Causal probabilistic
network modeling—An
illustration of its role in
the management of
chronic diseases

This paper describes the role of the novel
technique of causal probabilistic network (CPN)
modeling as an approach to tackling control
system problems typified by that of the
administration of treatment to the patient
suffering from a chronic disease such as
diabetes. Three roles of a CPN are discussed.
First, since diabetes arises as a consequence of
impaired control of carbohydrate metabolism, the
ability of a CPN to represent the uncertainty of a
physiologically-based model is described.
Second, its ability to make robust estimates of
the parameters of the metabolic model is
presented, and finally, in conjunction with
decision theory approaches, its ability to
compare alternative therapies and advise on
insulin therapy for patients with insulin-
dependent diabetes mellitus is illustrated.

he management of chronic noncommunica-

ble diseases such as diabetes (diabetes mel-
litus), raised blood pressure (hypertension), and
elevated levels of cholesterol poses some difficult
challenges for the clinician. In most cases, from
an engineering or systems perspective, such dis-
eases can be viewed as arising from a partial or
complete failure of one or more of the multitude
of feedback control loops of the human organism.
The management of such diseases requires regu-
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lar disease status monitoring, and therapeutic in-
terventions (control actions) are required to min-
imize the progression of the disease and to
minimize the risk of long-term complications.

Information technology offers the capability of
supporting clinical decision-making and manage-
ment in the context of such chronic diseases in a
variety of ways. Over and above database tech-
nology, which can support more consistent and
reliable patient records, knowledge-based systems
can be used to structure the clinician-patient con-
sultation, thus potentially enabling the clinician to
function at a higher level of expertise. Equally, al-
gorithmic, knowledge-based, and model-based ap-
proaches can be used to assist in the context of
treatment planning and adjustment, advising on
dosage adjustment, and, by means of simulation,
predicting outcome in response to change of
therapy.
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During the last decade, several new approaches
for knowledge representation have been intro-
duced. Causal probabilistic networks (CPNs), also
known as belief networks,! belong to a family of

Causal probabilistic networks
allow representation and
processing of uncertain
knowledge.

methods that allow representation and processing
of uncertain knowledge. CPNs have a solid theo-
retical basis in Bayesian probability theory. The
updating of probabilities in CPNs is, however, a
computationally hard problem (technically it is an
NP-complete problem?), and, until recently, the
computational issues limited the use of this ap-
proach. However, the recent development of
computationally more efficient algorithms for net-
works with certain topologies'”~> makes CPNs
highly appropriate for the implementation of clin-
ically relevant diagnostic expert systems, ® as well
as for other applications.”® When combined with
approaches based on decision theory, a general
framework for planning and advisory systems
emerges, which has already found one application
in ventilator therapy planning.® The CPN ap-
proach enables population-specific and patient-
specific information to be mixed within a formally
coherent framework. This approach also pro-
vides a facility for dealing with uncertainties over
time. Our paper describes the merits of this pow-
erful modeling approach in tackling control sys-
tem problems typified by the treatment of the pa-
tient suffering from chronic disease.

Diabetes

The CPN modeling technique will be illustrated by
considering the planning and adjustment of insu-
lin therapy for a diabetic patient. Diabetes is a
major chronic disease in the industrialized world.
It affects over 2 percent of the population of Eu-
rope and approximately one hundred million peo-
ple worldwide. ' Diabetes is a lifelong condition
and can give rise to a variety of life-threatening
complications. For example, it is the most com-
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mon cause of blindness in people under the age of
65 in the United Kingdom and accounts for over
40 percent of lower-limb amputations carried out
within the National Health Service.!

The incidence and severity of such complications
can be reduced with good clinical management
directed toward effective control of a patient’s
blood glucose level.? Control requires a careful
balance between diet, physical activity, and in-
sulin therapy. A high level of clinical expertise is
required in order to achieve this result. While
such expertise will be found in specialist hospital
diabetic units and in some primary care practices
with an interest in diabetes, it is not always to be
found in other sectors of the health service. One
way of making this clinical expertise more widely
available, including the home setting of the dia-
betic patient, is through the appropriate use of
information technology.

Insulin-treated diabetes (known clinically as type
1 diabetes) results from partial or complete failure
of the pancreas to produce the hormone insulin in
response to elevated blood glucose levels. In nor-
mal health the glucose-insulin interaction is a
classical example of control exerted by an effec-
tive negative feedback loop. From a control en-
gineering perspective such a diabetic patient can
be regarded as a multiinput-multioutput physio-
logical system that contains several controllable
and measurable variables as well as a number of
other factors that are not directly observable and
that, as such, are beyond the clinician’s control.
In this complex system the diet and administered
insulin dose can be considered as control varia-
bles that need to be adjusted in order to achieve
the therapeutic objective, namely to maintain a
balance between energy supply and expenditure
at blood glucose levels set by the clinician.

A number of computer-based approaches have
been attempted in order to assist in insulin dosage
adjustment and, more generally, in the treatment
or long-term management of diabetic patients.
The methods and techniques used include com-
puter algorithms for advising on insulin dosage
adjustment, "¢ knowledge-based systems to ad-
vise on patient management in out-patient clin-
ics,® and mathematical models as a means of
simulating and predicting blood glucose level in
response to change in therapy.'*? It is a novel
extension to this last category, as applied in the
context of managing a chronic disease, that is pro-
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vided by CPN-based modeling as described in the
remainder of this paper.

Causal probabilistic network—General
aspects

A causal probabilistic network consists of nodes
and directed links. Nodes represent random var-
iables: state wvariables, conditions, measure-
ments, etc. For the sake of simplicity, we will
restrict ourselves to discrete random variables.
Links represent causal relations between nodes.
Ancestors of a node are called its parents. Figure
1 gives an example of a CPN containing a repre-
sentation of two diseases. The topology of the
network determines the dependencies and inde-
pendencies between the variables in the network.
For example, the links in the network indicate
that Disease A affects the presence of Symptom
C; Disease B affects the presence of Symptom C
and Symptom D. The absence of a link between
Disease A and Disease B indicates that Disease A
and Disease B are independent in the absence of
information about Symptom C. The absence of a
link between Disease A and Symptom D indicates
that Disease A and Symptom D are conditionally
independent given Disease B. In other words,
when the status of Disease B is known, the prob-
ability of Symptom D can be calculated irrespec-
tive of the status of Disease A.

As far as the network structure is considered, one
restriction holds. The network must be a directed
acyclic graph. Examples of legal structures are
shown in Figure 2. In the top panel of Figure 2, the
directed tree has a single root node and at most
one directed path between any two nodes. The
middle panel shows a directed multitree structure
with several root nodes and at most one directed
path between any two nodes. In the bottom panel
a general directed acyclic graph is depicted with
more root nodes and possibly more than one path
between two nodes.

The relation between a node and the complete set
of its parents has to be specified in the form of
conditional probabilities. In our example, the re-
lation between Disease B and Symptom D is fully
specified by giving the conditional probabilities

P(D = PRESENT | B = PRESENT)
P(D = PRESENT | B = ABSENT)
P(D = ABSENT | B = PRESENT)
P(D = ABSENT | B = ABSENT)
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Figure 1 An example of a causal probabilistic network

DISEASE B

Nodes with an empty set of parents are called root
nodes. Having assigned a priori probability dis-
tributions to root nodes, a probability model is
fully defined. As in our example, assigning
P(A) = p, and P(B) = pg, where p, and pg are the
probabilities of incidence of Disease A and Dis-
ease B among the population respectively, the
probability of any possible combination of A, B,
C, and D, e.g., P(A = PRESENT, B = ABSENT,
C = PRESENT, D = ABSENT), is specified unambig-
uously. It is then possible to calculate the ele-
ments of a joint probability table, which in our
little example is P(A, B, C, D).

If we assume that P(A, B, C, D) is available, a
variety of queries about probabilities in the net-
work can be answered. For instance, should the
probability of the presence of Symptom C be re-
quested assuming no evidence is available, it can
be calculated from the joint probability table as

P(C = PRESENT) = > P(A, B, C = PRESENT, D)
A4.8.D

When the evidence that assigns a value to a node
has been obtained, it is natural to require the
probability of the remaining nodes to be updated.
With use of CPN terminology, the evidence is
propagated throughout the network. Having ob-
served the presence of Symptom C in our exam-
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Figure 2 Graphical structures allowed for CPN
representation
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ple, we see that the probability of a patient having
Disease A is obtained as the conditional proba-
bility P(A = PRESENT | C = PRESENT). This result
can be computed from the joint probability table
as

P(A = PRESENT | C = PRESENT)

P(A = PRESENT, C = PRESENT)
B P(C = PRESENT)

EP(A = PRESENT, B, C = PRESENT, D)
B.D

> P(4, B, C = PRESENT, D)
A,B.D

The remaining question concerns the initial cal-
culation of the joint probability table P(A, B, C,
D). This table can be calculated from the known
conditional probabilities and the known a priori
probabilities, using the independencies apparent
from the network

P, B, C, D) = P(C|A, B, D) P4, B, D)
= P(C|A, B) P4, B, D)

since C and D are independent given B. Further

P(4, B, C, D) = P(C|4, B) P(D|A4, B) P4, B)
= P(C|4, B) P(D|B) P4, B)

since D and A are independent given B. Finally,
P4, B, C, D) = P(C| 4, B) P(D|B) P(4) P(B)

since A and B are independent.

The joint probability table of our example con-
tains sixteen (2* = 16) elements. For practical
problems, the size of the table would exceed the
limits imposed by current technology. A network
with 100 nodes, each node having five states,
would require a table with more than 10% (5% ~
8 x 10%) elements. The calculations illustrated
above increase exponentially with the size of a
network. Clearly, alternative methods are re-
quired to allow network initialization (calculation
of the a priori probability of each node) and ev-
idence propagation (calculation of the a posteriori
probability of each node).

The power and utility of the CPN is that knowledge
about the geometric structure of a network can be
used to facilitate more efficient evidence propa-
gation. In case of tree and multitree graph struc-
tures, initialization and evidence propagation can
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be performed through local operations by each
node on information provided by its parents and
children. These operations can be carried out by
using an algorithm that computes all probabilitics
in a number of steps linearly related to the number
of nodes in a network.' For the case of networks
with loops, i.e., networks where two or more
paths exist between two nodes, no such simple
algorithm is available to perform the calculation.
However, recent theoretical developments® fol-
lowed by a practical implementation*® have al-
lowed calculations to be performed efficiently in
networks of considerable size. MUNIN, ® an EMG
(electromyograph) diagnostic assistant, contains
more than one thousand nodes, and propagation
takes just a few seconds.

CPNs have been primarily used in diagnostic sys-
tems. The novelty of the approach described in
this paper lies in the introduction of the fime do-
main in knowledge representation. A discrete-
time physiologically-based model of carbohy-
drate metabolism is built using a CPN, and the
ability of this approach to represent uncertain
knowledge, to perform robust parameter estima-
tion, and to compare competing therapies is de-
scribed.

Insulin dosage adjustment in insulin-
dependent diabetic patients

A CPN-based model of carbohydrate metabolism.
Considerable knowledge about carbohydrate me-
tabolism has been obtained from clinical experi-
ments. Carbohydrate metabolism has been stud-
ied under various conditions, and both qualitative
and quantitative information are now available.
The basic structure of carbohydrate metabolism
is clear. Glucose enters the body and is distrib-
uted, excreted, or utilized. Control mechanisms
exist that modulate both the appearance and dis-
appearance of glucose in the organism. The quan-
tification of these processes always includes some
degree of uncertainty reflecting the variations that
exist between individuals and the temporal vari-
ations that occur in each individual.

The scheme of the model is given in Figure 3.
Glucose enters the plasma circulation from two
possible sources. Either the carbohydrate con-
tained in the “MEAL” enters the “STOMACH,” is
absorbed from the gastrointestinal tract as glu-
cose (“GUT ABSORPTION"), and appears in plasma
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(“BG™), or glucose is released by the liver
(““GLUCOSE PRODUCTION") at a rate that depends
on glucose and insulin levels. The model includes
the representation of three processes that are in-

The novelty of this approach lies
in the introduction of the time
domain in knowledge
representation.

volved in glucose removal from plasma. These
processes are insulin-dependent glucose utiliza-
tion (“INSULIN-DEPENDENT UPTAKE”), insulin-
independent utilization (‘“‘INSULIN-INDEPENDENT
UPTAKE”), and “RENAL EXCRETION.” A signifi-
cant part of the overall glucose uptake is known
to be insulin-mediated and is thus named insulin-
dependent glucose utilization. Insulin has a stim-
ulatory effect on glucose uptake by cells, espe-
cially in the muscles. Glucose uptake by some
tissues, e.g., the central nervous system, is inde-
pendent of insulin levels and is controlled pre-
dominantly by plasma glucose concentration it-
self. When plasma glucose reaches an elevated
threshold concentration, a portion of that glucose
is filtered by the kidney and excreted in urine.

In normal subjects, insulin is produced by the
pancreas. In insulin-dependent diabetic patients,
insulin secretion by the pancreas is severely im-
paired and has to be replaced externally by insulin
injections. Insulin is usually injected into subcu-
taneous tissue. It is then slowly absorbed
(“INSULIN ABSORPTION”’) and enters the plasma
circulation. The rate of absorption varies for dif-
ferent insulin types. The time course of the effect
of insulin on glucose production and uptake is
delayed from that of the time course of insulin
concentration in plasma. Thus “ACTIVE
INSULIN” was introduced to represent the correct
time course of the insulin stimulatory potential.

High variations exist between diabetic patients in
terms of quantity of insulin administered. The in-
sulin stimulatory potential can be significantly de-
creased, and patients often demonstrate insulin
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Figure 3 Model of carbohydrate metabolism
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resistance. Qur model represents insulin resis-
tance using an “INSULIN SENSITIVITY” scaling
factor that scales down “ACTIVE INSULIN” ac-
cording to the level of insulin resistance. Varia-
tions in insulin resistance are known to be re-
sponsible for a great deal of the overall variation
exhibited by diabetic subjects. In our model,
“INSULIN SENSITIVITY” is treated as a model pa-
rameter and is estimated for each individual.

The model is a discrete time model with a one-
hour step. Figure 3 shows one time slice that is
repeated 24 times in the model. The model thus
covers a one-day period. The arrows represent
the causal links between the processes involved
in plasma glucose control. The quantification of
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Adapted from Andreassen et al. 2

the relations is given in the form of conditional
probabilities, the derivation of which is illustrated
in Figure 4. The top panel of the figure shows the
relation between the quantity of glucose in the
stomach and the rate of glucose absorption as
compiled from data reported in medical litera-
ture.?? The data have the typical format: mean
value and a measure of variance (in this case stan-
dard deviation) of the dependent variable are
given for several discrete values of the indepen-
dent variable. This knowledge can be translated
into conditional probabilities. The dependent
variable is assumed to be a discrete stochastic
variable, and by sampling a normal distribution
specified by the mean and variance it is possible
to calculate its probability. The bottom panel of
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Figure 4 Derivation of conditional probabilities to specify linkage between a node and its parent
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Figure 4 shows the conditional probabilities de-
rived in this manner from the data shown in the
top panel. For example, given the empty stom-
ach, the probability of zero absorption is 100 per-
cent (full bar in 0 millimoles per hour [mmol/h]
row under 0 mmol label) and zero percent for
absorption rates of 40, 80, and 120 mmol/h.

The discretization of what in reality are continu-
ous variables is carried out in a manner that en-
ables the whole clinical spectrum of values to be
covered. For example, blood glucose concentra-
tion is divided into a finite number of ranges to
which the clinician would apply qualitative labels
such as “low,” “normal,” “high,” “very high,”
etc. Each of these ranges is then represented by
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a discrete value. For instance, “normal” blood
glucose concentration could be represented by
the value of 6 mmol/l.

This then means that there are two dimensions of
uncertainties attached to any discrete value. The
first is the quantization error arising from the rep-
resentation of, say, the normal blood glucose con-
centration range by a discrete value. This form of
error is not explicitly considered. The second is
the uncertainty as to whether the qualitative label
(e.g., “normal” blood glucose concentration) is
appropriate in a given situation or whether an ad-
jacent range (which qualitatively would be la-
beled “high” or “low”) is more probable. It is this
second dimension of uncertainty that is repre-
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Figure 5 Parameter estimation using CPN
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sented by the conditional probabilities such as
shown in the lower panel of Figure 4.

Adaptation of the model for an individual patient.
Insulin therapy and carbohydrate content of the
meal are model inputs, plasma glucose is a model
output, and insulin sensitivity is a model param-
eter. After data are observed from an individual
patient, the model parameter has to be updated to
reflect the observed input-output relation. The re-
sults of the parameter estimation process are il-
lustrated in Figure 5. The upper panel shows the
a posteriori probability distribution of insulin sen-
sitivity calculated by the system from the data
obtained from an individual patient. It should be
noted that the estimation does not result in a sin-
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gle value output as would be the case if using
standard least-square parameter estimation tech-
niques. Rather a probability distribution is gen-
erated that indicates the extent to which individ-
ual parameter values can explain the observed
data. Strictly speaking, as the estimation is based
on Bayesian theory, the starting, a priori proba-
bility distribution of insulin sensitivity is also
taken into account when the updated, a posteriori
probability distribution is calculated. The patient
exhibits decreased insulin sensitivity. Normal
sensitivity has a numeric value of 1; the patient’s
insulin sensitivity is spread around a value of 0.5.
The lower panel of the figure shows the model fit
to measured blood glucose values. The mean +SD
region of the model prediction is given. This type
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Figure 6 Comparison of blood glucose measurements and the mean + SD region of model prediction
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of information is quite unique and cannot be di-
rectly obtained from deterministic modeling ap-
proaches.

Model-based prediction of blood glucose. After the
insulin sensitivity from observed data is esti-
mated, the model can be used to predict blood
glucose for various diet and insulin regimens.
This prediction can be carried out either for reg-
imens actually administered or for purely hypo-
thetical regimens. In the former case, the preci-
sion of the model prediction can be evaluated.
Model-based prediction of blood glucose is com-
pared with values actually measured. In the latter
case, a therapy recommendation can be gener-
ated as discussed in the next subsection. An ex-
ample of the assessment of the precision of model
prediction is shown in Figure 6. The figure shows
mean =SD region for predicted blood glucose and
also the actual blood glucose measurements, al-
lowing visual assessment of the precision of the
prediction. The model prediction was calculated
using the data about diet and insulin regimens ac-
tually administered during the period indicated,
and using the insulin sensitivity parameter esti-
mated for this patient on a previous occasion. Us-
ing more formal techniques, e.g., by calculating
mean square prediction error, a single measure of

1BM SYSTEMS JOURNAL, VOL 31, NO 4, 1992

the precision of the prediction can be computed
and used during the evaluation phase of the sys-
tem development.

Therapy planning. The ability of the model to pre-
dict blood glucose as an outcome of insulin ther-
apy can be used to generate advice on therapy.
The prediction is not, however, sufficient for ad-
vice generation. A performance measure has to
be adopted to indicate the benefit (or loss) asso-
ciated with a therapy being administered. Alter-
native therapies can then be evaluated by com-
paring the performance measures arising from
them. The therapy with the extremal value of per-
formance measure can then be recommended.

From a medical perspective, low and high blood
glucose values are not desirable. A low blood giu-
cose value (hypoglycemia) is perceived by the di-
abetic patient as being unpleasant and may result
in an acute loss of consciousness with a risk of
chronic brain damage. High blood glucose is re-
garded as a major cause of late diabetic compli-
cations such as blindness or impaired kidney
function. Clinically, the penalization of low and
high glucose values (reflecting their undesirabil-
ity) in relative terms can be expressed by the
M-value.” These penalties resulted from a sub-
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Figure 7 Penaltles assoclated with different levels of blood glucose
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jective assessment being carried out by a panel of
diabetes experts. We have adopted a similar
scheme of penalties shown in Figure 7. It should
be noted that the penalties are not symmetric, and
this scheme is thus essentially different from a
standard square-law approach to penalties.?

The penalties were elicited from the clinical ex-
perts participating in this study. They represent
the experts’ subjective assessment of the risk or
inconvenience or both for the patient. For the
purpose of the elicitation of the penalties, the pen-
alty curve shown in Figure 7 was expressed in
hours of life lost for each hour that glucose was
maintained at any particular level. For the high
blood glucose levels the penalties mainly repre-
sented the risk of premature death and qualitative
corrections made for loss of quality of life due to
complications such as blindness, kidney failure,
etc. The currently available epidemiological data
only allow these assessments to be made in a qual-
itative and subjective way. The penalties associated
with low blood glucose levels contain a substantial
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Adapted from Andreassen et al.?®

element of discomfort and social embarrassment as
perceived by the patient as well as contributions
from the risk of accidents, brain damage, or other
organ damage during hypoglycemic episodes. The
penalty curve thus represents an attempt to pro-
duce a single utility measure that takes several of
the patient’s dimensions of utility into account. We
only consider the penalty curve to be a qualitative
and subjective representation of some aspects of
the patient’s total utility, but it is interesting that it
turned out to be quite similar to the M-value. The
only major difference is that our penalty curve pe-
nalizes high blood glucose a bit more severely than
the M-value does.

Blood glucose is predicted by the model as a prob-
ability distribution. To calculate the performance
measure for an insulin regimen, ideas from utility
theory are employed. A weighted mean of pen-
alties is computed using the probability distribu-
tion generated by the system. The calculation
process is illustrated in Table 1. In essence, the
product of the probability of each outcome (i.e.,
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Figure 8 The comparison of an administered therapy (default therapy) and the therapy with minimum performance
measure (advised therapy)
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Table 1 Calculation of the penalty assoclated with a
blood glucose value when blood glucose

value Is specified as a probability distribution
(the penaﬁr function shown In Flgure 7 is
employed in the calculation).
Blood Probability Penalty Product
" Glucose (percent) Function
{mmol/f)
1 0 10.0 0
2 0 2.0 0
4 0 0.1 0
6 1 0 0
9 6 0.1 0.006
13 20 2.0 0.400
17 ) 36 5.0 1.800
22 37 10.0 3,700
2 5.906

a given blood glucose) and the penalty attached to
the outcome is summed over all possible blood
glucose outcomes. This process gives the total
penalty attached to the blood glucose probability
distribution at a specific time. To obtain the per-
formance measure of the therapy, the penalties of
24 blood glucose probability distributions are
summed (i.e., values predicted at 24 consecutive
one-hour intervals).

With the performance measure defined, alterna-
tive insulin therapies can be compared. The ther-
apy with the minimum performance measure is
assumed to be optimal and is recommended. To
find a therapy with minimum performance mea-
sure, the n-dimensional space is searched for
what is hopefully a global minimum, where » is
the number of insulin injections per day. Several
methods can be employed to perform the search.
We have adopted a gradient method which usu-
ally converged in less than 10 iterations. Figure 8
shows the comparison between default therapy
(the therapy that was actually being administered)
and the therapy with minimum performance mea-
sure (the one that would be recommended). The
top panel shows the improvement in the perfor-
mance measure as predicted by the system. The
next panel gives the mean +SD regions of blood
glucose predicted for a default insulin therapy and
for therapy with minimum performance measure.
The last two panels indicate the alterations in
doses of short-acting insulin and long-acting in-
sulin suggested by the system.

Implementation. These techniques have been em-
ployed to build SWAN,? a system that advises on
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insulin therapy for patients who require this form
of treatment. The system runs on SUN-based
workstations and uses HUGIN* to handle the prob-
abilities in the network. Prior to calculations,
HUGIN compiles the network, rearranging the
network structure and creating partial joint-prob-
ability tables. The conditional probability tables
required for the specification of one time-slice of
the network as shown in Figure 3 hold about
13 000 numbers. After compilation the tables re-
quired to hold one time-slice hold about 500 000
numbers corresponding to 2 megabytes (Mb). The
total compiled SWAN network with 24 time-slices
takes up about 50 Mb. The SWAN program itself
occupies less than 1 Mb. A single propagation in
the network requires approximately 10 seconds of
CPU time; the search for optimum therapy re-
quires 3 to 6 minutes of CPU time. The current
activities in this project are focused on further
refinement of the network by including a more
detailed representation of the glucose-insulin
dynamics, on speeding up the calculations, and
on clinical evaluation.

Concluding remarks

The novel technique of causal probabilistic net-
work modeling has been described and employed
to generate advice on insulin therapy for diabetic
patients. CPN models have the intrinsic capability
of representing uncertainty in the model specifi-
cation and are substantially novel in their ability
to estimate model parameters as probability dis-
tributions rather than as single values. Predic-
tions generated by the system are also produced
in the form of probability distributions. Combin-
ing CPN models and decision theory approaches
allows the assessment of competing therapies,
and hence, an optimum therapy based on the cho-
sen criterion can be identified. Clinically, this ap-
proach to insulin dose adjustment, based on prob-
abilities, has many more similarities to the
approach of the physician caring for patients with
diabetes than deterministic models. Both the phy-
sician and the CPN model seek insulin doses that
maintain as near normal a blood glucose as is pos-
sible with an acceptably small risk of a danger-
ously low value of blood glucose.
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