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Prolog is a  powerful  programming  language, 
based on  logic,  that  originated and  matured in 
Europe. This paper  aims to show  that  Prolog is 
becoming  one  of  the  key tools for  the  entire 
application development  community.  First 
explained is how  the  unique  properties  of  Prolog 
give it many  advantages  over classical 
languages.  Then  we  show that  the language is 
sufficiently mature technically so that  numerous 
industrial Prolog  products are  now  available.  In 
particular, IBM offers  the  Systems  Application 
Architecture@ (SAAm) AD/Cycle" Prolog  product 
family,  which  provides  a  combination  of logic 
programming  and  object  programming  facilities. 
Many industrial  applications are written in Prolog. 
Examples  of 15 outstanding  operational 
applications, developed by IBM  or  major  IBM 
customers,  are  presented.  There is a  potential  for 
future  growth in the  types  of  applications 
enabled by  improving  the language.  The 
simplicity and  elegance  of  the theoretical  basis  of 
Prolog  allow  a  number  of  extensions to be 
defined. Here, three  European  projects  are  briefly 
presented. In conclusion it is  shown  that  Prolog, 
possibly extended in many directions, is one  of 
the  tools  that  could  help  solve  the  long-standing 
quality and cost problems in application 
development. 

I n the  early 1970s, using the  work  done  by J. A. 
Robinson on problem-solving in logic,' Main 

Colmerauer and Philippe Roussel (professors  at 
the  University of Marseilles) along with Robert 
Kowalski (at  that time professor at Edinburgh 

University) first defined Prolog. 2,3 Its  very name 
is a reminder that it falls within the  theoretical 
framework of logic programmmg (PROgramma- 
tion en LOGique in French).  This programming 
language was originally intended as a  basic tool 
for the difficult tasks of analysis and  interpreta- 
tion of natural languages. Research  continued, 
and in the  late 1970s David Warren implemented 
the first efficient compiled version  at Edinburgh 
University. 

It  was in 1981, however,  that Prolog took  the 
computing  world by  storm  when it was chosen by 
the  Japanese as the  basic language for  their Fifth 
Generation  Project. Even though this  project pro- 
duced disappointing results regarding the imple- 
mentation of Prolog, perhaps  because it was  too 
heavily concentrated  on  the  development of ded- 
icated Prolog machines,  the  number of people 
knowing, appreciating,  and using Prolog has  been 
constantly increasing. Prolog is now recognized 
as a major programming language. In  the  United 
States Prolog is becoming a  standard alongside 
LISP. Prolog is taught in most  universities (par- 

Wopyright 1992 by International Business Machines Corpo- 
ration. Copying in  printed form for private use  is permitted 
without payment of royalty provided that (1) each reproduc- 
tion is done without alteration and (2) the Journal reference 
and  IBM copyright notice are included on the first page. The 
title and abstract, but no other portions, of this paper may be 
copied or distributed royalty free without further permission 
by computer-based and other information-service systems. 
Permission to republish any other portion of this paper must 
be obtained from  the Editor. 

BENICHOU ET AL. 755 IBM SYSTEMS JOURNAL, VOL 31, NO 4, 1992 



ticularly in nearly all European  ones)  and  has  be- 
come  a major vehicle for doing research in com- 
puter  science. 

Very  early on in Europe,  several IBM Scientific 
Centers  became  interested in Prolog. Existing 
IBM Prolog products originated at  the  Paris Sci- 
entific Center  where,  under  the aegis of Marc Gil- 
let,  various  prototypes  were  developed  that  have 
since  been  transformed by IBM laboratories  into 
official products,  development now being the  re- 
sponsibility of the  Paris Scientific Center.’ This 
work  has  also inspired many  theoretical  and  ap- 
plied research  projects  at  the  Paris  Center.”9 
Logic programming has  also  been  the  basis of sig- 
nificant projects10,”  at  the  German Scientific Cen- 
ter  (the Heidelberg Scientific Center  and  the  In- 
stitute for Knowledge-Based Systems). But the 
research on Prolog in IBM is not limited to  the 
European Scientific Centers; very important 
work  has  been  carried  out worldwide, especially 
in various Scientific Centers  and  the IBM Re- 
search Division. 

In  industry, Prolog has  been used for  many  years, 
first as  the language of artificial intelligence, es- 
pecially in natural language processing, and now 
in more general applications. This  paper  shows 
that,  thanks  to major advances in the implemen- 
tation of Prolog compilers,  even very large size 
applications can  be  developed  entirely in Prolog, 
from the initial prototype  up  to  the final opera- 
tional product. 

Today, Prolog is moving from the world of aca- 
demia and  research  into  industry  and the service 
sector:  There  are  dozens of commercial Prolog 
implementations on all types of platforms, and 
Prolog has  been  chosen for well over  a  thousand 
operational  applications, in particular in the man- 
ufacturing sector.  It is already beginning to  be 
used in pure  business applications, and  this  use 
will no doubt  increase  further.  The Prolog Ven- 
dors  Group was recently formed by  the leading 
Prolog suppliers. Its goal is “to widen the  market 
for Prolog technology.” 

An objective of this  paper is to  demonstrate  that 
Prolog is becoming one of the  key  tools  for  the 
entire application programming community. 

For  the  content of the application and  research 
parts  we  appealed  to  a  number of people  both in 
IBM and  outside of IBM who  gave us valuable, 
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first-hand information. Their  names  are ascribed 
to  the  parts  to which  they  contributed  and  are 
listed in the  notes  at  the  end of the  paper. 

Unique  features of Prolog 

Prolog differs from other programming languages 
in that it offers a  completely  new  approach with 
many  advantages.  In particular, it has  the follow- 
ing properties: 

Prolog is declarative; programming in Prolog 
means simply writing logic statements, which 
can  be  done  without having to  worry about  any 
problem-solving algorithms. 
Prolog is a relational programming language 
that  handles  queries having multiple solutions 
without asking the programmer to manage 
them. This  aspect  is called nondeterministic 
programming. 
Finally, Prolog is  a symbolic programming lan- 
guage. Symbols  and  complex  symbolic  expres- 
sions (i.e., any  tree)  are easily handled in 
Prolog, thanks to a simple but powerful mech- 
anism: unification. 

In  order  to illustrate  these  statements,  a  quick 
description of the  basic  concepts of Prolog and  a 
short  example  are given below. The  interested 
reader will find an  advanced  introduction to Pro- 
log in Wilson12 and  a  complete  description in 
Walker et ai.;13 programming with IBM Prolog is 
explained in detail in Reference 14; examples of 
the Prolog use, classified by problem types,  can 
be found in  Yoder.15 

Basic concepts of  Prolog. Prolog handles  relations 
among objects.  These  objects  are  represented by 
symbolic  expressions, called “terms,” which 
may be: 

Constants  such  as  numbers  and  names like 
(6 p a r i  s” or “france”. (They begin with  a lower- 
case letter.) 
Functional terms written “function-name  (argl,  
. . . ,argN) ” where the arguments may be any 
term. For example, the term “time(8,38)” may 
be used to represent the time 8:30. 
Lists  written “ [ e l t l , e l t 2 ,  . . . ,e l tn ] ”  or 
“ [ e l t l , .  . . ,eltnlList-end]”, theirelementsbe- 
ing any term. The empty list is  the  constant 
“ [ 3 ”. (As a  matter of fact,  lists  are  just  a  spe- 
cial case of functional terms with some  syntac- 
tic facilities.) 
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A variable (beginning with an uppercase  letter) 
may be used in place of an unknown term in ex- 
actly  the  same  way as mathematical variables. 
For example, time(8,Mi n) could represent  a time 
between 8 and 9 a.m. depending upon the  value of 
Mi  n. It should be stressed  that  a Prolog variable is 
a logic variable representing a single unknown 
term. When the corresponding term is known, it 
definitively replaces  the variable. 

Unification is an operation that  tries  to  make  two 
terms equal by substituting their variables. If this 
is not possible, the  operation fails. Surprisingly 
enough, this  operation  is  the only one available in 
Prolog to  test  terms as well as build or transform 
them. As an example, by trying to unify the term 
time(H,M) with a term T, one first tests  whether T 
may be made equal to a functional term ti me with 
two arguments, otherwise unification fails. Now, 
if, for example, T is time(8,30), unification suc- 
ceeds and 8 and 30 are  substituted for the  varia- 
bles H and M respectively. These  two  variables 
may then be used to build other  terms  such as 
appointment(monday,H,M). 

Relations among objects  (or  “predicates”)  are 
identified by a name that  is  a  character  string be- 
ginning with a lowercase letter and by a fixed 
number of arguments written  between  parenthe- 
ses. A predicate can be defined by  a list of facts 
exactly as a  table defines a relation in a relational 
database.Thepredicate in-country  (Town,Country), 
for example, meaning that Town is in Country may 
be defined by  the facts: 

/* Town Country */ 
in-country(paris, france). 
in-country(nice, france). 
in-country(rome, italy). 

In  the  same  way,  a  database  about flights  in Eu- 
rope  can  be  entered as  facts defining the relation 
flight(FlNum,Origin,Dest), where FlNum is the 
number of the flight and Origin and Dest are  the 
towns it connects: 

/* FlNum  Origin Dest */ 
flight(531,  paris, nice). 
flight(220,  paris, nice). 
flight(121,  paris, rome). 

A Prolog program is a  sequence of first-order logic 
formulae of a specific kind called (Horn) clauses. 
A clause is either  a simple fact as above or a rule 
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made up of two  parts,  a head and a body. The 
head, which is the conclusion of the clause, is  a 
predicate  with  its arguments. The body, which 
forms  the premise, is a conjunction of predicates 
with their arguments. A clause is written in the 
following way: 

(head) : - (body). 

and reads, if (body) then (head). 

A clause (rule or fact) may contain  variables  that 
are implicitly universally quantified. 

As an example, if we  want  a program able to find 
domestic flights  in a given country, it  suffices to 
state  the following logic rule: 

F1 Num refers to a domestic flight in Country i f  
F1 Num refers to a flight from Origin to Dest, and 
Origin is located in Country, and 
Dest is  located in the same Country. 

This rule is naturally translated  into  a Prolog 
clause as follows: 

domestic-flight(FlNum,  Country) :- /* if: */ 
flight(FlNum,  Origin, Dest), /* and */ 
in-country(Origin,  Country), /* and */ 
in-country(Dest,  Country). 

Together with the  above  facts, this  rule  is a com- 
plete Prolog program able to answer many dif- 
ferent  queries  such as: 

1. Is flight 531 a  French domestic flight? 
2. Is flight 531 a  domestic flight and if so in which 

3. Which flights are  French  domestic flights? 
4. Give me  all of the domestic flights together 

country? 

with their countries. 

Moreover, these  four  queries  are asked simply by 
entering the  appropriate relation together with  its 
arguments that may be  either known or unknown. 
For example, the third query  above  is  entered as: 

?-  domestic-flight(FN,  france). 

where  the symbol ?-  indicates that it is  a  query, 
including here an unknown, FN. Prolog gives one 
answer (FN=531) and then backtracks, i.e., 
searches for an  alternative solution, as a result of 
which, it gives a  second  answer (FN=~~o). To find 
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this  second solution, Prolog tried to reconsider 
one of its preceding choices, in this  case the fact 
used to  solve  the subgoal f l  i ght. 

The  core of Prolog is as simple as  that.  However, 
in spite of (or  because of) this simplicity, Prolog 
has proved to  be a very powerful programming 

The  Prolog proof mechanism is 
powerful enough to accept 

relations  being defined 
recursively. 

~~ ~ ~ ~~ 

language. To make Prolog a  “real” programming 
language, various practical extensions, called 
“built-in”  predicates,  must be added.  These 
built-in predicates allow such  basic  operations  as 
input-output,  arithmetic,  or  string handling, offer 
various  event  or  error  controls,  provide multiple 
interfaces  (to classical languages, to databases,  to 
graphics),  etc. For instance, AD/Cycle Prolog has 
more  than 300 such built-in predicates  that  have 
been  incorporated,  preserving  the  fundamental 
properties  and  the simplicity of the language. 

In the  very  short example given above,  the  three 
basic  properties of Prolog could be  observed. We 
now take  a  closer  look at them. 

Prolog  is  declarative  and  modular. Prolog pro- 
grams  can  be looked at from two different points 
of view, declarative  (as in our example) and pro- 
cedural. 

From  a  declarative  point of view, the meaning of 
a program is simply the  set of all the  facts  that 
logically follow from the  rules  and  facts  that make 
up the program. Thanks  to  these  very straight- 
forward  declarative  semantics, writing and 
checking Prolog programs  is  easy  because it 
comes  down  to writing logic assertions  and 
checking their  veracity. 

From  a  procedural point of view,  the meaning of 
a program is  the  succession of steps  the Prolog 
inference engine will follow to  try  to prove  que- 
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ries, using the  rules and facts of the program. To 
do so, Prolog uses  a simple strategy:  depth first 
and left to right, Le., facts  and  rules  are used in 
the  order in which they  have  been  written.  It fol- 
lows  that  a programmer can easily predict the 
successive  steps of a proof and may  control  them 
if so desired. 

It can  be  shown  that  the two views coincide. As 
a  result,  the Prolog programmer can easily switch 
to  the point of view  most  suited to the  current 
concern. 

Since  a Prolog program is structured in rules, it 
follows that  a program is in fact made up of small 
declarative modules, i.e., sets of rules  that define 
some  relations, which can  be  tested  separately 
and reused. 

The Prolog proof mechanism is powerful enough 
to accept  relations being defined recursively, 
which is often  the  shortest  and  most  natural  way 
of expressing relations concerning  structures  that 
are  themselves  recursive,  such as lists,  graphs, 
etc.  Moreover, Prolog compilers are  able  to  dras- 
tically optimize recursive programs. 

Prolog  allows  nondeterministic  programming. It 
is well-known that  many algorithms are  better 
expressed nondeterministically, in other  words 
through the  systematic examination of a  set of 
possibilities, or through trial and  error (trying to 
find one’s way  out of a maze, for example). Prolog 
contains  a built-in mechanism to handle nonde- 
terminism through a depth-first search and back- 
tracking. This mechanism makes  the implemen- 
tation of such algorithms much easier,  since 
Prolog takes  over  the  entire management of the 
search  tree.  The mechanism can  be  controlled by 
the  user,  who can thus  ask Prolog for  the first, 
then  the  next  or all solutions, tell Prolog in what 
order  the  search should be  carried  out,  or  even 
cancel the backtracking mechanism completely. 

Symbolic  processing. Prolog is particularly well- 
suited to  the processing of complex symbolic 
structures.  Since  the  basic  objects it handles are 
trees, it is very  easy  to represent  attribute-value 
sets,  variable  size  lists,  graphs,  etc.  Through sim- 
ple unification these  trees  can  be built, read,  and 
transformed  without  the  user having to  worry 
about how they  are  actually  represented in mem- 
ory  or having to  consider  problems of allocation, 
pointer handling, etc. Prolog takes  over  the  dy- 
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namic management of the  memory (up to  the  re- 
covery of unused memory). 

Prolog is therefore  particularly  suitable for the 
analysis, translation, and generation of formal 
and  natural language (which is  hardly surprising 
since  this is precisely  what it was developed for). 
Moreover, it is also very  easy  to  write Prolog 
programs  that  analyze,  generate,  and  execute 
Prolog. (This is called meta-programming.) 

Prolog: A mature  technology 

Prolog is  attractive  not  only  because of its nice 
theoretical  foundations and properties,  but also 
because of the high quality of the Prolog compil- 
ers now on  the  market. In particular, IBM offers a 
Systems Application Architecture* (SAA*) AD/ 
Cycle* Prolog product family that  is  a  complete 
implementation of the Prolog language plus sev- 
eral powerful extensions.  The two existing prod- 
ucts  are AD/Cycle ProloglMVS & VM Version 1 
(5696-308) and AD/Cycle Prologl2 Version 1 
(5696-309). 16-18 These  are  new implementations of 
earlier  products: IBM Prolog for 370  (5706-236) 
and IBM Prolog for Operating System/2* (OS/2*) 
(5621-065). 

The AD/Cycle Prolog development  environment 
encourages  productivity by providing a  consis- 
tent  means of expressing all of the  phases of 
application development within the AD/Cycle 
framework, using the AD/Cycle workstation plat- 
form (WSP) and conforming to AD/Cycle Level  2 
integration. 

The AD/Cycle  Prolog Extension Feature~'~,'' add a 
number of facilities to Prolog,  including object-ori- 
ented ones. This combination of logic  programming 
and object programming facilities provides a unique 
application development productivity tool.  (This  is 
a new implementation of earlier IBM EMEA program 
offerings, IBM Prolog  language workbench [IPW] 
for 370  [5787-AAF] and for ow2 [5776-ABH]; the 
extension feature is based on EMICAT, a registered 
trademark of Dassault Electronique.) 

AD/Cycle  Prolog. AD/Cycle Prolog contains  an 
interpreter,  an  incremental compiler, and a full 
compiler that  interact well together in order  to 
provide high performance  for large-size applica- 
tions. In addition, programs  are fully  portable 
across  the  virtual machine (VM), Multiple Virtual 
Storage (MVS), and OS/2 operating  system plat- 
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forms. AD/Cycle Prolog also offers all of the  fea- 
tures  to  be found scattered  throughout  the  other 
classical industrial Prolog packages. AD/Cycle 
Prolog can integrate applications in a  company's 
information system,  thanks  to powerful inter- 
faces  with  the  operating  systems,  editors,  data- 
bases, dialog and graphic managers, and classical 
languages. 

A  source level interactive debugger allows a  user 
to follow the  execution of his or her program in 
the  source  code;  under 0 ~ 2 ,  it provides multiple 
windows  and  an  interface  to  external  source  ed- 
itors. 

The Prolog language features include various  data 
types  (arrays, items, big rational numbers,  ex- 
tended  skeletons, and user-defined types), de- 
layed evaluation, global terms,  error  recovery, 
logical interrupts,  external  predicates (e.g., de- 
fined  in C),  computable  expressions,  automatic 
garbage collection, national language support, 
and double-byte  character  set. 

Under VM and MVS, AD/Cycle Prolog provides 
code  sharing and uses  Extended  Architecture 
(xA), allowing applications that  reside in address 
spaces  above  the 16-megabyte line to  be run. Un- 
der 0s/2 2.0, it runs in 32-bit mode and  provides  a 
full Presentation  Manager* (PM) interface,  thus 
allowing the handling of PM user  windows using 
Prolog predicates. 

The CICS/IMS subsystem  feature  enables  an MVS 
subsystem  that  controls Prolog servers running 
Prolog applications to  be created.  The  servers  can 
be called from Customer Information Control 
System (CICS*) or Information Management Sys- 
tem (IMS) user  transactions  or  can in turn call 
back CICS or IMS with requests for terminal access 
and data management. 

The  Extension  Features. The AD/Cycle Prolog 
Extension  Features (EFs) also run  under MVS, VM, 
and 0s/2. They offer: 

Object-oriented facilities, supporting  objects, 
attributes,  inheritance,  demons,  methods, and 
message-passing 
Knowledge base management, providing the 
possibility of carving  up  the Prolog workspace 
into  pieces, called knowledge subsets (KSSs), 
and saving  only  those pieces. KSSs are portable 
between  various  platforms (VM, MVS, and OS/2) 
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and help to organize the developer’s knowledge 
base,  thus allowing multiple programmers to 
work on it. 
Presentation  Manager window support in 
which object-oriented programming is  espe- 
cially useful for graphical user  interfaces, as 
they  tend to be based on specific objects (win- 
dows, buttons, etc.) that respond to specific 
“messages”  directed to them (e.g., a mouse 
click). EF provides a set of predefined visual 
objects  that  can  be used to quickly create and 
refine user graphic interfaces. 
Rule-based  systems  creation, providing facili- 
ties to easily develop rule-based applications 
and an environment for the  easy handling of 
rules expressed in an  external user-defined syn- 
tax and formalism 
Utilities and productivity tools, a library of 
commonly used Prolog predicates 

Being an extension of AD/Cycle Prolog, EF does 
not in any way mask or hinder any AD/Cycle Pro- 
log facility or interface. 

Deploying applications using  AD/Cycle  Prolog. 
There  are  several  ways of deploying applications 
that  were developed using AD/Cycle Prolog. 

AD/Cycle Prolog/2 is  the  most  convenient envi- 
ronment for developing applications, although 
AD/Cycle Prolog/MVS & VM also offers VM and 
MVS development facilities. An application devel- 
oped in the  OS!^ environment may be ported and 
executed  on different hardware and software  con- 
figurations: 

On a Personal Systern/2* (PS /~*)  stand-alone 
system 
On a P S / ~  local area  network (LAN) system with 
or without a client-server facility 
On a host with nonprogrammable workstations 
supported by  the WCMS (Virtual  Machine/Con- 
versational Monitor System), MVSDSO (Multiple 
Virtual Storagemime Sharing Option), MVS/CICS, 
or MVSDMS. This configuration makes Prolog ap- 
plications suitable for customers  with large net- 
works  supported  by CICS or IMS. 
On a host with PS workstations  with a Prolog 
distributed application and with a host DATA- 
BASE  2*  (DB/2*) database or with a distributed 
relational database.  Such an application may be 
combined with host MVSRSO batch applications 
developed using AD/Cycle Prolog as well. 
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Prolog: A valuable  tool for application 
development 

In many application fields, logic programming has 
proved to be a useful development technology. 
Some of these fields are listed below, and for each 
of them, some outstanding  projects developed us- 
ing IBM Prolog are mentioned. Most of these 
projects would have been uneconomical using 
classical languages and were  viable  thanks to 
Prolog. 

1. Software engineering-Following are  several 
outstanding examples of Prolog being used for 
the development of large-size workbenches 
(more  than 50 000 lines of Prolog): 

ADW**,’~ an integrated Computer-Aided 
Software Engineering (CASE) tool that  sup- 
ports  the development life cycle of business 
applications, developed by Knowledge- 
Ware, a U.S. software house. The Knowl- 
edge Coordinator, a key  component of ADW, 
is  entirely  written in  Prolog. 
OCEANIC, ’’ an insurance-oriented package 
developed by SOCS, a French  software 
house 
CASE/390,23 an interactive environment for 
the development of MVS components, devel- 
oped  by  the IBM MVS laboratory (Mid-Hud- 
son Valley Programming Laboratory) 

However, Prolog has also been used for the 
development of more specialized but equally 
ambitious software engineering tools  such  as: 

ALIEN, an integrated system for computer- 
aided writing of technical manuals (Dassault 
Electronique,  France) 
ADEPT, for the  automatic generation (and 
verification) of test  cases (IBM San  Jose  Lab- 
oratory) 
AnDes, for the visual verification of external 
specifications of certain  systems (IBM Ger- 
man Application Development Laboratory, 
Boblingen) 

2. Knowledge-based systems-Prolog allows the 
development,  at reasonable cost, of expert 
systems  that  cannot  be reduced to the simple 
rule formalism available in commercial shells. 
Operational examples are: 
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CATSDIANA, a model-based diagnosis 
system  for analog electronic  circuits. 
CATS/DIANA is  the result of a  joint  study  be- 
tween  Dassault  Electronique  and  the IBM 
Paris Scientific Center. 
GIBUS,27 for the management of low earth 
orbit  satellite  batteries (Dassault Electron- 
ique, under  contract  to  the  European  Space 

D R ~ , ~ , ~ ~  a diagnostic system in the field  of 
semiconductor engineering (IBM Sindelfin- 
gen plant) 
ESFA,30,31 a  computer-aided  integrated  cir- 
cuit design tool (IBM La Gaude  Laboratory) 

3. Natural  and  formal  language processing- 
Natural, natural-like, and programming lan- 
guage processing  are ideal applications to  use 
Prolog, which  is  a  near-perfect tool for efficient 
and  fast implementation and  was,  after all, ini- 
tially invented  to handle precisely  such  prob- 
lems. For instance, K A L I P S O S ~ , ~ * - ~ ~  is an  out- 
standing example of automatic  understanding 
of French  texts (IBM Paris Scientific Center). 
This  research is in the  process of being trans- 
formed for  use in industrial applications. 

Agency) 

4. Intelligent  management of databases-Listed 
here are but  two of the  tools  that  have  been 
developed using Prolog to  extend  the usability 
or  the functions of relational databases. Prolog 
allows easy handling of both knowledge about 
the  database  structure and the grammar of a 
powerful and  user-friendly  query language. 

The first tool, IBM SAA Language  Access, 35-37 

is an IBM program product  that  provides  a 
natural language interface to a relational da- 
tabase and could equally as well have  been 
put in the  section  on  natural language pro- 
cessing (IBM Nordik  Laboratory). 
The  second tool, SYLLOG, 13,3M1 is  an  expert 
database  system shell prototype  that  has 
been built over IBM Prolog and  the  Struc- 
tured  Query Language (SQL) Database Man- 
agement System (IBM Thomas  J.  Watson Re- 
search  Center). 

5. Intelligent  control of algorithmic  programs- 
The  basic aim here  is to use Prolog to intro- 
duce  expertise  or intelligence in applications 
or programs  that  already  exist in a  company. 
Whereas, initially, a human expert  was  re- 
quired to control  the running of a  set of pro- 
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grams, the idea is to  replace  this  person by a 
sufficiently “intelligent” Prolog program that 
will automatically  set the different parts of the 
programs in motion according  to  the  results 
obtained in previous  stages. An operational 
example of this kind is APACE, using Prolog, to 
design a  gear  box (Peugeot SA, France). 

6. Heuristic  resolution of combinatorial  prob- 
lems-The implementation of algorithms for 
solving combinatorial problems  such as sched- 
uling or distribution  has  been  made much sim- 
pler using Prolog. The  advantage of this lan- 
guage is that  its  “nondeterminism” allows the 
different parts of the solution space  (search 
tree) to  be explored  successively, using back- 
tracking. An operational  example is JOSHUA,42 
a  journey  scheduler used at IBM France for 
organizing administrative or technical  sympo- 
sia. 

Logic  programming:  An  evolving  technology 

Logic programming naturally  lends itself to  many 
extensions  that will enable  more  and  more appli- 
cations  to  be profitably tackled with this  technol- 
ogy. Indeed,  a large number of research  projects 
are  currently  under  way. In this  section,  three 
European  research  and  development  projects  are 
described.  These  projects  have  the following im- 
portant  practical implications: 

Efficient use of new parallel hardware  architec- 

Extended  expressive  power to  cover new ap- 

Easier implementation of large-size applica- 

tures 

plication areas 

tions  (software engineering) using Prolog 

Or-parallelism for ProLog by BIM 

The  content of this  subsection was contributed by 
A. Marien, L. Maes, and  J-L. Binot, BIM, Bel- 
gium. BIM, a  privately held Belgian group spe- 
cializing in information technology, is  the  maker 
of ProLog by BIM, which has  recently  been  ported 
on IBM RISC System/6000 machines  and is being 
marketed in Europe  by IBM under  the  trademark 
Prolog for AIX/6000. 

Parallel hardware  architectures, including both 
shared  memory  machines and distributed  archi- 
tectures,  are now proposed by many  hardware 
manufacturers. 
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Logic programming languages like Prolog have  a 
large potential for parallel execution. The  two 
main kinds of parallelism in Prolog are  or-paral- 
lelism and and-parallelism. An or-parallel Prolog 
system is one  that  explores in parallel the  alter- 
natives for solving a single goal. And-parallelism 
tries  to solve  several goals simultaneously.  Sev- 
eral  strategies are possible with regard to the in- 
terdependence of the  solutions of the goals. They 
range from all-solution-and-parallelism, which 
solves all goals concurrently and computes  the 
solution as  the  intersection of the  independent 
solutions, through stream-and-parallelism and  goal- 
suspension-and-parallelism executing the goals, 
when  the input arguments  become  instantiated,  to 
goal-independence-and-parallelism, where  only 
independent goals are  executed  concurrently. 
Other  strategies of parallelizing Prolog are lazy 
evaluation and parallel execution of unification. 
So far,  however,  this  dynamic  research  and  de- 
velopment  has  not  resulted in indus- 
trial implementation of parallel Prolog systems. 

BIM, in cooperation with SICS (a leading Swedish 
research  institute in the field of logic program- 
ming), is now completing a  coarse-grained  or-par- 
allel implementation for  shared  memory ma- 
chines, using the MUSE (MUlti-SEquential) 
scheduler  developed by SICS to control parallel- 
ism. The  project, with the  internal  code  name 
BIMUSE,45346 is being developed as part of the 
ESPRIT project PEPMA. 

In  order  to  achieve  the  coarse-grained or-parallel 
behavior,  several  conventional Prolog engines 
(ProLog by BIM) are coupled to a MUSE scheduler 
that  distributes  work to  the Prolog processes, 
called “workers” below. The  central idea is  the 
notion of several  independent  workers  each hav- 
ing its  own local and  some global memory. 

The two main functions of the  scheduler  are  to 
maintain the  sequential  semantics of Prolog and 
match idle workers with available work, with min- 
imal overhead. Communication between workers is 
kept  to  a  strict minimum and is mainly done 
through  a  shared  search  tree.  The  tree  has  two 
kinds of nodes-shared and private-represent- 
ing the  choice points. The  root of the  tree, being 
shared by several  workers,  is managed by  the 
scheduler.  The  leaves with the  private  nodes  are 
only  accessible to their  creators.  The  shared  part 
of the  tree  grows  when  a  worker  makes  its  private 

762 BENICHOU ET AL. 

nodes  shareable  and  shrinks  when  the  last  worker 
backtracks from a  shared node. 

When a  worker  runs  out of work within its  private 
subtree, it enters  the  shared  search  tree and calls 
the  scheduler, looking for more work.  The  sched- 
uler then, basically, looks for workers with ex- 
cess  work  to  share,  and  requests  sharing of nodes 
or, if no  work  can  be  found,  positions  the  workers 
in the  tree so that  they  can  be  reactivated with 
very little overhead. 

To extend  ProLog by BIM for  this or-parallel ex- 
ecution model, only  a minimal part (less than 1 
percent) of the  code had to  be rewritten.  Needed 
adjustments included memory management, call- 
ing the  scheduler at the  proper  times, maintaining 
extra engine-specific data, and delivering the  data 
when  the  scheduler  requests it. 

Initial benchmarks  on  a first version of the 
BIMUSE system  indicate  that  the  overhead is less 
than 10 percent  and  that  the  speedup is close to 
the  number of additional processors for problems 
with a high degree of nondeterminism. 

Constraint logic  programming at Dassault 
Electronique 

The  content of this  subsection was contributed by 
B. Botella and P. Taillibert, Dassault  Electron- 
ique,  France.  Dassault  Electronique, which has 
already  made  a  name for itself at  the  forefront of 
electronics,  has  also  become  a major information 
processing and  software  company  where Prolog 
plays a  key role (over 150 people  have  been 
trained to  use Prolog; more  than 50 of them  ac- 
tually use it every  day). 

Solving the physical problems found in the indus- 
try requires  an  ever-increasing  use of artificial in- 
telligence techniques  such as model-based rea- 
soning, for which constraint logic programming 
(CLP) is a useful implementation technology. This 
recent  development of logic programming allows 
a programmer to  declare  constraints  on  the  var- 
iables that  are handled by Prolog. For example, it 
is possible to write,  once  and for all, that 
“X = Y + 2” and leave it up to  the inference 
engine to  do  the  rest  and,  as  soon  as  a  value is 
known for X or Y, to  compute  the  other  value and 
propagate  the  consequences. 

The CLP package INTERLOG is the  outcome of ex- 
ploratory  work  carried  out  by  Dassault  Electro- 
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nique along the lines of the  work of the Bell 
Northern  Research  laboratories.  It  extends IBM 
Prolog with the ability to handle constraints  on 
real intervals. INTERLOG is especially appropriate 
to the modeling of physical phenomena in me- 
chanics or electronics. As a  matter of fact,  these 
physical phenomena  can  only  be  described using 
imprecise or nonlinear models, and interval arith- 
metic is an adequate tool to handle these models. 
As such, INTERLOG can benefit from the powerful 
logic programming facilities offered by IBM Prolog 
and  extend  them to handle numeric problems. 
The first version of INTERLOG under VM and OW2 
is  operational  at  Dassault  Electronique  and  has 
been used successfully  both in computer-aided 
design to solve  a  hitherto unsolved problem and 
in an expert  system for computer-aided design. 

Research  and  applications in PROTOS, a 
EUREKA project 

The  content of this  subsection was contributed by 
C. Beierle, IKBS, Stuttgart, IBM Germany, 
H. Beringer, Paris Scientific Center, IBM France, 
and J. Jachemich,  Hoechst,  Germany. 

The  objective of the EUREKA project PROTOS 
(“Logic Programming Tools for Scheduling Ap- 
pl icat ion~,~~ EU56) is twofold: the  development of 
various  extensions of logic programming for 
building knowledge-based systems, and the use of 
these  extensions in production planning and 
scheduling applications. The Institute  for Knowl- 
edge-Based Systems (IKBS) of the IBM Germany 
Scientific Center is taking part in this project in 
close  collaboration  with  the IBM Paris Scientific 
Center, together with the project partners Hoechst 
AG (Germany),  Sandoz  (Switzerland), BIM (Bel- 
gium), and  the German universities of Bonn and 
Oldenburg. 47 

In  the following subsections,  we begin by describ- 
ing how Prolog can  be given a useful and power- 
ful constraint-solving ability and what  work is be- 
ing done  on  the  constraint  extension of IBM Pro- 
log. We go on  to  consider  various original features 
such as types, modules, and deductive  data- 
base  access of the logic programming language 
PROTOS-L,” which is  one of the  concrete  results 
of the  research effort within PROTOS. Finally, we 
describe  one of the major applications developed 
in PROTOS, a knowledge-based production plan- 
ning support  system  that was developed in close 
collaboration with a  project  partner,  Hoechst. 
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Constraint  logic  programming. Although Prolog is 
very powerful for handling symbolic  expressions, 
it is limited when dealing with objects of a  struc- 
tured domain such as real arithmetic. For in- 
stance,  suppose  a  database  about  cars is de- 
scribed by the relation c a r  (Model ,NbP1 ace, P r i  ce) in 
the following way: 

/* Model NbPl ace   P r i ce  */ 
c a r  (205, 4, 50000). 
c a r  (bmw , 5, 100000) . 
c a r ( f e r r a r i ,  2 ,  1000000). 

Prolog is able  to  answer  queries  such as: 

How  many seats  does  the 205 have and how 

Which cars  are  four-seaters? ?-car(Model,4,P). 
Which cars  cost  less  than 60000 Francs  (F)? 

much  does it cost? ?-car(205,NP,P). 

?-car(M,NP,P), P<60000. 

However,  the price of a  car is not fixed and  may 
vary according to options, special offers, etc. For 
example, a 205 may cost  between 50000 F and 
80000 F. Dealing with those kinds of imprecise 
data  is  no simple matter.  In  order  to  describe  the 
price range of a 205, it would be natural to replace 
the first of the  above  facts by: 

car(205, 4, P) :- 500005P.  P180000. 

However, in standard Prolog, this  does not work; 
the  three  queries  above would all result in an  error 
message. As far as numerical computations are 
concerned, Prolog offers nothing more  than  what 
a traditional programming language offers: eval- 
uation of expressions  without unknowns. 

In  the CLP(R) lang~age,~’ the  three  queries  work 
normally with  the  clause modified as  above. 
CLP(R) is one  example of the languages entering 
the general CLP scheme,  the  purpose of which is 
to add  arithmetic  relations and functions to Prolog 
without losing any of the qualities of Prolog. 

Genesis of constraint logic programming. In 
1983, the Prolog I1 language developed by Col- 
merauer  and his team49  already offered some  ex- 
tended facilities (in particular, a primitive to  force 
two  variables to have different values). In 1987, 
Jaffar and  Lassez of the IBM Thomas J. Watson 
Research Center5’ showed  that  this  extension, 
like many  others, could be  described as a special 
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case of a unique framework: constraint logic pro- 
gramming (CLP). 

The  purpose of this  framework is to give Prolog 
the ability to handle objects, functions, and rela- 
tions of a specific domain (e.g., real arithmetic) 
according to their algebraic properties while pre- 
serving the fundamental properties of logic pro- 
gramming, especially its declarativity. Having 
observed  that Prolog unification is nothing but an 
algorithm to solve equalities between symbolic 
terms, Jaffar and Lassez proved that it was pos- 
sible to replace this unification by a more pow- 
erful algorithm (called a constraint solver), solv- 
ing not only equalities but also  any kind of 
constraint  over  the  chosen domain. The resulting 
framework is especially simple and may be used 
for many domains providing they  have two simple 
properties, as pointed out in Jaffar and Lassez. 

Nowadays,  several CLP languages exist, includ- 
ing: 

The Prolog I11 language of PrologIA,” which 
deals with constraints on Boolean formulae, ra- 
tional arithmetic, and lists 
The  CLP(R) language from the IBM Thomas J. 
Watson Research  Center, which handles con- 
straints in real arithmetic 
The CHIP language of the ECRC,j3 which solves 
constraints  on Boolean formulae, rational arith- 
metic, and integer arithmetic 

Many other domains have  also  been imbedded 
into CLP prototypes, from polynomial con- 
s t r a i n t ~ ~ ~  to complex symbolic constraints. 

Applications of CLP. Whether using a traditional 
programming language or Prolog, when  some 
arithmetic is needed, the programmer has to ex- 
plicitly describe  computations while mastering 
the information flow (the meaning and the  status 
of a variable  at a specific point in the algorithm). 
When the  system  acquires information in an un- 
specified order,  the  same  arithmetic relation (or 
constraint) must be translated into several differ- 
ent  computations throughout the algorithm, de- 
pending on which variables  are known. More- 
over, if partial information (as for the price above) 
must be used, data  structures and computations 
become highly complex. 

Therefore, as soon as either incomplete informa- 
tion or an unordered information flow has to be 
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dealt with, CLP is a valuable tool. The following 
are  some examples of such problems. 

Configuration  systems  with  CLP. Configuration sys- 
tems  are  tools helping an end user  choose a spe- 

CLP is a valuable tool 
for incomplete information 

or for an unordered 
information flow. 

cific configuration of devices and features while 
following some compatibility rules. These  rules 
are easily expressed as constraints. 

The  basic  step in the configuration process  is as 
follows: Given the partial configuration selected 
so far, the  existence of a corresponding valid con- 
figuration must be verified, and all of the  conse- 
quences of current  choices  have to  be inferred. 

With a CLP language, it is  the  constraint solver 
that performs this basic  step.  It  is  therefore  easy 
to develop very flexible configuration systems 
with which the  user may enter  choices in any  or- 
der.  Moreover,  choices may be  expressed very 
freely as constraints.  For example, in a micro- 
computer configuration system,  the  user could re- 
quest a machine with  more  than 16 Megabytes of 
internal memory, the set of possible machines be- 
ing automatically reduced. 

Such a configuration system has been developed 
by Bang & Olufsen, a Danish hi-fi company, with 
the CLP(B) prototype  (see below). 

Device  simulation,  verification,  and  diagnosis  with  CLP. 
Many physical devices  such as electronic  circuits 
or mechanical structures may be modeled by  con- 
straints  between their parameters. With a con- 
straint-solving capability, the same model can 
then be used for the following: 

1. Simulation: Given inputs, outputs  are  auto- 

2. Verification: The  constraint  solver  can  check 
matically deduced. 
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whether  the device model implies certain de- 
sired properties  (expressed as constraints). 

3. Diagnosis: Given some  observed  discrepant 
behavior, a  search for the misbehaving com- 
ponent(s)  can easily be implemented in CLP, 
taking advantage of the  constraint solver to 
control this search. 

Solving  combinatorial  problems  with CLP. A combi- 
natorial problem is one of finding an (optimal) 
combination of features  that is consistent with 
some  constraints,  the number of possible combi- 
nations being enormous. Examples of such prob- 
lems are: complex allocation problems, schedul- 
ing (with resource  constraints) in manufacturing, 
distribution, transportation, etc., timetable gen- 
eration, and many decision problems. 

These problems are easily expressed in a CLP lan- 
guage offering constraints  on  variables belonging 
to a  discrete domain (e.g., Boolean or integer). 
However,  they  are difficult to solve (i.e., NP- 
complete), and, in general, the  constraint solver 
cannot perform more than a partial consistency 
test (without being exponentially slow). So, the 
overall problem is solved using an implicit enu- 
meration strategy specified by  the user. Implicit 
enumeration is a  search through all possible com- 
binations, controlled by  the  constraint  solver  that 
determines as soon as possible when  current 
choices  cannot lead to any  (better) solution. The 
efficiency of implicit enumeration is heavily de- 
pendent on the heuristics used to  order  the 
search. A major asset of CLP with respect to com- 
binatorial problem-solving is that it allows easy 
writing of complex dynamic heuristics based on a 
direct analysis of the initial problem data. 

Research work at the Paris Scientific Center. The 
Paris Scientific Center is involved in the PROTOS 
project in the design and implementation of an 
extension of IBM Prolog by  constraint solvers. 
Three main prototypes have been developed: 

1. CLP(B) is an extension of IBM Prolog with Bool- 
ean  constraints, developed in collaboration 
with Bang & Olufsen. It is very flexible and 
allows the  user to choose different solving 
strategies, from a partial consistency  check  to 
a complete one  that infers as many  variable 
values as possible. Moreover, CLP(B) provides 
some high-level facilities including abduction, 
projection, and meta-programming with con- 
straints.  This  prototype  is efficient compared 
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to  other CLP languages and allows real-sized 
applications to be tackled. 

2. A prototype of a solver for integer arithmetic 
has been completed and is currently being in- 
terfaced with IBM Prolog and PROTOS-L. 

3. A solver for linear constraints  on real variables 
is in the final phase of implementation. 

Further  work will be  done  to make these  three 
solvers  cooperate  when solving complex prob- 
lems. 

Finally, research is being carried out along two 
lines: 

An algorithm is being designed to solve  the dis- 
junction of linear constraints  on R. It will  in- 
corporate some of our  results  about intelligent 
backtracking in CLP. 9s5 

A general shell allowing scheduling problems to 
be easily described and solved is currently be- 
ing designed, based  on  the  above  prototypes. 

Types in Prolog. Although types play an important 
role in most modern programming languages, 
Prolog is essentially an untyped language. How- 
ever, from a  software engineering point of view, 
types  can  be  vital in the development of reliable 
and correct software. Some type  declarations 
make it possible to automatically reject meaning- 
less  expressions and terms (like 2 + paris), pro- 
vide  a means for better  structured programs, and 
make explicit the  data  structures used in a pro- 
gram. In PROTOS-L," whose  type  concept is de- 
rived from TEL,56 we could declare, for instance, 
p a r i s  to be of type town and f r ance  of type country.  
Further,  the relation i n -count ry  could be said to 
take  two arguments, the first of type town and the 
second of type country,  as follows: 

- re1  in-country :   town X coun t ry  

Thus, all uses of i n -count ry  are subject to  type 
checking. If in-country(paris,france) would be 
accepted, for instance, in-country(france,paris) 
with swapped arguments would be rejected as be- 
ing ill-typed, as would in-country(42,france).  

Furthermore, having such type and relation dec- 
larations, variables  do not need to  be declared. 
Instead,  automatic  type inferencing for variables 
is possible, allowing further programming errors 
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to be  detected  early  at compilation time. For in- 
stance, given the relation declaration: 

- r e 1   f l i g h t :   f l i g h t - n o  x town x town 

a clause containing: 

. . . .in-country(D,C),  f l ight(FN, C, A ) ,  . . . 
is rejected as being ill-typed because  the  variable 
C cannot be both of type coun t ry  (as  the  second 
argument of in-country)  and of type town (as  the 
second argument of f 1 i g h t). 

However,  a term and thus also a  variable may 
belong to more than  one  type if we allow for sub- 
type relationships. For  instance,  the PROTOS-L 
type declaration 

v e h i c l e  := a i r p l a n e  ++ c a r  ++ t r a i n .  

introduces  the  type v e h i c l e  as the union of its 
subtypes ai rp lane,   car ,  and t r a i n ,  where  the  type 
a i   r p l  ane could, for example, be given by enumer- 
ating its elements 

a i   r p l  ane : = {boei  ng747,  dcl0, a i  rbus}. 

The subtyping possibility greatly increases  the 
representation facilities since  the universe of dis- 
course  can now be subdivided and structured in 
a flexible way. Moreover,  the deduction process 
can exploit the  subtype relationships when testing 
for subtype membership or when restricting var- 
iables to subtypes. For instance,  the  travel rela- 
tion declared by 

- r e 1   t r a v e l  : v e h i c l e  x town x town 

could be defined with  clauses  such as: 

travel(V,TownDep,TownArr) :- V:airplane, . . . 

which is only applicable if the first argument is an 
a i rp lane .  When the incoming argument V is avari- 
able, the subgoal V: a i   r p l  ane restricts it to the  type 
a i rp lane .  If the  previous  type of V is incompatible 
with a i   r p l  ane, like c a r  or t r a i n ,  it fails. (In fact, in 
this case  the PROTOS-L indexing mechanism on 
typed variables would exclude  this clause as an 
alternative  to  be considered right from the begin- 
ning.) Here, V represents  the whole set of air- 
planes instead of a particular instance of this  set. 
Thus,  the deduction process  uses  the more ab- 

766 BENICHOU ET AL. 

stract level of set-denoting types  rather  than  the 
level of individuals. This yields not only more 
compact intensional answers,  but it may also  save 
a lot of expensive backtracking. 

Often, one  wants  to  express  data  structures in a 
parameterized way, and the  most common pa- 
rameterized data  structures in Prolog are lists. 
Here  is  a declarative definition for appending two 
lists: 

append( 11 L, L) . 
append([HIT], L, [HITL]) :- append(T, L, TL). 

which can be read as: (1) The  empty list [I ap- 
pended to some list L yields L, and (2) appending 
a list with head H and tail T to a list L yields the list 
with head H and tail TL, provided that appending 
T and L yields TL. (Note  that  this relational defi- 
nition can be used both for appending two given 
lists, e.g., append  ([1,2,3] , [4,5] , L), and also for 
generating all possible splittings of a given list, 
e.g., append (L1 , L2 [ 1,2,3,4,5] )). However,  a prob- 
lem with untyped Prolog is that  a goal like 

append([ ]  ,2,2). (*I 

is also provable from this definition, in contrast to 
the intention that append is defined to operate  on 
lists only. In untyped Prolog, we cannot  express 
the applicability restriction. In the typed ap- 
proach of PROTOS-L, the  type of lists is defined by 
the polymorphic type definition 

l i s t ( S )  := { [ I ,  [ - 1 _ 3 :  S x l i s t ( S ) } .  

Here,  the  variable S ranges over all types and can 
be  substituted by any  type description. Such  a 
parametric definition makes available all list in- 
stances,e.g., l i s t ( v e h i c l e ) ,   l i s t ( l i s t ( t r a i n ) ) , o r  
l i s t ( p a i r ( t r a i n , t i m e ) )  where pair(S1,SZ) is an- 
other polymorphic type with two type arguments. 
Now, the goal (*) above  is discovered ill-typed at 
compilation time as soon as append has been de- 
clared as follows: 

re1  append: l i s t ( S )  x l i s t ( S )  x l i s t ( S )  

In  order to support  the type-checking facilities, 
currently  every  predicate in a PROTOS-L program 
must be declared. Among the advantages of this 
type  system  are  those gained in traditional pro- 
gramming languages (like static  consistency 
checks  at compilation time, avoidance of mean- 
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ingless expressions, explicit data  structures,  and 
better structured programs). An additional advan- 
tage  in  logic  programming is that computations on 
types can replace otherwise necessary deductions. 
This replacement may  greatly  increase efficiency 
by reducing backtracking.  Thus,  where it might 
seem  cumbersome to give the typing information 
for  each  predicate in a small prototype,  this in- 
formation might be vital in a large application. 
Moreover, in PROTOS-L, compared to more  tra- 
ditional approaches,  the typing effort is  greatly 
reduced by  the  subtyping facility and  the avail- 
ability of both  polymorphic  types and predicates. 

An open  question  currently  under investigation is 
how typed program parts may be brought to- 
gether  with classical untyped  ones  (perhaps, by 
using a default "root" type  for  any  untyped ele- 
ments). Finally, in order  to allow general meta- 
calls,  the  type  system still has to  be extended, 
e.g.,  in the direction of higher-order logic (see for 
instance Miller and N a d a t h ~ r ~ ~  or  the recent  work 
on GOdel5* on meta-programming and  the  use of 
types). 

Modules and abstract  data  types in Prolog. A 
PROTOS-L program is made of a  set of modules. 
Each module consists of an inte$ace and  a body. 
The purpose of the module interface is to define 
the  set of imported  names  and  the  names  that are 
defined and  exported by this module. The  user of 
a module only sees  its interface,  not  the body. In 
the following, we present  only  the two most sig- 
nificant abstraction possibilities enabled by this 
module system. 

The first is  the availability of abstract  data  types. 
In  an  interface we might have  the  declarations 

interface  planner. 
time-table := abstract. 
- re1 insert:  meeting X time-table. 
- re1 cancel:  meeting X time-table. 
- re1 free-time-slot: date X time 

X duration X time-table. 
endinterface. 

where abstract is  a  reserved  word in PROTOS-L. 
Thus,  the  user of the module planner  does  not 
know  the  representation of the  abstract  type 
time-tab1 e, but  may  only  use  the  exported rela- 
tions like insert,  cancel, etc. to  access time-table. 
As a  result, in the body of the module planner, the 
representation of t  ime-tab1 e can  be changed with- 
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out having to change  any  other module. This  ab- 
straction mechanism corresponds  to  the opaque 
types in Modula-2 and  the  abstract  types in TEL. 

Modules and deductive database  access. The 
second  abstraction possibility enabled by the 
module system of PROTOS-L is the  transparent  ac- 
cess  to external  databases.  The  user of a module 
does  not  have  to  know  whether  an  exported  re- 
lation is implemented by a  sequence of program 
clauses  or by a relation in an  external  database. 
Consider the interface 

interface  products. 
re1 needs:  string x string x int. 

- re1 depends-on:  string x string. 
% product  product 

% product  product  amount 

endinterface. 

which exports  a relation needs (A,B,M) meaning 
that  the  product A needs  the  amount M of product 
B to  be made,  and  a relation depends-on(A, B) mean- 
ing that  the  production of A depends on the  prod- 
uct B via  the relation needs, possibly involving in- 
termediate  products. 

One possible implementation of these  relations 
could be in an ordinary program body: 

module  products. 
re1 needs:  string X string X int. 
- needs(  "productl" , "product2" , 58). 

needs(  "productl" , "product3", 188). 
needs(  "product2" , "product9", 88). 

. . .  
- re1 depends-on: string X string. 

depends-on  (P1 , P2) : - needs (Pl, P2 ,A) . 
depends-on(P1,PZ) :- needs(Pl,IM,A), 

depends-on  (IM, P2). 
endmodule. 

However,  another possibility is to  state that  the 
facts defining needs correspond  to  the  tuples of a 
relation Product-needs in an external relational da- 
tabase Product-DB. This is achieved by  the  data- 
base  body: 

database-body  products using Product-DB. 
re1 needs:  string x string x int. 

UsedProduct. Amount). 
- dbrel  needs  Product-needs  (Product, 

endmodul e. 

As for depends-on, it may  have  exactly  the  same 
definition as above,  either in this  database  body  or 
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in a  separate program body. This simple example 
already  shows  the  three levels of database  access: 

Base relations. In order to access  base  relations 
in an external  database  one  just  has to  state  the 
correspondence  between  the PROTOS-L predi- 
cate and its arguments, and the  database rela- 
tion and its  attributes.  Here,  the  predicate 
needs corresponds to the  database relation 
Product-needs whose  attributes Product, 
Used-Product, and Amount give the first, second, 
and third argument of needs, respectively. 
Views. Using ordinary Prolog syntax,  one  can 
define database  views  by  clauses in the  same 
way  a Prolog predicate is defined. (In fact, since 
there  are  no nested terms in relational data- 
bases,  clauses in database bodies are  necessar- 
ily function-free.) 
Recursive views. As  is  true  with depends-on in 
the  above example, a  database  predicate may 
be defined recursively, as easily as Prolog pred- 
icates. This goes beyond the power of SQL sys- 
tems  that do not allow recursion and plays a 
central role in deductive databases. 

It  is  to  be noted that  the  user  can  access an ex- 
ternal  database  at  any  one of these  three levels, 
without having to use  a  second language such as 
SQL. Moreover, PROTOS-L evaluates rules in a 
mixed bottom-up and top-down manner and re- 
uses intermediate results.59 On large relations (as 
typically are  database relations), it is well known 
that  this  can result in a significant  efficiency gain 
over  the  pure  top-down Prolog evaluation strat- 
egy. The  latter,  however, allows complex  terms 
to be used and may be  faster  on small relations. 
Thus, two different evaluation mechanisms are 
combined, each having its  own merits. By choos- 
ing where to put, for instance,  the recursive 
depends-on definition (in a program or  database 
body),  the  user  can  choose  the most appropriate 
evaluation method. 

In  the  same  way,  access to the  deductive  data- 
base LILOG-DB~’ has also  been integrated into 
PROTOS-L as a third kind of module bodies 
(1 i 1 og-db-body). Since LILOG-DB has  a  very pow- 
erful data model, including open  and  variant 
types,  nested terms, and attribute-value notation, 
the relations realized in a 1 i 1 og-db-body may con- 
tain arbitrary monomorphic and polymorphic 
types,  whereas  the  interface to ordinary relational 
databases  only  supports integers, subtypes of 
integers, and strings. 
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In  the  context of database  updates, PROTOS-L of- 
fers  a  transaction  concept as the underlying da- 
tabase management system.  For  instance,  update 
operations within a  transaction  are made perma- 
nent only if the  transaction  can  be completed suc- 
cessfully; thus backtracking inside a  transaction 
undoes  every insert and delete operation. 

Further extensions and prototype availability. 
Among further  extensions of logic programming, 
PROTOS-L handles functions defined by condi- 
tional equations. It  also provides various new 
built-in relations and functions related to  types, 
e.g., for testing, instantiating, and generating 
typed variables. All built-ins are type-safe, in- 
cluding file input and output. Type-safe is also  the 
interface to AIX*/Windows (Advanced Interac- 
tive Executive*/Windows) that  was developed 
for the PROTOS system.61 Through a collection of 
a few built-in predicates and types it provides an 
object-oriented access  to  the powerful window- 
handling facilities that  have  already  been used ex- 
tensively in the PROTOS-L applications. The im- 
plementation of the PROTOS-L system  prototype is 
based on an extension of the  Warren  Abstract 
Machine to polymorphic order-sorted resolution, 
and it is currently available on  the RISC Sys- 
tem/6000 running AIX 3.1, on  the RTPC* 6150 run- 
ning AIX 2.2.1, and on  the Ps/2 running AIX 1.2. 

Scheduling  applications: A practical  application in 
Hoechst. In  the planning area, PROTOS-L has been 
used successfully in various applications such as 
railway routing, map coloring, and production 
planning and scheduling (PPS) problerns.‘j* We 
concentrate here on a particular so-called single- 
step PPS application as it occurs in a fiber plant. 

When entering the PROTOS project  the  Hoechst 
group had already built the EXAMPL planning sys- 
tem described in J a ~ h e m i c h . ~ ~  It  was decided to 
model this approach in PROTOS-L (HoPla sys- 

and to extend  the  work in the direction of 
further replanning facilities. 

Motivation. Starting in the  late 1960s, the fiber 
plant under discussion was  (as many others)  sup- 
posed to  use  a linear-programming-based system 
for its scheduling problems. Although the pro- 
gram worked and proposed an “optimal” solu- 
tion, it turned  out to  be unsatisfactory with regard 
to several points. First, although believed to be 
optimal, the proposed schedule was almost in- 
comprehensible. Second,  the plant manager usu- 

IBM SYSTEMS JOURNAL, VOL 31, NO 4, 1992 



ally had several (conflicting) goal functions in 
mind that could not be simultaneously  introduced 
into  the  system. Finally, the plant manager was 
not  able to influence the program behavior  other 
than  through  some very rough parameters,  and 
inevitable “manual”  changes  to  the  proposed 
schedule usually led to  more  or  less  worse solu- 
tions. As a  result,  this program based  on linear 
programming was only  rarely used-most  of the 
scheduling task  was  done  with pencil and paper. 

In general, it seems  that  purely  mathematical so- 
lutions to PPS problems are unrealistic  because of 
the following: 

Goals as well as  parameters  often  are  not easily 

Mathematical solutions are hard to explain. 
“On  the fly” changes to schedules are hardly 

If the  environment changes, it is  often hard to 

converted  into numerical descriptions. 

manageable. 

adapt  such algorithms. 

It  was then  decided to solve  that scheduling prob- 
lem using a knowledge-based system  such  that: 

The  system should follow the  same line of rea- 
soning the plant manager uses  when  generating 
a  schedule  and  should  be  able to explain its 
choices. 
“Manual”  changes to  the proposed  schedule 
should always be possible, with the  system  in- 
corporating  these  changes in an  “optimal”  way. 

The problem environment. The fiber plant con- 
sidered  here  is made up of several (up to 50) dif- 
ferent single-step production lines. Raw material 
enters  one  end of a  production line, and  the fin- 
ished product  leaves  the  other  end. 

The problem is  to schedule from 200 to 1000 or- 
ders within a specific period. Each  order  consists 
of a  certain  amount of some  product  that  has to  be 
delivered before  a  certain  due  date.  The  spectrum 
of possible products  ranges  over  about 12000 dif- 
ferent  combinations of parameters  such  as (1) the 
basic fiber type, (2) the diameter, (3) the  color, 
and (4) the  bobbin  type and size. A product  may 
be  manufactured  more or  less quickly  on  only 
some (up to 12) of the plant production lines. Fi- 
nally, some  products  cannot be  made simulta- 
neously in the plant (because of incompatibilities 
between the  dyes  needed in the  process). 
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When production  proceeds from one product to 
another,  the  production line has  to  be reconfig- 
ured to some  extent  depending  on  the  parameters 
of the preceding and following products. A major 
goal is  to  keep  the overall reconfiguration effort as 
small as possible. The  order  due  dates  are  a  sec- 
ondary  criterion as long as all orders  are  sched- 
uled within  the  considered period. 

Implementation and  replanning facilities. In- 
stead of an algorithmic solution,  the  system mod- 
els the plant manager’s approach to scheduling: 
starting from an initial plan consisting of the  or- 
ders  that  are  already being produced  or  planned, 
the  “best  next  order”  on  any of the  production 
lines is  searched  for  and  inserted  into the plan. 
What the  “best  next  order”  actually is, is  deter- 
mined by a  set of heuristic  rules  such as: 

A best  next  order should have  the  same  param- 

If one  has  to switch  colors or diameters,  take 

If one  has  to switch colors, it is  better  to switch 

eters  as its  predecessor. 

the  same color and  switch  the diameter. 

from a lighter color to a  darker  one. 

These  rules  express the planners’ knowledge on 
how to  keep  the resetting  costs low. They  can 
be  translated  directly  into PROTOS-L, its typing 
mechanism providing a first level of consistency 
checking for  the rule set. 

The  system offers an explanation facility. During 
the still ongoing computation,  for  every  order  that 
has  been planned thus  far,  the  user  can  already 
visualize  its  characteristics,  the  resetting  costs it 
has  caused, and, most of all, the  reason  why it has 
been  inserted  into  this position in the plan. 

Once  the  proposed  schedule  is  complete,  the  user 
has  a range of replanning facilities. In  particular, 
the  current plan may  be  changed by requesting 
that  an  order  be  allocated  to  a  certain  production 
line, or be  the  direct  successor of another allo- 
cated  order. 

Instead of directly  obeying  the user’s request,  the 
system  gathers all  of the requested  changes  and 
regards  them as new scheduling restrictions as 
soon as  the user  decides to  start scheduling anew. 
This  feature helps the plant manager avoid having 
schedules  worsen  each time some  changes  have 
to  be made. Since the whole schedule  can be re- 
done,  a  “good”  result will again be  achieved. 
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However, if desired, the planner will be able to 
keep  certain  parts of the plan, e.g., the first week, 
or everything up to a  particular  order,  on  a  spe- 
cific production line. 

Perspectives. Today,  the scheduling application 
work in the PROTOS project  is continuing in sev- 
eral directions. Whereas  the scheduling problem 
described here  takes place in a single plant and is 
thus an instance of local planning, distributed and 
global planning are now also being investigated. 

The unique characteristics of logic programming, 
like high-level declarative programming and au- 
tomatic search for alternatives via backtracking, 
make it an excellent choice for realizing knowl- 
edge-based systems  such as the  one described 
above.  However,  one should not blindly believe 
AI techniques to be  the  “one and only” solution 
to scheduling problems. A  moderate mixture of AI 
and operations  research  approaches,  as pro- 
posed, for instance, in the  constraint logic pro- 
gramming paradigm, seems to be  a feasible way. 
Moreover, only if AI parts  are integrated in ex- 
isting organizational software environments such 
as databases, will problems be successfully 
solved. 

Conclusions 

The last few years  have  seen  tremendous growth 
in both  the  scope and depth of activities related to 
Prolog. Yet much is still to  be done before Prolog 
is recognized for what it  is. 

First of all, the message that Prolog is ageneral- 
pulpose high-level programming  language has 
not yet been widely accepted.  It is probably one 
of the  best  kept  secrets  that  a lot of production 
applications are  written in Prolog, and, in fact,  the 
number is growing every  year.  In  a  recent  an- 
nouncement, IBM positioned  Prolog  in its AD/Cycle 
framework. That  strategic announcement should 
certainly encourage its  customers to use Prolog in 
commercial application development. 

Second,  there is a perception that Prolog is a dif- 
ficult language to learn and master  because it is 
based  on mathematical logic, which may be in- 
timidating. However, it is not necessary to know 
any logic theory to use Prolog efficiently. But it is 
thanks to this logic foundation that Prolog is 
unique and, contrary to most programming lan- 
guages, has  a solid theoretical framework. 
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Third, Prolog can  be  one of the  keys to solving the 
long-standing productivity and quality problems 
of software development. The combination of 
logic programming, object-oriented program- 
ming, and constraint programming will provide a 
new dimension to the traditional way of develop- 
ing computer applications, making it possible to 
address in a much more comprehensive way all of 
the declarative and descriptive aspects of com- 
puter applications, thus leading to significant  im- 
provements in productivity, be it in the develop- 
ment of the application or  its maintenance. Many 
types of applications that seemed too difficult or 
expensive  can become practical, ranging from 
traditional data processing applications through 
knowledge-based processing applications to nat- 
ural-language processing applications. 

Use of Prolog will lead to  a change in the skills 
required and methods  used, and will shift the  em- 
phasis from traditional programming and testing 
toward analysis or, in other  words, from a com- 
puter solution to problem definition, with the ben- 
efit of an overall reduction in costs. Prolog mostly 
appeals  to  a specific class of programmers: typi- 
cally those  who  are  more highly skilled in con- 
ceptual and abstract reasoning, usually college 
graduates in computer science. 

Finally, Prolog is particularly well prepared to 
exploit parallel architectures  that  are apt to  pre- 
vail in the  next  computer generation. 
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