
Prolog at IBM: An
advanced and evolving
application development
technology

by M. Benichou
H. Beringer
J.-M. Gauthier
C. Beierle

Prolog is a powerful programming language,
based on logic, that originated and matured in
Europe. This paper aims to show that Prolog is
becoming one of the key tools for the entire
application development community. First
explained is how the unique properties of Prolog
give it many advantages over classical
languages. Then we show that the language is
sufficiently mature technically so that numerous
industrial Prolog products are now available. In
particular, IBM offers the Systems Application
Architecture@ (SAAm) AD/Cycle" Prolog product
family, which provides a combination of logic
programming and object programming facilities.
Many industrial applications are written in Prolog.
Examples of 15 outstanding operational
applications, developed by IBM or major IBM
customers, are presented. There is a potential for
future growth in the types of applications
enabled by improving the language. The
simplicity and elegance of the theoretical basis of
Prolog allow a number of extensions to be
defined. Here, three European projects are briefly
presented. In conclusion it is shown that Prolog,
possibly extended in many directions, is one of
the tools that could help solve the long-standing
quality and cost problems in application
development.

I n the early 1970s, using the work done by J. A.
Robinson on problem-solving in logic,' Main

Colmerauer and Philippe Roussel (professors at
the University of Marseilles) along with Robert
Kowalski (at that time professor at Edinburgh

University) first defined Prolog. 2,3 Its very name
is a reminder that it falls within the theoretical
framework of logic programmmg (PROgramma-
tion en LOGique in French). This programming
language was originally intended as a basic tool
for the difficult tasks of analysis and interpreta-
tion of natural languages. Research continued,
and in the late 1970s David Warren implemented
the first efficient compiled version at Edinburgh
University.

It was in 1981, however, that Prolog took the
computing world by storm when it was chosen by
the Japanese as the basic language for their Fifth
Generation Project. Even though this project pro-
duced disappointing results regarding the imple-
mentation of Prolog, perhaps because it was too
heavily concentrated on the development of ded-
icated Prolog machines, the number of people
knowing, appreciating, and using Prolog has been
constantly increasing. Prolog is now recognized
as a major programming language. In the United
States Prolog is becoming a standard alongside
LISP. Prolog is taught in most universities (par-

Wopyright 1992 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

BENICHOU ET AL. 755 IBM SYSTEMS JOURNAL, VOL 31, NO 4, 1992

ticularly in nearly all European ones) and has be-
come a major vehicle for doing research in com-
puter science.

Very early on in Europe, several IBM Scientific
Centers became interested in Prolog. Existing
IBM Prolog products originated at the Paris Sci-
entific Center where, under the aegis of Marc Gil-
let, various prototypes were developed that have
since been transformed by IBM laboratories into
official products, development now being the re-
sponsibility of the Paris Scientific Center.’ This
work has also inspired many theoretical and ap-
plied research projects at the Paris Center.”9
Logic programming has also been the basis of sig-
nificant projects10,” at the German Scientific Cen-
ter (the Heidelberg Scientific Center and the In-
stitute for Knowledge-Based Systems). But the
research on Prolog in IBM is not limited to the
European Scientific Centers; very important
work has been carried out worldwide, especially
in various Scientific Centers and the IBM Re-
search Division.

In industry, Prolog has been used for many years,
first as the language of artificial intelligence, es-
pecially in natural language processing, and now
in more general applications. This paper shows
that, thanks to major advances in the implemen-
tation of Prolog compilers, even very large size
applications can be developed entirely in Prolog,
from the initial prototype up to the final opera-
tional product.

Today, Prolog is moving from the world of aca-
demia and research into industry and the service
sector: There are dozens of commercial Prolog
implementations on all types of platforms, and
Prolog has been chosen for well over a thousand
operational applications, in particular in the man-
ufacturing sector. It is already beginning to be
used in pure business applications, and this use
will no doubt increase further. The Prolog Ven-
dors Group was recently formed by the leading
Prolog suppliers. Its goal is “to widen the market
for Prolog technology.”

An objective of this paper is to demonstrate that
Prolog is becoming one of the key tools for the
entire application programming community.

For the content of the application and research
parts we appealed to a number of people both in
IBM and outside of IBM who gave us valuable,

756 BENICHOU ET AL.

first-hand information. Their names are ascribed
to the parts to which they contributed and are
listed in the notes at the end of the paper.

Unique features of Prolog

Prolog differs from other programming languages
in that it offers a completely new approach with
many advantages. In particular, it has the follow-
ing properties:

Prolog is declarative; programming in Prolog
means simply writing logic statements, which
can be done without having to worry about any
problem-solving algorithms.
Prolog is a relational programming language
that handles queries having multiple solutions
without asking the programmer to manage
them. This aspect is called nondeterministic
programming.
Finally, Prolog is a symbolic programming lan-
guage. Symbols and complex symbolic expres-
sions (i.e., any tree) are easily handled in
Prolog, thanks to a simple but powerful mech-
anism: unification.

In order to illustrate these statements, a quick
description of the basic concepts of Prolog and a
short example are given below. The interested
reader will find an advanced introduction to Pro-
log in Wilson12 and a complete description in
Walker et ai.;13 programming with IBM Prolog is
explained in detail in Reference 14; examples of
the Prolog use, classified by problem types, can
be found in Yoder.15

Basic concepts of Prolog. Prolog handles relations
among objects. These objects are represented by
symbolic expressions, called “terms,” which
may be:

Constants such as numbers and names like
(6 p a r i s” or “france”. (They begin with a lower-
case letter.)
Functional terms written “function-name (argl,
. . . ,argN) ” where the arguments may be any
term. For example, the term “time(8,38)” may
be used to represent the time 8:30.
Lists written “ [e l t l , e l t 2 , . . . ,e l tn] ” or
“ [e l t l , . . . ,eltnlList-end]”, theirelementsbe-
ing any term. The empty list is the constant
“ [3 ”. (As a matter of fact, lists are just a spe-
cial case of functional terms with some syntac-
tic facilities.)

IBM SYSTEMS JOURNAL, VOL 31, NO 4, 1992

A variable (beginning with an uppercase letter)
may be used in place of an unknown term in ex-
actly the same way as mathematical variables.
For example, time(8,Mi n) could represent a time
between 8 and 9 a.m. depending upon the value of
Mi n. It should be stressed that a Prolog variable is
a logic variable representing a single unknown
term. When the corresponding term is known, it
definitively replaces the variable.

Unification is an operation that tries to make two
terms equal by substituting their variables. If this
is not possible, the operation fails. Surprisingly
enough, this operation is the only one available in
Prolog to test terms as well as build or transform
them. As an example, by trying to unify the term
time(H,M) with a term T, one first tests whether T
may be made equal to a functional term ti me with
two arguments, otherwise unification fails. Now,
if, for example, T is time(8,30), unification suc-
ceeds and 8 and 30 are substituted for the varia-
bles H and M respectively. These two variables
may then be used to build other terms such as
appointment(monday,H,M).

Relations among objects (or “predicates”) are
identified by a name that is a character string be-
ginning with a lowercase letter and by a fixed
number of arguments written between parenthe-
ses. A predicate can be defined by a list of facts
exactly as a table defines a relation in a relational
database.Thepredicate in-country (Town,Country),
for example, meaning that Town is in Country may
be defined by the facts:

/* Town Country */
in-country(paris, france).
in-country(nice, france).
in-country(rome, italy).

In the same way, a database about flights in Eu-
rope can be entered as facts defining the relation
flight(FlNum,Origin,Dest), where FlNum is the
number of the flight and Origin and Dest are the
towns it connects:

/* FlNum Origin Dest */
flight(531, paris, nice).
flight(220, paris, nice).
flight(121, paris, rome).

A Prolog program is a sequence of first-order logic
formulae of a specific kind called (Horn) clauses.
A clause is either a simple fact as above or a rule

IBM SYSTEMS JOURNAL, VOL 31, NO 4, 1992

made up of two parts, a head and a body. The
head, which is the conclusion of the clause, is a
predicate with its arguments. The body, which
forms the premise, is a conjunction of predicates
with their arguments. A clause is written in the
following way:

(head) : - (body).

and reads, if (body) then (head).

A clause (rule or fact) may contain variables that
are implicitly universally quantified.

As an example, if we want a program able to find
domestic flights in a given country, it suffices to
state the following logic rule:

F1 Num refers to a domestic flight in Country i f
F1 Num refers to a flight from Origin to Dest, and
Origin is located in Country, and
Dest is located in the same Country.

This rule is naturally translated into a Prolog
clause as follows:

domestic-flight(FlNum, Country) :- /* if: */
flight(FlNum, Origin, Dest), /* and */
in-country(Origin, Country), /* and */
in-country(Dest, Country).

Together with the above facts, this rule is a com-
plete Prolog program able to answer many dif-
ferent queries such as:

1. Is flight 531 a French domestic flight?
2. Is flight 531 a domestic flight and if so in which

3. Which flights are French domestic flights?
4. Give me all of the domestic flights together

country?

with their countries.

Moreover, these four queries are asked simply by
entering the appropriate relation together with its
arguments that may be either known or unknown.
For example, the third query above is entered as:

?- domestic-flight(FN, france).

where the symbol ?- indicates that it is a query,
including here an unknown, FN. Prolog gives one
answer (FN=531) and then backtracks, i.e.,
searches for an alternative solution, as a result of
which, it gives a second answer (FN=~~o). To find

BENICHOU ET AL. 757

this second solution, Prolog tried to reconsider
one of its preceding choices, in this case the fact
used to solve the subgoal f l i ght.

The core of Prolog is as simple as that. However,
in spite of (or because of) this simplicity, Prolog
has proved to be a very powerful programming

The Prolog proof mechanism is
powerful enough to accept

relations being defined
recursively.

~~ ~ ~ ~~

language. To make Prolog a “real” programming
language, various practical extensions, called
“built-in” predicates, must be added. These
built-in predicates allow such basic operations as
input-output, arithmetic, or string handling, offer
various event or error controls, provide multiple
interfaces (to classical languages, to databases, to
graphics), etc. For instance, AD/Cycle Prolog has
more than 300 such built-in predicates that have
been incorporated, preserving the fundamental
properties and the simplicity of the language.

In the very short example given above, the three
basic properties of Prolog could be observed. We
now take a closer look at them.

Prolog is declarative and modular. Prolog pro-
grams can be looked at from two different points
of view, declarative (as in our example) and pro-
cedural.

From a declarative point of view, the meaning of
a program is simply the set of all the facts that
logically follow from the rules and facts that make
up the program. Thanks to these very straight-
forward declarative semantics, writing and
checking Prolog programs is easy because it
comes down to writing logic assertions and
checking their veracity.

From a procedural point of view, the meaning of
a program is the succession of steps the Prolog
inference engine will follow to try to prove que-

758 BENICHOU ET AL.

ries, using the rules and facts of the program. To
do so, Prolog uses a simple strategy: depth first
and left to right, Le., facts and rules are used in
the order in which they have been written. It fol-
lows that a programmer can easily predict the
successive steps of a proof and may control them
if so desired.

It can be shown that the two views coincide. As
a result, the Prolog programmer can easily switch
to the point of view most suited to the current
concern.

Since a Prolog program is structured in rules, it
follows that a program is in fact made up of small
declarative modules, i.e., sets of rules that define
some relations, which can be tested separately
and reused.

The Prolog proof mechanism is powerful enough
to accept relations being defined recursively,
which is often the shortest and most natural way
of expressing relations concerning structures that
are themselves recursive, such as lists, graphs,
etc. Moreover, Prolog compilers are able to dras-
tically optimize recursive programs.

Prolog allows nondeterministic programming. It
is well-known that many algorithms are better
expressed nondeterministically, in other words
through the systematic examination of a set of
possibilities, or through trial and error (trying to
find one’s way out of a maze, for example). Prolog
contains a built-in mechanism to handle nonde-
terminism through a depth-first search and back-
tracking. This mechanism makes the implemen-
tation of such algorithms much easier, since
Prolog takes over the entire management of the
search tree. The mechanism can be controlled by
the user, who can thus ask Prolog for the first,
then the next or all solutions, tell Prolog in what
order the search should be carried out, or even
cancel the backtracking mechanism completely.

Symbolic processing. Prolog is particularly well-
suited to the processing of complex symbolic
structures. Since the basic objects it handles are
trees, it is very easy to represent attribute-value
sets, variable size lists, graphs, etc. Through sim-
ple unification these trees can be built, read, and
transformed without the user having to worry
about how they are actually represented in mem-
ory or having to consider problems of allocation,
pointer handling, etc. Prolog takes over the dy-

IBM SYSTEMS JOURNAL, VOL 31, NO 4, 1992

namic management of the memory (up to the re-
covery of unused memory).

Prolog is therefore particularly suitable for the
analysis, translation, and generation of formal
and natural language (which is hardly surprising
since this is precisely what it was developed for).
Moreover, it is also very easy to write Prolog
programs that analyze, generate, and execute
Prolog. (This is called meta-programming.)

Prolog: A mature technology

Prolog is attractive not only because of its nice
theoretical foundations and properties, but also
because of the high quality of the Prolog compil-
ers now on the market. In particular, IBM offers a
Systems Application Architecture* (SAA*) AD/
Cycle* Prolog product family that is a complete
implementation of the Prolog language plus sev-
eral powerful extensions. The two existing prod-
ucts are AD/Cycle ProloglMVS & VM Version 1
(5696-308) and AD/Cycle Prologl2 Version 1
(5696-309). 16-18 These are new implementations of
earlier products: IBM Prolog for 370 (5706-236)
and IBM Prolog for Operating System/2* (OS/2*)
(5621-065).

The AD/Cycle Prolog development environment
encourages productivity by providing a consis-
tent means of expressing all of the phases of
application development within the AD/Cycle
framework, using the AD/Cycle workstation plat-
form (WSP) and conforming to AD/Cycle Level 2
integration.

The AD/Cycle Prolog Extension Feature~'~,'' add a
number of facilities to Prolog, including object-ori-
ented ones. This combination of logic programming
and object programming facilities provides a unique
application development productivity tool. (This is
a new implementation of earlier IBM EMEA program
offerings, IBM Prolog language workbench [IPW]
for 370 [5787-AAF] and for ow2 [5776-ABH]; the
extension feature is based on EMICAT, a registered
trademark of Dassault Electronique.)

AD/Cycle Prolog. AD/Cycle Prolog contains an
interpreter, an incremental compiler, and a full
compiler that interact well together in order to
provide high performance for large-size applica-
tions. In addition, programs are fully portable
across the virtual machine (VM), Multiple Virtual
Storage (MVS), and OS/2 operating system plat-

IBM SYSTEMS JOURNAL, VOL 31, NO 4, 1992

forms. AD/Cycle Prolog also offers all of the fea-
tures to be found scattered throughout the other
classical industrial Prolog packages. AD/Cycle
Prolog can integrate applications in a company's
information system, thanks to powerful inter-
faces with the operating systems, editors, data-
bases, dialog and graphic managers, and classical
languages.

A source level interactive debugger allows a user
to follow the execution of his or her program in
the source code; under 0 ~ 2 , it provides multiple
windows and an interface to external source ed-
itors.

The Prolog language features include various data
types (arrays, items, big rational numbers, ex-
tended skeletons, and user-defined types), de-
layed evaluation, global terms, error recovery,
logical interrupts, external predicates (e.g., de-
fined in C), computable expressions, automatic
garbage collection, national language support,
and double-byte character set.

Under VM and MVS, AD/Cycle Prolog provides
code sharing and uses Extended Architecture
(xA), allowing applications that reside in address
spaces above the 16-megabyte line to be run. Un-
der 0s/2 2.0, it runs in 32-bit mode and provides a
full Presentation Manager* (PM) interface, thus
allowing the handling of PM user windows using
Prolog predicates.

The CICS/IMS subsystem feature enables an MVS
subsystem that controls Prolog servers running
Prolog applications to be created. The servers can
be called from Customer Information Control
System (CICS*) or Information Management Sys-
tem (IMS) user transactions or can in turn call
back CICS or IMS with requests for terminal access
and data management.

The Extension Features. The AD/Cycle Prolog
Extension Features (EFs) also run under MVS, VM,
and 0s/2. They offer:

Object-oriented facilities, supporting objects,
attributes, inheritance, demons, methods, and
message-passing
Knowledge base management, providing the
possibility of carving up the Prolog workspace
into pieces, called knowledge subsets (KSSs),
and saving only those pieces. KSSs are portable
between various platforms (VM, MVS, and OS/2)

BENICHOU ET AL. 759

and help to organize the developer’s knowledge
base, thus allowing multiple programmers to
work on it.
Presentation Manager window support in
which object-oriented programming is espe-
cially useful for graphical user interfaces, as
they tend to be based on specific objects (win-
dows, buttons, etc.) that respond to specific
“messages” directed to them (e.g., a mouse
click). EF provides a set of predefined visual
objects that can be used to quickly create and
refine user graphic interfaces.
Rule-based systems creation, providing facili-
ties to easily develop rule-based applications
and an environment for the easy handling of
rules expressed in an external user-defined syn-
tax and formalism
Utilities and productivity tools, a library of
commonly used Prolog predicates

Being an extension of AD/Cycle Prolog, EF does
not in any way mask or hinder any AD/Cycle Pro-
log facility or interface.

Deploying applications using AD/Cycle Prolog.
There are several ways of deploying applications
that were developed using AD/Cycle Prolog.

AD/Cycle Prolog/2 is the most convenient envi-
ronment for developing applications, although
AD/Cycle Prolog/MVS & VM also offers VM and
MVS development facilities. An application devel-
oped in the OS!^ environment may be ported and
executed on different hardware and software con-
figurations:

On a Personal Systern/2* (PS /~*) stand-alone
system
On a P S / ~ local area network (LAN) system with
or without a client-server facility
On a host with nonprogrammable workstations
supported by the WCMS (Virtual Machine/Con-
versational Monitor System), MVSDSO (Multiple
Virtual Storagemime Sharing Option), MVS/CICS,
or MVSDMS. This configuration makes Prolog ap-
plications suitable for customers with large net-
works supported by CICS or IMS.
On a host with PS workstations with a Prolog
distributed application and with a host DATA-
BASE 2* (DB/2*) database or with a distributed
relational database. Such an application may be
combined with host MVSRSO batch applications
developed using AD/Cycle Prolog as well.

760 BENICHOU ET AL.

Prolog: A valuable tool for application
development

In many application fields, logic programming has
proved to be a useful development technology.
Some of these fields are listed below, and for each
of them, some outstanding projects developed us-
ing IBM Prolog are mentioned. Most of these
projects would have been uneconomical using
classical languages and were viable thanks to
Prolog.

1. Software engineering-Following are several
outstanding examples of Prolog being used for
the development of large-size workbenches
(more than 50 000 lines of Prolog):

ADW**,’~ an integrated Computer-Aided
Software Engineering (CASE) tool that sup-
ports the development life cycle of business
applications, developed by Knowledge-
Ware, a U.S. software house. The Knowl-
edge Coordinator, a key component of ADW,
is entirely written in Prolog.
OCEANIC, ’’ an insurance-oriented package
developed by SOCS, a French software
house
CASE/390,23 an interactive environment for
the development of MVS components, devel-
oped by the IBM MVS laboratory (Mid-Hud-
son Valley Programming Laboratory)

However, Prolog has also been used for the
development of more specialized but equally
ambitious software engineering tools such as:

ALIEN, an integrated system for computer-
aided writing of technical manuals (Dassault
Electronique, France)
ADEPT, for the automatic generation (and
verification) of test cases (IBM San Jose Lab-
oratory)
AnDes, for the visual verification of external
specifications of certain systems (IBM Ger-
man Application Development Laboratory,
Boblingen)

2. Knowledge-based systems-Prolog allows the
development, at reasonable cost, of expert
systems that cannot be reduced to the simple
rule formalism available in commercial shells.
Operational examples are:

IBM SYSTEMS JOURNAL, VOL 31, NO 4, 1992

CATSDIANA, a model-based diagnosis
system for analog electronic circuits.
CATS/DIANA is the result of a joint study be-
tween Dassault Electronique and the IBM
Paris Scientific Center.
GIBUS,27 for the management of low earth
orbit satellite batteries (Dassault Electron-
ique, under contract to the European Space

D R ~ , ~ , ~ ~ a diagnostic system in the field of
semiconductor engineering (IBM Sindelfin-
gen plant)
ESFA,30,31 a computer-aided integrated cir-
cuit design tool (IBM La Gaude Laboratory)

3. Natural and formal language processing-
Natural, natural-like, and programming lan-
guage processing are ideal applications to use
Prolog, which is a near-perfect tool for efficient
and fast implementation and was, after all, ini-
tially invented to handle precisely such prob-
lems. For instance, K A L I P S O S ~ , ~ * - ~ ~ is an out-
standing example of automatic understanding
of French texts (IBM Paris Scientific Center).
This research is in the process of being trans-
formed for use in industrial applications.

Agency)

4. Intelligent management of databases-Listed
here are but two of the tools that have been
developed using Prolog to extend the usability
or the functions of relational databases. Prolog
allows easy handling of both knowledge about
the database structure and the grammar of a
powerful and user-friendly query language.

The first tool, IBM SAA Language Access, 35-37

is an IBM program product that provides a
natural language interface to a relational da-
tabase and could equally as well have been
put in the section on natural language pro-
cessing (IBM Nordik Laboratory).
The second tool, SYLLOG, 13,3M1 is an expert
database system shell prototype that has
been built over IBM Prolog and the Struc-
tured Query Language (SQL) Database Man-
agement System (IBM Thomas J. Watson Re-
search Center).

5. Intelligent control of algorithmic programs-
The basic aim here is to use Prolog to intro-
duce expertise or intelligence in applications
or programs that already exist in a company.
Whereas, initially, a human expert was re-
quired to control the running of a set of pro-

IBM SYSTEMS JOURNAL, VOL 31, NO 4, 1992

grams, the idea is to replace this person by a
sufficiently “intelligent” Prolog program that
will automatically set the different parts of the
programs in motion according to the results
obtained in previous stages. An operational
example of this kind is APACE, using Prolog, to
design a gear box (Peugeot SA, France).

6. Heuristic resolution of combinatorial prob-
lems-The implementation of algorithms for
solving combinatorial problems such as sched-
uling or distribution has been made much sim-
pler using Prolog. The advantage of this lan-
guage is that its “nondeterminism” allows the
different parts of the solution space (search
tree) to be explored successively, using back-
tracking. An operational example is JOSHUA,42
a journey scheduler used at IBM France for
organizing administrative or technical sympo-
sia.

Logic programming: An evolving technology

Logic programming naturally lends itself to many
extensions that will enable more and more appli-
cations to be profitably tackled with this technol-
ogy. Indeed, a large number of research projects
are currently under way. In this section, three
European research and development projects are
described. These projects have the following im-
portant practical implications:

Efficient use of new parallel hardware architec-

Extended expressive power to cover new ap-

Easier implementation of large-size applica-

tures

plication areas

tions (software engineering) using Prolog

Or-parallelism for ProLog by BIM

The content of this subsection was contributed by
A. Marien, L. Maes, and J-L. Binot, BIM, Bel-
gium. BIM, a privately held Belgian group spe-
cializing in information technology, is the maker
of ProLog by BIM, which has recently been ported
on IBM RISC System/6000 machines and is being
marketed in Europe by IBM under the trademark
Prolog for AIX/6000.

Parallel hardware architectures, including both
shared memory machines and distributed archi-
tectures, are now proposed by many hardware
manufacturers.

BENICHOU ET AL. 761

Logic programming languages like Prolog have a
large potential for parallel execution. The two
main kinds of parallelism in Prolog are or-paral-
lelism and and-parallelism. An or-parallel Prolog
system is one that explores in parallel the alter-
natives for solving a single goal. And-parallelism
tries to solve several goals simultaneously. Sev-
eral strategies are possible with regard to the in-
terdependence of the solutions of the goals. They
range from all-solution-and-parallelism, which
solves all goals concurrently and computes the
solution as the intersection of the independent
solutions, through stream-and-parallelism and goal-
suspension-and-parallelism executing the goals,
when the input arguments become instantiated, to
goal-independence-and-parallelism, where only
independent goals are executed concurrently.
Other strategies of parallelizing Prolog are lazy
evaluation and parallel execution of unification.
So far, however, this dynamic research and de-
velopment has not resulted in indus-
trial implementation of parallel Prolog systems.

BIM, in cooperation with SICS (a leading Swedish
research institute in the field of logic program-
ming), is now completing a coarse-grained or-par-
allel implementation for shared memory ma-
chines, using the MUSE (MUlti-SEquential)
scheduler developed by SICS to control parallel-
ism. The project, with the internal code name
BIMUSE,45346 is being developed as part of the
ESPRIT project PEPMA.

In order to achieve the coarse-grained or-parallel
behavior, several conventional Prolog engines
(ProLog by BIM) are coupled to a MUSE scheduler
that distributes work to the Prolog processes,
called “workers” below. The central idea is the
notion of several independent workers each hav-
ing its own local and some global memory.

The two main functions of the scheduler are to
maintain the sequential semantics of Prolog and
match idle workers with available work, with min-
imal overhead. Communication between workers is
kept to a strict minimum and is mainly done
through a shared search tree. The tree has two
kinds of nodes-shared and private-represent-
ing the choice points. The root of the tree, being
shared by several workers, is managed by the
scheduler. The leaves with the private nodes are
only accessible to their creators. The shared part
of the tree grows when a worker makes its private

762 BENICHOU ET AL.

nodes shareable and shrinks when the last worker
backtracks from a shared node.

When a worker runs out of work within its private
subtree, it enters the shared search tree and calls
the scheduler, looking for more work. The sched-
uler then, basically, looks for workers with ex-
cess work to share, and requests sharing of nodes
or, if no work can be found, positions the workers
in the tree so that they can be reactivated with
very little overhead.

To extend ProLog by BIM for this or-parallel ex-
ecution model, only a minimal part (less than 1
percent) of the code had to be rewritten. Needed
adjustments included memory management, call-
ing the scheduler at the proper times, maintaining
extra engine-specific data, and delivering the data
when the scheduler requests it.

Initial benchmarks on a first version of the
BIMUSE system indicate that the overhead is less
than 10 percent and that the speedup is close to
the number of additional processors for problems
with a high degree of nondeterminism.

Constraint logic programming at Dassault
Electronique

The content of this subsection was contributed by
B. Botella and P. Taillibert, Dassault Electron-
ique, France. Dassault Electronique, which has
already made a name for itself at the forefront of
electronics, has also become a major information
processing and software company where Prolog
plays a key role (over 150 people have been
trained to use Prolog; more than 50 of them ac-
tually use it every day).

Solving the physical problems found in the indus-
try requires an ever-increasing use of artificial in-
telligence techniques such as model-based rea-
soning, for which constraint logic programming
(CLP) is a useful implementation technology. This
recent development of logic programming allows
a programmer to declare constraints on the var-
iables that are handled by Prolog. For example, it
is possible to write, once and for all, that
“X = Y + 2” and leave it up to the inference
engine to do the rest and, as soon as a value is
known for X or Y, to compute the other value and
propagate the consequences.

The CLP package INTERLOG is the outcome of ex-
ploratory work carried out by Dassault Electro-

IBM SYSTEMS JOURNAL, VOL 31, NO 4, 1992

nique along the lines of the work of the Bell
Northern Research laboratories. It extends IBM
Prolog with the ability to handle constraints on
real intervals. INTERLOG is especially appropriate
to the modeling of physical phenomena in me-
chanics or electronics. As a matter of fact, these
physical phenomena can only be described using
imprecise or nonlinear models, and interval arith-
metic is an adequate tool to handle these models.
As such, INTERLOG can benefit from the powerful
logic programming facilities offered by IBM Prolog
and extend them to handle numeric problems.
The first version of INTERLOG under VM and OW2
is operational at Dassault Electronique and has
been used successfully both in computer-aided
design to solve a hitherto unsolved problem and
in an expert system for computer-aided design.

Research and applications in PROTOS, a
EUREKA project

The content of this subsection was contributed by
C. Beierle, IKBS, Stuttgart, IBM Germany,
H. Beringer, Paris Scientific Center, IBM France,
and J. Jachemich, Hoechst, Germany.

The objective of the EUREKA project PROTOS
(“Logic Programming Tools for Scheduling Ap-
pl icat ion~,~~ EU56) is twofold: the development of
various extensions of logic programming for
building knowledge-based systems, and the use of
these extensions in production planning and
scheduling applications. The Institute for Knowl-
edge-Based Systems (IKBS) of the IBM Germany
Scientific Center is taking part in this project in
close collaboration with the IBM Paris Scientific
Center, together with the project partners Hoechst
AG (Germany), Sandoz (Switzerland), BIM (Bel-
gium), and the German universities of Bonn and
Oldenburg. 47

In the following subsections, we begin by describ-
ing how Prolog can be given a useful and power-
ful constraint-solving ability and what work is be-
ing done on the constraint extension of IBM Pro-
log. We go on to consider various original features
such as types, modules, and deductive data-
base access of the logic programming language
PROTOS-L,” which is one of the concrete results
of the research effort within PROTOS. Finally, we
describe one of the major applications developed
in PROTOS, a knowledge-based production plan-
ning support system that was developed in close
collaboration with a project partner, Hoechst.

IBM SYSTEMS JOURNAL, VOL 31, NO 4, 1992

Constraint logic programming. Although Prolog is
very powerful for handling symbolic expressions,
it is limited when dealing with objects of a struc-
tured domain such as real arithmetic. For in-
stance, suppose a database about cars is de-
scribed by the relation c a r (Model ,NbP1 ace, P r i ce) in
the following way:

/* Model NbPl ace P r i ce */
c a r (205, 4, 50000).
c a r (bmw , 5, 100000) .
c a r (f e r r a r i , 2 , 1000000).

Prolog is able to answer queries such as:

How many seats does the 205 have and how

Which cars are four-seaters? ?-car(Model,4,P).
Which cars cost less than 60000 Francs (F)?

much does it cost? ?-car(205,NP,P).

?-car(M,NP,P), P<60000.

However, the price of a car is not fixed and may
vary according to options, special offers, etc. For
example, a 205 may cost between 50000 F and
80000 F. Dealing with those kinds of imprecise
data is no simple matter. In order to describe the
price range of a 205, it would be natural to replace
the first of the above facts by:

car(205, 4, P) :- 500005P. P180000.

However, in standard Prolog, this does not work;
the three queries above would all result in an error
message. As far as numerical computations are
concerned, Prolog offers nothing more than what
a traditional programming language offers: eval-
uation of expressions without unknowns.

In the CLP(R) lang~age,~’ the three queries work
normally with the clause modified as above.
CLP(R) is one example of the languages entering
the general CLP scheme, the purpose of which is
to add arithmetic relations and functions to Prolog
without losing any of the qualities of Prolog.

Genesis of constraint logic programming. In
1983, the Prolog I1 language developed by Col-
merauer and his team49 already offered some ex-
tended facilities (in particular, a primitive to force
two variables to have different values). In 1987,
Jaffar and Lassez of the IBM Thomas J. Watson
Research Center5’ showed that this extension,
like many others, could be described as a special

BENICHOU ET AL. 763

case of a unique framework: constraint logic pro-
gramming (CLP).

The purpose of this framework is to give Prolog
the ability to handle objects, functions, and rela-
tions of a specific domain (e.g., real arithmetic)
according to their algebraic properties while pre-
serving the fundamental properties of logic pro-
gramming, especially its declarativity. Having
observed that Prolog unification is nothing but an
algorithm to solve equalities between symbolic
terms, Jaffar and Lassez proved that it was pos-
sible to replace this unification by a more pow-
erful algorithm (called a constraint solver), solv-
ing not only equalities but also any kind of
constraint over the chosen domain. The resulting
framework is especially simple and may be used
for many domains providing they have two simple
properties, as pointed out in Jaffar and Lassez.

Nowadays, several CLP languages exist, includ-
ing:

The Prolog I11 language of PrologIA,” which
deals with constraints on Boolean formulae, ra-
tional arithmetic, and lists
The CLP(R) language from the IBM Thomas J.
Watson Research Center, which handles con-
straints in real arithmetic
The CHIP language of the ECRC,j3 which solves
constraints on Boolean formulae, rational arith-
metic, and integer arithmetic

Many other domains have also been imbedded
into CLP prototypes, from polynomial con-
s t r a i n t ~ ~ ~ to complex symbolic constraints.

Applications of CLP. Whether using a traditional
programming language or Prolog, when some
arithmetic is needed, the programmer has to ex-
plicitly describe computations while mastering
the information flow (the meaning and the status
of a variable at a specific point in the algorithm).
When the system acquires information in an un-
specified order, the same arithmetic relation (or
constraint) must be translated into several differ-
ent computations throughout the algorithm, de-
pending on which variables are known. More-
over, if partial information (as for the price above)
must be used, data structures and computations
become highly complex.

Therefore, as soon as either incomplete informa-
tion or an unordered information flow has to be

764 BENICHOU ET AL.

dealt with, CLP is a valuable tool. The following
are some examples of such problems.

Configuration systems with CLP. Configuration sys-
tems are tools helping an end user choose a spe-

CLP is a valuable tool
for incomplete information

or for an unordered
information flow.

cific configuration of devices and features while
following some compatibility rules. These rules
are easily expressed as constraints.

The basic step in the configuration process is as
follows: Given the partial configuration selected
so far, the existence of a corresponding valid con-
figuration must be verified, and all of the conse-
quences of current choices have to be inferred.

With a CLP language, it is the constraint solver
that performs this basic step. It is therefore easy
to develop very flexible configuration systems
with which the user may enter choices in any or-
der. Moreover, choices may be expressed very
freely as constraints. For example, in a micro-
computer configuration system, the user could re-
quest a machine with more than 16 Megabytes of
internal memory, the set of possible machines be-
ing automatically reduced.

Such a configuration system has been developed
by Bang & Olufsen, a Danish hi-fi company, with
the CLP(B) prototype (see below).

Device simulation, verification, and diagnosis with CLP.
Many physical devices such as electronic circuits
or mechanical structures may be modeled by con-
straints between their parameters. With a con-
straint-solving capability, the same model can
then be used for the following:

1. Simulation: Given inputs, outputs are auto-

2. Verification: The constraint solver can check
matically deduced.

IBM SYSTEMS JOURNAL, VOL 31, NO 4, 1992

whether the device model implies certain de-
sired properties (expressed as constraints).

3. Diagnosis: Given some observed discrepant
behavior, a search for the misbehaving com-
ponent(s) can easily be implemented in CLP,
taking advantage of the constraint solver to
control this search.

Solving combinatorial problems with CLP. A combi-
natorial problem is one of finding an (optimal)
combination of features that is consistent with
some constraints, the number of possible combi-
nations being enormous. Examples of such prob-
lems are: complex allocation problems, schedul-
ing (with resource constraints) in manufacturing,
distribution, transportation, etc., timetable gen-
eration, and many decision problems.

These problems are easily expressed in a CLP lan-
guage offering constraints on variables belonging
to a discrete domain (e.g., Boolean or integer).
However, they are difficult to solve (i.e., NP-
complete), and, in general, the constraint solver
cannot perform more than a partial consistency
test (without being exponentially slow). So, the
overall problem is solved using an implicit enu-
meration strategy specified by the user. Implicit
enumeration is a search through all possible com-
binations, controlled by the constraint solver that
determines as soon as possible when current
choices cannot lead to any (better) solution. The
efficiency of implicit enumeration is heavily de-
pendent on the heuristics used to order the
search. A major asset of CLP with respect to com-
binatorial problem-solving is that it allows easy
writing of complex dynamic heuristics based on a
direct analysis of the initial problem data.

Research work at the Paris Scientific Center. The
Paris Scientific Center is involved in the PROTOS
project in the design and implementation of an
extension of IBM Prolog by constraint solvers.
Three main prototypes have been developed:

1. CLP(B) is an extension of IBM Prolog with Bool-
ean constraints, developed in collaboration
with Bang & Olufsen. It is very flexible and
allows the user to choose different solving
strategies, from a partial consistency check to
a complete one that infers as many variable
values as possible. Moreover, CLP(B) provides
some high-level facilities including abduction,
projection, and meta-programming with con-
straints. This prototype is efficient compared

IBM SYSTEMS JOURNAL, VOL 31, NO 4, 1992

to other CLP languages and allows real-sized
applications to be tackled.

2. A prototype of a solver for integer arithmetic
has been completed and is currently being in-
terfaced with IBM Prolog and PROTOS-L.

3. A solver for linear constraints on real variables
is in the final phase of implementation.

Further work will be done to make these three
solvers cooperate when solving complex prob-
lems.

Finally, research is being carried out along two
lines:

An algorithm is being designed to solve the dis-
junction of linear constraints on R. It will in-
corporate some of our results about intelligent
backtracking in CLP. 9s5

A general shell allowing scheduling problems to
be easily described and solved is currently be-
ing designed, based on the above prototypes.

Types in Prolog. Although types play an important
role in most modern programming languages,
Prolog is essentially an untyped language. How-
ever, from a software engineering point of view,
types can be vital in the development of reliable
and correct software. Some type declarations
make it possible to automatically reject meaning-
less expressions and terms (like 2 + paris), pro-
vide a means for better structured programs, and
make explicit the data structures used in a pro-
gram. In PROTOS-L," whose type concept is de-
rived from TEL,56 we could declare, for instance,
p a r i s to be of type town and f r ance of type country.
Further, the relation i n -count ry could be said to
take two arguments, the first of type town and the
second of type country, as follows:

- re1 in-country : town X coun t ry

Thus, all uses of i n -count ry are subject to type
checking. If in-country(paris,france) would be
accepted, for instance, in-country(france,paris)
with swapped arguments would be rejected as be-
ing ill-typed, as would in-country(42,france).

Furthermore, having such type and relation dec-
larations, variables do not need to be declared.
Instead, automatic type inferencing for variables
is possible, allowing further programming errors

BENICHOU ET AL. 765

to be detected early at compilation time. For in-
stance, given the relation declaration:

- r e 1 f l i g h t : f l i g h t - n o x town x town

a clause containing:

. . . .in-country(D,C), f l ight(FN, C, A) , . . .
is rejected as being ill-typed because the variable
C cannot be both of type coun t ry (as the second
argument of in-country) and of type town (as the
second argument of f 1 i g h t).

However, a term and thus also a variable may
belong to more than one type if we allow for sub-
type relationships. For instance, the PROTOS-L
type declaration

v e h i c l e := a i r p l a n e ++ c a r ++ t r a i n .

introduces the type v e h i c l e as the union of its
subtypes ai rp lane, car , and t r a i n , where the type
a i r p l ane could, for example, be given by enumer-
ating its elements

a i r p l ane : = {boei ng747, dcl0, a i rbus}.

The subtyping possibility greatly increases the
representation facilities since the universe of dis-
course can now be subdivided and structured in
a flexible way. Moreover, the deduction process
can exploit the subtype relationships when testing
for subtype membership or when restricting var-
iables to subtypes. For instance, the travel rela-
tion declared by

- r e 1 t r a v e l : v e h i c l e x town x town

could be defined with clauses such as:

travel(V,TownDep,TownArr) :- V:airplane, . . .

which is only applicable if the first argument is an
a i rp lane . When the incoming argument V is avari-
able, the subgoal V: a i r p l ane restricts it to the type
a i rp lane . If the previous type of V is incompatible
with a i r p l ane, like c a r or t r a i n , it fails. (In fact, in
this case the PROTOS-L indexing mechanism on
typed variables would exclude this clause as an
alternative to be considered right from the begin-
ning.) Here, V represents the whole set of air-
planes instead of a particular instance of this set.
Thus, the deduction process uses the more ab-

766 BENICHOU ET AL.

stract level of set-denoting types rather than the
level of individuals. This yields not only more
compact intensional answers, but it may also save
a lot of expensive backtracking.

Often, one wants to express data structures in a
parameterized way, and the most common pa-
rameterized data structures in Prolog are lists.
Here is a declarative definition for appending two
lists:

append(11 L, L) .
append([HIT], L, [HITL]) :- append(T, L, TL).

which can be read as: (1) The empty list [I ap-
pended to some list L yields L, and (2) appending
a list with head H and tail T to a list L yields the list
with head H and tail TL, provided that appending
T and L yields TL. (Note that this relational defi-
nition can be used both for appending two given
lists, e.g., append ([1,2,3] , [4,5] , L), and also for
generating all possible splittings of a given list,
e.g., append (L1 , L2 [1,2,3,4,5])). However, a prob-
lem with untyped Prolog is that a goal like

append([] ,2,2). (*I

is also provable from this definition, in contrast to
the intention that append is defined to operate on
lists only. In untyped Prolog, we cannot express
the applicability restriction. In the typed ap-
proach of PROTOS-L, the type of lists is defined by
the polymorphic type definition

l i s t (S) := { [I , [- 1 _ 3 : S x l i s t (S) } .

Here, the variable S ranges over all types and can
be substituted by any type description. Such a
parametric definition makes available all list in-
stances,e.g., l i s t (v e h i c l e) , l i s t (l i s t (t r a i n)) , o r
l i s t (p a i r (t r a i n , t i m e)) where pair(S1,SZ) is an-
other polymorphic type with two type arguments.
Now, the goal (*) above is discovered ill-typed at
compilation time as soon as append has been de-
clared as follows:

re1 append: l i s t (S) x l i s t (S) x l i s t (S)

In order to support the type-checking facilities,
currently every predicate in a PROTOS-L program
must be declared. Among the advantages of this
type system are those gained in traditional pro-
gramming languages (like static consistency
checks at compilation time, avoidance of mean-

IBM SYSTEMS JOURNAL, VOL 31, NO 4, 1992

ingless expressions, explicit data structures, and
better structured programs). An additional advan-
tage in logic programming is that computations on
types can replace otherwise necessary deductions.
This replacement may greatly increase efficiency
by reducing backtracking. Thus, where it might
seem cumbersome to give the typing information
for each predicate in a small prototype, this in-
formation might be vital in a large application.
Moreover, in PROTOS-L, compared to more tra-
ditional approaches, the typing effort is greatly
reduced by the subtyping facility and the avail-
ability of both polymorphic types and predicates.

An open question currently under investigation is
how typed program parts may be brought to-
gether with classical untyped ones (perhaps, by
using a default "root" type for any untyped ele-
ments). Finally, in order to allow general meta-
calls, the type system still has to be extended,
e.g., in the direction of higher-order logic (see for
instance Miller and N a d a t h ~ r ~ ~ or the recent work
on GOdel5* on meta-programming and the use of
types).

Modules and abstract data types in Prolog. A
PROTOS-L program is made of a set of modules.
Each module consists of an inte$ace and a body.
The purpose of the module interface is to define
the set of imported names and the names that are
defined and exported by this module. The user of
a module only sees its interface, not the body. In
the following, we present only the two most sig-
nificant abstraction possibilities enabled by this
module system.

The first is the availability of abstract data types.
In an interface we might have the declarations

interface planner.
time-table := abstract.
- re1 insert: meeting X time-table.
- re1 cancel: meeting X time-table.
- re1 free-time-slot: date X time

X duration X time-table.
endinterface.

where abstract is a reserved word in PROTOS-L.
Thus, the user of the module planner does not
know the representation of the abstract type
time-tab1 e, but may only use the exported rela-
tions like insert, cancel, etc. to access time-table.
As a result, in the body of the module planner, the
representation of t ime-tab1 e can be changed with-

IBM SYSTEMS JOURNAL, VOL 31, NO 4, 1992

out having to change any other module. This ab-
straction mechanism corresponds to the opaque
types in Modula-2 and the abstract types in TEL.

Modules and deductive database access. The
second abstraction possibility enabled by the
module system of PROTOS-L is the transparent ac-
cess to external databases. The user of a module
does not have to know whether an exported re-
lation is implemented by a sequence of program
clauses or by a relation in an external database.
Consider the interface

interface products.
re1 needs: string x string x int.

- re1 depends-on: string x string.
% product product

% product product amount

endinterface.

which exports a relation needs (A,B,M) meaning
that the product A needs the amount M of product
B to be made, and a relation depends-on(A, B) mean-
ing that the production of A depends on the prod-
uct B via the relation needs, possibly involving in-
termediate products.

One possible implementation of these relations
could be in an ordinary program body:

module products.
re1 needs: string X string X int.
- needs("productl" , "product2" , 58).

needs("productl" , "product3", 188).
needs("product2" , "product9", 88).

. . .
- re1 depends-on: string X string.

depends-on (P1 , P2) : - needs (Pl, P2 ,A) .
depends-on(P1,PZ) :- needs(Pl,IM,A),

depends-on (IM, P2).
endmodule.

However, another possibility is to state that the
facts defining needs correspond to the tuples of a
relation Product-needs in an external relational da-
tabase Product-DB. This is achieved by the data-
base body:

database-body products using Product-DB.
re1 needs: string x string x int.

UsedProduct. Amount).
- dbrel needs Product-needs (Product,

endmodul e.

As for depends-on, it may have exactly the same
definition as above, either in this database body or

BENICHOU ET AL. 767

in a separate program body. This simple example
already shows the three levels of database access:

Base relations. In order to access base relations
in an external database one just has to state the
correspondence between the PROTOS-L predi-
cate and its arguments, and the database rela-
tion and its attributes. Here, the predicate
needs corresponds to the database relation
Product-needs whose attributes Product,
Used-Product, and Amount give the first, second,
and third argument of needs, respectively.
Views. Using ordinary Prolog syntax, one can
define database views by clauses in the same
way a Prolog predicate is defined. (In fact, since
there are no nested terms in relational data-
bases, clauses in database bodies are necessar-
ily function-free.)
Recursive views. As is true with depends-on in
the above example, a database predicate may
be defined recursively, as easily as Prolog pred-
icates. This goes beyond the power of SQL sys-
tems that do not allow recursion and plays a
central role in deductive databases.

It is to be noted that the user can access an ex-
ternal database at any one of these three levels,
without having to use a second language such as
SQL. Moreover, PROTOS-L evaluates rules in a
mixed bottom-up and top-down manner and re-
uses intermediate results.59 On large relations (as
typically are database relations), it is well known
that this can result in a significant efficiency gain
over the pure top-down Prolog evaluation strat-
egy. The latter, however, allows complex terms
to be used and may be faster on small relations.
Thus, two different evaluation mechanisms are
combined, each having its own merits. By choos-
ing where to put, for instance, the recursive
depends-on definition (in a program or database
body), the user can choose the most appropriate
evaluation method.

In the same way, access to the deductive data-
base LILOG-DB~’ has also been integrated into
PROTOS-L as a third kind of module bodies
(1 i 1 og-db-body). Since LILOG-DB has a very pow-
erful data model, including open and variant
types, nested terms, and attribute-value notation,
the relations realized in a 1 i 1 og-db-body may con-
tain arbitrary monomorphic and polymorphic
types, whereas the interface to ordinary relational
databases only supports integers, subtypes of
integers, and strings.

768 BENICHOU ET AL.

In the context of database updates, PROTOS-L of-
fers a transaction concept as the underlying da-
tabase management system. For instance, update
operations within a transaction are made perma-
nent only if the transaction can be completed suc-
cessfully; thus backtracking inside a transaction
undoes every insert and delete operation.

Further extensions and prototype availability.
Among further extensions of logic programming,
PROTOS-L handles functions defined by condi-
tional equations. It also provides various new
built-in relations and functions related to types,
e.g., for testing, instantiating, and generating
typed variables. All built-ins are type-safe, in-
cluding file input and output. Type-safe is also the
interface to AIX*/Windows (Advanced Interac-
tive Executive*/Windows) that was developed
for the PROTOS system.61 Through a collection of
a few built-in predicates and types it provides an
object-oriented access to the powerful window-
handling facilities that have already been used ex-
tensively in the PROTOS-L applications. The im-
plementation of the PROTOS-L system prototype is
based on an extension of the Warren Abstract
Machine to polymorphic order-sorted resolution,
and it is currently available on the RISC Sys-
tem/6000 running AIX 3.1, on the RTPC* 6150 run-
ning AIX 2.2.1, and on the Ps/2 running AIX 1.2.

Scheduling applications: A practical application in
Hoechst. In the planning area, PROTOS-L has been
used successfully in various applications such as
railway routing, map coloring, and production
planning and scheduling (PPS) problerns.‘j* We
concentrate here on a particular so-called single-
step PPS application as it occurs in a fiber plant.

When entering the PROTOS project the Hoechst
group had already built the EXAMPL planning sys-
tem described in J a ~ h e m i c h . ~ ~ It was decided to
model this approach in PROTOS-L (HoPla sys-

and to extend the work in the direction of
further replanning facilities.

Motivation. Starting in the late 1960s, the fiber
plant under discussion was (as many others) sup-
posed to use a linear-programming-based system
for its scheduling problems. Although the pro-
gram worked and proposed an “optimal” solu-
tion, it turned out to be unsatisfactory with regard
to several points. First, although believed to be
optimal, the proposed schedule was almost in-
comprehensible. Second, the plant manager usu-

IBM SYSTEMS JOURNAL, VOL 31, NO 4, 1992

ally had several (conflicting) goal functions in
mind that could not be simultaneously introduced
into the system. Finally, the plant manager was
not able to influence the program behavior other
than through some very rough parameters, and
inevitable “manual” changes to the proposed
schedule usually led to more or less worse solu-
tions. As a result, this program based on linear
programming was only rarely used-most of the
scheduling task was done with pencil and paper.

In general, it seems that purely mathematical so-
lutions to PPS problems are unrealistic because of
the following:

Goals as well as parameters often are not easily

Mathematical solutions are hard to explain.
“On the fly” changes to schedules are hardly

If the environment changes, it is often hard to

converted into numerical descriptions.

manageable.

adapt such algorithms.

It was then decided to solve that scheduling prob-
lem using a knowledge-based system such that:

The system should follow the same line of rea-
soning the plant manager uses when generating
a schedule and should be able to explain its
choices.
“Manual” changes to the proposed schedule
should always be possible, with the system in-
corporating these changes in an “optimal” way.

The problem environment. The fiber plant con-
sidered here is made up of several (up to 50) dif-
ferent single-step production lines. Raw material
enters one end of a production line, and the fin-
ished product leaves the other end.

The problem is to schedule from 200 to 1000 or-
ders within a specific period. Each order consists
of a certain amount of some product that has to be
delivered before a certain due date. The spectrum
of possible products ranges over about 12000 dif-
ferent combinations of parameters such as (1) the
basic fiber type, (2) the diameter, (3) the color,
and (4) the bobbin type and size. A product may
be manufactured more or less quickly on only
some (up to 12) of the plant production lines. Fi-
nally, some products cannot be made simulta-
neously in the plant (because of incompatibilities
between the dyes needed in the process).

IBM SYSTEMS JOURNAL, VOL 31, NO 4, 1992

When production proceeds from one product to
another, the production line has to be reconfig-
ured to some extent depending on the parameters
of the preceding and following products. A major
goal is to keep the overall reconfiguration effort as
small as possible. The order due dates are a sec-
ondary criterion as long as all orders are sched-
uled within the considered period.

Implementation and replanning facilities. In-
stead of an algorithmic solution, the system mod-
els the plant manager’s approach to scheduling:
starting from an initial plan consisting of the or-
ders that are already being produced or planned,
the “best next order” on any of the production
lines is searched for and inserted into the plan.
What the “best next order” actually is, is deter-
mined by a set of heuristic rules such as:

A best next order should have the same param-

If one has to switch colors or diameters, take

If one has to switch colors, it is better to switch

eters as its predecessor.

the same color and switch the diameter.

from a lighter color to a darker one.

These rules express the planners’ knowledge on
how to keep the resetting costs low. They can
be translated directly into PROTOS-L, its typing
mechanism providing a first level of consistency
checking for the rule set.

The system offers an explanation facility. During
the still ongoing computation, for every order that
has been planned thus far, the user can already
visualize its characteristics, the resetting costs it
has caused, and, most of all, the reason why it has
been inserted into this position in the plan.

Once the proposed schedule is complete, the user
has a range of replanning facilities. In particular,
the current plan may be changed by requesting
that an order be allocated to a certain production
line, or be the direct successor of another allo-
cated order.

Instead of directly obeying the user’s request, the
system gathers all of the requested changes and
regards them as new scheduling restrictions as
soon as the user decides to start scheduling anew.
This feature helps the plant manager avoid having
schedules worsen each time some changes have
to be made. Since the whole schedule can be re-
done, a “good” result will again be achieved.

BENICHOU ET AL. 769

However, if desired, the planner will be able to
keep certain parts of the plan, e.g., the first week,
or everything up to a particular order, on a spe-
cific production line.

Perspectives. Today, the scheduling application
work in the PROTOS project is continuing in sev-
eral directions. Whereas the scheduling problem
described here takes place in a single plant and is
thus an instance of local planning, distributed and
global planning are now also being investigated.

The unique characteristics of logic programming,
like high-level declarative programming and au-
tomatic search for alternatives via backtracking,
make it an excellent choice for realizing knowl-
edge-based systems such as the one described
above. However, one should not blindly believe
AI techniques to be the “one and only” solution
to scheduling problems. A moderate mixture of AI
and operations research approaches, as pro-
posed, for instance, in the constraint logic pro-
gramming paradigm, seems to be a feasible way.
Moreover, only if AI parts are integrated in ex-
isting organizational software environments such
as databases, will problems be successfully
solved.

Conclusions

The last few years have seen tremendous growth
in both the scope and depth of activities related to
Prolog. Yet much is still to be done before Prolog
is recognized for what it is.

First of all, the message that Prolog is ageneral-
pulpose high-level programming language has
not yet been widely accepted. It is probably one
of the best kept secrets that a lot of production
applications are written in Prolog, and, in fact, the
number is growing every year. In a recent an-
nouncement, IBM positioned Prolog in its AD/Cycle
framework. That strategic announcement should
certainly encourage its customers to use Prolog in
commercial application development.

Second, there is a perception that Prolog is a dif-
ficult language to learn and master because it is
based on mathematical logic, which may be in-
timidating. However, it is not necessary to know
any logic theory to use Prolog efficiently. But it is
thanks to this logic foundation that Prolog is
unique and, contrary to most programming lan-
guages, has a solid theoretical framework.

770 BENICHOU ET AL.

Third, Prolog can be one of the keys to solving the
long-standing productivity and quality problems
of software development. The combination of
logic programming, object-oriented program-
ming, and constraint programming will provide a
new dimension to the traditional way of develop-
ing computer applications, making it possible to
address in a much more comprehensive way all of
the declarative and descriptive aspects of com-
puter applications, thus leading to significant im-
provements in productivity, be it in the develop-
ment of the application or its maintenance. Many
types of applications that seemed too difficult or
expensive can become practical, ranging from
traditional data processing applications through
knowledge-based processing applications to nat-
ural-language processing applications.

Use of Prolog will lead to a change in the skills
required and methods used, and will shift the em-
phasis from traditional programming and testing
toward analysis or, in other words, from a com-
puter solution to problem definition, with the ben-
efit of an overall reduction in costs. Prolog mostly
appeals to a specific class of programmers: typi-
cally those who are more highly skilled in con-
ceptual and abstract reasoning, usually college
graduates in computer science.

Finally, Prolog is particularly well prepared to
exploit parallel architectures that are apt to pre-
vail in the next computer generation.

Acknowledgments

We thank Wayne Chan, the Prolog product man-
ager in the Paris Scientific Center, Ghislain Huy-
berechts, Bruno De Backer, IBM France, and
J. Jachernich, Hoechst, Germany, as well as the
anonymous referees for their valuable comments.
We would also like to thank the following people
who kindly and competently answered our many
questions on the use of Prolog in their organiza-
tions: B. Botella, F. Desprez, P. Marguerie,
P. Taillibert, S. Varennes, Dassault Electron-
ique, France; F. E. Madison-Ferguson, Knowl-
edge-Ware, Inc., USA; J. C . Miginiac, SOCS,
France; A. Marien, L. Maes, J-L. Binot, BIM,
Belgium; A. J. Symonds, P. A. Squitteri, IBM
Mid-Hudson Valley Laboratory; R. Granat,
D. Carney, IBM San Jose; E. Haller, IBM German
Application Development Laboratory, Boblin-
gen; R. Holtke, IBM GMTC Sindelfingen; E. Levy-
Abbegnoli, P. Bertrand, IBM La Gaude Labora-

IBM SYSTEMS JOURNAL, VOL 31, NO 4, 1992

tory; T. Guillotin, IBM Paris Scientific Center;
I. Bretan, IBM Nordic Laboratory, Sweden;
A. Walker, IBM Research; P. Blot, Peugeot SA,
France; and F. Masson, IBM Is, France.

In addition, we thank Rosalind Greenstein for her
patience and apposite remarks in revising this
paper.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of KnowledgeWare,
Inc.

Cited references

1. J. A. Robinson, “A Machine-Oriented Logic Based on the
Resolution Principle,” Journalof theACM12,2341 (Jan-
uary 1965).

2. A. Colmerauer, H. Kanoui, R. Pasero, and P. Roussel,
Un Systeme de Communication Homme-Machine en
Francais, Research Report, Groupe Intelligence Artifi-
cielle, UniversitC Aix-Marseille 11, France (1973).

3. R. Kowalski, “Predicate Logic as a Programming Lan-
guage,” Proceedings ZFZP 74 Congress, Stockholm,
North-Holland (1974), pp. 569-574.

4. D. H. Warren, An Abstract Prolog Instruction Set, Tech-
nical Report 309, Stanford Research Institute, Stanford,
CA (1983).

5. B. Robinet, “Logic Programming at IBM: from the Lab to
the Customer,” Proceedings of the Eighth International
Conference on Logic Programming (ZCLPPI), MIT
Press, Cambridge, MA (1991), pp. 912-921.

6. P. Bellot, V. Jay, R. Legrand, and E. Perottet, “MILES,
A New Step Toward the Integration of Logic and Func-
tions,” Journtes FranGaises des Langages Applicatifs,
La Rochelle (January 1990).

7. A. Berard-Dugourd, J. Fargues, and M-C. Landau, “Nat-
ural Language Analysis Using Conceptual Graphs,”Pro-
ceedings of the International Computer Science Confer-
ence ’88, Hong-Kong (December 1988), pp. 265-272.

8. P. Dague, P. Devbs, and 0. Raiman, “Troubleshooting:
When Modeling Is the Trouble,” 6th National Conference
on Artificial Intelligence, Seattle (July 1987).

9. B. De Backer and H. Beringer, “Intelligent Backtracking
for CLP Languages. An Application to CLP(R),” Znter-
national Logic Programming Symposium, San Diego
(1991).

10. C. Beierle, “Types, Modules and Databases in the Logic
Programming Language PROTOS-L,” in Sorts and Types
for Artificial Intelligence, Lecture Notes in Artificial Zn-
telligence, Vol. 418, K. H. Blasius, U. Hedtstuck, and
C.-R. Rollinger, Editors, Springer-Verlag, Berlin, Heidel-
berg, New York (1990).

11. 0. Herzog and C-R. Rollinger, Text Understanding in
LZLOG, Lecture Notes in Artificial Intelligence, Volume
546, Springer-Verlag, Berlin, Heidelberg, New York
(1991).

12. W. G. Wilson, “Prolog for Applications Programming,”
ZBM Systems Journal 25, No. 2, 190-206 (1986).

13. A. Walker, M. McCord, J. Sowa, and W. Wilson, Knowl-
edge Systems and Prolog: Developing Expert, Database

~

IBM SYSTEMS JOURNAL, VOL 31, NO 4, 1992

and Natural Language Systems, second edition, Addi-
son-Wesley Publishing Co., Reading, MA (1990).

14. Application Development Using ZBM Prolog for OSl2,
GG24-3777, IBM Corporation (1992); available through
IBM branch offices.

15. C. M. Yoder, Applications for Prolog Series, IBM Cor-
poration, Poughkeepsie, NY (1992). (8 volumes.)

16. IBM SAA ADICycle Prolog General Information, GH19-
6886, IBM Corporation (1992); available through IBM
branch offices.

17. ZBM SAA ADICycle Prologl2, Language Reference,
SH19-6888, IBM Corporation (1992); available through
IBM branch offices.

18. IBM SAA ADICycle ProloglMVS & W Language Ref-
erence, SH19-6893, IBM Corporation (1992). (To appear.)

19. M. Benichou, P. Dague, J.-M. Gauthier, and J. P. Nigoul,
“IBM Prolog Language Workbench,” in New Computing
Techniques in Physics Research, D. Perret-Gallix and
W. Wojcik, Editors, Editions du CNRS (1990).

20. IBM SAA ADICycle ProloglMVS & W Extension Fea-
ture Znstallation and Reference, SH19-6897, IBM Corpo-
ration (1992). (To appear.)

21. J. Martin, Information Engineering, Prentice-Hall, Inc.,
Englewood Cliffs, NJ (1990).

22. SOCS publication, OCEANIC: Manuel de Rtftrence
(1991).

23. A. J. Symonds, “Creating a Software-Engineering
Knowledge Base,” ZEEE Software (March 1988).

24. P. Courtin, F. Doladille, and M. Muenier, “Diagnostic de
Pannes dans un Satellite,” TECHNOSPACE-JournteM
et Espace (CNES), Bordeaux, France (December 1988).

25. P. Dague, P. Deves, P. Luciani, and P. Taillibert, “When
Oscillators Stop Oscillating,” 12th International Joint
Conference on Artificial Intelligence (IJCAI91), Sydney
(August 1991).

26. P. Deves, C. Fisher, and P. Taillibert, “Diagnostic B Base
de Modeles: Une Alternative aux Systtmes Experts,”
lleme Journtes Znternationales sur les Systemes Experts
et Leurs, Avignon, France (May 1991).

27. P. Marrot and M. Muenier, “GIBUS: An Operational Ex-
pert System for Space Applications,”Applications ofAr-
tificial Intelligence VZZ Conference (SPZEIZEEE), Orlando
(March 1989).

28. S. Florek and R. Holtke, “TADEX: Semiconductor Inline
Test, Analysis & Disposition Expert Systems,” 4th Work-
shop on Diagnostics and Classification, Berlin (February
1991).

29. R. Holtke, “TADEX: Knowledge Maintenance Done by
the Expert?,” ZBM Expert Systems Newsletter, Docu-
ment Number ESN9102 (February 1991).

30. P. Bertrand, “La Conception de Circuits Integrks As-
sistte par un Systtme Expert,” Les Utilisations Zndus-
trielles du Langage PROLOG, Afcet, Paris (April 1990).

31. E. Levy, “ESFA: An Extended Static Flow Analysis,”
3rd Productiviv and Process Tools Symposium, Thorn-
wood, NY (September 1989).

32. A. Berard-Dugourd, J. Fargues, M-C. Landau, and J-P.
Rogala, “Natural Language Information Retrieval from
French Texts,” Proceedings of the Third Annual Work-
shop on Conceptual Graphs, St. Paul, MN (August 1988),
pp. 3.1.3.1-3.1.3.4.

33. M-C. Landau, “Solving Ambiguities in the Semantic Rep-
resentation of Texts,” Proceedings COLZNG-90 2, Hel-
sinki (August 1990), pp. 239-244.

34. J. F. Sowa, Concephtal Structures for Mind and Ma-

BENICHOU ET AL. 771

chine, Addison-Wesley Publishing Co., Reading, MA
(1984).

35. IBMSAA Language Access General Information, SH19-
6680, IBM Corporation (1990); available through IBM
branch offices.

36. G. Jonsson, “The Development of IBM SAA Language
Access: An Experience Report,” Proceedings 7th Inter-
national Conference on Data Engineering (1991).

37. M. A. Sanamrad and I. Bretan, “IBM SAA Language
Access: a Large-Scale Commercial Product Implemented
in Prolog,” 1st International Conference on the Practical
Application of Prolog, London (April 1992).

38. K. R. Apt, H. Blair, and A. Walker, “Towards a Theory
of Declarative Knowledge” in Foundations ofDeductive
Databases and Logic Programming, J. Minker, Editor,
Morgan Kaufman (1988), pp. 89-148.

39. N. Foo, A. Rao, A. Taylor, and A. Walker, “Deduced
Relevant Types and Constructive Negation,” Proceed-
ings of the Fifth International Conference and Sympo-
sium on Logic Programming, Seattle (1988), pp. 126-139.

40. D. Tzoar and A. Walker, The Syllog Expert Database
System: Notes for Users, IBM Internal Technical Report,
IBM T. J. Watson Research Center, Yorktown Heights,
NY (1992). (Unpublished.)

41. A. Walker, “Backchain Iteration: Towards a Practical
Inference Method Simple Enough to be Proved Termi-
nating, Sound and Complete,” Journal of Automated
Reasoning (1992). (To appear.)

42. A. Beauvieux, “CONVENTION: A System to Organize
Staff Travel,” 3rd International Symposium on Artificial
Intelligence, Monterrey, N.L., Mexico (October 1990).

43. L. Maes, Een Vertaler voor Twee Parallele Uitvoeringe-
modellen voorProlog, Ph.D. thesis, Department of Com-
puter Science, K. U. Leuven, Leuven, Netherlands (May
1989). (A translater for two parallel executing models for
Prolog.)

44. P. Weemeeuw, M. Bruynooghe, and M. De Hondt, “On

flow Architecture,” in ESOP’s8 2nd European Sympo-
Implementing Logic Programming Languages on a Data-

sium on Programming, Ganzinger, Editor (March 198% -.
pp. 359-3721

45. K. Ali and R. Karlsson, “Full Prolog and Scheduling OR-
Parallelism in Muse.” International Journal of Parallel

-

Programming 19, NO. 6 (December 1990). ~

46. K. Ali and R. Karlsson, “The Muse Approach to OR-
Parallel Prolog,” International Journal of Parallel Pro-
gramming 19, No. 2 (April 1990).

47. H.-J. Appelrath, A. B. Cremers, and 0. Herzog, The Eu-
reka Project PROTOS, IBM Germany, Scientific Center,
IKBS, Workshop, Zurich, April 1990, Stuttgart (1990).

48. J. Jaffar and S. Michaylov, “Methodology and Implemen-
tation of a CLP System,” 4th International Conference on
Logic Programming, Melbourne, J-L. Lassez, Editor,
MIT Press, Cambridge, MA (May 1987), pp. 196-218.

49. A. Colmerauer, “Solving Equations and Inequations on
Finite and Infinite Trees,” Fifth Generation Computer
Systems, Tokyo (November 1984).

50. J. Jaffar and J-L. Lassez, “CLP Theory,” 4th IEEE Sym-
posium on Logic Programming, San Francisco (Septem-
ber 1987).

51. A. Colmerauer, “Opening the Prolog 111 Universe,”
BYTE 12, No. 9, 177-182 (August 1987).

52. N. Heintze, H. Jaffar, S. Michaylov, P. Stuckey, and
R. Yap, The CLP(R) Programmer’s Manual, Monash
University, Monash, Australia (June 1987).

53. P. Van Hentenryck, Constraint Satisfaction in Logic Pro-
gramming, MIT Press, Cambridge, MA (1989).

54. K. Sakai and A. Aiba, CAL: A Theoretical Background of
Constraint Logic Programming and Its Applications,
ICOT, Tokyo (April 1988).

55. H. Beringer and B. De Backer, “Diagnosing Systems
Modeled with Piecewise Linear Constraints,” Tools for
Artijicial Intelligence (IEEE), Washington (1990).

56. G. Smolka, TEL (Version 0.9), Report and User Manual,
SEKI-Report SR 87-17, University of Kaiserslautern,

57. D. Miller and G. Nadathur, “Higher-Order Logic Pro-
Kaiserslautern, Germany (1988).

gramming,” in Third International Conference on Logic
Programming, E. Shapiro, Editor, Springer-Verlag, Ber-
lin (1986), pp. 448-462.

58. P. M. Hill and J. W. Lloyd, The Godel Report (Prelimi-
nary Version), TR-91-02, Dept. of Computer Science,
University of Bristol, Bristol, UK (1991).

59. G. Meyer,A PoorMan’s Deductive Database, IWBS Re-
port, IBM Germany, Scientific Center, IKBS, Stuttgart
(1992). (In preparation.)

60. T. Ludwig and B. Walter, “EFTA: A Database Algebra
for Deductive Retrieval of Feature Terms,” Data &
Knowledge Engneering 6 (1990).

61. H. Jasper, “A Logic Based Programming Environment
for Interactive Applications,” Proceedings 4th Interna-
tional Conference on Human-Computer Interaction,
North-Holland, Amsterdam (September 1991).

62. C. Beierle, “ A n Overview on Planning Applications in
PROTOS-L,” in Proceedings 13th IMACS World Con-
gress on Computation and Applied Mathematics,
R. Vichnevetsky and J. H. Miller, Editors, Dublin (July
1991).

63. J. Jachemich, “Rule Based Scheduling in a Fibre Plant,”
in Proceedings 13th IMACS World Congress on Compu-
tation and Applied Mathematics, R. Vichnevetsky and
J. H. Miller, Editors, Dublin (July 1991).

64. H. Wittman, An Example for Knowledge Based Produc-
tion Planning with PROTOS-L, Ph.D. thesis, University
of Stuttgart and IBM Germany Scientific Center, IKBS,
Stuttgart (1991). (In German.)

Accepted for publication August 4, 1992.

Michei Benichou Paris Scientijic Center, Compagnie ZBM
France, 54 rue Roger Salengro, Pkripole 115, 94126 Fontenay
ss Bois, France (electronic mail: benichou@fnbmll. bitnet).
Mr. BCnichnu is currently responsible for worldwide Prolog
market development. He graduated from Paris Ecole Poly-
technique in 1960 and joined IBM France in 1963. After two
years in the Paris Service Bureau, he was in charge of French
marketing and technical support in the mathematical program-
ming area. In 1972 he participated in the creation of the IBM
Paris Program Product Center where he was involved in the
development of the first commercial integer programming
code in IBM, MIP, a part of the MPSX program product. Then
he participated in the design and development of MPSW370
and MIP/370, the IBM Mathematical Programming program
product. In 1980 he joined French professional services,
spending several years in two large French banks helping
them to redesign their information systems. In particular, he
helped Indosuez Bank to design and develop OCAPI, a large
software engineering integrated workbench. After specializ-
ing in expert systems customer support, he joined the Paris
Scientific Center where he has worked in the Prolog devel-

772 BENICHOU ET AL. IBM SYSTEMS JOURNAL, VOL 31, NO 4, 1992

opment team. He is the author of several international papers
dealing with mathematical programming, software engineer-
ing, and Prolog.

Henri Beringer CEMAP, Compagnie IBM France, 6876 quai
de la Rapde, 75592 Paris Cedex 12, France (electronic mail:
beringer@fnbmll. bitnet). Dr. Beringer graduated from Paris
Ecole Polytechnique in 1984 and did his Ph.D. thesis work on
natural language processing at the Paris VI University in 1988.
During his thesis work, he designed and developed the CO-
SYLOG language, an extension of Prolog for symbolic con-
straints. In Dassault Electronique, he first worked on natural
language access to databases of technical documents. During
1988 he was at the Center of Research in Information Pro-
cessing of Montreal (CRIM) where he was responsible for the
MULTIQUEST project and carried out a generic interface to
bibliographic databases using natural language. With IBM
since December 1989, first in the Paris Scientific Center and
recently in the CEMAP, he has been doing research on con-
straint-based diagnosis and on constraint logic programming.
He is now leading the constraint part of the PROTOS project.

Jean-Michel Gauthier Paris Scientific Center, Compagnie
IBMFrance, 54 rue Roger Salengro, Peripole 115, 94126 Fon-
tenay ss Bois, France. A graduate of Paris Ecole Polytech-
nique in 1954, Mr. Gauthier joined IBM France in 1957. He
first worked in the Paris Service Bureau on scientific appli-
cations (on the first IBM 704 computer installed in Europe).
He then started a small operations research group and soon
specialized in mathematical programming. In 1972 he partic-
ipated in the creation of the IBM Paris Program Product Cen-
ter where he was given the responsibility for the development
of the first commercial integer programming code in IBM,
MIP, and then MIP/370, feature of MPSW370, the IBM Math-
ematical Programming program product. Then he became the
product manager of MPSW370. In 1980 he joined IBM France
Professional Services. He spent several years in two large
French banks helping them to redesign their information sys-
tem; in particular, he was deeply involved in the development
of a large integrated CASE workbench. After specializing in
expert systems he joined the Paris Scientific Center to work
in the Prolog development team. He is the author of several
international papers on mathematical programming, software
engineering, and Prolog.

Christoph Beierie IBM Germany, Heidelberg Scientific
Center, Institute for Knowledge-Based Systems, P. 0. Box
80 08 80, 0-7000 Stuttgart, Germany (electronic mail:
beierle@dsOlilog. bitnet). Dr. Beierle received a Diploma de-
gree in computer science from the University of Bonn in 1980.
Between 1981 and 1986 he was a research associate at the
Universities of Bonn and Kaiserslautern, where he worked
primarily in the area of formal foundations of software devel-
opment and verification. In 1985, he received his Ph.D. from
the University of Kaiserslautern with his thesis on algebraic
implementation techniques. From 1986 to 1987, he held an
IBM Postdoctoral Fellowship in the LILOG (Linguistic and
Logic Methods) project of IBM Germany, doing work on
knowledge representation formalisms used for natural lan-
guage processing. Since 1988 he has been with the Institute for
Knowledge Based Systems within the Scientific Center of
IBM Germany. He is project leader for the international
EUREKA project PROTOS (Logic Programming Tools for
Building Expert Systems) in which advanced extensions of

IBM SYSTEMS JOURNAL, VOL 31, NO 4. 1992

logic programming are developed and applied in knowledge-
based planning applications. In 1991, Dr. Beierle received an
IBM Outstanding Innovation Award for his work on the
PROTOS-L system.

Reprint Order No. (3321-5496.

BENICHOU ET A L 773

