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Prohibiting knock damage in internal combustion 
engines  presents  severe restrictions for 
engineers.  Laboratory  experiments  are  expensive 
or even impossible;  nevertheless,  numerical 
attempts that employ  supercomputers have  been 
rareiy  undertaken.  The  numerical  approach 
described in this paper combines  a  recent  shock- 
capturing finite-volume  scheme  for  the 
compressible Navier  Stokes  equations, with 
semi-implicit treatment  of the chemical  source 
terms. 

An algorithm is described  and  validated by 
experiment that is optimaliy adapted to vector 
and  parallel  computers. The algorithm has  been 
implemented on the IBM Enterprise 
System/3090m  (ES/3090m)  Vector Multiprocessor. 
Performance  measurements  are  discussed.  The 
potential of  the  code is illustrated by an  example: 
formation  of  pseudo shock waves  due to 
interaction of a  shock wave with turbulent 
boundary layer flow. 

T his paper  reports  on  some  results of a joint 
research  project  undertaken to gain insights 

into physical reasons of knock damage in internal 
combustion engines. The  work  combines engi- 
neering and mathematical modeling with algorith- 
mic and code development for vector and parallel 
processing on IBM supercomputers. 

Due to its significance to many problems of en- 
gineering application, the development of numer- 
ical algorithms to simulate reactive flow has  at- 
tracted  considerable  interest  over  recent  years. ' 
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At the  same time, research on  the problem of 
knocking phenomena in combustion engines 
seems to be  rarely  reported in the literature.' 
Aside from the  corporate sensitivity, one  reason 
for minimal reporting of the knocking phenome- 
non might be  its numerical complexity, essen- 
tially due  to  complex  interaction of diffusive ef- 
fects  with  shock  waves and reaction  fronts 
(propagating and interacting with  each  other and 
with walls) and due to the  presence of nonequi- 
librium combustion phenomena. This  paper re- 
ports  on  the combination of some  recent numer- 
ical methods of computational fluid dynamics 
(CFD), namely novel shock-capturing techniques 
introduced  by  VanLeer3 and Roe et al.,4 with 
(semi-)implicit algorithms to  treat stiff chemical 
source terms. 

A FORTRAN program called PICUS (PIston Crevice 
numerical Simulation)6  was developed to  study 
such flows. The algorithm has  been validated by 
experimental data and is currently  under appli- 
cation to model flow under  knock  conditions in an 
engine knock simulator. This  paper  concentrates 
on  some performance considerations concerning 
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vector and parallel processing on  the IBM Enter- 
prise System/3090* (ES/3090*). PICUS has excellent 
features to take advantage of vector and parallel 
computer  architectures. 

The mathematical model uses  the compressible 
Navier Stokes  equations (in thin-layer approxi- 
mation) in an L-shaped domain, with  appropriate 
(rather complex) boundary conditions. The 
chemical model deals with a two-step model of 
exothermic  reaction (triggered after the induc- 
tion-delay period), which describes  the globally 
complex detailed reaction kinetics mechanism. 

The numerical approach  is  based on  the splitting 
idea.7  The flow domain is treated by means of 
a domain-splitting approach.  This  proves  par- 
ticularly useful in view of vector and parallel 
processing.6 The  L-shaped domain is split into 
rectangles and, by alternating between both sub- 
regions, dimensional splitting is used to reduce 
the problem further to successive one-dimen- 
sional ones. Finally, by splitting the  operator,  the 
model allows the resulting system of conservation 
laws (including source  terms) to  be split up  with 
respect to diffusive, convective, and reactive 
terms,  according to the governing transport phe- 
nomena. In  particular,  the  convective  part  is 
treated  by means of a second-order  VanLeer 
finite-volume scheme, including Roe’s approxi- 
mate Riemann s01ver.~  For  the  reactive  part, a 
semi-implicit method of discretization  (trapezoi- 
dal rule) is employed.’ 

The main part of the  paper is devoted to  the  ques- 
tion of optimizing the  code and how to vectorize 
and parallelize it to run efficiently on  the 
IBM ES/3090. The  paper briefly recalls the  tools 
available to optimize FORTRAN codes for IBM 
supercomputers and presents performance re- 
sults. A speedup of about 2.5 due to vectorization 
and an additional speedup of about 1.75 due to 
parallelization using two  processors  has  been 
achieved. The  latter  corresponds to an activated 
degree of parallelism of more  than 85 percent. 

The  paper  deals  with an extensive physical ex- 
ample, the  interaction of a reflected shock  wave 
interfering with the shock-tube  boundary  layer 
and forming pseudo  shock  waves  (wave train). 

Governing  differential  equations 

The underlying mathematical model takes  advan- 
tage of the  nonstationary thin-layer Navier 
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actions, which read in divergence form 

d 
- U +  div F ( U )  = D ( U )  + S(U)  
d t  

Stokes  equations  under  exothermic chemical re- 

(1) 

where 

and 

Here p ,  u ,  v ,  e ,  Y, p ,  0 denote density, velocity 
in x-, y-direction,  total energy, reaction  progress 
parameter (according to a two-substances model, 
here: volume  concentration of fuel), thermody- 
namic pressure,  and  temperature in the flow  field; 
K ,  A,  p,  q ,  p denote  the  isentropic  exponent, 
thermal conductivity, dynamic viscosity,  heat re- 
lease, and global activation energy of the explo- 
sive  gas (all quantities assumed as constants). 

The underlying L-shaped computational domain 
G for  the flow problem studied  here  is shown in 
Figure 1. This domain is split into  two  subdo- 
mains G and G2. We assume  Euler flow  in G : 
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Figure 1 Domain, its decomposition and  boundaries 

r 

f r1 Ys " 
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A = p = O i n G ,  (3) 

so that  we  assume  for all  flow quantities as bound- 
ary  conditions: 

a 
-=Oon rl an (4) 

with  the  exception of vanishing normal velocity: 

v = 0 on rl. ( 5 )  

On the coupling boundary r2 all corresponding 
variables are continuously aligned when  alternat- 
ing between  both  subregions.  The  open  boundary 
condition  on r3 is chosen in a way  to allow for 
smooth outflow of the reflected waves  (absorbing 
boundary condition). 

In G 2  we assume  the  thin-layer  equations to hold 
with 

A ,  p > 0 in G,. 

Consequently, we  choose  the  same  boundary 
condition on rl as before,  but  require no-slip con- 
ditions on r,: 
u = v = 0 on r4. (6) 

For  the  temperature  we  set 
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0 = 0, olt r4 (7) 

where 0, is  obtained from the  condition of con- 
tinuous  heat flux (Fourier's law). Following Hir- 
schel  and  Groh,8 we obtain  an  additional  condi- 
tion for p from the  continuity  equation: 

p t  + pvY = 0 on r4. (8) 

Finally, the thermal  equation of state then  yields 
the wall pressure on r4. 

The  numerical  algorithm 

The algorithm takes full advantage of the splitting 
idea, combining domain splitting with dimension 
and  operator splitting on each time step,  with time 
increment At (in fact,  the  method  uses  Strang's 
symmetric  second-order splitting). 

First,  the  L-shaped domain is split into  two  rec- 
tangular subdomains G I  and G ,  (see  Figure 1). 
Each of the  rectangles  is  decomposed  into  a  total 
of (NXj - 3) x ( N y j  - 3), j = 1 , 2  equally sized 
interior  cells,  and  a  lot of further  cells  serve  for 
smooth  data flow between the subdomains as well 
as for proper modeling of the  boundary  condi- 
tions. Both  subregions  are  treated alternatingly, 
so that the following numerical procedure  needs 
to  be described for one subdomain only. The  es- 
sence of this  procedure is twofold: 

1. Complex  geometries  are  reduced to a  set of 
rectangular  subdomains, allowing for dimen- 
sional splitting. 

2. The  subdomains  may be treated  indepen- 
dently,  such  that  coarse-grained parallelism is 
introduced. 

Let  us  treat,  as an  example,  the  subdomain G,. 
We use dimensional splitting to update  the flow 
quantities  alternatingly in x- and in y-direction. 
This  means  that,  for  any time step,  for  instance in 
x-direction,  a  system in one  space dimension 

a a 
- u + F'(U) = D ( U )  + S ( U )  a t  

is  solved (F' denoting  the first column of F ) ,  sub- 
jected to  the given boundary  conditions.  The  es- 
sence of this  procedure is just  to reduce  a  two- 
dimensional problem to a one-dimensional one. 
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Due  to  their  essentially different qualitative  be- 
havior, we split the  system  (Equation 9) further 
into  a convective-diffusive part 

a  a 
- U + P ( U )  = D ( U )  at (10) 

and  a  chemokinetic  part 

both  to  be solved numerically alternatingly  on 
short  time  intervals. 

First  consider  Equation 11. Assuming the  density 
and  the flow velocity as  constant in time during 
the reaction  step,  we  obtain  a  system of ordinary 
differential equations (ODE) to  be solved  for 
(0, Y)' for each cell. Since  the  system  is stiff in 
general, we used  a semi-implicit trapezoidal rule 
(which corresponds  to solve  a 2 x 2 linear alge- 
braic  system  for  each  time  step) in order  to update 
the unknowns. 

Finally, as the  core of the algorithm, consider  the 
convection-diffusion problem (Equation 10). 
Here  we adopt novel shock-capturing  schemes 
for  the  convective  part with explicit treatment of 
the diffusive terms. This  strategy,  proposed by 
MacCormack and applicable to high Reynolds 
number flow, is called "Rapid Solver" algo- 
rithm. Consequently, the algorithm is  composed 
as follows. Assuming U" to  be given on  the  time 
level t , , ,  we compute Un+l from this  strategy 
(where V summarizes  the primitive variables p, 
u ,  v ,  p ,  Y corresponding to U ,  and A x  represents 
the mesh width). 

The algorithm is  stated  as follows: 

1. Compute 

(a - b)' 
ave(a,b) = - 2 a 2 + b 2 + u  

(u > 0 a small bias of order O ( A x 2 ) ) .  

2.  For  an intermediate time step tn+li2 compute 

At u;+lR = u; - - 2Ax {F(V;+l/2)- - F(Vl,n_ln)+} 

then 

and finally 

(see4 for  the  averaged  Roe fluxes FRoe). 

3. Update 

At 
Ax u;+l = u; - - (Fi+1/2 - Fi-l/2) 

+ At D( U:+112). (17) 

Concerning  the  time  step  size, we assume  the  lat- 
ter  to  be  governed  by  the convective-diffusive 
part,  since  the chemical part is treated semi- 
implicitly (with unlimited stability). Further, 
since  the diffusive coefficients are  only small, the 
well-known restrictions  for the time step  are of 
the  same  order of magnitude for both diffusive 
and convective  parts of the  transport  equations. 
This is the  reason  that,  for simplicity, the diffusive 
terms  are  treated  here  by  means of an explicit 
predictor-corrector  scheme.  In  fact,  for maxi- 
mum time step size we allow 

At,,+l = 0.9 min(At", 2At" - At,,) (18) 
where 

where 
S V ,  = ave(V,+, - V,, V ,  - V,-l) (13) 

with VanAlbada's slope limiter 
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( A t , ,   A t ,  denote  the maximum time steps  due  to 
explicit treatment of the diffusive or convective 
parts of the differential equations, respectively.) 

The PlCUS program 

Based on the  present algorithm, a new FORTRAN 
program called PICUS has  been developed as a 
flexible tool to  study  a wide range of phenomena 
in the realm of gas  dynamics of combustion  (re- 
active compressible flow). We discuss  the imple- 
mentation of the (two-dimensional) version la- 
beled PICUS-2 (or  its  basic  version PICUS-200) on 
the IBM ES/3090 with  the  Vector Facility. 

Both  subdomains  (see  Figure 1) are  served by a 
total of six large arrays, STATEj,  PLINj, and FLU% 
(j = 1, 2), each of which has  the dimension 

5 x (NXj  + 1) x (m + 1). 

In  the following we restrict  ourselves to consider 
only  the domain G,, since for G , similar terms 
hold. In  practical applications we commonly used 

N X 2  = 1000, Ny2 = 100 

(underscoring  the need of supercomputers). 

The solution is stored in STATE2, alternatingly in 
primitive or conservative  variables.  The  array 
PLIN2 contains  the (limited) slopes as entries of 
the  approximate Riemann solver. And the  array 
FLUX2 serves  as  a  work  space for both  the prim- 
itive variables and the fluxes. Consequently,  the 
specified large arrays  are exploited as far as pos- 
sible. 

For achieving high performance rates  with  the 
Vector  Facility it is crucial  that  the first argument 
of these  arrays is equal to  the largest size (m), 
which  leads to long vectors. 

The program is  structured as follows. The main 
program contains  preprocessing (initialization, 
domain decomposition, . . .) and the time step- 
ping loop. For  any time step  the twin subroutines 
ADVXNCEX and A D V M C E Y ,  serving to  update  the 
solution by dimension splitting, are called for 
each of the  subregions G, and G,. 
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The principal subroutines then are PIECELIN# and 
SOLVEROE# (where # stands forx  ory), called once 
b y m v m C ~ # .  Here the routine PZECELIN# serves 
to compute the flow quantities for an intermediate 
time step  by means of a (slope-limited) finite-vol- 
ume method. PIECELZN# contains  the solver for 
the ODE system, too. After  that  the  second  routine 
SOLVEROE# is called, where Roe's scheme to 
compute  the fluxes (on the  intermediate time 
level) followed by  conservatively updating the so- 
lution is used. Both routines PIECELIN# call a 
function Am where  the slope limiter is evaluated. 

The  merits of the new code PICUS-2 show up when 
compared  with PLM2DTL, an  academic  code (of 
the RWTH Aachen)  with related objectives in 
mind." Here  the  parameters  were N X 2  = 128, 
N Y 2  = 16, with 10 time steps run (the domain G, 
treated by PICUS only is modeled by a  coarse grid 
so that  its  contribution to the  total CPU time is 
low). It  turns  out  that  the  basic  version PICUS-200 
reduces  the elapsed time by  factor 10 and its 
tuned  version PICUS-230 by factor 20 (all runs  car- 
ried out in vector mode). 

The  subsequent  section  shows how to achieve 
this improvement. 

Vectorizing  and  optimizing 

Available since  the midseventies, vectorization  is 
now well established as a practical tool to essen- 
tially reduce  the CPU time for application codes. 
Taking full advantage of the IBM  ES/3090 Vector 
Facility (VF) requires  some knowledge of its  spe- 
cial structure. But the  present  section  shows  that 
only little special skill of the VF is required to 
attain an essential saving of CPU time. The  key  is 
to  structure  the  data and their flow favorably (ar- 
rays STATEj,  PLINj, FLU%, and their handling!). 

The result is shown in Figure 2 where elapsed 
times (in seconds)  are given as a function of N X 2  
(with NY2 = 0.1 X N X 2 )  for: the  basic  version 
PICUS-200 running in scalar mode (upper graph), 
the  basic  version PICUS-200 running in vector 
mode (middle graph), and the optimized version 
PICUS-230 running in vector mode (lower graph). 

Consequently,  even  the  basic  version  enjoys  a 
slight vector-to-scalar  speedup of about 1.2 for 
the IBM ES/3090, which has an excellent scalar pro- 
cessor.  In  the following we explain how to tune 
this  code in order  to  attain  a  vector-to-scalar 
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Figure 2  PICUS-200 basic  scalar  (upper  graph)  vs PICUS-200 basic  vector  (middle  graph)  vs PICUS-230 optimized 
vector (lower graph):  elapsed  time  (seconds) vs number of cells in x-direction 

0 100 200 300 400 500 
NX-  NUMBER OF CELLS  IN  X-DIRECTION 

speedup of about 2.5 (see  the  smoothed graph of 
Figure 3). 

The followin strategy  leads to efficient reduction 
of CPU time: B 
1. A “hot-spot analysis” (a tool provided by  the 

IBM vs FORTRAN Interactive Debug) yields 
run-time statistics of the utilization of the  total 
CPU time required by  the  subroutines.  This 
points  out which subroutines  are tunable with 
best efficiency. 

2. The compiler vector  report  points  out  those 
DO-loops run in vector  or  scalar mode, indi- 
cating where vectorizing of the single DO- 
loops should be started. 

3. In  some  cases it is hardly possible to  create 
vectors in a DO-loop (due to some  recurrence 
a ,  = a , - l ,  for instance).  In  this  case an ex- 
change of the whole subroutine or  the pertain- 
ing part of the algorithm is required. 

Limiting the problem to the  essential  features of 
the code, we summarize the tools and means to 
optimize. The main tools  are as follows: 

Removal of external  subroutine calls in  DO- 
loops by generating in-line code  (eventually  by 
use of the precompiler VAST-2) 
Removal of recurrences  by splitting DO-loops 
and eventually modifying the  source  code 
Resort to  the IBM Engineering and Scientific 
Subroutine  Library” (ESSL), which consists of 
currently 288 optimized numerical subroutines 
Avoidance of multiple computation of quanti- 
ties  sent  to memory, and  further improvement 
of data flow 

Let  us describe  this  with a relatively simple ex- 
ample: 

w = 0.0 
DO 50 J = NY,l, - 1 
DO 50 I = 1,NX ... 

W = DMAX1  (DABS(U-A),  DABS(U+A), W) ... 
50 CONTINUE 

As  the  vector compiler reports,  these  loops  are 
not in vector form, due to recurrence.  This draw- 
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Figure 3 PICUS-200 basic  version  (lower  graph)  vs PICUS-230 optimized  verslon  (upper  graph):  vector-to-scalar 
speedup  vs  number of cells in x-direction 
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back  is  removed  as follows: we split the inner 
loop  and  resort to  the subroutine ZDAMAX of the 
ESSL library,”  which  serves to find the position of 
the first occurrence of a vector element  that  has 
maximum modulus  (the IBM ESSL subroutines  are 
assembler-written  and optimized for  the IBM 
ES/3090 VF). For this, two auxiliary arrays  have 
been employed in a preprocessing  step.  Conse- 
quently,  the  tuned  version  looks as follows, 
where  the  innermost  loop is now in vector form. 

w = 0.0 
DO 50 J = NY,l, - 1 
DO 90 I = 1,NX ... 

UMA(I) = U-A 
UPA(I) = U+A ... 

90 CONTINUE 
IMA = IDAMAX  (NX,  UMA, 1) 
IPA = IDAMAX  (NX,  UPA,  1) 
W = DMAXl (DABS(UMA(IMA)), 

DABS(UPA(IPA)), W) 
50 CONTINUE 

The simple modifications lead to  the final vector 
form, called PICUS-230, with a CPU time  reduced 
by factor 2.65 as  compared with the original ver- 
sion PICUS-200 (both  run in vector mode, with 
NX2 = 500, see Figure 2). By efficient use of the 
Vector  Facility, a saving of more  than 60 percent 
of the  overall CPU time  has  been  achieved as com- 
pared  with the basic  version (in vector mode). As 
compared  with  the  basic  version  run in scalar 
mode, even a saving of about 70 percent  results. 
See Figure 2. 

The final version PICUS-230 enjoys a vector-to-sca- 
lar  speedup of about 2.5 (see  Figure 3). This 
shows good cost efficiency of the VF, particularly 
if the  moderate effort is  taken  into  account. 

On paralleliration 

Whereas  vectorization is now considered  as a 
well-established tool to essentially  reduce the 
overall CPU time  on  supercomputers, the situation 
is less  clear  today  with multitasking (paralleliza- 
tion) on shared-memory  systems. Here  the 
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elapsed  time  only  is  reduced  (the  overall time a 
job is running on  the machine), whereas  the  total 
CPU time generally is  even  enlarged,  due  to  soft- 
ware  overhead,  communication  and  synchroni- 
zation  costs (a feature  not  welcome  to  computing 
centers).  Consequently,  when it comes  to  opti- 
mizing an application code, it is  quite  often  ad- 
vantageous to perform vectorization first, and af- 
terwards to  search  for means of parallelization. 

For  the IBM ES/3090 series  (or  its  successor,  the 
IBM ES/9000* series), Parallel FORTRAN is imple- 
mented as vs FORTRAN Version 2 Release 5, en- 
hancing the  previous Multitasking Facility with a 
set of parallel functions ranging from automatic 
parallelization of DO-loops (implicit parallelism) 
to explicit parallel language constructs. l3 Con- 
cerning  automatically  generated parallel code for 
DO-loops, the compiler is responsible  for  a  loop 
running smoothly in parallel, computationally 
equivalent  to the serial  code. On the  other  hand, 
concerning  use of explicit parallel language con- 

PARALLEL  CALL, or parallel subroutine  schedul- 
ing, the  user is responsible  for  proper processing. 

As stated  above,  the  code PICUS is well fitted both 
for  vectorization and parallelization, due  to  its 
data  structure  and flow. Generally speaking, the 
following strategy  has  been employed to optimize 
the code with little effort but  considerable  speed- 
up: 

Treat  the  subdomains in parallel (coarse- 

Perform  vectorization in x-direction  (stride l), 

structs  as PARALLEL DO, PARALLEL  SECTIONS, 

grained parallelism) 

but perform parallelization in y -direction 

The numerical results  have  been  obtained by use 
of two dedicated  processors of the IBM ES/3090-30E 
at  the IBM Heidelberg Scientific Center. We in- 
vestigated  the parallel performance of two ver- 
sions: 

Version PICUS-230, optimized for  vectorization 
(see  above), using automatically-generated  par- 
allel DO-loops 

PARALLEL DO) in several  cases  where  the com- 
piler is unable to  detect inherent parallelism, 
and  enhanced by parallel processing of the 
subdomains using coarse-grained PARALLEL 

Version PICUS-240, Using PREFER PARALLEL (Or 

SECTIONS 
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Let  us  shortly  consider how the PARALLEL 
SECTIONS have  been  introduced to PICUS. The 
time stepping  loop of the main program has  this 
structure: 

DO 80 ITIME = 1,IE 
. . . (updating parameters for G,) 

CALL ADVANCEX  (STATE1, . . . ) 
CALL ADVANCEY (STATE1, . . . ) 
. . . (updating parameters for G2) 

CALL ADVANCEX  (STATE2, . . . ) 
CALL ADVANCEY  (STATEP, . . . ) 

80 CONTINUE 

ADVANCEX and ADVANCEY are  those  computa- 
tionally expensive  subroutines  that  serve  to up- 
date  the flow quantities.  After  checking  compu- 
tational and data  independence of those  sections 
dealing with GI  and G2,  respectively, we intro- 
duced explicit parallelism by use of PARALLEL 

more  complicated, requiring an auxiliary subrou- 
tine, so for  our final version PICUS-240 we pre- 
ferred  to  use PARALLEL SECTIONS: 

CALL or PARALLEL  SECTIONS. The first way is 

DO 80 ITIME = 1,IE 
PARALLEL SECTIONS 
LOCAL . . . 
SECTION 1 

. . . (updating parameters for G,) 
CALL ADVANCEX (STATE1, . . . ) 
CALL ADVANCEY  (STATE1, . . . ) 
. . . (updating parameters for G2) 

CALL ADVANCEX  (STATEP, . . . ) 
CALL ADVANCEY (STATE2, . . . ) 

SECTION 2 

END SECTIONS 
80 CONTINUE 

Here  a  lot of steering  parameters  for  the  data flow 
in GI  or G 2  have  to  be assigned to  each parallel 
thread as private  variables  by  means of the LOCAL 
specification. 

The following numerical results  have  been  ob- 
tained in case of the  parameters NX1 = 511, 
N y 2  = 27, NX1 = 1023, N Y 2  = N y 1 .  Here 10 
time steps  have been carried out, and all runs used 
vector mode. We observed a parallel speedup S2 
(employing two dedicated processors) as follows: 
for PICUS-230 we have S2 = 1.24, but for the explic- 
itly parallelized version PICUS-240 we obtained 

S, = 1.75 
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Figure 4 Pseudo shock waves  leaving the gap 

4 s  a result, by Amdahl’s law, we obtain  an acti- 
vated degree of parallelism of 

p = 0.86 

for the  latter  version. 

Physical  example 

The physical character of the analysis is shown by 
the following example. 

Let  two  shock  waves  successively  enter  the  chan- 
nel, in a way  that  the  second  wave  enters in just 
that moment where  the first one is reflected at  the 
end wall of the channel. Both waves  are  then in- 
teracting,  and  they  produce (in addition to a 
shock  wave turning again toward the  end of the 
channel) a wave train, or  so-calledpseudo shock 
waves (which are  due to massive viscous-inviscid 
interaction  between  the reflected shock  wave and 
its  turbulent  boundary layer). Rigorous quantita- 
tive investigation of this kind of phenomenon  has 
been commenced only recently.’ Figure 4 shows 
the isopycnics of multiple pseudo  shock  waves 
shedding from the gap into  the inlet combustion 
chamber, a phenomenon particularly observed 
for small gap width of the  order of 20 to 30 pm. 
Concerning influence of exothermic chemical re- 
actions,  our numerical results show a reduction of 
shock-wave-boundary-layer  interaction  due to lo- 
cal  separation  and vortex formation that  substan- 
tiates a damping effect of heat release in nonequi- 
librium flow. 

Typical values of dynamic  viscosity p for hydro- 
carbon air mixtures  are  chosen. Thermal conduc- 
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tivity is calculated from dynamic viscosity 
employing the  Eucken relation and Curtiss- 
Hirschfelder gas kinetics relations. The minimum 
propagation Mach number Mu of the  shock  wave 
entering G 2  coming from G, is taken as about 1.3 
in correspondence  with typical measurements of 
pressure  increase  due to knock  events in engines. 

This computation consumed  about 20 hours of 
CPU time on  the IBM ES/3090. 

Conclusions 

We described the algorithmic properties of a new 
FORTRAN code PICUS to simulate shock  waves in 
reacting Navier  Stokes flows. The algorithm is 
based  on VanLeer’s second-order  shock-captur- 
ing scheme (using Roe’s approximate Riemann 
solver), combined with a semi-implicit ODE solver 
for the nonequilibrium chemistry  part. On the IBM 
~ ~ 3 0 9 0  Vector Multiprocessor, the new code (val- 
idated now by  experiment)  presents a vector-to- 
scalar  speedup of about 2.5 as well as a supple- 
mentary parallel speedup of about 1.75 by use of 
two parallel processors.  The long-time behavior 
of PICUS has been checked for an  important  phys- 
ical detail, namely the formation of multiple 
pseudo  shock  waves in an  internal  combustion 
engine. 
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