- 
derlie all of the  operations  provide  the  essential 
formalism and integration required for rigorous 
systems development. We next briefly describe 
the  objectives of each of the  operations. 

1. Requirements determination involves a  series 
of investigation activities in which system  re- 
quirements  are specified. The information is gath- 
eredvia techniques  such as user  interviews,  ques- 
tionnaires,  documentation review, and analysis 
of existing applications. The gathered  require- 
ments information is represented in box  structure 
formats. 

2. The  black box of the  system is completely de- 
fined (black box definition) based on  the require- 
ments  for  the  system.  The  black  box is described 
by  its stimuli, responses, and the  transactions  that 
map  stimulus  histories  into  responses. 

3 .  Black  box analysis evaluates  the  quality  and 
completeness of the black box specification. For 
example,  transaction  closure would ensure  that 
all stimuli are  necessary and sufficient in the  sys- 
tem. 

4. The defined black  box is reviewed (black box 
requirements review) to determine  whether it 
truly  represents  the  desired  system  requirements. 
The review involves  the  customers,  users,  and 
managers of the  system. 

5. The  state of the system is created (state box 
expansion) by encapsulating required stimulus 
history in a  state box. Data design methods,  such 
as entity-relationship models, are used to  create 
a  state design. An internal data  abstraction  is  de- 
signed to  map stimuli and state into  responses  and 
new state. 
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Figure 2 A schematic  structure of an  integrated  development  environment 
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6.  State box analysis evaluates  the  quality and 
completeness of the  state  box design. The prin- 
ciples of transaction  closure  and  state migration 
are applied. Data design metrics,  such as level of 
data normalization, are used to  evaluate  the  qual- 
ity of the design decisions. 

7. The black  box derivation operation  discovers 
the  black  box  representation of a given state box. 
A state  box  can  be verified as  correct  by deriving 
an equivalent black  box  and  comparing it to  the 
original black box requirement. 

8. Clear box  expansion is a  creative step  whose 
purpose is to design the  procedural  structure of 
the  system. The uses of black  box  subsystems  at 
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the  next level of design are identified. The intel- 
lectual control of stepwise  system  decomposition 
is contained in this  operation. 

9. Clear box analysis evaluates  the  quality  and 
completeness of the  clear  box design. The prin- 
ciples of transaction  closure,  state migration, and 
common  services  are applied. Design metrics of 
structured programming can  be used to  study  the 
clear  box  procedural design. 

10. The state box derivation operation  discovers 
the  state  box  representation of a given clear box. 
A clear  box  can  be verified as correct by deriving 
an equivalent state  box and comparing it to  the 
original state box. 
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11. The stepwise  system decomposition operation 
continues  the  system design in a  top-down  man- 
ner by recursively applying the  above  operations 
to  each  black  box  at  the  next level of the  box 
structure usage hierarchy. Common service box 
structures  are identified and developed  separately 
from the application system usage hierarchy. 

12. System implementation accepts  the design 
specification in the form of a box  structure usage 
hierarchy  and  provides  the  capabilities  and re- 
sources  to implement it. Implementation  may  be 
an integration of hardware,  software, and human 
behavior.  Implementation  objectives are  to build 
and optimize the specified system and to  prepare 
users  and  operators for its  operation  and mainte- 
nance. 

13. Activities during system operations include 
maintenance,  performance monitoring, integrity 
control,  operations  assurance, and system  evo- 
lution. Box  structures  provide  a rigorous and 
common  means of understanding  and controlling 
the  system during operation. 

14. For  an existing system, system analysis is an 
investigation activity  to  support a better  under- 
standing of system  behavior.  Operational  system 
metrics,  such  as  performance, reliability, avail- 
ability, etc., are  computed  and used to  evaluate 
the  quality and completeness of the  system.  In- 
formation is gathered from interviews  and  docu- 
mentation  reviews  to  better  understand  system 
behavior.  This information is stored in a  reposi- 
tory. 

15. An existing system  can  be  described in box 
structure  representations  to  support  further rig- 
orous  analysis and reverse engineering. Our goal 
is to  enhance  system  understanding  by describing 
the  system (system box structure description) as 
a usage hierarchy of referentially transparent 
clear  boxes.  Methods for transforming natural 
procedures  into  clear box formats  are  presented 
in Reference 17. 

16. The stepwise  system abstraction operation 
builds an increasingly abstract  description of an 
existing system in a  recursive,  bottom-up  fashion. 
Detailed clear  box  descriptions of subsystems  are 
derived to  state  box  and black box  representa- 
tions.  These  subsystems  are  then  represented as 
black boxes within procedural clear boxes  at  the 
next higher level of system  description.  This  pro- 
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cess continues until the  complete  system is de- 
scribed  and  understood at the top-level behavior. 
This  operation is the  basis of the  reverse engi- 
neering of existing systems as presented in Ref- 
erence 26. 

The integrated systems  development  environ- 
ment for box  structures would include support for 
the 16 box  structure  operations and a  common 
and controlled repository  for  storing  box  struc- 
ture information. With the flexibility of being able 
to perform any of these  operations at any time 
during systems  development,  the  developer  is  no 
longer bound by a rigid systems  development life- 
cycle paradigm. However,  a discipline is still 
needed for the good use of the  operations  toward 
a well-defined systems goal. 

The use of box  structures  can  be  adapted  to  any 
development  situation in a flexible way  by defin- 
ing good-use patterns of operations.  These  pat- 
terns would be placed under  strict management 
control and adapted dynamically to changing cir- 
cumstances in the on-going systems  develop- 
ment.  Each  box  structure  operation in the  pattern 
has well-defined completion criteria, allowing im- 
mediate validation of the  success  or failure of any 
particular step in the  development. In addition, 
since  the  creative invention operations  (i.e.,  state 
box  expansion and clear  box  expansion)  are self- 
contained, it is easy  to  track and document  the 
critical design decisions in the  system. 

To illustrate,  consider  the following examples of 
good-use  patterns of box  structure  operations. 
For conciseness, we refer to  the operations using 
their numbers as defined in Table 1. 

Object  description  example. The  description of an 
object would begin from the  discovery of the  ob- 
ject and a  thorough  requirements  determination 
(operation 1). The object would be designed as 
part of an existing inheritance  hierarchy (i.e., 
common  service)  or would initiate a new inheri- 
tance  hierarchy.  In  either  case,  the design of the 
object would proceed through defining the  black 
box,  state  box, and clear  box  views  (operations 
2-10). Subclasses of the  object  are defined using 
recursive application of these  operations in the 
inheritance  hierarchy  (operation 11). 

New  system  development  example. The  develop- 
ment of a  system from the beginning would start 
from extensive  requirements  determination  (op- 
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eration 1) and proceed  recursively through the 
top-down construction  (operations 2-11)  of the 
box  structure usage hierarchy of the  system de- 
sign. Finally, the system would be implemented 
(operation 12) and brought into  operation (oper- 
ation 13). While this  pattern of operations  is  op- 
timistically possible, it is rare in practice.  New 
system  development will require  many  iterations 
of requirements  determination,  box  structure 
analysis (to include reuse  analysis),  box  structure 
design, and system implementation. The flexibil- 
ity to dynamically select and perform the  opera- 
tion needed next is of great benefit. 

Reverse  engineering of systems  example. Reverse 
engineering is defined as  “the process of analyz- 
ing a  subject  system to identify the  system’s com- 
ponents and interrelationships and to  create  rep- 
resentations of the  system in another form or  at  a 
higher level of ab~traction.”~’ A  pattern of oper- 
ations  to  support  reverse engineering would be 
defined by  the application of system  analysis and 
system  box  structure  description  (operations 14 
and 15). Then  stepwise  system  abstraction would 
be performed as a  recursive  pattern of analyses 
and derivations  (analysis  operations 3, 6, and 9, 
derivation operations 7 and 10). 

Prototyping example. A prototype is a limited ver- 
sion of a  system built to provide requirements  and 
operations information. Prototypes can range in 
scope from a simple study  to  see if software  pack- 
ages can  exchange  data  correctly  to  a large-scale 
prototype of the  complete  system.  Once  the  de- 
cision is made to  prototype  a portion of a  system, 
the  prototype development takes on an indepen- 
dent  existence of its own. The pattern of box 
structure  operations would be similar to  the  pat- 

~ tern  for developing a new system.  However,  not 
~ all branches of the  box  structure usage hierarchy 
~ would be  completed. Only the  portions of the  sys- 

tem to  be studied would be designed and imple- 
mented. By developing the design with the usage 
hierarchy, referential transparency of all system 
parts in the prototype is maintained. This  sup- 
ports  the ability to make use of these  prototype 
subsystems in the design and implementation of 
the desired final system. 

The box-structured systems development 
process 

In this  section,  we apply the integrated systems 
development  environment  discussed in the  pre- 

IBM SYSTEMS JOURNAL, VOL 32, NO 2, 1993 

vious  section  to build a good-use pattern of box 
structure  operations  for  the  object-based  devel- 
opment of a  system. We propose an object-based 
systems  development  process  that  consists of five 
phases.  The  order of performance of the  phases 
during a  system  development is based  on  the spi- 
ral paradigm in which the  next  phase of develop- 
ment is determined  by the results of the  previous 
phases. ’* This  requires definite result milestones 
and strict management control of the  develop- 
ment process.  The  development  phases follow. 

Problem definition-A clear problem statement 
must  be  generated  to provide a basis for systems 
development. Extensive domain analysis is es- 
sential for complete problem understanding. 

Requirements definition-Requirements are elic- 
ited from the  system domain experts and system 
users.  The  requirements  are  represented in for- 
mats  that facilitate review and  feedback. 

Systems analysis-The system  requirements  are 
analyzed and information is gathered  to  support 
subsequent design decisions. The  discovery of 
relevant,  reusable  objects is an  important  part of 
systems analysis. 

Systems  design and verification-Definitive de- 
sign decisions  are  made and the  system design is 
grown via top-down functional decomposition in 
a usage hierarchy.  Each  creative design step  is 
verified to be a  correct  expansion of the existing 
design. 

Systems implementation-The system design is 
transformed  into  an  operational  system.  The final 
system will be  a combination of hardware,  soft- 
ware, firmware, and human behavior  compo- 
nents.  The  boundaries and interfaces among 
these  components  must be specified in the final 
system design. 

Our emphasis in this  section is to  detail  the  pro- 
cessing found in the middle three  phases  and  to 
demonstrate  the  inherent  object  basis of the  box 
structure  development  process.  The  phases of re- 
quirements definition, systems  analysis, and sys- 
tems design and verification will be performed as 
a tightly-integrated, iterative  process. The ability 
to achieve  this tight integration comes  about  be- 
cause of the unifying box  structure  concepts and 
representations. (We use  the term “box  struc- 
ture”  to refer to  a  component in the  system hi- 
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erarchy;  however,  the  term  “object” could be 
used with equivalent meaning.) 

Requirements  definition. The input into the re- 
quirements definition phase is a  complete  prob- 
lem statement, typically presented as a  structured 
English document.  Investigation  tasks  are  per- 
formed in order  to precisely  determine  the  re- 
quirements of a  system  that  solves  the  presented 
problem. Note  that  the  requirements definition 
phase is performed for  each box  structure in the 
usage hierarchy. 

Requirements for any level of system  object  can 
be represented in a  box  structure  format.  The ul- 
timate goal would be to  state all requirements in 
a  state-free,  procedure-free  black  box. Defining 
requirements  solely as a  black box places no  con- 
straints  on the  eventual design. The first four  box 
structure  operations  (requirements  determina- 
tion, black box definition, black  box analysis, and 
black  box  requirements  review)  are performed it- 
eratively during this  phase. 

The transactions in a  black box  are defined as 
mathematical  functions  for  deterministic  behav- 
ior or mathematical  relations  for  nondeterministic 
behavior. For high-level, complex box  structures 
it may  be  necessary  to  provide  the  function or 
relation in the  natural language of the problem 
domain, often  a  mixture of formal and informal 
language. Whatever  the  notation,  the  black  box 
description  is  a set of mathematical  functions, one 
per transaction. 

Often system  requirements  do  contain design 
constraints on such things as  the availability and 
use of data  or the need to  conform  to  a defined 
procedure.  Such  requirements  cannot  be  re- 
corded in a  black  box;  thus, a clear  statement of 
state  box and clear  box design constraints  must 
be  provided. In addition,  certain ‘‘nonfunctional” 
requirements,  such  as  performance  and  docu- 
mentation  standards,  can  be  stated in structured 
English forms. It is important during requirement 
reviews  that  the  system  owners  understand  that 
any  requirements  beyond  a  black box  are  con- 
straints upon the design freedom for the  system. 
In this  process,  many  nonessential  “require- 
ments”  can  be  discovered  and eliminated. 

The  results of the  requirements definition phase 
are  a  precisely defined black  box  with  accompa- 
nying state  box, clear box,  and nonfunctional de- 
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sign constraints.  This box  structure  requirement 
is stored in a  repository as  the initial definition of 
the  system  object. 

Systems  analysis. Analysis  tasks  are  performed to 
support  the  decisions  that  must  be made during 
systems design. These  tasks  are performed as 
part of the  creative  state box expansion  and  clear 
box expansion  structure  operations. The  box 
structure  requirement is analyzed  and informa- 
tion is  gathered to  support  one  or more feasibility, 
reuse,  prototpye, or tradeoff types of activities. 

Feasibility  studies are performed to determine the 
feasibility and cost  versus  the benefit of potential 
designs. Reuse opportunities are explored in sev- 
eral ways. Repositories of system  objects from 
the  current  project  or existing systems will be in- 
vestigated  for  requirements matching. The  cost 
and benefit of reusing existing objects, along with 
any  required modifications, would be  deter- 
mined. Prototyping is performed to evaluate de- 
sign alternatives. The prototype  development 
process will progress  independently from other 
design activities  with  the five development  phases 
performed in an  iterative  manner.  Objects  devel- 
oped in the  prototype  may  be  candidates  for  reuse 
and modification in the final system. Tradeoff 
studies are used to  determine the advantages and 
disadvantages of designing and implementing the 
current  box  structure  as  hardware,  software, 
firmware, human behavior, or some  combination 
thereof.  Such  decisions will impact reuse  oppor- 
tunities and  interface designs. Finally, the reuse 
potential of the  current  box  structure  should  be 
analyzed. If the decision is made to design the  box 
structure  as  a  reusable  object,  then  reuse  stan- 
dards  may  dictate  certain design decisions (e.g., 
interface  standards). 

The above  types of analyses  are  essential to sup- 
port high-quality system designs. The informa- 
tion, analysis, and  conclusions of these  studies 
are  recorded  with  the evolving box  structure in 
the  system  repository.  Some  analysis  discoveries 
may  cause  changes in the  system  requirements, 
thus,  iteration  between  the  phases of require- 
ments definition and  systems  analysis  is  to  be  ex- 
pected  and  encouraged. 

Systems  design  and  verification. In this  phase  the 
box  structure  requirement  and  the  analysis  re- 
sults  are used to produce  a  complete design spec- 
ification of the  box  structure.  This  phase  encom- 
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passes  operations 5 through 11 of the  integrated 
box  structure  environment. 

First  the  state  box  is designed from  the  black  box 
requirement specification using the  state  box  ex- 
pansion,  state  box analysis, and black box deri- 
vation  operations.  The  completed and verified 
state  box is stored in the  repository.  The  clear  box 
then  can  be designed using the  clear  box  expan- 
sion,  clear  box analysis, and  state  box  derivation 
operations. 

The design and verification of  the  clear  box com- 
pletes  the detailed design of the  current  box  struc- 
ture. The complete specification of the  box  struc- 
ture  object, from the  black  box  requirement, 
through the  intermediate  state box, to  the final 
clear box design, is  stored in the  system  reposi- 
tory. Finally, the  stepwise  system decomposition 
operation is used  to build the  complete  system in 
a  top-down  manner. 

The  procedural  clear  box design, developed in the 
clear box expansion  operation,  ensures  that  each 
internal black box is referentially transparent 
from all other  peer black boxes  and common serv- 
ices in the  clear box. Thus,  each  black  box  can  be 
designed independently. For  each  black  box  re- 
quirement  the  development  process of require- 
ments definition, systems analysis, and  systems 
design and verification begins. Note  that  much of 
the  work performed (and dutifully recorded in the 
repository)  for higher-level box  structures in the 
hierarchy  can  be used in the analysis and design 
of lower-level box  structures.  The desired system 
is  complete  when no further  black  box  require- 
ments  exist in the  leaves of the  box  structure us- 
age hierarchy.  The detailed design of the  com- 
plete  system  is  then  sent to  the final phase of 
systems implementation. 

The  design of a  Master  File-Transaction  File 
system 

We demonstrate  the application of object-based 
development with box  structures  to  a simplified 
version of the  classic example of a  Master File- 

~ Transaction File system.  The following problem 
statement is given: 

A supply  business maintains a  master file of parts 
inventory with attributes of part identification 
(PARTID) and quantity on hand (QOH). Each  day 
parts  are received and shipped.  For  each  trans- 

IBM  SYSTEMS  JOURNAL,  VOL 32, NO 2,  1993 

action,  a  record is added  to  a  transaction file with 
attributes of part identification (PARTID), action 
(ACTION), and quantity (am), where ACTION has 
the  values of “in”  or  “out.”  The  system  transfers 
the  transactions to  the master file at  the  end of 

A classic example 
illustrates the application 
of object-based systems 

development. 

each day. A management control  report is pro- 
duced showing the disposition of each  transaction 
record and its effect on the  master file. 

We develop  the  top level of this  system using a 
box  structure  box  description language notation 
similar to typical program description languages 
(PDL), and it should be self-explanatory. 

Requirements definition. We begin by listing all 
of the stimuli and  responses of the desired 
INVENTORY system.  They  are: 

Stimuli Transaction file and master file 
Responses  Updated  master file and manage- 

ment report 

The  discovery of system  requirements should 
point out  omissions  and  needed  extensions of the 
problem statement. For example, what  are  the 
correct  actions  to  be  taken  when  unusual or  er- 
roneous  conditions  arise? We deal with two such 
conditions in this example. If the  transaction file 
is empty,  the management report will note  this 
and the  system finishes. If the PARTID in the  trans- 
action file does  not  match  any  record in the mas- 
ter file, the  transaction  record will be  written with 
an  error message. All pertinent  conditions and 
contingencies should be  studied during the  re- 
quirements definition phase. 

The black box  notation  for  the INVENTORY sys- 
tem requirement is: 
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Black  Box Inventory 

stimulus 
Transaction-file : file of records 

record 
PARTID : integer, 
ACTION : type of (‘in’, ‘out’), 
QTY : integer 

endrecord. 

record 
Master-file : file of records 

PARTID : integer, 
QOH : integer 

endrecord. 

response 
Master-file : file of records 

record 
PARTID : integer, 
QOH : integer 

endrecord. 
Report: 

record 
HEADER : report-header, 
BODY : report-body 

endrecord. 

behavior 

if The transaction file is empty 
then Write  the management report 
else 

for Each  record in the  transaction file 
do 

Match  the PARTID value  into  the 
master file 
if A match  exists 
then Modify the QOH value  by  add- 

ing (ACTION = ‘in’) or sub- 
tracting (ACTION = ‘out’) the 

Write the transaction  record 
and  new  master  record in the 
management report 

and  an  error  statement in the 
management report 

value Of QTY; 

else Write the transaction  record 

if; 
od; 

fi; 
end  Black  Box Inventory. 

Note  that  the  transaction  statement in the black 
box is a  mixture of keywords  and  structured En- 
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glish for  exposition  purposes.  Equivalently, we 
could have  presented  a  mathematical  representa- 
tion of conditional algebraic assignments  for  the 
transaction. 

Systems  analysis. We concentrate  our  analysis  for 
the  example in discovering reuse  opportunities. 
We  assume  that  a File-manager object  type  exists 
as a box  structure design in the existing reuse 
library.  The  object  type is designed to  encapsu- 
late  a file of arbitrary design and size. Visible op- 
erations on the file would include typical file op- 
erations,  such as  the following: 

OPEN Establishes  currency pointer at first 
record of  file and checks  access  rights 

ISEMPTY Checks if file is empty,  returns Bool- 
ean  value 

READ Reads  record  at  currency  pointer, 
moves  pointer to next  record 

ATEOF Checks if currency  pointer is at EOF, 
returns Boolean value 

WRITE Overwrites given record at currency 
pointer 

FIND Given a  primary identifier value, finds 
the first record  with  that identifier; if 
no  match  is  found,  a STATUS value is 
returned 

ADD Given a  record  with  a valid identifier, 
places  the  record in the file  in correct 
order 

DELETE Given a  record identifier, finds record 
and  deletes it from file 

CLOSE Establishes file integrity and  update 
commitments,  releases  any file locks 

We assume  that two object  instantiations of File- 
manager encapsulate  the  master file and  the 
transaction file. Since  these files would also be 
used by  other  systems in the business,  these 
objects would be organization-wide common 
services. We name the  objects Master-file and 
Trans-file. 

Systems  design  and  verification. State  box design 
of the INVENTORY system would discover  the 
need to  store  the evolving management report as 
intermediate  state.  Thus,  the state  box design is 
given as follows: 
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State Box Inventory 

common services 
Master-file. 
Trans-file. 

stimulus 

response 
Report : 

record 
HEADER : report- header, 
BODY : reportbody 

endrecord. 
state 

Report : 
record 

HEADER : report- header, 
BODY : reportbody 

endrecord. 

behavior 

if The  transaction file is  empty 
then Write  Report 
else 

for Each record in Trans-file 
do 

Match  the PARTID value in  Master-file 
if A match  exists 
then Modify the QOH value in  Master-file 

by adding (ACTION = ‘in’) 
or subtracting (ACTION = ‘out’) 
the  value of QTY from Trans-file; 
Write Trans-file record and new 
Master-file record in Report 

else Write Trans-file record and an 
error  statement in Report 

if; 
od; 

fi; 
end State Box Inventory. 

The  state box  can  be verified as a correct design 
of the  black box requirement in a straightforward 
manner. Although we do not  present all  of the 
details  here,  the critical tasks would be  to verify 
the correct  uses of Master-file and Trans-file ob- 
jects  and  the  Report  state in the  state  box  trans- 
action. 

During the  clear  box design, an important design 
decision  presents itself. Should  Report remain as 
global state in the  system or should it be  encap- 
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sulated  into a data  abstraction  with  visible  oper- 
ations? We choose  to  develop a system-wide 
common service  object called Mgmt-report with 
Report as encapsulated  data and four visible op- 
erations: 

NEW Initializes Report with defined header 
information, such  as  date, time, titles, 
and column headings 

ADD Adds  correctly  processed Trans-file 
record and new Master-file record to 
body of Report 

ERROR1 Adds a Trans-file record  and  error 
statement  to  body of Report  when no 
match is found in  Master-file 

PRINT Prints  the  current state  value of the Re- 
port 

The Mgmt-report object will be  completely  de- 
veloped and verified, from black  box  requirement 
to  clear  box design, and used in the INVENTORY 
system as a common service  object.  The  clear 
box design of INVENTORY could be presented as: 

Clear Box Inventory 

common services 
Master-file. (* organization-wide 

Trans-file. (* organization-wide 

Mgmt-report. (* system-wide 

common service *) 

common service *) 

common  service *) 

stimulus 
response 
state 

behavior 
data (* temporary  data *) 

proc 
TESTl : Boolean, 

use Mgmt-report(in: NEW); 
use Master-file(in: OPEN); 
use Trans-file(in: OPEN); 
use Trans-file(in: ISEMPTY, out: TESTI); 
if NOT TESTl then use Update-master fi; 
use Mgmt-report(in: PRINT); 
use Master-file(in: CLOSE); 
use Trans-file(in: CLOSE) 

COrP 
end  Clear Box Inventory. 
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Again, the verification of the  clear  box  can  be 
done  and will not be presented  here. 

The only new object  at  the  second level of the 
system  hierarchy  is  the Update-master black 
box. We would iterate  the  development  process 
for  this  object, defining the  black  box, performing 

The  design  work is complete 
when there are no undefined 
black boxes  and  the  system 

is completely specified. 

systems analysis, and, finally, designing the  state 
box and  clear  box. For  purposes of space,  we 
show  the final clear box design. 

Clear Box Update-master 

common  services 
Master-file. (*  organization-wide 

Trans-file. (* organization-wide 

Mgmt-report. (* system-wide 

common service *) 

common  service *) 

common  service *) 

stimulus 
response 
state 

behavior 
data (* temporary  data *) 

TEST2 : Boolean, 
T-REC : 

record 
PARTID : integer, 
ACTION : type of  (‘in’, ‘ou~’), 
QTY : integer 

endrecord. 

record 
M-REC : 

PARTID : integer, 
QOH : integer 

endrecord. 

proc 
use Trans-file(in: ATEOF, Out:  TEST2); 
while NOT TEST2 
do 

use Trans-file(in: READ, out: T-REC); 
use Master-file(in: FIND, 
T-REC.PARTID out: M-REC, STATUS); 
if STATUS = NOT-FOUND 
then use Mgmt-report(in: 

else 
ERROR1, T-REC) 

if T-REC.AC“ION = ‘in’ 
then M-REC.QOH +- M-REC.QOH 

else M-REC.QOH +- M-REC.QOH 
4- T-REC.QTY 

- T-REC.QTY 
fi; 
use Master-file(in: WRITE, 
M-REC); 
use Mgmt-report(in: ADD, 
M-REC, T-REC) 

fi; 
use Trans-file(in: ATEOF, Out: TEST2); 

od 
C O r P  

end  Clear Box Update-Master. 

Since  there  are no undefined black boxes in 
Update-master, no further design work is needed 
and the INVENTORY system  is  completely  speci- 
fied as a hierarchy of object  uses.  Figure 3 shows 
the  box  structure usage hierarchy for this  result- 
ing system. 

Observations for this  example. In the INVENTORY 
system  development, we have identified and  cre- 
ated five objects:  Inventory, Update-master, 
Master-file,  Trans-file, and Mgmt-report. 

Master-file and Trans-file are  instantiations of a 
file management object  type  to  encapsulate  the 
master  inventory file and the daily transaction 
file, respectively. The objects  are organization- 
wide common services  to all application systems 
that  require  access  to  these files. For example, an 
on-line application system will place transaction 
records  into Trans-file during the daily inventory 
processing. 

The Mgmt-report object  can  be  an  instantiation of 
an  object-type  that  standardizes  report  formats 
and  operations in the  organization  or it can  be 
developed from scratch for this application. If it 
is newly developed,  then  the  object  becomes a 
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Figure 3 Inventory  system box structure usage hierarchy 

COMMON SERVICES 

APPLICATION  SYSTEM 

system-wide  object for use throughout  the INVEN- 
TORY system. If the encapsulated management 
report is to  be used further in other  system  ap- 
plications, then  the Mgmt-report object  can be 
designed to  become an organization-wide object. 

Inventory  and Update-master are  objects unique 
to  the INVENTORY application. While the final de- 
signs of Inventory and Update-master encapsu- 
late no persistent  data (all persistent  data  are in 
the common services),  the  analysis and design of 
these  objects  provide  the insights and  the  creative 
opportunities to perform the  necessary  object  de- 
composition and composition for this  system. 
This example also  demonstrates  the ability to  de- 
sign objects within objects  since Update-master 
is  wholly  contained within the  Inventory  object. 

Summary 

Our goals in this  paper  have been to  discuss and 
demonstrate  the use of box  structures in a rigor- 
ous and systematic  object-based  systems  devel- 
opment  process.  Box  structures  provide  a bridge 
between  structured  development  methods and 
object-oriented  development  methods.  The fol- 
lowing observations  support and summarize  our 
discussion. 

Box  structures  provide  for  the definition of data 
abstractions  and  objects in three mathematical 
views. 
The  box  structure usage hierarchy allows intel- 
lectual control  over  the  development  process. 
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Each  box  structure in the  system usage hierar- 
chy  is an object. 
All design inventions are  separated  into clearly 
identified small steps. Design verification is  per- 
formed after  each inventive step of design and 
provides  a  systematic  basis for inspection. 
An object is stored in the  system  repository in 
all box  structure  views, from black  box require- 
ment to clear box detailed design. The object is 
described in  an inheritance  hierarchy as a com- 
mon service. 
Box  structures  support an integrated develop- 
ment process, in that  there is no need to trans- 
form the  representation  or  content of develop- 
ment information from one  phase to another. 
The  systems development process is com- 
pletely flexible between development phases. 
The  next  phase to  be performed is  based upon 
feedback from previous  work results. The de- 
velopment of a  system  box  structure usage hi- 
erarchy  provides  a discipline of sound and com- 
plete design. 

Future  research will expand upon the critical is- 
sues in this development process. We are  cur- 
rently performing research in three areas: 

Requirements definition-The process of elic- 
iting requirements and representing system re- 
quirements in box  structures  needs important 
new research.38 While the goal of requirements 
definition is to place all requirements in abstract 
black boxes,  there  are often essential require- 
ments on data,  procedure, and nonfunctional 
requirements,  such as system performance. 
Concurrent and real-time systems-Current 
box  structure  theory  supports  the design and 
verification of sequential  systems. Our recent 
research  has provided extensions of box  struc- 
tures to the design and verification of concur- 
rent systems.29 Much more research  is  needed, 
however, to handle all of the complexities of 
real-time systems development. 
Integrated C A S E - ~  eventual goal of this re- 
search  is to design and build a comprehensive 
CASE system  that  provides integrated support of 
object-oriented development from require- 
ments definition through system implementa- 
tion. Our current  research  focuses on the  rep- 
resentations of box  structure information in 
common system development repositories. 39 
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