The European
telecommunications
research and
development

program RACE and its
software project SPECS

This paper presents the RACE program and the
objectives and achievements of SPECS, a
representative RACE project. The European
Commission has set up the research and
development program RACE for the preparation
and promotion of an integrated broadband
communication system in Europe. The SPECS
project develops methods and techniques for the
development of the complex software needed by
this communication system. lts approach is the
use of formal methods and maximum automation.
A unI%ue feature of this approach is the support
of multiple speclification languages, including the
abllity to mix specification languages within a
given system design.

he Commission of the European Communi-

ties in Brussels and the member states of the
European Community (EC) have long realized the
importance of providing Europe with a modern
telecommunications infrastructure. Some years
ago, Michel Carpentier, General Director of In-
formation Technology and Telecom, European
Commission, said:

Communication is central to all human activi-

ties. Effective and cheap communication serv-
ices are vital to economic performance and are
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therefore crucial to Europe’s economic and so-
cial development. Already, more than half the
jobs in Europe are related to information and
services and involve the use of telecommuni-
cations in all its forms. Advanced infrastruc-
tures for information exchange and services
will be as dominant in the latter part of the 20th
century as canal, rail, and road transport infra-
structures were in the 18th, 19th, and mid-20th
centuries.

This paper presents the Integrated Broadband
Communications (IBC) system, a response to this
need; the RACE program (Research and Develop-
ment in Advanced Communications in Europe),
which is to prepare and promote IBC; and SPECS
(Specification and Programming Environment
for Communication Software), a representative
RACE project, which addresses the software as-
pects of IBC.
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iBC

During the 1980s, the European Commission and
the member states of the EC, in liaison with in-
dustry, government administrations, research
centers, universities, and users, defined the ob-
jectives and the course to follow to ensure that
Europe would have a modern telecommunica-
tions infrastructure. The resulting plan was ap-
proved by the European Parliament. One of its
most important recommendations was to build an
integrated and high-performance European sys-
tem called IBC and to launch the RACE program
that would develop the necessary architecture
and technology. The aspect of integration is es-
sential because it will permit cross-European
country communication and avoid a proliferation
of incompatible equipment and services.

IBC will be a system of terminals, cables,
switches, computers, and satellites that handle
telephone, television, data transmission, and
services in an integrated way. It will allow a
user—at work or at home—to receive and trans-
mit information a hundred thousand times faster
than with current European videotex systems,
and a thousand times faster than the 1SDN (Inte-
grated Services Digital Network). Typically, the
information transmitted will be a mix of high-fi-
delity voice, high-definition color video images,
and alphanumerical data. For such transmission a
communication capability of 155 megabits per
second will be provided at the user’s desk and
several gigabits per second between switches.

The plan is to have IBC commercial operations
start at the end of 1995 and have the IBC system
progressively equipped with optical fibers. Fifty
percent penetration of IBC access is to be
achieved by 2010.

This plan is possible thanks to the development of
electronic and optical technologies, especially
digital and optical fiber, that will give improved
performance, reduce manufacturing costs, and
facilitate the required complex integration. But it
will also require a significant amount of research
and development.

IBC will be, in fact, the nervous system of Europe
that, at the end of the 1990s, will allow people and
machines to communicate easily and at reason-
able cost. It will replace the current mosaic of
national telecommunication networks and will be
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the major component of the European telecom-
munications infrastructure in the 1990s.

The important technological thrust of the IBC will
dramatically change data processing (DP) prod-
ucts and services. DP business growth is highly
dependent upon a modern infrastructure for tele-
communications. In providing a three-orders-of-
magnitude bandwidth increase and three levels of
integration (voice/data/images, services, coun-
tries) for the office and the home, IBC will permit
high-bandwidth, multimedia processing (images,
high-definition video), distributed real-time pro-
cessing, high-volume data transfer, etc. It will
generate new spectrums of applications and serv-
ices, with a concomitant tremendous increase in
the need for DP power.

RACE

RACE is the research and development program
launched and financed up to 50 percent by the EC
in order to prepare the buildup and the use of
IBC.! It is focused both on the system—the stan-
dards and techniques for development, installa-
tion, and operations—and on the participants—
the telecommunication and DP manufacturers,
customers, and operators.

RACE aims at pushing Europe’s telecommunica-
tion operators, users, and industries to join forces
in domains not directly linked with commercial
products: defining the architecture and the tech-
nology base of the future network, studying the
problems of integrating components from various
countries and organizations, developing new in-
tegration techniques, and promoting standards
necessary to build the new network.

Most of the work done to prepare the European
inputs to the standards related to private and pub-
lic networks, network management or more gen-
erally communication management, quality of
services, management network performance, se-
curity, mobile communications, etc. is done in
RACE.

The first phase of RACE, called RACE 1, is cur-
rently composed of 85 projects each having a du-
ration of four to five years, and performed by 85
consortia with approximately 355 European or-
ganizations. This phase represents the effort of
nearly 9000 people-years of high-level profession-
als jointly working until the end of 1992. The sec-
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ond phase, RACE 2, was started in January 1992
and will finish by the end of 1994. It is composed
of 65 projects and represents the effort of about
2000 people.

RACE is structured into three main parts: Part
I—IBC development and implementation strate-
gies, Part II—IBC technologies, covering techno-
logical cooperation in precompetitive research
and development in key areas, and Part III—
prenormative and functional integration, includ-
ing the development of application pilots and
tools to test and verify integrated systems.

The results of Part I are available in the public
domain and are expected to make a major con-
tribution to the development of a common Euro-
pean approach to the introduction of IBC. IBC de-
velopment and implementation strategies are
formulated by taking into account key results
from Part II (technologies) and Part III (applica-
tion pilots and tools).

The coherent, concise, and customized frame-
work of the results of Part I are contained in the
Common Functional Specifications (CFS). A sec-
ond issue of the complete set of the CFS is cur-
rently available.? These specifications represent a
broad consensus of technologists, network oper-
ators, service providers, and users.

With the goal of commercial introduction of IBC
set for the end of 1995, the following main RACE
milestones as defined by the European Commis-
sion have already been met:

» Mid-1988—Establishment of a set of initial as-
sumptions on the configuration and environ-
ment of an IBC system; the number of users,
their distribution and calling rates; etc.

¢ Mid-1989—Firm decisions on a first IBC net-
work, its strategy for introduction, and its strat-
egy for evolution.

* Mid-1990—Definition of a set of system archi-
tecture proposals. These proposals will be
tested and validated in all EC countries.

¢ End 1991—Agreement on an IBC system archi-
tecture. This key product of Part I of the RACE
program will be the basis of proposals for com-
mon functional specifications in international
discussions on standards development.

To illustrate the program, SPECS, a representative
project of Part II, is presented in detail.
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SPECS

The software challenge. The implementation of
1IBC will require extensive, standardized, and
complex software, ranging from the control soft-
ware in high-speed communication switches to
software providing high-level telematics services
to the end users of the IBC network. The charac-
teristics of this software are huge volume, high
complexity, high efficiency, high reliability, con-
tinuous service, customer and country dependen-
cies, multiple suppliers, heterogeneous and dis-
tributed environments, and long life. Although
these individual characteristics are not specific to
the implementation of the IBC, their sum means
that achievement of acceptable cost, perfor-
mance, and timeliness will be difficult without an
improvement in currently available support tech-
niques for the engineering aspects of the devel-
opment of this software.

Many techniques with appropriate tool support
for the managerial and organizational aspects of
software development have been elaborated in
recent years and are being applied in industrial
organizations. The engineering aspects, how-
ever, can be improved to yield an important in-
crease in the productivity of the software indus-
try.* This is the domain to which SPECS is applied.

The goals of SPECS. To meet the software chal-
lenge, the SPECS project has been set up in the
RACE program with the primary goal of specifying
methods and tools to provide maximum automa-
tion and optimization of the software engineering
of IBC software. SPECS considers the entire pro-
cess from requirements and specification through
design, implementation, test, execution, mainte-
nance, and adaptation.

The project has a firm basis from which this goal
can be realized: the use of formal methods. For-
mal methods are based on the use of formal lan-
guages with a precisely defined semantics for the
description of the software under development.
Formal methods exploit the results from aca-
demia in the domain of mathematical approaches
to specification, analysis, and transformation of
parts of software systems.*® This exploitation
can produce an important increase in develop-
ment productivity and software quality.” How-
ever, formal methods cannot and will not elimi-
nate the need for and use of informal methods,
i.e., methods based on the use of either natural
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language or semi-formal notations or both; the
handling and integration of informal methods is
included as an important objective of SPECS.

Software developers often reject formal methods
because of the overhead in learning these meth-
ods and the assumed difficulty in applying them.
This opinion is at least partially founded on de-
velopers’ experience with formal methods at a
time when almost no tool support existed. How-
ever, formal methods enable automation, and au-
tomation makes formal methods amenable to hu-
man use. Therefore, an important goal of SPECS is
the definition and prototyping of tools for aiding
the software developer in applying formal meth-
ods. These tools provide productivity gains in at
least two ways:

¢ They free software developers from clerical
tasks attached to the use of formal languages,
such as checking the syntax.

¢ They execute complex algorithms for the vali-
dation of formal specifications (e.g., deadlock
detection) that, for practical reasons, would be
impossible to apply manually.

Through this extensive tool support and support
for informal methods, SPECS allows a smooth in-
troduction of formal methods in the development
work.

Another important goal of SPECS is openness. The
methods and tools defined by SPECS should be
open to adaptation to particular languages and
methods that are envisaged or are currently in use
in developing software for telecommunications.
Due to variations in roles, sizes, etc. of the or-
ganizations involved in building 1BC, it is unlikely
that each of these organizations will use SPECS
methods and tools in the same manner. Before
being used in a certain organization, these meth-
ods and tools need to be tailored to a specific
context. The openness of the methods and of the
tools architecture makes this tailoring feasible.
SPECS assumes that IBC software development
may require several methodologies. A particular
methodology may be tailored by selecting the
SPECS methods and tools that best suit a specific
organization. The tools are to communicate via
well-defined, exposed, and published interfaces.
Organizations can choose SPECS tools as required
and combine them with their existing in-house
tools. This, in turn, protects the investment in
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existing tools and minimizes the cost of installing
SPECS tools.

The IBC software represents an important devel-
opment effort, and its lifetime is expected to ex-
ceed 20 years. Therefore, the SPECS methods and
tool architecture, which are expected to be used
throughout this lifetime, should be open so as to
allow new developments in software engineering
methods, tools, and techniques to be integrated,
strengthening further the power of the environ-
ment.

The achievements of SPECS. The SPECS project
started in 1988 and is to terminate at the end of
1992, the last year being essentially devoted to the
consolidation and evaluation of the results. The
whole project represents an effort of 320 people-
years.

SPECS has elaborated a set of methods covering:

e The transformation of informal requirements
into formal specifications

¢ The analysis of these specifications

» Their transformation into implementations

» The generation of test suites from these formal
specifications and the execution of these test
suites

These methods have been adapted to the speci-
fication languages SDL%—a CCITT (International
Telegraph and Telephone Consultative Commit-
tee) recommendation—and LOTOS!*"—an 1SO
(International Organization for Standardization)
standard. In both languages, a system is de-
scribed as a dynamic set of concurrent processes
that react to external stimuli. In SDL, a process is
specified as an Extended Finite State machine; in
LOTOS, processes are built from elementary com-
munication actions and operators on processes,
such as sequential composition, parallel compo-
sition, and nondeterministic choice. A major dif-
ference between the two languages lies in the way
processes communicate between themselves and
with the system environment. LOTOS is based on
multiway synchronization, whereas SDL is based
on asynchronous message passing, each SDL pro-
cess having an infinite message queue attached to
it. In SDL, one can moreover express the static
hierarchical system structure. For the specifica-
tion of data types and operations on data, both
languages use algebraic abstract data types, i.e.,
the user defines the effect of the application of a
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function or operator by means of axioms. A de-
scription of SDL and LOTOS, together with exam-
ples, can be found in Binding et al. in this issue of
the I1BM Systems Journal. "

To link together the individual methods it has de-
veloped, SPECS has defined a methodological
framework that can be applied to various life-cy-
cle models.

SPECS has defined a tool architecture, called the
SPECS architecture, for the support of these meth-
ods; an important element of this architecture is
its “common semantic layer.”” A tool set that ad-
heres to this architecture is called a SPECS envi-
ronment. Because this architecture is open, many
different SPECS environments can be built. SPECS
has developed one prototype environment, called
the SPECS prototype, that includes

» Structural editors for the various types of spec-
ification documents

» A navigation tool to store and exploit relation-
ships between specification objects

& A structural editor, a static semantic checker,
and a help tool for both SDL and LOTOS

s Transiators of SDL and LOTOS to a common se-
mantic representation

» An interactive simulation tool operating on this
common semantic representation but interfac-
ing with the user at the LOTOS or SDL level, or
both

» Tools to generate implementations from SDL
and LOTOS specifications and a specific run-time
environment to execute them

» Test support tools

SPECS has defined a component model to support
programming-in-the-large and reuse and has in-
stantiated this component model for various for-
malisms occurring in the SPECS architecture.
SPECS has defined a property language for the
rigorous expression of temporal ordering require-
ments and for communication with analysis tools.

In 1992, the SPECS methods are being evaluated
on applicability and benefits through a pilot case
study that uses the SPECS prototype.

The SPECS methods and architecture are public'®
and can be used by computer-aided software en-
gineering (CASE) tool developers to provide com-
mercial SPECS environments.
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What follows is an overview description of the
SPECS architecture, a presentation of the SPECS
methods and their support tools, a discussion of
the design of the common semantic layer, and
some concluding remarks.

The SPECS architecture

This section first presents the rationale for the
design of the SPECS architecture and then outlines
this architecture.

Motivation. The idea of using formal languages
and methods wherever feasible and useful is at
the heart of the SPECS project. The SPECS archi-
tecture therefore provides tools to support and
automate as much as possible the use of formal
specification languages.

At the end of the “definition phase” of the SPECS
project in 1986-1987 it was concluded that none of
the current specification languages such as SDL,
LOTOS, and ESTELLEY alone fulfills all of the
needs for the specification of telecommunication
systems, but that most desirable features are
available somewhere among the languages.”
Therefore, the SPECS methods and architecture
should not be bound to one particular formal
specification language. The work of the project
concentrated on SDL, widely used in the telecom-
munications industry, and LOTOS, which provides
a higher level of abstraction. The SPECS architec-
ture, however, was designed to be open to new
languages that may emerge from the current work
in academia on concurrency.

In the SPECS view of the development process,
the system is taken through a succession of design
steps, and in an iterative process, from an infor-
mal description to a quality product implementa-
tion. The SPECS architecture provides support for
these transformations. The formalism in which
the system is expressed evolves during this pro-
cess from informal specification through formal
specification to executable code. Wherever pos-
sible, given the state of the art, the formalisms
supported by the architecture are linked to one
another by formal relationships, e.g., expressing
constraints on the preservation of the correctness
of properties of the temporal behavior of pro-
cesses. Therefore, the tools supporting the de-
velopment steps in a SPECS environment should
be able to cooperate at a semantic level, at which
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Figure 1 Key elements of the SPECS architecture

INFORMAL REQUIREMENTS

IMPLEMENTATION
GENERATION

ANALYSIS |

PRODUCTS

the formal relationships can be expressed and
checked.

Description. The major elements of the SPECS ar-
chitecture are outlined in Figure 1.

Informal requirements. The box at the top of Fig-
ure 1 represents the tools supporting methods for
the generation of formal, functional specifications
from informal requirements. Formally specifying
a system is not, in general, an easy task: a thor-
ough understanding of the problem must be
reached before a formal specification correspond-
ing to the system requirements can be correctly
developed. The SPECS approach for developing a
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specification relies on a “divide and conquer”
strategy that supports and records the iterative
elaboration of an understanding of the problem to
aid in the actual production of the formal speci-
fication. The record of the elaboration of the un-
derstanding is useful also during later phases of
the development cycle, e.g., when modifications
are needed. More details are presented later.

The towers. This part of Figure 1 (LOTOS, SDL,
etc.) has been adapted from generic compiler ar-
chitectures; it allows “towers” to be built for each
specification language. A tower is a set of tools
that operates on a specification language. The
core of a tower is composed of a parser and static
semantics checker that builds an internal repre-
sentation of a specification and of a translator to
the common semantic layer described near the
end of this paper. More user-oriented tower tools
include: a syntax-directed editor, a report (e.g.,
cross-reference) generator, and a language-spe-
cific interactive help tool, providing, for example,
context-sensitive access to an on-line language
reference manual. The tower is also the place
where existing tools of a particular specification
language can be integrated.

The SPECS prototype includes towers for the stan-
dardized formal specification languages SDL (in-
cluding its object-oriented extension OSDL'¢) and
LoT0S. Each of these towers includes

* A syntax-directed editor and parser

* A static semantics checker

* A help tool providing explanations on the syn-
tax and semantics of each language construct
and hypertext-like navigation facilities between
help messages

* A translator to the common semantic layer

An important feature resulting from this architec-
ture is the ability to mix specification languages
within a given specification. Each part of a given
specification can be done in the most appropriate
specification language; yet, because of a common
internal representation, such mixed specifica-
tions can be analyzed, animated, prototyped, au-
tomatically implemented, and tested. The precise
description of the connections between system
parts, possibly specified in different languages, is
expressed in the Interconnection Language
(IcL)" (not represented in Figure 1). An example
of an ICL description linking an SDL and a LOTOS
specification can be found in Figure 2.
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Figure 2 A simplified ICL description linking a LOTOS and an SDL specification

SYSTEM network_node

USING
switching unit, /*
control_unit /*
WHERE

ACTION control_unit.connect ! * ->
SIGNAL switching_unit.connect (*)
/>

/*

/*

/*

SIGNAL switching unit.connected(*)
~> ACTION control_unit.connected

expressed in SDL */
expressed in LOTOS x/

VIA switching_unit.c_in;

A LOTOS event 'connect' is */
transformed into an SDL signal */
‘connect' and sent to the SDL channel*/
'c in' x/

VIA switching_unit.c_out
[}

ENDSYSTEM

/* An SDL signal ’'connected' sent on the*/
/* channel 'c_out' to the environment */
/* is transformed into a LOTOS event */
/* on gate ‘connected’ */

Common semantic layer. Central in the architec-
ture is the common semantic layer. For this layer,
an abstract formalism, called the MR/CRL (Math-
ematical Representation and its Common Repre-
sentation Language),’® has been developed that
has an expressive power exceeding that of the
standard specification languages, and that is ca-
pable of being extended with many other con-
cepts once they have sufficiently matured. It
should be noted that the MR/CRL is not intended to
be used by IBC software developers; tools hide
this language completely from the user. MR/CRL
serves as a target for translators from all of the
specification languages used, and as the source
for analysis and implementation-generation tools.
The MR/CRL is an exposed interface of the SPECS
architecture available to tool builders. Thus, to
integrate new tools, it is sufficient to make them
operate on MR/CRL. Through the tower-to-CRL
translators, they can then be applied to all spec-
ification languages supported by a SPECS environ-
ment. More details on the MR/CRL and on some of
its design issues are presented later.

Analysis. This box in Figure 1 includes specifi-
cation analysis tools that operate on the seman-
tics of the specification languages and are not de-
pendent on their particular syntax (as opposed to
syntax checkers, for example). To support all
tower languages and their mixing, these tools are
applied at the common semantic layer. They may
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either operate directly on MR/CRL or first translate
MR/CRL to a representation that is more appro-
priate for a particular analysis tool. These internal
representations and any necessary transforma-
tions are intended to remain invisible to the user.
The architecture provides a specific mechanism,
the so-called “hooks table,” which is built up by
the translators, to support reporting back the re-
sults of analysis in terms meaningful to the user,
i.e., referring only to tower language concepts.

The SPECS prototype includes an interactive sim-
ulation tool that operates on the MR/CRL (but in-
terfaces with the user at the tower level). SPECS
has also prototyped a translator to finite state au-
tomata, on which the temporal logic model
checker EMC™?® could be applied.

Implementation generation. MR/CRL is also the
source for compilers of implementation languages
and operating systems. However, due to the high
expressive power of MR/CRL and its abstract na-
ture (e.g., nondeterminism), an efficient compiler
could not be built for the full MR/CRL. Therefore,
the I-CRL (implementation-oriented CRL) has been
defined (see later discussion on conflicting re-
quirements on the common semantic layer). The
SPECS architecture is not bound to a specific tar-
get operating system; it is open to allow a number
of targets for the generation of code.
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For the SPECS prototype, C was chosen as the
implementation language, and a library of specific
run-time support functions for lightweight pro-
cess management and synchronous and asyn-
chronous interprocess communication has been
developed on top of the UNIX** and AIX* oper-
ating systems. The SPECS prototype includes
translators from SDL and LOTOS via the I-CRL to C
augmented with this library.

SPECS methodological framework

It is not the objective of SPECS to prescribe one
particular methodology, but rather to present a
framework in which the various methods appli-
cable to SPECS can be assembled into a consistent
set and from which individual methods can be
adapted to fit the needs of a particular company.
Thus, although all of the individual steps in the
design process are considered, a traditional “wa-
terfall model”*"* for IBC software development is
not assumed, though such a model could be ap-
plied. Other models, such as the iterative? or spi-
ral®* models, can be applied as well.

A major feature of this framework is the emphasis
on object orientation in the design process. Ob-
ject orientation is the starting point for the defi-
nition of the component model that serves as a
basis for structuring and reuse throughout the de-
sign process.

SPECS proposes methods and tools applicable to
the entire IBC software development life cycle.
Three aspects are highlighted in the following sec-
tions: developing specifications, analyzing spec-
ifications, and implementing specifications.

Developing specifications

The starting point of the specification generation
process is an informal requirements description
written in either natural language or diagrammatic
terms, or both, or an already existing specifica-
tion that one wants to modify, or a combination
of both.

Generation of formal specifications from the in-
formal description is concerned with three related
issues:

* The actual generation of a formal specification
from the informal one
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* The recording of all the knowledge acquired
during that process, including questions raised,
decisions taken, etc.

* The handling of all the documents produced and
of the relations among them, e.g., for browsing
through a set of related documents

This development step is very critical, because a
correct and thorough understanding of its users’
needs is vital for the success of a software prod-
uct; a wrong decision taken at this stage may ren-
der the subsequent development effort useless.
This step may be revisited several times during
later phases of the development, depending on
the life-cycle model adopted. The documents pro-
duced act as an input for these phases (e.g., de-
sign, implementation, testing) and are a useful ba-
sis for the dialog between the client and the
developer.

Each of the issues is now described.

Generation. A thorough understanding of the
problem, which is usually described informally, is
achieved by structuring and re-expressing the
specification at different levels of abstraction and
by analyzing these from different perspectives.
To aid in the process, SPECS has structured the
informal-to-formal path into three activities:

e To get an initial understanding, the developer
structures the informal specification and re-ex-
presses it in terms of concepts of the application
domain (classification).

* To increase this understanding, the problem is
analyzed by using different paradigms in order
to obtain different views (rigorization).”

¢ To consolidate the understanding of the prob-
lem, a formal description on which the auto-
matic transformations of the subsequent devel-
opment steps will be based is developed
(formalization).

With this strategy, the different tasks of the de-
veloper (to understand, to thoroughly analyze, to
model, to handle the specification parts, and to
interact or check with the client) are explicitly
separated, and SPECS developed specific support
for each of them.

The activities are not serial—it is not necessary
(or even desirable in many cases) to complete
classification before beginning to analyze the
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problem or to complete the analysis before be-
ginning to formalize. Feedback to classification
and requirements is expected. The classical
“waterfall” model need not be applied.

These three activities and the support SPECS has
developed for them are now described in more
detail.

Classification. During classification the require-
ments are structured using application domain
concepts. There is no fixed set of concepts; SPECS
has developed an object-oriented method for con-
structing new concepts and for storing them in a
reuse library. Classification is therefore an open
process. Classification takes place against both
functional and nonfunctional information. The
SPECS approach developed for the classification
process has some similarities with Coad’s and
Yourdon’s Object-Oriented Analysis (00A),*
even though it has been developed indepen-
dently. The SPECS approach is more formal, es-
pecially on data aspects, and better adapted to
telecommunications software. SPECS has devel-
oped a textual notation to support it (an example
is given later in Figure 4); this notation, however,
still requires further improvements.

Rigorization. Rigorization provides a means for
the developer to increase the understanding of the
requirements along the path to building formal
specifications. SPECS has evaluated a number of
techniques and has chosen the following ones on
which to focus:

* DCFD (data and control flow diagrams)®* to
give a first overview of a system through the
identification of the main parts of the system
and their interactions and to check this under-
standing with customers

* STD (state transition diagrams)? for modelin%
simple behavioral aspects, and state-charts*~
for modeling complex behavioral aspects

* MSC (message sequence charts)® to represent
some of the temporal sequences of interactions
between processes during a particular period of
time

* ER (entity-relationship diagrams)® to define
static globally shared data and their relation-
ships

* ASN.1 (Abstract Syntax Notation One)® to
model the structure of messages exchanged be-
tween processes
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These techniques cover a wide spectrum of as-
pects, are well known, and have simple diagram-
matic notations. The set chosen is pragmatic and
not fixed: an organization may substitute or add
other techniques, using the guidelines provided
by the methodology for that purpose so that the
SPECS approach is open to other techniques.

SPECS has developed guidelines to help the de-
veloper in building different views of the classified
and informal specification according to these
techniques.

Formalization. SPECS provides specific support
for the exploitation of all the knowledge acquired
and recorded in the two previous steps when writ-
ing down a formal specification. A complete set of
guidelines was obtained by enriching existing
stepwise language-driven methodologies (for ex-
ample, Reference 34). These guidelines help the
developer to take advantage of all of the under-
standing acquired during the classification and
rigorization processes. Predefined mappings be-
tween concepts of the techniques used at the rig-
orous level and the concepts of the formal lan-
guages are part of the set of guidelines.
Hypertext-like navigation facilities for accessing
and browsing the information recorded during
classification and rigorization help the developer
to exploit the acquired knowledge.

Recording. SPECS recommends that throughout
these activities all of the development and han-
dling information (e.g., questions, decisions,
links) be stored and made available to the engi-
neer. SPECS has designed a storage model in
which the classified, rigorous, and formal descrip-
tions recorded are organized into “components”
containing specification parts of the system under
consideration and information relevant to the de-
velopment process itself. The collected informa-
tion is thus the result of the evolving specification
that includes, only as a part, the formal specifi-
cation resulting from this process.

Example. In order to give a sampling of the pos-
sibilities of the methodology, some extracts of the
specification of an alarm call service are pre-
sented below. The example is documented with
comments to draw the reader’s attention to the
particular aspects it is to illustrate. In Figures 4,
6, and 7, the language keywords are printed in
uppercase letters.
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Figure 3 Excerpts from an informal specification of an alarm call service

[P1]
Control Coordinator to a subscriber. ...

[P2]

control. ...

[P3]

[P4]

by the AC processor. ...

The alarm call service (AC) is one of the services provided by the Call

The operation of AC in keypad mode makes use of the KEYPAD and DISPLAY
information elements inserted in adequate messages of the basic call

For activation of the AC service the user shall send a SETUP message with
the KEYPAD FACILITY information element with the following coding:
< servicecode > < Hour > < Minute >. Service Code = 313,...

The Call Control Coordinator receives the messages from the user and
analyzes them. The ones related to the alarm call service are processed

Informal specification. Some extracts of the in-
formal specification of the alarm call service are
presented in Figure 3. Each paragraph is identi-
fied by a tag (e.g., [P1]) for later reference. In the
SPECS prototype, these references are handled by
a hypertext-like tool.

Classification. Some excerpts from the classified
description are given in Figure 4. The syntax de-
fined for the classification process introduces
some formality, but informal text can be used in
most of the constructs, imposing only a light
structure. The notation, however, still needs to be
made more user-friendly. [P1] allowed the uni-
verse of the problem (Context) to be structured
into two parts: the User (i.e., the subscriber) and
the Call Control Coordinator. This is recorded in
the CONCEPT STRUCTURE of the CLASSIFIED
COMPONENT Context, and a reference link to the
relevant paragraph is made (IREFERENCE [P1]).
A similar rationale is behind the structuring of
Call_control_coordinator into Analyzer and
AC_processor. This is recorded in the CONCEPT
STRUCTURE of the CLASSIFIED COMPONENT
Call_control_coordinator, and a reference link to
the relevant paragraph is made (IREFERENCE
[P4]). The decision to not consider the basic call
control protocol messages described in [P2] is re-
corded, and a reference link to the appropriate
paragraph of the informal specification is re-
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corded in IREFERENCE [P2]. A part of the behav-
ior of the Analyzer is presented, in particular be-
cause it will be used throughout the whole
example. In order to have a perspective of its
context, a part of the behavior of the User is also
presented, as well as some interface details.

Rigorization. A DCFD of the Call_control_coor-
dinator is presented in Figure 5. This highlights
the flow of information between Analyzer and
AC_processor, giving a particular view for the
concept structure and interface aspects of the
Call_control_coordinator classified component.

A part of a statechart-like textual description of
the Analyzer is presented in Figure 6. This gives
a particular view for the behavior aspects of the
Analyzer classified component. This extract high-
lights the use of the development information: a
question was raised by the analysis given by this
view and recorded. Reference links to the Ana-
lyzer classified component were omitted here to
simplify the notation.

Formalization. A part of the SDL description of
the behavior of the ‘Analyzer’ (PROCESS AC_anal-
ysis) is presented in Figure 7. It was built upon the
Analyzer classified component, an MSC descrip-
tion of the interactions between User and Ana-
lyzer (not presented here) and the statechart de-
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Figure 4 Excerpts from a classified specification of the informal specification of Figure 3

CLASSIFIED COMPONENT Context

CONCEPT STRUCTURE
DECOMPOSITION LINKS (IREFERENCE {P1])
-> Call_control coordinator
-> User

CLASS Context
INTERFACE ASPECTS
INTERNAL INTERFACES
'User' 'request' INTERFACES TO 'Call_control_coordinator' ‘'indication’
DECISION The basic call control protocol messages (e.g., SETUP message, digits,
control characters) are not considered in this classification; only
the events corresponding to a successful sequence of such protocol messages
(e.g., reguest) are considered (IREFERENCE [P2]).

CLASSIFIED COMPONENT User
CLASS User
BEHAVIOR ASPECTS
INTERNAL EVENT request (IREFERENCE [P3], ...)
DO ATOMIC ACTION
SENDING OF an object ‘'invocation_segment’ (through the 'request' output)
conveying the 'User' 'Address' and a 'keypad_ information_element'’
invoking a supplementary service in 'keypad mode'.
INTERFACE ASPECTS
EXTERNAL INTERFACE
request: output 'invocation_segment’

CLASSIFIED COMPONENT Call_control_coordinator
CONCEPT STRUCTURE
DECOMPOSITION LINKS (IREFERENCE [P4])
~-> Analyzer
-> AC_processor
CLASS Call_control coordinator
INTERFACE ASPECTS
EXTERNAL INTERFACES
indication: input ‘'invocatlion_segment'
response: output ‘notification_segment'
INTERNAL INTERFACES
‘analyzer' 'AC_activation’' INTERFACES TO 'AC processor' ‘activation'

CLASSIFIED COMPONENT Analyzer
CLASS Analyrzer
BEHAVIOR ASPECTS
ON EXTERNAL EVENT indication DO
CASE selector IS 'keypad information_element' OF (the received) 'segment'
WHEN AC_activation_coding (IREFERENCE [P3])
DO ATOMIC ACTION SENDING OF an object with
"hour", "minute" and 'User' "address"
through 'AC_activation' output.

scription of the Analyzer, above. Reference links that can be found between the classified, the rig-
to those descriptions have also been omitted here. orous, and the formal descriptions. For example,

a simple guideline recommends mapping state-
The SPECS formalization guidelines have been chart states onto SDL states. Another guideline
used in this example. It explains the similarities recommends using the statechart technique to an-
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Figure 5 Data flow diagram

Invocation
segment

AC_activation
AC_deactivation

AC_interrogation

AC_notification

Notification
segment

alyze behavior aspects if the intention is to use
SDL for the formal specification.

Handling. To accompany these facilities, the
SPECS architecture provides a set of functions for
editing the specifications and generating reports.
Editing a specification consists of two distinct ac-
tivities: creating a specification and modifying an
existing one. These activities are supported by
browsing and navigation facilities for different
representations (text and graphical). The SPECS
architecture also includes reporting facilities that
generate different types of reports, such as work-
ing reports to be used for further development of
a specification and more persistent external re-
ports that are part of the system documentation.

An evaluation. The methodological separation of
the three activities of classification, structuring,
and formalization activities is believed to be a
unique solution, supporting the different tasks of
the developer and making a bridge between the
use of structuring methods and formal methods.
In particular, the approach behind the classifica-
tion activity—the analysis of the informal speci-
fication using a set of application concepts—
seems invaluable in forming a link between
developer’s and client’s terms.

Some drawbacks should also be mentioned.
Openness is not always an advantage. It provides
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the opportunity to choose and allows, therefore,
different, perhaps incompatible, solutions, which
may be not desirable in large team work. Guide-
lines on when to proceed from classification and
rigorization to formalization do not seem easy to
establish, particularly when the work is carried
out by distributed teams. More work is needed to
refine the current SPECS guidelines on this subject.

Analyzing specifications

The analysis of specifications plays an important
role in the development process. It ensures that
the specification properly reflects the require-
ments; it detects inconsistencies and deficiencies
(i.e., errors) of specifications. In current indus-
trial practice, it is only very late in the develop-
ment process that the system behavior can be
checked by executing implementation code.
SPECS, however, aims to provide the user with
comprehensive information about the system un-
der development very early on. This analysis con-
tributes to early error detection and also provides
guidance for further refinement in the design of a
specification.

The SPECS methodology incorporates various
analysis methods, supported by analysis tools in
the SPECS architecture. They operate on specifi-
cations expressed in one or several specification
languages. Although particular and specialized
internal representations may be used for analysis,
the results that are reported back to the user are
tied to the elements of the source specification.
These methods and tools can be classified as fol-
lows:

* Static semantics—A first level of analysis con-
sists of syntax and static semantic analysis. For
specifications developed with a SPECS environ-
ment, syntactical correctness is naturally ob-
tained through the use of syntax-directed edi-
tors. Static semantic correctness ensures that
all of the used objects (variables, types, pro-
cesses, etc.) are properly defined and used. The
SPECS prototype includes tools to check the
static semantic constraints for SDL and LOTOS
as defined by the CCITT recommendation and
the 1SO standard.

* Animation—This is the symbolic execution or
simulation of specifications. It assists the user
in gaining insight into the behavior of the spec-
ified system and in validating the specification
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Figure 6 Statechart-like textual description of part of the Analyzer

STATE wait for invocation
INPUT invocation_segment /* from User */

DECISION service _code = 313
(TRUE) :
DECISION is AC_activation_coding
(TRUE) :

OUTPUT hour, minute, address

/* AC_activation to AC_processor */;

NEXTSTATE wait for notification;
ENDDECISION

(FALSE) :
/* No description of what happens if service code
is not 313. QUESTION to be raised */

Figure 7 Partial SDL specification of the Analyzer

PROCESS AC analysis ( 1, max_calls ) ;

STATE wait_for_ invocation ;
INPUT
invocation ( address ,
DECISION service_code ;
( AC_service_code )
DECISION invocation ;
( AC_activation )
OUTPUT AC_activate ( address , time ) ;
NEXTSTATE wait_for_notification ;

service_code , invocation , time ) ;

ELSE : NEXTSTATE wait_for_ invocation ; ENDDECISION ;

/* DECISION: it was decided to keep the state
(wait_for_ invocation) when the service code is not 313.
RREFERENCE to statechart of 'Analyzer'/ QUESTION at state
"wait for invocation" */

level. It supports the animation of mixed spec-

with respect to requirements. Animation can be
ifications.

done interactively, where the user has full con-
trol over the execution of the specification and

its interaction with the environment; it can be
test-case-driven or be done with randomly gen-
erated inputs. A mix of these approaches is also
possible. The SPECS prototype includes an in-
teractive animation tool that operates on the
MR/CRL but interfaces with the user at the tower
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* Model checkers—These tools compute the
complete behavior (state graph) of a specifica-
tion and then check that a property holds in all
of the states. This operation, of course, is only
possible for systems with a finite behavior, e.g.,
finite state machines such as simple protocol
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machines. Madel checking cannot be applied to
specifications that have a very large or infinite
state graph, e.g., due to the occurrence of in-
finite data types (such as integers). Once the
desired property to be checked is specified, its
complete verification for a given specification is
automatic (with no user interaction as with an-
imation), and the result (truth of a property) is
guaranteed to hold. The checked properties
correspond to specific requirements on the be-
havior of a system, e.g., absence of deadlock or
a'certain ordering of particular events. The user
expresses these properties in a formalism de-
veloped by SPECS, the “property language.” It
is composed of a general scheme, which is a
first-order temporal logic based on the work by
Stirling and Walker,” and a set of language-
specific basic predicates. The SPECS property
language has been defined for SDL, LOTOS, and
MR/CRL.

Here is an example of a property expressed in
the LOTOS property language. It refers to the
specification of an elevator that was developed
within the project to illustrate some methods.

GX ypen 1 n{ M active(moving_elevator,pid)UX 50y 1 o 1t)

This property states that the elevator will not
move if its door is open. More literally, it means
that on any execution trace (G), after the door
on floor n has opened (X,,., | »), the process
moving_elevator will not be active until (U) the
door on floor n has been closed (X 504 1 »)-

Bisimulation—The theory of formal processes
enables the definition of various equivalences
for processes whose behavior is “similar” de-
spite being syntactically different; the most
commonly used equivalence relation is that of
bisimulation. A bisimulation checker is a tool
that determines whether two processes exhibit
equivalent behavior or not. Typically, a user
would call this tool during the design phase to
make certain that he or she did not modify the
external behavior of a system in some refine-
ment transformations. As for model checkers,
current bisimulation tools can only operate on
specifications whose state graph is finite.

SPECS has developed a very efficient algorithm
for a variant of bisimulation, called branching
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bisimulation, and built a prototype tool using
this algorithm, %%

The tools that use these techniques are integrated
into the SPECS architecture. Although different
formalisms are required for the different tools,
these formalisms are mostly imbedded in the ar-
chitecture as internal representations that are hid-
den from the user. The results, as mentioned ear-
lier, are given in the terms of the specification
languages.

The current state of the art in analysis also in-
cludes structural analysis, which is the most pow-
erful but also the most complex method for val-
idating specifications. This method consists in
proving a property for a specification based on a
proof system, in the way proofs are carried out in
mathematics. It is currently not possible to auto-
mate these methods completely, but some sup-
port for the development and validation of a proof
can be provided. However, these methods re-
quire the user to have a good knowledge of the
proof technique. The application of such methods
is only economically justified for safety-critical
systems. The SPECS architecture does not there-
fore include structural analysis tools.

Implementing specifications

SPECS promotes the early formalization of a sys-
tem in a formal specification language. Such an
abstract functional specification describes what
the system should do. It presents an external view
(“black box™) of what the system should do, but
does not define how it is to be done. During the
design activity, such an abstract specification is
made more precise and implementation-oriented,
describing the internals of the system (“white
box”). Design has several aspects: architectural
design defines the structure of the system imple-
mentation; functional design refines the algorith-
mic parts of the system. In the SPECS approach,
both the black box and the white box are ex-
pressed in the same formalism. Design is thus a
transformational activity.

Obviously, it is not possible to automate the de-
sign activity completely. It requires creativity and
experience to tune the system architecture and
algorithms to satisfy the imposed performance
and reliability requirements.
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The refinement process goes on until the specifi-
cation is complete, consistent, and can be imple-
mented automatically by the SPECS implementa-
tion generation tools, which compile the I-CRL
into high-level programming languages. The SPECS
prototype includes a compiler ' supporting most of
LOTOS and SDL and generating C code.

The currently supported specification languages
LOTOS and SDL do not completely support all of
the design activity. Certain types of implementa-
tion-related information, e.g., target architecture
mapping, programming language and style, selec-
tion of reusable components, modularity, and
connections to the operating system or the envi-
ronment, cannot be expressed in SDL or LOTOS.
The SPECS architecture contains specific formal-
isms associated with each tower language for the
user to express this type of information. The code
generation tools take this design information as
input and orient the translation according to this
information. In the SPECS prototype, these for-
malisms have the form of annotations to the
LOTOS or SDL text.

The SPECS architecture foresees a flow of infor-
mation from analysis tools to code generation
tools to allow the code generation tools to exploit
certain properties derived by the analysis tools to
optimize the generated code. The analysis tools
can automatically provide information on dy-
namic properties of a system (e.g., which opera-
tions are the most frequently used on a data struc-
ture or which processes communicate frequently
and should thus be merged into a single imple-
mentation thread) to allow a higher degree of op-
timization of the implementation than currently
available from automatic tools. However, it has
not been implemented in the SPECS prototype.

The SPECS architecture is not bound to a specific
target operating system or implementation lan-
guage. Its generic structure eases the adaptation
of the implementation-generation tools to a num-
ber of environments. The translation algorithms
and their implementation in the SPECS prototype
do not rely on any peculiar operating system fa-

cility.

The fact that the same language or languages (for
example, SDL or LOTOS) are used throughout the
stages of specification, design, and implementa-
tion can contribute significantly to reducing main-
tenance costs of these designs and implementa-

IBM SYSTEMS JOURNAL, VOL 31, NO 4, 1992

tions. In addition, the open-endedness of the
SPECS architecture and the possibility of mixing
different specification languages allow the later
introduction of new specification languages to de-
velop new or changed parts of an existing prod-
uct. The semantic basis of SPECS is also believed
to be strong enough to cover languages based on
new paradigms as they mature for IBC.

The reporting-back features of the SPECS envi-
ronment have the potential for indicating errors
found during execution in terms of the specifica-
tion languages as is done for animation. This po-
tential, however, requires that the particular run-
time operating system be adapted to access the
required reporting-back interfaces of the SPECS
environment.

The common semantic layer

The common semantic layer, the MR/CRL, is a pro-
cess calculus based on the seminal work by Mil-
ner on CCS,** including features from Hoare’s
csp® and Bergstra’s and Klop’s ACP.** In
MR/CRL, a system representation is built from ba-
sic actions that can be algebraically combined us-
ing a set of process operators. The basic actions
represent synchronous communication between
(concurrent) processes or between the system
and its environment. This communication can in-
volve transmission of data. Processes can be
composed in sequence or in parallel. The nonde-
terministic choice operator composes two pro-
cesses and yields a process that behaves like ei-
ther one of the two processes. It is possible to
make the execution of process dependent on a
Boolean condition, called guard. A set of actions
can be encapsulated in a process to force syn-
chronization between subprocesses of this pro-
cess. Other operators provide for action renam-
ing, abstraction, modeling of persistent data
objects, and the definition of local declaration en-
vironments to support modularization. The data
part of MR/CRL provides the full power of many-
sorted first-order logic, and specific support for
modularization, based on Module Algebra.*

A key issue of SPECS is centered around how to
make this single common semantic layer and its
language realizable and practical. That this issue
is a key one was recognized from the very begin-
ning of SPECS; it has been the subject of intensive
work. This work will result in a final recommen-
dation for a realizable and practical semantic
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layer. Some of the difficulties associated with this
issue are now discussed.

Distinctly different specification languages. The
MR/CRL must support a large variety of tower lan-
guages with potentially very distinct semantic
paradigms so that the user can choose the one that
best fits his or her particular needs. To illustrate
why this is a problem, consider the difference be-
tween LOTOS and SDL.

LOTOS and sDL differ on several points: commu-
nication, data variables, and system structure.
LOTOS is based on synchronous rendezvous com-
munication, SDL is based on asynchronous com-
munication via infinite queues. In LOTOS, data
variables are seen in a functional way. Once a
value has been assigned to a variable, the variable
is substituted (i.e., syntactically replaced) by this
value, and thus “disappears.” In SDL, however,
variables behave as in procedural programming
languages; they are objects that at a given mo-
ment have a certain value. This value may evolve
over time. In LOTOS, variables are always local to
a process. In SDL, there are two mechanisms to
inspect variables in other processes. SDL contains
specific constructs to indicate the static system
structure, whereas LOTOS contains only con-
structs to define the externally visible system be-
havior.

Conflicting requirements on the common semantic
layer. The common semantic layer has to fulfill
several requirements, which, to a certain degree,
are in conflict. The requirements of the common
semantic layer in the SPECS architecture are as
follows:

s The MR/CRL is used to represent specifications
of telecommunication systems expressed in the
tower languages. As the SPECS architecture is
open to new tower languages, MR/CRL should
support not only SDL and LOTOS, but also the
modeling paradigms of plausible new tower lan-
guages. To fulfill this objective, MR/CRL must
have a high expressive power.

¢ The MR/CRL is the formalism on which the anal-
ysis tools operate, either directly or via a trans-
lation to another language. Depending on the
analysis technique used, different properties
are desirable for MR/CRL.

¢ The MR/CRL is an intermediate step in the im-
plementation-generation path from the towers.
In order to enable the generation of efficient
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implementations, MR/CRL should contain all the
implementation-related concepts that exist at
the tower level, so that information that is valu-
able for the implementation generation is not
lost in the translation from the towers to MR/CRL.
For these more implementation-related con-
cepts, however, it is often difficult to define a
clean semantics that fulfills the need of analysis
techniques, especially structural analysis.

To satisfy these requirements, the structure of the
common semantics layer has been refined into
two closely related formalisms—one oriented
toward analysis (A-CRL) and the other toward im-
plementation (I-CRL). A clear semantic relation
exists between both so that analysis results ob-
tained on the A-CRL can be interpreted in I-CRL
terms. I-CRL does not contain the A-CRL con-
structs that can be implemented only very inef-
ficiently or not at all because the semantics is
undecidable. The following example might illus-
trate this point. In the A-CRL data part, it is pos-
sible to make the execution of a process depend
on the truth of any first-order logic formula,
which, in the general case, is not decidable. For
the I-CRL data part, a more pragmatic, but less
powerful, approach has been chosen. The I-CRL
data part is based on a few basic data types (Bool-
eans, integers, rationals, characters), type con-
structors (array, record, list, etc.), and a simple
functional language to build expressions and de-
fine functions. (More details can be found in Ref-
erence 12.) A link exists between the I-CRL data
part and the A-CRL data part: it is possible to de-
fine the semantics of the I-CRL data part in terms
of the A-CRL data part.

Conclusion

Based on the state of the art in software engi-
neering, the SPECS project has elaborated a co-
herent set of methods for the development of the
huge and highly complex software for the Euro-
pean Integrated Broadband Communication sys-
tem. These methods are based on the extensive
use of formal specification languages, enabling
significant automation of the software develop-
ment activities. SPECS has defined an open archi-
tecture for a tool support environment for these
methods and has built a prototype tool set ac-
cording to this architecture.

The work done by SPECS is an important contri-
bution to the introduction of formal approaches in
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industrial environments. First applications of
SPECS results are to be expected in the organiza-
tions that are members of the SPECS consortium,
but the SPECS results are in the public domain and
may be used by an organization interested in the
application of advanced techniques to improve its
productivity and the quality of its software prod-
ucts. Even before the availability of commercial
SPECS environments, the SPECS methods may be
applied with the support of some of the currently
available CASE tools that represent a first approx-
imation of the ideal SPECS architecture.

The diversity of the composition of the SPECS
consortium (network operators and their research
labs, telecommunication and DP manufacturers,
software and service developers) and the good
cooperation within the project created an en-
abling environment for the adaptation of ad-
vanced research results to the needs of IBC soft-
ware development. This outcome illustrates one
of the important achievements of the RACE pro-
gram: the creation of the necessary cooperative
spirit among the various telecommunication and
data processing participants aimed at making the
IBC become a reality in Europe.
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