
Books

C++ Primer, 2nd edition, Stanley B. Lippman,
Addison-Wesley Publishing Company, Inc.,
Reading, Massachusetts, 1991. 614 pp. (ISBN
0-201-54848-8).

In his introduction, Lippman recounts how, when
faced with updating his book to keep up with ad-
vances in C+ +, he resolved to make it “ ... a bet-
ter edition, not just an update.” The general re-
sponse from colleagues was a hesitant “Well,
bust] don’t ruin it”! To his credit, Lippman has
succeeded in making the new edition even better
than the first.

Programmers moving from C will likely appreci-
ate that the book’s general organization parallels
(at least initially) the better C texts in that it starts
building up from the basic elements of the lan-
guage, rather than starting with philosophy. The
complete C++ language is covered including
templates, with an abbreviated section on excep-
tion handling.

The complex rules for resolving type conversions
and overloaded functions are explained particu-
larly well. Lippman sticks to the practice of
clearly listing the sequence of steps that compil-
ers (and hopefully, programmers) use in deter-
mining whether code is valid. Rather than having
to read through long sections of prose, the reader
will find the pertinent information conveniently
summarized by these time-saving lists.

Readers coming from a C background tend to be
more accepting of language features when they
can “kick the tires” and figure out how the un-
derlying mechanisms work. Lippman provides
some insight into this in the discussion of derived
classes and virtual base classes. Unfortunately,
there is not enough detail for those who desire to
know how multiple inheritance can be imple-
mented efficiently or how virtual function tables
actually work.

IBM SYSTEMS JOURNAL, VOL 31, NO 4, 1992

Lippman sidesteps a number of potential pitfalls
and manages to stick to the most important fea-
tures of the C++ language. The emphasis is on
getting the reader up-to-speed on using C+ + . As
such, completeness is sacrificed on occasion, but
never enough to be of concern to the vast majority
of readers.

Templates provide a mechanism for the program-
mer to express the workings of a class, while re-
maining somewhat independent of actual data
types. The compiler takes care of generating a
version of the class for each required type.
Lippman demonstrates this using a queue class.
He shows how a single description (template) for
the queue class is used to create variations of the
queue for integers, strings, or other data types.
The important topic of auxiliary (or helper)
classes is also discussed.

Two chapters devoted to object-oriented design
successfully stress some of the important points
in selecting and refining the key objects for an
application. The example used to show an appli-
cation of the techniques (adding a template capa-
bility to a C++ compiler) becomes complex
enough at times so as to obscure the intended
lessons.

An introduction to the C+ + I/O streams IibraIy is
included as well as an appendix contrasting C+ +
with ANSI C. The preprocessor goes largely un-
noticed. Structures (i.e., structs) are not men-
tioned, presumably with the aim of encouraging
use of the class keyword.

Lippman describes the current (3.0) level of C+ +
throughout this book. He also helpfully indicates
where this behavior may differ from what has

Topyright 1992 by International Business Machines Corpo-
ration.

been initially adopted by the ANSI C+ + commit-
tee. An appendix itemizes changes from the 2.0
level of C+ +.
Overall, Lippman has again succeeded in produc-
ing an excellent starting point for programmers
wanting to move into C+ +. This book is highly
recommended for the first step into C+ + and ob-
ject-oriented programming.

The C+ + Programming Language, 2nd edition,
Bjarne Stroustrup, Addison-Wesley Publishing
Company, Inc., Reading, Massachusetts, 1991.
669 pp. (ISBN 0-201-53992-6).

The first edition of this book was released in 1986
as the reference guide for the C + + language.
Since then, a large body of experience in using
C+ + for a variety of projects has been acquired.
The C+ + language itself has also evolved signif-
icantly. Stroustrup has greatly enhanced this new
edition to take both into account.

The C++ language is covered in its entirety, in-
cluding thorough descriptions of both templates
and exception handling. Stroustrup’s treatment
of the language tends to be more detailed than
other C + + books. Sprinkled among this addi-
tional detail, are interesting tidbits about why a
feature was designed to work as it does, in addi-
tion to the usual how. Often, the why proves at
least as useful as the how.

The discussion of correctly using exceptions is
very thorough. Exceptions provide an alternative
to the “errno” error-handling strategy of times
past. Stroustrup describes exceptions as an “al-
ternate return mechanism,” in that a function can
either return a correct result, or can trigger (or
throw) an exception. Possible exceptions may
now be listed on a function prototype. Stroustrup
even covers how to have your own function(s)
called when either an exception is not being han-
dled, or a thrown exception was not declared in
a function’s interface. A caution is that excep-
tions are a relatively new feature, so not all C+ +
compilers support them yet.

Organizationally, this book is well suited to
quickly locating information related to a specific
feature. Beware though, that the index has quirks

812 BOOKS

such as listing “ v i r t u a l ” and “virtual” as differ-
ent headings, even though they differ only in type-
face. The examples tend to be of a manageable
size and are presented in a style amenable to di-
rectly transplanting them into your own programs
without having to bring along a lot of extra bag-
gage-

The C+ + reference manual is provided as an ap-
pendix. This is the document that the ANSI C+ +
committee is using as a starting point in their stan-
dardization efforts. It serves as an important ad-
junct to the text since information that is omitted
in the interest of readability is covered by the
appendix.

Like Lippman’s book, this is not the place to
come to learn the finer points of the C/C+ + pre-
processor. While the reference manual appendix
provides an adequate description of the prepro-
cessor, the text avoids use of the preprocessor
(except for #i nc l ude directives). This is probably
based on the belief that with the changes to the
const qualifier (borrowed from ANSI C), tem-
plates, and the ability to create functions that are
expanded in-line, macros are largely unneces-
sary.

A chapter on “dos” and “don’ts” in designing
C+ + libraries gives some guidance on topics
ranging from determining which entities should
be objects, to the factors in choosing inheritance
versus containment when designing classes. Also
insightful are sections contrasting the problems of
small-scale and large-scale development efforts.
Attention is paid to differentiating between the
usual problems of scale and those introduced by
a switch to an object-oriented methodology and
C++.

A section on run-time type information looks at
how such a capability can be “added to” C++
without having to extend the language. Descrip-
tions of both the uses and abuses of such a ca-
pability are discussed.

C++ I/O streams are described in detail. Infor-
mation ranges from how to properly overload the
‘‘> >” and ‘‘< <” operators, to how the internal
buffering of data is handled. Coverage is complete
enough for the reader to grasp how the different
stream classes interact, and what to consider
when subclassing to create new I/O classes. I/O
manipulators are also described.

IBM SYSTEMS JOURNAL, VOL 31, NO 4, 1992

Overall, Stroustrup succeeds in balancing the in-
terests of C programmers that are looking to
move up into C+ +, against those who actually
look upon C+ + as a completely new language
that just happens to have some syntactic similar-
ities to C. The book will prove useful for both. In
terms of presentation style, if you liked Ker-
nighan and Ritchie, you will be happy with this
one.

Advanced C++, Programming Styles and Idi-
oms, James 0. Coplien, Addison-Wesley Pub-
lishing Company, Inc., Reading, Massachusetts,
1992. 520 pp. (ISBN 0-201-54855-0).

As the title suggests, this book is intended for a
different audience than the two reviewed above.
The reader is expected to already have a working
knowledge of C+ +. The author concentrates less
on describing language features and more on
schemes for exploiting them.

The material is presented essentially in three
phases: (1) creating safe, efficient C+ + data types
(classes); (2) object-oriented (00) design and re-
use; and (3) programming using meta-objects.

The first sections cover what goes into creating a
new class that is able to fit well with existing
types, and still be used efficiently. Coplien intro-
duces what he terms canonical forms as a guide-
line for the minimum interface that a class should
provide to fit well into the C+ + type system (e.g.,
a copy constructor, a default constructor, a vir-
tual destructor, etc.). Preventing multiple con-
structor calls for the same object via an extra level
of constructor indirection is detailed. The prob-
lem arises with multiple inheritance in conjunc-
tion with virtual base classes.

Lower-level efficiency issues are considered
next, startingwith how to replace a class’s new and
de l e te operators to speed object allocation/de-
allocation. Reference counting (managing multi-
ple objects sharing a single copy of data) and
smart pointers (overloading of the - > operator to
yield a different type) are covered. How to use
these ideas with existing classes (where you might
not be at liberty to make changes to the class
itself) is described.

Object-oriented design and reuse are tackled next
with an emphasis on surrogate objects as a way to

IBM SYSTEMS JOURNAL, VOL 31, NO 4, 1992

insulate class clients from internal changes.
Coplien uses the analogy of letters and envelopes,
with envelope classes that stand-in (or conceal)
one or more letter classes. Changes to the letter
(including a possible change of its type) need not
affect those who only see the envelope. The im-
pacts of deciding to structure classes in this fash-
ion are thoroughly discussed.

Coplien coins the term exemplars for what are
referred to as factory objects or meta-objects in
other languages. The basis of the approach is that
rather than dynamically managing C+ + objects
the usual way (via new/delete), the programmer
addresses the requests to a controller object for
that class. Coplien shows some of the advantages
in adopting such a scheme, such as allowing for
garbage collection.

One of the more interesting areas is class “ver-
sioning”-what happens when the implementa-
tion of a class changes? What is the impact on its
clients? This problem has received very limited
attention up until now in the C + + community.
The answer has so far been that clients can simply
recompile their programs. As software becomes
larger and class libraries are increasingly interde-
pendent, forced recompilations become less sat-
isfactory. Coplien identifies a number of the per-
tinent issues and suggests a scheme to solve part
of the problem. Code is given to show a way to
dynamically load a new class definition into a run-
ning program, which also involves evolving ac-
tive objects.

A downside to the many interesting ideas pre-
sented is that a number of them cannot be used in
isolation. The garbage collection scheme pre-
sented, while ably highlighting design decisions
involved, largely restricts how the objects are to
be used. You really need to be fully committed to
the use of exemplars in order to make use of a
number of the suggestions. On the other side of
the coin, these same illustrations serve to show
the burden that such features can impose on per-
formance and structure of classes.

An appendix is provided contrasting C and C+ + .
Unfortunately, the C dialect indicated most often
is pre-msI C, thereby painting a somewhat dated
picture of the differences.

Overall, this is a worthwhile book for those that
have been using C+ + for a while and would like

to see how common idioms like reference count-
ing can be implemented. In the larger view, while
a number of techniques presented in the book are
characterized as enabling a symbolic style of pro-
gramming, they seem intended to enable the pro-
grammer to escape C+ +’s strong typing. Coplien
delves into enough detail throughout to allow
readers to understand the implications of such an
escape and to evaluate for themselves what they
must give up in one area to gain in another. If you
are an intermediate-to-experienced C+ + pro-
grammer, this book is definitely worth reading.

Shawn Elliott
IBM Canada Laboratory
Toronto
Ontario

ClientlSewer Programming with OS/2 2.0, sec-
ond edition, Robert Orfali and Dan Harkey, Van
Nostrand Reinhold, New York, 1992. 1,112 pp.
(ISBN 0-442-01219-5).

The whole is more than the sum of its parts-
something everyone knows-and yet, when it
comes to technology and its use, we tend to only
explain the parts. Take clientherver applications
as an example: within a single basic application,
you use communications, a database, and a
graphical user interface. Then there are applica-
tion-level design decisions to be made, like which
communications protocol is best, how much pro-
cessing goes into the client versus the server,
should you use static SQL or dynamic SQL, should
you use remote SQL or stored procedures, and
what can a transaction monitor do for you. This
is a lot of ground to cover!

This explains why Orfali and Harkey’s new book,
ClientlSewer Programming with os12 2.0, second
edition, is 1,112 pages long. This is the first com-
prehensive book on clientberver computing using
Operating System/2* (os12*) 2.0 as a base. It is a
book that really brings all the pieces together.
Orfali and Harkey first introduce clientherver
concepts in a tutorial-like style, then demonstrate
through working code the design tradeoffs in-
volved in integrating database servers, LANS, and
client workstations that use os/2’s new object-ori-
ented user interface (OOUI).

Orfali and Harkey have made this book very ap-
proachable, with a friendly style, many illustra-

814 BOOKS

tions, and a useful index. This is a good thing in
a book that weighs a full kilogram. If you read the
best-selling first edition of the book, you will want
a copy of the second. It has 600 new pages that
tailor the book to osn 2.0.

In this bible of a book, there is a great deal for
everyone. The first 200 pages is a “book within a
book.” The authors provide a useful overview of
clienthewer architectures-including the Distrib-
uted Computing Environment, multiservers, open
systems, and Systems Application Architecture*.
This section also serves as an introduction to the
new os12 2.0 features, how os12 2.0 compares to other
clienthewer platforms (Windows** 3.X, UNIX**,
m**, and Netware**). The authors review a dozen
related, osn-based clienthewer products-includ-
ing Multimedia Presentation Manager/2, Database
Manager*, Distributed Database Connection Serv-
ices/2*, Communications Manager*, TCPnP for OS/2,
LAN Server, and NetWare Requester for OS/2 2.0.

The back 920 pages are a system architect’s par-
adise. They cover almost every tradeoff in the
design of clientherver systems. Wherever possi-
ble Orfali and Harkey put together some clever
benchmarks (with working code) to make their
point:

In Part I1 the authors go over the design trade-
offs involved in creating multitasking clients
and servers. Which are better, threads or pro-
cesses? What are the the overheads associated
with semaphores versus interprocess commu-
nication mechanisms such as Named Pipes?
In Part I11 the authors cover the tradeoffs in
peer-to-peer and client/server LAN communica-
tions. To make this hard topic fun, they stage a
BLOB Olympics using a BLOB (binary large ob-
jects) server application that compares the per-
formance of NetWare, LAN Server, CPI-C over
MPC, NetBIOS, and sockets over TCPDP.
In Parts IV and V the authors develop a pro-
gram that implements the TP1 transaction
benchmark and use it to demonstrate how cli-
entlserver database design tradeoffs impact ap-
plication performance. Which would you de-
sign: fat clients or fat servers? You will know
after this section.
In Parts VI and VI1 the authors explore the ben-
efits of object-oriented user interfaces (OOUIs)
using System Object Model (sOM) and the
Workplace Shell* (WPS) class library. They
demonstrate the benefits of OOUIS over graph-

IBM SYSTEMS JOURNAL, VOL 31, NO 4, 1992

ical user interfaces (GUIs) with a flamboyant ex-
ample of a Club Med** Reservation System.
The Club Med front end is created using six new
objects derived from SOM/WPS classes. The
back end uses a transaction server built on top
of the OS!^ Database Manager.

In conclusion, this book’s real strength is that it
transcends the armchair discussion of client/
server and gets into real-life design tradeoffs using
working examples. While this book will primarily
appeal to the 0s/2 2.0 clientherver crowd, its
strong 0s/2 orientation (and advocacy) should not
deter clienthewer theorists with other OS affilia-
tions. There are important practical lessons in this
book-such as fat clients versus fat servers-that
apply equally well to OS/2, NT, UNIX, or Tandem
Computers, Inc.’s Guardian** OS. The section on
OOUIS and distributed objects will be of interest to
all providers of visual front ends to databases.

Lee C. Chang
Professor, College of Engineering
San Jose State University
California

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Microsoft Corpora-
tion, UNIX Systems Laboratories, Inc., Novel1 Corporation,
Club Med Sales, Inc., or Tandem Computers, Inc.

Note-The books received are those the Editor thinks might
be of interest to our readers. The reviews express the opinions
of the reviewers.

IBM SYSTEMS JOURNAL, VOL 31, NO 4, 1992 BOOKS 815

