Box-structured methods
for systems development
with objects

Box structures provide a rigorous and systematic
process for performing systems development
with objects. Box structures represent data
abstractions as objects in three system views
and combine the advantages of structured
development with the advantages of object
orientation. As data abstractions become more
complex, the box structure usage hierarchy
allows stepwise refinement of the system design
with referential transparency and verification

at every step. An integrated development
environment based on box structures supports
flexible object-based systems development
patterns. We present a classic example of object-
based systems development using box
structures.

ystem and software development organiza-

tions face difficult decisions when selecting
development methodologies. Complex develop-
ment projects require formal methods for the in-
tellectual control of the process and the resulting
system product. After many years of striving to
achieve the proven benefits of structured analysis
and design methods (e.g., Structured Analysis
and Structured Design,' Jackson System Devel-
opment,? and Information Engineering®), devel-
opment organizations must now consider the
important advantages of object-oriented develop-
ment methods.

We propose that the decision between structured
development methods and object-oriented meth-
ods is not a choice of one or the other. With the
right conceptual representations and develop-
ment processes, the advantages of structured de-

232 HEVNER AND MILLS

by A. R. Hevner
H. D. Mills

velopment and objects can be integrated into a
formal development methodology. In this paper,
we discuss the use of box structures as a bridge to
support the integration of structured concepts
and object-oriented concepts.

Object orientation (i.e., the object-oriented ap-
proach) is receiving a great deal of attention as a
promising approach for the analysis and design of
complex information systems. For many system
applications, it is very natural to view the system
environment as a collection of identifiable objects
that collaborate to achieve a desired behavior.
Recent research and development in object ori-
entation has led to a number of methods and tech-
niques to support object-oriented systems devel-
opment. Three principal areas have been studied:
object-oriented analysis, object-oriented design,
and object-oriented programming.

Object-oriented analysis (OOA) applies object ori-
entation to the initial stages of the systems de-
velopment process, specifically the analysis of
desired or existing system behavior. Prominent
works in this area include Bailin’s use of objects
for requirements specification,* Ward’s exten-
sion of structured analysis to support objects,’
Coad and Yourdon’s comprehensive framework

©Copyright 1993 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 32, NO 2, 1993

for understanding object-oriented analysis,® and
Shlaer and Mellor’s text on data modeling in ob-
jects.”

Object-oriented design (00D) produces a formal
specification of the desired system behavior in
terms of objects and their interactions. Various
graphical and syntactic representations have
been proposed to support an OOD system speci-
fication. In addition, processes for developing
and evolving the object-oriented designs have
been defined. The best known 00D methods in-
clude Booch’s design method,® Seidewitz and
Stark’s method,” Meyer’s approach for software
construction as defined in the Eiffel programming
system, '° and Coad and Yourdon’s methods. "

Object-oriented programming (OOP) languages,
such as Smalltalk, Object Pascal, C+ +, and CLOS
directly support the implementation of an object-
oriented design. Other languages, such as Ada,
provide limited support for certain object-ori-
ented features such as inheritance and are collec-
tively named “object-based” languages. "

A systematic process for object-oriented devel-
opment should provide a seamless development
environment that supports the complete systems
development process. Recent research projects
have defined object-oriented system develop-
ment life-cycle processes, ” including the object
modeling technique from General Electric Co.™
and the responsibility driven design from Tek-
tronix, Inc.?

In recent years development organizations have
made large investments in areas such as training
experience, and computer-aided software engi-
neering (CASE) tools for the support of structured
development methods. The question arises as to
whether there is a way to integrate the advantages
of object orientation in this existing development
infrastructure. Several proposals have been made
to use the structured analysis results from data
flow diagrams as a basis for object-oriented de-
sign (e.g., see Reference 5). A number of prob-
lems exist with these proposals.

First, there is a serious gap between data flow
diagrams and object-oriented designs. Block di-
agrams coalesce separate uses of system objects
into single nodes and coalesce the separate usage
relations among the objects into single arcs be-
tween nodes. Thus, such diagrams irreversibly

IBM SYSTEMS JOURNAL, VOL 32, NO 2, 1993

summarize separate transactions that need to be
identified in good object-oriented designs. '

Second, there is no systematic means of intellec-
tual control over the hierarchical growth of a com-
plex system. There is little clear discipline or or-
der to the discovery, design, and implementation
of objects. In particular, the discovery of embed-
ded objects (i.e., objects within objects) and of
inheritance opportunities is not addressed.

Third, the approach depends on the heuristic in-
vention of objects from a data flow perspective.
There is no formal, mathematical basis for eval-
uating the correctness or quality of design deci-
sions. Object-oriented designs are often pre-
sented as faits accomplis from data flow diagrams
skipping important analytic steps. In small prob-
lems, this may be possible. But in larger ones, it
becomes difficult to determine if the leap was in-
spired or flawed. As complex as large problems
are, and as numerous the design alternatives, it is
risky business to accept the discontinuity be-
tween data flows and object stimuli and responses
without a lot of engineering analysis.

Finally, the design and implementation of the
transformational functions that tie together ob-
jects are left as exercises for the programmer
once the objects are completed. Programmers
who are not involved in the design process may
not understand the intentions of the design and
may produce an incorrect system implementa-
tion.

Many of these problems arise because of the
widely held misconception that top-down func-
tional decomposition found in structured meth-
ods is inappropriate and even contradictory to an
object-oriented development process. Instead, it
is our premise that, with the correct representa-
tions and techniques, the advantages of both sys-
tem decomposition and object composition can
be combined into a rigorous systems develop-
ment with object orientation.

What is needed is a comprehensive process
framework and integrated environment to sup-
port systems development with objects from ini-
tial requirements analysis through system imple-
mentation. The objective of this paper is to
present box structures as integrating components
for object-based structured systems develop-
ment. Box structures support a rigorous, yet

HEVNER AND MILLS

practical, set of methods for the development of
systems.'*!® Box structure methods have been
used successfully on numerous systems develop-
ment projects both internal and external to IBM.
(See Reference 19 for examples.) This paper pre-
sents an overview of the box structure theory,
shows that box structures are, in fact, formal rep-
resentations of objects by demonstrating that box
structures support essential features of objects,
and presents an integrated object-based systems
development environment with box structures.
Good use of box structure operations provides
the flexibility to perform needed systems devel-
opment tasks. Finally, these ideas are applied, by
means of an example, to the development of a
classic Master File-Transaction File processing
system.

Box structure theory

Box-structured systems development is a step-
wise refinement and verification process that pro-
duces a system design. Such a system design is
defined by a hierarchy of small design steps that
permit the immediate verification of their correct-
ness. Three basic principles underlie the box-

structured design process: '¢

1. All data to be defined and stored in the design
are hidden in data abstractions.

2. All processing is defined by sequential and con-
current uses of data abstractions.

3. Each use of a data abstraction in the system
occupies a distinct place in the usage hierarchy
of the system.

Box structure methods define a single data ab-
straction in three forms in order to isolate the
creative design steps involved in building the ab-
straction. The black box gives an external de-
scription of data abstraction behavior in terms of
a mathematical function from stimulus histories
to responses. The black box is the most abstract
description of system behavior and can be con-
sidered as a requirements statement for the sys-
tem or subsystem. The state box includes a de-
signed state and an internal black box that
transforms the stimulus and an initial state into
the response and a new state. The state is de-
signed from an analysis of the required stimulus
histories and responses for the system. Finally,
the clear box replaces the internal black box with
the designed sequential or concurrent usage of
other black boxes as subsystems. These new

234 HEVNER AND MILLS

black boxes are expanded at the next level of the
system box structure usage hierarchy into state
box and clear box forms.

Box structures have underlying mathematical
foundations that permit the analysis and design to
be applied to larger systems of arbitrary size.
These foundations are based on sets and func-
tions that can be described in mathematical no-
tation for small systems or subsystems or in well-
structured natural language in a given context in
larger systems. In any case, a black box is defined
by a mathematical function from histories of stim-
uli to the next response. Let S be the set of pos-
sible stimuli, and R be the set of possible re-
sponses of a system or subsystem. In illustration,
an airlines reservation system, with many thou-
sands of concurrent users, will accept their stim-
uli sequentially into the system in real time and
return responses accordingly. The black box
function, say f, will map historical sequences of
such stimuli, in this case S*, to responses, R,
shown in the form

fi8* - R

The description of function f may be very com-
plex for an airlines reservation system, but it is
still only a function. This description of the black
box assumes no data storage between stimuli,
even though such storage may be known to exist,
or be planned for development.

In a simple illustration, consider a stack object of
integers, defined by a set of commands, say
RESET, PUSH, POP, EMPTY?, and TOP?, whose
functions are easily inferred from the names. A
stimulus is a command plus data, if required. For
example, a possible sequence of stimuli might be:

RESET, EMPTY?, PUSH 17, PUSH 31, POP, TOP?,

PUSH 11, ...

The responses for the stimulus histories returning
data are:

RESET, EMPTY? — yes
RESET, EMPTY?, PUSH 17, PUSH 31, POP,

TOP? — 17

IBM SYSTEMS JOURNAL, VOL 32, NO 2, 1993

Although a data stack can be readily imagined,
the responses can be determined by examining
only the stimulus histories, as above.

The state box of a system or subsystem expands
the black box by identifying data at this system
level to be stored between stimuli so that only a
current stimulus is required, but not previous his-
tory. Let T be a set of possible data states at the
top level, and let # be the initial state of the system
or subsystem. As noted above, the state box con-
tains an internal data abstraction that is defined
by another black box, say g. In this case, the
internal black box has a compound stimulus con-
sisting of the external stimulus and the internal
state, and a compound response consisting of the
external response and the new internal state. That
is, g has the form

g SEXD*>RxXT)

Then, each pair (t,g) of an initial state and an
internal black box function will uniquely define
the behavior of the system. Note that the internal
data abstraction will be capable of maintaining
more deeply stored data, with the internal black
box using its compound stimulus histories.

To continue the stack illustration, consider the
state to be a list of integers, with the initial state
being the empty list. Then the commands RESET,
PUSH, POP, EMPTY?, and TOP? are functions from
the stimuli and state resulting in a response and
new state. For example, the sequence of stimuli
above will produce states as well as responses as
follows:

(RESET, {)) — (null, ())

(BMPTY?, ()) — (yes, ()

(PUSH 17, ()) — (null, (17))

(PUSH 31, (17)) — (null, (31, 17))

(poP, (31, 17)) — (null, (17))

(ToP?, (17)) — (17, (17))

(PUSH 11, (17)) — (null, (11, 17))

Furthermore, all intermediate states of this state
box can be eliminated by mathematical substitu-
tion to derive a black box function, say ., in

which the initial state will serve as a parameter.
Thus, whenever a specified black box, say f, has

IBM SYSTEMS JOURNAL, VOL 32, NO 2, 1993

been designed into a state box, say (t,g), the cor-
rectness of {t,g) can be verified by comparing its
behavior, say k, to the intended behavior f.

Continuing, a state box can be expanded into a
clear box by replacing the internal data abstrac-
tion with a procedural structure of new data ab-
stractions in either sequential or concurrent logic.
Sequential structures may involve simple se-
quence, alternation, or iteration whose semantics
are well known from sequential programming.
Since sequential programs are rules for mathe-
matical functions, from initial states to final states
of computation, a clear box in sequential struc-
tures defines the functional behavior in terms of
the next level black boxes. Concurrent structures
require more analysis and discipline in use be-
cause of their potential complexities.

Such a procedural structure of data abstractions
can also be eliminated to produce the effect of a
single internal data abstraction and the state, in
much the same way as the state was eliminated to
derive a black box. Sequence and alternation
structures are eliminated by function composition
and disjoint union directly. Iteration structures
can be reformulated as noniterative decision
structures or recursive structures.” Again, con-
current structures require more specific treat-
ment. In this way, clear box designs can be ver-
ified against state box specifications, as well.

Figure 1 shows the relationships among the three
views of a single data abstraction. The creative
design steps, along the right side of the figure, are
called expansions. The design verification steps,
along the left side of the figure, are called deri-
vations. A given black box can be expanded into
many correct state box designs. Conversely, a
state box will define a unique black box by der-
ivation. Also, a given state box can be expanded
into many correct clear box designs, and con-
versely, a clear box will define a unique state box
by derivation.

In order to gain intellectual control over the de-
velopment of a complex system, it is necessary to
be able to decompose the system into smaller,
more manageable parts. A box structure usage
hierarchy represents the use of black box abstrac-
tions in a higher-level clear box abstraction. A
usage hierarchy of abstractions provides referen-
tial transparency among all black boxes within a

HEVNER AND MILLS 235

Figure 1 Box structure expansion and derivation

STIMULUS =i

ELIMINATE

RESPONSE

INTRODUCE

STATE

STATE BOX

STATE

== wee » muw s e o a—ny

STATE

»= STIMULUS

T

e RESPONSE

ELIMINATE
PROCEDURE

INTRODUCE
PROCEDURE

CLEAR BOX

]

STIMULUS

el RESPONSE

STIMULUS RESPONSE FLOW
SYSTEM STATE FLOW

EEifiregEes CREATIVE DESIGN STEPS (EXPANSIONS)
DESIGN VERIFICATION STEPS (DERIVATIONS)

clear box.* Thus, each black box in a clear box
can be designed independently of the others.

The effective use of box structures for the devel-
opment of information systems is guided by the
use of four basic box structure principles: refer-
ential transparency, transaction closure, state mi-
gration, and common services. We briefly define
each of these principles.

Referential transparency—Referential transpar-
ency occurs when a black box abstraction is com-
pletely defined within the clear box at the next

236 HEVNER AND MILLS

higher level in the usage hierarchy. The black box
is then logically independent of the rest of the
system, and can be designed to satisfy a well-
defined behavior specification. The principle of
referential transparency provides a crisp disci-
pline for management delegation and assignment
of responsibility.

Transaction closure—The principle of transac-
tion closure defines a systematic, iterative spec-
ification process to ensure that a sound and com-
plete set of transactions is identified to achieve
the required system behavior. The closure pro-

IBM SYSTEMS JOURNAL, VOL 32, NO 2, 1983

cess can be performed at each box structure view
of an object abstraction. At the black box, checks
are performed to ensure that the system stimuli
are necessary and sufficient to generate the re-
quired system responses. At the state box, the
defined transactions must be necessary and suf-
ficient for the acquisition and preservation of all
state data, and the state data must be necessary
and sufficient for the completion of all transac-
tions. At the clear box, the procedural design and
the internal black boxes must include all trans-
actions.

State migration—State data should be identified
and stored in the system part (i.e., data abstrac-
tion) at the lowest level in the box structure hi-
erarchy that includes all references to those data.
At any time in the systems development process,
state data can be migrated upward or downward
in the hierarchy in order to achieve some system
objective, such as minimizing data scope.” State
migration must be performed carefully in order to
maintain the consistency and mathematical cor-
rectness of data abstractions throughout the hi-
erarchy.

Common services—A common service is a data
abstraction that is described in a separate box
structure hierarchy, and used in other box-struc-
tured systems. System parts with multiple uses
should be defined as common services for reus-
ability. Also, predefined common services, such
as database management systems and input/out-
put interfaces, should be used to advantage
throughout the box-structured system. The ad-
vantages of reusable common services for sys-
tems development are obvious. Box structures
directly support the identification and reuse of
common services within and among systems.

More complete descriptions of box structure the-
ory and principles can be found in References
16-18.

Box structures as objects

Similar to box structures, the object concept can
be seen as an extension of abstract data types in
programming languages.>?** A precise mathemat-
ical definition of an object has not been widely
accepted or used. An object can be informally
defined as a unique unit of information and de-
scriptions of its manipulations. More concisely,
Booch defines an object as having “state, behav-

IBM SYSTEMS JOURNAL, VOL 32, NO 2, 1993

jor, and identity.”® A collection of objects that

have a common behavior and structure is termed
an object class. Booch establishes four major and
three minor elements of any object-oriented mod-
el.® The four major (i.e., essential) elements are
abstraction, encapsulation, modularity, and hier-
archy. The three minor (i.c., useful, but not es-
sential) elements are typing, concurrency, and
persistence.

An object-oriented systems development process
must support all major object elements and
should support the minor object elements as ap-
propriate for its application environment. In this
section, we demonstrate that the box structure
theory incorporates the essential elements of the
object model. We also discuss the box structure
approaches for supporting other useful elements
of the object concept.

Essential object-oriented elements. We now briefly
show that box structures provide the concepts of
abstraction, encapsulation, modularity, and hier-
archy.

Abstraction. An object is an abstract representa-
tion of an entity in the problem domain. Much
creative skill and experience are needed to iden-
tify and design a good set of system objects and
classes. Box structures provide an excellent set of
abstraction capabilities for system description.
During analysis, a potential object can be defined
and studied in any of the three box structure
views. In particular, the black box view gives the
external, design-free system behavior that pro-
vides the essence of a system abstraction.” The
state box views the object as a data abstraction
with the state visible. Within the clear box view
complex object abstractions can be rigorously de-
composed into simpler objects and simple objects
can be grouped into larger objects.

During top-down design, the box structure usage
hierarchy provides a framework in which to cap-
ture multiple levels of system abstraction in a con-
trolled manner. All system design units, from the
top-level complete system to the smallest sub-
system components, and even down to simple
variables, are viewed and described as box struc-
ture objects. Throughout the hierarchy, the abil-
ity to manage abstraction applies to all system
components; stimulus (i.e., input), responses
(i-e., outputs), state (i.e., internal data), and pro-
cedures.

HEVNER AND MILLS 237

The ability to handle abstractions is also impor-
tant for the reverse engineering of existing sys-
tems. Bottom-up system analysis abstracts func-
tionality (i.e., black box behavior) from system
implementation details of procedure and state.
The application of box structure theory to system
reverse engineering is presented in Reference 26.

Encapsulation. Encapsulation, also known as in-
formation hiding, is supported by the state box
and clear box views of a box structure object. The
state of an object and the procedural operations
on that state are hidden within the box structure
as design constructs. The essential behavioral ab-
straction, or interface, of the object is described
by the black box view.

An extension to object encapsulation can be
found in the box structure principle of state mi-
gration. As box structure objects are decomposed
and composed in a usage hierarchy, opportunitics
for state migration may exist. Beneficial state mi-
grations provide insights into new class inheri-
tance structures. Upward migration of state can
identify new superclass structures and downward
migration of state can identify new subclass struc-
tures.

Modularity. Modularity in systems development
involves dividing the complete system into man-
ageable units of analysis, design, and implemen-
tation. Each system module must be internally
cohesive and loosely connected to the other mod-
ules of the system.®

Modularity is one of the major strengths of the
box structure development process. The princi-
ple of referential transparency throughout the box
structure usage hierarchy provides module inde-
pendence for all box structures in the system de-
sign. Furthermore, referential transparency ap-
plies to both object decomposition and object
composition in the systems development process,
as discussed in the next section on hierarchy.

Hierarchy. The concept of a system hierarchy is
an essential component for systems develop-
ment. Box-structured systems development with
objects utilizes two distinct types of hierarchy:
usage hierarchies to describe system behavior
and inheritance hierarchies to describe object be-
havior via inheritance.

A usage hierarchy of box structures is con-
structed during system design by the application

238 HEVNER AND MILLS

of both system decomposition and object com-
position. Top-down system decomposition en-
ables an essential intellectual control in develop-
ment. The system grows cne level at a time. The
mathematical structuring of systems in usage hi-
erarchies of objects allows formal verification
methods to be used. Also, the referential trans-
parency of objects in a clear box provides an es-
sential modularity and design independence to
each object.

In addition, in this framework of a usage hierar-
chy, the advantages of object composition come
into play. An object requirement, stated as a
black box, can be matched with existing object
classes stored for reuse in a repository. During
the systems analysis phase the benefits and costs
of object reuse and modification can be studied.
Another opportunity for object composition
arises during the design of the clear box. Knowl-
edge of existing object classes or insight into de-
sired object classes will influence the designer’s
invention of data abstractions as black boxes at
the next level in the object hierarchy.

As an object is used in the system usage hierar-
chy, it carries with it a description of its inherent
behavior as defined in an inheritance hierarchy.
Inheritance is a fundamental aspect of object ori-
entation. Inheritance is the means by which one
object class, the subclass, inherits the informa-
tion and operations of another object class, the
superclass. The subclass can then be modified by
adding or deleting information or operations of its
own.

Inheritance is exhibited in the box structure de-
velopment process by building new classes from
existing classes during systems development. Af-
ter an object has been instantiated in a system
design, the designer has the freedom to modify
the object design by altering the state design of
the state box (e.g., via state migration) and the
procedural design of the clear box. If the modified
object is designated for reuse, then a choice can
be made as to its representation in the reuse re-
pository. The new object class, from black box to
clear box, can be stored as a unit or the new sub-
class can be stored as a set of modifications with
a pointer to the existing superclass. Thus, an in-
heritance hierarchy can be developed of object
classes. The physical structure of the hierarchy is
a representation issue based upon an optimization
of the reuse repository. Thus, an object is defined

IBM SYSTEMS JOURNAL, VOL 32, NO 2, 1993

and stored in the form of a generic common ser-
3 27
vice.

Important object-based features. Based upon the
fact that the box structure theory supports the
four essential elements of Booch’s object model,
we conclude that box structures support object-
based systems development. In fact, box struc-
tures provide important extensions for systems
development with objects. These extensions in-
clude the isolation and verifiability of all creative
design steps in small units and systematic expan-
sion of the design in a top-down hierarchy for
intellectual design control. Thus, there is no need
to develop transformational functions to tie ob-
jects together, as is required in some traditional
object-oriented design methods. *®

Next we discuss several important features of
box-structured development methods, to include
Booch’s minor elements of typing, concurrency,
and persistence, as well as reuse and object rep-
resentations.

Typing. The typing of an object identifics the ob-
ject as a member of a specific class with all in-
herent states and behaviors. Object typing en-
sures that differently typed objects may interact
only in very restricted ways. The support in var-
ious OOP languages for typing ranges from weak
enforcement to strong enforcement. The box
structure syntax does not specifically enforce
strong typing in design specifications.

Concurrency. We believe that the ability to ana-
lyze and design concurrent structures is essential
for realistic systems development. The clear box
structure provides the means to model the con-
current behavior of black box objects. We have
defined analysis and design methods to optimize
the use of concurrency in system specifications.”
However, many difficult questions remain to be
explored.

Persistence. Persistence through time and space
is embedded in the organization-wide common
services as discussed in the next section on reuse.
The use or reuse of persistent common services,
such as object-oriented database management
systems, allows data and procedures to be shared
across many system boundaries.*>*

Reuse. Reuse is a fundamental concept in object-
oriented development.” The reuse of objects

IBM SYSTEMS JOURNAL, VOL 32, NO 2, 1993

within and among systems has the potential to
significantly raise the productivity of systems de-
velopment and the certified quality of systems.
Box structure methods support a high level of
object reuse.

In a top-down manner, each object in the system
hierarchy is stored in its three box structure views
in a systems development repository. Certain of
these objects, usually the smaller objects at lower
levels in the hierarchy, can be selected for future
reuse. Objects are stored in the form of their in-
heritance hierarchies. Special design require-
ments are imposed on the objects, such as inter-
face standards, documentation standards, and
certification requirements. These reusable ob-
jects are migrated to large organizational reposi-
tories as object classes for potential reuse across
all development projects. By including all three
box views of the object in the reuse repository, a
verified design trail of the object from require-
ment to detailed design is available for evaluation
and use during reuse decisions.

During design, reuse decisions are made for a
given black box requirement. It may be possible
to find a reusable object type in the reuse repos-
itory that meets the requirement. (Current re-
search on repository structures and access meth-
ods for reuse is reported in Reference 33.) We
recognize several forms of object instantiation for
reuse during a systems development.

An organization-wide object instantiation would
encapsulate information and operations used by
many systems. Such objects would include data-
base and file management systems, common user
interfaces, and sensors that maintain the state of
physical properties (e.g., temperature, pressure).
A system-wide object instantiation would encap-
sulate information (e.g., data types and con-
stants) and operations used in several different
places in the system usage hierarchy, but not out-
side of the system. Examples would include com-
monly used data structures and their operations
(e.g., files, stacks, queues) and monitors for crit-
ical sections of the system. A one-time object in-
stantiation would allow reuse of information and
operations without information sharing. This
would be beneficial primarily for reusing existing
program code. The first two forms of object in-
stantiations are examples of box structure com-
mon services.

HEVNER AND MILLS 239

Table 1 The 16 box structure operations

. Requirements determination

. Black box definition

. Black box analysis

. Black box requirements review
State box expansion

. State box analysis

. Black box derivation

. Clear box expansion

. Clear box analysis

. State box derivation

. Stepwise system decomposition
. System implementation

. System operations

. System analysis

. System box structure description

Nelecl AR el S N e

. Stepwise system abstraction

Object representation languages. The search for
appropriate languages for object-oriented devel-
opment has led to graphics-based aids such as
Smalltalk icons* and Booch diagrams,® and syn-
tactical forms such as Ada program description
languages (PDLs).” Box structures have both a
graphic notation and a syntactic notation, that be-
ing the box description language (BDL)." While
graphics may be appropriate for small system de-
signs and high-level presentations, we see no al-
ternative for the use of a syntactically complete
design language for large-scale object-oriented
development of systems. The use of the Z nota-
tion has also been used to represent box-struc-
tured designs.*

An integrated box-structured environment
for systems development with objects

Box structures and the box structure usage hier-
archy provide the common, unifying concepts for
achieving a truly integrated object-based devel-
opment environment. No artificial bridges and
transformation procedures are needed to ex-
change information among development activi-
ties. We have defined 16 fundamental box struc-
ture operations (see Table 1) and show these in a
schematic structure of an integrated development
environment (see Figure 2). These operations,
used and reused in various patterns, contain all
the required processing needed to perform all ac-
tivities in object-based systems development.
The box structure information is stored in well-
defined box structure formats, box structure
graphics, and the box description language in sys-
tems development repositories. In this section,

240 HEVNER AND MILLS

we describe the 16 operations and discuss several
important patterns of object-based development.

Each of the box structure operations shown in
Table 1 is atomic, accepting stimuli from and pro-
ducing responses to the system developer and the
systems development repositories. At any point
in systems development or systems evolution, an
operation can be performed as needed as long as
the stimuli for it are available. It is incumbent
upon the system developer to put the operations
to “good use” in the development process. Nat-
ural groupings of the operations are exploited in
good-use patterns. The box structures that un-
derlie all of the operations provide the essential
formalism and integration required for rigorous
systems development. We next briefly describe
the objectives of each of the operations.

1. Requirements determination involves a series
of investigation activities in which system re-
quirements are specified. The information is gath-
ered via techniques such as user interviews, ques-
tionnaires, documentation review, and analysis
of existing applications. The gathered require-
ments information is represented in box structure
formats.

2. The black box of the system is completely de-
fined (black box definition) based on the require-
ments for the system. The black box is described
by its stimuli, responses, and the transactions that
map stimulus histories into responses.

3. Black box analysis evaluates the quality and
completeness of the black box specification. For
example, transaction closure would ensure that
all stimuli are necessary and sufficient in the sys-
tem.

4. The defined black box is reviewed (black box
requirements review) to determine whether it
truly represents the desired system requirements.
The review involves the customers, users, and
managers of the system.

5. The state of the system is created (state box
expansion) by encapsulating required stimulus
history in a state box. Data design methods, such
as entity-relationship models, are used to create
a state design. An internal data abstraction is de-
signed to map stimuli and state into responses and
new state.

IBM SYSTEMS JOURNAL, VOL 32, NO 2, 1993

Figure 2 A schematic structure of an integrated development environment

BLACK BOX
REQUIREMENTS
REVIEW

BLACK BOX

REQUIREMENTS
DETERMINATION

BLACK BOX
DEFINITION

STATE BOX

DERIVATION

STATE BOX
ANALYSIS

EXPANSION

STATE BOX
DERIVATION

STEPWISE SYSTEM
ABSTRACTION

CLEAR BOX
EXPANSION

STEPWISE SYSTEM
DECOMPOSITION

%

i

STEPWISE SYSTEM
ABSTRACTION

CLEAR BOX
- ANALYSIS

STEPWISE SYSTEM
DECOMPOSITION

SYSTEM BOX
STRUCTURE
DESCRIPTION

SYSTEM
ANALYSIS

PROCEDURES
(SYSTEM)

SYSTEM
IMPLEMENTATION

SYSTEM
OPERATIONS

6. State box analysis evaluates the quality and
completeness of the state box design. The prin-
ciples of transaction closure and state migration
are applied. Data design metrics, such as level of
data normalization, are used to evaluate the qual-
ity of the design decisions.

7. The black box derivation operation discovers
the black box representation of a given state box.
A state box can be verified as correct by deriving
an equivalent black box and comparing it to the
original black box requirement.

8. Clear box expansion is a creative step whose
purpose is to design the procedural structure of
the system. The uses of black box subsystems at

IBM SYSTEMS JOURNAL, VOL 32, NO 2, 1993

the next level of design are identified. The intel-
lectual control of stepwise system decomposition
is contained in this operation.

9. Clear box analysis evaluates the quality and
completeness of the clear box design. The prin-
ciples of transaction closure, state migration, and
common services are applied. Design metrics of
structured programming can be used to study the
clear box procedural design.

10. The state box derivation operation discovers
the state box representation of a given clear box.
A clear box can be verified as correct by deriving
an equivalent state box and comparing it to the
original state box.

HEVNER AND MiLLS 241

11. The stepwise system decomposition operation
continues the system design in a top-down man-
ner by recursively applying the above operations
to each black box at the next level of the box
structure usage hierarchy. Common service box
structures are identified and developed separately
from the application system usage hierarchy.

12. System implementation accepts the design
specification in the form of a box structure usage
hierarchy and provides the capabilities and re-
sources to implement it. Implementation may be
an integration of hardware, software, and human
behavior. Implementation objectives are to build
and optimize the specified system and to prepare
users and operators for its operation and mainte-
nance.

13. Activities during system operations include
maintenance, performance monitoring, integrity
control, operations assurance, and system evo-
lution. Box structures provide a rigorous and
common means of understanding and controlling
the system during operation.

14. For an existing system, system analysis is an
investigation activity to support a better under-
standing of system behavior. Operational system
metrics, such as performance, reliability, avail-
ability, etc., are computed and used to evaluate
the quality and completeness of the system. In-
formation is gathered from interviews and docu-
mentation reviews to better understand system
behavior. This information is stored in a reposi-

tory.

15. An existing system can be described in box
structure representations to support further rig-
orous analysis and reverse engineering. Our goal
is to enhance system understanding by describing
the system (system box structure description) as
a usage hierarchy of referentially transparent
clear boxes. Methods for transforming natural
procedures into clear box formats are presented
in Reference 17.

16. The stepwise system abstraction operation
builds an increasingly abstract description of an
existing system in a recursive, bottom-up fashion.
Detailed clear box descriptions of subsystems are
derived to state box and black box representa-
tions. These subsystems are then represented as
black boxes within procedural clear boxes at the
next higher level of system description. This pro-

242 HEVNER AND MILLS

cess continues until the complete system is de-
scribed and understood at the top-level behavior.
This operation is the basis of the reverse engi-
neering of existing systems as presented in Ref-
erence 26.

The integrated systems development environ-
ment for box structures would include support for
the 16 box structure operations and a common
and controlled repository for storing box struc-
ture information. With the flexibility of being able
to perform any of these operations at any time
during systems development, the developer is no
longer bound by a rigid systems development life-
cycle paradigm. However, a discipline is still
needed for the good use of the operations toward
a well-defined systems goal.

The use of box structures can be adapted to any
development situation in a flexible way by defin-
ing good-use patterns of operations. These pat-
terns would be placed under strict management
control and adapted dynamically to changing cir-
cumstances in the on-going systems develop-
ment. Each box structure operation in the pattern
has well-defined completion criteria, allowing im-
mediate validation of the success or failure of any
particular step in the development. In addition,
since the creative invention operations (i.c., state
box expansion and clear box expansion) are self-
contained, it is easy to track and document the
critical design decisions in the system.

To illustrate, consider the following examples of
good-use patterns of box structure operations.
For conciseness, we refer to the operations using
their numbers as defined in Table 1.

Object description example. The description of an
object would begin from the discovery of the ob-
ject and a thorough requirements determination
(operation 1). The object would be designed as
part of an existing inheritance hierarchy (i.e.,
common service) or would initiate a new inheri-
tance hierarchy. In either case, the design of the
object would proceed through defining the black
box, state box, and clear box views (operations
2-10). Subclasses of the object are defined using
recursive application of these operations in the
inheritance hierarchy (operation 11).

New system development example. The develop-

ment of a system from the beginning would start
from extensive requirements determination (op-

{BM SYSTEMS JOURNAL, VOL 32, NO 2, 1993

eration 1) and proceed recursively through the
top-down construction (operations 2-11) of the
box structure usage hierarchy of the system de-
sign. Finally, the system would be implemented
(operation 12) and brought into operation (oper-
ation 13). While this pattern of operations is op-
timistically possible, it is rare in practice. New
system development will require many iterations
of requirements determination, box structure
analysis (to include reuse analysis), box structure
design, and system implementation. The flexibil-
ity to dynamically select and perform the opera-
tion needed next is of great benefit.

Reverse engineering of systems example. Reverse
engineering is defined as “the process of analyz-
ing a subject system to identify the system’s com-
ponents and interrelationships and to create rep-
resentations of the system in another form or at a
higher level of abstraction.”* A pattern of oper-
ations to support reverse engineering would be
defined by the application of system analysis and
system box structure description (operations 14
and 15). Then stepwise system abstraction would
be performed as a recursive pattern of analyses
and derivations (analysis operations 3, 6, and 9,
derivation operations 7 and 10).

Prototyping example. A prototype is a limited ver-
sion of a system built to provide requirements and
operations information. Prototypes can range in
scope from a simple study to see if software pack-
ages can exchange data correctly to a large-scale
prototype of the complete system. Once the de-
cision is made to prototype a portion of a system,
the prototype development takes on an indepen-
dent existence of its own. The pattern of box
structure operations would be similar to the pat-
tern for developing a new system. However, not
all branches of the box structure usage hierarchy
would be completed. Only the portions of the sys-
tem to be studied would be designed and imple-
mented. By developing the design with the usage
hierarchy, referential transparency of all system
parts in the prototype is maintained. This sup-
ports the ability to make use of these prototype
subsystems in the design and implementation of
the desired final system.

The box-structured systems development
process

In this section, we apply the integrated systems
development environment discussed in the pre-

IBM SYSTEMS JOURNAL, VOL 32, NO 2, 1993

vious section to build a good-use pattern of box
structure operations for the object-based devel-
opment of a system. We propose an object-based
systems development process that consists of five
phases. The order of performance of the phases
during a system development is based on the spi-
ral paradigm in which the next phase of develop-
ment is determined by the results of the previous
phases.'® This requires definite result milestones
and strict management control of the develop-
ment process. The development phases follow.

Problem definition—A clear problem statement
must be generated to provide a basis for systems
development. Extensive domain analysis is es-
sential for complete problem understanding.

Requirements definition—Requirements are elic-
ited from the system domain experts and system
users. The requirements are represented in for-
mats that facilitate review and feedback.

Systems analysis—The system requirements are
analyzed and information is gathered to support
subsequent design decisions. The discovery of
relevant, reusable objects is an important part of
systems analysis.

Systems design and verification—Definitive de-
sign decisions are made and the system design is
grown via top-down functional decomposition in
a usage hierarchy. Each creative design step is
verified to be a correct expansion of the existing
design.

Systems implementation—The system design is
transformed into an operational system. The final
system will be a combination of hardware, soft-
ware, firmware, and human behavior compo-
nents. The boundaries and interfaces among
these components must be specified in the final
system design.

Our emphasis in this section is to detail the pro-
cessing found in the middle three phases and to
demonstrate the inherent object basis of the box
structure development process. The phases of re-
quirements definition, systems analysis, and sys-
tems design and verification will be performed as
a tightly-integrated, iterative process. The ability
to achieve this tight integration comes about be-
cause of the unifying box structure concepts and
representations. (We use the term “box struc-
ture” to refer to a component in the system hi-

HEVNER AND MiLLs 243

erarchy; however, the term “object” could be
used with equivalent meaning.)

Requirements definition. The input into the re-
quirements definition phase is a complete prob-
lem statement, typically presented as a structured
English document. Investigation tasks are per-
formed in order to precisely determine the re-
quirements of a system that solves the presented
problem. Note that the requirements definition
phase is performed for each box structure in the
usage hierarchy.

Requirements for any level of system object can
be represented in a box structure format. The ul-
timate goal would be to state all requirements in
a state-free, procedure-free black box. Defining
requirements solely as a black box places no con-
straints on the eventual design. The first four box
structure operations (requirements determina-
tion, black box definition, black box analysis, and
black box requirements review) are performed it-
eratively during this phase.

The transactions in a black box are defined as
mathematical functions for deterministic behav-
ior or mathematical relations for nondeterministic
behavior. For high-level, complex box structures
it may be necessary to provide the function or
relation in the natural language of the problem
domain, often a mixture of formal and informal
language. Whatever the notation, the black box
description is a set of mathematical functions, one
per transaction.

Often system requirements do contain design
constraints on such things as the availability and
use of data or the need to conform to a defined
procedure. Such requirements cannot be re-
corded in a black box; thus, a clear statement of
state box and clear box design constraints must
be provided. In addition, certain “nonfunctional”
requirements, such as performance and docu-
mentation standards, can be stated in structured
English forms. It is important during requirement
reviews that the system owners understand that
any requirements beyond a black box are con-
straints upon the design freedom for the system.
In this process, many nonessential “require-
ments” can be discovered and eliminated.

The results of the requirements definition phase
are a precisely defined black box with accompa-
nying state box, clear box, and nonfunctional de-

244 HEVNER AND MILLS

sign constraints. This box structure requirement
is stored in a repository as the initial definition of
the system object.

Systems analysis. Analysis tasks are performed to
support the decisions that must be made during
systems design. These tasks are performed as
part of the creative state box expansion and clear
box expansion structure operations. The box
structure requirement is analyzed and informa-
tion is gathered to support one or more feasibility,
reuse, prototpye, or tradeoff types of activities.

Feasibility studies are performed to determine the
feasibility and cost versus the benefit of potential
designs. Reuse opportunities are explored in sev-
eral ways, Repositories of system objects from
the current project or existing systems will be in-
vestigated for requirements matching. The cost
and benefit of reusing existing objects, along with
any required modifications, would be deter-
mined. Prototyping is performed to evaluate de-
sign alternatives. The prototype development
process will progress independently from other
design activities with the five development phases
performed in an iterative manner. Objects devel-
oped in the prototype may be candidates for reuse
and modification in the final system. Tradeoff
studies are used to determine the advantages and
disadvantages of designing and implementing the
current box structure as hardware, software,
firmware, human behavior, or some combination
thereof. Such decisions will impact reuse oppor-
tunities and interface designs. Finally, the reuse
potential of the current box structure should be
analyzed. If the decision is made to design the box
structure as a reusable object, then reuse stan-
dards may dictate certain design decisions (e.g.,
interface standards).

The above types of analyses are essential to sup-
port high-quality system designs. The informa-
tion, analysis, and conclusions of these studies
are recorded with the evolving box structure in
the system repository. Some analysis discoveries
may cause changes in the system requirements,
thus, iteration between the phases of require-
ments definition and systems analysis is to be ex-
pected and encouraged.

Systems design and verification. In this phase the
box structure requirement and the analysis re-
sults are used to produce a complete design spec-
ification of the box structure. This phase encom-

1BM SYSTEMS JOURNAL, VOL 32, NO 2, 1993

passes operations 5 through 11 of the integrated
box structure environment.

First the state box is designed from the black box
requirement specification using the state box ex-
pansion, state box analysis, and black box deri-
vation operations. The completed and verified
state box is stored in the repository. The clear box
then can be designed using the clear box expan-
sion, clear box analysis, and state box derivation
operations.

The design and verification of the clear box com-
pletes the detailed design of the current box struc-
ture. The complete specification of the box struc-
ture object, from the black box requirement,
through the intermediate state box, to the final
clear box design, is stored in the system reposi-
tory. Finally, the stepwise system decomposition
operation is used to build the complete system in
a top-down manner.

The procedural clear box design, developed in the
clear box expansion operation, ensures that each
internal black box is referentially transparent
from all other peer black boxes and common serv-
ices in the clear box. Thus, each black box can be
designed independently. For each black box re-
quirement the development process of require-
ments definition, systems analysis, and systems
design and verification begins. Note that much of
the work performed (and dutifully recorded in the
repository) for higher-level box structures in the
hierarchy can be used in the analysis and design
of lower-level box structures. The desired system
is complete when no further black box require-
ments exist in the leaves of the box structure us-
age hierarchy. The detailed design of the com-
plete system is then sent to the final phase of
systems implementation.

The design of a Master File-Transaction File
system

We demonstrate the application of object-based
development with box structures to a simplified
version of the classic example of a Master File-
Transaction File system. The following problem
statement is given:

A supply business maintains a master file of parts
inventory with attributes of part identification
(PARTID) and quantity on hand (QOH). Each day
parts are received and shipped. For each trans-

IBM SYSTEMS JOURNAL, VOL 32, NO 2, 1993

action, a record is added to a transaction file with
attributes of part identification (PARTID), action
(ACTION), and quantity (QTY), where ACTION has
the values of “in” or “out.” The system transfers
the transactions to the master file at the end of

A classic example
illustrates the application
of object-based systems

development.

each day. A management control report is pro-
duced showing the disposition of each transaction
record and its effect on the master file.

We develop the top level of this system using a
box structure box description language notation
similar to typical program description languages
(PDL), and it should be self-explanatory.

Requirements definition. We begin by listing all
of the stimuli and responses of the desired
INVENTORY system. They are:

Stimuli Transaction file and master file
Responses Updated master file and manage-
ment report

The discovery of system requirements should
point out omissions and needed extensions of the
problem statement. For example, what are the
correct actions to be taken when unusual or er-
roneous conditions arise? We deal with two such
conditions in this example. If the transaction file
is empty, the management report will note this
and the system finishes. If the PARTID in the trans-
action file does not match any record in the mas-
ter file, the transaction record will be written with
an error message. All pertinent conditions and
contingencies should be studied during the re-
quirements definition phase.

The black box notation for the INVENTORY sys-
tem requirement is:

HEVNER AND MiLLs 245

Black Box Inventory

stimulus
Transaction_file : file of records
record
PARTID : integer,
ACTION : type of (‘in’, ‘out’),
QTY : integer
endrecord.
Master_file : file of records
record
PARTID : integer,
QOH : integer
endrecord.

response
Master_file : file of records
record
PARTID : integer,
QOH : integer
endrecord.
Report:
record
HEADER : report_header,
BODY : report_body
endrecord.

behavior

if The transaction file is empty
then Write the management report
else
for Each record in the transaction file
do
Match the PARTID value into the
master file
if A match exists
then Modify the QOH value by add-
ing (ACTION = ‘in’) or sub-
tracting (ACTION = ‘out’) the
value of QTY;
Write the transaction record
and new master record in the
management report
else Write the transaction record
and an error statement in the
management report
if;
od;
fi;
end Black Box Inventory.

Note that the transaction statement in the black
box is a mixture of keywords and structured En-

246 HEVNER AND MILLS

glish for exposition purposes. Equivalently, we
could have presented a mathematical representa-
tion of conditional algebraic assignments for the
transaction.

Systems analysis. We concentrate our analysis for
the example in discovering reuse opportunities.
We assume that a File_manager object type exists
as a box structure design in the existing reuse
library. The object type is designed to encapsu-
late a file of arbitrary design and size. Visible op-
erations on the file would include typical file op-
erations, such as the following:

OPEN Establishes currency pointer at first
record of file and checks access rights

ISEMPTY Checks if file is empty, returns Bool-
ean value

READ Reads record at currency pointer,

moves pointer to next record

Checks if currency pointer is at EOF,

returns Boolean value

Overwrites given record at currency

pointer

FIND Given a primary identifier value, finds

the first record with that identifier; if

no match is found, a STATUS value is

returned

Given a record with a valid identifier,

places the record in the file in correct

order

Given a record identifier, finds record

and deletes it from file

Establishes file integrity and update

commitments, releases any file locks

ATEOF

WRITE

DELETE

CLOSE

We assume that two object instantiations of File_
manager encapsulate the master file and the
transaction file. Since these files would also be
used by other systems in the business, these
objects would be organization-wide common
services. We name the objects Master_file and
Trans_file.

Systems design and verification. State box design
of the INVENTORY system would discover the
need to store the evolving management report as
intermediate state. Thus, the state box design is
given as follows:

IBM SYSTEMS JOURNAL, VOL 32, NO 2, 1993

State Box Inventory

common services
Master_file.
Trans_file.

stimulus

response
Report :
record
HEADER : report_ header,
BODY : report_body
endrecord.
state
Report :
record
HEADER : report_ header,
BODY : report_body
endrecord.

behavior

if The transaction file is empty
then Write Report
else
for Each record in Trans_file
do
Match the PARTID value in Master_file
if A match exists
then Modify the QOH value in Master_file
by adding (ACTION = ‘in’)
or subtracting (ACTION = ‘out’)
the value of QTY from Trans_file;
Write Trans_file record and new
Master_file record in Report
else Write Trans_file record and an
error statement in Report
if;
od;
fi;
end State Box Inventory.

The state box can be verified as a correct design
of the black box requirement in a straightforward
manner. Although we do not present all of the
details here, the critical tasks would be to verify
the correct uses of Master_file and Trans_file ob-
jects and the Report state in the state box trans-
action.

During the clear box design, an important design

decision presents itself. Should Report remain as
global state in the system or should it be encap-

IBM SYSTEMS JOURNAL, VOL 32, NO 2, 1993

sulated into a data abstraction with visible oper-
ations? We choose to develop a system-wide
common service object called Mgmt_report with
Report as encapsulated data and four visible op-
erations:

NEW Initializes Report with defined header
information, such as date, time, titles,
and column headings

ADD Adds correctly processed Trans_file
record and new Master_file record to
body of Report

ERROR1 Adds a Trans_file record and error

statement to body of Report when no

match is found in Master_file

Prints the current state value of the Re-

port

PRINT

The Mgmt_report object will be completely de-
veloped and verified, from black box requirement
to clear box design, and used in the INVENTORY
system as a common service object. The clear
box design of INVENTORY could be presented as:

Clear Box Inventory

common services

Master_file. (* organization-wide
common service *)
Trans_file. (* organization-wide

common service *)
Mgmt_report. (* system-wide
common service *)

stimulus
response
state

behavior

data (* temporary data *)
TEST1 : Boolean,

proc

use Mgmt_report(in: NEW);

use Master_file(in: OPEN);

use Trans_file(in: OPEN);

use Trans_file(in: ISEMPTY, out: TEST1);

if NOT TEST!1 then use Update_master fi;

use Mgmt_report(in: PRINT);

use Master_file(in: CLOSE);

use Trans_file(in: CLOSE)
corp

end Clear Box Inventory.

HEVNER AND MILLS 247

248 HEVNER AND MILLS

Again, the verification of the clear box can be
done and will not be presented here.

The only new object at the second level of the
system hierarchy is the Update_master black
box. We would iterate the development process
for this object, defining the black box, performing

The design work is complete

when there are no undefined

black boxes and the system
is completely specified.

systems analysis, and, finally, designing the state
box and clear box. For purposes of space, we
show the final clear box design.

Clear Box Update_master

common services

Master_file. (* organization-wide
common service *)
Trans_file. (* organization-wide

common service *)
Mgmt_report. (* system-wide
common service *)

stimulus
response
state

behavior
data (* temporary data *)
TEST2 : Boolean,
T_REC :
record
PARTID : integer,
ACTION : type of (‘in’, ‘out’),
QTY : integer '
endrecord.
M_REC :
record
PARTID : integer,
QOH : integer
endrecord.

proc
use Trans_file(in: ATEOF, out: TEST2);
while NOT TEST2
do
use Trans_file(in: READ, out: T_REC);
use Master_file(in: FIND,
T_REC.PARTID out: M_REC, STATUS);
if STATUS = NOT_FOUND
then use Mgmt_report(in:
ERRORI1, T_REC)
else
if T_REC.ACTION = ‘in’
then M_REC.QOH < M_REC.QOH
+ T_REC.QTY
else M_REC.QOH < M_REC.QOH
— T_REC.QTY
fi;
use Master_file(in: WRITE,
M_REC);

use Mgmt_report(in: ADD,
M_REC, T_REC)
fi;
use Trans_file(in: ATEOF, out: TEST2);
od

corp
end Clear Box Update_Master.

Since there are no undefined black boxes in
Update_master, no further design work is needed
and the INVENTORY system is completely speci-
fied as a hierarchy of object uses. Figure 3 shows
the box structure usage hierarchy for this result-
ing system.

Observations for this example. In the INVENTORY
system development, we have identified and cre-
ated five objects: Inventory, Update_master,
Master_file, Trans_file, and Mgmt_report.

Master_file and Trans_file are instantiations of a
file management object type to encapsulate the
master inventory file and the daily transaction
file, respectively. The objects are organization-
wide common services to all application systems
that require access to these files. For example, an
on-line application system will place transaction
records into Trans_file during the daily inventory
processing.

The Mgmt_report object can be an instantiation of
an object-type that standardizes report formats
and operations in the organization or it can be
developed from scratch for this application. If it
is newly developed, then the object becomes a

IBM SYSTEMS JOURNAL, VOL 32, NO 2, 1993

Figure 3 Inventory system box structure usage hierarchy

COMMON SERVICES

MASTER.. FILE

TRANS - FILE

APPLICATION SYSTEM

INVENTORY

MASTER..

UPDATE - MASTER

MGMT_ | |MASTER.
REPORT

FILE

FILE

MASTER. MASTER.
FILE FILE
system-wide object for use throughout the INVEN- Summary

TORY system. If the encapsulated management
report is to be used further in other system ap-
plications, then the Mgmt_report object can be
designed to become an organization-wide object.

Inventory and Update_master are objects unique
to the INVENTORY application. While the final de-
signs of Inventory and Update_master encapsu-
late no persistent data (all persistent data are in
the common services), the analysis and design of
these objects provide the insights and the creative
opportunities to perform the necessary object de-
composition and composition for this system.
This example also demonstrates the ability to de-
sign objects within objects since Update_master
is wholly contained within the Inventory object.

IBM SYSTEMS JOURNAL, VOL 32, NO 2, 1993

Our goals in this paper have been to discuss and
demonstrate the use of box structures in a rigor-
ous and systematic object-based systems devel-
opment process. Box structures provide a bridge
between structured development methods and
object-oriented development methods. The fol-
lowing observations support and summarize our
discussion.

* Box structures provide for the definition of data

abstractions and objects in three mathematical

views.

* The box structure usage hierarchy allows intel-
lectual control over the development process.

HEVNER AND MILLS 249

Each box structure in the system usage hierar-
chy is an object.

All design inventions are separated into clearly
identified small steps. Design verification is per-
formed after each inventive step of design and
provides a systematic basis for inspection.

An object is stored in the system repository in
all box structure views, from black box require-
ment to clear box detailed design. The object is
described in an inheritance hierarchy as a com-
mon service.

Box structures support an integrated develop-
ment process, in that there is no need to trans-
form the representation or content of develop-
ment information from one phase to another.
The systems development process is com-
pletely flexible between development phases.
The next phase to be performed is based upon
feedback from previous work results. The de-
velopment of a system box structure usage hi-
erarchy provides a discipline of sound and com-
plete design.

Future research will expand upon the critical is-
sues in this development process. We are cur-
rently performing research in three areas:

* Requirements definition—The process of elic-

250 HEVNER AND MILLS

iting requirements and representing system re-
quirements in box structures needs important
new research.* While the goal of requirements
definition is to place all requirements in abstract
black boxes, there are often essential require-
ments on data, procedure, and nonfunctional
requirements, such as system performance.
Concurrent and real-time systems—Current
box structure theory supports the design and
verification of sequential systems. Our recent
research has provided extensions of box struc-
tures to the design and verification of concur-
rent systems.” Much more research is needed,
however, to handle all of the complexities of
real-time systems development.

Integrated CASE—An eventual goal of this re-
search is to design and build a comprehensive
CASE system that provides integrated support of
object-oriented development from require-
ments definition through system implementa-
tion. Our current research focuses on the rep-
resentations of box structure information in
common system development repositories. *

Cited references and note

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

E. Yourdon, Modem Structured Analysis, Yourdon
Press, Prentice-Hall, Inc., Englewood Cliffs, NJ (1989).
J. Cameron, JSP & JSD: The Jackson Approach to Soft-
ware Development, IEEE Computer Society Press,
Washington, D.C. (1989).

. I. Martin, Information Engineering: Book 1—Introduc-

tion; Book 2—Planning and Analysis; Book 3—Design
and Construction, Prentice-Hall, Inc., Englewood Cliffs,
NJ (1989).

. S. Bailin, “An Object-Oriented Requirements Specifica-

tion Method,” Communications of the ACM 32, No. 5,
608-623 (May 1989).

. P. Ward, “How to Integrate Object Orientation with

Structured Analysis and Design,” Software 6, No. 2,
74-82 (March 1989).

. P. Coad and E. Yourdon, Object-Oriented Analysis, Sec-

ond Edition, Prentice-Hall, Inc., Englewood Cliffs, NJ
(1991).

. S. Shlaer and S. Mellor, Object-Oriented Systems Anal-

ysis, Prentice-Hall, Englewood Cliffs, NJ (1988).

. G. Booch, Object-Oriented Design with Applications,

Benjamin/Cummings Publishing Co., Redwood City, CA
(1991).

. E. Seidewitz and M. Stark, “Towards a General Object-

Oriented Software Development Methodology,” Pro-
ceedings of the 1st International Conference on Ada Pro-
gramming Language Applications for the NASA Space
Station, D.4.6.1-D.4.6.14 (1986).

B. Meyer, Object-Oriented Software Construction, Sec-
ond Edition, Prentice-Hall, Englewood Cliffs, NJ (1991).
P. Coad and E. Yourdon, Object-Oriented Design, Pren-
tice-Hall, Inc., Englewood Cliffs, NJ (1991).

L. Cardelli and P. Wegner, “On Understanding Types,
Data Abstraction, and Polymorphism,” ACM Computing
Surveys 17, No. 4, 471-522 (December 1985).

B. Henderson-Sellers and J. Edwards, “The Object-Ori-
ented Systems Life Cycle,” Communications of the ACM
33, No. 9, 142-159 (September 1990).

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and
W. Lorensen, Object-Oriented Modeling and Design,
Prentice-Hall, Inc., Englewood Cliffs, NJ (1991).

R. Wirfs-Brock, B. Wilkerson, and L. Wiener, Designing
Object-Oriented Software, Prentice-Hall, Inc., Engle-
wood Cliffs, NJ (1990).

H. Mills, “Stepwise Refinement and Verification in Box-
Structured Systems,” Computer 21, No. 6, 23-36 (June
1988).

H. Mills, R. Linger, and A. Hevner, Principles of Infor-
mation Systems Analysis and Design, Academic Press,
Inc., Orlando, FL (1986).

H. Mills, R. Linger, and A. Hevner, “Box Structured
Information Systems Development,” IBM Systems Jour-
nal 26, No. 4, 395413 (1987).

R. Cobb and H. Mills, “Engineering Software under Sta-
tistical Quality Control,” Software 7, No. 6, 44-54 (No-
vember 1990).

R. Linger, H. Mills, and B. Witt, Structured Program-
ming: Theory and Practice, Addison-Wesley Publishing
Co., Reading, MA (1979).

D. Parnas, “On a ‘Buzzword’ Hierarchical Structure,”
Proceedings of the IFIP Congress 1974, North-Holland
Publishing Co., Amsterdam (1974).

A. Hevner and R. Linger, “A Method for Data Re-En-
gineering in Structured Programs, Proceedings of the

IBM SYSTEMS JOURNAL, VOL 32, NO 2, 1993

23.

24,

25.

26.

27.

29.

30.

31.

32.

33.

34,

35.

36.

37.

38.

39.

22nd Annual Hawaii International Conference on System
Sciences, Volume 1—Software Track, IEEE Computer
Society Press, Los Alamitos, CA (January 1989), pp.
1025-1034.

B. Liskov and S. Zilles, “An Introduction to Formal Spec-
ification of Data Abstractions,” Current Trends in Program-
ming Methodology: Software Specification and Design,
Vol. 1, Prentice-Hall, Inc., Englewood Cliffs, NJ (1977).
S. Danforth and C. Tomlinson, “Type Theories and Ob-
ject-Oriented Programming,” ACM Computing Surveys
20, No. 1, 29-72 (March 1988).

H. Abelson and G. Sussman, Structure and Interpretation
of Computer Programs, The MIT Press, Cambridge, MA
(1985).

P. Hausler, R. Linger, M. Pleszkoch, and A. Hevner,
“Using Function Abstraction to Understand Program Be-
havior,” Software 7, No. 1, 55-63 (January 1990).

This description of an object inheritance hierarchy is sim-
ilar to the use of the Ada generic structure. Thus, we use
the term “object-based” to describe the box-structured
methods of systems development with objects.

. P.Jalote, “Functional Refinement and Nested Objects for

Object-Oriented Design,” IEEE Transactions on Soft-
ware Engineering 15, No. 3, 264-270 (March 1989).

S. Becker and A. Hevner, “Concurrent System Design
with Box Structures,” Proceedings of the 13th Annual
International Computer Software and Applications Con-
ference (COMPSAC), IEEE Computer Society Press,
Washington, D.C. (September 1939), pp. 32-40.
Object-Oriented Concepts, Databases, and Applications,
W. Kim and F. Lochovsky, Editors, Addison-Wesley
Publishing Co., Reading, MA (1989).

J. Hughes, Object-Oriented Databases, Prentice-Hall In-
ternational Series in Computer Science, Hartfordshire,
England (1991).

B. Meyer, “Reusability: The Case for Object-Oriented
Design,” Software (March 1987).

T. Biggerstaff and A. Perlis, Software Reusability: Vol.
1—Concepts and Models, Vol. 2—Applications and Expe-
rience, Addison-Wesley Publishing Co., Reading, MA
(1989).

A. Goldberg and D. Robson, Smalitalk-80: The Language
and Its Implementation, Addison-Wesley Publishing Co.,
Reading, MA (1983).

Ada for Specification: Possibilities and Limitations,
S. Goldsack, Editor, Cambridge University Press, Cam-
bridge, England (1985).

D. Fetzer and J. Poore, “Using Box Structures with the
Z Notation,” Proceedings of the 25th Annual Hawaii In-
ternational Conference on System Sciences, Vol. II—
Software Technology Track, IEEE Computer Society
Press, Los Alamitos, CA (January 1992).

E. Chikofsky and J. Cross, “Reverse Engineering and
Design Recovery: A Taxonomy,” Software 7, No. 1,
13-17 (January 1990).

A. Hevner, “Box Structured Requirements Determina-
tion Methods,” Proceedings of the First Workshop on
Information Technologies & Systems (WITS-91), MIT
Sloan School of Management, Cambridge, MA (Decem-
ber 1991).

A. Hevner, S. Becker, and L. Pedowitz, “Integrated
CASE for Cleanroom Development,” Software 9, No. 2,
69-76 (March 1992).

Accepted for publication August 17, 1992.

IBM SYSTEMS JOURNAL, VOL 32, NO 2, 1993

Alan R. Hevner College of Business and Management, Man-
agement and Public Affairs Building, University of Maryland,
College Park, Maryland 20742. Dr. Hevner Is an associate
professor and chairman of the Information Systems Depart-
ment at the University of Maryland. He is a faculty member
of the Institute of Systems Research at Maryland. He has
published over 50 refereed papers in the research areas of
distributed database systems, information systems develop-
ment, and systems engineering. Dr. Hevner is a member of
ACM, the IEEE Computer Society, and the Operations Re-
search Society of America (ORSA).

Harlan D, Mills Computer Science Department, Florida In-
stitute of Technology, Melbourne, Florida 32901. Dr. Mills is
a professor of computer science at the Florida Institute of
Technology and President of Software Engineering Technol-
ogy. He has written or coauthored six books and over 50
refereed technical journal articles on topics related to software
engineering. Dr. Mills received a Ph.D. in mathematics from
Towa State University. He is an honorary Fellow of Wesleyan
University and a Fellow of IBM, the American Computer
Programming Association, and the JEEE. He also holds the
Warner Prize for contributions to computer science.

Reprint Order No. G321-5511.

HEVNER AND MiLLS 251

