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This paper describes  the  role  of  the  novel 
technique  of  causal probabilistic network (CPN) 
modeling  as  an  approach to tackling control 
system  problems typified by that of  the 
administration of  treatment to the  patient 
suffering from a chronic disease such as 
diabetes.  Three  roles  of  a CPN are  discussed. 
First,  since  diabetes  arises as a  consequence  of 
impaired control of carbohydrate  metabolism,  the 
ability of  a CPN to represent  the  uncertainty  of  a 
physiologically-based  model is described. 
Second, its ability to make robust estimates of 
the  parameters  of  the  metabolic  model is 
presented,  and finally, in conjunction with 
decision theory  approaches, its ability to 
compare  alternative  therapies and advise  on 
insulin therapy  for  patients with insulin- 
dependent  diabetes mellitus is illustrated. 

T he management of chronic  noncommunica- 
ble diseases  such as diabetes  (diabetes mel- 

litus), raised blood pressure  (hypertension),  and 
elevated  levels of cholesterol  poses  some difficult 
challenges for  the clinician. In  most  cases, from 
an engineering or  systems perspective,  such dis- 
eases can  be  viewed as arising from a partial or 
complete  failure of one  or more of the  multitude 
of feedback  control  loops of the  human organism. 
The management of such  diseases  requires regu- 

lar  disease  status monitoring, and  therapeutic in- 
terventions  (control  actions)  are  required to min- 
imize the progression of the disease  and to 
minimize the risk of long-term complications. 

Information  technology offers the  capability of 
supporting clinical decision-making and manage- 
ment in the  context of such  chronic  diseases in a 
variety of ways.  Over  and  above  database  tech- 
nology, which  can  support  more  consistent  and 
reliable patient records, knowledge-based systems 
can be used to structure the clinician-patient con- 
sultation, thus potentially enabling the clinician to 
function at a higher level of expertise. Equally, al- 
gorithmic, knowledge-based, and model-based ap- 
proaches can be used to assist in the context of 
treatment planning and adjustment, advising on 
dosage adjustment, and, by means of simulation, 
predicting outcome in response to change of 
therapy. 
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During the  last  decade,  several new approaches 
for knowledge representation  have  been  intro- 
duced. Causal probabilistic networks (CPNS), also 
known as belief networks, ' belong to a family of 

Causal probabilistic networks 
allow representation and 
processing of uncertain 

knowledge. 

methods  that allow representation  and processing 
of uncertain knowledge. CPNs have a solid theo- 
retical basis in Bayesian probability theory.  The 
updating of probabilities in CPNS is, however, a 
computationally hard problem (technically it is an 
NP-complete problem'), and, until recently, the 
computational  issues limited the  use of this ap- 
proach.  However,  the  recent development of 
computationally more efficient a1 orithms for net- 
works  with  certain t o p ~ l o g i e s ' ~ - ~  makes CPNS 
highly appropriate for the implementation of clin- 
ically relevant diagnostic expert  systems,6 as well 
as for other applications. 778 When combined with 
approaches  based  on decision theory, a general 
framework for planning and advisory  systems 
emerges, which has  already found one application 
in ventilator  therapy planning.' The CPN ap- 
proach  enables population-specific and patient- 
specific information to  be mixed within a formally 
coherent framework. This  approach  also pro- 
vides a facility for dealing with  uncertainties  over 
time. Our paper  describes  the merits of this pow- 
erful modeling approach in tackling control  sys- 
tem problems typified by  the treatment of the pa- 
tient suffering from chronic disease. 

Diabetes 

The CPN modeling technique will be illustrated by 
considering the planning and adjustment of insu- 
lin therapy for a diabetic patient. Diabetes  is a 
major chronic  disease in the industrialized world. 
It affects over 2 percent of the population of Eu- 
rope and approximately one hundred million peo- 
ple worldwide. lo Diabetes is a lifelong condition 
and can give rise to a variety of life-threatening 
complications. For example, it is  the  most com- 
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mon cause of blindness in people under  the age of 
65 in the  United Kingdom and accounts for over 
40 percent of lower-limb amputations  carried  out 
within the National Health  Service. '' 
The incidence and severity of such complications 
can  be reduced with good clinical management 
directed toward effective control of a patient's 
blood glucose level." Control requires a careful 
balance between  diet, physical activity, and in- 
sulin therapy. A high level of clinical expertise  is 
required in order  to  achieve  this result. While 
such  expertise will be found in specialist hospital 
diabetic  units and in some primary care practices 
with an interest in diabetes, it is not always to be 
found in other  sectors of the health service. One 
way of making this clinical expertise more widely 
available, including the home setting of the dia- 
betic patient, is through the  appropriate  use of 
information technology. l3 

Insulin-treated diabetes (known clinically as type 
1 diabetes)  results from partial or complete failure 
of the  pancreas  to  produce  the hormone insulin in 
response to elevated blood glucose levels. In nor- 
mal health  the glucose-insulin interaction is a 
classical example of control  exerted  by an effec- 
tive negative feedback loop. From a control  en- 
gineering perspective  such a diabetic patient can 
be regarded as a multiinput-multioutput physio- 
logical system  that  contains  several controllable 
and measurable variables as well as a number of 
other  factors  that  are not directly observable and 
that, as such,  are beyond the clinician's control. 
In  this  complex  system  the diet and administered 
insulin dose  can  be  considered as control  varia- 
bles that need to be  adjusted in order  to achieve 
the  therapeutic objective, namely to maintain a 
balance between  energy supply and expenditure 
at blood glucose levels set  by  the clinician. 

A number of computer-based  approaches  have 
been  attempted in order  to  assist in insulin dosage 
adjustment and, more generally, in the  treatment 
or long-term management of diabetic patients. 
The  methods and techniques used include com- 
puter algorithms for advising on insulin dosage 
adjustment, ' a  knowledge-based systems to ad- 
vise  on  patient management in out-patient clin- 
ics,'7,'8 and mathematical models as a means of 
simulating and predicting blood glucose level in 
response  to change in therapy. 19-23 It is a novel 
extension to this last category, as applied in the 
context of managing a chronic disease, that  is pro- 
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vided  by CPN-based modeling as described in the 
remainder of this paper. 

Causal  probabilistic network-General 
aspects 

A causal probabilistic network  consists of nodes 
and directed links. Nodes  represent random var- 
iables: state variables, conditions, measure- 
ments,  etc.  For  the  sake of simplicity, we will 
restrict  ourselves to discrete random variables. 
Links  represent  causal  relations  between nodes. 
Ancestors of a node  are called its  parents. Figure 
1 gives an example of a CPN containing a repre- 
sentation of two diseases. The topology of the 
network  determines  the  dependencies and inde- 
pendencies  between  the  variables in the  network. 
For example, the links in the  network indicate 
that  Disease A affects the  presence of Symptom 
C; Disease B affects the  presence of Symptom C 
and Symptom D. The  absence of a link between 
Disease A and Disease B indicates  that  Disease A 
and Disease B are  independent in the  absence of 
information about Symptom C. The  absence of a 
link between Disease A and Symptom D indicates 
that Disease A and Symptom D are conditionally 
independent given Disease B. In  other  words, 
when  the  status of Disease B is known, the prob- 
ability of Symptom D can  be calculated irrespec- 
tive of the  status of Disease A. 

As far  as  the  network  structure is considered,  one 
restriction holds. The  network must be a directed 
acyclic graph. Examples of legal structures  are 
shown in Figure 2. In the  top panel of Figure 2, the 
directed  tree  has a single root  node and at most 
one  directed  path  between  any  two nodes. The 
middle panel shows a directed multitree structure 
with  several  root  nodes  and at most one  directed 
path  between  any  two nodes. In  the  bottom panel 
a general directed acyclic graph is  depicted  with 
more  root  nodes and possibly more  than  one  path 
between  two  nodes. 

The relation between a node  and  the  complete set 
of its  parents  has  to  be specified in the form of 
conditional probabilities. In  our example, the  re- 
lation between  Disease B and Symptom D is fully 
specified by giving the conditional probabilities 

P(D = PRESENT I B = PRESENT) 
P(D = PRESENT I B = ABSENT) 
P(D = ABSENT I B = PRESENT) 
P(D = ABSENT I B = ABSENT) 
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Figure 1 An  example of a  causal  probabilistic  network 

Nodes  with  an  empty  set of parents  are called root 
nodes. Having assigned a priori probability dis- 
tributions to root  nodes, a probability model is 
fully defined. As in our example, assigning 
P(A) = pA and P(B) = pB,  where  pA and pB  are  the 
probabilities of incidence of Disease A and Dis- 
ease B among the population respectively,  the 
probability of any possible combination of A, B, 
C ,  and D, e.g., P(A = PRESENT, B = ABSENT, 

uously. It  is  then possible to calculate  the ele- 
ments of a joint probability table, which in our 
little example is P(A, B, C, D). 

If we assume  that P(A, B, 'C, D) is available, a 
variety of queries  about probabilities in the  net- 
work  can  be  answered.  For  instance, should the 
probability of the  presence of Symptom C be re- 
quested assuming no evidence  is available, it can 
be calculated from the joint probability table as 

C = PRESENT, D = ABSENT), is specified unambig- 

P(C  =PRESENT) = 2 P@, B ,  C =PRESENT, D )  
ASP 

When the  evidence  that assigns a value to a node 
has  been  obtained, it is natural to require  the 
probability of the remaining nodes to  be updated. 
With use of CPN terminology, the  evidence  is 
propagated throughout the network. Having ob- 
served  the  presence of Symptom C in our  exam- 
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Figure 2 Graphical  structures  allowed  for CPN 
representation 
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ple, we  see  that  the probability of a patient having 
Disease A is obtained as the conditional proba- 

can be computed from the joint probability table 
as 

bility P(A = PRESENT I C = PRESENT). This result 

P(A = PRESENT I C = PRESENT) 

P(A = PRESENT, C =PRESENT) 
P(C  =PRESENT) 

- - 

c P ( A  =PRESENT,  B, C =PRESENT, D )  
- B P  - 

P(A, B ,  c = PRESENT, D )  
A8.D 

The remaining question  concerns  the initial cal- 
culation of the  joint probability table P(A, B, C, 
D).  This table can  be calculated from the known 
conditional probabilities and the known a priori 
probabilities, using the  independencies  apparent 
from the  network 

P @ ,  B ,  C ,  D )  = P(CIA,  B, D )   P @ ,   B ,   D )  
= P(CIA, B)  P(A,  B,  D) 

since C and D are  independent given B. Further 

PCq, B ,   C ,   D)  = P(CIA, B )  P(DIA, B)  P(A,  B) 
= P(CIA,  B) P ( W )  P(A,  B) 

since D and A are independent given B. Finally, 

P(A,  B,  C, D) = P(CIA,  B) P(DIB) P(A)  P(B) 

since A and B are independent. 

The  joint probability table of our example con- 
tains  sixteen (24 = 16) elements. For practical 
problems, the  size of the  table would exceed  the 
limits imposed by  current technology. A network 
with 100 nodes,  each node having five states, 
would require  a  table with more than (5'" - 
8 X elements.  The calculations illustrated 
above  increase exponentially with  the  size of a 
network. Clearly, alternative  methods  are re- 
quired to allow network initialization (calculation 
of the a priori probability of each  node) and ev- 
idence propagation (calculation of the aposteriori 
probability of each node). 

The power and utility of the CPN is  that knowledge 
about  the geometric structure of a  network  can  be 
used to facilitate more efficient evidence propa- 
gation. In  case of tree and multitree graph struc- 
tures, initialization and evidence propagation can 
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be performed through local operations by  each 
node  on information provided by its  parents  and 
children. These operations  can  be  carried  out by 
using an algorithm that  computes all probabilities 
in a  number of steps  linearly  related to  the number 
of nodes in a  network. For  the  case of networks 
with  loops, i.e., networks  where  two or  more 
paths  exist  between  two  nodes,  no  such simple 
algorithm is available to perform  the calculation. 
However,  recent  theoretical  developments3 fol- 
lowed by a  practical implementation4*’ have al- 
lowed calculations to be performed efficiently in 
networks of considerable size. MUNIN,6 an EMG 
(electromyograph)  diagnostic  assistant,  contains 
more  than  one  thousand  nodes,  and propagation 
takes  just a few seconds. 

CPNs have  been primarily used in diagnostic sys- 
tems. The novelty of the approach  described in 
this  paper lies in the  introduction of the time  do- 
main in knowledge representation. A discrete- 
time physiologically-based model of carbohy- 
drate metabolism is built using a CPN, and the 
ability of this  approach to  represent uncertain 
knowledge, to perform robust  parameter  estima- 
tion, and to compare  competing  therapies is de- 
scribed. 

insulin  dosage  adjustment  in  insulin- 
dependent  diabetic  patients 

A CPN-based  model of carbohydrate  metabolism. 
Considerable knowledge about  carbohydrate me- 
tabolism has  been  obtained from clinical experi- 
ments.  Carbohydrate metabolism has  been  stud- 
ied under  various  conditions, and both  qualitative 
and quantitative information are now available. 
The  basic  structure of carbohydrate  metabolism 
is clear.  Glucose  enters the  body  and is distrib- 
uted,  excreted,  or utilized. Control  mechanisms 
exist  that modulate both  the  appearance and dis- 
appearance of glucose in the organism. The quan- 
tification of these  processes  always  includes  some 
degree of uncertainty reflecting the  variations  that 
exist  between individuals and  the  temporal  vari- 
ations  that  occur in each individual. 

The scheme of the  model  is given in Figure 3. 
Glucose enters  the plasma circulation from two 
possible sources.  Either  the  carbohydrate  con- 
tained in the “MEAL” enters  the “STOMACH,” is 
absorbed from the  gastrointestinal  tract as glu- 
cose (“GUT ABSORPTION”), and  appears in plasma 
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(“BG”), or  glucose  is  released by  the liver 
(“GLUCOSE PRODUCTION”) at  a  rate  that  depends 
on  glucose  and insulin levels. The model includes 
the  representation of three  processes  that  are in- 

The novelty of this approach lies 
in the introduction of the time 

domain in knowledge 
representation. 

volved  in  glucose  removal  from plasma. These 
processes  are  insulin-dependent glucose utiliza- 
tion (“INSULIN-DEPENDENT UPTAKE”), insulin- 
independent utilization (“INSULIN-INDEPENDENT 
UPTAKE”), and “RENAL EXCRETION.” A signifi- 
cant  part of the  overall glucose uptake  is  known 
to  be insulin-mediated and is thus named insulin- 
dependent glucose utilization. Insulin has  a  stim- 
ulatory effect on glucose uptake by cells, espe- 
cially in the muscles. Glucose  uptake by  some 
tissues, e.g., the central  nervous  system,  is  inde- 
pendent of insulin levels and is  controlled  pre- 
dominantly by plasma glucose concentration  it- 
self. When plasma glucose reaches  an  elevated 
threshold  concentration,  a  portion of that  glucose 
is filtered by the  kidney and excreted in urine. 

In normal subjects, insulin is  produced by  the 
pancreas.  In  insulin-dependent  diabetic  patients, 
insulin secretion by  the  pancreas is severely im- 
paired and  has  to be replaced  externally by insulin 
injections. Insulin is usually injected into  subcu- 
taneous  tissue. It  is  then slowly absorbed 
(“INSULIN ABSORPTION”) and  enters  the plasma 
circulation.  The  rate of absorption  varies  for dif- 
ferent insulin types.  The time course of the effect 
of insulin on glucose production  and  uptake  is 
delayed  from  that of the time course of insulin 
concentration in plasma. Thus “ACTIVE 
INSULIN” was introduced to  represent  the  correct 
time course of the insulin stimulatory potential. 

High variations  exist  between  diabetic  patients in 
terms of quantity of insulin administered. The in- 
sulin stimulatory  potential  can  be significantly de- 
creased,  and  patients  often  demonstrate insulin 
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Figure 3 Model of carbohydrate  metabolism 
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resistance. Our model represents insulin resis- 
tance using  an “INSULIN SENSITIVITY” scaling 
factor that scales down “ACTIVE INSULIN” ac- 
cording to the level of insulin resistance. Varia- 
tions in  insulin resistance are known to be re- 
sponsible for a great deal of the overall variation 
exhibited by diabetic subjects. In our model, 
“INSULIN SENSITIVITY” is treated  as a model pa- 
rameter and is estimated for each individual. 

The model is a discrete time model with a one- 
hour step. Figure 3 shows one time slice that is 
repeated 24 times in the model. The model thus 
covers a one-day period. The arrows represent 
the causal links between the processes involved 
in  plasma glucose control. The quantification of 

Adapted from Andreassen et aLZ8 

the relations is given in the form of conditional 
probabilities, the derivation of which  is illustrated 
in Figure 4. The  top panel of the figure shows the 
relation between the quantity of glucose in the 
stomach and the rate of glucose absorption as 
compiled from data reported in  medical litera- 
ture.”,25 The  data have the typical format: mean 
value and a measure of variance (in this  case  stan- 
dard deviation) of the dependent variable are 
given for several discrete values of the indepen- 
dent variable. This knowledge can be translated 
into conditional probabilities. The dependent 
variable is assumed to be a discrete stochastic 
variable, and by sampling a normal distribution 
specified by the mean and variance it  is possible 
to calculate its probability. The bottom panel of 
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Figure 4 Derivation of conditional  probabilities  to  specify  linkage  between  a  node and its parent 
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Figure 4 shows  the conditional probabilities de- 
rived in this manner from the  data  shown in the 
top panel. For example, given the  empty  stom- 
ach,  the probability of zero  absorption  is 100 per- 
cent (full bar in 0 millimoles per hour [mmoVh] 
row  under 0 m o l  label) and zero  percent for 
absorption  rates of 40, 80, and 120 mmolh. 

The discretization of what in reality are  continu- 
ous variables  is carried out in a manner  that  en- 
ables  the  whole clinical spectrum of values to be 
covered. For example, blood glucose concentra- 
tion is divided into a finite number of ranges to 
which the clinician would apply qualitative labels 
such  as  “low,” “normal,” “high,” “very high,” 
etc.  Each of these ranges is  then  represented  by 

Adapted from Andreassen  et aLZ8 

a discrete  value.  For  instance,  “normal” blood 
glucose concentration could be represented  by 
the  value of 6 mmol/l. 

This then  means  that  there  are two dimensions of 
uncertainties  attached to  any  discrete  value.  The 
first is  the  quantization  error arising from the rep- 
resentation of, say,  the normal blood glucose con- 
centration range by a discrete  value. This form of 
error  is not explicitly considered.  The  second is 
the  uncertainty as  to whether  the qualitative label 
(e.g., “normal” blood glucose concentration)  is 
appropriate in a given situation or whether an ad- 
jacent range (which qualitatively would be la- 
beled “high” or “low”) is more probable. It  is  this 
second dimension of uncertainty  that  is  repre- 
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Figure 5 Parameter  estimation  using  CPN 
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sented  by  the conditional probabilities such as 
shown in the lower panel of Figure 4. 

Adaptation of the model for an  individual  patient. 
Insulin therapy and carbohydrate  content of the 
meal are model inputs, plasma glucose is a model 
output, and insulin sensitivity is a model param- 
eter. After data  are  observed from an individual 
patient, the model parameter  has to be updated to 
reflect the  observed  input-output relation. The re- 
sults of the  parameter estimation process  are il- 
lustrated in Figure 5 .  The  upper panel shows  the 
aposteriori probability distribution of insulin sen- 
sitivity calculated by  the  system from the  data 
obtained from an individual patient.  It should be 
noted  that  the estimation does not result in a sin- 

gle value  output as would be  the  case if using 
standard  least-square  parameter estimation tech- 
niques. Rather  a probability distribution is gen- 
erated  that indicates the  extent to which individ- 
ual parameter  values  can explain the observed 
data.  Strictly speaking, as  the  estimation is based 
on Bayesian theory,  the starting, a  priori proba- 
bility distribution of insulin sensitivity is also 
taken  into  account  when  the updated, aposteriori 
probability distribution is calculated. The  patient 
exhibits decreased insulin sensitivity. Normal 
sensitivity has  a  numeric  value of 1; the patient's 
insulin sensitivity is  spread around a  value of 0.5. 
The lower panel of the figure shows  the model fit 
to measured blood glucose values.  The mean ~ S D  
region of the model prediction is given. This type 
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Figure 6 Comparlson of blood  glucose  measurements  and  the  mean 2 SD region of model  predlction 
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of information is quite unique and cannot be di- 
rectly obtained from deterministic modeling ap- 
proaches. 

Model-based  prediction of blood  glucose. After the 
insulin sensitivity from observed  data is esti- 
mated,  the model can  be used to predict blood 
glucose for various diet and insulin regimens. 
This prediction can  be  carried  out  either  for reg- 
imens actually administered or for purely hypo- 
thetical regimens. In the  former  case,  the preci- 
sion of the model prediction can  be  evahated. 
Model-based prediction of blood glucose is com- 
pared  with  values actually measured. In the  latter 
case, a therapy recommendation can be gener- 
ated as discussed in the  next subsection. An ex- 
ample of the assessment of the precision of model 
prediction is  shown in Figure 6. The figure shows 
mean +.SD region for predicted blood glucose and 
also  the  actual blood glucose measurements, al- 
lowing visual  assessment of the precision of the 
prediction. The model prediction was calculated 
using the  data  about diet and insulin regimens ac- 
tually administered during the period indicated, 
and using the insulin sensitivity  parameter  esti- 
mated for this  patient on a previous occasion. Us- 
ing more formal techniques, e.g., by calculating 
mean  square prediction error, a single measure of 
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the precision of the prediction can be computed 
and used during the evaluation phase of the  sys- 
tem development. 

Therapy  planning. The ability of the model to pre- 
dict blood glucose as an outcome of insulin ther- 
apy  can  be used to  generate advice on therapy. 
The prediction is  not, however, sufficient for ad- 
vice generation. A performance  measure  has to 
be adopted to indicate the benefit (or  loss)  asso- 
ciated with a therapy being administered. Alter- 
native therapies  can  then be evaluated by com- 
paring the performance measures arising from 
them. The  therapy  with  the extrema1 value of per- 
formance  measure  can  then  be recommended. 

From a medical perspective,  low  and high blood 
glucose values  are not desirable. A low blood glu- 
cose  value (hypoglycemia) is perceived by  the di- 
abetic  patient as being unpleasant  and  may result 
in an acute  loss of consciousness  with a risk of 
chronic brain damage. High blood glucose is re- 
garded as a major cause of late  diabetic compli- 
cations  such as blindness or impaired kidney 
function. Clinically, the penalization of low and 
high glucose values (reflecting their undesirabil- 
ity) in relative terms  can  be  expressed by the 

These penalties resulted from a sub- 



Figure 7 Penaltles  associated  wlth  different  levels of blood  glucose 

jective  assessment being carried  out by a panel of 
diabetes  experts. We have  adopted a similar 
scheme of penalties shown in Figure 7. It should 
be  noted  that  the penalties are not symmetric, and 
this  scheme is thus  essentially different from a 
standard  square-law  approach to penalties. 27 

The penalties were elicited from the clinical ex- 
perts participating in this study. They  represent 
the  experts'  subjective  assessment of the risk or 
inconvenience or  both for the patient. For  the 
purpose of the elicitation of the penalties, the pen- 
alty  curve  shown in Figure 7 was expressed in 
hours of life lost for each  hour  that glucose was 
maintained at  any  particular level. For  the high 
blood glucose levels the penalties mainly repre- 
sented  the  risk of premature  death  and qualitative 
corrections  made for loss of quality of life due to 
complications such as blindness, kidney failure, 
etc. The currently available  epidemiological data 
only allow these assessments to  be made in a qual- 
itative and subjective way. The penalties associated 
with low blood glucose levels contain a substantial 

Adapted  from  Andreassen et d.** 

element of discomfort and social embarrassment as 
perceived by the patient as well as contributions 
from the risk of accidents, brain damage, or other 
organ  damage  during  hypoglycemic episodes. The 
penalty curve thus represents an attempt to pro- 
duce a single  utility measure that takes several of 
the patient's dimensions of utility into account. We 
only consider the penalty curve to be a qualitative 
and subjective representation of some aspects of 
the patient's total utility, but it is interesting that it 
turned out  to be quite similar to the "value. The 
only major  difference is that our penalty curve pe- 
nalizes high  blood glucose a bit more severely than 
the "value does. 

Blood glucose is predicted by  the model as a prob- 
ability distribution. To calculate  the performance 
measure for an insulin regimen, ideas from utility 
theory  are employed. A weighted mean of pen- 
alties is  computed using the probability distribu- 
tion generated  by  the  system.  The calculation 
process  is illustrated in Table 1. In  essence,  the 
product of the probability of each  outcome (Le., 
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Figure 8 The  comparison of an administered  therapy  (default  therapy)  and the therapy  wlth  minimum  performance 
measure  (advised  therapy) 
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Table 1 Calculatlon of the  penalty  assoclated wRh a 
blood  glucose  value  when  blood  glucose 
value Is 8 eclfled  as  a  probablll  dlstrlbutlon 
(the pena! tunctlon  shown  In F Y gure 7 Is 
employed n  the  calculatlon). 

Blood Probabilyl Penew Product 
Glucose  (percent)  Function 
(rnnollr) 

1 0 10.0 0 
2 0 2.0 0 
4 0 0.1 0 
6 1 0 0 
9 6 0.1 0.006 
13 20 2.0 
17 

0.400 
36 5.0 1.800 

22 31 10.0 3.700 
Z 5.906 

a given blood glucose) and the  penalty  attached to 
the  outcome  is summed over all possible blood 
glucose outcomes. This process gives the  total 
penalty  attached to the blood glucose probability 
distribution at a specific time. To obtain the  per- 
formance measure of the  therapy,  the penalties of 
24 blood glucose probability distributions  are 
summed (i.e., values predicted at 24 consecutive 
one-hour intervals). 

With the performance measure defined, alterna- 
tive insulin therapies  can be compared. The  ther- 
apy with the minimum performance measure is 
assumed to be optimal and is recommended. To 
find a therapy  with minimum performance  mea- 
sure,  the n-dimensional space  is  searched for 
what is hopefully a global minimum, where n is 
the number of insulin injections per day. Several 
methods  can be employed to perform the  search. 
We have adopted a gradient method which usu- 
ally converged in less  than 10 iterations. Figure 8 
shows  the  comparison  between default therapy 
(the  therapy  that  was actually being administered) 
and  the  therapy with minimum performance  mea- 
sure  (the  one  that would be recommended). The 
top panel shows  the improvement in the perfor- 
mance  measure as predicted  by  the  system.  The 
next panel gives the mean *SD regions of blood 
glucose predicted for a default insulin therapy and 
for therapy  with minimum performance measure. 
The  last  two  panels indicate the  alterations in 
doses of short-acting insulin and long-acting in- 
sulin suggested by  the system. 

Implementation. These  techniques  have been em- 
ployed to build SWAN,’* a system  that  advises  on 
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insulin therapy for patients who require this form 
of treatment.  The  system  runs  on SUN-based 
workstations and uses HUGIN4 to handle the prob- 
abilities in the  network.  Prior to calculations, 
HUGIN compiles the network, rearranging the 
network  structure and creating partial joint-prob- 
ability tables. The conditional probability tables 
required for the specification of one time-slice of 
the  network as shown in Figure 3 hold about 
13 000 numbers. After compilation the  tables re- 
quired to hold one time-slice hold about 500 000 
numbers  corresponding to 2 megabytes (Mb). The 
total compiled SWAN network  with 24 time-slices 
takes up about 50 Mb. The SWAN program itself 
occupies  less  than 1 Mb. A single propagation in 
the network  requires approximately 10 seconds of 
CPU time; the  search for optimum therapy  re- 
quires 3 to 6 minutes of CPU time. The  current 
activities in this project are focused on  further 
refinement of the  network by including a more 
detailed representation of the glucose-insulin 
dynamics, on speeding up the calculations, and 
on clinical evaluation. 

Concluding  remarks 

The novel technique of causal probabilistic net- 
work modeling has  been described and employed 
to  generate advice on insulin therapy for diabetic 
patients. CPN models have  the intrinsic capability 
of representing  uncertainty in the model specifi- 
cation and are  substantially novel in their ability 
to estimate model parameters as probability dis- 
tributions  rather  than as single values. Predic- 
tions  generated by the  system  are  also  produced 
in the form of probability distributions. Combin- 
ing CPN models and decision theory  approaches 
allows the  assessment of competing therapies, 
and hence, an optimum therapy  based  on  the  cho- 
sen  criterion can  be identified. Clinically, this ap- 
proach to insulin dose  adjustment,  based  on prob- 
abilities, has many more similarities to  the 
approach of the physician caring for patients  with 
diabetes  than  deterministic models. Both the phy- 
sician and the CPN model seek insulin doses  that 
maintain as near normal a blood glucose as is  pos- 
sible with  an  acceptably small risk of a danger- 
ously low value of blood glucose. 
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