Numerical simulation
of reactive flow

on the IBM ES/3090
Vector Multiprocessor

Prohibiting knock damage in internal combustion
engines presents severe restrictions for
engineers. Laboratory experiments are expensive
or even impossible; nevertheless, numerical
attempts that employ supercomputers have been
rarely undertaken. The numerical approach
described in this paper combines a recent shock-
capturing finite-volume scheme for the
compressible Navier Stokes equations, with
semi-implicit treatment of the chemical source
terms.

An algorithm is described and validated by
experiment that is optimally adapted to vector
and parallel computers. The algorithm has been
implemented on the IBM Enterprise
System/3090™ (ES/3090™) Vector Multiprocessor.
Performance measurements are discussed. The
potential of the code is illustrated by an example:
formation of pseudo shock waves due to
interaction of a shock wave with turbulent
boundary layer flow.

his paper reports on some results of a joint

research project undertaken to gain insights
into physical reasons of knock damage in internal
combustion engines. The work combines engi-
neering and mathematical modeling with algorith-
mic and code development for vector and parallel
processing on IBM supercomputers.

Due to its significance to many problems of en-
gineering application, the development of numer-
ical algorithms to simulate reactive flow has at-
tracted considerable interest over recent years.!

788 HEBEKER, MALY, AND SCHOEFFEL

F. K. Hebeker
R. R. Maly
S. U. Schoeffel

by

At the same time, research on the problem of
knocking phenomena in combustion engines
seems to be rarely reported in the literature.?
Aside from the corporate sensitivity, one reason
for minimal reporting of the knocking phenome-
non might be its numerical complexity, essen-
tially due to complex interaction of diffusive ef-
fects with shock waves and reaction fronts
(propagating and interacting with each other and
with walls) and due to the presence of nonequi-
librium combustion phenomena. This paper re-
ports on the combination of some recent numer-
ical methods of computational fluid dynamics
(CFD), namely novel shock-capturing techniques
introduced by VanLeer® and Roe et al.,* with
(semi-)implicit algorithms to treat stiff chemical
source terms.>

A FORTRAN program called PICUS (PIston Crevice
nUmerical Simulation)® was developed to study
such flows. The algorithm has been validated by
experimental data and is currently under appli-
cation to model flow under knock conditions in an
engine knock simulator. This paper concentrates
on some performance considerations concerning

©Copyright 1992 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 31, NO 4, 1992

vector and parallel processing on the IBM Enter-
prise System/3090* (ES/3090*). PICUS has excellent
features to take advantage of vector and parallel
computer architectures.

The mathematical model uses the compressible
Navier Stokes equations (in thin-layer approxi-
mation) in an L-shaped domain, with appropriate
(rather complex) boundary conditions. The
chemical model deals with a two-step model of
exothermic reaction (triggered after the induc-
tion-delay period), which describes the globally
complex detailed reaction kinetics mechanism.

The numerical approach is based on the splitting
idea.” The flow domain is treated by means of
a domain-splitting approach. This proves par-
ticularly useful in view of vector and parallel
processing.® The L-shaped domain is split into
rectangles and, by alternating between both sub-
regions, dimensional splitting is used to reduce
the problem further to successive one-dimen-
sional ones. Finally, by splitting the operator, the
model allows the resulting system of conservation
laws (including source terms) to be split up with
respect to diffusive, convective, and reactive
terms, according to the governing transport phe-
nomena. In particular, the convective part is
treated by means of a second-order VanLeer
finite-volume scheme,? including Roe’s approxi-
mate Riemann solver.* For the reactive part, a
semi-implicit method of discretization (trapezoi-
dal rule) is employed.’®

The main part of the paper is devoted to the ques-
tion of optimizing the code and how to vectorize
and parallelize it to run efficiently on the
IBM ES/3090. The paper briefly recalls the tools
available to optimize FORTRAN codes for IBM
supercomputers and presents performance re-
sults. A speedup of about 2.5 due to vectorization
and an additional speedup of about 1.75 due to
parallelization using two processors has been
achieved. The latter corresponds to an activated
degree of parallelism of more than 85 percent.

The paper deals with an extensive physical ex-
ample, the interaction of a reflected shock wave
interfering with the shock-tube boundary layer
and forming pseudo shock waves (wave train).

Governing differential equations

The underlying mathematical model takes advan-
tage of the nonstationary thin-layer Navier

IBM SYSTEMS JOURNAL, VOL 31, NO 4, 1992

Stokes equations under exothermic chemical re-
actions, which read in divergence form

% U + div FU) = D(U) + S(U) 1)

where

U= (p, pu, pv, e, Y),

pu pv
pu’l+p puv
F=| puv pv’+p]|,
(e+pu (e+pw

uY vY

0
7

D= /.va R
2 2
A0, + u(u, +v,)

0
0
S= 0
qo
-
and

o=ven(s(1-g)) @

Here p, u, v, e, Y, p, ® denote density, velocity
inx-, y-direction, total energy, reaction progress
parameter (according to a two-substances model,
here: volume concentration of fuel), thermody-
namic pressure, and temperature in the flow field;
Kk, A, 4, g, B denote the isentropic exponent,
thermal conductivity, dynamic viscosity, heat re-
lease, and global activation energy of the explo-
sive gas (all quantities assumed as constants).

The underlying L-shaped computational domain
G for the flow problem studied here is shown in
Figure 1. This domain is split into two subdo-
mains G; and G,. We assume Euler flow in G,:

HEBEKER, MALY, AND SCHOEFFEL 789

Figure 1 Domain, its decomposition and boundaries

—

Ly
l
_____ % ﬁ
I
Iy Iy I
i -
b [aaBY
1 v
I3 J_‘
Xu
A=u=0inG, 3)

so that we assume for all flow quantities as bound-
ary conditions:

d
—=0onT,)

with the exception of vanishing normal velocity:
v=00nT,. %)
On the coupling boundary I", all corresponding
variables are continuously aligned when alternat-
ing between both subregions. The open boundary
condition on I'; is chosen in a way to allow for
smooth outflow of the reflected waves (absorbing
boundary condition).

In G, we assume the thin-layer equations to hold
with

A,I.L>0inG2.

Consequently, we choose the same boundary
condition on I'; as before, but require no-slip con-
ditions on T',:

u=v=0o0nT, (6)

For the temperature we set

790 HEBEKER, MALY, AND SCHOEFFEL

®=0,0onT, (7

where 0, is obtained from the condition of con-
tinuous heat flux (Fourier’s law). Following Hir-
schel and Groh,® we obtain an additional condi-
tion for p from the continuity equation:

p.+pv,=00nT, (8)

Finally, the thermal equation of state then yields
the wall pressure on I',.

The numerical algorithm

The algorithm takes full advantage of the splitting
idea, combining domain splitting with dimension
and operator splitting on each time step, with time
increment Af (in fact, the method uses Strang’s
symmetric second-order splitting).

First, the L-shaped domain is split into two rec-
tangular subdomains G, and G, (see Figure 1).
Each of the rectangles is decomposed into a total
of (NXj — 3) X (NYj — 3), j = 1, 2 equally sized
interior cells, and a lot of further cells serve for
smooth data flow between the subdomains as well
as for proper modeling of the boundary condi-
tions. Both subregions are treated alternatingly,
so that the following numerical procedure needs
to be described for one subdomain only. The es-
sence of this procedure is twofold:

1. Complex geometries are reduced to a set of
rectangular subdomains, allowing for dimen-
sional splitting.

2. The subdomains may be treated indepen-
dently, such that coarse-grained parallelism is
introduced.

Let us treat, as an example, the subdomain G,.
We use dimensional splitting to update the flow
quantities alternatingly in x- and in y-direction.
This means that, for any time step, for instance in
x-direction, a system in one space dimension

0 d
— U+ F(U)=D(U) + SU) ©)

is solved (F! denoting the first column of F), sub-
jected to the given boundary conditions. The es-
sence of this procedure is just to reduce a two-
dimensional problem to a one-dimensional one.

IBM SYSTEMS JOURNAL, VOL 31, NO 4, 1992

Due to their essentially different qualitative be-
havior, we split the system (Equation 9) further
into a convective-diffusive part

ad]

— =Ry =

= U+ Fi(U)=D(U) (10)
and a chemokinetic part

i 11
= U=SW) (11)

both to be solved numerically alternatingly on
short time intervals.

First consider Equation 11. Assuming the density
and the flow velocity as constant in time during
the reaction step, we obtain a system of ordinary
differential equations (ODE) to be solved for
(@, Y)T for each cell. Since the system is stiff in
general, we used a semi-implicit trapezoidal rule
(which corresponds to solve a 2 x 2 linear alge-
braic system for each time step) in order to update
the unknowns.

Finally, as the core of the algorithm, consider the
convection-diffusion problem (Equation 10).
Here we adopt novel shock-capturing schemes
for the convective part with explicit treatment of
the diffusive terms. This strategy, proposed by
MacCormack and applicable to high Reynolds
number flow, is called “Rapid Solver” algo-
rithm.? Consequently, the algorithm is composed
as follows. Assuming U” to be given on the time
level ¢,, we compute U"*! from this strategy
(where V' summarizes the primitive variables p,
u, v, p, Y corresponding to U, and Ax represents
the mesh width).

The algorithm is stated as follows:

1. Compute
B 1
Vi ™ =Viz 3 oV (12)
where
Vi=ave(Vi, -V, V= Vi) (13)

with VanAlbada’s slope limiter

IBM SYSTEMS JOURNAL, VOL 31, NO 4, 1992

a+b (a — b)?
ave(a,b) = — (1_a2+b2+0') (14)

(o > 0 a small bias of order O(Ax?)).

2. For an intermediate time step ¢,.,, compute

Ar
Uin+1/2 = U’" - m {F(V,'nﬂ/z)n - F(Vin—l/Z) +}

At .
+ 7 D(U i)
then
_ 1
(VIR = Vx5 ov) (15)
and finally
Fiip = Fro((VED ™ VELDY) (16)

(see* for the averaged Roe fluxes Fg,,).

3. Update

n+l n At
urr=07 - Ax Fioip = Fisip)

+ At D(UT'), (17)

Concerning the time step size, we assume the lat-
ter to be governed by the convective-diffusive
part, since the chemical part is treated semi-
implicitly (with unlimited stability). Further,
since the diffusive coefficients are only small, the
well-known restrictions for the time step are of
the same order of magnitude for both diffusive
and convective parts of the transport equations.
This is the reason that, for simplicity, the diffusive
terms are treated here by means of an explicit
predictor-corrector scheme. In fact, for maxi-
mum time step size Af, ., we allow

Az, = 0.9 min(At™, 2A¢* — At,) (18)
where

. (1 1)‘1 9
At = A_tD+ A_tc (19)

HEBEKER, MALY, AND SCHOEFFEL 701

(Atp, At denote the maximum time steps due to
explicit treatment of the diffusive or convective
parts of the differential equations, respectively.)

The PICUS program

Based on the present algorithm, a new FORTRAN
program called PICUS has been developed as a
flexible tool to study a wide range of phenomena
in the realm of gas dynamics of combustion (re-
active compressible flow). We discuss the imple-
mentation of the (two-dimensional) version la-
beled PICUS-2 (or its basic version PICUS-200) on
the IBM ES/3090 with the Vector Facility.

Both subdomains (see Figure 1) are served by a
total of six large arrays, STATEj, PLINj, and FLUXj
(j = 1, 2), each of which has the dimension

SX(NXj + 1) X (NYj + 1).

In the following we restrict ourselves to consider
only the domain G,, since for G, similar terms
hold. In practical applications we commonly used

NX2=1000, NY2=100

(underscoring the need of supercomputers).

The solution is stored in STATE2, alternatingly in
primitive or conservative variables. The array
PLIN2 contains the (limited) slopes as entries of
the approximate Riemann solver. And the array
FLUX2 serves as a work space for both the prim-
itive variables and the fluxes. Consequently, the
specified large arrays are exploited as far as pos-
sible.

For achieving high performance rates with the
Vector Facility it is crucial that the first argument
of these arrays is equal to the largest size (NXx2),
which leads to long vectors.

The program is structured as follows. The main
program contains preprocessing (initialization,
domain decomposition, ...) and the time step-
ping loop. For any time step the twin subroutines
ADVANCEX and ADVANCEY, serving to update the
solution by dimension splitting, are called for
each of the subregions G, and G,.

792 HEBEKER, MALY, AND SCHOEFFEL

The principal subroutines then are PIECELIN# and
SOLVEROE# (Where # stands forx ory), called once
by ADVANCE#. Here the routine PIECELIN# serves
to compute the flow quantities for an intermediate
time step by means of a (slope-limited) finite-vol-
ume method. PIECELIN# contains the solver for
the ODE system, too. After that the second routine
SOLVEROE# is called, where Roe’s scheme to
compute the fluxes (on the intermediate time
level) followed by conservatively updating the so-
lution is used. Both routines PIECELIN# call a
function 4VE where the slope limiter is evaluated.

The merits of the new code PICUS-2 show up when
compared with PLM2DTL, an academic code (of
the RWTH Aachen) with related objectives in
mind.'® Here the parameters were NX2 = 128,
NY2 = 16, with 10 time steps run (the domain G,
treated by PICUS only is modeled by a coarse grid
so that its contribution to the total CPU time is
low). It turns out that the basic version PICUS-200
reduces the elapsed time by factor 10 and its
tuned version PICUS-230 by factor 20 (all runs car-
ried out in vector mode).

The subsequent section shows how to achieve
this improvement.

Vectorizing and optimizing

Auvailable since the midseventies, vectorization is
now well established as a practical tool to essen-
tially reduce the CPU time for application codes.
Taking full advantage of the IBM ES/3090 Vector
Facility (VF) requires some knowledge of its spe-
cial structure. But the present section shows that
only little special skill of the VF is required to
attain an essential saving of CPU time. The key is
to structure the data and their flow favorably (ar-
rays STATEj, PLINj, FLUXj, and their handling!).

The result is shown in Figure 2 where elapsed
times (in seconds) are given as a function of NX2
(with NY2 = 0.1 x NX?2) for: the basic version
PICUS-200 running in scalar mode (upper graph),
the basic version PICUS-200 running in vector
mode (middle graph), and the optimized version
PICUS-230 running in vector mode (lower graph).

Consequently, even the basic version enjoys a
slight vector-to-scalar speedup of about 1.2 for
the IBM ES/3090, which has an excellent scalar pro-
cessor. In the following we explain how to tune
this code in order to attain a vector-to-scalar

IBM SYSTEMS JOURNAL, VOL 31, NO 4, 1992

Figure 2 PICUS-200 basic scalar (upper graph) vs PICUS-200 basic vector (middle graph) vs PICUS-230 optimized
vector (lower graph): elapsed time (seconds) vs number of cells in x-direction

~§
o

3
]

o
<]
]

ELAPSED TIME (SECONDS)

&
i

i] T
100 200

NX—NUMBER OF CELLS IN X-DIRECTION

Removal of external subroutine calls in DO-
loops by generating in-line code (eventually by
use of the precompiler VAST-2)

Removal of recurrences by splitting DO-loops
and eventually modifying the source code
Resort to the 1BM Engineering and Scientific
Subroutine Library'* (ESSL), which consists of

speedup of about 2.5 (see the smoothed graph of
Figure 3).

The followin% strategy leads to efficient reduction
of CPU time:

1. A “hot-spot analysis” (a tool provided by the

IBM VS FORTRAN Interactive Debug) yields
run-time statistics of the utilization of the total
CPU time required by the subroutines. This
points out which subroutines are tunable with

currently 288 optimized numerical subroutines
Avoidance of multiple computation of quanti-
ties sent to memory, and further improvement
of data flow

best efficiency.
. The compiler vector report points out those Let us describe this with a relatively simple ex-
DO-loops run in vector or scalar mode, indi- ample:
cating where vectorizing of the single DO-
loops should be started. W = 00
. In some cases it is hardly possible to create DO 50 J = NY,1, — 1
vectors in a DO-loop (due to some recurrence DO 50 I = 1,NX
a; = a,;_,, for instance). In this case an ex- .
change of the whole subroutine or the pertain-
ing part of the algorithm is required.

W = DMAX1 (DABS(U—A), DABS(U+A), W)

50 CONTINUE
Limiting the problem to the essential features of
the code, we summarize the tools and means to
optimize. The main tools are as follows:

As the vector compiler reports, these loops are
not in vector form, due to recurrence. This draw-

IBM SYSTEMS JOURNAL, VOL 31, NO 4, 1992 HEBEKER, MALY, AND SCHOEFFEL 793

Figure 3 PICUS-200 basic version (lower graph) vs PICUS-230 optimized version (upper graph): vector-to-scalar

speedup vs number of cells in x-direction

% 25
[~
w
W
o
0
I =
2
<
B 20
g 5
[l
O -
w
> —

1.5

1.0 ~

[1 i | | ! I I L
0 100 200 300 400 500
NX-NUMBER OF CELLS IN X-DIRECTION

back is removed as follows: we split the inner
loop and resort to the subroutine IDAMAX of the
ESSL library, '* which serves to find the position of
the first occurrence of a vector element that has
maximum modulus (the IBM ESSL subroutines are
assembler-written and optimized for the 1BM
ES/3090 VF). For this, two auxiliary arrays have
been employed in a preprocessing step. Conse-
quently, the tuned version looks as follows,
where the innermost loop is now in vector form.

W = 0.0
DO 50 J = NY,1, — 1
DO 90 | = 1,NX
UMA() = U-A
UPA() = U+A
90 CONTINUE

IMA = IDAMAX (NX, UMA, 1)
IPA = IDAMAX (NX, UPA, 1)
W = DMAX1 (DABS(UMA(IMA)),
DABS(UPA(IPA)), W)
50 CONTINUE

794 HEBEKER, MALY, AND SCHOEFFEL

The simple modifications lead to the final vector
form, called PICUS-230, with a CPU time reduced
by factor 2.65 as compared with the original ver-
sion PICUS-200 (both run in vector mode, with
NX2 = 500, see Figure 2). By efficient use of the
Vector Facility, a saving of more than 60 percent
of the overall CPU time has been achieved as com-
pared with the basic version (in vector mode). As
compared with the basic version run in scalar
mode, even a saving of about 70 percent results.
See Figure 2.

The final version PICUS-230 enjoys a vector-to-sca-
lar speedup of about 2.5 (see Figure 3). This
shows good cost efficiency of the VF, particularly
if the moderate effort is taken into account.

On parallelization

Whereas vectorization is now considered as a
well-established tool to essentially reduce the
overall CPU time on supercomputers, the situation
is less clear today with multitasking (paralleliza-
tion) on shared-memory systems. Here the

IBM SYSTEMS JOURNAL, VOL 31, NO 4, 1992

elapsed time only is reduced (the overall time a
job is running on the machine), whereas the total
CPU time generally is even enlarged, due to soft-
ware overhead, communication and synchroni-
zation costs (a feature not welcome to computing
centers). Consequently, when it comes to opti-
mizing an application code, it is quite often ad-
vantageous to perform vectorization first, and af-
terwards to search for means of parallelization.

For the IBM ES/3090 series (or its successor, the
IBM ES/9000* series), Parallel FORTRAN is imple-
mented as VS FORTRAN Version 2 Release 5, en-
hancing the previous Multitasking Facility with a
set of parallel functions ranging from automatic
parallelization of DO-loops (implicit parallelism)
to explicit parallel language constructs.” Con-
cerning automatically generated parallel code for
DO-loops, the compiler is responsible for a loop
running smoothly in parallel, computationally
equivalent to the serial code. On the other hand,
concerning use of explicit parallel language con-
structs as PARALLEL DO, PARALLEL SECTIONS,
PARALLEL CALL, or parallel subroutine schedul-
ing, the user is responsible for proper processing.

As stated above, the code PICUS is well fitted both
for vectorization and parallelization, due to its
data structure and flow. Generally speaking, the
following strategy has been employed to optimize
the code with little effort but considerable speed-

up:

e Treat the subdomains in parallel (coarse-
grained parallelism)

* Perform vectorization in x-direction (stride 1),
but perform parallelization in y-direction

The numerical results have been obtained by use
of two dedicated processors of the IBM ES/3090-30E
at the IBM Heidelberg Scientific Center. We in-
vestigated the parallel performance of two ver-
sions:

* Version PICUS-230, optimized for vectorization
(see above), using automatically-generated par-
allel DO-loops

¢ Version PICUS-240, using PREFER PARALLEL (or
PARALLEL DO) in several cases where the com-
piler is unable to detect inherent parallelism,
and enhanced by parallel processing of the
subdomains using coarse-grained PARALLEL
SECTIONS

IBM SYSTEMS JOURNAL, VOL 31, NO 4, 1992

Let us shortly consider how the PARALLEL
SECTIONS have been introduced to PICUS. The
time stepping loop of the main program has this
structure:

DO 80 ITIME = 1,IE
... (updating parameters for G,)
CALL ADVANCEX (STATE1, ...)
CALL ADVANCEY (STATE1, ...)
... (updating parameters for G,)
CALL ADVANCEX (STATEZ2, ...)
CALL ADVANCEY (STATEZ2, ...)
80 CONTINUE

ADVANCEX and ADVANCEY are those computa-
tionally expensive subroutines that serve to up-
date the flow quantities. After checking compu-
tational and data independence of those sections
dealing with G, and G,, respectively, we intro-
duced explicit parallelism by use of PARALLEL
CALL or PARALLEL SECTIONS. The first way is
more complicated, requiring an auxiliary subrou-
tine, so for our final version PICUS-240 we pre-
ferred to use PARALLEL SECTIONS:

DO 80 ITIME = 1,IE
PARALLEL SECTIONS
LOCAL ...
SECTION 1
... (updating parameters for G,)
CALL ADVANCEX (STATET, ...)
CALL ADVANCEY (STATET1, ...)
SECTION 2
. (updating parameters for G,)
CALL ADVANCEX (STATEZ2, ...)
CALL ADVANCEY (STATEZ, ...)
END SECTIONS
80 CONTINUE

Here a lot of steering parameters for the data flow
in G, or G, have to be assigned to each parallel
thread as private variables by means of the LOCAL
specification.

The following numerical results have been ob-
tained in case of the parameters NX1 = 511,
NY2 = 27, NX1 = 1023, NY2 = NY1. Here 10
time steps have been carried out, and all runs used
vector mode. We observed a parallel speedup S,
(employing two dedicated processors) as follows:
for PICUS-230 we have S, = 1.24, but for the explic-
itly parallelized version PICUS-240 we obtained

S,=1.75

HEBEKER, MALY, AND SCHOEFFEL 79§

Figure 4 Pseudo shock waves leaving the gap

RIS (]

] “‘ ‘HWU \ \ l ™
A ?/}&l

=7

\

/k

As a result, by Amdahl’s law, we obtain an acti-
vated degree of parallelism of

p=0.86

for the latter version.

Physical example

The physical character of the analysis is shown by
the following example.

Let two shock waves successively enter the chan-
nel, in a way that the second wave enters in just
that moment where the first one is reflected at the
end wall of the channel. Both waves are then in-
teracting, and they produce (in addition to a
shock wave turning again toward the end of the
channel) a wave train, or so-called pseudo shock
waves (which are due to massive viscous-inviscid
interaction between the reflected shock wave and
its turbulent boundary layer). Rigorous quantita-
tive investigation of this kind of phenomenon has
been commenced only recently.’ Figure 4 shows
the isopycnics of multiple pseudo shock waves
shedding from the gap into the inlet combustion
chamber, a phenomenon particularly observed
for small gap width of the order of 20 to 30 um.
Concerning influence of exothermic chemical re-
actions, our numerical results show a reduction of
shock-wave-boundary-layer interaction due to lo-
cal separation and vortex formation that substan-
tiates a damping effect of heat release in nonequi-
librium flow.

Typical values of dynamic viscosity u for hydro-
carbon air mixtures are chosen. Thermal conduc-

796 HEBEKER, MALY, AND SCHOEFFEL

tivity is calculated from dynamic viscosity
employing the FEucken relation and Curtiss-
Hirschfelder gas kinetics relations. The minimum
propagation Mach number Ma of the shock wave
entering G, coming from G, is taken as about 1.3
in correspondence with typical measurements of
pressure increase due to knock events in engines.

This computation consumed about 20 hours of
CPU time on the IBM ES/3090.

Conclusions

We described the algorithmic properties of a new
FORTRAN code PICUS to simulate shock waves in
reacting Navier Stokes flows. The algorithm is
based on VanLeer’s second-order shock-captur-
ing scheme (using Roe’s approximate Riemann
solver), combined with a semi-implicit ODE solver
for the nonequilibrium chemistry part. On the IBM
ES/3090 Vector Multiprocessor, the new code (val-
idated now by experiment) presents a vector-to-
scalar speedup of about 2.5 as well as a supple-
mentary parallel speedup of about 1.75 by use of
two parallel processors. The long-time behavior
of PICUS has been checked for an important phys-
ical detail, namely the formation of multiple
pseudo shock waves in an internal combustion
engine.

Acknowledgment

The authors would like to express sincere thanks
to R. Janssen for helpful discussions and valuable
support of the present work.

* Trademark or registered trademark of International Busi-
ness Machines Corporation.

IBM SYSTEMS JOURNAL, VOL 31, NO 4, 1992

Cited references

1. E. S. Oran and J. P. Boris, Numerical Simulation of Re-
active Flow, Elsevier, New York (1987).

2. H. Sugiyama, H. Takeda, Z. Zhang, and F. Abe, “Mul-
tiple Shock Wave and Turbulent Boundary Layer Inter-
action in a Rectangular Duct,” Shock Tubes and Waves,
H. Groenig, Editor, Proceedings of the 16th International
Symposium at Aachen 1987, VCH, Weinheim, Germany
(1988), pp. 185-191.

3. B. VanLeer, “Towards the Ultimate Conservative Dif-
ference Scheme (Part 5),” Journal of Computational
Physics 32, 101-136 (1979).

4. P. L. Roe, “Characteristic-based Schemes for the Euler
Equations,” Annual Review of Fluid Mechanics 18, 337-
365 (1986).

5. M. Fey, H. Jarausch, R. Jeltsch, and P. Karmann, “On
the Interaction of Euler and ODE Solver When Comput-
ing Reactive Flow,” Adaptive Methods for PDEs, . E.
Flaherty, P. J. Paslow, M. S. Shephard, and J. D. Vasi-
lakis, Editors, SIAM (Society for Industrial and Applied
Mathematics), Philadelphia (1989), pp. 29-42.

6. R. J. Gathmann, F. K. Hebeker, and S. Schoeffel, “On
the Numerical Simulation of Shock Waves in an Annular
Crevice and Its Implementation on the IBM ES/3090 with
Vector Facility,” Application of Supercomputers in En-
gineering II, C. A. Brebbia, D. Howard, and A. Peters,
Editors, Elsevier Applied Science, London (1991), pp.
319-330.

7. H. C. Yee, A Class of High-Resolution Explicit and Im-
plicit Shock-Capturing Methods, Von Kirman Institute,
Brussels, Lecture Series 1989-04 (1989).

8. E. H. Hirschel and A. Groh, “Wall-Compatibility Con-
ditions for the Solution of the Navier Stokes Equations,”
Journal of Computational Physics 53, 346-350 (1984).

9. R. W. MacCormack, “A Rapid Solver for Hyperbolic
Systems of Equations,” Lecture Notes in Physics 59, 307-
317 (1978).

10. J. J. Kloeker, “Shock Induced Self-Ignition of a Reactive
Gas Mixture in a L-Shaped Duct,” Numerical Combus-
tion, Proceedings of the 3rd International Conference at
Antibes, France (1989).

11. W. Gentzsch and S. Gliickert, “The Processor IBM 3090
with Vector Facility” (in German), Praxis der Informa-
tionsverarbeitung 10, 24-30 (1987).

12. IBM Engineering and Scientific Subroutine Library:
Guide and Reference, SC23-0184, IBM Corporation
(1990); available through IBM branch offices.

13. IBM VS FORTRAN Version 2: Programming Guide for
CMS and MV'S, SC26-4222, IBM Corporation (1991);
available through IBM branch offices.

Accepted for publication August 10, 1992.

Friedrich K. Hebeker /BM Germany, Heidelberg Scientific
Center, P.O. Box 10 30 68, D-6900 Heidelberg, Germany. Dr.
Hebeker is a research staff member of the Heidelberg Scien-
tific Center. He received a Dr. and a DSc. degree in applied
mathematics from Paderborn University in 1980 and 1985,
respectively. In 1988 he joined IBM Germany and has worked
and published in the areas of parallel algorithms, computa-
tional fluid dynamics, and boundary element methods. He is
involved in joint research projects with engineering depart-
ments of academia and industry. In addition, Dr. Hebeker is

IBM SYSTEMS JOURNAL, VOL 31, NO 4, 1992

a Privat-Dozent of Mathematics at the Technical University of
Darmstadt.

Rudolf R. Maly Daimler-Benz Research Laboratories, P.O.
Box 8002 30, D-7000 Stuttgart 80, Germany. Dr. Maly re-
ceived his Dr.-Ing degree in physical electronics in 1974 from
the University of Stuttgart. He spent 16 years at the Institute
for Physical Electronics at the University of Stuttgart as a
research scientist, assistant professor, and head of the com-
bustion group. For the past nine years Dr. Maly has worked
at the Daimler-Benz Research Laboratories. His position is
head of the competence center for thermo- and aerodynamics.
Dr. Maly’s research interests include spark and compression
ignition, physics and chemistry of combustion, engine knock,
and combustion diagnostics.

Stefan U. Schoeffel Daimler-Benz Research Laboratories,
P.O. Box 80 02 30, D-7000 Stuttgart 80, Germany. Dr. Schoe-
ffel is a research staff member of the Mercedes-Benz Research
Institute of Daimler-Benz. He received a Dr.-Ing. degree in
mechanical engineering from Kaiserslautern University in
1987. Gas dynamics, reactive flow, light-water reactor safety,
and environmental technology have been his topics of inter-
est. In 1989 he joined Daimler-Benz and has been working on
advanced turbulence modeling for internal combustion en-
gines since then. From 1989 to 1992 Dr. Schoeffel was visiting
scientist at the Heidelberg Scientific Center of IBM Germany.

Reprint Order No. G321-5498.

HEBEKER, MALY, AND SCHOEFFEL 797

