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This paper  presents  the  RACE pro ram  and  the 
objectives  and  achievements  of S B ECS, a 
representative RACE project. The  European 
Commission has  set up  the  research  and 
development  program RACE for  the  preparation 
and promotion of  an  integrated  broadband 
communication  system In Europe.  The  SPECS 
project  develops  methods  and  techniques  for  the 
development  of  the  complex  software  needed  by 
this communication  system. its approach is the 
use  of  formal  methods  and  maximum  automation. 
A uni ue  feature  of this approach is the  support 
of mu'ltrple specification languages, including  the 
ability to mix  specification languages within a 
given  system  design. 

T he Commission of the  European Communi- 
ties in Brussels  and  the member states of the 

European Community (Ec) have long realized the 
importance of providing Europe  with a modern 
telecommunications infrastructure.  Some  years 
ago, Michel Carpentier,  General  Director of In- 
formation Technology and Telecom, European 
Commission, said: 

Communication is central to all human activi- 
ties. Effective and cheap communication serv- 
ices  are  vital to economic  performance and are 
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therefore crucial to Europe's  economic  and so- 
cial development. Already, more  than half the 
jobs in Europe  are related to information and 
services  and involve the  use of telecommuni- 
cations in all its forms. Advanced infrastruc- 
tures  for information exchange and  services 
will be as dominant in the  latter  part of the 20th 
century  as  canal, rail, and road transport infra- 
structures  were in the 18th, 19th, and mid-20th 
centuries. 

This  paper  presents  the  Integrated  Broadband 
Communications (IBC) system, a response to this 
need; the RACE program (Research and Develop- 
ment in Advanced Communications in Europe), 
which  is to prepare  and  promote IBC; and SPECS 
(Specification and Programming Environment 
for Communication Software), a representative 
RACE project, which addresses  the  software as- 
pects Of IBC. 
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IBC 

During the 1980s, the  European Commission and 
the member states of the EC, in liaison with in- 
dustry, government administrations, research 
centers, universities, and users, defined the  ob- 
jectives  and  the  course to follow to ensure  that 
Europe would have a modern telecommunica- 
tions infrastructure.  The resulting plan was ap- 
proved by the  European Parliament. One of its 
most  important  recommendations  was to build an 
integrated and high-performance European  sys- 
tem called IBC and to launch  the RACE program 
that would develop the necessary  architecture 
and technology. The  aspect of integration is  es- 
sential because it  will permit cross-European 
country communication and avoid a proliferation 
of incompatible equipment and services. 

IBC will be a system of terminals, cables, 
switches,  computers,  and  satellites  that handle 
telephone, television, data transmission, and 
services in an integrated way. It will allow a 
user-at work or at home-to receive and trans- 
mit information a hundred thousand  times  faster 
than with current  European  videotex  systems, 
and a thousand  times  faster  than  the ISDN (Inte- 
grated  Services Digital Network). Typically, the 
information transmitted will be a mix of high-fi- 
delity voice, high-definition color video images, 
and alphanumerical data.  For  such transmission a 
communication capability of 155 megabits per 
second will be provided at  the user’s desk  and 
several gigabits per  second  between  switches. 

The plan is to have IBC commercial operations 
start  at  the  end of 1995 and have  the IBC system 
progressively equipped with  optical fibers. Fifty 
percent  penetration of IBC access  is  to  be 
achieved by 2010. 

This plan is possible thanks to the development of 
electronic and optical technologies, especially 
digital and optical fiber, that will give improved 
performance, reduce manufacturing costs, and 
facilitate the required complex integration. But it 
will also  require a significant amount of research 
and development. 

IBC will be, in fact,  the  nervous  system of Europe 
that,  at  the  end of the 1990s, will allow people and 
machines to communicate easily and at  reason- 
able cost.  It will replace the  current mosaic of 
national telecommunication networks and will be 
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the major component of the  European telecom- 
munications infrastructure in the 1990s. 

The  important technological thrust of the IBC will 
dramatically change data processing (DP) prod- 
ucts and services. DP business growth is highly 
dependent upon a modern  infrastructure for tele- 
communications. In providing a three-orders-of- 
magnitude bandwidth  increase and three levels of 
integration (voiceldatalimages, services, coun- 
tries) for the office and the home, IBC will permit 
high-bandwidth, multimedia processing (images, 
high-definition video),  distributed real-time pro- 
cessing, high-volume data  transfer,  etc.  It will 
generate new spectrums of applications and serv- 
ices, with a concomitant  tremendous  increase in 
the need for DP power. 

RACE 

RACE is the  research and development program 
launched and financed up to 50 percent  by  the EC 
in order  to  prepare  the buildup and the  use of 
IBC. It  is focused both on the system-the stan- 
dards and techniques for development, installa- 
tion, and operations-and on  the participants- 
the telecommunication and DP manufacturers, 
customers, and operators. 

RACE aims at pushing Europe’s telecommunica- 
tion operators,  users, and industries to join forces 
in domains not directly linked with commercial 
products: defining the  architecture and the tech- 
nology base of the  future network, studying the 
problems of integrating components from various 
countries and organizations, developing new in- 
tegration techniques, and promoting standards 
necessary to build the new network. 

Most of the  work  done to prepare  the  European 
inputs to  the  standards related to private and pub- 
lic networks,  network management or more gen- 
erally communication management, quality of 
services, management network performance, se- 
curity, mobile communications, etc. is done in 
RACE. 

The first phase of RACE, called RACE 1, is  cur- 
rently  composed of 85 projects  each having a du- 
ration of four to five years, and performed by 85 
consortia  with approximately 355 European  or- 
ganizations. This  phase  represents the effort of 
nearly 9000 people-years of high-level profession- 
als  jointly working until the end of 1992. The  sec- 
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of  65 projects ind represents  the effort of ;bout 
2000 people. 

RACE is structured  into  three main parts: Part 
I-IBC development and implementation strate- 
gies, Part 11-IBC technologies, covering techno- 
logical cooperation in precompetitive  research 
and development in key  areas, and Part III- 
prenormative and functional integration, includ- 
ing the development of application pilots and 
tools to test  and  verify integrated systems. 

The  results of Part I are available in the public 
domain and are  expected to make a major con- 
tribution to the development of a common Euro- 
pean approach to the  introduction of IBC. IBC de- 
velopment and implementation strategies  are 
formulated by taking into  account  key  results 
from Part I1 (technologies) and Part I11 (applica- 
tion pilots and tools). 

The  coherent, concise, and customized frame- 
work of the  results of Part I are  contained in the 
Common Functional SpeciJcations (CFS). A sec- 
ond issue of the complete set of the CFS is cur- 
rently available. These specifications represent a 
broad consensus of technologists, network  oper- 
ators,  service providers, and users. 

With the goal of commercial introduction of IBC 
set for the  end of 1995, the following main RACE 
milestones as defined by the  European Commis- 
sion have  already been met: 

Mid-1988-Establishment of a set of initial as- 
sumptions  on  the configuration and environ- 
ment of an IBC system;  the number of users, 
their distribution and calling rates;  etc. 
Mid-1989-Firm decisions on a first IBC net- 
work,  its  strategy for introduction, and its  strat- 
egy for evolution. 
Mid-1990-Definition  of a set of system archi- 
tecture proposals. These  proposals will be 
tested and validated in  all EC countries. 
End 1991-Agreement on an IBC system archi- 
tecture.  This  key  product of Part I of the RACE 
program will be  the  basis of proposals for com- 
mon functional specifications in international 
discussions  on  standards development. 

To illustrate the program, SPECS, a representative 
project of Part 11, is  presented in detail. 
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The  software  challenge. The implementation of 
IBC will require extensive,  standardized, and 
complex  software, ranging from the  control soft- 
ware in high-speed communication switches to 
software providing high-level telematics  services 
to the end users of the IBC network. The  charac- 
teristics of this  software  are huge volume, high 
complexity, high efficiency, high reliability, con- 
tinuous  service,  customer and country  dependen- 
cies, multiple suppliers, heterogeneous and dis- 
tributed environments,  and long life. Although 
these individual characteristics  are not specific to 
the implementation of the IBC, their sum  means 
that achievement of acceptable  cost, perfor- 
mance, and timeliness will be difficult without  an 
improvement in currently available support tech- 
niques for the engineering aspects of the devel- 
opment of this software. 

Many  techniques  with  appropriate tool support 
for the managerial and organizational aspects of 
software development have  been  elaborated in 
recent  years and are being applied in industrial 
organizations. The engineering aspects, how- 
ever,  can be improved to yield an important in- 
crease in the  productivity of the  software indus- 
try. This is the domain to which SPECS is applied. 

The goals of SPECS. To meet the  software chal- 
lenge, the SPECS project has been set up in the 
RACE program with  the primary goal of specifying 
methods and tools to provide maximum automa- 
tion and optimization of the  software engineering 
of IBC software. SPECS considers  the  entire  pro- 
cess from requirements and specification through 
design, implementation, test,  execution, mainte- 
nance, and adaptation. 

The project  has a firm basis from which this goal 
can be realized: the  use of formal methods. For- 
mal methods  are  based on the  use of formal lan- 
guages with a precisely defined semantics for the 
description of the  software  under development. 
Formal  methods exploit the  results from aca- 
demia in the domain of mathematical approaches 
to specification, analysis, and transformation of 
parts of software  systems.&  This exploitation 
can  produce an important  increase in develop- 
ment productivity and software quality.’ How- 
ever, formal methods  cannot and will not elimi- 
nate  the need for and use of informal methods, 
Le., methods based on the  use of either  natural 
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language or semi-formal notations or both;  the 
handling and integration of informal methods  is 
included as an important objective of SPECS. 

Software  developers  often reject formal methods 
because of the  overhead in learning these meth- 
ods and  the assumed difficulty  in applying them. 
This opinion is at  least partially founded on de- 
velopers'  experience  with formal methods  at a 
time when almost no tool support  existed.  How- 
ever, formal methods  enable automation, and au- 
tomation makes formal methods amenable to hu- 
man use. Therefore, an  important goal of SPECS is 
the definition and prototyping of tools for aiding 
the  software  developer in applying formal meth- 
ods.  These  tools provide productivity gains in at 
least  two ways: 

They  free  software  developers from clerical 
tasks  attached to the  use of formal languages, 
such as checking the  syntax. 
They  execute  complex algorithms for  the vali- 
dation of formal specifications (e.g., deadlock 
detection)  that, for practical  reasons, would be 
impossible to apply manually. 

Through this  extensive tool support and support 
for informal methods, SPECS allows a smooth in- 
troduction of formal methods in the development 
work. 

Another  important goal of SPECS is openness. The 
methods and tools defined by SPECS should be 
open to adaptation to particular languages and 
methods  that  are envisaged or are  currently in use 
in developing software for telecommunications. 
Due to variations in roles, sizes, etc. of the  or- 
ganizations involved in building IBC, it is unlikely 
that  each of these organizations will use SPECS 
methods and tools in the  same  manner.  Before 
being used in a certain organization, these meth- 
ods and tools need to be tailored to a specific 
context. The  openness of the  methods  and of the 
tools  architecture  makes  this tailoring feasible. 
SPECS assumes  that IBC software development 
may require  several methodologies. A particular 
methodology may be tailored by selecting the 
SPECS methods and tools  that  best  suit a specific 
organization. The tools  are to communicate  via 
well-defined, exposed,  and published interfaces. 
Organizations can  choose SPECS tools as required 
and combine them  with their existing in-house 
tools. This, in turn,  protects  the  investment in 
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existing tools and minimizes the  cost of installing 
SPECS tools. 

The IBC software  represents  an  important devel- 
opment effort, and its lifetime is  expected to ex- 
ceed 20 years.  Therefore,  the SPECS methods and 
tool architecture, which are  expected to  be used 
throughout this lifetime, should be open so as  to 
allow new developments in software engineering 
methods, tools, and techniques to be  integrated, 
strengthening further  the  power of the environ- 
ment. 

The  achievements of SPECS. The SPECS project 
started in 1988 and is to terminate  at  the end of 
1992, the  last  year being essentially  devoted to  the 
consolidation and evaluation of the results. The 
whole  project  represents an effort of 320 people- 
years. 
SPECS has  elaborated a set of methods covering: 

The  transformation of informal requirements 

The analysis of these specifications 
Their  transformation  into implementations 
The  generation of test  suites from these formal 
specifications and  the  execution of these  test 
suites 

into formal specifications 

These  methods  have been adapted to the speci- 
fication languages SDL899-a CCITT (International 
Telegraph and Telephone  Consultative Commit- 
tee) recommendation-and LOTOS '',"-an ISO 
(International Organization for Standardization) 
standard.  In  both languages, a system  is  de- 
scribed as a dynamic set of concurrent  processes 
that  react to external stimuli. In SDL, a process  is 
specified as an  Extended  Finite  State machine; in 
LOTOS, processes  are built from elementary com- 
munication actions and operators  on  processes, 
such as sequential composition, parallel compo- 
sition, and nondeterministic choice. A major dif- 
ference  between  the  two languages lies in the way 
processes communicate between  themselves and 
with  the  system environment. LOTOS is  based on 
multiway synchronization,  whereas SDL is  based 
on asynchronous message passing, each SDL pro- 
cess having an infinite message queue  attached to 
it. In SDL, one  can  moreover  express  the  static 
hierarchical system  structure. For the specifica- 
tion of data  types and operations on data,  both 
languages use algebraic abstract  data  types, i.e., 
the  user defines the effect of the application of a 
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function or operator  by means of axioms. A de- 
scription of SDL and LOTOS, together with exam- 
ples, can be found in  Binding et al.  in this issue of 
the IBM Systems  Journal. l2 

To link together the individual methods it has de- 
veloped, SPECS has defined a methodological 
framework that can be applied to various life-cy- 
cle models. 

SPECS has defined a tool architecture, called the 
SPECS architecture, for the support of these meth- 
ods; an important element of this architecture is 
its “common semantic layer.” A tool set that ad- 
heres to this architecture is  called a SPECS envi- 
ronment. Because this architecture is open, many 
different SPECS environments can be built. SPECS 
has developed one prototype environment, called 
the SPECS prototype, that includes 

Structural editors for the various types of spec- 
ification documents 
A navigation tool to  store and exploit relation- 
ships between specification objects 
A structural editor, a static semantic checker, 
and a help tool for both SDL and LOTOS 
Translators of SDL and LOTOS to a common se- 
mantic representation 
An interactive simulation tool operating on this 
common semantic representation but interfac- 
ing with the user at the LOTOS or SDL level, or 
both 
Tools to generate implementations from SDL 
and LOTOs specifications and a specific run-time 
environment to execute them 
Test  support tools 

SPECS has defined a component  model to  support 
programming-in-the-large and reuse and has in- 
stantiated this component model for various  for- 
malisms occurring in the SPECS architecture. 
SPECS has defined a property language for the 
rigorous expression of temporal ordering require- 
ments and for communication with analysis tools. 

In 1992, the SPECS methods are being evaluated 
on applicability and benefits through a pilot case 
study  that  uses the SPECS prototype. 

The SPECS methods and architecture are public13 
and can be used by computer-aided software en- 
gineering (CASE) tool developers to provide com- 
mercial SPECS environments. 

IBM SYSTEMS JOURNAL,  VOL 31, NO 4, 1992 

What follows is an overview description of the 
SPECS architecture, a presentation of the SPECS 
methods and their support tools, a discussion of 
the design of the common semantic layer, and 
some concluding remarks. 

The SPECS architecture 

This section first presents  the rationale for the 
design of the SPECS architecture and then outlines 
this architecture. 

Motivation. The idea of using formal languages 
and methods wherever feasible and useful is at 
the heart of the SPECS project. The SPECS archi- 
tecture therefore provides tools to  support and 
automate as much as possible the use of formal 
specification languages. 

At the end of the “definition phase” of the SPECS 
project in 1986-1987 it was concluded that none of 
the  current specification languages such as SDL, 
LOTOS, and ESTELLE~~ alone  fulfills  all of the 
needs for the specification of telecommunication 
systems, but that most desirable features  are 
available somewhere among the languages. l5 
Therefore, the SPECS methods and architecture 
should not be bound to one particular formal 
specification language. The  work of the project 
concentrated on SDL, widely used in the telecom- 
munications industry, and LOTOS, which provides 
a higher level of abstraction. The SPECS architec- 
ture, however, was designed to  be open to new 
languages that may emerge from the  current  work 
in academia on concurrency. 

In the SPECS view of the development process, 
the system is taken through a succession of design 
steps, and  in  an iterative process, from an infor- 
mal description to a quality product implementa- 
tion. The SPECS architecture provides support for 
these transformations. The formalism in which 
the system is expressed evolves during this pro- 
cess from informal specification through formal 
specification to executable code. Wherever pos- 
sible, given the  state of the  art,  the formalisms 
supported by the architecture are linked to one 
another by formal relationships, e.g., expressing 
constraints on  the preservation of the  correctness 
of properties of the temporal behavior of pro- 
cesses. Therefore, the tools supporting the de- 
velopment steps in a SPECS environment should 
be able to cooperate  at a semantic level, at which 
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Figure 1 Key  elements of the SPECS architecture 

INFORMAL  REQUIREMENTS 

the formal relationships can  be  expressed and 
checked. 

Description. The major elements of the SPECS ar- 
chitecture  are outlined in Figure 1. 

Informal  requirements. The  box  at  the  top of Fig- 
ure 1 represents  the  tools  supporting  methods for 
the generation of formal, functional specifications 
from informal requirements. Formally specifying 
a system  is  not, in general, an easy task: a thor- 
ough understanding of the problem must  be 
reached  before a formal specification correspond- 
ing to the  system  requirements  can be correctly 
developed. The SPECS approach  for developing a 

654 DAUPHIN ET AL. 

specification relies on a "divide and conquer" 
strategy  that  supports  and  records  the  iterative 
elaboration of an understanding of the problem to 
aid  in the actual  production of the formal speci- 
fication. The record of the elaboration of the un- 
derstanding  is useful also during later  phases of 
the development cycle, e.g., when modifications 
are  needed. More details  are  presented  later. 

The towers. This  part of Figure 1 (LOTOS, SDL, 
etc.)  has been adapted from generic compiler ar- 
chitectures; it allows "towers" to  be built for each 
specification language. A tower is a set of tools 
that  operates  on a specification language. The 
core of a tower is composed of a parser and static 
semantics  checker  that builds an internal  repre- 
sentation of a specification and of a translator to 
the common semantic layer described near  the 
end of this paper. More  user-oriented  tower  tools 
include: a syntax-directed  editor, a report (e.g., 
cross-reference)  generator,  and a language-spe- 
cific interactive help tool, providing, for example, 
context-sensitive  access to  an on-line language 
reference manual. The  tower  is  also the place 
where existing tools of a particular specification 
language can be integrated. 

The SPECS prototype includes towers for the  stan- 
dardized formal specification languages SDL (in- 
cluding its object-oriented extension O S D L ~ ~ )  and 
LOTOS. Each of these  towers includes 

A syntax-directed  editor and parser 
A static  semantics  checker 
A help tool providing explanations  on  the syn- 
tax and semantics of each language construct 
and  hypertext-like navigation facilities between 
help messages 
A translator  to  the common semantic layer 

An important  feature resulting from this architec- 
ture is the ability to mix specification languages 
within a given specification. Each part of a given 
specification can  be  done in the  most  appropriate 
specification language; yet,  because of a common 
internal representation,  such mixed specifica- 
tions can  be analyzed, animated, prototyped, au- 
tomatically implemented, and tested.  The  precise 
description of the  connections  between  system 
parts, possibly specified in different languages, is 
expressed in the Interconnection  Language 
(ICL)'~ (not  represented in Figure 1). An example 
of an ICL description linking an SDL and a LOTOS 
specification can  be found in Figure 2. 
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Figure 2 A simplified ICL  description  linking  a LOTOS and an  SDL  specification 

SYSTEM network-node 
USING 

switching-unit, / *  expressed in SDL * /  
control-unit / *  expressed  in LOTOS * /  

WHERE 
ACTION control-unit.connect ! * -> 

SIGNAL switching-unit.connect(*) VIA switching-unit.c-in; 
/ *  A  LOTOS  event 'connect' is * /  
/ *  transformed  into an  SDL  signal * /  
/ *  'connect' and sent to  the  SDL  channel*/ 
/ *  'c-in' * /  

SIGNAL switching-unit.connected(*) VIA switching-unit.c-out 
-> ACTION control-unit.connected ! *; 

/ *  An SDL  signal 'connected' sent  on the*/ 
/ *  channel 'c-out' to  the  environment * /  
/ *  is transformed  into a LOTOS event * /  
/ *  on  gate 'connected' * /  

ENDSYSTEM 

Common semantic layer. Central in the  architec- 
ture  is  the common semantic layer. For this layer, 
an abstract formalism, called the MFUCRL (Math- 
ematical Representation and its Common Repre- 
sentation Language)," has  been developed that 
has an expressive power exceeding that of the 
standard specification languages, and that is ca- 
pable of being extended with many  other  con- 
cepts  once  they have sufficiently matured.  It 
should be  noted  that  the MWCRL is not intended to 
be used by IBC software  developers; tools hide 
this language completely from the  user. MFUCRL 
serves as a target for translators from all of the 
specification languages used, and as the  source 
for analysis and implementation-generation tools. 
The MFUCRL is an  exposed  interface of the SPECS 
architecture available to tool builders. Thus, to 
integrate new tools, it is sufficient to make them 
operate  on MWCRL. Through the tower-to-CRL 
translators,  they  can  then be applied to all spec- 
ification languages supported by a SPECS environ- 
ment. More details on the MWCRL and  on  some of 
its design issues  are  presented later. 

Analysis. This box in Figure 1 includes specifi- 
cation analysis tools  that  operate  on  the  seman- 
tics of the specification languages and are not de- 
pendent on their particular syntax  (as  opposed  to 
syntax  checkers, for example). To support all 
tower languages and their mixing, these tools are 
applied at the common semantic layer. They may 
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either  operate  directly  on MWCRL or first translate 
MWCRL to a representation  that  is  more  appro- 
priate for a particular analysis tool. These internal 
representations and any  necessary  transforma- 
tions  are intended to remain invisible to  the user. 
The  architecture  provides a specific mechanism, 
the so-called "hooks table," which is built up by 
the  translators, to support reporting back  the re- 
sults of analysis in terms meaningful to the  user, 
i.e., referring only to tower language concepts. 

The SPECS prototype includes an  interactive sim- 
ulation tool that  operates  on  the MwCRL (but in- 
terfaces  with  the  user  at  the  tower level). SPECS 
has  also  prototyped a translator to finite state au- 
tomata,  on which the temporal logic model 
checker EMC'9v20 could be applied. 

Implementation generation. MFUCRL is also  the 
source for compilers of implementation languages 
and operating  systems.  However,  due to the high 
expressive power of MFUCRL and its  abstract  na- 
ture (e.g., nondeterminism), an efficient compiler 
could not be built for  the full MWCRL. Therefore, 
the I-CRL (implementation-oriented CRL) has  been 
defined (see  later discussion on conflicting re- 
quirements on the common semantic  layer). The 
SPECS architecture  is  not bound to a specific tar- 
get operating  system; it is  open to allow a number 
of targets for the  generation of code. 
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For  the SPECS prototype, C was  chosen as the 
implementation language, and a library of specific 
run-time support  functions for lightweight pro- 
cess management and synchronous and asyn- 
chronous  interprocess communication has  been 
developed on  top of the UNIX** and AIX* oper- 
ating systems.  The SPECS prototype includes 
translators from SDL and LOTOS via  the I-CRL to C 
augmented with  this library. 

SPECS  methodological  framework 

It is not  the objective of SPECS to prescribe one 
particular methodology, but  rather to present a 
framework in which the  various  methods appli- 
cable to SPECS can  be assembled into a consistent 
set and from which individual methods  can be 
adapted to fit the  needs of a particular company. 
Thus, although all of the individual steps in the 
design process  are  considered, a traditional “wa- 
terfall model”21,22 for JBC software development is 
not  assumed, though such a model could be  ap- 
plied. Other models, such as  the  iterativez3 or spi- 
ral= models, can  be applied as well. 

A major feature of this framework is  the  emphasis 
on object orientation in the design process. Ob- 
ject  orientation  is  the  starting point for the defi- 
nition of the  component model that  serves as a 
basis for structuring and reuse throughout the  de- 
sign process. 

SPECS proposes  methods and tools applicable to 
the  entire IBC software development life cycle. 
Three  aspects  are highlighted  in the following sec- 
tions: developing specifications, analyzing spec- 
ifications, and implementing specifications. 

Developing  specifications 

The  starting point of the specification generation 
process  is an informal requirements description 
written in either  natural language or diagrammatic 
terms, or both, or an already existing specifica- 
tion that  one  wants to modify, or a combination 
of both. 

Generation of formal specifications from the in- 
formal description  is  concerned with three related 
issues: 

The  actual generation of a formal specification 
from  the informal one 
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decisions  taken,  etc. 
The handling of all the  documents produced and 
of the relations among them, e.g., for browsing 
through a set of related documents 

This development step  is very critical, because a 
correct and thorough understanding of its users’ 
needs  is  vital for the  success of a software prod- 
uct; a wrong decision taken  at  this  stage may ren- 
der the  subsequent development effort useless. 
This  step  may be revisited several times during 
later  phases of the development, depending on 
the life-cycle model adopted.  The  documents pro- 
duced  act as an input for these  phases (e.g., de- 
sign, implementation, testing) and are a useful ba- 
sis for  the dialog between  the client and the 
developer. 

Each of the  issues is now described. 

Generation. A thorough understanding of the 
problem, which is usually described informally, is 
achieved by structuring and re-expressing the 
specification at different levels of abstraction and 
by analyzing these from different perspectives. 
To aid in the  process, SPECS has  structured  the 
informal-to-formal path  into  three activities: 

To get an initial understanding, the  developer 
structures  the informal specification and re-ex- 
presses it  in terms of concepts of the application 
domain (classijication). 
To increase  this understanding, the problem is 
analyzed by using different paradigms in order 
to  obtain different views (rigorization)." 
To consolidate  the understanding of the prob- 
lem, a formal description on which the  auto- 
matic  transformations of the  subsequent devel- 
opment  steps will be based  is developed 
(formalization). 

With this  strategy,  the different tasks of the  de- 
veloper  (to  understand, to thoroughly analyze, to 
model, to handle the specification parts, and to 
interact or  check  with  the client) are explicitly 

’ separated, and SPECS developed specific support 
for each of them. 

The activities are  not serial-it is not  necessary 
(or  even desirable in many cases) to complete 
classification before beginning to analyze  the 
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problem or  to complete the analysis before  be- 
ginning to formalize. Feedback to classification 
and requirements  is expected. The classical 
“waterfall” model need not be applied. 

These  three activities and  the  support SPECS has 
developed for them  are now described in more 
detail. 

CZassificatiun. During classification the require- 
ments  are  structured using application domain 
concepts.  There  is  no k e d  set of concepts; SPECS 
has developed an object-oriented method for  con- 
structing new concepts and for storing  them in a 
reuse library. Classification is therefore an open 
process. Classification takes place against both 
functional and nonfunctional information. The 
SPECS approach developed for  the classification 
process  has  some similarities with Coad’s and 
Yourdon’s Object-Oriented Analysis (00A),26 
even though it has been developed indepen- 
dently. The SPECS approach is more formal, es- 
pecially on data  aspects, and better  adapted to 
telecommunications software. SPECS has devel- 
oped a textual notation to support it (an example 
is given later in Figure 4); this notation, however, 
still requires  further improvements. 

Rigorization. Rigorization provides a means for 
the developer to increase  the  understanding of the 
requirements along the  path to building formal 
specifications. SPECS has  evaluated a number of 
techniques and has chosen  the following ones  on 
which to focus: 

DCFD (data and control flow to 
give a first overview of a system through the 
identification of the main parts of the  system 
and their interactions  and to check  this  under- 
standing with  customers 

simple behavioral aspects, and s ta te-~harts’~,~~ 
for modeling complex behavioral aspects 
MSC (message sequence  charts)31 to represent 
some of the temporal sequences of interactions 
between  processes during a particular period of 
time 
E/R (entity-relationship diagrams)32 to define 
static globally shared  data and their relation- 
ships 
ASN.1 (Abstract  Syntax  Notation  One)33 to 
model the  structure of messages exchanged be- 
tween  processes 

STD (state  transition diagrams)28 for modelin 

IBM SYSTEMS JOURNAL, VOL 31, NO 4, 1992 
I 

These  techniques  cover a wide spectrum of as- 
pects,  are well known, and  have simple diagram- 
matic notations. The  set  chosen is pragmatic and 
not k e d :  an organization may substitute or add 
other  techniques, using the guidelines provided 
by  the methodology for that  purpose so that  the 
SPECS approach is open to other techniques. 

SPECS has developed guidelines to help the  de- 
veloper in building different views of the classified 
and informal specification according to  these 
techniques. 

Formalization. SPECS provides specific support 
for the exploitation of all the knowledge acquired 
and recorded in the  two  previous  steps  when  writ- 
ing down a formal specification. A complete set of 
guidelines was obtained by enriching existing 
stepwise language-driven methodologies (for ex- 
ample, Reference 34). These guidelines help the 
developer to take  advantage of all of the under- 
standing acquired during the classification and 
rigorization processes. Predefined mappings be- 
tween  concepts of the  techniques used at the rig- 
orous level and the  concepts of the formal lan- 
guages are  part of the  set of guidelines. 
Hypertext-like navigation facilities for accessing 
and browsing the information recorded during 
classification and rigorization help the  developer 
to exploit the acquired knowledge. 

Recording. SPECS recommends  that throughout 
these activities all of the development and han- 
dling information (e.g., questions, decisions, 
links) be stored and made available to the engi- 
neer. SPECS has designed a storage model in 
which the classified, rigorous, and formal descrip- 
tions  recorded  are organized into  “components” 
containing specification parts of the  system  under 
consideration and information relevant to  the  de- 
velopment  process itself. The collected informa- 
tion is  thus  the  result of the evolving specification 
that includes, only as a part,  the formal specifi- 
cation resulting from this  process. 

Example. In  order to give a sampling of the pos- 
sibilities of the methodology, some extracts of the 
specification of an alarm call service  are  pre- 
sented below. The example is documented with 
comments to  draw the reader’s attention to the 
particular  aspects it is to illustrate. In Figures 4, 
6, and 7, the language keywords  are printed in 
uppercase  letters. 
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Figure 3 Excerpts  from an Informal  specification of  an alarm call service 

The alarm call service (AC) is one of the services provided by the Call 
Control Coordinator to a subscriber. . . .  
[P21 
The operation of AC in keypad mode makes use of the KEYPAD and DISPLAY 
information elements inserted in adequate messages of the basic call 
control. . . .  
[P31 
For activation of the AC service  the user shall send a SETUP message with 
the KEYPAD FACILITY information element with the following coding: 
< servicecode > < Hour > C Minute >. Service Code = 313, . . .  
[ P 4 1  
The Call Control Coordinator receives the messages from the user and 
analyzes them. The ones related to the alarm call service  are processed 
by the AC processor. . . .  

Informal specifcation. Some extracts of the in- 
formal specification of the alarm call service are 
presented in Figure 3. Each paragraph is identi- 
fied by a tag  (e.g., [Pl]) for later reference. In the 
SPECS prototype, these references are handled by 
a hypertext-like tool. 

Classifcation. Some excerpts from the classified 
description are given  in Figure 4. The  syntax de- 
fined  for the classification process introduces 
some formality, but  informal text can be used  in 
most of the constructs, imposing only a light 
structure. The notation, however, still needs to  be 
made more user-friendly. [Pl] allowed the uni- 
verse of the problem (Context) to be structured 
into two parts: the User (i.e., the subscriber) and 
the Call Control Coordinator. This is recorded in 
the CONCEPT  STRUCTURE of the CLASSIFIED 
COMPONENT Context, and a reference link to the 
relevant paragraph is made (IREFERENCE [Pl]). 
A similar rationale is behind the structuring of 
Call-control-coordinator into Analyzer and 
AC-processor. This is recorded in the CONCEPT 

Call-control-coordinator,  and a reference link to 
the relevant paragraph is made (IREFERENCE 
[P4]). The decision to not consider the basic call 
control protocol messages described in [P2] is re- 
corded, and a reference link to  the appropriate 
paragraph of the informal  specification  is re- 

STRUCTURE Of the CLASSIFIED  COMPONENT 
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corded in IREFERENCE [P2]. A part of the behav- 
ior of the Analyzer is presented, in particular be- 
cause it  will be used throughout the whole 
example. In order to have a perspective of its 
context, a part of the behavior of the User is also 
presented, as well as some interface details. 

Rigorization. A DCFD of the Call-control-coor- 
dinator is presented in Figure 5 .  This highlights 
the flow of information between Analyzer and 
AC-processor,  giving a particular view for the 
concept structure and interface aspects of the 
Call-control-coordinator  classified component. 

A part of a statechart-like textual description of 
the Analyzer is presented in Figure 6. This gives 
a particular view for the behavior aspects of the 
Analyzer classified component. This extract high- 
lights the use of the development information: a 
question was raised by the analysis given by this 
view and recorded. Reference links to the Ana- 
lyzer classified component were omitted here to 
simplify the notation. 

Formalization. A part of the SDL description of 
the behavior of the ‘Analyzer’ (PROCESS AC-anal- 
ysis) is presented in Figure 7. It  was built  upon the 
Analyzer classified component, an MSC descrip- 
tion of the interactions between User and Ana- 
lyzer (not presented here) and the  statechart de- 
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Figure 4 Excerpts  from a classified specification of the informal specification of Figure 3 

I 

I 

CLASSIFIED  COMPONENT Context 
CONCEPT  STRUCTURE 

DECOMPOSITION LINKS (IREFERENCE  [Pl]) 
-> Call-control-coordinator 
-> User 
. . .  

CLASS Context 
INTERFACE  ASPECTS 

INTERNAL  INTERFACES 
'User' 'request' INTERFACES  TO 'Call-control-coordinator' 'indication' 

DECISION  The  basic  call  control  protocol  messages  (e.g., SETUP message,  digits, 
control  characters) are not considered in this  classification;  only 
the  events  correspondilg  to  a  successful  sequence  of such protocol  messages 
(e.g., request)  are  considered  (IREFERENCE [P21). 

CLASSIFIED  COMPONENT User 
CLASS  User 
BEHAVIOR  ASPECTS 

. . .  

INTERNAL  EVENT request (IREFERENCE  [P31, . . .  ) 
DO ATOMIC ACTION 
SENDING OF an object 'invocation-segment' (through  the 'request' output) 
conveying  the 'User' 'Address' and  a 'keypad-information-element' 
invoking  a  supplementary  service  in 'keypad mode'. 

INTERFACE  ASPECTS 
EXTERNAL  INTERFACE 

request:  output 'invocation-segment' 

CLASSIFIED  COMPONENT Call-control-coordinator 
CONCEPT  STRUCTURE 

. . .  

DECOMPOSITION  LINKS  (IREFERENCE [P4]) 
-> Analyzer 
-> AC-processor 

CLASS Call-control-coordinator 
INTERFACE  ASPECTS 
EXTERNAL  INTERFACES 

indication: input 'invocation-segment' 
response:  output 'notification-segment' 

'analyzer' 'AC-activation' INTERFACES TO 'AC-processor' 'activation' 
INTERNAL  INTERFACES 

. . . .  
CLASSIFIED  COMPONENT  Analyzer 
CLASS  Analyzer 
BEHAVIOR  ASPECTS 
ON  EXTERNAL  EVENT  indication DO 

CASE  selector  IS 'keypad-information-element' OF (the  received) 'segment' 
WHEN AC-activation-coding (IREFERENCE [P3]) 

DO ATOMIC  ACTION  SENDING OF  an object with 
"hour", "minute"  and 'User' "address" 
through 'AC-activation' output. 

. . . .  
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criDtion  of the Analyzer, above. Reference links that  can  be found between  the classified, the rig- SI 
to tiose descriptions-have also been omitted here. orous, and the formal descriptions. For example, 

a simple guideline recommends mapping state- 
The SPECS formalization guidelines have been chart  states  onto SDL states.  Another guideline 
used in this example. It explains the similarities recommends using the  statechart  technique  to  an- 



Figure 5 Data flow diagram 
~ ~~~ 

Invocation 
segment 

Notification 
segment 

alyze behavior aspects if the intention is to use 
SDL for the  formal specification. 

Handling. To accompany  these facilities, the 
SPECS architecture  provides a set of functions for 
editing the specifications and generating reports. 
Editing a specification consists of two distinct ac- 
tivities: creating a specification and modihing an 
existing one. These  activities  are  supported  by 
browsing and navigation facilities for different 
representations  (text  and graphical). The SPECS 
architecture  also includes reporting facilities that 
generate different types of reports,  such as work- 
ing reports to  be used for  further development of 
a specification and  more  persistent  external re- 
ports  that  are  part of the  system documentation. 

An evaluation. The methodological separation of 
the  three  activities of classification, structuring, 
and formalization activities is believed to be a 
unique solution, supporting  the different tasks of 
the developer and making a bridge between  the 
use of structuring  methods  and formal methods. 
In particular,  the  approach behind the classifica- 
tion activity-the analysis of the informal speci- 
fication using a set of application concepts- 
seems invaluable in forming a link between 
developer’s and client’s terms. 

Some drawbacks should also be mentioned. 
Openness  is  not  always  an advantage. It provides 
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the opportunity to choose and allows, therefore, 
different, perhaps incompatible, solutions, which 
may be not desirable in large team work. Guide- 
lines on  when to proceed from classification and 
rigorization to formalization do not seem  easy to 
establish, particularly when  the  work  is carried 
out  by distributed teams. More work  is needed to 
refine the current SPECS guidelines on this subject. 

Analyzing  specifications 

The analysis of specifications plays an important 
role in the development process.  It  ensures  that 
the specification properly reflects the require- 
ments; it detects inconsistencies and deficiencies 
(i.e., errors) of specifications. In  current indus- 
trial practice, it is only very late in the develop- 
ment process  that  the  system behavior can be 
checked by executing implementation code. 
SPECS, however, aims to provide the  user with 
comprehensive information about the  system un- 
der development very early on. This analysis con- 
tributes to early  error detection and also  provides 
guidance for further refinement in the design of a 
specification. 

The SPECS methodology incorporates  various 
analysis methods, supported by analysis tools in 
the SPECS architecture.  They  operate on specifi- 
cations  expressed in one or several specification 
languages. Although particular and specialized 
internal  representations may be used for analysis, 
the  results  that  are  reported  back to the  user  are 
tied to  the  elements of the  source specification. 
These  methods and tools  can be classified as fol- 
lows: 

Static semantics-A first level of analysis con- 
sists of syntax and static  semantic analysis. For 
specifications developed with a SPECS environ- 
ment, syntactical  correctness  is naturally ob- 
tained through the use of syntax-directed edi- 
tors.  Static  semantic  correctness  ensures  that 
all of the used objects (variables, types, pro- 
cesses, etc.) are  properly defined and used. The 
SPECS prototype  includes  tools to  check  the 
static  semantic  constraints for SDL and LOTOS 
as defined by  the C C I ~  recommendation and 
the ISO standard. 

Animation-This is  the symbolic execution or 
simulation of specifications. It assists  the  user 
in gaining insight into  the behavior of the  spec- 
ified system and in validating the specification 
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Figure 6 Statechart-like  textual  description  of  part of the Analyzer 

STATE wait  for invocation 
INPUT invocation-segment / *  from User * /  
DECISION service-code = 313 

(TRUE) : 
DECISION is  AC-activation-coding 

OUTPUT hour, minute, address 
/ *  AC-activation  to  AC-processor */;  
NEXTSTATE wait for notification; 

(TRUE ) : 

ENDDECISION 

(FALSE) : 
. . .  
/ *  No description of what happens if service code 
is not 313. QUESTION to be raised * /  

Figure 7 Partial SDL specification  of the Analyzer 

PROCESS AC-analysis ( 1, max-calls ) ; 

STATE wait-for-invocation ; 

. . .  

... 
INPUT 
invocation ( address , service-code , invocation , time ) ; 
DECISION service-code ; 

DECISION invocation ; 
( AC-service-code ) : 

OUTPUT AC-activate ( address , time ) ; 
( AC-activation ) : 

NEXTSTATE wait-for-notification ; 
. . .  

ELSE : NEXTSTATE wait-for-invocation ; ENDDECISION ; 
/ *  DECISION: it was decided to keep the state 

RREFERENCE to statechart of 'Analyzer'/ QUESTION at State 
(wait-for-invocation) when the service code is not 313. 

"wait for invocation" * /  
. . .  

with respect to requirements. Animation can be 
done interactively, where the user has full con- 
trol over the execution of the specification and 
its interaction with the environment; it can be 
test-case-driven or  be done with randomly gen- 
erated inputs. A mix of these approaches is also 
possible. The SPECS prototype includes an in- 
teractive animation tool that operates on the 
MWCRL but interfaces with the user at the tower 

level. It  supports  the animation of mixed spec- 
ifications. 

Model  checkers-These tools compute the 
complete behavior (state graph) of a specifica- 
tion and then check that a property holds in  all 
of the  states. This operation, of course, is only 
possible for systems with a finite behavior, e.g., 
finite state machines such as simple protocol 
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machines. Model checking cannot be applied to 
specifications that  have a very large or infinite 
state graph, e.g., due to  the  occurrence of in- 
finite data  types  (such as integers). Once the 
desired property to  be checked is specified, its 
complete verification for a given specification is 
automatic (with no  user  interaction as with  an- 
imation), and the result (truth of a property)  is 
guaranteed to hold. The checked  properties 
correspond  to specific requirements on the  be- 
havior of a system, e.g., absence of deadlock or 
acertain ordering of particular  events.  The  user 
expresses  these  properties in a formalism de- 
veloped by SPECS, the  “property language.” It 
is composed of a general scheme, which is a 
first-order temporal lo ic based on  the  work  by 
Stirling and Walker,35g and a set of language- 
specific basic  predicates.  The SPECS property 
language has been defined for SDL, LOTOS, and 
MWCRL. 

Here is an example of a property  expressed in 
the LOTOS property language. It  refers to the 
specification of an elevator  that  was developed 
within the project to illustrate some methods. 

GXopen I ,(1 active(moving_elevator,pid)UX=~,,,I ! ,,tt) 

This  property  states  that  the  elevator will not 
move if its  door is open. More literally, it means 
that  on  any  execution  trace (G), after the  door 
on floor n has opened (X,,,, ,,), the  process 
moving-elevator will not be  active until (U) the 
door  on floor n has  been closed (Xclosed ! ,J. 

Bisimulation-The theory of formal processes 
enables  the definition of various equivalences 
for processes  whose behavior is “similar” de- 
spite being syntactically different; the  most 
commonly used equivalence relation is  that of 
bisimulation. A bisimulation checker  is a tool 
that  determines  whether two processes exhibit 
equivalent behavior or not. Typically, a user 
would call this tool during the design phase to 
make certain  that he or  she did not modify the 
external behavior of a system in some refine- 
ment transformations. As for model checkers, 
current bisimulation tools  can  only  operate  on 
specifications whose  state graph is finite. 

SPECS has developed a very efficient algorithm 
for a variant of bisimulation, called brunching 
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bisimulation, and built a prototype tool using 
this algorithm. 36,37 

The  tools  that  use  these  techniques  are integrated 
into  the SPECS architecture. Although different 
formalisms are required for the different tools, 
these formalisms are mostly imbedded in the  ar- 
chitecture as internal representations  that  are hid- 
den from the user. The results, as mentioned ear- 
lier, are given in the  terms of the specification 
languages. 

The  current  state of the  art in analysis also in- 
cludes  structural analysis, which is  the most pow- 
erful but also the most complex method for val- 
idating specifications. This method consists in 
proving a property for a specification based on a 
proof system, in the  way proofs are carried out in 
mathematics. It is currently not possible to  auto- 
mate  these  methods completely, but some sup- 
port for the development and validation of a proof 
can  be provided. However,  these  methods re- 
quire the  user  to  have a good knowledge of the 
proof technique. The application of such  methods 
is  only economically justified for safety-critical 
systems.  The SPECS architecture  does  not  there- 
fore include structural analysis tools. 

Implementing  specifications 

SPECS promotes  the  early formalization of a sys- 
tem in a formal specification language. Such an 
abstract functional specification describes what 
the  system should do. It  presents an external view 
(“black  box”) of what  the  system should do,  but 
does not define how it is to be done. During the 
design activity, such  an  abstract specification is 
made more precise and implementation-oriented, 
describing the  internals of the  system  (“white 
box”). Design has several  aspects:  architectural 
design defines the  structure of the  system imple- 
mentation; functional design refines the algorith- 
mic parts of the  system.  In  the SPECS approach, 
both the black box and the  white  box  are  ex- 
pressed in the  same formalism. Design is thus a 
transformational activity. 

Obviously, it is not possible to  automate  the  de- 
sign activity completely. It  requires  creativity and 
experience  to  tune  the  system  architecture and 
algorithms to satisfy  the imposed performance 
and reliability requirements. 

IBM SYSTEMS JOURNAL,  VOL 31, NO 4, 1992 



The refinement process goes on until the specifi- 
cation  is complete, consistent, and can  be imple- 
mented automatically by  the SPECS implementa- 
tion generation tools, which compile the I-CRL 
into high-level  programming  languages. The SPECS 
prototype includes a compiler” supporting most of 
LOTOS and SDL and  generating C code. 

The  currently  supported specification languages 
LoTOS and SDL do not completely support all of 
the design activity. Certain  types of implementa- 
tion-related information, e.g., target architecture 
mapping, programming language and style,  selec- 
tion of reusable components, modularity, and 
connections to  the operating system  or  the envi- 
ronment, cannot  be  expressed in SDL or LOTOS. 
The SPECS architecture  contains specific formal- 
isms associated with each tower language for the 
user  to  express  this  type of information. The  code 
generation tools  take  this design information as 
input and orient  the translation according to this 
information. In  the SPECS prototype,  these  for- 
malisms have  the form of annotations  to  the 
LOTOS or SDL text. 

The SPECS architecture  foresees a flow of infor- 
mation from analysis tools to code generation 
tools  to allow the  code generation tools to exploit 
certain properties derived by the analysis tools to 
optimize the generated code.  The analysis tools 
can automatically provide information on dy- 
namic properties of a system (e.g., which opera- 
tions  are  the  most  frequently used on a data  struc- 
ture  or which processes communicate frequently 
and should thus  be merged into a single imple- 
mentation thread) to allow a higher degree of op- 
timization of the implementation than  currently 
available from automatic tools. However, it has 
not been implemented in the SPECS prototype. 

The SPECS architecture is not bound to a specific 
target operating  system or implementation lan- 
guage. Its generic structure  eases  the adaptation 
of the implementation-generation tools to a num- 
ber of environments. The translation algorithms 
and their implementation in the SPECS prototype 
do not rely on any peculiar operating  system  fa- 
cility. 

The  fact  that  the  same language or languages (for 
example, SDL or LOTOS) are used throughout the 
stages of specification, design, and implementa- 
tion can  contribute significantly to reducing main- 
tenance  costs of these designs and implernenta- 
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tions. In addition, the  open-endedness of the 
SPECS architecture and the possibility of mixing 
different specification languages allow the  later 
introduction of new specification languages to de- 
velop  new or changed parts of an existing prod- 
uct.  The  semantic  basis of SPECS is  also believed 
to be strong enough to  cover languages based on 
new paradigms as  they  mature for IBc. 

The reporting-back features of the SPECS envi- 
ronment  have the potential for indicating errors 
found during execution in terms of the specifica- 
tion languages as is  done for animation. This po- 
tential, however, requires  that  the particular run- 
time operating  system  be  adapted to access the 
required reporting-back interfaces of the SPECS 
environment. 

The  common  semantic  layer 

The common semantic  layer,  the MR/CRL, is a pro- 
cess  calculus  based  on  the seminal work by Mil- 
ner on C C S , ~ , ~ ~  including features from Hoare’s 
c s p 5  and Bergstra’s and Klop’s ACP.6,39 In 
MWCRL, a system  representation is built from ba- 
sic  actions  that  can  be algebraically combined us- 
ing a set of process  operators.  The  basic  actions 
represent  synchronous communication between 
(concurrent)  processes or between  the  system 
and its  environment.  This communication can in- 
volve transmission of data.  Processes  can  be 
composed in sequence or in parallel. The  nonde- 
terministic choice operator  composes two pro- 
cesses and yields a process  that  behaves like ei- 
ther  one of the  two  processes.  It is possible to 
make the  execution of process  dependent on a 
Boolean condition, called guard. A set of actions 
can be encapsulated in a process to force  syn- 
chronization between  subprocesses of this pro- 
cess.  Other  operators provide for action renam- 
ing, abstraction, modeling of persistent  data 
objects, and the definition of local declaration en- 
vironments to support modularization. The  data 
part of MWCRL provides  the full power of many- 
sorted first-order logic, and specific support  for 
modularization, based on Module Algebra.40 

A key  issue of SPECS is centered around how to 
make this single common semantic layer and its 
language realizable and practical. That  this  issue 
is a key  one  was recognized from the  very begin- 
ning of SPECS; it has been the  subject of intensive 
work. This  work will result in a final recommen- 
dation for a realizable and practical semantic 
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layer. Some of the difficulties associated  with  this 
issue  are now discussed. 

Distinctly  different  specification  languages. The 
MWCRL must  support a large variety of tower lan- 
guages with potentially very distinct semantic 
paradigms so that  the  user  can  choose  the  one  that 
best fits his or her  particular  needs. To illustrate 
why this is a problem, consider  the difference be- 
tween LOTOS and SDL. 

LOTOS and SDL differ on several points: commu- 
nication, data  variables, and system  structure. 
LOTOS is based on synchronous  rendezvous com- 
munication, SDL is  based  on  asynchronous com- 
munication via infinite queues. In LOTOS, data 
variables  are  seen in a functional way. Once a 
value  has  been assigned to a variable, the  variable 
is substituted (i.e., syntactically  replaced) by this 
value, and thus  “disappears.”  In SDL, however, 
variables  behave as in procedural programming 
languages; they  are  objects  that  at a given mo- 
ment have a certain  value.  This  value  may  evolve 
over time. In LOTOS, variables  are always local to 
a process. In SDL, there  are  two mechanisms to 
inspect  variables in other  processes. sDL contains 
specific constructs  to indicate the  static  system 
structure,  whereas LOTos contains  only  con- 
structs  to define the  externally visible system be- 
havior. 

Conflicting  requirements  on  the  common  semantic 
layer. The common semantic  layer  has to fulfill 
several requirements, which, to a certain degree, 
are in conflict. The  requirements of the common 
semantic  layer in the SPECS architecture  are as 
follows: 

The MWCRL is used to represent specifications 
of telecommunication systems  expressed in the 
tower languages. As the SPECS architecture is 
open to new tower languages, MWCRL should 
support  not  only SDL and LoTOS, but  also  the 
modeling paradigms of plausible new tower lan- 
guages. To fulfill this objective, MWCRL must 
have a high expressive power. 
The MWCRL is the formalism on which the anal- 
ysis  tools  operate,  either directly or via a trans- 
lation to another language. Depending on  the 
analysis technique used, different properties 
are desirable for MR/CRL. 
The MWCRL is  an  intermediate step in the im- 
plementation-generation path  from  the towers. 
In  order  to  enable  the  generation of  efficient 

implementations, MWCRL should contain all the 
implementation-related concepts  that exist at 
the  tower level, so that information that  is  valu- 
able for the implementation generation is not 
lost in the translation from the towers to MWCRL. 
For  these  more implementation-related con- 
cepts, however, it is often difficult to define a 
clean semantics  that fulfills the  need of analysis 
techniques, especially structural analysis. 

To satisfy  these  requirements, the  structure of the 
common semantics  layer  has  been refined into 
two closely related formalisms-one oriented 
toward analysis (A-CRL) and  the  other toward im- 
plementation (I-CRL). A clear  semantic relation 
exists  between  both so that analysis results  ob- 
tained on the A-CRL can  be  interpreted in I-CRL 
terms. I-CRL does  not  contain  the A-CRL con- 
structs  that  can  be implemented only  very inef- 
ficiently or not  at all because the semantics  is 
undecidable. The following example might illus- 
trate  this point. In  the A-CRL data  part, it is pos- 
sible to make  the  execution of a process depend 
on  the  truth of any first-order logic formula, 
which, in the general case,  is  not decidable. For 
the I-CRL data  part, a more pragmatic, but  less 
powerful, approach  has  been  chosen.  The I-CRL 
data  part  is  based on a few basic  data  types (Bool- 
eans, integers, rationals, characters),  type  con- 
structors (array, record, list, etc.), and a simple 
functional language to build expressions and de- 
fine functions. (More  details  can be found in Ref- 
erence 12.) A link exists  between  the I-CRL data 
part and the A-CRL data part: it is possible to de- 
fine the  semantics of the I-CRL data  part in terms 
of the A-CRL data part. 

Conclusion 

Based on  the  state of the  art in software engi- 
neering, the SPECS project  has  elaborated a co- 
herent set of methods  for  the development of the 
huge and highly complex  software for the  Euro- 
pean  Integrated  Broadband Communication sys- 
tem. These  methods  are  based on the  extensive 
use of formal specification languages, enabling 
significant automation of the  software develop- 
ment activities. SPECS has defined an  open archi- 
tecture for a tool support  environment for these 
methods and has built a prototype tool set  ac- 
cording to this architecture. 

The  work  done by SPECS is an important  contri- 
bution to  the  introduction of formal approaches in 



industrial environments. First applications of 
SPECS results  are  to be expected in the organiza- 
tions  that  are members of the SPECS consortium, 
but  the SPECS results  are in the public domain and 
may be used by  an organization interested in the 
application of advanced  techniques to improve its 
productivity and the quality of its  software prod- 
ucts. Even  before  the availability of commercial 
SPECS environments, the SPECS methods may be 
applied with  the  support of some of the  currently 
available CASE tools  that  represent  a first approx- 
imation of the ideal SPECS architecture. 

The  diversity of the composition of the SPECS 
consortium  (network  operators and their research 
labs, telecommunication and DP manufacturers, 
software and service  developers) and the good 
cooperation within the  project  created an en- 
abling environment for the  adaptation of ad- 
vanced  research  results to the  needs of IBC soft- 
ware development. This  outcome  illustrates  one 
of the  important achievements of the RACE pro- 
gram: the  creation of the  necessary  cooperative 
spirit among the  various telecommunication and 
data processing participants aimed at making the 
IBC become a reality in Europe. 
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